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Abstract

We propose a variational method dedicated to jitter correction of large fluorescence scanner
images. Our method consists in estimating a dense displacement field representing the jitter. An
energy functional composed of a re-alignment criterion and a differential-based regularizer is espe-
cially designed. We adopt the half-quadratic splitting approach to decouple convex and non-convex
terms in such a way that the original minimization problem can be solved by alternating two optimi-
zation steps – one using a proximal algorithm for the convex part and the other using an exhaustive
search for the non-convex part. Experiment results on artificial and large real fluorescence images
demonstrate that our method is not only capable to handle large displacements but is also efficient
in terms of sub-pixel precision without modifying image intensities when comparing with image
regularization-based approaches.

Keywords : Dejittering, fluorescence scannner, variational method, regularization, optimization,
quadratic relaxation, proximal algorithm

1 Introduction

Over the few past decades, the evolution of digital technology has radically changed the way in
which images are handled, stored, visualized and transmitted. Nowadays, most of imaging devices
are able to transform acquired images into digital form in order to allow not only the recording on
electronic medium, but also the processing by computers. This transformation is called digitization
which consists in generating a finite sequence of samples from the input (analog) signal. Despite
number of advantages, digitization often suffers from undesirable artifacts during the acquisition,
transmission and recording processes due to imperfections of one or more components of the involved
devices. One of those artifacts is jitter – a type of distortion characterized by the mispositioning of
pixels from their true position.

There are several situations where jittering frequently arises. A typical example is the analog-
to-digital conversion of video from old magnetic tapes in which horizontal displacement of image
lines (line jitter) might happen ; and as a result, edges appear to be jagged in vertical direction as
illustrated in the first row of Fig. 1. It is mainly because the synchronization signals that contain

1. This work was supported by Innopsys Inc.
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Figure 1 – Examples of jitters. From top to bottom : jitter arising in analog-to-digital video
conversion (Source : http://www.mee.tcd.ie/~ack/cd/linereg/linereg.htm) and in fluorescence
line scanner (by the courtesy of Innopsys Inc.). From left to right : jittered and dejittered image.

the information of the relative position of image rows to each other were corrupted by the noise in
the video signal and/or by the degradation of the storage medium. Line jitter can also occur during
wireless video transmission due to delayed and loss packets. Another case is the video interlacing
technique that scan video images by recording two fields at half vertical resolution at two different
times and alternating lines of these fields for doubling the frame rate (temporal resolution) of
a video while remaining the same bandwidth (amount of data). The temporal difference between
recorded fields can lead to a rolling effect in both horizontal and vertical directions as a consequence
of relative motions of the camera and the objects in the scene. Similarly, during long acquisition
process, random displacement (vibration) of the imaging device and the imaged object is a major
cause of jittering in biomedical equipment such as CT (computer tomography) and MRI (magnetic
resonance imaging) scanners.

In this paper, we do not address the problem of jittering in general, but we focus only on a
particular case of jitter arising in dedicated fluorescence line scanners 2, as illustrated in the second
row of Fig. 1. Here, the images are acquired pixel by pixel along each line with a change of scan

2. InnoScan 1100 AL developed by Innopsys Inc., for more details of the product please refer to https://www.
innopsys.com/en/lifesciences-products/microarrays/innoscan/innoscan-1100-al
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Figure 2 – Image acquisition process involved in fluorescence line scanners. Images are
acquired pixel by pixel along each line with a change of scan direction between two subsequent lines.

direction between two subsequent lines (see Fig. 2). Such an acquisition system requires a very
accurate positioning of each acquired pixel in order to provide output images without distortion.
However, because of i/ imperfect synchronization between mechanical and electronic components,
ii/ small objective rotations induced by abrupt acceleration and deceleration during scanning and
iii/ spatially-varying sinusoidal scan speed, the pixels on subsequent lines are horizontally displaced
in opposite directions, resulting in a structured jitter (see Figs. 1, 3 and 10). Up to our knowledge,
there is unfortunately no existing method to compensate the displacement errors on such jittered
fluorescence images. Accordingly, we propose a computational approach inspired from variational
optical flow methods. Our approach consist in minimizing an energy functional which combines ex-
plicitly a non-convex data term with a convex spatial regularity term with respect to the horizontal
displacement while taking into account the special structure of the jitter. This optimization problem
can be solved efficiently by introducing an auxiliary variable and a quadratic constraint to decouple
the data and the regularity term into two sub-problems in the way that one of which is convex
and the other one is non-convex but does not exhibit spatial dependency. The proposed decoupling
allows to solve each sub-problem separately with two appropriate algorithms : a proximal algorithm
for the convex sub-problem and an exhaustive search for the non-convex sub-problem. The mini-
mization of the proposed energy can be therefore performed by alternating the two optimization
steps. Experiments on both simulated and real images show that our approach can handle large and
non-integer displacements, which are not addressed in the majority of existing dejittering methods,
while avoiding the over-smoothing effect of image-regularization based approaches.

The remainder of the paper is organized as follows. In the next section, several existing me-
thods for image dejittering and deinterlacing are reviewed. In Section 3, we present the proposed
acquisition model based on the sampling theory the relationship between the ideal continuous image
and its discrete jitter-free as well as its jittered version. We also define the energy functional and
propose an algorithm to remove jitter artifacts. Technical details of the proposed algorithm are
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given in Section 4. Section 5 presents the experimental results obtained on simulated and real data.
Finally, the last section gathers the conclusions drawn from this work and gives a perspective to
further improvements.

2 Related works for image dejittering and deinterlacing

Analog video signals have a specific format that defines how the timing reference (also known as
“time base”) is embedded. It allows the receiving device to correctly extract the necessary synchro-
nization information for reconstructing images and providing visual display. The corruption or even
the loss of this timing reference consequently results in an extraction of incorrect synchronization
information and thus introduces jitter. In the late of 80’s, “time base correction” techniques were
already used for restoring the embedded synchronization information in the analog signal by trying
to remove noise on the non-picture part of the signal in order to reproduce an accurate display of
the input video. However, such a technique which is able to process solely analog signals cannot be
applied to current digital videos. Over the last two decades, intrinsic dejittering [1] techniques were
introduced as an alternative solution. Indeed, these techniques which rely only on jittered image
data are much more flexible and widely applicable when compared with conventional (non intrinsic)
“time base correctors”.

