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Muscle synergies calculated from electromyography (EMG) data identify weighted groups

of muscles activated together during functional tasks. Research has shown that fewer

synergies are required to describe EMG data of individuals with neurologic impairments.

When considering potential clinical applications of synergies, understanding how EMG

data processing impacts results and clinical interpretation is important. The aim of this

study was to evaluate how EMG signal processing impacts synergy outputs during

gait. We evaluated the impacts of two common processing steps for synergy analyses:

low pass (LP) filtering and unit variance scaling. We evaluated EMG data collected

during barefoot walking from five muscles of 113 children with cerebral palsy (CP)

and 73 typically-developing (TD) children. We applied LP filters to the EMG data

with cutoff frequencies ranging from 4 to 40Hz (reflecting the range reported in prior

synergy research). We also evaluated the impact of normalizing EMG amplitude by unit

variance. We found that the total variance accounted for (tVAF) by a given number

of synergies was sensitive to LP filter choice and decreased in both TD and CP

groups with increasing LP cutoff frequency (e.g., 9.3 percentage points change for one

synergy between 4 and 40Hz). This change in tVAF can alter the number of synergies

selected for further analyses. Normalizing tVAF to a z-score (e.g., dynamic motor control

index during walking, walk-DMC) reduced sensitivity to LP cutoff. Unit variance scaling

caused comparatively small changes in tVAF. Synergy weights and activations were

impacted less than tVAF by LP filter choice and unit variance normalization. These

results demonstrate that EMG signal processing methods impact outputs of synergy

analysis and z-score based measures can assist in reporting and comparing results

across studies and clinical centers.
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INTRODUCTION

Muscle synergies have been used to describe the low-dimensional
sets of weighted muscle groups that are recruited during
functional tasks (Tresch and Jarc, 2009; Bizzi and Cheung,
2013). Prior research has theorized that the nervous system
uses these synergies as a simplified method of control, rather
than controlling each muscle individually. Recent research has
applied muscle synergies as a framework to evaluate altered
neuromuscular control in individuals with neurologic disorders.
Research on individuals with stroke and CP have shown that
fewer synergies are required to describe EMG data during
functional tasks compared to unimpaired individuals, and this
reduction in activation complexity may contribute to movement
impairments (Cheung et al., 2009b; Clark et al., 2010; Monaco
et al., 2010; Allen et al., 2013; Roh et al., 2013; Routson et al.,
2014; Steele et al., 2015). However, despite the general agreement
that synergy complexity is reduced in stroke and CP, there is no
consistent methodology for calculating muscle synergies. Prior
to calculating muscle synergies, raw EMG data are processed to
generate linear envelopes describing the activation of eachmuscle
during a task such as walking. In general, this process consists of
an initial filtering (e.g., high pass or band pass filtering), full wave
rectification, low pass (LP) filtering, and amplitude scaling. As
researchers investigate potential clinical applications of synergy
analyses, such as in clinical gait analysis, understanding the
impact of EMG preprocessing is important to compare across
studies or clinical centers.

Prior synergy research has used a wide variety of EMG
preprocessing methods. In particular, a wide range of LP filters
have been used to smooth EMG data, with LP cutoff frequencies
ranging from 1 (Muceli et al., 2010) to 40Hz (Torres-Oviedo and
Ting, 2010), and including many intermediate values including
4 (Clark et al., 2010), 10 (Steele et al., 2015), 20 (Cheung et al.,
2009a), 30 (Torres-Oviedo et al., 2006), or 35Hz (Sawers et al.,
2015). Despite this, there has been little research examining
how muscle synergy calculations are impacted by these LP filter
choices. Kleissen (1990) showed large differences in smoothness
and cycle-to-cycle variability in EMG envelopes from the gluteus
medius during gait when LP filtered at 3.4 or 25Hz. For synergies,
Van der Krogt et al. (2016) showed that the total variance
accounted for (tVAF) by a given number of synergies was reduced
with increasing LP cutoff frequency in children with CP for
EMG data LP filtered between 2 and 25Hz. Since tVAF is
commonly used to pick or choose the number of synergies for
further analysis (e.g., the number of synergies required for tVAF
> 90 or 95%), impacts of LP filtering on tVAF can further
impact conclusions about muscles that are activated together or
differences in synergies between control and clinical populations.
Hug et al. (2012) noted that the number of synergies required
to explain 90% of the variance in EMG data changed between
4, 10 and 15Hz LP filters. However, it has not been shown how
LP filters can affect calculated synergy weights, which describe
muscles commonly activated together, or synergy activation
curves, which describe how each synergy is activated over time.

