archives-ouvertes

Photo2ClipArt: Image Abstraction and Vectorization
Using Layered Linear Gradients

Jean-Dominique Favreau, Florent Lafarge, Adrien Bousseau

» To cite this version:

Jean-Dominique Favreau, Florent Lafarge, Adrien Bousseau.
and Vectorization Using Layered Linear Gradients. ACM Transactions on Graphics, Association for

Computing Machinery, 2017, 36 (6). hal-01581981

HAL Id: hal-01581981
https://hal.inria.fr /hal-01581981

Submitted on 5 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Photo2ClipArt: Image Abstraction

https://hal.inria.fr/hal-01581981
https://hal.archives-ouvertes.fr

Photo2ClipArt: Image Abstraction and Vectorization

Using Layered Linear Gradients

JEAN-DOMINIQUE FAVREAU, FLORENT LAFARGE, ADRIEN BOUSSEAU, Inria - Université Cote d’Azur

(a) Input image and segmentation

(b) Multi-layer abstraction and vectorization

(c) Editing

Fig. 1. Given a segmented bitmap image as input (a), our method generates an abstract, layered vector clipart, where each layer is filled with an opaque
or semi-transparent linear color gradient (b). By expressing the image as a stack of linear color gradients, our vector graphics reproduce the visual style of
traditional cliparts and are easy to edit (c). In this example, we turned the lady bug blue (top) and replaced its dots by little stars (bottom). The black dots in
the segmentation indicate opaque regions selected by the user to initialize or constrain our algorithm.

We present a method to create vector cliparts from photographs. Our ap-
proach aims at reproducing two key properties of cliparts: they should be
easily editable, and they should represent image content in a clean, simpli-
fied way. We observe that vector artists satisfy both of these properties by
modeling cliparts with linear color gradients, which have a small number
of parameters and approximate well smooth color variations. In addition,
skilled artists produce intricate yet editable artworks by stacking multiple
gradients using opaque and semi-transparent layers. Motivated by these
observations, our goal is to decompose a bitmap photograph into a stack of
layers, each layer containing a vector path filled with a linear color gradi-
ent. We cast this problem as an optimization that jointly assigns each pixel
to one or more layer and finds the gradient parameters of each layer that
best reproduce the input. Since a trivial solution would consist in assigning
each pixel to a different, opaque layer, we complement our objective with a
simplicity term that favors decompositions made of few, semi-transparent
layers. However, this formulation results in a complex combinatorial prob-
lem combining discrete unknowns (the pixel assignments) and continuous
unknowns (the layer parameters). We propose a Monte Carlo Tree Search
algorithm that efficiently explores this solution space by leveraging layering
cues at image junctions. We demonstrate the effectiveness of our method by
reverse-engineering existing cliparts and by creating original cliparts from
studio photographs.

This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive version was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3130800.3130888.

CCS Concepts: » Computing methodologies — Non-photorealistic render-
ing;

Additional Key Words and Phrases: image abstraction, image stylization,
vector graphics, vectorization, layers, transparency, color gradient

2017. 0730-0301/2017/11-ART180 $15.00
https://doi.org/10.1145/3130800.3130888

ACM Reference format:

Jean-Dominique Favreau, Florent Lafarge, Adrien Bousseau. 2017. Photo2ClipArt:

Image Abstraction and Vectorization Using Layered Linear Gradients. ACM
Trans. Graph. 36, 6, Article 180 (November 2017), 11 pages.
https://doi.org/10.1145/3130800.3130888

1 INTRODUCTION

Vector cliparts are widely used in graphic design to represent images
in a compact and editable manner. Cliparts are also greatly appre-
ciated for the abstract, stylized look produced by their constituent
parametric paths and color fills. Our goal in this paper is to help
novice users create such stylized vector artworks from photographs.

Our approach is inspired by the ob-
servation that skilled artists produce
rich yet abstract cliparts by stacking, or
layering, few parametric vector paths.
For example, the inset shows the cli-
part of a red soda can where the tex-
ture, shadows and highlights are all
represented as semi-transparent layers filled with constant colors or
color gradients!. Changing the color of the bottom layer is sufficient
to obtain a convincing blue can. Following a similar strategy, our
approach seeks to decompose the input image into a small number
of semi-transparent layers, each layer filled with a constant color or
a two-color linear gradient. By favoring a simple interpretation of
the input, our method jointly abstracts and vectorizes the image to
produce a stylized, editable clipart.

We formulate our approach as a joint labeling and fitting problem,
where we want to assign each pixel to one or more layers such

— =

'We rasterized all vector arts shown in the paper to ensure that transparency is well
displayed in different pdf viewers. Please refer to supplemental materials for the original
vector files.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 180. Publication date: November 2017.

https://doi.org/10.1145/3130800.3130888
https://doi.org/10.1145/3130800.3130888

180:2 « Jean-Dominique Favreau, Florent Lafarge, Adrien Bousseau

that approximating the resulting layers with linear color gradients
yields a good reconstruction of the input image. We balance this
reconstruction error with a simplicity term that penalizes the use of
too many layers. However, the resulting optimization involves both
discrete unknowns (the pixel assignments) and continuous ones (the
color gradient parameters). Finding the optimal solution of such a
problem would require evaluating all possible pixel assignments,
which is impractical. Our main technical contribution is a stochastic
algorithm that explores this solution space efficiently.

Our algorithm builds on several key ideas to drastically decrease
the number of configurations it needs to evaluate. Our first idea is
to exploit image junctions, which provide strong local layering and
transparency cues [Sayim and Cavanagh 2011]. In particular, we
assume that a X-junction occurs when a semi-transparent layer runs
across two other layers, which gives us a small number of possible
configurations. Our second idea is to use the local decompositions
obtained from X-junctions to initialize a region-growing approach,
which progressively assigns new pixels to their best-fitting existing
layers and only create a new layer when no good assignment is
found. If no X-junction exists, we ask the user to indicate an opaque
region in the image to initialize the region-growing process. How-
ever, growing the layers in a greedy manner would quickly lead us
to poor local minima of our energy formulation. Our third idea is
to explore multiple assignments concurrently by building a tree of
candidate configurations. Each node of the tree corresponds to an
intermediate decomposition where only a subset of the image pixels
have been explored, while the leafs of the tree correspond to all the
possible decompositions of the entire image. We present a Monte
Carlo Tree Search algorithm [Browne et al. 2012] guided by image
junctions to quickly identify the low-energy branches of this tree.
We further accelerate the search by pre-segmenting the image into
smooth color regions, turning our approach into a region labeling
rather than pixel labeling problem.

