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Abstract

Microalgae are promising microorganisms for the production of numerous molecules of

interest, such as pigments, proteins or triglycerides that can be turned into biofuels. Hetero-

trophic or mixotrophic growth on fermentative wastes represents an interesting approach to

achieving higher biomass concentrations, while reducing cost and improving the environ-

mental footprint. Fermentative wastes generally consist of a blend of diverse molecules and

it is thus crucial to understand microalgal metabolism in such conditions, where switching

between substrates might occur. Metabolic modeling has proven to be an efficient tool for

understanding metabolism and guiding the optimization of biomass or target molecule pro-

duction. Here, we focused on the metabolism of Chlorella sorokiniana growing heterotrophi-

cally and mixotrophically on acetate and butyrate. The metabolism was represented by 172

metabolic reactions. The DRUM modeling framework with a mildly relaxed quasi-steady-

state assumption was used to account for the switching between substrates and the pres-

ence of light. Nine experiments were used to calibrate the model and nine experiments for

the validation. The model efficiently predicted the experimental data, including the transient

behavior during heterotrophic, autotrophic, mixotrophic and diauxic growth. It shows that an

accurate model of metabolism can now be constructed, even in dynamic conditions, with

the presence of several carbon substrates. It also opens new perspectives for the heterotro-

phic and mixotrophic use of microalgae, especially for biofuel production from wastes.

Author summary

Most existing metabolic modeling tools are not suitable for studying diauxic growth with

dynamic substrate shifts. This paper describes a successful modeling of Chlorella sorokini-
ana metabolism, based on 172 reactions and validated by nine independent dynamic

experiments (nine experiments were used for its calibration), in which microalgae were

grown heterotrophically or mixotrophically on acetate and/or butyrate, in the light or

dark. Such an extensive validation has not been performed before for microalgae. It was

demonstrated that the model could be used to assess the flux dynamics in the cell. This

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005590 June 5, 2017 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Baroukh C, Turon V, Bernard O (2017)

Dynamic metabolic modeling of heterotrophic and

mixotrophic microalgal growth on fermentative

wastes. PLoS Comput Biol 13(6): e1005590.

https://doi.org/10.1371/journal.pcbi.1005590

Editor: Kiran Raosaheb Patil, EMBL-Heidelberg,

GERMANY

Received: April 15, 2016

Accepted: May 24, 2017

Published: June 5, 2017

Copyright: © 2017 Baroukh et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: CB was supported by a “Contrat Jeune

Scientifique” (CJS) INRA-INRIA fellowship (http://

jobs.inra.fr/Nos-metiers/Chercheurs/Les-

doctorants). VT was supported by a University of

Montpellier II fellowship (http://www.umontpellier.

fr/). OB was supported by Grant “Phycover” from

“Agence Nationale de la Recherche” (ANR, http://

www.agence-nationale-recherche.fr/) and by the

Inria Project Lab "Algae in silico" (https://www.inria.

https://doi.org/10.1371/journal.pcbi.1005590
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005590&domain=pdf&date_stamp=2017-06-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005590&domain=pdf&date_stamp=2017-06-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005590&domain=pdf&date_stamp=2017-06-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005590&domain=pdf&date_stamp=2017-06-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005590&domain=pdf&date_stamp=2017-06-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005590&domain=pdf&date_stamp=2017-06-19
https://doi.org/10.1371/journal.pcbi.1005590
http://creativecommons.org/licenses/by/4.0/
http://jobs.inra.fr/Nos-metiers/Chercheurs/Les-doctorants
http://jobs.inra.fr/Nos-metiers/Chercheurs/Les-doctorants
http://jobs.inra.fr/Nos-metiers/Chercheurs/Les-doctorants
http://www.umontpellier.fr/
http://www.umontpellier.fr/
http://www.agence-nationale-recherche.fr/
http://www.agence-nationale-recherche.fr/
https://www.inria.fr/en/


innovative simulation tool was also used to derive original strategies to bypass the toxicity

of some substrates using mixotrophic regimes.

Introduction

Microalgae are unicellular eukaryote microorganisms that can grow autotrophically using

light energy and CO2. Many species can also grow heterotrophically in darkness on various

organic carbon sources, including glucose, or can combine heterotrophy and autotrophy for a

mixotrophic growth [1]. Microalgae have been domesticated and used to synthesize many

products with industrial applications, such as pharmaceutics or cosmetics (antioxidants, pig-

ments, unsaturated long-chain fatty acids), agricultural products (food supplements, func-

tional food, colorants) and animal feed (aquaculture, poultry or pig farming) [2]. They are also

promising organisms for green chemistry (bioplastics), the environment (wastewater treat-

ment, CO2 mitigation), and even energy production (biodiesel, bioethanol, hydrogen) [2].

