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Abstract. Scheduling problems in which agents (users, customers, ap-
plication masters, resource manager, etc.) have to share the same set(s)
of resources are at the frontier of combinatorial optimization and co-
operative game theory. This paper deals with scheduling problems aris-
ing when two agents, each with a set of nonpreemptive jobs, compete
to perform their respective jobs on two common identical parallel ma-
chines. Each agent aims at minimizing a certain objective function that
depends on the completion times of its jobs only. The objective func-
tions we consider in our study are makespan and number of tardy jobs.
The agents may share some jobs and this problem is called non-disjoint
multi-agent scheduling problem (Agnetis et al. 2014). Finding the opti-
mal solution for one agent with a constraint on the other agent’s cost
function is known to be NP-hard. To obtain best compromise solutions
for each agent, we propose polynomial and pseudo-polynomial heuristics.
Two mixed integer linear programming models are developed to calcu-
late exact non-dominated solutions. Experimental results are conducted
to measure the solutions quality given by heuristics.

Keywords: Multicriteria optimization, Multiagent scheduling, parallel
processors, heuristics, Dynamic programming, linear mathematical pro-
gramming.

1 Introduction

Efficient management of large-scale job processing systems is a challenging prob-
lem, particularly in the presence of multi-users. In addition, real world systems
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require processing of jobs on common resources and considering different ob-
jective functions. Most conventional algorithms are designed for multi-criteria
scheduling problems where each measure is applied on the whole set of jobs
without any distinction. However, these classical multi-criteria scheduling prob-
lems are not well appropriated to the more general resource allocation problem
across heterogeneous networks frequently encountered in real applications. It is
useful to classify jobs as either time constrained, which should be scheduled as
soon as possible, or non-time-constrained, which should simply be processed be-
fore their due date. This is the subject of multi-agent scheduling (Agnetis et
al. 2014, Sadi et al. 2014, Huynh Tuong et al. 2012). Indeed, in (Peha 1995)
the author considered an integrated-services packet-switched networks such as
ATM (Asynchronous Transfer Mode). Information carried by the network are
first split into smaller messages called packets. The data comes from different
types, such as voice, video, image and so on. Each packet is wrapped with the
essential information needed to get it from its source to the correct destination.
In the case of audio and video data the authors show that minimizing the num-
ber of late delivered packets is more relevant when for the other types of data,
the minimizing delay queuing is more suitable. Delay queuing is commonly ex-
pressed in the scheduling literature by the total completion time. Peha’s results
provide polynomial time algorithms to schedule a set of n jobs on m identical
parallel machines with assumption of unit processing times.

In this paper, we study the problem of scheduling jobs on identical parallel
processors. The model is featured by agents (local decision makers) - each of
which is associated with a subset of jobs to perform, and each one has its own
objective function depending only on the completion times of its jobs. The agents
share not only the common resources but also some common jobs. This problem
has been introduced by (Agnetis et al. 2014) and called non-disjoint multi-agent
scheduling problem. These problems belong to a particular class of multi-criteria
scheduling problems where their practical and theoretical benefits are highlighted
in (Agnetis et al. 2014). During this past decade, such a class has drawn a
significant interest to researchers dealing with scheduling problems and from
operational research domain.

Depending on the agent’s relationships, three scenarios have been defined in
(Agnetis et al. 2014): competing (CO), interfering (IN) and non-disjoint
(ND). According to our knowledge, except few results appeared in (Agnetis
et al. 2014), the non-disjoint scenario is not already studied in the literature.
However, the competing scenario is no doubt the most studied scenario until
now. It was introduced in (Baker et al. 2003), the authors considered two disjoint
sets of jobs, each one is associated with one agent and one objective function.
The jobs have to be executed on the single machine and the goal is to find
the best compromise solutions between the two agents. When the ε-constraint
approach is used, a polynomial time algorithm is proposed to minimizing the
number of tardy jobs of each agent. In (Ng et al. 2006), the authors study
Peha’s problem introduced in (Peha 1995) by considering any processing times
(not necessary identical). They present an NP -hardness proof and propose a
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dynamic programming algorithm to calculate a non-dominated solution. The
interfering job set scheduling problems is particularly studied in (Huynh et al.
2012) and (Sadi et al. 2014). Polynomial and pseudo-polynomial time algorithms
are derived for settings with various combinations of the objective functions in
the case of single processor and parallel processors.