While our algorithm can produce plausible vector cliparts auto-
matically, we allow users to refine the result by indicating opaque
regions and regions that should contain the layers of another region.
We demonstrate our method by reverse-engineering bitmap cliparts
and by creating a range of new cliparts from photographs.

2 RELATED WORK

Image vectorization. Most vectorization algorithms represent color
images with a single layer. Commercial tools such as Adobe Illus-
trator’s Image Trace [Adobe 2013] only support constant color fills
and as such require users to balance over-segmentation with quan-
tization artifacts. Lecot and Lévy [2006] were among the first to
attempt vectorizing images with parametric gradients (linear and
quadratic). Follow-up work introduced more complex gradient rep-
resentations, such as gradient meshes [Sun et al. 2007], diffusion
curves [Orzan et al. 2008], subdivision surfaces [Liao et al. 2012].
While these methods are able of vectorize highly realistic images,
the complexity of the resulting single-layered representations hin-
ders subsequent editing. Richardt et al. [2014] tackled this challenge
by proposing an interactive method to convert bitmaps into opaque
and semi-transparent linear vector layers. However, their method

ACM Transactions on Graphics, Vol. 36, No. 6, Article 180. Publication date: November 2017.

requires extensive user intervention to iteratively select the semi-
transparent regions in a front-to-back order. In contrast, our algo-
rithm automatically identifies and orders opaque and transparent
regions by favoring a simple interpretation of the image. Similarly
to Richardt et al., we focus on linear gradients as they are simpler
to extract and edit than gradient meshes and diffusion curves, while
reproducing the distinctive abstract look of vector cliparts.

Our objective of favoring a simple vectorization is similar in spirit
to the work by Favreau et al. [2016] who convert line drawings into
a small yet accurate set of Bezier curves, and to the work by Jeschke
etal. [2011] and Zhao et al. [2017] who optimize for diffusion curves
with simple color and shape respectively. Our originality is to target
layered color images, which greatly increases the dimensionality
of the problem and requires us to design a custom exploration
mechanism of the solution space.

Image abstraction. Researchers in non-photorealistic rendering
have proposed a variety of image filters to abstract and stylize pho-
tographs. Popular methods include the use of scale-space filtering
[DeCarlo and Santella 2002] and edge-aware filtering [Winnemoller
et al. 2006] to remove low-contrast details. However, such image
abstraction filters are usually applied independently of image vector-
ization. In contrast, we obtain abstract, stylized cliparts by express-
ing the image with a small number of parametric color gradients.
A similar idea of restricting the image formation model to achieve
abstraction has been explored by Gerstner et al. [2012], who produce
pixel art by converting a photograph into a low-resolution image
with a reduced color palette.

Image decomposition. While our goal is to produce vector graph-
ics, our work is also related to layered decomposition of bitmaps. In
particular, Tan and colleagues [2015; 2016] decompose artworks into
semi-transparent layers to perform a range of editing operations.
Their first method takes as input a time lapse video of the artwork
being painted [Tan et al. 2015], and as such is not applicable in our
context. In a follow-up work [Tan et al. 2016], they observe that
the dominant colors of an image correspond to the vertices of the
convex hull of the image in RGB space. This analysis allows them
to decompose the image into a stack of smooth semi-transparent
layers, each layer corresponding to one of the dominant colors with
a per-pixel transparency. Similarly, Aksoy et al. [2017] propose a
soft segmentation algorithm that decomposes an image into layers
with per-pixel transparency, although they associate each layer with
an RGB normal distribution rather than a constant color. We adopt
a very different approach by representing our layers with linear
color gradients amenable to vectorization. Our more constrained
representation allows us to express each layer with a handful of
parameters and a binary mask rather than with one continuous un-
known per pixel. Our energy formulation also allows us to explicitly
minimize the complexity of the output and to automatically find
the layer ordering.

Our problem is also related to other ill-posed image decompo-
sitions such as image matting [Smith and Blinn 1996], reflection
separation [Levin et al. 2004] and intrinsic images [Bell et al. 2014].
However, a major difference between these methods and our work
is that they aim at separating only two rather than multiple lay-
ers, being foreground and background or reflectance and shading.

Nevertheless, several such algorithms make the decomposition well-
posed by penalizing complexity via a prior on sparse image gradients
[Levin et al. 2004] and few refectances [Bell et al. 2014]. Similarly,
we favor a small number of layers, each represented by a constant
color or a linear gradient.

Depth ordering and transparency from junctions. Perceptual stud-
ies emphasize the role of image junctions in the perception of occlu-
sion and transparency [Metelli 1974; Sayim and Cavanagh 2011]. In
particular, T-junctions provide strong cues of local ordering between
opaque layers [Jia et al. 2012; Liu et al. 2013] while luminance and
chrominance patterns at X-junctions have been used for extracting
transparent layers from images [D’Zmura et al. 1997; Singh and
Huang 2003]. We follow a similar approach to identify transparent
and opaque layers at X-junctions. However, while prior work derives
heuristic rules to reason about layer ordering and transmittance, we
use an energy formulation to solve for the layer configuration that
best reconstructs the input image. Our energy also favors simple
interpretations, which allows us to deal with configurations where
no X-junctions occur, such as when a transparent region is entirely
surrounded by another region.

3 PROBLEM FORMULATION

Our goal is to estimate a multilayer vectorial representation of an
input image I, where each layer is composed of

e A supporting domain D covering a subset of pixels from
the input image,

e A color gradient function C(p) that associates an RGB color
to each pixel p € D,

e An opacity gradient function A(p) that associates an opacity
to each pixel p € D. We set A(p) = 0 when p ¢ Dj,.

We synthesize the output image I, from a n-layer representation by
recursively a-blending the ordered layers

In(p) = An(P)Cn(p) + (1 = An(P)In-1(p) 1

where Cp, and A, are the color gradient function and opacity gradi-
ent function of layer n. Figure 2 illustrates this representation.