To perform (intrinsically) image dejittering, one can envisage simple approaches such as line ave-
raging and correlation matching between two subsequent lines. Unfortunately, the former approach
tends to produce blur and decreases the vertical resolution, whereas the latter tends to cause a bias
in vertical direction due to its local property. At the end of 90’s, Kokaram et al. invented the first
intrinsic method [1, 2], in which the authors assumed jitter-free images obey a 2D-AR (autoregres-
sive) model. The unknown AR coefficients and the line displacements are jointly estimated by blocs
using an iterative algorithm. Whitening of the estimated displacement can be performed in the case
of drift (i.e. restored images are warped) to remove the low frequency component of the estimation.

Later, Laborelli [3] proposed a different approach to estimate the line displacement by considering
the L1 norm of the difference of two or three consecutive shifted lines as a local criterion and
using it to define a global cost which is optimized by dynamic programming. Right afterwards,
Shen described in [4] a joint denoising and dejittering algorithm which consists in minimizing a
energy functional in the Bayesian framework with respect to the original (unjittered) image and
the associated displacement. The considered energy is derived from the posterior probability of
the unjittered image and the displacement given the observed jittered image. This conditional
probability is defined under the Gaussian distribution assumption of the displacement and of the
noise, combined with the BV (bounded variation) image model. Instead of considering such a joint
denoising and dejittering approach, Kang and Shen developed a two-step displacement-estimation
method called “Bake and Shake” [5] which relies on Perona-Malik diffusion [6] to reduce the noise and
the rolling effect of jittered images. The key idea of this method is that the intermediate diffused
(baked) image – less noisy and less jittered – can guide the estimation of the displacement (i.e.
the “shake” step). Later on, the “Bake and Shake” authors introduced in [7] the notion of slicing
moments of BV images – a measure to quantify how much the image is jittered. Using this notion,
the displacement of image lines is obtained by minimizing a L2-TV (total variation)-based functional
of the vertical slicing moments.

In contrast to these continuous-optimization-based methods, Nikolova proposed a fast algorithm
for image dejittering [8, 9] by performing a complete search over a finite set of allowed integer values
of shifts to optimize a non smooth and (eventually) non-convex local criterion. This local criterion is
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an extended version of the criterion mentioned in [3] by using normalized Lp norms (with p = 0.5 or
p = 1) and possibly higher order criteria (e.g. more than three adjacent lines). Recently, Lenzen at al.
introduced a PDE (partial differentiable equation) derived via semi-groups from a nonconvex energy
functional for restoring directly jittered images without explicit estimation of the displacement [10].
This model which is related to the mean curvature flow [11, 12] corresponds to the minimization of
an energy composed of a linearized re-alignment criterion and a TV regularization. Based on these
previous works, Dong et al. proposed an unified class of methods for different types of jitter [13] by
generalizing the Nikolova’s algorithm to infinite dimensional framework and establishing its relation
with the Lenzen’s PDEs.

In the comparison with “line dejittering” which corrects the shift between consecutive lines of a
jittered image, deinterlacing is the process of reconstructing a complete image frame from two recor-
ded fields at half vertical resolution at two different times. It consists generally in compensating the
motion between these recorded fields due to temporal difference. Inspired from optical flow models,
the estimation of the underlying motion have been recently used in state-of-the-art deinterlacing
methods. Most of these motion-estimation-based methods are defined in a variational framework
with TV regularization [14, 15, 16].

Irrespective of deinterlacing or dejittering algorithms, we can classify the majority of them
into three categories : (a) simultaneous approach as [4, 16] which consists in estimating jointly
the displacement and the jitter-free original image ; (b) displacement estimation methods which
represent the majority part on the literature as in [2, 1, 3, 5, 7, 8, 9, 14] ; (c) image correction
without estimating the displacement as in [15, 10, 13] which is mainly based on the BV image
model and variational methods. However, there are problems which are not fully addressed such as
large and non-integer displacement, over-fitting, or over-smoothing.

3 Jitter modeling : Application to fluorescence line scanner images

In this section, we present a general image acquisition model which explains the relationship
between the ideal (undistorted) continuous image and its digitized versions. The digitized images
are nothing else than finite sets of samples of the continuous image according to a sampling grid.
In this work, we focus on gray-scale bi-dimensional (2D) images for the sake of clarity.

3.1 Notations and image sampling

Let u : Ω → R be an undistorted continuous image which is defined on a rectangular domain
Ω = [0,M ] × [0, N ] ⊂ R2. Digitization consists in sampling the input continuous images with
respect to a lattice (sampling grid) in order to provide an output discrete image. In the case of an
ideal sampling, the sampling grid is a regular grid which is characterized by a couple of orthogonal
unit vectors and a vertex-to-vertex distance (also sampling step). Without loss of generality, one
can assume that this regular sampling grid is the Cartesian grid Z2 (i.e. the couple of characterized
vectors is the canonical basis (e1, e2) of the plane R2 and the sampling step equals to 1 (implying that
each vertex of the sampling grid is integer point). The sampled version of u according to Z2 which is
defined as the set of finite samples {ui,j , u[i, j]}(i,j)∈Z2∩Ω is called the (discrete) jitter-free image.
To shorten the notations, we denote the image grid Λ = Z2 ∩ Ω = {0, 1, . . . ,M} × {0, 1, . . . , N}.

Let us denote w : (i, j) ∈ Λ 7−→ (w1(i, j), w2(i, j)) ∈ R2 the dense vector field which represents
the jitter occurring during the image acquisition process. The jittered version of u with respect to
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the displacement field w is therefore defined as :{
fi,j , f [i, j] = u [i− w1(i, j), j − w2(i, j)]

}
(i,j)∈Λ

. (1)

In other words, {fi,j}(i,j)∈Λ is a sampled version of u according to a irregular sampling grid

Λ̃ = {(i− w1(i, j), j − w2(i, j)) , ∀(i, j) ∈ Λ} ⊂ R2 . (2)

The restoration of {ui,j}(i,j)∈Λ from irregular samples {fi,j}(i,j)∈Λ with unknown sampling position
Λ̃ is the so-called dejittering procedure.

3.2 Alternating line pixel jitter

In contrast to a general irregular sampling case in which the perturbed sampling position Λ̃ does
not need to have any particular structure (beyond a minimal sampling density) [17, 18], dejittering
usually exploits the structure of the associated vector field w to compensate the displacement errors
and re-align the jagged edges. In this work, we focus on a specific jitter arising in images acquired
by fluorescence line scanners called (InnoScan 1100 AL). A typical example of jittering is illustrated
in Fig. 3 showing a checkerboard pattern in which the displacement between two subsequent image
lines is not constant along the horizontal axis. This situation is quite different from the usual case
of line jitter which is well documented in the literature [1]-[13].

