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A New Approah for Three-Phase Flows

Jean-Mar H�erard

�

EDF-DRD, 78401 Chatou edex, Frane

We present here a new model to desribe three-�eld patterns or three-phase ows. The

basi ideas rely on the ounterpart of the two-uid two-pressure model whih has been

introdued in the DDT framework, and more reently extended to water-vapour simula-

tions. We show the system is hyperboli without any onstraining ondition on the ow

patterns. A detailed investigation of the struture of the Riemann problem is ahieved.

Regular solutions of the whole are in agreement with physial requirements on void fra-

tions, densities and internal energies for a rather wide lass of equations of state. Even

more, this approah enables to perform omputations of standard single pressure three-

phase ow models, using relaxation tehniques and oarse meshes. A few omputational

results on�rm the stability of the whole approah.

I. Introdution

Some simulations in the framework of pressurized power reators in the nulear energy require using

two-uid models, and some others even ask for a three �eld desription of the whole ow (see

1, 2

). This may

happen for instane when prediting the motion of liquid dispersed droplets inside a ontinuous gas phase,

while some gas-liquid interfae is moving in the ore. Other appliations involving a gaseous phase and two

distint liquids (for instane oil and water) also urge for the development of three �eld models.

Some models and tools have already been proposed, whih basially rely on the two-uid single-pressure

formalism. These either assume that liquid droplets veloities and veloities in the surrounding gas phase

are equal, or retain di�erent veloities but assume in any ase a loal pressure equilibrium between the three

omponents. A straightforward onsequene is that these models su�er from the same de�ienies than

standard two-uid models. More learly, the loss of hyperboliity of the onvetive subset implies that om-

putations on suÆiently �ne grids rather easily enter "ellipti in time" regions ; as a onsequene, even the

most "stable" upwinding shemes lead to a blow up of the ode when re�ning the mesh, though aounting

for stabilizing drag e�ets (see

3

for instane for suh a numerial experiene).

An alternative way to deal with these ows onsists in getting rid of the pressure equilibrium between

phases. This was �rst introdued in the framework of the DDT (see,

4{15

among others), and more reently

applied to water-vapour preditions (see

16{18

). One of the main advantages with the latter approah is that

it inherits from the hyperboli struture of Navier-Stokes equations -whih seems quite reasonable- on the

one hand; moreover, the overall entropy inequality provides some better understanding of various interfaial

transfer terms. For all these reasons, it seems appealing to examine whether one might derive a similar

framework to ope with three-phase or three-�eld ow strutures. Suh a trial is disussed in this paper.

An underlying idea is that the interfae between phases remains in�nitely thin when submitted to pure

onvetive patterns.

�

Researh Engineer, D�epartement MFTT, 6 quai Watier, and Assoiate Researh Diretor, CNRS, LATP, AIAA Member
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We will �rst provide the main set of equations whih inludes soure terms, visous terms and onvetive

e�ets. The main properties of the whole set will be examined, inluding a disussion on the solutions of

the one dimensional Riemann problem. These properties enable to ompute the whole set with help of

rough shemes (Rusanov sheme) or more aurate approximate Riemann solvers suh as the one introdued

in.

19, 20

A few omputational results illustrate the whole, whih issue from the omputation of a Riemann

problem.

II. Governing equations

The density, veloity, pressure, internal energy and total energy within phase k will be denoted �

k

, U

k

,

P

k

, e

k

= e

k

(P

k

; �

k

) and E

k

= 0:5�

k

U

k

U

k

+ �

k

e

k

respetively. The volumetri fration of phase labelled k is

de�ned as �

k

, and the three must omply with the onstraint:

�

1

= 1� �

2

� �

3

The governing set of equations is:

(I +D(W ))

�W

�t

+

�F (W )

�x

+ C(W )

�G(W )

�x

= S(W ) +

�

�x

(E(W )

�W

�x

) (1)

It requires an initial ondition W (x; 0) = W

0

(x) and suitable boundary onditions. The state variable W ,

the uxes F (W ), G(W ) and the soure terms S(W ) lie in R

11

. We set:

W

t

= (�

2

; �

3
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1
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3

)
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k
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k

�
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2
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2
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3
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3
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3
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3
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Seond rank tensors C(W ); D(W ); E(W ) lie in R