(a) Input

(b) Layers

(c) Output

Fig. 2. Multilayer representation. Our goal is to represent the input image (a)
as a stack of opaque and semi-transparent layers (b) such that a-blending
the layers using Eq. 1 reproduces well the input (c).

Photo2ClipArt: Image Abstraction and Vectorization
Using Layered Linear Gradients « 180:3

Linear gradients. While the above formulation is general, in this
work we restrict the color and opacity gradients to linear forms with
the same orientation, which corresponds to the 2-stop linear gradi-
ent of the SVG standard. The color and opacity gradients functions
are expressed as C(p) = co + c10'p and A(p) = ag + a;0*p where
co and c1 (resp. ap and ap) are color vectors (resp. opacity scalars)
and O is the orientation vector. While linear gradients are less ex-
pressive than more complex primitives, such as gradient meshes
[Sun et al. 2007] and diffusion curves [Orzan et al. 2008], they are
easier to manipulate thanks to their small number of parameters
and are supported by most vector graphics software. In addition,
many vector artists employ linear gradients as a means to simplify
and stylize the image. Restricting our algorithm to linear gradients
allows us to reproduce this characteristic style of vector cliparts.

Pre-segmentation. Recovering the color, opacity and supporting
domain of each layer at each pixel is a formidable task. We re-
duce the complexity of this task by pre-segmenting the image into
smooth regions and by imposing that all pixels of a region share
the same layers. While our algorithm produces convincing results
from automatic segmentation, we achieved our best results using
user-assisted segmentation as detailed in Section 5. In addition, we
apply a 3-pixel wide erosion on each region to exclude border pixels
since those often contain a mixture of colors from neighboring re-
gions. We process these pixels in a separate step once the multi-layer
representation is computed, as detailed in Section 4.6.

3.1 Energy formulation

We denote by x = (D1, C1, A1, ..., D, Cn, Ap), an output vectorial
representation composed of n layers. We define three criteria to
measure the quality of a configuration x:

e Faithfulness to input data - the reconstructed image I, has
to be similar to the input image I,

o Simplicity of the decomposition - the number of layers
should be minimized to yield a compact and editable repre-
sentation,

o Simplicity of opacity functions - semi-transparent layers
should be favored over opaque ones to reduce occlusion.

Based on these criteria, we formulate an energy U of the form
Ux)=(1- A)Uﬁdelity(x) + AUsimplicity(X))
where Ufgeiry measures the faithfulness to input data and Ugjpiicity
accounts for the overall simplicity of the reconstruction. The pa-
rameter A € [0, 1] weights the two terms.

We define Ufgejiry as the RGB error under Ly norm between the
input image I and the reconstructed image I:

Upaeiy) = 110 3. We) = Tl 3
pel

We express Usimplicity as

n
1
Usimplicity(x) = N Z wi (4)
I=1

where N is the maximal number of layers and w; penalizes opacity
functions according to their simplicity. We set w; = 1 for semi-
transparent layers and w; = f > 1 for opaque layers. Figure 2

ACM Transactions on Graphics, Vol. 36, No. 6, Article 180. Publication date: November 2017.

180:4

Jean-Dominique Favreau, Florent Lafarge, Adrien Bousseau

O

L A (LY

1.1

1
New opaque layer

Input image U =0.14

U=1.42

Blue layer extended

Blue layer extended
New transparent layer, A = 1

New opaque layer
U =0.18

U =1.48

1.1.1 1.1.2 1.1.3 &> 1.3.1
Blue layer extended Blue layer extended New opaque layer New opaque layer
U=2.19 New transparent layer, A = 1 U=1.48 U=0.22

U =0.18
a

Segmentation

1.3.3

1.3.2
Blue layer extended

New transparent layer, A = 1
U =0.22

U =0.21

Beige layer extended
New transparent layer, A = 0.3

. D
1.3.4 1.3.5

Beige layer extended
U=0.34

Blue layer extended
U =0.93

Fig. 3. Overview of our exploration mechanism on a simple example. Given an input image and its region segmentation, we cast the exploration of the solution
space as a tree search. Each node of the tree corresponds to an intermediate solution where only a subset of the regions has been decomposed. Each branch of
the tree expands an intermediate solution by adding a region to the decomposition. The new region can be assigned to one or several existing layers, as well as
to a new layer. Leafs of the tree correspond to complete decompositions. We use Monte Carlo Tree Search to quickly reach low-energy leaves. In this example,
the best solution is reached at leaf 1.3.3, where the moon is represented as an opaque beige layer with a semi-transparent brown layer on top. Note that in
some configurations, such as node 1.2, a region can be assigned to a new semi-transparent layer which receives an opacity value of 1 after optimization. We

convert such layers to opaque when this situation occurs.

illustrates the intuition behind this strategy: the highlight on the
cherry could be either interpreted as an opaque pink region sur-
rounded by a red region, or as a semi-transparent white region
over a red region. Setting f > 1 favors the latter interpretation,
which facilitates subsequent editing such as changing the color of
the cherry. We used f = 1.2 in all our examples. In addition, we
convert a semi-transparent layer to opaque if its estimated opacity
is above 0.999.

4 EXPLORATION MECHANISM

Searching for the configuration that minimizes energy U is a com-
plex optimization problem which combines discrete variables (the
number of layers and their supporting domains) and continuous
variables (the parameters of the linear gradient functions). While
the number of layers can be infinite, we can reasonably assume that
there is at most as many layers as input regions. Yet, since a region
can appear in at most all N layers, finding the global minimum
would require estimating the continuous variables for 2N ’ layer
assignments, which is impractical despite this upper bound.

We address this combinatorial challenge by devising a scalable
exploration strategy of the solution space, which we illustrate on
a simple example in Figure 3. Our exploration starts from initial
decompositions of a few regions, which we obtain by exploiting

ACM Transactions on Graphics, Vol. 36, No. 6, Article 180. Publication date: November 2017.

transparency assumptions on X-junctions, or by asking the user to
indicate one or more opaque regions. We then expand these decom-
positions to the regions adjacent to the ones already decomposed.
Each new region can either be assigned to one or more existing lay-
ers, or to a new layer, for which the color gradient is estimated. We
thus obtain a set of possible assignments of the new regions, each
forming a decomposition that can be further expanded to adjacent
regions. We can represent the ensemble of decompositions gener-
ated by this approach as a tree, where each node corresponds to an
intermediate decomposition, which branches to multiple decompo-
sitions after an expansion step?. The leafs of this tree correspond
to all the 2V’ possible decompositions, and our goal is to find a
low-energy leaf without exploring the entire tree.

