
May 2017 | Volume 8 | Article 5901

Mini Review
published: 22 May 2017

doi: 10.3389/fimmu.2017.00590

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Diana Boraschi,  

Consiglio Nazionale Delle Ricerche 
(CNR), Italy

Reviewed by: 
Luciana D’Apice,  

Consiglio Nazionale Delle Ricerche 
(CNR), Italy  

Aldo Tagliabue,  
ALTA srl, Italy

*Correspondence:
Natalie J. Serkova  

natalie.serkova@ucdenver.edu

Specialty section: 
This article was submitted  

to Inflammation, a section of the 
journal Frontiers in Immunology

Received: 11 April 2017
Accepted: 04 May 2017
Published: 22 May 2017

Citation: 
Serkova NJ (2017) Nanoparticle-

Based Magnetic Resonance  
Imaging on Tumor-Associated  

Macrophages and Inflammation.  
Front. Immunol. 8:590.  

doi: 10.3389/fimmu.2017.00590

nanoparticle-Based Magnetic 
Resonance imaging on Tumor-
Associated Macrophages and 
inflammation
Natalie J. Serkova 1,2,3,4*

1Department of Anesthesiology, Anschutz Medical Center, Aurora, CO, USA, 2Department of Radiology, Anschutz Medical 
Center, Aurora, CO, USA, 3Department of Radiation Oncology, Anschutz Medical Center, Aurora, CO, USA, 4Animal Imaging 
Shared Resources, University of Colorado Cancer Center, Anschutz Medical Center, Aurora, CO, USA

The inflammatory response, mediated by tissue-resident or newly recruited macrophages, 
is an underlying pathophysiological condition for many diseases, including diabetes, 
obesity, neurodegeneration, atherosclerosis, and cancer. Paradoxically, inflammation is a 
double-edged sword in oncology. Macrophages are, generally speaking, the major drivers 
of inflammatory insult. For many solid tumors, high density of cells expressing macrophage- 
associated markers have generally been found in association with a poor clinical outcome, 
characterized by inflamed microenvironment, a high level of dissemination and resistance 
to conventional chemotherapies. On another hand, radiation treatment also triggers an 
inflammatory response in tumors (often referred to as pseudoprogression), which can be 
associated with a positive treatment response. As such, non-invasive imaging of cancer 
inflammation and tumor-associated macrophages (TAMs) provides a revolutionary diag-
nostic tool and monitoring strategy for anti-inflammatory, immuno- and radiotherapies. 
Recently, quantitative T2-weighted magnetic resonance imaging (qT2wMRI), using injec-
tion of superparamagnetic iron oxide nanoparticles (SPIONs), has been reported for the 
assessment of TAMs non-invasively in animal models and in human trials. The SPIONs 
are magnetic resonance imaging (MRI) contrast agents that significantly decrease T2 
MR relaxation times in inflamed tissues due to the macrophage-specific uptake and 
retention. It has been shown that macrophage-populated tumors and metastases will 
accumulate iron oxide nanoparticles and decrease T2-relaxation time that will result in 
a negative (dark) contrast in qT2wMRI. Non-invasive imaging of TAMs using SPION 
holds a great promise for staging the inflammatory microenvironment of primary and 
metastatic tumors as well monitoring the treatment response of cancer patients treated 
with radiation and immunotherapy.

Keywords: magnetic resonance imaging, iron oxide nanoparticles, tumor-associated macrophages, inflammation, 
cancer

inTRODUCTiOn

The tumor microenvironment subsidizes to tumor progression, invasion, metabolic reprograming, 
and resistance to therapy. In the past decade, it has become increasingly clear that immune-competent 
cells, including macrophages, represent one of the main contributors to the aggressive tumor milieu 
(1, 2). Macrophages are phagocyting cells that penetrate into and reside in the affected tissue; they 
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originate from circulating blood monocytes (3). Two distinct 
classes of macrophages have been described: classically activated 
M1 macrophages and alternatively activated M2 macrophages (4, 
5). In most tumors, the inflamed microenvironment is driven by 
M2-type macrophages (6, 7).