After filtering, the processed EMG data amplitudes are often
scaled through one of several methods. These include peak

measured amplitude (Clark et al., 2010; Steele et al., 2015),
maximum voluntary contractions (Berger et al., 2013; Zelik
et al., 2014), or median trial maximums (Cheung et al., 2009b).
Additionally, for synergy analyses, prior research has scaled the
amplitude so that each muscle has unit variance (Torres-Oviedo
et al., 2006; Roh et al., 2013; Sawers et al., 2015). Unit variance
scaling has been applied to avoid larger representations of high-
variance muscles in the output synergy weights (Cheung et al.,
2009a). As with filter cutoff, the effects of amplitude scaling on
synergy outputs remains unclear.

To reduce potential impacts of EMGpreprocessing on synergy
results and facilitate comparison across studies or clinical centers,
some prior research has suggested normalizing data to a z-score.
For example, the dynamic motor control index during walking
(walk-DMC) provides a summarymeasure of synergy complexity
by normalizing tVAF by one synergy to the average and standard
deviation of a group of unimpaired individuals (Steele et al., 2015;
Schwartz et al., 2016). By normalizing to a group of controls from
a given clinic or research lab, walk-DMC may help to reduce the
impacts of different equipment, muscles, or EMG preprocessing
methods across institutions. walk-DMCdiffers between typically-
developing (TD) children and children with CP and is associated
with treatment outcomes for children with CP (Schwartz et al.,
2016). The impact of EMG processing on walk-DMC has not
been investigated.

The goal of this research was to examine how EMGprocessing,
specifically the choice of LP filter cutoff frequency and amplitude
scaling, affects synergy analyses for TD children and children
with CP. We evaluated how processing choices impact synergy
complexity, in terms of tVAF and walk-DMC. We also evaluated
how synergy weights and synergy activation curves change with
processing choices. We hypothesized that walk-DMC would be
more consistent across EMG processing conditions than tVAF,
and that synergy weights and activations would change across
processing parameters. Further, we hypothesized that both the
TD and CP children’s synergies would be similarly impacted
by processing choices. Understanding the impact of EMG data
processing on synergy outputs will help inform comparisons
between studies and guide future clinical applications of synergy
analyses.

METHODS

Human subjects’ approval was obtained from both the University
of Washington and the University of Minnesota for this study.

We retrospectively analyzed individuals who previously
received gait analysis at Gillette Children’s Specialty Healthcare.
For this study, we sought to identify 40 individuals with diplegic
CP, belonging to each of the Gross Motor Function Classification
System (GMFCS) Levels I, II, and III (120 total participants), who
had EMG data collected from five muscles during routine clinical
gait analysis. For GMFCS Level III, only 33 individuals met
these inclusion criteria. Data for TD children were obtained from
the control database at Gillette Children’s Specialty Healthcare.
Table 1 summarizes the demographic data for all participants in
this study.
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TABLE 1 | Study population.

N Sex Age Height Mass

F:M (year) (m) (kg)

TD 73 30:43 10.5 ± 3.5 1.44 ± 0.20 40.3 ± 13.3

GMFCS I 40 22:18 10.4 ± 4.8 1.35 ± 0.19 33.6 ± 15.6

GMFCS II 40 14:26 10.9 ± 5.8 1.34 ± 0.22 33.5 ± 15.9

GMFCS III 33 17:16 12.2 ± 9.4 1.28 ± 0.18 32.8 ± 21.9

N, number of participants; F, Female; M, Male; GMFCS, Gross Motor Function

Classification System.

