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Abstract
The first discovery of metabolic changes in cancer occurred almost a century ago.  While the genetic underpinnings 
of cancer have dominated its study since then, altered metabolism has recently been acknowledged as a key 
hallmark of cancer and metabolism‑focused research has received renewed attention. The emerging field of 
metabolomics – which attempts to profile all metabolites within a cell or biological system – is now being 
used to analyze cancer metabolism on a system‑wide scale, painting a broad picture of the altered pathways 
and their interactions with each other.  While a large fraction of cancer metabolomics research is focused on 
finding diagnostic biomarkers, metabolomics is also being used to obtain more fundamental mechanistic insight 
into cancer and carcinogenesis.  Applications of metabolomics are also emerging in areas such as tumor staging 
and assessment of treatment efficacy.  This review summarizes contributions that metabolomics has made in 
cancer research and presents the current challenges and potential future directions within the field.
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INTRODUCTION

Broadly defined, metabolism is the set of processes catalyzing 
the production of energy and cellular building blocks (amino 
acids, nucleotides, lipids, etc.) from the nutrients a cell takes 
up from the environment. These building blocks and the 
biochemical intermediates generated during their production 
and utilization are collectively referred to as metabolites. 
Metabolite levels integrate the effects of gene regulation, 
post‑transcriptional regulation, pathway interactions, and 
environmental perturbations; this downstream synthesis of 
diverse signals ultimately makes metabolites direct molecular 
readouts of cell status that reflect a meaningful physiological 
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phenotype.[1‑4] Metabolomics, then, is the emerging field 
focused on comprehensive profiling of metabolites in a 
sample, whether intracellular or from circulating biofluids. 
The ability of metabolomics to measure high‑throughput, 
system‑wide phenotypes gives it great power in the field of 
oncology to further understand what is happening in cancer 
cells. In this review, we will focus on specific areas within 
cancer and carcinogenesis research on which metabolomics 
has been brought to bear.

COMMON METABOLIC ALTERATIONS IN 
CANCER

Though reprogramming of energy metabolism was only 
recently recognized as an emerging hallmark of cancer,[5] 
altered cancer metabolism was first identified almost a 
century ago when Warburg discovered that cancer cells 
primarily use anaerobic glycolysis to produce their energy 
instead of oxidative phosphorylation, even in the presence 
of oxygen  –  a phenomenon known as the Warburg effect 
or aerobic glycolysis.[6,7] Over the years, many common 
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Figure 1: Illustration of important relationships between metabolome, proteome, and genome in cancerous cells. Glycolysis breaks down 
glucose into pyruvate, which is then fermented to lactate; pyruvate flux through the tricarboxylic acid (TCA) cycle is down-regulated 
in cancer cells. Pathways branching off of glycolysis, such as the pentose phosphate pathway (PPP), generate biochemical building 
blocks to sustain the high proliferative rate of cancer cells. Specific genetic and enzyme-level behaviors are described in the main text. 
Blue boxes are enzymes important in transitioning to a cancer metabolic phenotype; orange boxes are enzymes that are mutated in 
cancer cells. Green ovals are oncogenes that are up-regulated in cancer; red ovals are tumor suppressors that are down-regulated in 
cancer. Figure abbreviations: 2PG: 2-phosphoglycerate; 3PG: 3-phosphoglycerate; BPG: 1,3-bisphosphoglycerate; CoA: coenzyme A; 
DHAP: dihydroxyacetone phosphate; F6P: fructose-6-phosphate; FBP: fructose-1,6-bisphosphate; G3P: glyceraldehyde-3-phospate; 
G6P: glucose-6-phosphate; HK: hexokinase; LDHA: lactate dehydrogenase A; PFK: phosphofructokinase; PI3K: phosphatidylinositide 
3-kinase

cancer mutations have been shown to support the Warburg 
effect.[8]  AKT1 (a serine/threonine kinase), hypoxic inducing 
factor (HIF), and p53 (a tumor suppressor protein)  together 
cause increased flux of glucose through glycolysis and 
down‑regulation of flux through the tricarboxylic acid (TCA) 
cycle  [Figure  1], thereby supporting the Warburg effect 
and carcinogenesis.[9‑17] Loss‑of‑function mutations of 
mitochondrial enzymes succinate dehydrogenase  (SDH) 
and fumarate hydratase (FH) also support the Warburg effect 
via accumulation of succinate and fumarate  – metabolites 
that inhibit prolyl hydroxylases (PHD), a family of enzymes 
that tag HIF for degradation.[18‑22] Thus, changes in SDH 
and FH support HIF accumulation, which in turn supports 
carcinogenesis and the Warburg effect.