Given the growing body of evidence of the tumor-associated 
macrophages (TAMs) playing a significant role in tumorigenesis, 
a non-invasive assessment of TAMs to detect the level of tumor 
inflammation becomes a critical and limiting factor. The gold 
standard for TAM assessment, as of now, is immunohistochemis-
try, histological examination, and, in rare case, flow cytometry on 
excised biopsies—all techniques can be applied ex vivo only (8). 
A biopsy comes at great costs to the patient, its invasiveness can 
have detrimental health consequences, and since it is very chal-
lenging, if not impossible, to perform sequential biopsies, these 
protocols are limited in the assessment of TAM infiltration over 
time. Unfortunately, the circulating levels of monocytes, which 
can be assessed by semi-invasive venipuncture (phlebotomy), 
do not bear any therapeutic values for correlating with the levels 
of TAMs. Molecular and cellular imaging is a fast growing area in 
translational and clinical research. Dozens of novel molecularly 
targeted imaging probes have been tested in animal models of 
cancer and some of them are successfully used in human imaging 
(9–11). Fortunately, macrophages are well known as “professional 
phagocytes” and are responsible for “cleaning” various exogenous 
microbes, toxins, and nanoparticles. Also, macrophages are 
responsible for endogenous and exogenous iron metabolism. 
Fortunate again, iron-based nanoparticles have been known as 
T2-weighted contrast for magnetic resonance imaging (MRI). 
The recent studies have shown that superparamagnetic iron 
oxide nanoparticles (SPIONs) have a potential for non-invasive 
T2-weighted MRI assessment on tissue residential macrophages, 
including TAMs (12). This approach has a high-translational 
potential, since several of the existing SPION agents are approved 
in Europe for MR imaging and commercially available for human 
use. Ferumoxytol is another ultrasmall SPION formulation (with 
an average particle size of 25–30 nm) that is approved by the US 
Food and Drug Administration as an iron supplement for intra-
venous treatment of iron deficiency in renal failure patients (13). 
Ferumoxytol has superb magnetic properties and has been safely 
used in animal and human trials as an off-label MRI contrast 
agent (12, 14–22).

TAMs AnD inFLAMMATiOn in CAnCeR

The relationship between chronic inflammation and cancer 
development was recognized well before the molecular origins 
of both diseases had been deciphered—Rudolph Virchow 
postulated an association between these two diseases in the 
1860s (23). Inflammation is triggered by a cellular response, 
mediated mostly by neutrophils and macrophages, in response 
to pathophysiological stimuli. In general, macrophages are 
large white blood cells that ingest pathogens, microbes, and 
other invading substances. While neutrophils represent the 
first immune defense during the acute inflammation stage, the 
macrophages are predominant in chronic inflammation. All 
macrophages, including TAMs, are recruited through the local 

expression of chemoattractant stimuli such as macrophage 
chemoattractant protein 1 and colony-stimulating factor 1 
(24–27). Overexpression of both these factors is correlated with 
poor prognosis in various tumors, including most aggressive 
breast cancer, pancreatic adenocarcinomas, lung cancer, and 
high-grade gliomas. In many solid tumor types, poor prognosis 
directly correlates with the abundance of TAMs. In breast can-
cer, for example, TAMs play a crucial role in epithelial/stromal 
cross talk, as shown for invasive ductal carcinoma and ductal 
carcinoma in situ (28). Macrophage depletion in animal models 
leads to the impaired lung tumor growth and the decreased 
metastatic spread to the lung from breast cancer (29–31). TAMs 
have been directly linked to matrix remodeling, angiogen-
esis, stimulation of tumor growth, and motility (27, 32, 33)— 
all these functions are also reported during wound healing; as 
such, tumors are often described as “wounds that never heal” 
(1, 7). Similar to Virchow, our contemporary scientists, Gonda 
et al. concluded that chronic inflammation results in a myriad 
of molecular event that produce a microenvironment that is 
favorable for the development of cancer (34). Agents that control 
the inflammatory cascade, such as ibuprofen and other non-
steroidal anti-inflammatory drugs, are thought to reduce cancer 
risk or enhance other anticancer treatments.

In another scenario, TAMs can be recruited from circulating 
monocytes as a result of therapy-induced apoptosis resulting 
in tumor inflammation after, for example, radiation or chemo-
therapy. Radiation induces a genetic signature of chronic inflam-
mation, which is enriched in genes regulating transendothelial 
migration, monocyte maturation, and leukocyte chemoattraction 
(35–37). In this case, surprisingly, the recruited macrophages can 
accelerate antitumoral effects of radiation treatment (38). As such, 
a non-invasive assessment of TAMs can serve a surrogate marker 
for a specific and early response to several anticancer therapies.

