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Contemporary modeling approaches to the dynamics of neural networks include

two important classes of models: biologically grounded spiking neuron models and

functionally inspired rate-based units. We present a unified simulation framework

that supports the combination of the two for multi-scale modeling, enables the

quantitative validation of mean-field approaches by spiking network simulations, and

provides an increase in reliability by usage of the same simulation code and the

same network model specifications for both model classes. While most spiking

simulations rely on the communication of discrete events, rate models require

time-continuous interactions between neurons. Exploiting the conceptual similarity to

the inclusion of gap junctions in spiking network simulations, we arrive at a reference

implementation of instantaneous and delayed interactions between rate-based models

in a spiking network simulator. The separation of rate dynamics from the general

connection and communication infrastructure ensures flexibility of the framework. In

addition to the standard implementation we present an iterative approach based on

waveform-relaxation techniques to reduce communication and increase performance for

large-scale simulations of rate-based models with instantaneous interactions. Finally we

demonstrate the broad applicability of the framework by considering various examples

from the literature, ranging from random networks to neural-field models. The study

provides the prerequisite for interactions between rate-based and spiking models in a

joint simulation.

Keywords: rate models, spiking neural network simulator, stochastic (delay) differential equations, waveform

relaxation, parallelization, supercomputing

1. INTRODUCTION

Over the past decades, multiple strategies of neural network modeling have emerged in
computational neuroscience. Functionally inspired top-down approaches that aim to understand
computation in neural networks typically describe neurons or neuronal populations in terms
of continuous variables, e.g., firing rates (Hertz et al., 1991; Schöner et al., 2015). Rate-based
models originate from the seminal works by Wilson and Cowan (1972) and Amari (1977) and
were introduced as a coarse-grained description of the overall activity of large-scale neuronal
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networks. Being amenable to mathematical analysis and
exhibiting rich dynamics such as multistability, oscillations,
traveling waves, and spatial patterns (see e.g., Roxin et al., 2005),
rate-based models have fostered progress in the understanding
of memory, sensory and motor processes including visuospatial
working memory, decision making, perceptual rivalry, geometric
visual hallucination patterns, ocular dominance and orientation
selectivity, spatial navigation, and movement preparation
(reviewed in Coombes, 2005; Bressloff, 2012; Kilpatrick, 2015).
On the brain scale, rate models have been used to study resting-
state activity (Deco et al., 2011) and hierarchies of time scales
(Chaudhuri et al., 2015). Ideas from functional network models
have further inspired the field of artificial neuronal networks in
the domain of engineering (Haykin, 2009).

In contrast, bottom-up approaches are motivated by the
microscopic dynamics of individual neurons. Biophysically
grounded spiking neuron models that simulate the time
points of action potentials can explain a variety of salient
features of microscopic neural activity observed in vivo,
such as spike-train irregularity (Softky and Koch, 1993;
van Vreeswijk and Sompolinsky, 1996; Amit and Brunel, 1997;
Shadlen and Newsome, 1998), membrane-potential fluctuations
(Destexhe and Paré, 1999), asynchronous firing (Brunel, 2000;
Ecker et al., 2010; Renart et al., 2010; Ostojic, 2014), correlations
in neural activity (Gentet et al., 2010; Okun and Lampl, 2008;
Helias et al., 2013), self-sustained activity (Ohbayashi et al.,
2003; Kriener et al., 2014), rate distributions across neurons
(Griffith and Horn, 1966; Koch and Fuster, 1989; Roxin et al.,
2011) and across laminar populations (Potjans and Diesmann,
2014), as well as resting state activity (Deco and Jirsa, 2012).
Furthermore, in population-density approaches, statistical
descriptions of neuronal populations neglect the identities of
individual neurons and describe the dynamics of homogeneous
populations in terms of probability densities (reviewed e.g.,
Deco et al., 2008). These approaches capture the time-dependent
population activity enabling the investigation of phenomena
like desynchronization (de Kamps, 2013) and computational
properties of cortical circuits (Cain et al., 2016).