Electromyography Data
Surface EMG data (Motion Laboratory Systems, Baton Rouge,
LA, USA) were collected at 1,080 Hz for five muscles
(rectus femoris, medial hamstrings, lateral hamstrings, medial
gastrocnemius, and tibialis anterior) during barefoot walking at
a self-selected speed. For each individual, one limb was randomly
selected for analysis. We took the middle 80% of the entire gait
trial to avoid transient accelerations and decelerations near the
beginning and end of the trial and maximize data for analysis
(Oliveira et al., 2014). Raw EMG data were band pass filtered
between 35 and 500Hz upon collection.

EMG data for each child were digitally processed with a high
pass (HP) filter and a set of varying LP filters (Figure 1). The filter
parameters were based upon prior studies of synergies during gait
(Torres-Oviedo et al., 2006; Cheung et al., 2009a; Clark et al.,
2010; Torres-Oviedo and Ting, 2010; Steele et al., 2015). The
pipeline for processing EMG data for synergy analysis involves
the following sequence: (1) HP filtering (40 Hz) to eliminate DC
drift and movement artifacts, (2) full wave rectification, and (3)
LP filtering to create a linear envelope of muscle activity. For
both filtering steps, we used 4th order Butterworth filters, which
have commonly been used in synergy analyses (Neptune et al.,
2009; Clark et al., 2010; Allen et al., 2013; Routson et al., 2014).
The specific LP cutoff frequencies evaluated were: 4, 6, 8, 10, 20,
30, and 40 Hz. Since maximum voluntary contractions are not
collected as part of clinical care at Gillette, EMG data were scaled
to the peak amplitude for each muscle. Since some prior synergy
analyses scale EMG data to unit variance, we also investigated
the impact of unit variance scaling with varying filter parameters.
Each EMG channel was scaled to unit variance across the walking
trial. After filtering and amplitude scaling, the EMG envelopes
were down-sampled to 100 Hz to reduce synergy computation
time.

Synergy Analysis
Synergies were calculated from the EMG data processed with
each filtering condition using non-negative matrix factorization
(NMF) (Figure 2). This method calculates a set of synergy
weights (Wmxn) and synergy activations (Cnxt), such that EMG =

W × C + error where n is the number of synergies (1–4 in
this study), m is the number of muscles (5 in this study), and
t is equal to the number of EMG data points. The error term
is defined as the difference between the filtered EMG data and
the EMG data reconstructed from the product of the synergy
weights and activations. We calculated synergies with NMF in

FIGURE 1 | Processing steps and filter parameters used in this study to

evaluate the impact of LP filter choice and amplitude normalization methods

on the results of synergy analyses. RF, rectus femoris; MH, medial hamstrings;

LH, lateral hamstrings; MG, medial gastrocnemius; AT, anterior tibialis.

Matlab (Statistics and Machine Learning Toolbox, MathWorks,
Inc., Natick, Massachusetts, United States) using the following
parameters: 50 replicates, 1,000 maximum iterations, a 1 × 10−4

minimum threshold for convergence, and a 1 × 10−6 threshold
for completion. Note that specific synergies were calculated
separately for each number of synergies specified. In other words,
a synergy from a 2-synergy solution may be different than all of
the synergies from a 3-synergy solution.

We used three measures to evaluate synergy complexity: (1)
the total variance accounted for (tVAF), (2) the number of
synergies required for tVAF > 90%, and (3) a z-score of tVAF
(walk-DMC). The tVAF by n synergies was defined as one minus
the ratio of the sum of squared errors to the sum of filtered EMG
data over all muscles (Equation 1, Ting and Macpherson, 2005).
Traditionally, tVAF is used to define the number of synergies to
evaluate in synergy analyses. For each LP filter, we used a t-test
to compare tVAF and a Mann-Whitney U-test to compare the
number of synergies between CP and TD groups.

tVAFn =



1−

[

∑t
j

∑m
i (error)2

]

[

∑t
j

∑m
i (EMG)2

]



 × 100% (1)

walk-DMC is a z-score based upon tVAF by one synergy (tVAF1,
Equation 2), and uses the average and standard deviation of
tVAF1 (tVAFAVG and tVAFSD) from unimpaired controls. Thus,
the average walk-DMC score for the TD group is 100, and each
10-point deviation represents one standard deviation from the
TD controls. Note that a higher tVAF1 results in a lower walk-
DMC score. For example, a walk-DMC of 80 indicates that an
individual’s tVAF1 during walking is two standard deviations
above the TD group, suggesting simplified control.