We propose a stochastic algorithm for fast exploration of the
solution space, which can be seen as a form of Monte Carlo Tree
Search (MCTS) [Browne et al. 2012]. The main idea of this method
is to build the solution tree incrementally and asymmetrically using
a balance between exploration of the space and exploitation of the
already explored configurations. Figure 4 illustrates the four suc-
cessive operations performed at each iteration of an MCTS method:

%In theory, the tree of solutions is actually a directed acyclic graph because multiple
paths can yield the same configuration. However, in practice such cases are very rare
because our acceleration heuristics trim many branches of that graph.

(i) selection of a node according to a tree policy, (ii) expansion of
the tree by adding child nodes, (iii) evaluation of the quality of the
added child nodes (also called reward), and (iv) update of the tree
policy by back-propagation to the root. Algorithm 1 summarizes
this process.

Our main technical contribution resides in defining efficient ex-
pansion and reward operations that exploit characteristics of our
problem. We denote by x /; an intermediate decomposition restricted
to the regions visited between the root and node t. We measure the
energy U(x/;) by restricting I to the visited regions (Eq. 3), and by
setting the maximal number of layers N to the number of visited
regions (Eq. 4).

_/

Expansion and reward Back-propagation

Node selection

Fig. 4. Exploration mechanism by Monte Carlo Tree Search (after [Browne
et al. 2012]). A node is first selected using a tree policy (section 4.1). New
nodes are then added (section 4.2) and their corresponding energy are
computed (section 4.3). The energy of the new nodes is back-propagated to
their parent node to discourage exploring bad configurations (section 4.4).

Algorithm 1 Exploration mechanism

Initialize child nodes of the root (sec 4.5)

repeat
Node selection: select a leaf node using tree policy (sec 4.1)
Expansion: generate child nodes (sec 4.2)
Reward: compute energy of child nodes (sec 4.3)
Back-propagation: update tree policy (sec 4.4)

until stopping criterion (sec 4.5)

4.1 Node selection

The tree policy seeks to favor the exploration of high-quality con-
figurations. To do so, each child node t; of a node ¢ is associated to
a parent-to-child probability that is proportional to its energy and
the energy of its siblings
Prost, = exp(U(X/t,-))]l{tiEt*})
> exp(-Ulxyy)

tjet*

where t* is the set of child nodes of ¢ and 1 is the indicator function.
The algorithm selects a terminal node for expansion according to
the product of parent-to-child probabilities between the root and
the node, i.e. the overall probability of reaching this configuration.

We further accelerate the search by restricting t* to the k children
nodes with the lowest energies. The parameter k offers a balance
between spreed and accuracy of the algorithm. We set k to 2 in all
our experiments.

Photo2ClipArt: Image Abstraction and Vectorization
Using Layered Linear Gradients « 180:5

4.2 Tree expansion

Once a candidate terminal node is selected, the tree expansion step
generates its child nodes by adding one or more regions to the ones
already visited. We first present a naive generator that simply adds
one region with all its possible layer assignments. We then detail a
more efficient generator that exploits a transparency assumption on
X-junctions to add multiple regions at once. We detect X-junctions
as cliques of order 4 in the adjacency graph of the regions.

Single-region expansion. This generator inserts an unvisited re-
gion to the decomposition associated with the selected node. This
region is chosen randomly among the regions adjacent to the ones
already present in the decomposition. We assume that the new
region can be part of any layer of its adjacent regions in the de-
composition, as well as part of a new layer. Note that we do not
consider layers of non-adjacent regions, which drastically reduces
the number of child nodes while ensuring that each layer contains
a single connected component by construction. Given the M layers
from the adjacent regions, a naive enumeration gives 2M*! child
nodes. However, since opaque layers occlude all layers below them,
we can discard all but one of the configurations that have the same
visible layers, which further reduces the number of child nodes.

X-junction expansion. This generator only applies on the nodes
for which the decomposition contains part of an X-junction, and ex-
pands the decomposition to all four regions forming the X-junction.
We build on the assumption that an X-junction results from the
boundary of a semi-transparent layer crossing the boundary of two
other layers [Sayim and Cavanagh 2011]. This assumption yields a
limited set of possible interpretations, which depends on how many
of the four regions are already present in the decomposition of the
selected nodes:

o None of the regions of the junction have been decomposed.
This configuration occurs when we initialize the algorithm,
i.e. when the X-junction is used to expand the root of the
tree. In the absence of other information, we make the addi-
tional assumption that the junction is formed by one semi-
transparent layer over two opaque layers, which yields 4
possible configurations illustrated in Figure 5.

e One or more regions of the junction are already in the de-
composition. We can deduce that the boundary between an
unknown region and a known one is either caused by the
end of a known layer or the beginning of a new one. Denot-
ing M the number of layers in an adjacent known region,
we obtain M + 1 configurations if the unknown region is in
the 4-neighborhood of the known one (i.e. the two regions
are separated by one boundary), and M + 2 configurations if
the unknown region is in the 8-neighborhood of the known
one (i.e. the two regions are separated by two boundaries).

We call the X-junction generator in priority since it allows faster
expansion of the tree than the single-region generator.

4.3 Reward

Given the layer assignment of a child node, we can estimate its en-
ergy along with the color and opacity gradient function of each layer
by minimizing Equation 3. However, this optimization is highly

ACM Transactions on Graphics, Vol. 36, No. 6, Article 180. Publication date: November 2017.

180:6 + Jean-Dominique Favreau, Florent Lafarge, Adrien Bousseau

— 7 N T

7 77

Fig. 5. We assume that X-junctions are formed by a semi-transparent layer
crossing two other layers. When none of the layers are known, we assume
that the two bottom layers are opaque, yielding 4 possible configurations.

non-linear, which requires the use of an iterative algorithm like
Newton-Raphson with a good initialization of the solution. We pro-
pose three strategies to avoid computing such a costly optimization
for most visited nodes of the tree.