Simulation of rate-based models goes back to the
works by Grossberg (1973), McClelland and Rumelhart
(1981), Feldman and Ballard (1982), and the PDP group
(Rumelhart et al., 1986). Various specialized tools have
developed since then (O’Reilly, 2014), such as PDP++
(McClelland and Rumelhart, 1989; O’Reilly et al., 2000),
the Neural Simulation Language (Weitzenfeld et al., 2002),
emergent (O’Reilly et al., 2012), the simulation platform DANA
(Rougier and Fix, 2012), TheVirtualBrain (Sanz Leon et al.,
2013), Topographica (Bednar, 2009) and the Neural Field
Simulator (Nichols and Hutt, 2015). Similarly, efficient
simulators for population-density approaches (MIIND:
de Kamps et al., 2008, DiPDE: Cain et al., 2016) as well as
spiking neural networks (see Brette et al., 2007 for a review)
have evolved. The foci of the latter range from detailed
neuron morphology (NEURON: Carnevale and Hines, 2006,
GENESIS: Bower and Beeman, 2007) to an abstraction of
neurons without spatial extent (NEST: Bos et al., 2015, BRIAN:
Goodman and Brette, 2013). Such open-source software,

combined with interfaces and simulator-independent languages
(Davison et al., 2008; Djurfeldt et al., 2010, 2014), supports
maintainability, reproducibility, and exchangeability of models
and code, as well as community driven development. However,
these tools are restricted to either rate-based or spike-based
models only.

The situation underlines that bottom-up and top-down
strategies are still mostly disjoint and a major challenge in
neuroscience is to form a bridge between the spike- and
rate-based models (Abbott et al., 2016), and, more generally,
between the fields of computational neuroscience and cognitive
science. From a practical point of view, a common simulation
framework would allow the exchange and the combination of
concepts and code between the two descriptions and trigger
interaction between the corresponding communities. This is
in particular important since recent advances in simulation
(Djurfeldt et al., 2008; Hines et al., 2008; Kumar et al., 2010;
Hines et al., 2011; Helias et al., 2012; Kunkel et al., 2014) and
computing technology (Jülich Supercomputing Centre, 2015;
Miyazaki et al., 2012) enable full-density bottom-up models of
complete circuits (Potjans and Diesmann, 2014; Markram et al.,
2015). In particular, it has become feasible to build spiking
models (Schmidt et al., 2016) that describe the samemacroscopic
system as rate-based descriptions (Chaudhuri et al., 2015).

The relation between the different model classes is one
focus of theoretical neuroscience. Assuming homogeneity across
neurons, population-density methods reformulate the spiking
dynamics as a dynamical equation for the probability density that
captures the time evolution of the population activity (Knight,
1972; Gerstner, 1995, 2000). Under certain assumptions allowing
the neglect of fluctuations in the input to neurons, a set of
coupled differential equations for the population-averaged firing
rate and membrane potential can be derived (Montbrió et al.,
2015). For asynchronous irregular activity, input fluctuations
can be taken into account in a diffusion approximation which
leads to Fokker-Planck mean-field theory that can be used to
determine homogeneous stationary state activities of spiking
networks (Siegert, 1951; Brunel, 2000). The Fokker-Planck ansatz
is, however, not limited to the population level, but can yield
an heterogeneous stationary state firing rate across individual
neurons in the network (Sadeh and Rotter, 2015). The dynamics
of rate fluctuations around the background activity can be
obtained using linear response theory on the population level
(Brunel and Hakim, 1999) or the level of individual neurons
(Lindner et al., 2005; Ostojic and Brunel, 2011; Trousdale et al.,
2012; Grytskyy et al., 2013; Schuecker et al., 2015) yielding
effective rate models on the population or single-neuron
level. An alternative to linear response theory is given by
moment expansions for mode decompositions of the Fokker-
Planck operator (Mattia and Del Guidice, 2002, 2004; Deco et al.,
2008).

An alternative derivation of rate-based dynamics aims at a
closure of equations for synaptic currents of spiking networks
in a coarse-graining limit by replacing spiking input with
the instantaneous firing rate (Bressloff, 2012). Using field-
theoretical methods (Buice and Chow, 2013) that were originally
developed for Markovian network dynamics (Buice and Cowan,
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2007; Buice et al., 2010) allows a generalization of this approach
to fluctuations in the input (Bressloff, 2015).

In any case, the cascade of simplifications from the original
spiking network to the rate-based model involves a combination
of approximations which are routinely benchmarked in
comparative simulations of the two models. A unified code base
that features both models would highly simplify these validations
rendering duplication of code obsolete.