Autotrophic growth of microalgae is limited by light distribution to all the cells, constrain-

ing the cell concentration to below 10 g/l (for the thinnest and most concentrated cultivation

systems). Heterotrophic growth does not have this limiting factor and higher biomass density

can be achieved [1], drastically reducing the harvesting costs. In addition, heterotrophic

growth is usually faster, reducing the cultivation time [3]. However, industrial production of

heterotrophic microalgae is hampered by the high economic and environmental costs of glu-

cose, commonly used as a substrate. One solution is to use the waste from other processes,

such as glycerol, acetate (ACE) or butyrate (BUTYR), which represent low cost carbon sub-

strates. For instance, dark anaerobic fermentation produces an effluent mainly composed of

acetate and butyrate [4]. However, some substrates in waste, such as butyrate, can be inhibitory

[5]. Moreover, the successive metabolic switches between different substrates are not well

understood and are likely to significantly affect growth. Therefore, this bioprocess still needs

to be mastered and optimized to produce microalgae and extract the targeted byproducts on

an industrial scale and at a competitive price, with consistent quality and in a sustainable way.

In this context, mathematical modeling of the metabolism has proven to be an efficient tool

for optimizing growth and increasing the production of target molecules. To date, no models

exist for heterotrophic microalgal metabolism dynamically switching between several sub-

strates (S1 Table), including mixotrophic growth in light. So far, only static fluxes have been

predicted under constant substrate consumption [6–9]. Representing the dynamic shifts for a

blend of substrates typical of real wastewater is a major challenge, since some intracellular

accumulation might occur, either during the transition between substrates, or due to the vary-

ing nature of the light. As a consequence, the quasi-steady state assumption (QSSA) required

by most of the existing metabolic approaches may be an invalid hypothesis in this case [10].

The DRUM modeling framework recently proposed in [10] was used here to handle the non

quasi-steady state (QSS). It allowed the development of a dynamic metabolic model for Chlo-
rella sorokiniana grown on a single-substrate culture and a mixed-substrate (acetate and buty-

rate) culture, combined with various combinations of light. The model is thus designed to

represent autotrophic, heterotrophic or mixotrophic modes under diauxic conditions. Our

purpose is to propose a relatively generic model, instantiated and calibrated for C. sorokiniana.

According to Baroukh et al. [11], such a generic model should be applicable to a wide range of

microalga species.

A metabolic model of microalgal growth on wastes
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Model

Experimental conditions

The goal of the experiments was to grow Chlorella sorokiniana on a synthetic medium mimick-

ing the digestate composition produced by a dark fermenter processing organic waste. At this

stage, the composition of the medium was kept simple, with only the two main organic com-

ponents—acetate and butyrate [4]–to gain a clear understanding of their effects on microalgae

growth. Chlorella sorokiniana was grown both in the dark and in the light (136 μE.m-2.s-1), in

axenic conditions at 25˚C and constant pH (6.5) in triplicate batches with different initial con-

centrations of acetate and butyrate (Table 1). Nitrogen (ammonium) and phosphorus were

provided in non-limiting concentrations in order to focus solely on carbon metabolism. To

ensure that no substrate was favored because of acclimation, the inoculum was grown autotro-

phically beforehand. See Turon et al. [5,12] for more details of the experimental protocols.

Metabolic network construction

A detailed description of the metabolic network reconstruction is provided in S1 File. Since

Chlorella sorokiniana has not been sequenced yet, no genome-scale metabolic network

(GSMN) reconstruction was possible. However, the core carbon and nitrogen metabolic net-

works in the GSMN of previously reconstructed microalgae species are relatively similar

[13]. Thus, the conserved core metabolic network was used, containing the central metabolic

pathways relevant to mixotrophy and heterotrophy: photosynthesis, glycolysis, pentose phos-

phate pathway, citric acid cycle, oxidative phosphorylation, and synthesis of chlorophyll, car-

bohydrates, amino acids and nucleotides. Species-specific pathways such as the synthesis of

secondary metabolites were not represented, since these pathways were assumed to represent

negligible fluxes compared to the main pathways and thus to have little impact on the

Table 1. List of the experimental conditions.