Another important altered pathway in cancer metabolism 
is glutaminolysis, a key source of energy and anaplerotic 
precursors for the TCA cycle.[23] Myc, an oncogenic 
transcription factor,  interacts with HIF to regulate several 
enzymes in glucose metabolism and plays an important 

role in glutaminolysis  [Figure 1].[24,25] Besides stimulating 
the glutamine transporter, Myc indirectly regulates 
glutaminase (GLS), a mitochondrial enzyme that converts 
glutamine to glutamate, through transcriptional repression 
of the microRNAs that repress GLS.[26]

Pyruvate kinase (PK) is another common cancer signature 
with metabolic implications  [Figure  1]. PK catalyzes 
phosphoenolpyruvate  (PEP) conversion into pyruvate, a 
rate‑limiting step in glycolysis. It is widely believed that 
during carcinogenesis, there is a change in expression 
of PK isoforms, from pyruvate kinase isozyme M1 
towards less‑active, rate‑limiting pyruvate kinase isozyme 
M2  (PKM2),[27] potentially leading to accumulation of 
upstream glycolytic intermediates[8]. Additional changes in 
cancer metabolism prevent such accumulation (which would 
lead to down‑regulation of glycolysis) by channeling these 
intermediates into branching pathways, which produces 
higher levels of these pathways’ end products such as reduced 
nicotinamide adenine dinucleotide phosphate (NADPH), 
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ribose 5‑phosphate, and nucleic acids.[28,29]

In addition, an alternative pathway for pyruvate fermentation 
has recently been found that converts PEP to pyruvate through 
the direct phosphorylation of phosphoglycerate mutase 
1 (PGAM1) without production of adenosine‑5’‑triphosphate 
(ATP) [Figure  1].[30] By decoupling energy generation 
from glycolysis, pyruvate production from PEP continues 
regardless of ATP regulation or dependence on PKM2. This 
continuous pyruvate production, along with glutaminolysis, 
accounts for the characteristically high levels of lactic acid 
in tumors.

METABOLOMICS AND CANCER

Analytical technology
Currently, no single analytical method can measure 
concentrations of all metabolites due to their significant 
chemical diversity. The two dominant metabolomics 
technologies are nuclear magnetic resonance  (NMR) and 
mass spectrometry (MS) coupled to a separation technique. 
Both of these technologies and the roles they play in 
metabolomics are extensively detailed elsewhere,[31‑33] but a 
brief description will be given here.

NMR
NMR provides quantitative and structural information 
and can measure a wide range of metabolites with little 
to no sample preparation. One limitation of NMR is 
its low sensitivity and thus higher limits of detection 
for metabolites. Additionally, in complex mixtures the 
interpretability of NMR spectra and association to specific 
metabolite identities can be difficult. Techniques including 
high‑resolution NMR and high‑resolution magic angle 
spinning NMR (HR‑MAS‑NMR) have been used to profile 
cancer metabolism in biofluids as well as tissue samples; they 
are particularly valuable since they do not destroy samples, 
allowing for parallel analysis with other techniques.[34,35] 
Another emerging technology, hyperpolarized NMR, has 
been used to characterize cancer metabolism by tracing 
metabolite levels in  vivo,[36] with potential applications in 
clinical diagnosis or treatment of cancer.[37]

MS
MS provides semi‑quantitative information with very 
high sensitivity, allowing the analysis of low‑abundance 
metabolites. Many MS‑based techniques require extensive 
sample preparation and usually can only measure specific 
subsets of metabolites. MS‑based analyses can be broadly 
divided into direct injection techniques  –  including 
direct infusion  MS[38] and direct analysis in real 
time MS  (DART‑MS)[39]  –  and separation‑coupled 

techniques, including gas chromatography‑MS (GC‑MS), 
liquid chromatography‑MS  (LC‑MS) and capillary 
electrophoresis‑MS  (CE‑MS). Common types of mass 
spectrometers include time‑of‑flight  (TOF), quadrupole 
time‑of‑flight (QTOF), quadrupole, and orbitrap. Separation 
methods and MS can also be combined in series (GCxGC‑MS 
or LC‑MS/MS) to gain better separation or more structural 
information.