In many cases rate models represent populations of spiking
neurons. Thus, a hybrid model, employing both types of models
in a multi-scale modeling approach, would contain a relatively
large number of spiking neurons compared to the number of rate
units. Despite the large size of the spiking network, the dynamics
still features finite-size fluctuations (Ginzburg and Sompolinsky,
1994; Meyer and van Vreeswijk, 2002; Mattia and Del Guidice,
2004; Helias et al., 2013; Schwalger et al., 2016), and a
downscaling of the network can generally not be performed
without changing correlations (van Albada et al., 2015). Thus,
it is crucial that a common simulation framework is able to
handle real-sized spiking networks. In addition, the employed
mean-field theories exploit the large number of neurons in
biological networks. In fact, they are strictly valid only in the
thermodynamic limit N → ∞ (Helias et al., 2014). Therefore, in
the above mentioned validation studies, the spiking networks are
typically large. Thus, a common simulation framework should
be optimized for spiking neurons rather than rate-based models.

Current spiking network simulators solve the neuronal
dynamics in a distributed and parallel manner. They exploit
the point-event like nature of the spike interaction between
neurons, for example in event-based simulation schemes. Here,
the term event-based denotes the update scheme of synapses.
In contrast, for the neuron dynamics a globally time-driven
update scheme is more beneficial due to the large total number of
incoming events per neuron (Morrison et al., 2005). Moreover,
a purely event-driven scheme cannot be efficiently distributed
since it requires a central event queue (Hanuschkin et al., 2010).
Spiking point-neuron models furthermore interact in a delayed
fashion. The delays mimic the synaptic transmission and the
propagation times along axons and dendrites. For the duration
of the minimal delay dmin in a network, the dynamics of
all neurons is decoupled. Hence, during dmin, the neurons
can be updated independently without requiring information
from other neurons. Distributed processes therefore need to
communicate spikes only after this period (Morrison et al.,
2005). Due to considerable latencies associated with each
communication, this scheme significantly improves performance
and scalability of current simulators. Although rate-basedmodels
require communication of continuous state variables, the dmin-
communication scheme can be used if these interactions have a
delay. However, many rate based-models consider instantaneous
interactions between units (see Bressloff, 2012, and references
therein), typically for analytical convenience in quasi-static
situations where delays do not matter. A priori, these interactions
require communication between units at each time step.

The present study provides the concepts and a reference
implementation for the embedding of continuous-time dynamics
in a spiking network simulator. To exploit existing functionality

we choose as a platform the open source simulation code
NEST (Gewaltig and Diesmann, 2007; Bos et al., 2015) which
is a scalable software used on machines ranging from laptops
to supercomputers. The software is used by a considerable
user community and equipped with a Python interface,
supports the construction of complex networks, and shields
the neuroscientist from the difficulties of handling a model
description, potentially including stochastic components,
in a distributed setting (Morrison et al., 2005; Plesser et al.,
2015). Within this framework we introduce an iterative
numerical solution scheme that reduces communication
between compute nodes. The scheme builds on the waveform-
relaxation technique (Lelarasmee, 1982) already employed for
gap-junction interactions (Hahne et al., 2015).

Our study begins with a brief review of numerical solution
schemes for ordinary and stochastic (delay) differential
equations in Section 2 and their application to neural networks
in Section 2.2. Subsequently, we develop the concepts for
embedding rate-based network models into a simulation code
for spiking networks, adapt the waveform-relaxation scheme,
and detail an extendable implementation framework for rate
models in terms of templates (Section 2.3). In Section 3, different
numerical schemes are evaluated as well as the scalability of our
reference implementation. We illustrate the applicability of the
framework to a broad class of network models on the examples
of a linear network model (Grytskyy et al., 2013), a nonlinear
network model (Sompolinsky et al., 1988; Goedeke et al., 2016),
a neural field model (Roxin et al., 2005), and a mean-field
description (Wong and Wang, 2006) of the stationary activity
in a model of the cortical microcircuit (Potjans and Diesmann,
2014; Schuecker et al., 2017). Straight-forward generalizations
are briefly mentioned at the end of the Results section, before the
work concludes with the Discussion in Section 4. The technology
described in the present article will be made available with one
of the next major releases of the simulation software NEST as
open source. The conceptual and algorithmic work is a module
in our long-term collaborative project to provide the technology
for neural systems simulations (Gewaltig and Diesmann, 2007).