Experiments Initial conditions Data used for Estimation (E) or validation (V)

Acetate

(gC.L-1)

Butyrate

(gC.L-1)

Growth on acetate only 0.1 - E

0.25 - V

0.30 - V

0.5 - V

1 - E

Growth on butyrate only - 0.1 E

- 0.25 V

- 0.5 V

- 1 V

Growth on acetate and butyrate mixtures 0.25 0.25 E

0.25 0.5 V

0.4 0.1 V

0.5 0.9 E

0.9 0.1 V

Autotrophic and mixotrophic growth - - E

0.3 - E

- 0.3 E

0.3 0.3 E

https://doi.org/10.1371/journal.pcbi.1005590.t001

A metabolic model of microalgal growth on wastes
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metabolism. The reactions involved in macromolecule synthesis (proteins, lipids, DNA,

RNA and biomass) were lumped into generic reactions. The growth-associated ATP mainte-

nance (GAM) was replaced by the value experimentally measured by Boyle et al. (2009) for

growth of Chlamydomonas reinhardtii on acetate. They observed 29.890 moles of ATP for

1000g of biomass. In our model, the biomass reaction yields 186g of biomass; the mainte-

nance term is thus 5.56 moles of ATP per mol of biomass (details on how this value was com-

puted are available in S1 File). A sensitivity analysis was carried out to assess the impact of

this maintenance value on model accuracy (S1 Fig). Results showed that the optimal growth

associated yield is 12.2mol ATP per mol of biomass, with [0–16.7 molATP/mol B] as the 10%

interval confidence. The value of Boyle et al [6] falls in this interval, demonstrating that an

error of this term in this range has a minor impact on model predictions. The non-growth

ATP maintenance (NGAM) was assumed negligible. It may explain the slightly higher value

of the optimal growth associated yield resulting from optimization, which might also com-

pensate for NGAM.

Definition and reduction of the sub-networks

Generally, metabolic modeling relies on the QSSA of the whole metabolic network, where

intracellular metabolites cannot accumulate or be depleted [14]. The idea of the DRUM

approach is to mildly relax this hypothesis, by splitting the metabolic network into a limited

number of sub-networks [10], for each of which the QSS is assumed. The metabolites situated

at the junction between the sub-networks, can therefore have dynamics of accumulation and

depletion. The sub-networks are defined by metabolic functions and take into account cellular

compartments. This assumption is supported by the idea that cell function and cell compart-

ment are often associated with co-regulation and substrate channeling, which implies synchro-

nicity of reactions and thus quasi-steady state for those reactions [10]. The idea is also to find a

network splitting simple enough for explaining the experimental data, so as to avoid overfitting

by postulating too many reactions kinetics [10]. Further details on the philosophy behind the

network splitting and the DRUM framework are given in the discussion section of Baroukh

et al. [10] (DRUM principles are also summarized in supplementary information (S1 File, sec-

tion 8)). For representing the growth of Chlorella sorokiniana with different inorganic or

organic carbon sources, the network was split taking into account the compartments of the cell

with a global catabolic or anabolic function (Fig 1): i) the glyoxysome for acetate and butyrate

assimilation, ii) the chloroplast for photosynthesis, and iii) the rest of the reactions for func-

tional biomass production (synthesis of lipids, carbohydrates, proteins, DNA, RNA and chlo-

rophyll). Several splitting were tested, particularly on the transported metabolites between the

glyoxysome and the cytosol (which are not consistent in literature). The best fitting results

were obtained with these three sub-networks. Apart from inorganic compounds, only succi-

nate (SUC) and glyceraldehyde 3-phosphate (GAP) were intracellular metabolites (A) that

potentially accumulate. The idea is that these metabolites, which shuttle between the compart-

ments (respectively between the glyoxysome and the cytosol and between the chloroplast and

the cytosol), and which act as intermediate between catabolism and anabolism, are the ones

that could act as “buffers” inside the cell. Each sub-network was balanced in cofactors and in

chemical elements (carbon, oxygen, nitrogen, phosphorus, sulfur).

Each sub-network was then reduced to macroscopic reactions (MRs) using elementary flux

mode analysis [15]. To compute elementary flux modes (EFMs), the efmtool program was used

[16]. For the three sub-networks, the EFM could be computed easily, since their total number

was less than 1751 (it should be noted that an EFM analysis of the full network results in 5105

modes).

A metabolic model of microalgal growth on wastes
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Analysis of the glyoxysome sub-network

Glyoxysomes are specialized peroxisomes found in plants or microalgae [8], in which fatty

acids (including acetate and butyrate) can be used as a source of energy and carbon for growth

when photosynthesis is not active. Fatty acids are hydrolyzed to acetyl-CoA, and then trans-

formed into succinate via the glyoxylate cycle. Succinate can then be transformed into a variety

of macromolecules for biomass growth, through combinations of other metabolic processes

taking part in other compartments of the cell.

Reduction of the glyoxysome sub-network yielded two MRs, one for each substrate (Table 2).

Analysis of the photosynthesis sub-network

Photosynthesis supports the generation of cell energy in phototrophic organisms and contrib-

utes to the incorporation of inorganic carbon. The process takes place in the chloroplast and

consists of two steps commonly known as the light and dark reactions. The light reaction con-

sists of the generation of cell energy (ATP, NADPH) from water and photons, producing oxy-

gen. Thanks to the energy of the light reaction, the dark step reactions incorporate carbon

dioxide through the Calvin cycle producing a 3-carbon sugar (3-phosphoglycerate, or 3PG).