Data handling and processing
The complex raw data captured by metabolomics instruments 
must first be converted into human‑interpretable measurements; 
the resulting vast datasets then require significant analysis and 
interpretation. Numerous data processing techniques and 
packages have been created for all steps of this data‑processing 
pipeline. We refer the reader to in‑depth discussions of available 
bioinformatics tools elsewhere.[40]

Study of carcinogenesis and cancer biology
The system‑wide analyses of metabolomics allow a unique 
opportunity for the study of carcinogenesis and cancer 
biology by enabling deep investigation of targeted aspects 
of cancer metabolism while also allowing discovery‑based 
analysis of metabolism writ large.

For example, nicotinamide adenine dinucleotide phosphate 
(NADP+)‑dependent isocitrate dehydrogenases 1 and 2 
(IDH1 and IDH2) are commonly subject to gain‑of‑function 
point mutations in gliomas.[41] Using metabolomics, 
it  was discovered that mutated IDH1 and IDH2 
catalyze  (R)‑2‑hydroxyglutarate  (2HG), a rare metabolite, 
from α‑ketoglutarate (α‑KG) [Figure 1].[42] 2HG has been 
referred to as an oncometabolite because its production helps 
to further the cancer phenotype.[42,43] Metabolic profiling on 
glioma cells using LC‑MS/MS and GC‑MS showed that 
IDH1/2 mutations caused N‑acetylated amino acids and TCA 
cycle intermediate levels to drop and biosynthetic molecules 
to accumulate while not affecting glycolytic intermediates.[44] 
The effects of IDH1/2 mutations on the metabolome were 
very similar to the changes caused by treating normal 
cells with 2HG, showing that it is the production of the 
oncometabolite 2HG and not the loss of IDH1/2’s normal 
operation that causes these changes.[44]

Another  (though somewhat disputed[45]) example of 
mechanistic insight from metabolomics is in sarcosine’s 
putative role in prostate cancer progression. Samples from 
patients with benign, localized, and metastatic prostate 
cancer were profiled using both LC‑MS and GC‑MS. From 
this metabolic profiling, sarcosine levels were identified as 
increasing from benign to metastatic prostate cancer. In vitro, 
sarcosine levels were shown to directly correlate to a cell’s level 
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of invasiveness. Further investigation showed that sarcosine is 
regulated by an androgen receptor and ETS gene family fusions 
through transcriptional control of its regulatory enzymes.[46]

A final example of metabolomics‑based mechanistic insight 
is the recent study of extracellular metabolite profiles 
across the National Cancer Institute’s NCI‑60 cancer cell 
lines.[47] Glycine consumption was found to be correlated with 
proliferation rate in cancerous cells, but not in proliferative 
non‑cancerous cells, suggesting cancer‑specific behavior. 
De novo purine nucleotide biosynthesis was one pathway 
involved in the increased glycine consumption. Follow‑up 
analysis of breast cancer gene expression data revealed that 
glycine mitochondrial enzyme expression correlated with 
cancer mortality.

Biomarkers and diagnosis
A central focus in cancer metabolomics research is 
biomarker discovery. Metabolites are theoretically ideal 
biomarkers and diagnostics because they can be easily 
measured from non‑invasive urine or blood samples. 
Many groups are attempting to use metabolic profiles 
as biomarkers or diagnostic tools, for essentially every 
type of cancer, since levels of multiple metabolites can 
provide better classification than a single entity. For 
example, the diagnostic capability of a set of 113 cis‑diol 
structured urinary metabolites for liver cancer resulted 
in a lower false‑positive rate than the traditional tumor 
marker alpha‑fetoprotein when classifying liver cancer 
against hepatocirrhosis and chronic hepatitis samples.[48] 
A representative, but necessarily incomplete, selection of 
applications of metabolomics for biomarker identification 
is discussed below, organized by cancer type.