2. MATERIALS AND METHODS

Rate-based single neuron and population models are described
in terms of differential equations that often include delays and
stochastic elements. Before we turn to the implementation of
such models in computer code (Section 2.3) we review how such
systems are mathematically solved and in particular how the
stochastic elements are commonly interpreted with the aim to
avoid an ad-hoc design. A stochastic differential equation (SDE)
is defined by the corresponding stochastic integral equation. Let
W(t) denote a Wiener process, also called Standard Brownian
motion. For the initial condition X(t0) = X0 an Itô-SDE in its
most general form satisfies

X(t) = X0 +
∫ t

t0

a(s,X(s)) ds+
∫ t

t0

b(s,X(s)) dW(s) , (1)

where the second integral is an Itô integral
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∫ t

t0

Y(s) dW(s) := lim
n→∞

n∑

i= 1

Yi− 1 · (Wi −Wi− 1)

with Yi = Y(t0+ i · t−t0
n ) andWi = W(t0+ i · t−t0

n ). Alternatively,
the second integral can be chosen as a Stratonovich integral,
indicated by the symbol ◦,

∫ t

t0

Y(s) ◦ dW(s) := lim
n→∞

n∑

i= 1

Yi− 1 + Yi

2
(Wi −Wi− 1)

which approximates Y(s) with the mid-point rule. In this case,
the corresponding SDE is called a Stratonovich-SDE. We refer to
Kloeden and Platen (1992) and Gardiner (2004) for a derivation
and a deeper discussion on the differences between the two types
of stochastic integrals. In the case of additive noise (b(t,X(t)) =
b(t)) the Itô and Stratonovich integrals coincide. If furthermore
the noise is constant (b(t,X(t)) = σ = const.) the integrals can
be solved analytically

∫ t

t0

σ dW(s) =
∫ t

t0

σ ◦ dW(s) = lim
n→∞

σ ·
n∑

i= 1

(Wi −Wi− 1)

= σ · (W(t)−W(t0))

withW(t)−W(t0) ∼ N (0, t − t0). In the following, we focus on
Itô-SDEs only.
The differential notation corresponding to Equation (1) reads

dX(t) = a(t,X(t)) dt + b(t,X(t)) dW(t) (2)

and denotes an informal way of expressing the integral equation.
Another widely used differential notation, called the Langevin
form of the SDE, is mostly employed in physics. It reads

dX(t)

dt
= a(t,X(t))+ b(t,X(t)) ξ (t) , (3)

where ξ (t) is a Gaussian white noise with 〈ξ (t)〉 = 0 and
〈ξ (t)ξ (t′)〉 = δ(t − t′). Using the Fokker-Planck equation one
obtains

∫ t

0
ξ (t′)dt′ = W(t) ,

which is a paradox, as one can also show that W(t) is
not differentiable (Gardiner, 2004, Chapter 4). Mathematically
speaking this means that Equation (3) is not strictly well-defined.
The corresponding stochastic integral equation

X(t) = X0 +
∫ t

t0

a(s,X(s)) ds+
∫ t

t0

b(s,X(s)) ξ (s) ds ,

however, can be interpreted consistently with Equation (1) as
dW(t) ≡ ξ (t)dt.

2.1. Approximate Numerical Solution of
SDEs
Similar to ordinary differential equations most stochastic
differential equations cannot be solved analytically. Neuroscience
therefore relies on approximate numerical schemes to obtain
the solution of a given SDE. This section presents some basic
numerical methods. Let 1t denote the fixed step size, tk = t0 +
k1t the grid points of the discretization for k = 0, . . . , n, and Xk

the approximation for X(tk) obtained by the numerical method,
at which X0 is the given initial value. We consider systems of N
stochastic differential equations:

dX(t) = a(t,X(t)) dt + b(t,X(t)) dW(t) (4)

with initial condition X(t0) = X0. Here, X(t) =
(X1(t), . . . ,XN(t)) and W(t) = (W1(t), . . . ,WN(t)) denote
N-dimensional vectors and a : R

N → R
N and b : R

N → R
N

are N-dimensional functions. W(t) is an N-dimensional Wiener
process, i.e., the components Wi(t) are independent and
identically distributed.