Then, 3PG is transformed into glyceraldehyde 3-phosphate (GAP) and transported to the cell

cytosol.

Fig 1. Central carbon metabolic network of a unicellular heterotrophic microalga decomposed into

three sub-networks. Central carbon metabolic network is composed of photosynthesis, the glyoxysome,

citric acid cycle, glycolysis, carbohydrate synthesis, pentose phosphate pathway, lipid synthesis, oxidative

phosphorylation, protein, DNA, RNA, chlorophyll and biomass synthesis. During photosynthesis, inorganic

carbon (CO2) is assimilated using light energy to produce a 3-carbon sugar glyceraldehyde 3-phosphate

(GAP). In the glyoxysome, fatty acids (including acetate and butyrate) are degraded to Acetyl-CoA, which is

then transformed to succinate (SUC) thanks to the glyoxylate cycle. SUC and GAP are then used as primary

precursors to produce precursor metabolites and energy via the Tricarboxylic Acid (TCA) cycle for protein,

DNA, RNA, carbohydrate and lipid synthesis.

https://doi.org/10.1371/journal.pcbi.1005590.g001

A metabolic model of microalgal growth on wastes
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Elementary flux mode analysis of this sub-network yielded only one Elementary Flux Mode

(EFM) (Table 2), associated with one macroscopic reaction (MR3). The stoichiometry of the

derived macroscopic reaction is in agreement with the literature: a quota of 8 photons are

needed per carbon incorporated [17].

Analysis of the functional biomass synthesis sub-network

The synthesis reactions of lipids, proteins, DNA, RNA, chlorophyll and carbohydrates were

grouped into a functional biomass synthesis sub-network and assumed to be in QSS. This sub-

network includes glycolysis, TCA cycle, oxidative phosphorylation, pentose phosphate path-

way, nitrogen and sulfur assimilation, carbohydrate synthesis, lipid synthesis, amino acid syn-

thesis and nucleotide synthesis.

The reduction of this sub-network yielded 1748 EFMs, which is reasonable given the num-

ber of involved reactions (143), and much lower than the number of modes for the full net-

work (5105). Most of these EFMs (1618) yielded biomass, while the others correspond to futile

cycles. In terms of carbon, once normalized by unit of biomass synthesis flux, the 1618 MRs

deduced from the EFMs only differed in their consumption of SUC and GAP and their pro-

duction of CO2 (S2 and S3 Figs). As in Flux Balance Analysis [18], we assumed that the cell

maximized biomass growth, and hence minimized carbon loss when synthesizing biomass

from each substrate. The elementary flux modes with the best SUC/CO2 yield and GAP/CO2

yield were thus chosen (Table 2). The resulting MR consumes SUC or GAP and NH4 for car-

bon and nitrogen sources, SO4 and Mg for protein and chlorophyll synthesis and O2 for ATP

synthesis through oxidative phosphorylation.

Dynamic modeling

At this stage, the macroscopic kinetics of the MRs must be determined in order to simulate the

metabolic dynamics [10]. We assumed that only the carbon substrates of each MR were limit-

ing, playing thus a role in the kinetics. Michaelis-Menten kinetics was used for acetate con-

sumption (Table 2), since experimental data showed no growth inhibition on acetate. Haldane

kinetics was chosen for the butyrate consumption reaction (Table 2), since experimental data

showed that butyrate inhibited biomass growth (growth only possible with maximum 0.1 gC.

L-1 (Fig 2C) in butyrate-only experiments).

Table 2. Definition and reduction of sub-networks formed from metabolic reactions of Chlorella sorokiniana for heterotrophic and mixotrophic

growth.

Sub-network Macroscopic reactions Kinetics

Acetate & Butyrate

assimilation

3.5 H + 2 ACE + 0.5 O2

—> SUC + 1.5 H2O (MR1)

aMR1 ¼ kMR1 �
ACE

KsMR1þACE

7 H + 1.5 O2 + 1 BUTYR

—> 1 SUC + 5 H2O (MR2)
aMR2 ¼

kMR2�BUTYR

BUTYRþ
kMR2
bMR2

� BUTYR
SoptMR2

� 1

� �2 �
kD

ACEþkD

Photosynthesis 24 Light + 3 CO2 + 2 H2O + 1 Pi—> 1 GAP + 3 O2 (MR3) aMR3 ¼
gMR3:ð1� e

bMR3 :BÞ

bMR3 :B

Biomass synthesis 7.30239 H + 4.61237 O2 + 4.14597 SUC + 0.984915 NH4 + 0.1216 Pi + 0.02169 SO4

+ 0.0101 Mg2 —> 1 Biomass + 7.04167 H2O + 8.06249 CO2 (MR4)