Recently, several phenotypes (or “states”) of macrophages/
macrophage activation have been identified: two most extreme 
states are known as antitumor M1 and protumor M2 macrophages 
(39). M2-type TAMs promote tumor growth, angiogenesis, and 
metastases by promoting high-level expression of epidermal 
growth factor receptor and secretion of vascular endothelial 
growth factors. M1 phenotype, on the other hand, can directly 
or indirectly mediate tumor phagocytosis. Two classes have 
distinct molecular signatures—the antitumor M1 phenotype 
has relatively low IL-10 and high IL-12 expression, whereas 
protumor M2 macrophages express high IL-10 and low IL-12 
levels. It has been hypothesized that the bad “protumor” M2 
phenotype is responsible for intrinsically inflamed solid tumors 
promoting fast cell proliferation, angiogenesis, dissemination, 
and immunosuppression, while the good M1 macrophages 
mature in response to radiation and chemotherapy and, as such, 
can help other immunocompetent T-cells to recognized and 
fight cancer (40, 41). Nevertheless, clinically, most of the current 
IHC protocols are not capable to distinguish between two TAM 
phenotypes. Hence, it becomes increasingly imperative to non-
invasively characterize patient’s tumor microenvironment for 
the presence of TAMs in order to stratify the patients to TAM-
depleting and/or -directed therapies and to repeatedly monitor 
their treatment response.
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SPiOns AnD iROn MeTABOLiSM

The cytoplasm of a macrophage contains granules (also called  
packets) consisting of several enzymes and chemicals that are 
wrapped in a membrane; its membrane has an arsenal of highly 
effective scavenger receptors. They allow the macrophage to engulf 
a broad spectrum of invading microorganisms, pathogens, and 
nanoparticles as well as endogenous cell debris and apoptotic bod-
ies. In fact, macrophages are known as “professional phagocytes” 
(42), and their phagocyting and pro-inflammatory abilities are 
directly linked to each other. There are some differences in termi-
nology, which are related to the size of the digested material—some 
nanoscientists have introduced the term of “pinocytosis” for the 
uptake of soluble material or a nanoparticle, in contrast to the 
uptake of large material (“phagocytosis”) (43). But the fact remains 
undisputable—the macrophages take their responsibility of engulf-
ing large and small nanoparticles very seriously; their macrophage 
scavenger receptors represent a very efficient system for recogniz-
ing a broad spectrum of surface modification and coating.

Fortunately for the MRI scientific community, iron-based 
nanoparticles represent even a higher level of attraction for the 
hard-working macrophages. Indeed, the macrophages are trained 
to maintain endogenous iron homeostasis while recycling and 
storing iron from senescent erythrocytes and other damaged cells  
(44, 45). They are very capable to store excessive levels of iron and, 
in response to systemic iron requirements, they can also release iron 
from their intracellular compartment into plasma. Therefore, after 
digesting (pinocyting) an iron-containing nanoparticle (SPION), 
a macrophage will dutifully retain iron as long as the circulating 
iron load remains within its physiological range. This macrophage-
retained iron load can be easily detected by T2-weighted MRI.

T2 COnTRAST in MRi

Modern oncologic imaging offers a variety of different modalities 
for the non-invasive detection and characterization of cancerous 
lesions (46–50). The common modalities include MRI, computed 
tomography, ultrasound, positron emission tomography (PET), 
single-photon emission computerized tomography, and optical 
imaging. Each modality has its advantages and disadvantages 
(46) and offers various non-invasive imaging endpoints related to 
tumor dimensions, tissue cellularity, angiogenesis, cancer metab-
olism, proliferation, and metastatic spread, just to mention a few. 
MRI is a non-invasive radiological technique with no ionizing 
radiation and high-spatial resolution, which is widely clinically 
used to detect, follow, and characterize solid tumors and metasta-
ses. MRI has complex physics and is based on physical properties 
of protons (mostly hydrogens) in a strong external magnetic 
field. Since water (H2O) is the main metabolite in all mammalian  
tissues, MRI detects small but distinct changes in spin frequencies 
of water hydrogens based on their surroundings when exposed to 
a high-magnetic field and radiofrequency excitation. The typical 
magnetic strength of human MRI scanner is 1.5 and 3 T, and for 
small animal imaging 4.7 and 7 T—however, the scanners tuned 
to even higher field, such as 9.4 T, 14 even 20 T, can be found in 
dedicated research facilities. One of the main strength of MRI is 
its ability to detect small changes (intrinsic contrast) within soft 

tissues and cell populations, which can be further enhanced by 
the use of intravenous contrast agents.