2.1.1. Euler-Maruyama
The Euler-Maruyama method is a generalization of the forward
Euler method for ordinary differential equations (ODE).
Accordingly, it approximates the integrands in Equation (1) with
their left-sided values. The update formula reads

Xk+ 1 = Xk + a(tk,Xk) ·1t + b(tk,Xk) ·1Wk (5)

with1Wk = W(tk+1)−W(tk) ∼ N (0,1t) for k = 0, . . . , n− 1.

2.1.2. Semi-Implicit Euler
The (semi-)implicit Euler method is a generalization of the
backwards Euler method for ODEs. The update formula reads

Xk+ 1 = Xk + a(tk+ 1,Xk+ 1) ·1t + b(tk,Xk) ·1Wk. (6)

The resulting scheme requires the solution of a system of
nonlinear algebraic equations. Standard techniques for the
solution of the system are Newton iteration and fixed-point
iteration (Kelley, 1995). The method is sometimes called semi-
implicit, because the function b is still evaluated at (tk,Xk) instead
of (tk+1,Xk+1). However, a fully implicit Euler scheme for SDEs is
not practicable (see Kloeden and Platen, 1992, Chapter 9.8) and
thus the term implicit Euler usually refers to the semi-implicit
method and is used in the following.

2.1.3. Exponential Euler
The exponential Euler method relies on the assumption that
a(t,X(t)) consists of a linear part and a nonlinear remainder, i.e.,

a(t,X(t)) = A · X(t)+ f (t,X(t))

with A ∈ R
N×N . The idea is to solve the linear part exactly and to

approximate the integral of the nonlinear remainder and the Itô
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integral with an Euler-like approach. Variation of constants for
Equation (4) yields

X(t) = eA(t− t0)X0 +
∫ t

t0

eA(t− s)f (s,X(s)) ds

+
∫ t

t0

eA(t− s)b(s,X(s)) dW(s) .

There are several versions of stochastic exponential Euler
methods that differ in the approximation of the integrals.
Unfortunately a standardized nomenclature to distinguish
the methods is so far missing. The simplest approach,
sometimes named stochastic Lawson-Euler scheme (e.g.,
Komori and Burrage, 2014), approximates the integrands with
their left-sided values

Xk+ 1 = eA1tXk + eA1tf (tk,Xk) ·1t + eA1tb(tk,Xk) ·1Wk .

More advanced schemes approximate the nonlinear part by
keeping f (s,X(s)) constant for [t0, t) and solving the remaining
integral analytically

∫ t

t0

eA(t− s)f (s,X(s)) ds ≈
∫ t

t0

eA(t− s)f (t0,X(t0)) ds

= A−1(eA(t− t0) − I) · f (t0,X(t0)) .

Here I denotes the N × N identity matrix. The same technique
can be used for the Itô integral

∫ t

t0

eA(t− s)b(s,X(s)) dW(s) ≈
∫ t

t0

eA(t− s)b(t0,X(t0)) dW(s) .

(7)
For a single SDE, Shoji (2011) proposed a method where the

remaining integral
∫ t
t0
ea(t− s) dW(s) with a ∈ R is approximated

by
∫ t
t0
α dW(s), such that α ∈ R is chosen to minimize the

mean-square error. This results in a similar approximation as
for the nonlinear part. Komori and Burrage (2014) adapted this
approach for systems of SDEs. The scheme reads

Xk+ 1 = eA1tXk + A−1(eA1t − I) · f (tk,X(tk))

+ 1

1t
· A−1(eA1t − I) · b(tk,Xk) ·1Wk .

Alternatively, calculating the variance of X(t) within the
approximation (7), amounts to (Adamu, 2011)

Var
(
X(t)

)
= b(t0,X(t0))

2 · Var
(∫ t

t0

eA(t− s) dW(s)

)

= b(t0,X(t0))
2 · A−1

(
e2A(t− t0) − I

2

)
.

The corresponding scheme reads

Xk+ 1 = eA1tXk + A−1(eA1t − I) · f (tk,X(tk))

+
√
A−1

(
e2A1t − I

2

)
· b(tk,Xk) · ηk (8)

with ηk ∼ N (0, 1) and yields the exact solution of the system
if a(t,X(t)) = A · X(t) and b(t,X(t)) = const., since X(t) has
Gaussian statistics in this case (Risken, 1996). Therefore, in the
following we exclusively employ (Equation 8) and just refer to
it as the stochastic exponential Euler scheme. For more detailed
reviews on the different stochastic exponential Euler methods we
refer to Adamu (2011) and Komori and Burrage (2014).