αMR4 = kMR4 * SUC

4.14597 GAP + 2.53938 O2 + 0.984916 NH4 + 0.02169 SO4 + 0.0101 Mg2 —> 0.989545 H

+ 1 Biomass + 2.8957 H2O + 3.91652 CO2 + 4.02437 Pi (MR5)

αMR5 = kMR5 * GAP

Each sub-network was decomposed into a set of macroscopic reactions using elementary flux mode analysis. Lists of reactions, incoming and outgoing

metabolites for each sub-network are available in S1 File section 5.

https://doi.org/10.1371/journal.pcbi.1005590.t002
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Biomass growth clearly exhibited a diauxic growth for the mixed substrate conditions: ace-

tate was entirely consumed before the butyrate concentration started to decrease (Fig 3). This

diauxic growth is probably the result of transcriptional regulations taking place inside the cell.

DRUM framework, can explicitly describe such regulations via an appropriate choice of the

kinetics in connection with metabolite accumulation. However, to the best of our knowledge,

the transcriptional regulations responsible for this diauxic growth are not known. It is thus

premature to propose an explicit mathematical expression for representing this phenomenon;

a general kinetic expression for diauxic growth, which implies that regulation is performed by

acetate directly on the cell transporter of butyrate, was thus chosen. An inhibitory term of ace-

tate concentration on butyrate consumption kinetics was included in the butyrate uptake

kinetics (Table 2). Linear kinetics depending on the mean light intensity in the reactor was

chosen to represent photosynthesis (Table 2). The mean light intensity was computed using a

Beer-Lambert law (S1 File). Linear kinetics with respect to the carbon substrate were chosen

for biomass synthesis (Table 2).

Fig 2. Comparison between the model and experimental data for Chlorella sorokiniana heterotrophic growth on acetate or butyrate.

Simulations are represented by full lines (conditions used for calibration) or dashed lines (conditions used for validation). Experimental results are

represented by large dots, triangles or diamonds. Red: 1 gC.L-1; blue: 0.5 gC.L-1; purple: 0.3 gC.L-1; yellow: 0.25 gC.L-1; green: 0.1 gC.L-1. A. Acetate

concentration (gC.L-1) for acetate growth. B. Biomass concentration (g.L-1) in acetate growing conditions. C. Butyrate concentration (gC.L-1) for butyrate

growth. D. Biomass concentration (g.L-1) in butyrate growing conditions. Thanks to the fitting quality, each of the experimental triplicates could be

appropriately fit accounting for the slight variations in the initial conditions. Only one of the triplicates per experimental condition is represented here, but

the simulations for all triplicates are available in S4 Fig.

https://doi.org/10.1371/journal.pcbi.1005590.g002

A metabolic model of microalgal growth on wastes
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Fig 3. Comparison between the model and experimental data for Chlorella sorokiniana heterotrophic growth

mixtures of acetate and butyrate. Simulations are represented by full lines (conditions used for calibration) or dashed

lines (conditions used for validation). Experimental results are represented by large dots, triangles or diamonds. Red:

acetate (gC.L-1); blue: butyrate (gC.L-1); yellow: biomass (g.L-1). A. Growth on 0.25 gC.L-1 acetate and 0.25 gC.L-1

butyrate. B. Growth on 0.25 gC.L-1 acetate and 0.5 gC.L-1 butyrate. C. Growth on 0.4 gC.L-1 acetate and 0.1 gC.L-1

butyrate. D. Growth on 0.5 gC.L-1 acetate and 0.9 gC.L-1 butyrate. E. Growth on 0.9 gC.L-1 acetate and 0.1 gC.L-1

A metabolic model of microalgal growth on wastes
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Finally, the dynamics of the 172 fluxes in the metabolism can be derived from a system of

14 differential equations comprising 14 metabolites and 5 macroscopic reactions representing

3 compartments:

dM0

dt
¼

d

S

A

B

0

B
@

1

C
A

dt
¼ K 0:a:B

where M’ is the vector of metabolites (14x1) composed of substrate S, metabolites susceptible

to accumulate A (SUC and GAP) and functional biomass B; K’ is the reduced stoichiometric

matrix (14x5) and α is the kinetics vector (5x1) (Table 2, S6 Fig). The way all the metabolic

fluxes are computed from K’ and α is recalled in S1 File. Total biomass X (g.L-1) is computed

thanks to a mass balance on the cell:

XðtÞ ¼
X

A

MA:AðtÞ þMB:BðtÞ

with MA and MB the molar masses of metabolites A and B (for further details, see S1 File sec-

tion 5).

