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Abstract

Wireless mobile backhaul networks have been pro-
posed as a substitute in cases in which wired alterna-
tives are not available due to economical or geograph-
ical reasons. In this work, we study the location prob-
lem of base stations in a given region where mobile
terminals are distributed according to a certain prob-
ability density function and the base stations com-
municate through microwave backhaul links. Using
results of optimal transport theory, we provide the
optimal asymptotic distribution of base stations in
the considered setting by minimizing the total power
over the whole network.

1 Introduction

There are several scenarios in which wired alterna-
tives are not the best solution to satisfy the traffic de-
mand of users due to economical or geographical rea-
sons. Wireless mobile backhaul networks have been
proposed as a solution to these types of situations.
Since these networks do not require costly cable con-
structions, they reduce total investment costs. How-
ever, achieving high speed and long range in wire-
less backhaul networks remains a significant technical
challenge.
In this work, we consider a clique network of base
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stations and we assume that data is transmitted inde-
pendently in different radio frequency channels. We
use optimal transport theory, also known as theory of
mass transportation, to determine in this simplified
scenario the optimal asymptotic placement of base
stations communicating through backhaul links.
Optimal transport theory has its origins in plan-

ning problems, where a central planner needs to find
a transport plan between two non-negative probabil-
ity measures which minimizes the average transport
cost. Resource allocation problems and/or assign-
ment problems coming from engineering or economics
are common applications of this theory.
In the present work, we study the problem of mini-

mizing the total power used by the network to achieve
a certain throughput and we use recent results of op-
timal transport theory to find the optimal asymptotic
base stations locations.

1.1 Related Works

Location games have been introduced by
Hotelling [1], who modeled the spatial competi-
tion along a street between two firms for persuading
the largest number of customers which are uniformly
distributed. Problems similar to location games, as
for example the maximum capture problem, have
been analyzed by [2, 3] and references therein.
Within the communication networks community,

Altman et al. [4, 5] studied the duopoly situation in
the uplink scenario of a cellular network where users
are placed on a line segment. Considering the par-

mailto:alonso.silva@nokia-bell-labs.com
mailto:antoniamaria.masucci@orange.com


ticular cost structure that arises in the cellular con-
text, the authors observe that complex cell shapes
are obtained at equilibrium. Silva et al. [6, 7, 8] an-
alyzed the problem of mobile terminals association
to base stations using optimal transport theory and
considering the data traffic congestion produced by
this mobile terminals to base stations association.

1.2 Energy efficiency

Our objective is to conceive wireless backhaul net-
works able to guarantee quality of service while min-
imizing the energy consumption of the system. We
follow the free space path loss model in which the
signal strength drops in proportion to the square of
the distance between transmitter and receiver since
it is a good approximation for outdoor scenarios.

The works on stochastic geometry are related
to our study (see e.g. the books of Baccelli and
Blaszczyszyn [9], [10]) but we do not consider any
particular deployment distribution function such as
e.g. Poisson point processes.

The remaining of this work is organized as fol-
lows. In Section 2 we provide the model formula-
tion of the considered problem where we redefine the
probability density function of mobile terminals to in-
corporate their throughput requirements and deter-
mine the power cost function of inter-cell and intra-
cell communications. In Section 3 we provide the
main results of our work by considering the free-path
loss approximation and asymptotic results from op-
timal transportation theory. In Section 4 we provide
illustrative simulations for the asymptotic results ob-
tained in the previous section, and in Section 5 we
conclude our work.

2 Model formulation

A summary of the notation used on this work can be
found in Table 1.

We are interested on the analysis of a microwave
backhaul network deployed over a bounded region,
which we denote by D, over the two-dimensional
plane. Mobile terminals are distributed according to

Table 1: Notation

N Total number of mobile terminals in the network

K Total number of base stations

f Deployment distribution function of mobile terminals

(xk, yk) Position of the k-th base station

Ci Cell determined by the i-th base station

Ni Number of mobile terminals associated to the i-th BS

hi Channel gain function in the i-th cell

hij Channel gain between base station i and base station j

mi Traffic requirement satisfied by base station i

m Total traffic requirement satisfied by the network

a given probability density function f(x, y). The pro-
portion of mobile terminals in a sub-region A ⊆ D is

∫∫

A

f(x, y) dx dy.