Liver
Hepatocarcinoma, or hepatocellular cancer  (HCC), has 
been the focus of metabolic profiling for a number of 
biomarker discovery and diagnostic models.[48‑55] For example, 
serum and urine samples from HCC, benign liver tumor, 
and healthy patients have been analyzed using GC‑MS 
and LC‑QTOF‑MS to find HCC biomarkers. Around 
70 metabolites showed significant differences between 
cancerous samples and healthy controls.[50] Bile acids, 
histidine, and inosine levels had large and highly statistically 
significant changes between normal and HCC samples. 
Further analysis determined that glycochenodeoxycholic acid, 
glycocholic acid, taurocholic acid, and chenodeoxycholic acid 
differed within the HCC samples, showing correlation with 
liver cirrhosis and hepatitis.

Kidney
Metabolic profiling of urine samples is ideally suited 

to identify novel markers for early diagnosis of kidney 
cancer (whose incidence is currently increasing due to lack 
of an early diagnostic test[56‑58]) due to the close interaction 
of urine and the kidneys.[59] Several groups have used 
metabolomics analysis to distinguish between cancerous 
and healthy urine samples, finding that acylcarnitines, 
quinolinate, 4‑hydroxybenzoate, and gentisate were 
differentially accumulated.[58,60‑62] Serum[38,63‑65] and 
tissue[66,67] samples have also been used to further 
distinguish between kidney cancer metabolism and normal 
metabolism.

Breast
Beyond the aforementioned common metabolic alterations 
in cancer, it has been known for some time that breast 
cancer cells are also characterized by high levels of total 
choline containing compounds.[68‑70] This well‑known 
metabolic alteration has served as a gateway for significant 
metabolomics analysis of breast cancer.[71,72] Screening 
for early diagnosis has been shown to be possible using 
metabolomic analysis of  (non‑invasive) urine[73] and 
serum[74‑76] samples, while analysis of breast tissue biopsy 
samples can be a useful tool as a form of secondary 
confirmation. For example, HR‑MAS‑NMR metabolomic 
analysis of biopsy samples has discriminated between 
cancerous and normal samples[77] – especially useful as it is 
non‑destructive, allowing other analyses to be performed 
on the same sample. 

Ovarian
A major focus in ovarian cancer metabolomics research has 
been in early detection, as the 5‑year survival rate when 
caught in early stages is greater than 90%, but when diagnosed 
in later stages (as it is for most patients) is almost inverted.[57,78] 
A number of studies have attempted to use metabolomics 
analysis of urine or serum as an early diagnosis tool.[39,79,80] 
One particularly promising model used DART‑MS to profile 
the metabolome of 44 ovarian cancer patients and 50 healthy 
patients through serum samples, obtaining 99% separation 
accuracy using a customized algorithm.[39]

Colorectal
Diagnostic biomarkers for colorectal cancer  (CRC) have 
also been extensively explored via metabolomics.[81‑86] 
Metabolic profiling of serum samples from cancer patients 
and normal controls resulted in the selection of four 
metabolites (2‑hydroxybutyrate, aspartic acid, kynurenine, 
and cystamine) as the basis of an early diagnostic model. The 
validated model showed high sensitivity towards detecting 
early stage CRC.[82] Another study identified approximately 
30 marker metabolites with statistically significantly different 
levels between normal mucosae and CRC tissue samples; 
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most were from pathways expected to be perturbed in 
cancer, such as glycolysis, lipid metabolism, and nucleotide 
biosynthesis.[83]

Emerging applications
Metabolomics and metastasis
Metabolomics research has shown promising results for 
detection of metastasis. Metabolic profiles of serum or 
urine samples suggest predictive capabilities for diagnosing 
metastases forming from gastric,[87] CRC,[88] kidney,[64,67] and 
breast[74,75,89] cancer. Other studies have focused on specific 
metastatic sites such as leptomeningeal carcinomatosis[90] and 
bone metastases[91], the latter of which contain higher levels 
of cholesterol for prostate cancer metastases when compared 
to other cancerous bone metastases and normal bone.