The rest of this paper is organized as follow. We define the problem in Section
2. In Section 3, we propose a discussion on the appropriate solutions structure.
Section 4 is dedicated to the mathematical programming formulations which
determine strict pareto solutions. Two polynomial heuristics are proposed and
presented in Section 5. We also develop two pseudo-polynomial heuristics in Sec-
tion 6. A comparison between the exact and approximate methods is illustrated
in Section 7. Conclusion and future researches are presented in Section 8.

2 Problem definition and notations

We consider two competitive agents A and B sharing the same machines. Each
agent is owning a set of jobs. We denote by J A = {JA

1 , J
A
2 , . . . , J

A
nA
} a job set

associated with agent A, while J B = {JB
1 , J

B
2 , . . . , J

B
nB
} is the job set associated

with agent B. The agents can share some jobs, that means that J A ∩ J B is
not necessary empty. The whole set of jobs is denoted by J such as |J | =
n, that is given by JA ∪ J B . The machine environment is composed of two
identical parallel machines, denoted by Mi that are always available, for i = 1, 2.
Preemption is not allowed and each machine can process only one job at a time.
The processing time of Jj denoted by pj is known and given, where Cj is its
completion time, ∀j ∈ J . We assume that all jobs are available at time zero,
and jobs within agent B are subject to a common due date denoted by dB . In
this study, the objective function to be minimized of agent A is the makespan
of its jobs: CA

max = maxJA
j ∈JA Cj , while agent B minimizes the number of its

tardy jobs:
∑
UB
j =

∑
JB
j ∈JB 1{

Cj>dB
}.

According to the three fields notation of the multi-agent scheduling problems
introduced by (Agnetis et al. 2014), the problem addressed in this paper is
denoted by P2|ND, dB |(CA

max, U
B
j ), where ND means that the job sets are non-

disjoint. When the ε- constraint approach is considered, the studied problem is
denoted by P2|ND, dB ,

∑
UB
j ≤ QB |CA

max. In this case the problem is to find
a schedule that minimizes the objective function of agent A, while keeping the
objective function of agent B less than a given threshold QB .

3 Structure of the non-dominated solutions

Schedule σ is called Pareto solution if there does not exist another solution
that dominates it. On the basis of the studied problem properties, we want to
determine the overall structure of the Pareto solutions. Some of these properties
are generalization of classical single machine scheduling problems. In fact, as jobs
of agent B are submitted to one common due date, it is easy to see that they
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have to be sequenced on each machine according to their shortest processing
time order, thus to minimize the number of tardy jobs of agent B. It can also
be shown that on a given machine, the tardy jobs of agent B that belong to
J B\{J A∩J B}, have to be scheduled last, otherwise the makespan of the agent
A can be increased. So, we can write the following proposition.

Proposition 1 If problem Pm|ND, dB ,
∑
UB
j ≤ QB |CA

max admits a feasible
solution, then it is possible to build an optimal solution such that on each machine
we have:

1. Jobs of agent B appear in SPT order.
2. Tardy job Jj within J B\{J A ∩ J B} is scheduled after the jobs of agent A.

CA
maxdB CB

maxS1 S3

S2

JA ∩ JB

JA\{JA ∩ JB}

JB\{JA ∩ JB}

Fig. 1: Structure of non-dominated solution for the Pm|ND, dB |CA
max,

∑
UB
j .

Notice that the jobs of agent B should be scheduled before the common
due date DB . Thereby, to minimize the number of tardy jobs (maximize the
number of early jobs) we only have to schedule jobs according to SPT rule.
Therefore, there is an optimal schedule, if there exists, with structure similar to
the one presented in figure 1: a sub-schedule S1 containing jobs of agent B and
sequenced according to SPT order on each machine, followed by a sub-schedule
S2 consisting of the remaining jobs of agent A, ended by a sub-schedule S3

including the remaining jobs within agent B (some agent B jobs in S3 may be
early jobs).

4 Integer programming formulation

We present in this section two mixed integer linear programming formulations to
solve the ε-constraint non-disjoint multi-agent scheduling problem. These models
are tailored for the problem considering m identical parallel machines (m > 0).
The first type of our proposed mathematical model is based on assignment of
the jobs to machines, it is presented in section 4.1. The second formulation is
based on the time indexed, it is presented in section 4.2.
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To generate the set of strict Pareto solutions (Pareto front), we solve the
problem with different values of QB . At the first iteration, QB is set to the upper
bound of the objective function

∑
UB
j (at worst case this value is equal to nB).