The number of mobile terminals in sub-region
A ⊆ D, denoted by N(A), can be approximated by

N(A) = N ·

(
∫∫

A

f(x, y) dx dy

)

,

where N denotes the total number of mobile termi-
nals in the network.

We consider K base stations in the net-
work, denoted by BS1,BS2, . . . ,BSK , at positions
(x1, y1), (x2, y2), . . . , (xK , yK) to be determined. Our
objective is to minimize the energy consumption in
the system.

We denote by Ci the set of mobile terminals asso-
ciated to base station BSi and by Ni the number of
mobile terminals within that cell, i.e., the cardinality
of the set Ci.



2.1 Modification of the distribution

function

The probability density function and the through-
put requirements of mobile terminals both depend on
the location. To simplify the problem resolution, we
consider the following modification of the probability
density function to have the location dependency in
only one function. The probability density function
of mobile terminals considered in our work and de-
noted by f(x, y) is general. Instead of considering
a particular probability density function, denoted by
f̃(x, y), and an average throughput requirement, de-
noted by θ̃(x, y), in each location (x, y), we consider
a constant throughput θ > 0 to be determined and
redefine the distribution of mobile terminals f(x, y)
as follows

f(x, y) :=
f̃(x, y)θ̃(x, y)

θ
for all (x, y) ∈ D.

Since f(x, y) must be a probability density function,
we need to impose

∫∫

D

f(x, y) dx dy = 1,

or equivalently,

1

θ

∫∫

D

f̃(x, y)θ̃(x, y) dx dy = 1.

For this equation to hold, we have to impose

θ =

∫∫

D

f̃(x, y)θ̃(x, y) dx dy.

We have that the following equation holds:

f(x, y)θ = f̃(x, y)θ̃(x, y).

The previous equation simply states that, e.g., a mo-
bile terminal with double demand than another mo-
bile terminal would be considered as two different
mobile terminals both at the same location with the
same demand as the other mobile terminal.
Since in a microwave backhaul network, we need

to consider the energy from within base stations and
from base stations to mobile terminals, we need to
consider both the intra-cell costs and the inter-cell
costs. This is the subject of the following two sub-
sections.

2.2 Intra-cell costs

The power transmitted, denoted by PT , from base
station BSi to a mobile terminal located at posi-
tion (x, y) is denoted by PT

i (x, y) = Pi(x, y). The
received power, denoted by PR, at the mobile ter-
minal located at position (x, y) associated to base
station BSi is given by PR

i (x, y) = Pi(x, y)hi(x, y),
where hi(x, y) is the channel gain between base sta-
tion BSi and the mobile terminal located at posi-
tion (x, y), for every i ∈ {1, . . . ,K}.
We assume that neighboring base stations transmit

their signals in orthogonal frequency bands and that
interference between base stations that are far from
each other is negligible. Consequently, instead of con-
sidering the SINR (Signal to Interference plus Noise
Ratio), we consider as performance measure the SNR
(Signal to Noise Ratio).

The SNR received at mobile terminals at posi-
tion (x, y) in cell Ci is given by

SNRi(x, y) =
Pi(x, y)hi(x, y)

σ2
,

where σ2 is the expected noise power. We assume
that the associated instantaneous mobile throughput
is given by the following expression, which is based
on Shannon’s capacity theorem:

θi(x, y) = log(1 + SNRi(x, y)).

The throughput requirement translates into

θi(x, y) ≥ θ.

Thanks to our previous development, we can con-
sider a constant throughput requirement through the
modification of the probability density function.

Therefore, the throughput requirement becomes

log

(

1 +
Pi(x, y)hi(x, y)

σ2

)

= θ,

or equivalently,

Pi(x, y) =
σ2

hi(x, y)
(2θ − 1). (1)



Therefore the intra-cell power required by base sta-
tion i is given by

P intra
i =

∫∫

Ci

Pi(x, y)f(x, y) dx dy. (2)

The previous equation provide us an energy cost
function for the intra-cell requirements of the net-
work. In the following subsection, our analysis will
be focused on the inter-cell requirements.