11�11

. The non-onservative onvetive terms are :

8

>

<

>

:

D(W )
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C(W )

�G(W )
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= (U
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1
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(2)

Visous terms should at least aount for the following ontributions (thermal uxes might be inluded):

E(W )

�W

�x

= (0; 0; 0; 0; 0; �

1

�

1

�U

1

�x

; �

2

�

2
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2
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) (3)

Soure terms S(W ) aount for mass transfer terms, drag e�ets, energy loss, and other ontributions. To

simplify our presentation, we only retain here the e�et of pressure relaxation and drag e�ets. Thus:

S(W ) = (�

2

; �

3

; 0; 0; 0; S

U

1

; S

U

2

; S

U

3

; U

1

S

U

1

; U

1

S

U

2

; U

1

S

U

3

) (4)

We also set �

1

= ��

2

� �

3

and we reall that the momentum interfaial transfer terms must omply with:

S

U

1

(W ) + S

U

2

(W ) + S

U

3

(W ) = 0
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III. Main properties

We fous �rst on the homogeneous problem assoiated with the left hand side of (1). We de�ne as usual

spei� entropies s

k

and speeds 

k

in terms of the density �

k

and the internal energy e

k

:
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Property 1 :

1:1 The homogeneous system assoiated with the left hand side of (1) has eigenvalues:

�

1;2;3

= U
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, �
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2

, �
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, �
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3
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=
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3

+ 

3

. Assoiated right eigenvetors span the whole spae R

11

unless U

1

= U

k

+ 

k

or U

1

= U

k

� 

k

, for

k = 2; 3.

1:2 Fields assoiated with eigenvalues �

k

with k in (1; 2; 3; 4; 5) are Linearly Degenerate ; other �elds are

Genuinely Non Linear.

The list of Riemann invariants through LD �elds assoiated with k = 4; 5 and GNL �elds may be om-

puted quite easily using variable: Z

t

= (�

2
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3
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1

; s

2
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3
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1
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2
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3

) (see appendies A,B,C in

21

).

Property 2 :

2:1 The latter system admits the following Riemann invariants through the 1� 2� 3 LD wave:
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2

2:2 We note �( ) =  

r

�  

l

. Apart from the 1� 2� 3 LD wave, the following exat jump onditions hold

for k = 1; 2; 3, through any disontinuity separating states l; r moving with speed �:

�(�

k

) = 0

�(m

k

(U

k
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k
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We need to de�ne:

a

k
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(
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(5)

and: �

k

= Log(s

k

), but also the pair (�; F

�

) suh that : � = �m

1

�
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2

�
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. Drag terms S

U

k

(W ) and soure terms �

k

(W ) in (1) omply with:

0 � a

2

(U

1

� U

2

)S
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3
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0 � a

1
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P
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P

3
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Condition (7) reads:

�

2

(P

1

� P

2

) + �

3
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1
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3

) � 0

3 of 8

Amerian Institute of Aeronautis and Astronautis



sine �

1

+ �

2

+ �

3

= 0 and a

1

> 0 for standard EOS.

Property 3 :

Closures in agreement with the above mentionned onstraints (6),(7) ensure that the following entropy

inequality holds for regular solutions of (1):

��

�t

+

�F

�

�x

� 0 (8)

We from now will assume that the onditions (6) , (7) are ful�lled. For onvenieny we will hoose here :

�

2

= f

1�2

(W )�

1

�

2

(P

2

� P

1

)=(P

1

+ P

2

+ P

3

) (9)

�

3

= f

1�3

(W )�

1

�

3

(P

3

� P

1

)=(P

1

+ P

2

+ P

3

) (10)

where positive salar funtions f

k�l

(W ) denote bounded frequenies. It is easy to hek that:

�

1

P

1

+ �

2

P

2

+ �

3

P

3

> 0

Even more, the governing equation of � = �

1

�

2

�

3

guarantees that regular solutions �

k

(x; t) remain in the

admissible range [0; 1℄. We will rely on standard losures of the form (see

2

for instane):

S

U

2

(W ) =  

2

(W )(U

1

� U

2

) (11)

S

U

3

(W ) =  

3

(W )(U

1

� U

3

) (12)

where the salar funtions  

2

(W ),  

3

(W ) should remain positive. Hene (6) and (7) hold.