On such jittered images, we remark that : (i) the pixels on the even lines are shifted in the
opposite direction with respect to those on the odd lines ; and (ii) there is no apparent displacement
between lines of the same set of even lines or odd lines. More specifically, the rolling effect appears
only in the vertical direction and not in the horizontal direction. By measuring the gap between
vertical contours on subsequent lines at difference positions in the jittered images, we also notice that
the magnitude of displacement along horizontal axis varies smoothly according to a specific pattern
depending on pixel positions (see Fig. 3). The observed jitter can be named as “alternating line
pixel jitter”. Based on the described observations, we propose to model this jitter by a vector field
w = {w(i, j) = (wi,j , 0)}(i,j)∈Λ whose the vertical component is zero and the horizontal component
satisfies the two following conditions :{

wi,j = 0 if j ∈ 2Z ,
wi,jwi′,j ≥ 0 for any (i, i′) ∈ Z2 .

(3)

The first condition implies the alternating structure of the observed jitter (one line of every two
line is shifted). The second condition implies that the horizontal component of the displacement
vector at a point on the a given line has the same sign as those at another point on the same line –
resulting in the same displacement direction on the same line. Since the vertical component of w is
assumed to be constant, we estimate only the horizontal component w : (i, j) 7−→ wi,j to perform
image dejittering.

4 Variational method for displacement estimation

4.1 Energy functional

One strategy of dejittering is to estimate the underlying displacement in order to remove rolling
effect due to the jitter. To deal with the “alternating line pixel jitter” occurring in fluorescence scan-
ner images, we aim at estimating the scalar field w which represent the displacement in horizontal
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Figure 3 – Scanned image of a tool slide used for calibrating scanners before and after
the correction of vertical rolling effect using our algorithm. First row : very large image with
a width of 22780 pixels (22.78 millimeters in real scale). Second row : zoom on selected areas (blue
boxes in the full-width image) with different values of displacement. In the middle, the maximal
estimated displacement is 8 pixels ; whereas, in the remaining cases, this value is about 6(4) pixels.
Third row : corrected by our method without regularization (λ = 0). Fourth row : corrected with
regularization.
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direction by minimizing a global energy of the following form :

E(w) =
M∑
i=0

N∑
j=0

ρ(i, j, f, w)︸ ︷︷ ︸
ED(w,f)

+
M∑
i=0

N∑
j=0

φ(Lwi,j)︸ ︷︷ ︸
ER(w)

, (4)

where L is a linear operator used to control the spatial regularity of w. The energy (4) combines
explicitly a potential ρ(·), which penalizes irregular shapes of the image f on the neighborhood of
a pixel (i, j), with a regularization potential φ(·) which penalizes high values of the norm of Lwi,j .
This reformulation is inspired from the concept of regularized vector field which is widely used in
optical flow to compute the motion between different frames in a video sequence [19, 20]. In context
of dejittering, the displacement regularization allows to overcome not only the problem of data
over-fitting of unregularized approaches [1, 9] but also the effect of over-smoothing of approaches
based on image regularization as described in [4, 10, 13].

4.2 Data fidelity term

By definition, the corrected version of the jittered image f by the displacement w is written as :

{ũi,j = f [i+ wi,j , j]}(i,j)∈Λ . (5)

By considering the vertical regularity of the corrected image ũ, a data potential ρ(·) is defined to
re-align the jittered image f as :

ρ(i, j, f, w) = |D(k)ũi,j |β , (6)

where D(k) denotes the discrete kth order vertical derivative operator and β is a positive parameter
which controls the amount of non zero entries of D(k)ũ. In other words, ρ(·) favors sparse D(k)ũ
if 0 < β ≤ 1, otherwise this potential promotes non-sparse configurations. If k = 1, 2 and 3, we
consider the following discrete derivatives :

D(1)ũi,j = ũi,j − ũi,j−1
= f [i+ wi,j , j]− f [i+ wi,j−1, j − 1] ,

D(2)ũi,j = ũi,j+1 − 2ũi,j + ũi,j−1

= f [i+ wi,j+1, j + 1]− 2f [i+ wi,j , j]

+ f [i+ wi,j−1, j − 1] , (7)

D(3)ũi,j = ũi,j+1 − 3ũi,j + 3ũi,j−1 − ũi,j−2
= f [i+ wi,j+1, j + 1]− 3f [i+ wi,j , j]

+ 3f [i+ wi,j−1, j − 1]− f [i+ wi,j−2, j − 2] ,

with the symmetric boundary conditions in the vertical direction such that ũi,j = ũi,−j if j < 0 and
ũi,j = ũi,2N−j if j > N . In what follows, we choose k = 2 and β = 1 since these values allow to
recover images with nearly piece-wise linearity in the vertical direction (see [8, 9]). However, this
potential exhibits spatial dependency on w since ρ(i, j, f, w) not only depends on wi,j but also on
other entries wi,j′ where j′ is a neighbor of j according to the order k of the derivative.

Instead of considering the potential (6), (7) which is difficult to optimize globally, a point-
wise term is desired in order to avoid spatial dependency on w and to facilitate the optimization
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task. From the condition (3), the displacement field w is non zero on odd lines (i.e. the function
i 7−→ wi,j 6= 0 for j /∈ 2Z). Therefore, let us consider the odd line translation Twi,j defined as :

(Twi,jf)k,l =

{
f [k, l] if l ∈ 2Z ,
f [k + wi,j , l] otherwise .

By assuming that the variation of the displacement between odd and even lines on a small neigh-
borhood of a point is infinitesimal, we propose a novel non-local potential ρσ defined as following :

ρσ(wi,j , f)=


0 if j ∈ 2Z ,∑

(k,l)∈σ(i,j)

|D(k)(Twi,jf)k,l|β otherwise ,

where σ(i, j)={i− br2c, . . . , i+ br2c}×{j − b
s
2c, . . . , i+ bs2c} is a patch of size r × s pixels centered at

(i, j). The data fidelity term associated with the potential ρσ(·) is :

ED(w, f) =

M∑
i=0

N∑
j=0

ρσ(wi,j , f) . (8)

4.3 Regularization term

To exploit the alternating structure of the displacement field and impose its smoothness with
no sharp discontinuity, we consider the following regularization term :

ER(w) =
M∑
i=1

N∑
j=2

{
λ
(
wi,j − wi−1,j

)2
+ ν

(
wi,j − wi,j−2

)2}
, (9)

where λ, ν ≥ 0 are regularity parameters which control the regularity of w along the horizontal and
vertical directions respectively. If we denote L

λ,µ
the discrete differential-based operator defined as :

(L
λ,µ
w)i,j =

 √λ(wi,j − wi−1,j

)
√
µ
(
wi,j − wi,j−2

)
 ∈ R2 ,

for 1 ≤ i ≤M and 2 ≤ j ≤ N , otherwise (L
λ,µ
w)i,j is a null vector, the regularization term (9) can

be rewritten as :

ER(w) =
M∑
i=0

N∑
j=0

‖(L
λ,µ
w)i,j‖22 , (10)

where ‖ · ‖2 denotes the Euclidean norm.