2.3 Inter-cell costs

In order to take into account the routing cost, we con-
sider the power transmitted PT from base station BSi
to base station BSj denoted by PT

ij = Pij . The re-

ceived power PR at the receiving base station BSj
from the transmitting base station BSi is given by
PR
ij = Pijhij , where hij is the channel gain between

base station BSi and base station BSj . The SNR
received at the receiving base station BSj from the
transmitting base station BSi is given by

SNRij =
Pijhij

σ2
,

where σ2 is the expected noise power. We as-
sume that the associated instantaneous base station
throughput at the receiving base station BSj from the
transmitting base station BSi is given by the follow-
ing expression, which is based on Shannon’s capacity
theorem:

θij = log(1 + SNRij).

Let us define by mi the traffic requirement concen-
trated at base station BSi, i.e.

mi = θ

∫∫

Ci

f(x, y) dxdy.

We assume that the traffic requirement mi concen-
trated at base station BSi is sent at the other base
stations proportionally to the traffic requirement at
the other base stations. Therefore, the traffic be-
tween the receiving base station BSj and the trans-
mitting base station BSi is given by mi(mj/m).
We make the simplifying assumption

log(1 + SNRij) ≈ SNRij . Then the throughput

requirement translates into

Pijhij

σ2
= mi

mj

m
,

or equivalently

Pij =
σ2

hij

mimj

m
. (3)

The power cost to transmit the traffic mi is thus
given by

K
∑

j=1

σ2

hij

mimj

m
, (4)

where

m =

K
∑

j=1

mj

= θ
K
∑

j=1

∫∫

Cj

f(x, y) dxdy

= θ

∫∫

D

f(x, y) dxdy.

Similar to eq. (2) of the previous subsection, equa-
tion (4) provides us a power cost function for the
inter-cell requirements of the network. In the next
section, we consider both inter-cell and intra-cell cost
functions to determine the total power cost and ob-
tain the asymptotic location of base stations to min-
imize this total power cost.

3 Results

From the previous section, the total power of the net-
work is equal to the sum of intra-cell power (the sum
of the power used within each cell in the network)
and the inter-cell power (the sum of the power used
over the pairs of communicating base stations in the
network), i.e.

Ptotal =

K
∑

i=1

P intra
i +

K
∑

i=1

K
∑

j=1
j 6=i

P inter
ij ,



where

P intra
i =

∫∫

Ci

Pi(x, y)f(x, y) dx dy,

is the intra-cell power consumption in cell Ci and
from eq. (1), we obtain

P intra
i =

∫∫

Ci

σ2

hi(x, y)
(2θ − 1)f(x, y) dx dy,

and from eq. (3) the inter-cell power consumption is

P inter
ij =

σ2

hij

mimj

m
.

In the following subsection, thanks to the free-
space path loss approximation, we are able to find an
expression for the channel gain and the total power
cost.

3.1 Free-space path loss approxima-

tion

Let di(x, y) denote the Euclidean distance between
mobile terminal at position (x, y) and base sta-
tion BSi located at (xi, yi), i.e.

di(x, y) =
√

(xi − x)2 + (yi − y)2.

Similarly, let dij denote the Euclidean distance be-
tween base station BSi located at (xi, yi) and base
station BSj located at (xj , yj), i.e.

dij =
√

(xi − xj)2 + (yi − yj)2.

The free-space path loss approximation gives us
that the channel gain between base station BSi and
the mobile terminal located at position (x, y) is given
by

hi(x, y) = di(x, y)
−2,

and analogously the free-space path loss approxima-
tion give us that the channel gain between base sta-
tion BSi and base station BSj is given by

hij = d−2
ij .

The total power cost is therefore given by

K
∑

i=1

∫∫

Ci

(2θ−1)σ2di(x, y)
2f(x, y) dx dy+

σ2

m

K
∑

i=1

K
∑

j=1
j 6=i

mimjd
2
ij .

(5)
When the number of base stations K is very large,

in our setting tends to infinity, instead of looking at
the locations of base stations (xi, yi), we will look
into the limit density ν of the locations (xi, yi). To
do that, we identify each set of K points with the
measure

νK =
1

K

K
∑

i=1

δ(xi,yi),

where δ(xi,yi) is the delta Dirac function at loca-
tion (xi, yi).
The asymptotic analysis of these functions has

been performed (see e.g. [11, 12]) within the context
of optimal transport theory with the extensive use of
Γ-convergence.
The inter-cell power cost in terms of the measure

νK is given by

σ2

m

∫

D

∫

D

‖(xi, yi)− (xj , yj)‖
2 dνK dνK ,

which is equivalent to

σ2

m

∫

D×D

‖(xi, yi)− (xj , yj)‖
2 d(νK ⊗ νK).