Layer re-use. Our first strategy to speed up the evaluation of
Equation 3 is to re-use the color and opacity gradients of a parent
node when present in a child node. In other words, we extend the
known gradient functions over the new regions without re-fitting
them. While this approach is approximate, it yields a significant gain
in performance with a marginal loss in visual quality, as evaluated
in Section 5.

Exploitation of X-junctions. As detailed above, expanding the de-
composition at an X-junction only yields configurations with at
most one new semi-transparent layer. In addition, our assumption
on the nature of X-junctions tells us that this semi-transparent layer
covers the boundary between two regions with known layers. Our
strategy is to deduce from this setup a configuration where the
semi-transparent layer is observed over two known colors, which
makes its estimation well-posed [Richardt et al. 2014; Smith and
Blinn 1996].

Denoting I the unknown layer, each of the two regions on which
it appears gives us equations of the form I;(p) = A;(p)C;(p) + (1 —
A;(p))I;_1(p) where I; is the input image from which we have sub-
stracted all semi-transparent layers above [and I;_; is the image
formed by all layers below I, which are known for the two regions
considered. The challenge is now to express these equations over
the same pixels, so that we can remove the term A;(p)C;(p) by
substitution and leave A;(p) as the only unknown.

Figure 6 illustrates our algorithm on a toy example, where the
new layer covers two regions [ll and Ilz, which share layers with
their known neighboring regions I 11—1 and Ilz_l respectively. We
first extend each region over all three other regions so that all
regions share the same spatial domain. Regions that are already
in the decomposition are easy to extend since all their layers are
known and have a parametric form. However, regions covered by
the new layer are still in a bitmap form. Our solution consists in
approximating each such region with a polynomial function using
a least square fit on all pixels. Since each layer is represented by
a linear gradient, a new region can at best be represented by a
polynomial of degree M + 1, where M is the number of layers shared
with the adjacent regions. We then extend the resulting parametric

ACM Transactions on Graphics, Vol. 36, No. 6, Article 180. Publication date: November 2017.

i ~ILl | X
|| <

Input Extrapolated polynomial fit ~Extrapolated known layers

71 72
Il—l - Il

Fig. 6. Derivation of the opacity of a new layer at an X-junction. Let us
assume that the new layer is shared by the two regions Il1 and Ilz‘ Further-
more, region Il1 shares all of its other layers with region 11171, while region
Il2 shares all of its other layers with region 112—1' We exploit this redundancy
to deduce the opacity of layer I. We first extend each region over the other
regions to know their values at each pixel (top). Regions Ill_1 and IIZ_1 are
trivially extended since their layers are known and have a linear form. We
extend regions Il1 and Il2 by fitting a polynomial on their pixel colors. We
can then compute a per-pixel opacity A by simple arithmetic (bottom).

functions over the other regions to know their values over all pixels.
We now have the necessary ingredients to form two equations at
each pixel

Il (p) A(p)Ci(p) + (1= AP, (p) (6)
Z(p) A(p)Ci(p) + (1= Ap) I}, (p). (7)

where I Jl denotes the extended version of region I]’ Subtracting

the two equations gives us an expression where A;(p) is the only
unknown

i) - Tie) = (1= 4p) (T, () - I, (). ®)
Once A;(p) is known the minimization of Equation 3 becomes qua-
dratic in C;(p) and has a unique solution.

Note that since each region of the image is visited multiple times
during the tree search, we only compute its polynomial represen-
tation at a given degree the first time it is needed, and keep it in
memory for later use.

Sub-sampling. Our last strategy to reduce computational burden
is to use a sparse uniform random sampling of the input image
pixels when fitting the color and opacity gradients of the layers.
However, using very few samples raises the risk of making the
method very sensitive to image noise. Fortunately, we can leverage
the polynomial approximation of the image introduced above as a
means to remove high frequency content that cannot be captured
by the layers. While each polynomial needs to be computed from all
pixels of its region, this is a one time computation which is quickly
amortized over all the nodes where the layers of a given region need
to be estimated.

To sum-up, we first generate for each node a number of config-
urations, which form its child nodes. When a child node does not
contain any new layer, computing its energy U by Eq. 2 is trivial

Photo2ClipArt: Image Abstraction and Vectorization
Using Layered Linear Gradients « 180:7

| e

Fig. 7. Layered cliparts produced with our method from three studio photographs and a bitmap diagram. We used manual segmentation to properly delineate
small and blurry regions (letters on the stop button, highlights on the tomato) and to ignore spurious details (arrows on the chart).

since the parameters of all layers are known. When new layers are
involved, the parameters of their color and opacity gradient func-
tions must be estimated first. If the new layer is opaque and below
known semi-transparent layers, or if the new layer is part of an
X-junction, we can estimate the gradient functions as a quadratic
minimization problem that has a unique solution. Otherwise, we run
the Newton-Raphson algorithm. Both the quadratic minimization
and the Newton-Raphson algorithm are computed with a sparse
sampling of the input image.

To further reduce the complexity of the tree, we remove the child
nodes whose energies are one order of magnitude higher than the
best child node.

4.4 Back-Propagation

Once the energy of new child nodes is computed, we update the
tree policy to favor the visit of low energy configurations. We back-
propagate information on child node energy towards the root by
giving to each node t the lowest energy of its child nodes

Ulx,) « min U(x,,) ©
t; et

4.5 Initialization and stopping criterion

We initialize the exploration by generating one root node for each X-
junction, using as initial decompositions of these junctions the con-
figurations that minimize Ufigel;zy- In the cases where no X-junction
exists, we ask the user to seed the search by selecting an opaque
region in the image. We display a black dot over the selected re-
gion of the segmentation for each result where such indication was
provided. We stop the exploration once we have reached 4N leaves
of the tree, with N the number of regions in the image, and keep
the decomposition with the lowest energy as our final solution. We
adjusted this stopping threshold experimentally by running our
algorithm multiple times on the same image using a high threshold,

keeping track of the number of leaves visited before reaching the
best configuration.

4.6 Finalization

As a reminder, we excluded pixels on the boundary of each region
of the segmentation, since those pixel are often corrupted by blur
or anti-aliasing. The last step of our algorithm assigns each such
pixel to one of its neighboring regions based on goodness of fit. In
addition, when an opaque layer is surrounded by another opaque
layer, we position the surrounding layer below the surrounded one
and extend it to cover the hole, which is occluded by the surrounded
layer. As an example, the red layer of the lady bug in Figure 1 extends
below the black dots.