The obtained solution is denoted by (α̂A, α̂B). We then solve the symmetric
problem, denoted by Pm|CA

max ≤ α̂A|
∑
UB
j . The obtained solution is hence

strict Pareto solution, denoted by (α̂A, α̂B′). It is then added to the current set
of non-dominated solutions. Next we iterate with QB = α̂B′ − 1; If no feasible
solution is obtained then the procedure is stopped.

4.1 Assignment-based formulation

Let us consider the following decision variables:

– xi,j is a binary variable that takes value 1 if job Jj is scheduled on machine
Mi; 0 otherwise.

– yj,k is a binary variable that is equal to 1 if job Jj is executed before job Jk
on the same machine; 0 otherwise.

– zj is a binary variable that is equal to 1 if job Jj is scheduled after its due
date dB ; 0 otherwise.

We also need to define continuous variables: Cj is the completion time of job
Jj and CA

max is the value of the agent A objective function. We define HV some
positive high value.

(MILP −Assign) Min CA
max

s.t.



∑m
i=0 xi,j = 1, ∀Jj ∈ J (1)

Cj −
∑n

k=1 pk × yj,k ≥ pj , ∀Jj ∈ J (2)

yj,k + yk,j ≤ 1, ∀Jj , Jk ∈ J (3)

xi,j + xi,k − yj,k − yk,j ≤ 1, ∀Jj , Jk ∈ J (4)
i = 1, . . . ,m

xi,j + yj,k − xi,k ≤ 1, ∀Jj ∈ J (5)
i = 1, . . . ,m

yj,k + yk,l − yj,k ≤ 1, ∀Jj , Jk, Jl ∈ J (6)

Cj − dB −HV zj ≤ 0, ∀Jj ∈ J B (7)∑
Jj∈JB zj ≤ QB (8)

xi,j , yj,k, zj ∈ {0, 1}, Cj ≥ pj ∀Jj , Jk ∈ J (9)
i = 1, . . . ,m

Constraints (1) impose that each job Jj should be assigned to one and only
one machine. Constraints (2) mean that each jobs’ completion time is at least
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equal to the summation of the processing times of the jobs scheduled before it on
the same machine plus its own processing time. Constraints (3) avert solutions
that consider job Jj scheduled before job Jk, concurrently job Jk scheduled before
job Jj . Constrains (4) impose that if two jobs are on the same machine, then one
must be scheduled before another. Constraints (5) express that if Jj is executed
on machine Mi and Jj is before Jk, than Jk must be scheduled on machine Mi

also. Transitivity constraints are expressed by formula (6), which mean that if
Jj is executed before Jk, and Jk is executed before Jl than Jj is executed before
Jl. Constraints (7) fixe the values of the binary variables zj : if it equals to 0
then we have Cj ≤ dB , otherwise the job is late and the constrain is still valid.
Constraints (8) express the ε-approach bound and constraints. Constraints (9)
are the integrity ones.

4.2 Time-based formulation

In this section, we propose a second mathematical formulation to solve the con-
sidered scheduling problem. We consider sj,t a new binary variables that are
time indexed. sj,t takes as a value 1 if job Jj starts its processing at time t;
0 otherwise. Thereby, we have n × (T + 1) binary variables, which is pseudo-
polynomial. The general formulation is the following one.

(MILP − Time) Min CA
max

s.t.



∑T
t=0 sj,t = 1, ∀Jj ∈ J A (10)∑
Jj∈J

∑t
l=max{0,t−pj+1} sj,l ≤ m, ∀t = 0, . . . , T (11)

CA
max −

∑T−pj

t=0 (t+ pj)sj,t ≥ 0, ∀Jj ∈ J A (12)∑T−pj

t=0 (t+ pj)sj,t −HV zj ≤ dB , ∀Jj ∈ J B (13)∑
Jj∈JB zj ≤ QB , (14)

sj,t ∈ {0, 1}, zj ∈ {0, 1}, ∀Jj ∈ J t = 0, . . . , T, (15)

Constraints (10) impose that each job Jj starts at a given time t. Constraints
(11) ensure that no more than m jobs are scheduled simultaneously, it avoids the
jobs overlapping at any time t. Constraints (12) determine the makespan value
of jobs of agent A. Constraints (13) fixe the values of the binary variables zj : if
zj = 0 then we have Cj ≤ dB , otherwise job Jj is late and the constrain is still
valid. Constraints (14) express the ε-approach bound. Constraints (15) are the
integrity ones.
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5 Polynomial heuristics