2.2. Network of Rate Models
We now consider networks ofN rate-based units where each unit
receives recurrent input from the network. The system fulfills the
Itô-SDEs

τ idXi(t) =


−Xi(t) + µi + φ




N∑

j= 1

wijψ
(
Xj(t − dij)

)



 dt

+
√
τ iσ i dWi(t) i = 1, . . . ,N (9)

with possibly nonlinear input-functions φ(x) and ψ(x),
connection weights wij, mean input µi, and optional delays
dij ≥ 0. The corresponding Fokker-Planck equation shows that
the parameter σ i ≥ 0 controls the variance of Xi(t) and the time
constant τ i > 0 its temporal evolution. For readability, from
here on we omit unit indices for σ , τ ,µ, and d. The considered
class of rate models only contains additive noise. Therefore,
as noted above, the system (Equation 9) can be written as
Stratonovich-SDEs without the need for change in the employed
numerical methods. For an illustrative purpose we explicitly state
the different explicit solution schemes for the network dynamics
(Equation 9) with d = 0. The Euler-Maruyama update step reads

Xi
k+ 1 = Xi

k +


−Xi

k + µ+ φ




N∑

j= 1

wijψ
(
X
j

k

)



 1

τ
1t

+ 1√
τ
σ1Wi

k . (10)

The implicit Euler update formula evaluates X at k + 1 instead
of k within the square brackets. This turns Equation 10 into a
system of nonlinear algebraic equations for which the fixed-point
iteration

Xi,m+ 1
k+ 1 = 8(X1,m

k+ 1, . . . ,X
N,m
k+ 1) (11)

with initial value Xi,0
k+ 1 = Xi

k
and the choice of

8 =
Xi
k
+
[
µ+ φ

(∑N
j= 1 w

ijψ
(
X
j,m
k+ 1

))]
1
τ
1t + 1√

τ
σ1Wi

k

1+1t/τ
(12)

yields the solution.
For nonlinear φ(x) or ψ(x) the exponential Euler update step is

Xi
k+ 1 = e−1t/τXi

k +
(
1− e−1t/τ

)

µ+ φ




N∑

j= 1

wijψ
(
X
j

k

)





+
√
1

2
(1− e−21t/τ ) σηik (13)
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with ηi
k

∼ N (0, 1). As A = −I is a diagonal matrix, the
exponential Euler scheme does not rely on a matrix exponential,
but decomposes into N equations with scalar exponential
functions. Note that with a linear choice, φ(x) = ψ(x) = x, the
system of SDEs can be written in matrix notation

τdX(t) =
[
A · X(t)+ µ

]
dt +

√
τσdW(t) i = 1, . . . ,N

(14)
with A = −I + W and W = (wij)N×N . Here the stochastic
exponential Euler scheme (Equation 8) yields the exact solution
of the system.
The numerical schemes presented in Section 2.1 are developed
for SDEs (d = 0), but can analogously be used for stochastic delay
differential equations (SDDEs) (d > 0), if the delay d is a multiple
of the step size1t. For the calculation of the approximationXi

k+ 1

in time step k + 1 the recurrent input is then evaluated from d
1t

steps earlier, i.e., from X
j

k− d
1t

for the explicit methods.

2.3. Implementation in Spiking Network
Simulation Code
This section describes the embedding of rate-based models
(Section 2.2) in a simulation code for spiking neuronal
networks. The Appendix (Section A.2) illustrates how to create,
connect and record activity from rate models in our reference
implementation.

The software architecture for rate models is based on existing
concepts: Morrison et al. (2005) describe distributed buffers
for the storage of delayed interactions and the technique to
consistently generate random numbers in a distributed setting,
and Hahne et al. (2015) introduce so called secondary events,
that allow the communication of continuous state variables, like
membrane potentials or rates, between neurons or rate units
respectively. Events provide an abstraction layer on top of the
MPI communication which allows the implementation of neuron
models without explicit reference to MPI calls. Unlike primary
events which are used to transmit the occurrence of spikes at
discrete points in time, secondary events occur on a regular
time grid. These concepts are designed to be compatible with
the parallel and distributed operation of a simulation kernel
for spiking neuronal networks, ensuring an efficient use of
clusters and supercomputers (Helias et al., 2012). This allows
researchers to easily scale up network sizes to more realistic
number of neurons. The highly parallelizable structure ofmodern
simulation codes for spiking neuronal networks, however, also
poses restrictions on the utilizable numerical methods.