Finally, we vectorize the supporting domain of each layer using
Potrace [Selinger 2017].

4.7 User interaction

We offer users several means of controlling our method. First, we
expose the global A parameter, which balances fidelity to the input
with simplicity of the output. We found that clean bitmap cliparts
can be decomposed using a low A value of 0.1, while photographs
often require a higher value of 0.5 to abstract away small details,
non-linear color variations, and image noise. We also allow users
to increase f to favor the extraction of semi-transparent layers,
although we used the default value for all results in this paper.

Second, we allow users to impose that a region of the image be
expressed as a single opaque layer. We implement this constraint
during the tree search by only generating child nodes with opaque
layers over the selected region. We display a black dot over the
selected regions of the segmentation for each result where such
additional constraint was provided.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 180. Publication date: November 2017.

180:8 « Jean-Dominique Favreau, Florent Lafarge, Adrien Bousseau

Finally, users can also control the appearance of the decomposi-
tion via the input segmentation, for instance to approximate fine
details or complex color variations with a unique region.

5 EXPERIMENTS

Figure 1 and Figure 7 show results of our method on a variety of
illustrations and studio photographs. Our approach is especially ef-
fective at expressing highlights and shadows with semi-transparent
layers, which facilitates subsequent manipulation like color and
shape editing, as shown in Figure 1(c).

We now compare our method to existing work in the field and
evaluate the impact of parameters and performance.

5.1 Comparisons with existing work

Figure 9 compares our method with the work by Tan et al. [2016]
and Richardt et al. [2014]. The method by Tan and colleagues targets
the different application of bitmap color editing. As a result, while
their method succeeds in separating the image into layers based
on the dominant colors of the image, each layer is a bitmap with
a constant color and spatially-varying transparency rather than a
vector path filled with a parametric gradient.

Our goal and approach is more similar to the work by Richardt
et al., and our method produces similar results to theirs. The main
difference between the two methods resides in the user workflow.
The interactive workflow of Richardt et al. requires users to extract
each layer of the decomposition one by one, in a front to back order.
Since their layer extraction takes between a few seconds to a minute
per layer, their results took between several minutes to an hour to
create, as detailed in Section 5 of their paper. In contrast, users of our
system simply have to provide a segmentation of the image, which
takes a few minutes with an interactive tool, and optional indications
of opaque regions before letting our algorithm produce the entire
decomposition within seconds. Another difference resides in the
family of gradients supported by the two methods. Our method
extracts 2-stop gradients, while Richard et al. also support 3-stop
gradients, but requires users to indicate the number of stops for
each region. This is why their method extracts each color band
of the cone as a single 3-stop gradient while we extract them as
two 2-stop gradients (Figure 9, 3rd row). In addition, Richard et al.
represent opaque layers with gradient meshes, while we only use
linear gradients. Their gradient mesh better captures contrast on
the opaque layer of the cylindrical mug (Figure 9, 4th row).

5.2 Impact of parameters

The main parameter of our algorithm is A, which controls the amount
of abstraction of our vectorization. Figure 8 details its impact on the
vectorization of a bitmap clipart. A low value of A reproduces the
input as closely as possible with linear gradients. Increasing A favors
the use of semi-transparent layers at the price of more approximate
rendition of the original colors. A high value of A abstracts away
details in an effort to reduce the number of layers.

5.3 Impact of pre-segmentation

Figure 10 compares the output of our method with different input
segmentations generated with a Mean Shift algorithm [Comaniciu

ACM Transactions on Graphics, Vol. 36, No. 6, Article 180. Publication date: November 2017.

)
Ufidelity = 0.004

Ufidelity = 0-0003
29 layers (8 opaque)

Ufidelity = 0.58
30 layers (27 opaque)

13 layers (5 opaque)

Fig. 8. Impact of parameter A. A low value of A favors accurate reproduction
of the input, but produces a decomposition dominated by opaque layers (left).
Increasing A turns many of the opaque layers semi-transparent (middle).
A high value reduces the number of layers, at the price of missing details
(right).

Image Exploration | Finalization | Total | # regions | # clicks
Lady bug 28s 6s 35s 26 3
Cherry 5s 2s 7s 8 1
Stop 16s 12s 28s 23 2
Tomato 9s 6s 16s 19 1
Diagram 12s 1s 13s 11 3
Battery 44s 15s 60s 24 2
Cake 71s 148s 220s 30 1
Egg 7s 2s 9s 6 1
Red shoes 5s 11s 17s 11 1
Purair 16s 4s 21s 20 1
Cone 44s 3s 48s 27 0
Cup 17s 16s 33s 11 1
Wine 13s 13s 26s 11 0
House 337s 159s 496s 105 3

Table 1. Our method generates layered vectorizations within seconds. The
cake image is one of the slowest to process because it has many regions
and no X-junctions.

and Meer 2002] and a manual segmentation. Our method produces
visually similar vectorizations with two different automatic seg-
mentations. In particular, multiple regions are merged to form a
few layers thanks to our simplicity term. However, we obtain more
stylized cliparts using manual segmentations.

5.4 Performance

Table 1 provides timings for several of our results, measured on
a computer equipped with a 3rd generation core i7 processor and
16Gb DDR3 memory. Our algorithm took less than a minute to
produce each decomposition, which allows an interactive workflow
where users can refine the result by adding a new opacity constraint
or modifying the segmentation if necessary. The last column of
Table 1 detail the number of opaque regions selected by the user to
initialize the optimization.

Photo2ClipArt: Image Abstraction and Vectorization
Using Layered Linear Gradients « 180:9

[Richardt et al. 2014] Our method

[Tan et al. 2016]

Fig. 9. Comparison with existing decomposition methods. The layers generated by [Tan et al. 2016] are bitmaps filled with a constant color and spatially
varying transparency, which is suitable for color editing but not for other applications of vector graphics. Our results are similar to the ones by [Richardt et al
2014], although our method requires less user intervention and solves for the layer parameters more efficiently. All our results were produced with a manual

segmentation, except the cone (3rd row).

ACM Transactions on Graphics, Vol. 36, No. 6, Article 180. Publication date: November 2017.