walk−DMC = 100+ 10

[

tVAFAVG − tVAF1

tVAFSD

]

(2)
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FIGURE 2 | Example data from a representative TD participant. (A) EMG data were processed with varying LP filter cutoffs. (B) Synergy weights (W) and activations (C)

were calculated for n = 1–4 synergies. (C) Total variance accounted for by n synergies provides a measure of synergy complexity and is often used to select a number

of synergies for further analysis (e.g., tVAF > 90%). RF, rectus femoris; MH, medial hamstrings; LH, lateral hamstrings; MG, medial gastrocnemius; AT, anterior tibialis.

To evaluate the effect of filter parameters on synergy weights and
activations, we calculated the correlation coefficients comparing
synergy weights and activations across all filter conditions. We
computed the average correlation coefficients between the W
matrices output by NMF for each of the LP filtering conditions.
Similarly, we computed the average correlation coefficients for
synergy activations between the Cmatrices output by NMF from
each of the LP filtering conditions.

Since some prior studies (Torres-Oviedo et al., 2006; Cheung
et al., 2009a) scale EMG data for each muscle to unit variance
before running NMF, we also evaluated the impact of unit
variance scaling on the resulting synergies. We compared the
outputs of synergy analyses performed with EMG scaled by unit
variance and by peak activation. We calculated the change in
average tVAF1 and walk-DMC with each LP filter condition
to examine the impact of unit variance scaling on synergy
complexity. Similarly, we calculated the correlation coefficients
in synergy weights (W) and activations (C) with each LP filter
condition between the unit variance and peak activation scaling
methods. Note that EMG may be scaled directly to unit variance
(Cheung et al., 2009a; Roh et al., 2013) or scaled to peak
amplitude and then to unit variance (Torres-Oviedo et al., 2006;
Hayes et al., 2014; Sawers et al., 2015) with equivalent synergy
outputs. In this paper, we first scaled to peak amplitude and then
to unit variance.

RESULTS

Synergy Complexity
LP filter cutoff frequency impacted synergy complexity, as
measured by tVAF. Varying the LP cutoff frequency from
4 to 40 Hz decreased tVAF1 by 9.6 percentage points (i.e.,
from 72.0 to 62.4%) for the TD group, and 9.4, 8.9, and 9.1
percentage points for the GMFCS Level I, II, and III groups,
respectively (Figure 3A). For individual participants, changes

in tVAF1 ranged from 2.2 to 15.1 percentage points across LP
filtering conditions. For more than one synergy, tVAF2−4 also
decreased with increasing LP cutoff frequency with an average
absolute reduction in tVAF of 6.5 percentage points for tVAF2, 3.8
percentage points for tVAF3, and 1.6 percentage points for tVAF4,
across all participants. Despite changes in tVAFn with LP cutoff
frequency, tVAF was still significantly greater in CP compared
to TD across all LP cutoff frequencies and numbers of synergies
(t-test, p < 0.01 for all comparisons).

Changes in tVAF influenced the choice of number of synergies
(Figure 3B). When we applied a threshold of tVAF > 90% to
identify the number of synergies, only 27% of individuals with
CP and 52% of TD had the same the number of synergies
across all LP cutoff frequencies (Figure 4). The average number
of synergies during walking with the 90% tVAF threshold was
2.12 (0.58) and 2.89 (0.36) for CP and TD groups when we
applied a 4Hz LP cutoff frequency, vs. 2.88 (0.43) and 3.37
(0.49) with a 40Hz LP cutoff frequency. However, the number
of synergies was significantly less in CP compared to TD across
all LP cutoff frequencies (Mann-Whitney U-test, p < 0.01 for
all cutoff frequencies). A total of 69% of children with CP and
44% of the TD group increased the number of synergies by one
with increasing LP cutoff frequency, while 4% increased by two
synergies in both groups. Increasing LP cutoff frequency did not
always lead to a greater number of synergies; four TD children
decreased the number of synergies with increasing LP cutoff
frequency.