The studied scheduling problems are NP -hard (Sadi et al. 2014), we propose
computationally efficient heuristics technical. To illustrate our approach, let
consider the case of two machines (m = 2). Our approach can be easily ex-
tended to multiple processors environment. Our goal is to generate the set of
non-dominated solutions, where the decision maker can evaluate the tradeoffs in
the criteria. This is a posteriori approach in which the decision maker makes his
choice only after a set of points is presented. Of course, our resolution methods
can be also used as interactive approach where the decision maker specifies the
maximum allowed number of tardy jobs of agent B and seek for the optimal
value for the makespan of agent A.

Since makespan is equivalent to the decision problem involving a common
deadline (i.e. whether a feasible schedule can be obtained such that all jobs
finish before a common deadline) the set of non-dominated solutions can give
the decision-maker important information on whether jobs for one set can be
finished by a given time and the resulting compromise or effect on the number
of tardy jobs for the other agent.

We consider the problem where the agent B objective function is bounded by
QB . The goal is to obtain at least nB−QB early jobs. Since Property 1 specifies
that the jobs of agent B have to be sequenced in their smaller processing time
order, we consider in the following subset of jobs E containing the smallest
nB − QB jobs of agent B. These jobs should be scheduled early so as to have
a feasible solution. In order to obtain an approximate Pareto front, we solve
the problem with different values of QB , such that QB ∈ [0, nB ]. Then after,
dominated solutions are removed.

5.1 Heuristic 1

We focus on minimizing the makespan of agent A, using the heuristic LPT-
FAM that is a well heuristic method for solving classical scheduling problem
Pm||Cmax. It sorts the jobs in non-increasing processing times order (LPT) and
assigns them to the first available machine (FAM).

The heuristic presented in this section is made up of three phases, where
LPT+FAM is used (see Algorithm 1). It starts by scheduling jobs of E, followed
by the remaining jobs of agent A from J A\{J A∩E}, and finishes by sequencing
jobs of agent B not already scheduled. The remaining jobs of agent B have no
influence on the makespan we can execute them at the end of any machine, but
in order to optimize the number of tardy jobs it would be more efficient to use
LPT+FAM. This heuristic is presented in Algorithm 1 and has O(nAlog(nA) +
nBlog(nB)) time complexity.

5.2 Heuristic 2

In this section we develop the precedent heuristic by allowing the jobs reassign-
ment. Indeed, instead of scheduling the jobs using LPT-FAM, this heuristic tries
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Algorithm 1 LPT-FAM

Sort jobs in JB according to SPT rule;
2: Set E = {JB

1 . . . , JB
nB−QB

};
Schedule the jobs in E using LPT-FAM ;

4: if at least one job is late then
Stop; // this heuristic cannot find a feasible solution

6: else
Schedule jobs in J A\{J A ∩ E} using LPT-FAM ;

8: Schedule jobs in JB\{JB ∩ E} using LPT-FAM ;
Return the resulting solution;

progressively to schedule jobs of E ∪ J A, so as to minimize the makespan, and
when a job of E is scheduled late, then it is rescheduled until is executed early.
Alternatively, this heuristic cannot find a feasible solution. The complexity is
still O(nAlog(nA) + nBlog(nB)), since the step 8 of Algorithm 2 can be done in
constant time.

Algorithm 2 LPT-FAM with jobs rescheduling

Sort the jobs in JB according to SPT rule;
2: Set E = {JB

1 . . . , JB
nB−QB

};
Set S = E ∪ J A in LPT order;

4: Set EB = 0; // the number of early jobs;
while S 6= ∅ and EB < nB −QB do

6: Schedule Jj using LPT-FAM ;
if Jj is late then

8: Remove largest job Jk already scheduled, Jk /∈ E;
Put S = S\{Jk}

10: Reschedule Jj using LPT-FAM ;
else

12: Set EB = EB + 1;

if EB = nB −QB then
14: Schedule jobs of J A not already scheduled using LPT-FAM ;

Return the resulting solution;
16: else

Stop; // This heuristic cannot find a feasible solution;

6 Pseudo-polynomial heuristics

In general, classical heuristics for solving scheduling problems are greedy al-
gorithms based on priority rules. These approaches guaranty an efficient com-
putational time but local optimality. In this section we try to overcome the
gap by solving in the exact way the problem minimizing the makespan, that
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is P2||Cmax(S) such as S ⊆ {J A ∪ J B}. We will use the following pseudo-
polynomial time algorithm based on dynamic programming (Blaziwicz et al.
2007):

Let Pj the makespan on machine Mi (i=1,2), and Fj(P1, P2) is a recursive
boolean function, it is equal to true if jobs J1, . . . , Jj of S can be scheduled
on M1 and M2 in such away that each machine Mi is busy in interval [0, Pi]
(i = 1, 2), and false otherwise.