The dynamic model has 10 degrees of freedom, and each degree is represented by a parame-

ter that needs to be calibrated. To estimate the parameters, we minimized the squared-error

between simulation and experimental measurements using the Nelder-Mead algorithm [19]

(function fminsearch in Scilab1). To reduce the risk of local minima, several optimizations

were performed with random initial parameters. Nine experiments were used to estimate the

parameters (Table 1); the nine remaining experiments were reserved to assess the validity of

the model (Table 1). Results of the parameter identification are presented in Table 3.

Results/Discussion

Macroscopic scale simulation

The model simulation accurately reproduces experimental data, even for the validation data

sets that were not used for calibration (Figs 2–4). The diauxic growth is particularly well

butyrate. Only one of the experimental triplicates is represented here. The simulations for all triplicates are available in

S5 Fig.

https://doi.org/10.1371/journal.pcbi.1005590.g003

Table 3. Parameters obtained by calibration of the model.

Parameters Value with DRUM Definition

kMR1 3.79*10−1 M.h-1.M B-1 Maximal acetate assimilation rate

KsMR1 5.52*10−5 M Half-saturation constant for acetate assimilation

kMR2 3.61*10−2 M.h-1.M B-1 Maximal butyrate assimilation rate

βMR2 2.58*105 h-1.M B-1 Butyrate inhibition constant

SoptMR2 1.93*10−5 M Optimal concentration for butyrate assimilation

KD 5.39*10−10 M Diauxic constant

γMR3 2.62*10−1 M.h-1.M B-1 Photosynthesis kinetic parameter

βMR3 2.48*103 M B-1 Light attenuation parameter

kMR4 2.37*105 h-1.M B-1 GAP biomass synthesis kinetic parameter

kMR5 2.83*10 h-1.M B-1 SUC biomass synthesis kinetic parameter

https://doi.org/10.1371/journal.pcbi.1005590.t003
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represented (Figs 3 and 4D), and the transient behavior, together with the final biomass, is cor-

rectly predicted (Figs 2–4), showing that the biomass yields obtained from the metabolic net-

work are accurate. Indeed, one of the advantages of metabolic modeling [20] is the prediction

of biomass yields supported by the stoichiometry of the metabolic network. Here, the pre-

dicted conversion yield of acetate and butyrate to biomass is 0.514 grams of carbon biomass

per gram of carbon in the incoming substrate. This yield contributes to correct prediction of

the biomass for both acetate (Fig 2B) and butyrate (Fig 2D), thus validating the approach.

Interestingly, the yields are identical between the two substrates. A possible explanation is the

fact that more ATP is required for the transport of butyrate into the cell than for acetate, thus

balancing the ATP created when converting butyrate and acetate to succinate.

The set of kinetic parameters matches both the single-substrate culture and the mixed-sub-

strate culture. This implies that butyrate has no impact on acetate growth rate. However, the

inverse is not true, since the acetate concentration at which butyrate consumption starts (kD) is

very low (5.39�10−10 M), illustrating the strong diauxic growth that occurs. Even the smallest

amount of acetate inhibited butyrate uptake. The maximum acetate uptake rate was higher

than the maximum butyrate uptake rate by nearly 15 fold, reflecting the preference of Chlorella
sorokiniana for acetate. The non-inhibiting butyrate concentration (SoptMR2) was very low

(1.93�10−5 M), which highlights the strong inhibition of butyrate in the medium on its uptake.

It also explains why, in the butyrate-only experiments, no biomass growth was observed for

butyrate concentrations above 0.1 g.L-1 (Fig 2D).

In addition to substrates and biomass concentrations, light evolution inside the culture ves-

sel was computed. During the first few days, the average light intensity decreases until equilib-

rium is reached around 16 μE.m-2.s-1 (S1 File section 4, S8 Fig). It represents 11.7% of the

incident light and is in agreement with the literature [21]. Interestingly, equilibrium is reached

faster for mixotrophic growth, particularly on acetate, which supports fast heterotrophic

growth (S8 Fig). In addition, the photosynthetic quotient for autotrophic growth varies

between 1.0 and 1.16, matching the typical range of 1.0–1.8 for microalgae [6].

Intracellular scale simulation

The predicted metabolic fluxes (Fig 5, S9 Fig) are in accordance with previous studies [11].

Autotrophy (S9C Fig) is characterized by high fluxes in the photosynthetic pathways, which

convert light and CO2 to GAP. Beyond these pathways, fluxes drop considerably in terms of

absolute magnitude. Upper glycolysis is in the gluconeogenic direction to produce the carbo-

hydrate and sugar precursor metabolites (Glucose 6-phosphate (G6P), Ribose 5-phosphate

(R5P), Erythrose 4-phosphate (E4P)) necessary for growth. In the heterotrophic mode, fluxes

are more homogenous among reactions (Fig 5B, S9A Fig). Acetate and butyrate are converted

to acetyl-CoA in the glyoxysome (Fig 5B, S9D Fig). Acetyl-CoA is then converted into succi-

nate by the glyoxylate cycle and injected in the TCA cycle. Upper glycolysis also goes in the glu-

coneogenic direction to produce carbohydrate and sugar precursors. This can be achieved

thanks to the anaplerotic reactions that convert oxaloacetate to phosphoenolpyruvate (PEP).