4.4 Optimization of the energy functional

Considering the proposed data fidelity and regularization terms, the energy functional has the
following form :

E(w) =

M∑
i=0

N∑
j=0

ρσ(wi,j , f) + ‖(L
λ,µ
w)i,j‖22 , (11)
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in which the first term is convex with respect to wi,j and the second term is in general non-convex.
The combination of convex and non-convex terms in the expression of the energy makes the under-
lying optimization problem become much more difficult than a classical convex case which can be
solved efficiently by number of existing algorithms [21, 22, 23, 24, 25, 26]. This situation is closely
similar to the variation formulation of the optical flow problem [27, 20] in which the non-convex data
term is usually coupled with a convex regularity term [28, 29]. In addition, both of these terms even-
tually may be not continuously differentiable. One feasible approach is to linearize the data term, to
replace non differentiable functions by their smoothly approximated version and use standard dif-
ferentiable optimization techniques to minimize the derived energy. To avoid these approximations,
we adopt the approach of Steinbrùcker et al. [30] and propose to optimize a quadratically relaxed
version of (11) of the following form :

Eε(w) =

M∑
i=0

N∑
j=0

ρσ(wi,j , f) +
1

2ε
(wi,j − vi,j)2 + ‖(L

λ,µ
v)i,j‖22 , (12)

where ε is a small constant and v : (i, j) 7−→ vi,j is an auxiliary variable used to approximate w.
The use of auxiliary variable for decoupling convex and non-convex part is also known as the half-
quadratic method which was originally introduced by Geman and Yang [31]. This spitting technique
is widely used in both linearized and non-linearized optical flow models [28, 29, 30] to decompose
the original optimization problem into two smaller sub-problems whose the optimal solution can be
computed in an easier way.

Moreover, since the magnitude of displacement does not exceed a certain bound, one can add
the convex constraint {‖w‖∞ = maxi,j |wi,j | ≤ wmax} to the relaxed optimization problem (12) with
wmax the maximal absolute value of displacement. Finally, we consider the following optimization
problem :

(ŵ, v̂) = arg min
w,v

M∑
i=0

N∑
j=0

{
ρσ(wi,j , f) + ıC(wi,j) +

1

2ε
(wi,j − vi,j)2 + ‖(L

λ,µ
v)i,j‖22 + ıC(vi,j)

}
,

(13)

where ıC denotes the characteristic function of the subset C = [−wmax, wmax] ⊂ R defined as
(r ∈ R) :

ıC(r) =

{
0 if r ∈ C ,

+∞ otherwise .

This problem can be solved by alternating two optimization steps which update either w or v at
each iteration :

– For v being fixed, solve

arg min
w

M∑
i=0

N∑
j=0

{
ıC(wi,j) + ρσ(wi,j , f) +

1

2ε
(wi,j − vi,j)2

}
. (14)

This problem can be solved point-wise, since there are no spatial dependency term for w in
(14). Therefore, the optimal values for wi,j at every point (i, j) can be simply computed by
an exhaustive search in the discrete set of possible displacements

W = {−wmax,−wmax + δ,−wmax + 2δ, . . . , wmax} ,
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where the step δ can be chosen as small as possible to guarantee the sub-pixel precision
of the estimated jitter. In practice, for each point (i, j), we minimize the function wi,j 7−→
ρσ(wi,j , f)+ 1

2ε(wi,j−vi,j)
2 over the finite and countable setW rather than C which is finite but

uncountable. This discrete minimization not only helps to avoid the linearization of the data
term, which may yield inaccurate results, but also allows to deal with large and non-integer
displacements.

– For w being fixed, solve

arg min
v

M∑
i=0

N∑
j=0

{
1

2ε
(wi,j − vi,j)2 + ‖(L

λ,µ
v)i,j‖22 + ıC(vi,j)

}
. (15)

Since the constraint set C is convex, this problem can be solved by a simple projected gradient
descent algorithm summarized as follows :

ṽ
(k)
i,j =

1

ε
(v

(k)
i,j − w) + (L>

λ,µ
L
λ,µ
v(k))i,j ,

v
(k+1)
i,j = projC(v

(k)
i,j − γkṽ

(k)
i,j ) ,

(16)

where L>
λ,µ

denotes the adjoint of L
λ,µ

and projC denotes the projection to the set C. To
ensure the convergence of projected gradient descent iterations, the descent step γk satisfies
the usual condition

0 < γk <
2

4(λ+ µ)
. (17)

We note that the projected gradient descent algorithm is a particular case of the forward-
backward algorithm [32, 24]. This algorithm also belongs to the family of proximal algorithms
[26].

5 Experiment results

In order to evaluate our variational method, we consider both true and simulated jittered images.
The real images are acquired by fluorescence scanners of the series InnoScan commercialized by
Innopsys company in which a laser beam is moving according to a programmed trajectory to scan
input microscopic slides. In the scanner design, the velocity of the laser beam is not constant during
the scanning : it starts slowly at the beginning of a line, then accelerates and reaches the maximum
at the middle, and decelerate smoothly until the end where it changes the direction for the next
line. The desynchronization between the mechanical system which controls the movement of the
scanning laser beam and the electronic system which converts analog signals to digital output leads
to the writing of pixels at wrong positions, and thus introduces vertical rolling effect of odd and even
lines with non-constant displacement along the horizontal direction, low at the extremities of the
lines and maximal at the middle. The occurred jitter is illustrated in Fig. 3 which shows different
magnitudes of displacement.

5.1 Evaluation on simulated images

To create the same jittering effect as in fluorescence scanner images, we first simulated a dense
displacement field which is zero on odd lines and non-constant on even lines such that the displa-
cement with respect to horizontal coordinate is smoothly increasing on the first half of the line
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Figure 4 – The simulation of jitter on “Barbara” 512 × 512 image by using sinus
function. (a) Original image. (b) Jittered image. (c) Simulated displacement on even lines with
respect to the horizontal coordinate (in pixel) plotted in normal scale (top) and in exponential
scale (bottom) for comparison purpose : smooth displacement (red curve) is computed using sinus
function and the perturbed version (black curve) is generated by adding small random values. (d)
Displacement field associated with (b) (gray is zero value).

and decreasing on the second half by using the sinus function. Random perturbation with small
magnitude (less than one tenth of the pixel) was then added to the displacement field to model the
micro-vibration of the acquisition system. A set of 8 images was selected as test images which were
jittered by using the simulated displacement field. An example of jitter simulation on “Barbara”
image is shown in Fig. 4.