Property 4 :

We assume perfet gas state law within eah phase (k = 1; 2; 3). We onsider a single wave assoiated

with �

m

, separating states l; r. If the initial onditions satisfy: (�

k

)

L;R

(1 � �

k

)

L;R

6= 0, for k = 1; 2; 3 the

onnetion of states through this wave ensures that all states are in agreement with: 0 � �

k

, 0 � m

k

, 0 � P

k

.

Atually, the proof is almost obvious when fousing on a single �eld onneted with eigenvalue �

k

where

k = 4 to 11. Turning then to the 1; 2; 3-�eld, the main guidelines (see appendix E in

21

) are the same as in.

17

Details on some suitable forms of mass and energy transfer terms an be found in appendix F in.

21

IV. Numerial approah

The whole enables to introdue a frational step approah in agreement with the overall entropy inequality,

whih is again the ounterpart of the one desribed in.

17

We thus simply ompute approximations of the

onvetive subset :

(I +D(W ))

�W

�t

+

�F (W )

�x

+ C(W )

�G(W )

�x

= 0 (13)

and then aount for soure terms and visous terms updating values through the step:

(I +D(W ))

�W

�t

= S(W ) +

�

�x

(E(W )

�W

�x

) (14)

This frational step method is in agreement with the whole entropy inequality. When negleting visous

ontributions, the seond one turns to an ordinary di�erential system .

Our basi approah to ompute onvetive terms relies on the Godunov approah.

22, 23

More preisely

here, we use the shemes introdued in

17

to ompute approximations of the system (13). This is ahieved
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with help of either the Rusanov sheme or the approximate Godunov sheme VFRoe-nv.

19

In order to ope

with the standard step (13) whih requires disretizing onvetive e�ets, a rather eÆient way onsists in

using the approximate Godunov sheme introdued in

19

with the spei� variable:

Z

t

= (�

2

; �

3

; s

1

; s

2

; s

3

; U

1

; U

2

; U

3

; P

1

; P

2

; P

3

) (15)

(see

20

whih details the main advantages of suh a hoie). Computations below have been obtained with

the former sheme, while ful�lling standard CFL onditions.

One must be areful when providing approximations of system (14). Otherwise, the stability of loally

equal-pressure regions may be violated. The onnetion with the sheme introdued in

24

is obvious.

This approah has another advantage, sine it also enables to ope with the instantaneous pressure equi-

librium assumption. This is useful to ompute models suh as those desribed in

2

for instane. Owing to the

entropy struture (see appendix D in

21

), one may atually introdue the pressure relaxation step involved in

(14) as a tool to ompute the single pressure models detailed in.

2

This is the ounterpart of what has been

ahieved in the two-phase framework ( see

25, 26

or

3

for instane).

V. A few omputations of the shok tube apparatus

We restrit here to some simple omputations of the shok tube apparatus. We use a uniform mesh

with 10000 ells and set CFL = 0:49 in order to avoid the interation of waves within the ells. In these

omputations, all soure terms and visous terms have been negleted, in order to assess the stability of the

whole onvetive subset.

We assume that the perfet gas law holds within eah phase: �

k

e

k

= (

k

� 1)P

k

, setting 

1

= 7=5,



2

= 1:05 and 

3

= 1:01. Initial onditions are : (�
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, for the �rst ase (�g. (1-3)), and: (�
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, for the seond test.

0 2000 4000 6000 8000 10000
0.4

0.42

0.44

0.46

0.48

0.5

Void fractions alpha2 (squares), alpha3

CFL=0.49 _  10000 cells 

Figure 1. Void frations �

2
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3
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Figure 2. Partial masses m
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Figure 3. Pressures P
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Figure 4. Veloities U
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Figure 5. Partial masses m

1

, m

2

,

m

3

0 2000 4000 6000 8000 10000
0

20000

40000

60000

80000

1e+05

Pressures P1 (circles), P2 (squares), P3 

Shock tube _ CFL=0.49 _  10000 cells

Figure 6. Pressures P
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VI. Conlusion

This new model bene�ts from important properties. From a physial point of view, an interesting point is

that it preserves the positivity of (expeted) positive quantities : void frations, mass frations and internal

energies, at least when restriting to suÆiently simple EOS. Its mathematial properties enable us to on-

strut nonlinear stable numerial methods, and thus to explore highly unsteady ow patterns. Conditions

to obtain a existene and uniqueness of the exat solution of the one dimensional Riemann problem annot

be obtained easily. A spei� diÆulty is linked with the possible ourene of the resonane phenomena.