Applying F0(0, 0) = true and F0(P1, P2) = false ∀(P1, P2) 6= (0, 0). F (j, tj) =
min(F (j−1, pj− tj);F (j−1, tj)+pj), the recursive function is given as follows:

Fj(P1, P2) =
(
Fj(P1 − pj , P2) ∧ Fj(P1, P2 − pj)

)
,

∀j = 1, . . . , n, ∀Pi ∈ [0, UB],∀i = 1, 2.

This dynamic programming algorithm (DP) determines the assignment of
jobs to machines, which is sufficient to compute an optimal schedule that mini-
mizes a makespan. The optimal makespan value is given by

Cmax(S) = min( max
∀Pi∈[0,UB]

({P1, P2}|Fj(P1, P2) = true)

This algorithm runs in O(nUB2) time, where UB is the upper bound of the
makespan.

6.1 Heuristic 3

This heuristic start by scheduling the nB−QB first jobs of agent B, by applying
the previous DP. If the optimal value of the obtained makespan is greater than dB
then there is no feasible solution for the problem. Otherwise jobs are scheduled
early and they are followed by the remaining jobs of agent A and after by the
remaining jobs of agent B, by always applying this DP. This algorithm runs in
O(n2 + nUB2) time, where UB is the upper bound of the makespan.

6.2 Heuristic 4

This heuristic is inspired from Heuristic 2, but instead of using LPT-FAM for
assigning the jobs, it uses the dynamic program presented above. This algorithm
runs in O(nlogn+nUB2) time, where UB is the upper bound of the makespan.



10 F. Sadia,b, T. Van Uta,c, N. Huynh Tuongd, and A. Soukhala

Algorithm 3 Heuristic based on dynamic programming

1: Sort the jobs in JB according to SPT rule;
2: Set E = {JB

1 . . . , JB
nB−QB

};
3: Optimally solve problem P2||Cmax considering only jobs of E by the DP
4: if Cmax(E) > dB then
5: Stop; // This problem has no feasible solution;

6: Optimally solve problem P2||Cmax considering only jobs of (JA\{JA ∩E}) by the
DP and taking into account no-availability machines at time zero (jobs of E have
been already scheduled)

7: Optimally solve problem P2||Cmax considering only jobs of (JB\{J A∪E}) by the
DP and taking into account no-availability machines at time zero (previous jobs
have been already scheduled)

8: Try to schedule tardy jobs of agent B earlier without increasing makespan value
by moving them to the left before dB

9: Return the resulting solution;

Algorithm 4 LPT-FAM-Dynamic programming

1: Sort the jobs in JB in SPT order;
2: Set E = {JB

1 . . . , JB
nB−QB

};
3: Set S = E ∪ J A in LPT order;
4: Set EB = 0; // the number of early jobs;
5: while S 6= ∅ and EB < nB −QB do
6: Schedule Jj using LPT-FAM ;
7: if Jj is late then
8: Remove Jk the largest job already scheduled;
9: Put S = S\{Jk}

10: Reschedule Jj using LPT-FAM ;
11: else
12: Set EB = EB + 1;

13: if EB = nB −QB then
14: if some jobs of EB are late then
15: Stop; // This problem has no feasible solution;
16: else
17: Use DP to schedule the jobs of J A not already scheduled;
18: Use DP to schedule the jobs of JB not already scheduled;

19: Return the resulting solution;