5.1.1 Robustness to noise

To analyze the robustness to noise of our approach, a white Gaussian noise with zero mean
and variance σ2 is added to the original images before being jittered for the purpose of generating
noisy and jittered images. The performance of our algorithm on these images is measured by the
Peak Signal-to-Noise Ratio (PSNR) and by the Structural Similarity (SSIM) index between the
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(a) Unjittered (b) Jittered

(c) λ = 0, s = 1, PSNR = 25.14 (d) Residual of (c) with (a) (e) λ = 0, s = 21, PSNR = 29.19 (f) Residual of (e) with (a)

(g) λ = 0, s = 41, PSNR = 28.91 (h) Residual of (g) with (a) (i) λ = 10, s = 21, PSNR = 29.91 (j) Residual of (i) with (a)

(k) λ = 0.1, s = 1, PSNR = 25.48 (l) Residual of (k) with (a) (m) λ = 500, s = 21, PSNR = 32.03(n) Residual of (m) with (a)

(i) λ = 104, s = 1, PSNR = 21.19 (j) Residual of (i) with (a) (i) λ = 104, s = 21, PSNR = 31.32 (j) Residual of (i) with (a)

Figure 5 – Result of dejittering with different parameters of regularization λ and
window size s on Barbara image (512× 512) corrupted with white Gaussian noise (σ =
0.04). Residual images are shown in color where “cold” colors correspond to low residual values and
“hot” colors correspond to high residual values. 13



dejittered images and their unjittered version in both noise-free and noisy cases. For real data
in which jitter-free images are unknown, quantitative evaluation as described previously is quite
impossible. Therefore, in this case, we only show the dejittering outcome and compare visually in
details the obtained results with the input images to highlight the effect of displacement correction.
In all our experiments, we normalized images in the range [0, 1] to avoid the problem of different
dynamics of images and produce a homogeneous comparison of the impact of the regularization
parameters on dejittering result. For simplification purpose, we used only square windows (s = r)
and isotropic regularization parameters (λ = ν) when performing dejittering on simulated images.

A typical result of our dejittering method with different parameters of regularization and esti-
mation window size is illustrated in Fig. 5. On the second column of Fig. 5, the residual of dejittered
images is also displayed to compare the performance of these results. In this example, the jitter-free
image was corrupted by a white Gaussian noise with standard deviation σ = 0.04 (which corres-
ponds to a value of PSNR = 26.77). The displacement field was estimated by setting the precision
of displacement δ = 0.1 (in pixel) and the parameter p = 0.5. We can see that even in the case of
s = 1 (smallest estimation window) and λ = 0 (without regularization) the vertical rolling effect
is significantly removed and most of large geometric structures and small details are generally well
restored (see Fig. 5(c)-(d) and 6). However, we observe an aliasing effect on restored image with
these parameters (see the first column in Fig. 6), this artifact appears generally in regions near the
left and right borders of the image where the displacement is relatively lower than those at the
middle. Nevertheless, it does not disturb the overall visual display. The aliasing is slightly reduced
when increasing the the size of the estimation window s and/or the regularization parameter λ as
depicted in the three bottom rows of Fig. 6. In dense texture regions as shown on the third column
of Fig. 6, we remark that the corrected image with parameters s = 1 and λ = 0 failed to reconstruct
properly very fine details. In fact, by using these parameters, the orientation of the texture was
wrongly restored with respect to those on the unjittered image. It is mainly due to the repetition
of patterns and the lack of regularity of the estimated displacement field.

We expected that the dejittering with higher values of s and λ which imply spatial regularities of
the displacement field would produce better reconstruction, but we obtained a surprising result. The
setting s = 21 (large estimation window) and λ = 0 (without regularization) yielded a better restora-
tion than s = 1 and λ = 0.1 (highest value of SSIM with s = 1 among λ ∈ {0, 0.1, 1, 10, 500, 10000},
see Table 1) and this restoration is very close to the result obtained with s = 21 and λ = 10 as well
as the original image (see the third column of Fig. 6). It means that our method provides better
results for the larger estimation window than for the higher regularization parameters.

5.1.2 Influence of λ and s parameters

To better understand the impact of λ and s in the estimation of the displacement field, the
estimated displacement corresponding to the dejittering result in Fig. 5 are shown in Fig. 7. For
comparison purpose, we also displayed in Fig. 7(a) the simulated displacement (ground truth) which
was used to generate jittered images, and in Fig. 7(b) the estimated displacement with λ = 500
and s = 21 which have one of the best value of SSIM scores (SSIM=0.9683) for all possible couple
(λ, s). Finally, the displacement estimated with λ = 10000 was illustrated in the last row of Fig.
7 as an extreme case. As expected, the larger estimation window and/or the higher regularization
parameter, the more regular displacement field is obtained. Indeed, we can observe that image details
visibly appear in the estimated field for λ = 0 and s = 1 (the smallest value of λ and s) ; for higher
value of λ while the value s remains the same, these details are smoothed as shown in Fig. 7(c),
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jitter-free image

jittered image

dejittered images

(a) dejittering with λ = 0 and s = 1

(b) dejittering with λ = 0 and s = 21

(c) dejittering with λ = 0 and s = 41

(d) dejittering with λ = 10 and s = 21

(e) dejittering with λ = 0.1 and s = 1

(f) dejittering with λ = 500 and s = 21

(g) dejittering with λ = 104 and s = 1

(h) dejittering with λ = 104 and s = 21

Figure 6 – Detail comparison of dejittering result with different parameters of re-
gularization λ and window size s on Barbara image (512 × 512) corrupted with white
Gaussian noise (σ = 0.04). First row : unjittered image. Second row : jittered image. Third row
to ninth row : dejittered images with different values for λ and s.15



(e) and (g). Whereas, the combination of larger s and λ = 0 provides piecewise-constant estimation
(also known as staircasing effect) which represents strong discontinuities and is far different from the
ground-truth displacement, even thought the dejittered image obtained with this combination (Fig.
5(g)) is very encouraging. This staircasing effect would be reduced by setting a strictly positive value
for λ to enforce the smoothness of the estimated displacement (see Fig. 7(d), (f), (h)). In contrast,
combining an extremely high value of λ with a small value of s over-smooths the estimation of the
displacement field as depicted in Fig. 7(g) (λ = 10000 and s = 1) ; while the same regularization
level coupled with large window size (for example, λ = 10000 and s = 21) produces very similar
results to the ground-truth as shown in Fig. 7(h). This behavior reflects how the performance of
our method depends on the regularization parameter λ and the size s of the estimation window. As
presented in Fig. 8 which shows the PSNR and SSIM curves depending on λ for several values of
s, these indicators of quality vary according to a common pattern : for a fixed s, when λ increases,
the scores increase, reach a maximum, then decrease and tend towards a limit value. From Fig. 8,
it is recommended to assign a high value to λ if the estimation window size s is large.