Staging of cancer
Beyond detection, metabolomics may also serve a role in 
distinguishing between different stages of cancer. In one 
study, GC‑MS analysis of serum from pancreatic cancer 
patients was able to distinguish between Stage III, Stage IVa 
and Stage IVb groups.[92] Another study used GC‑TOF‑MS 
to analyze ovarian cancer samples and showed metabolic 
distinction of ovarian carcinomas and borderline tumors.[93] 
In CRC, HR‑MAS‑NMR profiling not only distinguished 
between tumor and adjacent mucosa samples, but also 
between the mucosa samples themselves based on the stage 
of their adjacent tumor.[94]

Metabolomics and treatment
An emerging field of study for metabolomics is 
pharmacometabolomics, the use of metabolomics to 
predict physiological responses for drug efficacy and/or 
toxicity. There are currently few pharmacometabolomics 
studies in oncology, but research in the area is expected 
to grow,[95] particularly since pharmacometabolomics is 
already achieving widespread attention in other fields[96‑102]. 
In a pharmacometabolomic study of toxicity effects of 
capecitabine on CRC patients, lipoprotein‑derived lipid levels 
were discovered to correlate with the intensity of toxicity, 
yielding predictive capabilities.[103] In another study, metabolic 
profiling of serum before and during chemotherapy 
from breast cancer patients with metastasis found that 
metabolite profiles from human epidermal growth factor 
receptor 2 (HER2)‑positive patients treated with paclitaxel 
and lapatinib correlated with overall survival and time to 
progression (though the correlation did not hold across the 
entire population).[104]

CONCLUSION AND PERSPECTIVE

Metabolomics holds great promise for advancing the 

understanding, diagnosis, and treatment of cancer. The 
approach has already been used to uncover and verify 
mechanisms of carcinogenesis and proliferation, identify 
numerous candidate diagnostic biomarkers in biofluid and 
biopsy samples, and even contribute to the staging of cancers 
and characterization of treatment efficacy  –  much of this 
before metabolomics analysis became more widely accessible 
to researchers via broader establishment of metabolomics 
core facilities.

However, some issues must still be better addressed before 
metabolomics has more broad and direct clinical impact. 
For example, sample acquisition and preparation must be 
rigorously standardized in order to produce results that are 
reproducible enough for clinical applications, since large 
and fast intracellular changes in metabolite concentrations 
are possible during biopsies. Moreover, metabolites must 
be chemically identified, verified, and validated in order 
to see widespread adoption as clinical diagnostics  (even if 
chemically unidentified metabolites reproducibly distinguish 
between experimental classes), requiring great strides in 
development of standard metabolite libraries or de novo 
chemical identification of unknown metabolites (both active 
areas of research[105‑109]). Finally, more widespread clinical 
trials need to be conducted to provide proper validation for 
existing (often small sample size) biomarker research.

Future research frontiers in cancer metabolomics offer great 
promise, though with significant challenges. An obvious 
goal is to translate metabolomics measurements into deeper 
biological understanding of the condition, ultimately enabling 
better drug design and development. An increasingly 
popular approach to this is through the integration of 
multiple “omics” fields.[110,111] Integration of, for example, 
transcriptomic and metabolomic data has enabled deeper 
analysis of chemosensitive pathways[112] and breast cancer[113], 
and may provide further validation and understanding (and 
thus potential clinical applications) of discoveries.

Another prominent goal is identification of biomarkers 
specifically targeted toward early diagnosis. Detecting 
early‑stage cancer, where survival rates and treatment efficacy 
are vastly improved, would have a transformative impact 
on cancer diagnosis and treatment. It remains to be seen, 
though, whether metabolic changes will be strong enough 
early indicators to be detected through non‑invasive biofluid 
samples, or even through targeted biopsies.

Finally, the interpretation of biofluid diagnostics may prove 
particularly difficult. While existing analysis of blood or 
urine samples may find analytes that distinguish cancerous 
from non‑cancerous samples, the metabolites detected are 
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often “generic” cancer‑associated metabolites and may not 
distinguish, for example, kidney cancer from liver cancer. 
The commonality of dysfunctional metabolism across all 
types of cancer may in this case turn out to be a hindrance to 
interpretability and direct diagnosis; more work is needed to 
assess how useful such non‑invasive tests could be.

Challenges notwithstanding, metabolomics is a field rife with 
promise to help decrease the burden and impact of all types 
of cancer on society.
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