Walk-DMC reduced the impact of LP cutoff frequency on
synergy complexity. Between 4 and 40 Hz, GMFCS Levels I,
II, and III average walk-DMC scores increased by 1.7, 1.6, and
3.3 points, respectively (Figure 3C). Since walk-DMC normalizes
tVAF1 based upon the mean and standard deviation of the
TD group, the TD group’s average walk-DMC does not change
(average of 100 with a 10 point standard deviation). For
individual participants, the change in walk-DMC with LP cutoff
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FIGURE 3 | Average ± one standard deviation of (A) total variance accounted

for by one synergy (tVAF1 ), (B) number of synergies for tVAF > 90%, and (C)

walk-DMC across LP cutoff frequencies for TD and CP groups. As LP filter

cutoff frequency increased, tVAF decreased and number of synergies

increased for all groups. Average walk-DMC scores had minimal changes

across LP cutoff frequencies.

frequency ranged from <0.01 to 15.4 points with an average
change of 4.0 points. Some individual’s walk-DMC increased with
increasing LP cutoff frequency, while others decreased.

Synergy Weights
Similar to tVAF, changes in LP cutoff frequency also impacted
synergy weights. Synergy weights calculated with a 4 and 40 Hz
LP filter had an average correlation coefficients of 0.68, 0.87, 0.93,
and 0.92 for 1–4 synergies, respectively (Figure 5). The average
correlation coefficients by group were 0.68, 0.89, 0.94, and 0.93
for the TD children for 1–4 synergies, respectively; 0.69, 0.86,
0.94, and 0.92 for GMFCS Level I; 0.63, 0.85, 0.92, and 0.91
for GMFCS Level II; and 0.68, 0.86, 0.90, and 0.90 for GMFCS
Level III. For an individual participant, the minimum correlation
coefficient of synergy weights across LP cutoff frequencies was
<0.01, 0.09, 0.47, and 0.57 for 1–4 synergies. Between 4 and
40Hz, the correlation coefficient was>0.8 for 56, 20, 11, and 17%
of all individuals for 1–4 synergies.

Synergy Activations
Synergy activations calculated with 4 or 40Hz LP filters had an
average correlation coefficient of 0.79, 0.78, 0.78, and 0.74 across
all participants for 1–4 synergies, respectively (Figure 5). The
average correlation coefficients were 0.79, 0.81, 0.81, and 0.78 for
the TD children for 1–4 synergies, respectively; 0.79, 0.78, 0.79,
and 0.74 for GMFCS Level I; 0.79, 0.76, 0.76, and 0.72 for GMFCS
Level II; and 0.79, 0.75, 0.74, and 0.70 for GMFCS Level III. For
an individual participant, the minimum correlation coefficient of
synergy activations across LP cutoff frequencies was 0.51, 0.23,
0.40, and 0.45 for 1–4 synergies.

Unit Variance
Scaling EMG data to unit variance impacted synergy complexity,
structure, and activations. Scaling to unit variance had a variable
impact on tVAF1, increasing tVAF1 for some children and
decreasing tVAF1 for others when compared to peak amplitude
scaling (average difference across all participants: 1.7, SD 1.6
percentage points). However, group average tVAF1 changed
only slightly with unit variance scaling, with a maximum
change of 1.3 percentage points for TD with a 4 Hz LP filter
(Figure 6A). Changes in walk-DMC due to unit variance scaling
were largest with a 4 Hz LP filter with increases of 4.0, 5.4,
and 6.2 points for GMFCS Levels I, II, and III and smallest
with a 40 Hz LP with group changes of 1.0, 1.1, and -0.7
points, respectively (Figure 6B). The synergy weights correlation
coefficients calculated with and without unit variance scaling
were lowest for one synergy and decreased with greater LP cutoff
frequency (Figure 6C). Synergy activations were similar between
scaling methods and correlation coefficients slightly decreased
with increasing LP filter cutoff (Figure 6D).