For large scale comparison, we provide the SSIM values for all the tested images with different
noise levels as well as several parameters of regularization and window size in Table 1. It turns out
that the performance of our method varies case by case and depends not only on the image itself
but also on the amount of noise. In general, the higher noise level the higher optimal values for
λ and s. To illustrate the performance obtained in case of strong noise, we display in Fig. 9 the
three best dejittering results on Mandrill image (512 × 512) corrupted by a white Gaussian noise
with standard deviation σ = 0.1. Even in this case which is combined by strong noise and complex
texture, by choosing appropriate values for λ and s, our method is able to restore fine details and
vertical structures as we can observe in the three last columns of Fig. 9 showing eye, hair and beard
regions of the Mandrill image.

5.2 Evaluation on real fluorescence scanner images

For real data, we evaluated the proposed algorithm on an fluorescence image of 8 tissue mi-
croarray cores (see Figs. 10 and 11). This image saved in 16-bit-TIFF format was acquired using
the an Innopsys’s fluorescence scanner named InnoScan 1100AL at the spatial resolution of 0.5 µm
per pixel with three excitation wavelengths : 488 nm, 532 nm and 635 nm which are compatible
with cyanine dye fluorophores such as Cy2, Cy3 and Cy5. Under these configurations, the size of
the acquired image used for the evaluation is 9544 × 4704 pixels. Such a large image in which the
absolute displacement between adjacent lines does not exceed 10 pixels requires huge computatio-
nal resources for dejittering task and is not convenient for display purpose. In order to reduce the
required computational resource and to produce a satisfactory comparison between images before
and after the correction of displacement error, we performed the dejittering only on non-background
regions (i.e. tissue core regions) and display several zooms in details.

We noticed that the vertical rolling effect on the jittered image (see two bottom rows of Figs.
10-11) in the red channel (488 nm) is visibly stronger than in green (532 nm) and blue (635 nm)
channels, thus the displacement is not the same on the three channels. Up to our knowledge, this
is mainly due to the imperfection of the mechanical system which results in a trajectory difference
of the three excitation beams. The dejittering was therefore performed separately on each channel
and the result on the three channels was then merged to produce 3-color image as the original. The
values for λ and s in this experience are fixed as λ = 500 and s = 11.

The dejittering result obtained with these parameters is reported in Figs. 12-13. We can notice
that the jitter has been significantly reduced on the three channels. We observe however some regions
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Table 1 – Dejittering result on simulated data with different noise levels, window sizes and re-
gularization parameters. The SSIM values are computed using the dejittered images and their
corresponding unjittered (eventually noisy) version.

λ = 0 λ = 0.1 λ = 1

s = 1 s = 5 s = 21 s = 41 s = 1 s = 5 s = 21 s = 41 s = 1 s = 5 s = 21 s = 41

S
S
IM

σ = 0 (Noise-free)
Barbara 0.9088 0.9419 0.9614 0.9533 0.9131 0.9456 0.9614 0.9533 0.9063 0.9518 0.9616 0.9534
Boat 0.9322 0.9624 0.9851 0.9771 0.9387 0.9683 0.9853 0.9771 0.9399 0.9812 0.9861 0.9772
Cameraman 0.9585 0.9846 0.9913 0.9851 0.9603 0.9888 0.9913 0.9851 0.9583 0.9930 0.9914 0.9852
Lena 0.9306 0.9576 0.9798 0.9742 0.9411 0.9621 0.9800 0.9742 0.9537 0.9750 0.9805 0.9743
Mandrill 0.7780 0.8295 0.9128 0.9302 0.8016 0.8471 0.9136 0.9303 0.8109 0.9024 0.9185 0.9313
Peppers 0.9018 0.9231 0.9533 0.9569 0.9161 0.9289 0.9537 0.9570 0.9187 0.9480 0.9554 0.9573
Phantom 0.9918 0.9914 0.9876 0.9868 0.9880 0.9908 0.9876 0.9868 0.9797 0.9888 0.9876 0.9867
Micro-tubule 0.9439 0.9827 0.9914 0.9911 0.9591 0.9845 0.9914 0.9911 0.9757 0.9888 0.9916 0.9912

σ = 0.02
Barbara 0.8236 0.8647 0.9236 0.9166 0.8365 0.8722 0.9246 0.9168 0.8265 0.8965 0.9282 0.9174
Boat 0.8308 0.8629 0.9134 0.9140 0.8443 0.8698 0.9141 0.9144 0.8318 0.8902 0.9178 0.9155
Cameraman 0.8308 0.8450 0.8827 0.8894 0.8416 0.8525 0.8844 0.8900 0.8312 0.8702 0.8917 0.8926
Lena 0.8230 0.8515 0.9118 0.9170 0.8409 0.8590 0.9129 0.9171 0.8460 0.8887 0.9166 0.9179
Mandrill 0.7486 0.7962 0.8962 0.9177 0.7733 0.8127 0.8977 0.9179 0.7734 0.8738 0.9034 0.9190
Peppers 0.8068 0.8275 0.8885 0.9047 0.8275 0.8346 0.8893 0.9049 0.8255 0.8662 0.8947 0.9058
Phantom 0.7647 0.7620 0.7710 0.7895 0.7791 0.7574 0.7716 0.7895 0.7597 0.7553 0.7749 0.7909
Micro-tubule 0.8415 0.8842 0.9225 0.9321 0.8609 0.8891 0.9226 0.9321 0.8801 0.9064 0.9249 0.9331