180:10

a -co

89 regions, , A = 0.8, 4 layers (3 opaque)

458 regions, A = 0.9, 200 layers (77 opaque)

(a) Input (b) Mean Shift segmentation (small regions)

Jean-Dominique Favreau, Florent Lafarge, Adrien Bousseau

D.@m

5 regions, A = 0.2, 4 layers (3 opaque)

119 regions, A = 0.8, 90 layers (41 opaque)
(c) Mean Shift segmentation (big regions)

R
Hm(ce

6 regions, A = 0.2, 6 layers (3 opaque)

"

26 regions, A = 0.8, 9 layers (5 opaque)

105 regions, A = 0 8, 78 layers (35 opaque)
(d) Manual segmentation

Fig. 10. While our method produces consistent results with different automatic segmentations (b,c), we achieved our best results by refining the segmentation
by hand (d). In particular, while our method can fuse small regions to reduce the number of layers, spurious high-contrast details remain, such as thin
highlights along the boundary of the smartphone. In contrast, a manual segmentation allows users to remove unwanted details while preserving others, such
as an extra highlight on the egg, the button of the smartphone, and the window tiles on the house. Note that the shadows on the house and ground are

extracted as semi-transparent layers.

Table 2 compares several versions of our algorithm where we
removed important features. In particular, exploiting X-junctions
greatly speeds up the exploration of the solution space, while in-
creasing the maximum number of child nodes does not yield a
significant increase in quality. We also implemented re-fitting of all
layers for each child node, which increases timing by two orders of
magnitude without much impact on the energy.

5.5 Limitations

Our choice of restricting the image representation to linear gradi-
ents is key to achieve joint abstraction and vectorization. However,
our current implementation does not support variants of linear gra-
dients, such as radial gradients, although such primitives could be
included in the configurations evaluated by the tree search. More
advanced primitives like gradient meshes would be more difficult to
integrate since they cannot be trivially expanded to adjacent regions,
which is a key assumption made by our algorithm.

Our method targets piecewise-smooth images and as such reaches
its limits in the presence of texture. A low-contrast texture is averaged-
out if segmented as a single region, while high-contrast textures can
be segmented in multiple small regions, which result in a cluttered

ACM Transactions on Graphics, Vol. 36, No. 6, Article 180. Publication date: November 2017.

X-junctions yes | yes no no

k 2 4 2 2

Layer re-use yes | yes yes no
Energy U 1.00 | 1.04 | 0.870 | 0.869
Time (s) 14 | 28 | 307 | 29890
Number of visited nodes | 318 | 332 | 54358 | 52357

Table 2. Ablation study. We evaluated the performance of our algorithm
on the smartphone image (Figure 10) after removing some of its key com-
ponents. Removing the exploitation of X-junctions increases computation
time by one order of magnitude, while re-fitting all layers for each child
node further increases computation by two orders of magnitude without
significant change in the energy. Similarly, augmenting the maximum num-
ber of child nodes k slows down the algorithm without much impact on the
energy. We provide the resulting vector cliparts as supplemental material,
they are all visually similar.

clipart with many layers. The house in Figure 10 illustrates how our
approach performs on a complex natural image with textures.

We speed up our algorithm by assuming that X-junctions are
caused by transparency. This assumption breaks on texture pat-
terns such as a checker-board, where many X-junctions are not

K\L ~ <\J\
Sig

Fig. 11. Limitations. Top: We accelerate our algorithm by assuming that each
X-junction is produced by a semi-transparent layer crossing two other layers.
This assumption is not valid on the Rubik’s cube, where there are multiple
X-junctions between tiles of different colors. Exploiting our assumption on
this example forces the method to include transparent layers that do not
reproduce well the input. Bottom: Decomposing an image into opaque and
transparent layers is especially ambiguous when the layers share the same
color. In this example, the algorithm cannot make the distinction between a
dark shadow over a white panel and a white highlight over a dark panel. As
a result, some black panels are interpreted as white and vice-versa.

due to transparency. Figure 11(top) illustrates the behavior of our
algorithm in such cases, with and without the exploitation of X-
junctions. While our method produces a faithful vectorization when
X-junctions are not exploited, exploiting them forces the algorithm
to include transparent layers, which reduces the accuracy of the
reconstruction.

Inverting Equation 1 is an ill-posed problem, especially when the
foreground and background layers contain the same colors. This
ambiguity is illustrated in Figure 11 where the soccer ball is only
composed of shades of gray. As a result, while the decomposition
found by our optimization captures well the appearance of the input
image, it does not properly separate the white and black panels
of the ball because it cannot make the distinction between a dark
shadow over a white panel and white highlight over a dark panel.

6 CONCLUSION

While image vectorization has received significant attention in the
computer graphics community, very little work has been done on
reproducing the style and layer structure of traditional vector cli-
parts. Motivated by the ubiquity of linear gradients in vector art,
we have presented an algorithm based on Monte Carlo Tree Search
to jointly decompose an image into layers and approximate these
layers with linear gradients.

Our method takes a segmented image as input and does not at-
tempt to modify the shape of the segmented regions, apart from
fusing small segments to crate bigger ones. However, the regions
produced by automatic segmentation algorithms often have more
intricate shapes than the ones created by vector artists. An interest-
ing direction for future research would be to jointly simplify shape
and color during the vectorization process, potentially by including
a shape simplicity term in our energy formulation.

Photo2ClipArt: Image Abstraction and Vectorization
Using Layered Linear Gradients « 180:11

ACKNOWLEDGMENTS

This work was supported in part by the ERC starting grant D® (ERC-2016-STG 714221)
and by research and software donations from Adobe. Many thanks to Tan and col-
leagues [2016] for making their code available. Image credits: ladybug by Alex Staroselt-
sev, soda can by Altagracia Art, cherry by M. Unal Ozmen, stop button by Photo Melon,
chart by Allies Interactive, tomato by bajinda, battery by Photo Melon, cup by George
Dolgikh, shoe by Picsfive, wine bottle by Dmitri Gristsenko, egg by Valentina Razu-
mova, house by Stefano Ember, smart phone by Gor Grigoryan, soccer ball by Le Do,
all on Shutterstock.com. Air purifier by Spencer Nugent on sketch-a-day.com, cake by
vectorsme on openclipart.org, moon by stux on pixabay.com.

REFERENCES

Adobe. 2013. Adobe Illustrator Image Trace, http://blogs.adobe.com/adobeillustrator/
2013/07/image-trace-in-illustrator-a-tutorial-and-guide.html. (2013).