Another point, whih seems worth being noted, is that the ounterpart of the average "andidate" interfae

veloity V

I

= (m

1

U

1

+m

2

U

2

)=(m

1

+m

2

) no longer arises in the three-�eld framework.

Another part of our urrent work onerns the omparison with standard single pressure three-�eld

models, when restriting to oarse meshes. This is ahieved using relaxation tehniques, following ideas

from.

3, 24{30
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Appendix

We examine in this appendix the struture of the onvetive set of equations. Restriting to regular

solutions, we rewrite the onvetive system issuing from (1), that is:

(Id+D(W ))

�W

�t

+

�F (W )

�x

+ C(W )

�G(W )

�x

= 0

in the form:

�Z

�t

+A(Z)

�Z

�x

= 0

using the spei� variable:

Z

t

= (�

2

; �

3

; s

1

; s

2

; s

3

; U

1

; U

2

; U

3

; P

1

; P

2

; P

3

)
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This provides a system in redued form. The ourene of terms proportional to

��

2

�x

,

��

3

�x

inhibits the fully

symmetrized form, unless pressure-veloity equilibrium is reahed. The matrix of onvetive terms is:

A(Z) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

U

1

0 0 0 0 0 0 0 0 0 0

0 U

1

0 0 0 0 0 0 0 0 0

0 0 U

1

0 0 0 0 0 0 0 0

0 0 0 U

2

0 0 0 0 0 0 0

0 0 0 0 U

3

0 0 0 0 0 0

(P

2

� P

1

)=m

1

(P

3

� P

1

)=m

1

0 0 0 U

1

0 0 �

1

0 0

0 0 0 0 0 0 U

2

0 0 �

2

0

0 0 0 0 0 0 0 U

3

0 0 �

3

0 0 0 0 0 

1

P

1

0 0 U

1

0 0



2

(U

2

� U

1

)P

2

=�

2

0 0 0 0 0 

2

P

2

0 0 U

2

0

0 

3

(U

3

� U

1

)P

3

=�

3

0 0 0 0 0 

3

P

3

0 0 U

3

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

It admits the following right eigenvetors:

r

t

1

= (1; 0; 0; 0; 0; 0; a

7

; 0; (P

1

� P

2

)=�

1

; a

10

; 0)

r

t

2

= (0; 1; 0; 0; 0; 0; 0; a

8

; (P

1

� P

3

)=�

1

; 0; a

11

)

r

t

3

= (0; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0)

r

t

4

= (0; 0; 0; 1; 0; 0; 0; 0; 0; 0; 0)

r

t

5

= (0; 0; 0; 0; 1; 0; 0; 0; 0; 0; 0)

r

t

6

= (0; 0; 0; 0; 0; �

1

; 0; 0;�

1

; 0; 0)

r

t

7

= (0; 0; 0; 0; 0; �

1

; 0; 0; 

1

; 0; 0)

r

t

8

= (0; 0; 0; 0; 0; 0; �

2

; 0; 0;�

2

; 0)

r

t

9

= (0; 0; 0; 0; 0; 0; �

2

; 0; 0; 

2

; 0)

r

t

10

= (0; 0; 0; 0; 0; 0; 0; �

3

; 0; 0;�

3

)

r

t

11

= (0; 0; 0; 0; 0; 0; 0; �

3

; 0; 0; 

3

)

noting:

a

7

= 

2

P

2

�

2

(U

2

� U

1

)=(�

2

Æ

2

) a

10

= �

2

P

2

(U

2

� U

1

)

2

=(�

2

Æ

2

)

a

8

= 

3

P

3

�

3

(U

3

� U

1

)=(�

3

Æ

3

) a

11

= �

3

P

3

(U

3

� U

1

)

2

=(�

3

Æ

3

)

Æ

k

= (U

k

� U

1

)

2

� (

k

)

2

for k = 2; 3. Reall that 

k

= (

k

P

k

�

k

)

1=2

. Obviously, this set of eigenvetors no longer spans the whole

spae when either Æ

2

or Æ

3

is null.
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