σ = 0.04
Barbara 0.7341 0.7815 0.8700 0.8729 0.7508 0.7911 0.8714 0.8731 0.7383 0.8229 0.8769 0.8745
Boat 0.7315 0.7604 0.8339 0.8423 0.7485 0.7666 0.8345 0.8423 0.7334 0.7928 0.8404 0.8441
Cameraman 0.7232 0.7309 0.7851 0.7938 0.7376 0.7343 0.7858 0.7942 0.7272 0.7583 0.7909 0.7967
Lena 0.7145 0.7407 0.8201 0.8452 0.7370 0.7456 0.8212 0.8455 0.7354 0.7790 0.8267 0.8466
Mandrill 0.7020 0.7416 0.8628 0.8944 0.7277 0.7558 0.8646 0.8947 0.7193 0.8224 0.8720 0.8961
Peppers 0.7046 0.7268 0.8051 0.8360 0.7291 0.7335 0.8067 0.8360 0.7261 0.7669 0.8140 0.8377
Phantom 0.5966 0.5991 0.6238 0.6485 0.6196 0.5973 0.6253 0.6495 0.6117 0.5997 0.6323 0.6522
Micro-tubule 0.7271 0.7644 0.8352 0.8595 0.7490 0.7715 0.8356 0.8594 0.7535 0.7976 0.8396 0.8607

σ = 0.1
Barbara 0.7341 0.7815 0.8700 0.8729 0.7508 0.7911 0.8714 0.8731 0.7383 0.8229 0.8769 0.8745
Boat 0.7315 0.7604 0.8339 0.8423 0.7485 0.7666 0.8345 0.8423 0.7334 0.7928 0.8404 0.8441
Cameraman 0.7232 0.7309 0.7851 0.7938 0.7376 0.7343 0.7858 0.7942 0.7272 0.7583 0.7909 0.7967
Lena 0.7145 0.7407 0.8201 0.8452 0.7370 0.7456 0.8212 0.8455 0.7354 0.7790 0.8267 0.8466
Mandrill 0.7020 0.7416 0.8628 0.8944 0.7277 0.7558 0.8646 0.8947 0.7193 0.8224 0.8720 0.8961
Peppers 0.7046 0.7268 0.8051 0.8360 0.7291 0.7335 0.8067 0.8360 0.7261 0.7669 0.8140 0.8377
Phantom 0.5966 0.5991 0.6238 0.6485 0.6196 0.5973 0.6253 0.6495 0.6117 0.5997 0.6323 0.6522
Micro-tubule 0.7271 0.7644 0.8352 0.8595 0.7490 0.7715 0.8356 0.8594 0.7535 0.7976 0.8396 0.8607

λ = 10 λ = 500 λ = 10000

s = 1 s = 5 s = 21 s = 41 s = 1 s = 5 s = 21 s = 41 s = 1 s = 5 s = 21 s = 41

S
S
IM

σ = 0 (Noise-free)
Barbara 0.8799 0.9597 0.9628 0.9542 0.8237 0.9549 0.9683 0.9577 0.7831 0.9313 0.9670 0.9663
Boat 0.9315 0.9916 0.9881 0.9778 0.9008 0.9857 0.9916 0.9806 0.8772 0.9665 0.9859 0.9847
Cameraman 0.9434 0.9953 0.9915 0.9854 0.9299 0.9846 0.9916 0.9867 0.9182 0.9740 0.9843 0.9872
Lena 0.9551 0.9864 0.9824 0.9748 0.9363 0.9825 0.9876 0.9773 0.9135 0.9669 0.9838 0.9812
Mandrill 0.8186 0.9536 0.9294 0.9351 0.8068 0.9678 0.9620 0.9547 0.7894 0.9416 0.9711 0.9771
Peppers 0.9114 0.9685 0.9607 0.9586 0.8874 0.9650 0.9720 0.9650 0.8696 0.9378 0.9696 0.9737
Phantom 0.9640 0.9851 0.9873 0.9868 0.9492 0.9734 0.9841 0.9863 0.9472 0.9619 0.9769 0.9851
Micro-tubule 0.9748 0.9934 0.9924 0.9915 0.9538 0.9914 0.9955 0.9938 0.9334 0.9781 0.9926 0.9937

σ = 0.02
Barbara 0.7967 0.9357 0.9372 0.9201 0.7232 0.9401 0.9606 0.9353 0.6881 0.8984 0.9588 0.9573
Boat 0.8152 0.9243 0.9275 0.9192 0.7771 0.9357 0.9650 0.9400 0.7561 0.8987 0.9714 0.9626
Cameraman 0.8123 0.9019 0.9092 0.8998 0.7967 0.9163 0.9574 0.9311 0.7850 0.8909 0.9652 0.9603
Lena 0.8472 0.9326 0.9284 0.9210 0.8197 0.9303 0.9669 0.9435 0.7935 0.8911 0.9642 0.9629
Mandrill 0.7761 0.9393 0.9176 0.9229 0.7607 0.9589 0.9578 0.9472 0.7434 0.9230 0.9685 0.9747
Peppers 0.8119 0.9212 0.9086 0.9100 0.7858 0.9253 0.9500 0.9325 0.7697 0.8798 0.9490 0.9548
Phantom 0.7382 0.7576 0.7860 0.7983 0.7231 0.7428 0.8041 0.8211 0.7200 0.7396 0.7936 0.8281
Micro-tubule 0.8754 0.9327 0.9335 0.9356 0.8403 0.9315 0.9594 0.9553 0.8135 0.8974 0.9455 0.9586

σ = 0.04
Barbara 0.7036 0.8852 0.8930 0.8803 0.6409 0.9058 0.9461 0.9137 0.6191 0.8525 0.9512 0.9495
Boat 0.7054 0.8483 0.8565 0.8511 0.6696 0.8524 0.9115 0.8842 0.6575 0.7894 0.9245 0.9278
Cameraman 0.7034 0.7949 0.8065 0.8040 0.6863 0.8163 0.8595 0.8452 0.6757 0.7754 0.8790 0.8656
Lena 0.7198 0.8463 0.8464 0.8534 0.6981 0.8442 0.9069 0.8930 0.6793 0.7819 0.9134 0.9248
Mandrill 0.7072 0.9121 0.8912 0.9011 0.6866 0.9416 0.9505 0.9302 0.6735 0.8907 0.9641 0.9647
Peppers 0.7034 0.8374 0.8400 0.8450 0.6840 0.8412 0.9240 0.8932 0.6733 0.7718 0.9218 0.9390
Phantom 0.5875 0.6074 0.6525 0.6612 0.5706 0.6024 0.7137 0.6939 0.5674 0.5957 0.6734 0.7226
Micro-tubule 0.7382 0.8390 0.8527 0.8658 0.7004 0.8297 0.8907 0.8968 0.6820 0.7744 0.8843 0.9084