7 Computational results

The algorithms under study are coded in C language and executed on a work-
station with a 2.4 Ghz Intel Core i5 processor with 8 GB of memory running
Mac OS X Lion 10.7.5. Cplex version 12.6.2 was used to solve the mathematical
model. The computation time limit has been fixed to 3600 seconds for each value
(getting only one Pareto solution), where the Pareto fronts are determined as
described in Section 4.
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In this section, we compare Pareto fronts generated by each heuristic pre-
sented in Sections 5 and 6 to the exact Pareto fronts generated by the math-
ematical integer linear programs (presented in Section 4). The used instances
are generated with different settings. Processing times, are generated using a
discrete uniform distribution from 1 to 10. For each value of n such that n ∈
{10, 20, 30, 40, 50, 70}, thirty instances are generated. For each instance, the jobs
are assigned randomly to the agents. We generate uniformly a value in the inter-
val [1, 3], for the value 1, the job belongs to J A\{J A ∩J B}; 2, the job belongs
to J A\{J A ∩ J B} and 3, the job belongs to {J A ∩ J B}.

We use three different metrics in order to evaluate the solutions quality:

1. First, for each exact and approximate solution, we calculate the cardinalities
of the generated Pareto fronts. We denote by |S∗| the cardinality of the exact
Pareto front S∗, and by |S| the cardinality of the near Pareto front |S|.

2. Using the cardinalities, we define %S, this metric calculates the number of
exact solutions generated by each heuristic, it is given by |S ∩ S∗|/|S|.

3. GD is a generational distance, it calculates the average of the minimum
Euclidian distances between the approximate solutions and the exact ones. It

is given by GD = 1
|S|

(∑
s1∈S mins2∈S∗ ds1,s2

)
where ds1,s2 is the Euclidian

distance between the element s1 ∈ S and the element s2 ∈ S∗.

4. H is the Hypervolume, it calculates the area dominated by some front. In the
following, we give the ratio of the area dominated by the approach pareto
front and not by the exact Pareto front. Even when GD are small, they may
be a poor indicator of the quality of the front S. Therefore we introduced
the metric H in order to estimate the repartition of the approach solutions
on the exact Pareto front (see figure 2).

Fig. 2: Hypervolume measures representations
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5. Furthermore, we calculate the CPU running time needed for each method.

In the following, we first analyze the results graphically in the objective space
(see Figure 3) by considering four representative instances of obtained solutions.
We also report complete results in tables 1, 2 and 3 with some discussions.

7.1 Graphical representation for four instances

In this section, we provide some graphical examples of the Pareto fronts gener-
ated by the exact and the heuristics methods. The chosen instances are fairly
representative of the other instances. We can see in figures 3(a), 3(b), 3(c) and
3(d) five curves, such that the blue one gives the exact Pareto front, where the
others are resulting from the heuristics. From this graphical, we can easily see
that the green and purple curves are better that the others. They are the results
of the heuristics 2 and 4.

35 40 45 50

4

6

8

10

CA
max

∑ U
B j

MILP

H1

H2

H3

H4

(a) 20 jobs

54 56 58 60 62 64 66

5

10

15

20

CA
max

∑ U
B j

(b) 30 jobs

95 100 105 110 115

10

15

20

25

CA
max

∑ U
B j

(c) 40 jobs

85 90 95 100 105 110

15

20

25

30

35

CA
max

∑ U
B j

(d) 50 jobs

Fig. 3: Example of the obtained Pareto fronts with four instances with 20, 30,
40 and 50 jobs.
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In the next section we analyze and discuss all the results and give the average
of the metrics previously introduced.

7.2 Result tables and discussions

In this section, we present the quantitative comparison results.

Table 1 gives the performances to the proposed mathematical formulations
(MILP-Time and MILP-Assign).

MILP -T ime MILP -Assign

n CPU |S∗| CPU |S|

10 0.01 2.37 1.281 2.37

20 0.69 4.07 708.39 4.07

30 2.65 4.87 - -

40 12.20 6.13 - -

50 78.00 7.50 - -

70 4664.16 9.766

Table 1: Comparison of the performances of the MILPs.

About MILPs performances, we can easily see that the time indexed formu-
lation is better than the assigned formulation, since its solves instances with
70 jobs in 1 hour and 18 minutes on average, the average time spent to obtain
the whole Pareto front. Unfortunately, the assigned indexed formulation shows
weaker results since its cannot solve instances with more than 20 jobs. We note
that the time indexed formulation has a pseudo-polynomial binary variables, so
the present performances are due to the small values of the processing times.

Table 2 represents the CPU average and the cardinality |S| of each heuristic.