For EMG data scaled to unit variance, LP cutoff frequency
caused slightly larger changes in tVAF1, with an average change of
10.5 percentage points between 4Hz and 40Hz LP filters. When
we applied a threshold of tVAF > 90% to choose the number of
synergies, 12% of children with CP and 11% of TD children had
the same the number of synergies across all LP cutoff frequencies.
Changes in walk-DMC were similar with changes of 1.2, 2.8,
and 3.7 points for GMFCS Levels I, II, and III, respectively. The
correlation coefficients of synergy weights were higher with unit
variance scaling than EMG data normalized by peak amplitude,
with average correlation coefficients of 0.90, 0.94, 0.95, and 0.96
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FIGURE 4 | Number of synergies required for tVAF > 90%. Each TD and CP group is shown as the percentage of the total number of individuals in that group. As LP

cutoff frequency increased the number of synergies increased for all groups.

FIGURE 5 | Correlation coefficients of synergy weights and synergy activations between LP cutoff frequencies, averaged across all subjects (TD and CP) for one to

four synergies.

for 1–4 synergies comparing 4Hz and 40Hz LP filters. The
correlation coefficients of synergy activations were also slightly
higher than EMG data normalized by peak amplitude, with
average correlation coefficients of 0.81, 0.81, 0.79, and 0.77 for
1–4 synergies comparing 4Hz and 40Hz LP filters.

DISCUSSION

A z-score normalized measure of synergy complexity, walk-
DMC, was more stable across LP filter parameters than tVAF
or number of synergies. For both TD and CP children,
tVAF decreased with increasing LP cutoff. Amplitude scaling
of EMG data had smaller effects than LP filter choice on
synergy complexity. These results highlight one disadvantage
of using tVAF thresholds (i.e., tVAF > 90%) to identify the
number of synergies for further analyses. Since tVAF is sensitive
to filtering parameters, different studies may report different
synergy numbers and co-activation patterns, depending on their

choice of LP cutoff frequency. Despite the sensitivity of tVAF
to LP cutoff, the TD and CP groups were significantly different
across all LP filters for all measures of synergy complexity.
These results suggest that z-score measures may be useful for
comparing synergy results across studies or clinical centers.
However, z-score normalization requires EMG data from TD or
control participants, whichmay not be available at all institutions.
Similarly, caution should be exercised when picking a single
tVAF threshold for selecting number of synergies or comparing
number of synergies across studies.

The choice of LP filter also affected individual muscle
contributions (muscle weights) within each synergy. Synergy
weights for solutions with fewer synergies (e.g., n = 2 synergies)
were more sensitive to LP cutoff. Increasing the number of
synergies increased similarity of synergy weights since fewer
muscles were activated together in each synergy. In this study
we used a clinical dataset with EMG data from five muscles. We
anticipate that the impacts of LP filter choice on synergy weights
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FIGURE 6 | Average change in (A) tVAF and (B) walk-DMC for synergies

calculated with EMG data scaled by peak activation or unit variance. Positive

values indicate that results from unit variance scaling were greater than peak

activation scaling. Average correlation coefficients of (C) synergy weights and

(D) synergy activations between EMG data scaled by peak activation or unit

variance.

may be greater for datasets that have more muscles, since more
muscles would be activated together in each synergy (Steele et al.,
2013). Our results support work by Chvatal and Ting (2012) who
demonstrated that further smoothing EMG data LP filtered at
40 Hz by subsequently averaging across bins ranging from 10

to 200 ms resulted in similar synergy weights (similarity >0.85
for the selected number of synergies with a threshold of tVAF >

85%). The correlation coefficients of the synergy activation curves
also decreased with increasing LP filter cutoff. The decrease in
correlation with increasing LP cutoff for the activation curves is
reflective of the input EMG data, which retains additional high
frequency components when processed with a higher LP filter
(Figure 2).