σ = 0.1
Barbara 0.6021 0.7752 0.8108 0.8177 0.5679 0.7888 0.8993 0.8703 0.5603 0.7038 0.9083 0.9241
Boat 0.6004 0.7289 0.7572 0.7680 0.5827 0.7378 0.8479 0.8176 0.5814 0.6606 0.8599 0.8729
Cameraman 0.6009 0.6602 0.7040 0.7167 0.5827 0.6666 0.7841 0.7722 0.5763 0.6207 0.8063 0.8139
Lena 0.6010 0.7265 0.7243 0.7472 0.5806 0.7177 0.8188 0.8005 0.5746 0.6606 0.8136 0.8250
Mandrill 0.6054 0.7924 0.7899 0.8085 0.5899 0.8158 0.8994 0.8676 0.5873 0.7456 0.9549 0.9377
Peppers 0.5799 0.6996 0.7186 0.7363 0.5662 0.6881 0.8267 0.8003 0.5610 0.6332 0.8224 0.8626
Phantom 0.4783 0.4974 0.5336 0.5498 0.4629 0.4919 0.5831 0.5961 0.4604 0.4813 0.5617 0.6138
Micro-tubule 0.5807 0.6954 0.7028 0.7243 0.5679 0.6609 0.7597 0.7715 0.5653 0.6095 0.7193 0.7721
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where the jitter was not well corrected specially in transitive zones between bright and dark features,
but in overall the visual effect is sharply improved. Furthermore, in spite of the separate processing
on each channel, the merged image of these dejittered versions does not suffer from decorrelation
artifact, thus no registration is required to realign the dejittering result.

An example of dejiterring result on image acquired in full-width-scanning is also illustrated in
Fig. 3 showing a tool slide with checkerboard pattern used for calibrating scanners. The width of
this image which is scanned at 1.0 µm per pixel exceeds 20 thousand pixels corresponding to more
than 20 millimeters in real scale. Since the distance between two vertical lines of the images can
reach several hundreds of pixels, large estimation window (high value of s) is considered. As shown
in the two bottom rows of Fig. 3, we noticed that the result obtained without regularization is very
similar to those with regularization in terms of visual quality. However, the computing time of the
former is much faster than the latter (few minutes compared with more than one hour).

In general, the computational cost depends on the size of the input images as well as the para-
meter setting. The computing time is in average 3.8± 0.7 seconds in the case of dejittering without
regularization and 26.9± 9.8 seconds with regularization on images of size 512× 512 pixels. On real
large images whose the width can reach several thousands of pixels as shown in this section, the
computing time varies from less than 5 minutes to more than 10 minutes for dejittering without
regularization and it is about more than one hour with regularization. The experiments were per-
formed on a Macbook Pro equipped with 2.7 Ghz Intel Core i7, 16 Gb of RAM and the Mac OS
X v. 10.12.4 operating system. The algorithm was implemented in C/C++ and we exploited the
intrinsic parallelism of the CPU to solve large-scale problems.

6 Conclusion

In this paper, we have proposed a variational method to remove a specific jitter arising on large
fluorescence scanner images. We reformulate the dejittering problem as an estimation problem of the
underlying displacement by minimizing an energy functional which combines convex regularization
and non-convex non-local data fidelity term. To solve the non-convex minimization problem, the
half-quadratic splitting technique is used to decompose the energy functional into convex and and
non-convex parts in such a way that the original minimization problem can be done by alternating
two optimization steps. One of which uses the projected gradient algorithm for the convex part and
the other uses an exhaustive search for the non-convex parts. This approach allows to approximate
accurately the optimal solution of the original problem while avoiding the linearization of the data
term. In numerous experiments, we show that our method is able not only to remove efficiently the
rolling effect due to this jitter even in the case of huge images and large, non-integer displacements.
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(a) ground truth (b) λ = 0, s = 1
(SSIM = 0.9088)

(c) λ = 0, s = 21
(SSIM = 0.9614)

(d) λ = 0, s = 41
(SSIM = 0.9533)

(e) λ = 10, s = 21
(SSIM = 0.9628)

(f) λ = 0.1, s = 1
(SSIM = 0.9131)

(g) λ = 500, s = 21
(SSIM = 0.9683)

(h) λ = 104, s = 1
(SSIM = 0.7831)

(i) λ = 104, s = 21
(SSIM = 0.9670)

Figure 7 – Comparison of estimated displacement field with different parameters of
regularization λ and window size s on Barbara image (512 × 512) corrupted by white
Gaussian noise σ = 0.04. Top left : Ground-truth. (a)-(h) : Displacement estimated with different
values for λ and s.
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Figure 8 – Dejittering performance (PSNR and SSIM values) depending on λ for
several values of s. The scores are computed on Barbara image (512×512) corrupted by Gaussian
white noise (σ = 0.04) and are plotted in logarithmic scale for comparison. We display the curves
corresponding to three categories of window size : small window (blue curves), medium window (red
curves) and large window (black curves). The cyan and the green curves which correspond to s = 11
and s = 31 respectively are transitional between these groups.
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jitter-free image

jittered image

dejittered images

(a) dejittering with λ = 104 and s = 21 (PSNR = 27.57)

(b) dejittering with λ = 104 and s = 41 (PSNR = 26.35)

(c) dejittering with λ = 103 and s = 21 (PSNR = 25.31)

Figure 9 – Dejittering result on very noisy Mandrill image (512× 512) (corrupted with
white Gaussian noise σ = 0.1). The first column contains full size images, all remaining columns
display some regions of interest to compare in details. First row : jitter-free image. Second row :
jittered image. Third row to fifth row : dejittering with different values for λ and s.23



Figure 10 – Jittered image full size image (9544 × 4704 pixels) of 8 tissue microarray
spots acquired in 3 colors with resolution of 0.5 µm/ pixel.

Figure 11 – Jittered image of 8 tissue microarray spots acquired in 3 colors with reso-
lution of 0.5 µm/ pixel. Zoom-in view of two selected areas (blue box and yellow box respectively)
in Fig. 10 ; from left to right : 3 colors at the same time, red (488 nm), green (532 nm) and blue
(635 nm) channels displayed separately.
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jittered image dejittered image difference image

Figure 12 – Dejittering result on TMA image in Fig. 10 (area inside of the blue box).
From top to bottom : 3-color image, red (488 nm), green (532 nm) and blue (635 nm) channel.
From left to right : jittered image, dejittered image and difference between them.
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jittered image dejittered image difference image

Figure 13 – Dejittering result on TMA image in Fig. 10 (area inside of the yellow box).
From top to bottom : 3-color image, red (488 nm), green (532 nm) and blue (635 nm) channel.
From left to right : jittered image, dejittered image and difference between them.
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