It is important to understand the relationship between super-
paramagnetic nanoparticles and their effect on MR relaxation of 
the surrounding tissue water. Contrast agents can be principally 
divided into T1- and T2-relaxing contrast agents (Figure  1A). 
Paramagnetic contrast agents, such as gadolinium chelates also 
known as gadolinium-based contrast agents (GBCA), which 
are broadly used in the clinic, they predominantly shorten the 
spin–lattice T1 relaxation time (51). The shortening in T1 relaxa-
tion produces an increased signal intensity on a T1-weighted 
MRI images (Figures 1A–C). Clinically used GBCA (Magnevist, 
Omniscan, Mutihance, etc.) are intravascular contrast agents, not 
tailored to any specific cell type, and their specific accumulation 
in tumorous tissues is strictly based on liking vasculature of 
cancer. Figure 1C demonstrates an appearance of a small brain 
metastasis in GBCA-enhanced T1-weighted MRI (bright yellow 
arrow) in a melanoma patient.

On the other hand, all T2-shortening contrast agents consist of 
iron oxide nanoparticles, which are known as superparamagnetic 
(hence, the SPION abbreviation). By reducing the spin–spin 
T2-relaxation time of surrounding tissue water, the SPION 
(Feridex, Resovist, Ferumoxytol, etc.) produce darker contrast 
on T2-weighted MRI (Figures 1A,D,E) (52). Most importantly, 
unlike gadolinium, iron is a naturally occurring element in human 
bodies with low toxicity; and, the SPION are highly attractive to all 
phagocyting cells including macrophages (as well as Kupffer cells 
and the reticuloendothelial system, RES). The precise changes in 
T2-relaxation times (calculated from quantitative T2-weighted 
magnetic resonance imaging) can be used as a semi-quantitative 
assessment of TAM presence in a cancerous lesion. The Figure 1E 
shows a pronounced darkening in the inflamed mammary gland 
of a mouse by T2-weighted MRI (dark yellow arrows).

nOn-invASive iMAGinG OF TAMs USinG 
SPiOns

Gadolinium-based contrast agents are, without any doubt, the 
major class of MRI contrast agents used in the clinic. Over the 
past 25  years, more than 100 million patients have undergone 
GBCA-enhanced T1-MRI. However, increased concerns about 
gadolinium deposition and toxicity of free gadolinium have 
impacted how GBCA are currently used. A severe side effect, 
known as nephrogenic systemic fibrosis, is associated with 
decreased renal clearance of GBCA in renally impaired patients 
(53), since acute toxicity of free gadolinium has been known for 
several decades. It can significantly limit the GBCA use for MRI 
in cancer patients with chemotherapy-induced low glomerulofil-
tration rate. Most recently, a very concerning study was published 
in Radiology on residual gadolinium deposition in the brain of 
patients after multiple GBCA injections for MRI (54). Alternative 
contrast agents to gadolinium chelates are being discussed, and 
the SPIONs are being increasingly used for various clinical sce-
narios in the recent years (20, 55).

Initially, all SPIONs were used for diagnostic liver imaging 
(mostly in hepatocellular carcinoma or liver metastases) and 
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FiGURe 1 | Two major classes of magnetic resonance imaging (MRi) contrast agents: (A) paramagnetic gadolinium-based contrast agents (GBCA) 
are considered T1-positive contrast agents, by decreasing the spin–lattice T1 relaxation time, they produce bright T1 images; superparamagnetic 
iron oxide (SPiOn) is negative T2 contrast, iron oxide decreases the spin–spin T2-relaxation time producing darkening of T2-weighted images;  
(B) pre- and (C) post-GBCA T1-weighted MRi on a brain metastasis in a melanoma patient (15 min postinjection); (D) pre- and (e) post-SPiOn 
T2-weighted MRi on inflamed mouse mammary gland tumors (24 h postinjection).
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considered as safe MRI contrast (56). Their use was based on the 
high uptake of the SPION by the Kupffer cells: a drop of T2 signal 
was seen in normal hepatic parenchyma due to the Kupffer cell 
uptake, with no signal changes in liver lesions. There were also 
attempt to stage lymph node metastases due to SPION retention 
and phagocytosis in the RES and lymph nodes (57, 58). As all 
nanoparticles, SPIONs have enhanced permeability and retention 
(EPR) in solid tumors (52). However, the previous generation of 
SPION with larger particle sizes (around and above 50 nm) had 
been mostly captured by the RES, decreasing their half-life times 
and, as such, their penetration into tumors.