We notice that the discrete sum of eq. (5) becomes
an integral by considering the limit of measures
{νK}K∈N.
The total cost taking into account both cost func-

tions gives the problem

Min
K
∑

i=1

∫∫

Ci

(2θ − 1)σ2‖(x, y)− (xi, yi)‖
2f(x, y) dxdy

+
σ2

m

∫

D×D

‖(xi, yi)− (xj , yj)‖
2 d(νK ⊗ νK).

We denote the function

V (x) = |x|2.



The necessary conditions of optimality (see [13])
are

(2θ − 1)σ2φ+
2σ2

m
V ∗ ν = c ν − a.e. (6)

where φ is the Kantorovich potential for the transport
from f to ν and c is the Lagrange multiplier of the
mass constraint on ν.
A connection between the Kantorovich potential φ

and the transport map T from f to ν is given by the
Monge-Ampère equation

f = ν(T ) det(∇T ).

From equation (6), we obtain

(2θ − 1)σ2∇φ+
2σ2

m
∇V ∗ ν = 0.

Since

T (x) = x−∇φ(x).

Therefore we have the system

{

(2θ − 1)σ2(x− T (x)) + 2σ2

m
∇V ∗ ν = 0

f = ν(T )det(∇T ).
(7)

We can proceed by an iterative scheme, fixing an
initial ν0 and obtaining T0 from the first equation
of the system (7) and obtaining ν1 from the second
equation and proceed iterating the scheme above.
The previous system of equations allows us to find

the optimal asymptotic base stations placement ν as
a function of the distribution of mobile terminals f
when the solution exists.

4 Simulations

We follow the development done in [13]. We simu-
late the example for the one-dimensional case. If we
suppose that the barycenter of ν is in the origin, we
obtain:

V ∗ ν = mx2 +

∫

y2 dν(y),

so that

Aφ′(x) + 4Bx = 0,

which gives

φ′(x) = −
4

(2θ − 1)
x and T (x) =

(

1 +
4

(2θ − 1)

)

.

Putting previous expressions in the one-dimensional
Monge-Ampère equation and indicating by v the den-
sity of ν, we obtain

f(x) = ν

((

1 +
4

(2θ − 1)

)

x

)(

1 +
4

(2θ − 1)

)

,

and changing variables

v(y) =
1

1 + 4
(2θ−1)

f

(

y

1 + 4
(2θ−1)

)

. (8)
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Figure 1: Optimal probability distribution function
of the base stations given the probability density
function of the mobile terminals.

We consider that mobile terminals are distributed
over the line as a normal distribution function with
zero mean and standard deviation equal to one, i.e.
N (0, 1). We consider that the throughput require-
ment θ is constant and equal to 24 Kbps. We notice
that as explained in subsection 2.1 we could have con-
sidered a non-constant throughput requirement and
redefine the mobile terminal probability density func-
tion for the throughput requirement to be constant.
From eq. (8), we can compute the optimal base sta-
tion distribution given by Fig. 1. We notice that
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Figure 2: Optimal probability distribution function
of the base stations given the probability density
function of the mobile terminals.

the optimal base station distribution corresponds to
a smoother normal probability distribution.
Motivated by the previous simulation, we consider

a second scenario where mobile terminals are dis-
tributed as a truncated normal distribution function
between [−1, 1]. From eq. (8), we can compute the
optimal base station distribution given by Fig. 2.
From Fig. 2, we notice that surprisingly the optimal
base stations distribution has a support that does
not coincide with the mobile terminals distribution.
If we only consider the intra-cell cost we would have
obtained the exact same probability distribution of
mobile terminals (it is easy to see since in that case
the cost would have been zero). We have thus veri-
fied that the optimal base station probability density
function would have been modified by the intra-cell
cost as given by Fig. 2. Similar to the first scenario,
the optimal base station distribution corresponds to
a smoother probability distribution.

5 Conclusions

In this work, we investigated the asymptotic opti-
mal placement of base stations with microwave back-
haul links. We considered the problem of minimizing
the total power of the network while maintaining a

required throughput. Using optimal transport the-
ory, we provided the optimal asymptotic base station
placement. Moreover, the case where routing cost is
taken into account is also analyzed.
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