Table 3 is dedicated to the comparison using the metrics %S, GD and H.
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H1 H2 H3 H4

n CPU |S| CPU |S| CPU |S| CPU |S|

10 0.00 2.87 0.00 2.43 0.000 2.97 0.000 2.53

20 0.00 5.63 0.00 4.07 0.000 5.40 0.000 4.03

30 0.00 7.50 0.00 4.90 0.001 7.13 0.000 4.87

40 0.00 9.67 0.00 6.20 0.002 9.30 0.001 5.97

50 0.00 11.53 0.00 7.27 0.006 11.40 0.003 6.77

70 0.00 15.23 0.00 9.60 0.019 15.13 0.005 8.63

Table 2: Performance comparison using the CPU and |S|.

H1 H2 H3 H4

n %S GD H %S GD H %S GD H %S GD H

10 29.83 0.86 24.21 36.94 0.68 17.90 33.28 0.82 25.66 28.33 0.89 21.11

20 14.40 1.39 37.39 28.85 0.91 11.52 18.85 1.39 36.31 12.08 1.24 19.95

30 6.09 1.86 40.94 25.19 1.06 10.37 7.08 1.89 40.54 9.82 1.44 21.23

40 1.78 2.02 41.13 27.04 1.12 7.86 1.84 2.06 41.58 9.66 1.43 20.07

50 1.01 2.47 44.52 37.08 1.01 5.65 1.21 2.48 44.50 14.50 1.53 17.69

70 0.70 3.09 45.30 35.74 0.96 4.77 0.70 3.10 45.29 14.13 1.39 10.51

Table 3: Performance comparison using the %S, GD and H.

Table 1 shows that the number of compromise solutions increases with the
increase of the number of jobs. This is also true for the heuristics (see Table
2), where more compromise solutions are found using the heuristics 1 and 3.
However, this does not necessarily mean that these solutions are better than the
solutions found by the heuristics 2 and 4. In fact, we have seen in Figure 3, that
more solutions are proposed by H1 and H3, but the corresponding curves are
farther from the exact curve.

Although the criteria values are not normalized, the generational distances
are still small for heuristics 2 and 4. In fact, for the instances with 70 jobs,
solutions given by H2 are in average within distance 0.92 from the exacts Pareto
solutions. And for the same instances solutions given by H4 are in average within
distance 1.39 from the exact Pareto solutions. In the case of H1 and H3, the
distances are slightly more significant. In fact, the values reach 3 for the instances
with 70 jobs.



The generational distance values show that the compromise solutions pro-
posed by the heuristics are close to the exact Pareto solution obtained by the
MILPs. However, when analyzing the multi-criteria heuristic, we need to know
whether the near Pareto solutions are well distributed in the criteria space or
not. The Hypervolume can be a good gauge to measure the repartition of the
solutions obtained by heuristics. Table 3, shows that H2 is the best method ac-
cording to metric H. Surprisingly, the values of H2 and H4 are decreasing with
the increasing of the number of jobs.

8 Conclusion and perspectives

This paper tackled multi-agent scheduling problem, which is featured by two
non-disjoint agents A and B, competing to perform their jobs on two identical
parallel machines. Agent A aims at minimizing the maximum completion times
of its jobs, whereas agent B tries to minimize the number of its tardy jobs.

The studied problem result from the application of the well known ε-constraint
approach. This mono-criteria problem minimizes agent A makespan under a
bounded constraint on agent B objective function. We proposed two types of
mathematical programming formulation. The first one, is based on precedence
decision variables, while the other is based on time indexing decision variables.
The empirical results showed that when the processing times were in [1, 10] with
two identical machines, the time indexed formulation allows to obtain Pareto
front for large instances.

In the second part of this research we proposed four heuristics for this NP-
hard problem. The first and second heuristics are polynomial, they are based
on LPT-FAM order. The third and fourth heuristics are inspired by the first
two ones, instead of using an approach method for minimizing the makespan, it
uses an exact algorithm based on dynamic programming. These heuristics are
finally compared with the MILPs, using generational distance, hypervolume and
cardinality metrics, the results showed that the heuristics 2 and 4 give better
solutions. All proposed methods can be used to solve the case of m identical
parallel machines. Thereby, we have conducted some other experimental results
with 4 and 6 identical parallel machines and not presented here. In this case, the
preliminary obtained results display the same conclusions.

For further research, we will propose a genetic algorithm starting from the
solutions obtained by the heuristics. It would be also interesting to seek for a
pseudo-polynomial time algorithm.
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