Mixotrophy is a mixed combination of the autotrophic and heterotrophic modes (Fig 5A, S9A

Fig). For mixotrophic growth on acetate, heterotrophic metabolism is dominant, whereas auto-

trophic metabolism is dominant for mixotrophic growth on butyrate. This is due to the fact

that autotrophic growth is slower than growth on acetate but faster than growth on butyrate.

Avoiding the inhibitory effect of butyrate

Interestingly, in agreement with the data, the model did not predict any growth on butyrate

above 0.1 gC.L-1, and at the same time successfully forecasted growth on 0.9 gC.L-1 butyrate in
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mixed substrate conditions (Fig 3E) and on 0.3 gC.L-1 butyrate in mixotrophic conditions.

Indeed, in these conditions, the first-stage growth on acetate and/or light produces enough

biomass to finally consume such an inhibiting quantity of butyrate. The substrate to biomass

(S/X) ratio is known to be a key process parameter for overcoming the inhibitory effects of the

substrate [22]. The model therefore represents a tool to compute and optimize the amount of

co-substrate that must be added to overcome the inhibition and consume the butyrate.

Fig 4. Comparison between the model and experimental data for Chlorella sorokiniana mixotrophic

and autotrophic growth. Simulations are represented by full lines (conditions used for calibration).

Experimental results are represented by large dots, diamonds or triangles. Red: acetate; blue: butyrate;

yellow: biomass. A. Autotrophic growth. B. Mixotrophic growth with 0.3 gC.L-1 acetate C. Mixotrophic growth

with 0.3 gC.L-1 butyrate. D. Mixotrophic growth with 0.3 gC.L-1 acetate and 0.3 gC.L-1 butyrate. Only one of

the experimental triplicates is represented here. The simulations for all triplicates are available in S7 Fig.

https://doi.org/10.1371/journal.pcbi.1005590.g004

A metabolic model of microalgal growth on wastes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005590 June 5, 2017 11 / 18

https://doi.org/10.1371/journal.pcbi.1005590.g004
https://doi.org/10.1371/journal.pcbi.1005590


Fig 5. Flux maps for mixotrophic and heterotrophic growth of Chlorella sorokiniana on butyrate. Fluxes are

normalized by unit of biomass. Dashed arrows indicate fluxes related to biomass formation. Metabolic fluxes vary greatly

according to substrates and growth modes. The scale for converting metabolic fluxes into arrows width is presented for each

case. A. Mixotrophic growth on 0.3 g.L-1 butyrate. Flux maps computed at time = 5.0 days. B. Heterotrophic growth on 0.1g.L-1

butyrate. Flux maps computed at time = 8.1 days. Flux maps on other substrates are available in S9 Fig.

https://doi.org/10.1371/journal.pcbi.1005590.g005
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Different strategies could be tested to achieve a low S/X ratio and accelerate butyrate consump-

tion. The simplest approach would involve adding a non-inhibiting substrate in order to

reduce the amount of inhibitory substrate per unit biomass. For example, the addition of 0.5

gC.L-1 of acetate for a volume equal to half of the culture volume has been found to eventually

lead to the consumption of 0.5 gC.L-1 of butyrate in 14 days (Fig 6B), which would not have

been possible otherwise (Fig 6A). However, in general, such pure substrate is not available. We

therefore simulated the addition of a mix of acetate and butyrate in proportions that are

representative of fermentative digestate [4], for a volume equal to half of the culture volume.

On the one hand, the acetate contained in the waste stimulated growth, but since it is associ-

ated with addition of butyrate, it also increased inhibition. Simulations show that the inhibi-

tion is overcome, but does not lead to the total consumption of butyrate within 15 days (Fig

6D). Furthermore, the mixotrophic potential can be exploited: autotrophic growth can be

enhanced by illumination in order to ultimately dilute the inhibitory substrates. Illuminating

the algae at an incident intensity of 136 μE.m-2.s-1 leads to the consumption of the same quan-

tity of butyrate in 13 days, and this delay can be reduced to 9 days using a light intensity of

272 μE.m-2.s-1 (Fig 6C). Finally, if light is provided at the same time as the addition of fermen-

tative digestate (for a volume equal to half of the culture volume), inhibition can be overcome

after 10 days (Fig 6D).