Ferumoxytol is a colloid-based ultrasmall SPION, which 
consists of an iron oxide core with a size of ca. 6  nm and a 
carboxymethyldextran coat, resulting in a hydrodynamic 
diameter of 30  nm. Unlike larger SPIONs (e.g., Resovist), 
ferumoxytol has a prolonged circulating half-life time (>14 h 
in humans and 2 h in rodents), mostly because of it partially 
escaping phagocytosis by the RES (spleen, liver, and bone 
marrow). As such, ferumoxytol has a favorable EPR profile and 
a potential for higher tumoral biodistribution. It slowly leaks 
across highly permeable tumor vasculature into the tumor 
interstitial space; after that, ferumoxytol nanoparticles are 
attacked by the TAMs and slowly phagocyted—a process that 
takes hours. Our studies and those from others have shown that 
the pick of iron accumulation in a tumor (Tmax) lies between 16 

and 24 h after intravenous injection of ferumoxytol (12, 15, 59). 
Figure 2A shows representative quantitative T2-MRI maps of 
a high-grade inflamed glioma allograft (a mouse flank model) 
before (top) and 24 h after ferumoxytol infusion (bottom). The 
T2 histograms on Figure 2B show a clear decrease in tumoral 
T2-rerelaxation times after 24 h of SPION injection (from 58 to 
44 ms), with all iron being completely localized intracellularly 
in TAMs. The same effect can be seen in humans; a residual 
reduction in T2-relaxation times in inflamed cancerous lesions 
can sometimes be observed a week after ferumoxytol adminis-
tration (15, 19, 60).

COnCLUSiOn AnD FUTURe DiReCTiOnS

Nanotechnology and nanomedicine have been increasingly 
utilized in translational and clinical practice in the past 
decade. This development has been supported by both federal 
and pharmaceutical funds, ever since, in 2004, the National 
Cancer Institute announced the Alliance for Nanotechnology 
in Cancer (61). The majority of nanoparticle research in 
cancer is focused on the targeted drug delivery of chemothera-
peutic drugs, mostly for increasing tumor accumulation and 
decreasing systemic toxicity (62). Recently, an exciting area of 
nanomedicine has evolved, known as theranostics, based on 
the idea that the same drug carriers can be design as potent 
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FiGURe 2 | (A) T2-weighted magnetic resonance imaging (MRI) maps showing spatial distribution of nanoparticles (as dark signal intensities) in a high-grade glioma 
inflamed allograft in a mouse; (B) quantitative assessment of T2-weighted MRI presented as spatial T2 histograms with a T2 pre-contrast tumoral value of 58 ms; 
and 44 ms post-contrast. Pre-contrast images/histograms (top) and post-superparamagnetic iron oxide nanoparticle data (bottom) are 24 h apart.
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imaging agents (63–65). SPIONs are increasingly used for 
T2wMRI in oncology, including fast-evolving macrophage 
imaging. Macrophage-driven uptake of iron allows for the 
non-invasive assessment of the tissue inflammation status in 
cancer, diabetes, and ischemia/reperfusion injury. In the future, 
the same SPIONs can be loaded with an anti-inflammatory or 
chemotherapeutic agent to selectively deliver a therapy to the 
inflamed lesion.

An alternative to the use of SPION agents is the use of per-
fluocarbons that can be visualized for fluorine (19F) magnetic 
resonance spectroscopy (MRS) for cell tracking of inflammatory 
cells (66). Some limitations to the 19F-MRS application include 
low sensitivity to the target (usually, in the millimolars range). 
Another alternative might arise from the use of hyperpolarized 
13C-arginine by 13C-MRS (67), since upregulated expression of 
arginase has been found in M2-like macrophages. However, the 
hyperpolarized 13C-MRS approach is technically and clinically 
challenging and available only at the very limited number of 
academic hospitals. For PET, the uptake of radioactive glucose 
analog (18F-fluoro-deoxyglucose) by inflamed tissue is well 
known, but unfortunately, is rather non-specific since the 
tumor cells also have elevated glucose uptake (68, 69). Most 
recent studies try to use a specific 18F-tracer for the translocator 
protein to image activated microglial cells and, possibly, TAMs 
in inflamed gliomas (70). But, as of today, the SPION-based 
T2-MRI approach appears to be clinically the most feasible path 
to image TAMs and to follow the response to anti-inflammatory 
treatment non-invasively. In the future, the combined PET/

MRI might be the best available option for human imaging, 
since the first multimodality scanners have recently became 
available (71). Ideally, the future imaging studies should be 
designed to non-invasively discriminate the protumor M2 
versus antitumor M1 macrophages, since this phenotyping 
might play a crucial role in assessing tumor response to novel 
checkpoint inhibitors and other immunotherapies (72). A 
non-invasive TAM imaging will enable to characterize the 
inflamed tumor microenvironment, selectively deliver novel 
anti-inflammatory and anticancer drugs, and monitor their 
efficacy non-invasively and in the real time, providing new 
horizons for oncological imaging well above the limitations of 
conventional “volumetric” criteria.
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