Yagiz Aksoy, Tun¢ Ozan Aydin, Aljosa Smoli¢, and Marc Pollefeys. 2017. Unmixing-
Based Soft Color Segmentation for Image Manipulation. ACM Transactions on
Graphics 36, 2 (2017).

Sean Bell, Kavita Bala, and Noah Snavely. 2014. Intrinsic Images in the Wild. ACM
Transactions on Graphics (Proc. SGGRAPH) 33, 4 (2014).

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S.
Tavener, D. Perez, S. Samothrakis, and S. Colton. 2012. A Survey of Monte Carlo
Tree Search Methods. IEEE Transactions on Computational Intelligence and Al in
Games 4, 1 (2012).

Dorin Comaniciu and Peter Meer. 2002. Mean Shift: A Robust Approach Toward Feature
Space Analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 24, 5 (2002).

Doug DeCarlo and Anthony Santella. 2002. Stylization and Abstraction of Photographs.
ACM Transactions on Graphics (Proc. SSGGRAPH) 21, 3 (2002).

Michael D’Zmura, Philippe Colantoni, Kenneth Knoblauch, and Bernard Laget. 1997.
Color transparency. Perception 26, 4 (1997).

Jean-Dominique Favreau, Florent Lafarge, and Adrien Bousseau. 2016. Fidelity vs.
Simplicity: a Global Approach to Line Drawing Vectorization. ACM Transactions on
Graphics (SIGGRAPH Conference Proceedings) (2016).

Timothy Gerstner, Doug DeCarlo, Marc Alexa, Adam Finkelstein, Yotam Gingold, and
Andrew Nealen. 2012. Pixelated Image Abstraction. In Proc. International Symposium
on Non-photorealistic Animation and Rendering.

Stefan Jeschke, David Cline, and Peter Wonka. 2011. Estimating Color and Texture
Parameters for Vector Graphics. Computer Graphics Forum (Proc. Eurographics) 30,
2 (April 2011), 523-532.

Zhaoyin Jia, A. Gallagher, Yao-Jen Chang, and Tsuhan Chen. 2012. A learning-based
framework for depth ordering. In IEEE Computer Vision and Pattern Recognition.
Gregory Lecot and Bruno Lévy. 2006. Ardeco: automatic region detection and conver-

sion. In Proceedings of the Eurographics Symposium on Rendering Techniques.

Anat Levin, Assaf Zomet, and Yair Weiss. 2004. Separating reflections from a single
image using local features. In Proc. of the IEEE conference on Computer Vision and
Pattern Recognition.

Zicheng Liao, Hugues Hoppe, David Forsyth, and Yizhou Yu. 2012. A Subdivision-Based
Representation for Vector Image Editing. IEEE Transactions on Visualization and
Computer Graphics 18, 11 (2012).

Xueting Liu, Xiangyu Mao, Xuan Yang, Linling Zhang, and Tien-Tsin Wong. 2013.
Stereoscopizing Cel Animations. ACM Transactions on Graphics (Proc. SGGRAPH
Asia) 32, 6 (2013).

Fabio Metelli. 1974. The perception of transparency. Scientific American (1974).

Alexandrina Orzan, Adrien Bousseau, Holger Winneméller, Pascal Barla, Joélle Thollot,
and David Salesin. 2008. Diffusion curves: a vector representation for smooth-shaded
images. ACM Transactions on Graphics (Proc. SSGGRAPH) 27, 3 (2008).

Christian Richardt, Jorge Lopez-Moreno, Adrien Bousseau, Maneesh Agrawala, and
George Drettakis. 2014. Vectorising Bitmaps into Semi-Transparent Gradient Layers.
Computer Graphics Forum (Proc. Eurographics Symposium on Rendering) 33, 4 (2014).

Bilge Sayim and Patrick Cavanagh. 2011. The art of transparency. i-Perception 2 (2011).

Peter Selinger. 2017. Potrace. (2017).

Manish Singh and Xiaolei Huang. 2003. Computing layered surface representations:
an algorithm for detecting and separating transparent overlays. In IEEE Computer
Vision and Pattern Recognition.

Alvy Ray Smith and James F. Blinn. 1996. Blue screen matting. SIGGRAPH (1996).

Jian Sun, Lin Liang, Fang Wen, and Heung-Yeung Shum. 2007. Image vectorization
using optimized gradient meshes. ACM Transactions on Graphics (Proc. SSGGRAPH)
26, 3 (2007).

Jianchao Tan, Marek Dvoroziiak, Daniel Sykora, and Yotam Gingold. 2015. Decomposing
Time-Lapse Paintings into Layers. ACM Transactions on Graphics (Proc. SGGRAPH)
34, 4 (2015).

Jianchao Tan, Jyh-Ming Lien, and Yotam Gingold. 2016. Decomposing Images into
Layers via RGB-space Geometry. ACM Transactions on Graphics 36, 1 (2016).

Holger Winneméller, Sven C. Olsen, and Bruce Gooch. 2006. Real-time Video Abstrac-
tion. ACM Transactions on Graphics (Proc. SGGRAPH) 25, 3 (2006).

S. Zhao, F. Durand, and C. Zheng. 2017. Inverse Diffusion Curves using Shape Opti-
mization. IEEE Transactions on Visualization and Computer Graphics PP, 99 (2017).

ACM Transactions on Graphics, Vol. 36, No. 6, Article 180. Publication date: November 2017.

http://blogs.adobe.com/adobeillustrator/2013/07/image-trace-in-illustrator-a-tutorial-and-guide.html
http://blogs.adobe.com/adobeillustrator/2013/07/image-trace-in-illustrator-a-tutorial-and-guide.html

	Abstract
	1 Introduction
	2 Related work
	3 Problem Formulation
	3.1 Energy formulation

	4 Exploration mechanism
	4.1 Node selection
	4.2 Tree expansion
	4.3 Reward
	4.4 Back-Propagation
	4.5 Initialization and stopping criterion
	4.6 Finalization
	4.7 User interaction

	5 Experiments
	5.1 Comparisons with existing work
	5.2 Impact of parameters
	5.3 Impact of pre-segmentation
	5.4 Performance
	5.5 Limitations

	6 Conclusion
	References