The choice of amplitude scaling between unit variance and
peak amplitude also impacted the individual muscle weights
within each synergy. Synergy weights and activations were more
similar across LP filter conditions for EMG data scaled to unit
variance than peak amplitude, since scaling by unit variance
reduces differences between muscles that may impact synergy
weights and activations. All amplitude scaling methods involve
applying a unique scaling factor to each EMG channel, which
impacts the scaling of calculated synergy weights. Note that
scaling to unit variance negates the effects of any previous scaling
(e.g., peak amplitude or maximum voluntary contraction). As
with LP filter choice, analyses that calculated fewer synergies
(e.g., n = 2 synergies) were more sensitive to amplitude
scaling. The stronger influence of EMG processing methods on
synergy solutions with fewer synergies is especially important for
evaluations of clinical populations, which typically have reduced
synergy complexity compared to control populations.

Just as we found a range of LP filters used in prior research,
we also found a range of HP filters used before rectification,
including 40Hz (Bowden et al., 2010; Clark et al., 2010; Routson
et al., 2014), 35Hz (Torres-Oviedo and Ting, 2010; Sawers
et al., 2015), and 20Hz (Hug et al., 2012; Van der Krogt
et al., 2016). We could not explore the effects of HP filter
choice with our dataset since our data were originally recorded
with an on-board 35 Hz HP filter. However, the International
society of Electrophysiology and Kinesiology (ISEK) currently
recommends a HP filter from 5 to 10Hz (Merletti and Torino,
1999). De Luca et al. (2010) found that a 20 Hz HP filter was
the best compromise between eliminating movement artifacts
and retaining EMG power. HP filters primarily act to reduce
DC drift in the EMG signal due to motion artifact and other
nonphysiological signals. Consequently, we do not expect large
impacts from HP filters on synergies, but the precise impacts of
HP filtering on synergy analyses remain an open question.

Beyond filter cutoff frequency and amplitude scaling methods,
there are other EMG preprocessing choices we did not explore,
including filter type and filter order. Devaprakash et al. (2016)
compared a 2nd order critically damped filter to a 2nd order
Butterworth filter with consistent cutoff frequencies and found
only small differences in the EMG data that did not affect clinical
interpretation. (De Luca et al., 2010) found >1% difference in
root mean square difference between EMG profiles processed
with 2nd or 3rd order Butterworth filters. Taken together, these
results suggest that filter choice and order are less significant than
LP cutoff frequency for EMG and synergy analyses.

Given the wide variety of EMG data processing methods
used in prior research, exploring and discussing the underlying
biological mechanisms that should inform the choice of filters
and synergy analyses methods would be useful for future

Frontiers in Computational Neuroscience | www.frontiersin.org 7 June 2017 | Volume 11 | Article 50

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Shuman et al. Electromyography Data Processing Impacts Synergies

research. Current EMG data processing methods are largely
based upon technical specifications. Prior work has found
that LP filters should be tailored to the specific task (Shiavi
et al., 1998; Hug, 2011). However, there is a need to explore
the neurophysiology underlying synergy analyses, especially
considering some of the limitations of surface EMG data (Farina
et al., 2004). For example, if synergies are driven by an underlying
central pattern generator, what are the rates of these reflex
loops, and how can these biological processes inform data
preprocessing and interpretation of synergy analyses? If central
pattern generators are driven by low-frequency mechanisms,
then perhaps low-frequency LP cutoff frequencies are more
appropriate. Future research, such as newly developed methods
with direct central nervous system recordings and surface EMG
data may assist in understanding these relationships (Godlove
et al., 2016).

Output measures of synergy analyses including tVAF,
synergies weights, and synergy activations were sensitive
to EMG processing methods. We found that increasing
LP filter cutoff frequency decreased synergy complexity,
as measured by tVAF. Since tVAF is commonly used to
identify the number of synergies, LP filter choice can impact
conclusions about the number of synergies and muscle co-
activation patterns from synergy analyses. Synergy weights
and activations are less sensitive to LP cutoff frequency
when calculated for two or more synergies. Future studies
of synergy analyses and potential clinical applications should

carefully consider and report EMG processing methods to
enable comparisons across studies and institutions. As synergy
analysis is adopted in clinical gait analysis to inform treatment
planning, these results highlight the importance of carefully
considering EMG processing methods and the utility of a
control database. We found that z-score based measures,
such as walk-DMC, that compare to control populations can
reduce sensitivity to LP filter choice and facilitate comparisons
between studies and clinical centers with different EMG
protocols.
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