Fig 6. Disinhibition of butyrate by addition of acetate, light and a mix of acetate/butyrate due to the biomass effect. A larger

biomass implies a decrease in butyrate inhibition on growth. Biomass can be increased by addition of acetate (B), light (C) and/or a mix of

acetate and butyrate (D). Red: acetate; blue: butyrate; yellow: biomass. A. Normal conditions, without any additions. B. Addition of acetate

(0.5 gC.L-1, volume half of culture volume) in the medium at day 5. C: Addition of light at day 5. Full lines: incident light intensity of 136 μE.m-

2.s-1. Dashed line: incident light intensity of 272 μE.m-2.s-1. D. Addition of a mix of acetate (0.25 gC.L-1) and butyrate (0.45 gC.L-1) (volume

half of culture volume) representative of a fermentative waste (4). Full lines: without light. Dashed lines: with light.

https://doi.org/10.1371/journal.pcbi.1005590.g006
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Assessing the time constants of the metabolism

The advantage of the DRUM approach is its ability to account for the accumulation of some

intracellular metabolites and thus to characterize the time to reach steady state. It can also

determine more quantitatively the time scales of flux variations in the cell than earlier frame-

works. This analysis was applied to SUC and GAP, which are, in our model, the intermediate

accumulating metabolites.

Interestingly, SUC actually hardly accumulates in the simulations and rapidly achieves a

QSS (S10 Fig) where its concentration evolves slowly compared to the other variables in the

system (substrate consumption, biomass formation). We developed an algorithm to auto-

matically detect the time needed to reach QSS (tQSS). In the experimental conditions of this

study, approximately 3 minutes were necessary for succinate to achieve QSS (S2 File) thanks

to a higher biomass synthesis rate (via a high kMR4) compared to the substrate assimilation

rate, implying that succinate is immediately consumed once it is synthesized from butyrate

or acetate. A sensitivity analysis on the parameter kMR4 revealed that the confidence interval

of tQSS was [0.6; 34] minutes (model error less than 5% of the minimal error) (S1 File section

8, S2 File). After the brief transient succinate step, the QSSA for heterotrophic growth on

butyrate and acetate is valid. Therefore, the macroscopic model can be reduced further, by

merging reaction MR4 with reactions MR1 and MR2 (S1 File section 6). The same kinetic

parameters can be used for simulation, and the fit is nearly identical (increase of 0.6% of the

error). As a consequence, results considering QSSA are very close to the ones based on

DRUM.

GAP, in contrast to SUC, does not reach a QSS rapidly (S11 Fig). First, GAP accumulates at

high light intensities, reaching a maximum when average light intensity is approximately

60 μE.m-2.s-1. Then, it is consumed at low light intensities, reaching a QSS when average light

intensity reaches a steady state at 16 μE.m-2.s-1 (S1 File section 8). This suggests that microalgal

metabolism in autotrophic and mixotrophic modes only reaches a QSS when average light is

constant in the culture media, meaning that growth has ceased. This behavior is similar to that

of microalgae grown in day/night cycles [10,11], involving accumulation of carbon-reserve

metabolites (carbohydrates, lipids) during the day, when the light is intense enough, and re-

consumption during the night or at the beginning and end of the day, when light intensity is

low. Here, the carbon reserve metabolite is GAP, because only GAP accumulated in the model.

Nevertheless, it is probable that carbohydrates and/or lipids also accumulate. Further experi-

ments are required to validate these results more extensively and to determine which carbon-

only metabolite is stored inside the cell.

To confirm these results, a Macroscopic Bioreaction Model of the system [23], relying on

the QSSA assumption, was developed (see S1 File section 10 for details on the methodology).

Without accumulation of SUC, the model error was almost unchanged (0.06% increase of the

error). But without the possibility for GAP to accumulate, a 40% increase in the error is

observed. This confirms our finding that GAP do accumulate inside the cell at high light inten-

sities to be consumed later at lower light intensities. It is also interesting to note that the MBM

approach is sufficient and produces accurate results, for applications in heterotrophy only cul-

tures, without the need for accumulating metabolites.

Conclusions

The dynamic metabolic model developed for the heterotrophic, mixotrophic and autotrophic

growth of Chlorella sorokiniana on acetate and butyrate achieved a so far unequalled accuracy.

The model efficiently fits the dynamic experimental data and correctly predicts the biomass

yields for a broad range of experimental conditions. This new powerful simulation tool
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provides new insight into the mixotrophic microalgal process, and allows us to explore the dif-

ferent possibilities to overcome the inhibition induced by some of the substrates, in particular

by adjusting the mixotrophic regimes. The model also highlights the dynamics of some inter-

nal compounds, especially under an auto- or mixotrophic regime, while light intensity is

slowly affected by an increase in self-shading. As a consequence, the model shows that QSSA is

not valid for mixotrophic growth as long as the light is variable in the culture medium. In the

future, the model should be extended further in order to handle mixotrophic behavior under

periodic light/dark cycles.
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