2.3.1. Parallelization and Restrictions
Parallelization for spiking neuronal networks is achieved by
distributing neurons over compute nodes. Since the dynamics of
spiking neurons (in the absence of gap junctions) is decoupled
for the duration of the minimal synaptic delay dmin of the
connections in the network, the states of the neurons can be
propagated independently for this time interval. Thus, it is
sufficient to specify solvers on the single-neuron level. The spike
times, i.e., the mediators of interaction between neurons, are then
communicated in steps of dmin.

As a result of this structure the global connectivity of the
network is unknown to the single neuron. The neuron object
sends and receives events handled by an object on the compute
node harboring the neuron termed network manager. However,
the network manager only knows the incoming connections of
the neurons on the compute node.

This poses restrictions on the use of implicit schemes. It is
impossible to employ the implicit Euler scheme (Equation 6) with
Newton iteration, which would require the simultaneous solution
of a system of nonlinear algebraic equations with information
distributed over all compute nodes. The use of the implicit Euler
scheme with fixed-point iteration is however compatible with
this structure. To this end, the scheme (Equation 6) needs to be
formulated as a fixed-point iteration on the single-unit level (see
Section 2.2) and the updated rates need to be communicated to
the connected units after every iteration until some convergence
criterion is met. The convergence of the fixed-point iteration
is however only guaranteed if the scheme 8 is contractive (see
e.g., Kelley, 1995, their Section 4.2), which poses restrictions
on the employed step size 1t. Section 3.1 investigates if the
implementation can gain stability or accuracy from using the
implicit Euler method with fixed-point iteration and if the payoff
is large enough to justify the additional effort of an iterative
solution scheme.

The restricted knowledge of connectivity also limits the usage
of the exponential Euler method. In the case of a linear rate
model, we are unable to add the influence from all other rate
units to the matrix A in Equation (14), because most of these
connections are unknown at the single-unit level. Therefore, we
use the exponential Euler method with A = −I resulting in the
update formula (13). This also has the benefit of avoiding the
need to numerically evaluate a general matrix exponential as A
is a diagonal matrix (see Section 2.2 for details).

2.3.2. Implementation
This section describes the additional data structure required
for the implementation of rate-based models. While the
naming convention refers to our reference implementation
in the simulation software NEST, the employed algorithms
and concepts are portable to other parallel spiking network
simulators. As a result of the previous section and our analysis
of the numerical schemes below (see Section 3.1) we restrict the
discussion and our reference implementation to the exponential
Euler method where we assume A = −I and identify 1t = h
with h denoting the global computation step size (Morrison et al.,
2005). We have to distinguish the cases of connections with delay
(d > 0) and connections without delay (d = 0). The former
case is similar to spiking interaction: assuming a connection from
unit i to unit j, the rate of unit i needs to be available at unit j
after d

h
additional time steps. This can be ensured if the delay of

the connection is considered in the calculation of the minimal
delay dmin that determines the communication interval. After
communication the rate values are stored in a ring buffer of unit
j until they are due (Morrison and Diesmann, 2008). In the case
of an instantaneous connection, the rate of unit i at time t0 needs
to be known at time t0 at the process which updates unit j from t0
to t0 + h. Therefore, communication in every step is required for
instantaneous rate connections, i.e., setting dmin = h.
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Due to the conceptual differences between instantaneous
and delayed interactions (for the conceptual difference in the
case of spiking interaction see Morrison and Diesmann,
2008) we employ two different connection types
(delay_rate_connection, rate_connection) and
associated secondary events (DelayRateNeuronEvent,
RateNeuronEvent). This subdivision simplifies the
discrimination of connections on the single-unit level, while
still allowing for simultaneous use of instantaneous and delayed
connections in the same rate model.

The large diversity of rate models (Equation 9) imposes a
challenge for codemaintenance and efficiency: Each combination
of nonlinearities φ(x) and ψ(x) constitutes its own model. All
of these models can be implemented in the exact same way,
except for the evaluation of the nonlinearities. A template class
(rate_neuron_ipn) providing a base implementation for
rate models of category (9) avoids code duplication. Nevertheless,
we restrict the reference implementation to one nonlinearity
per model. This keeps the zoo of rate models small and to our
knowledge covers the majority of rate models.

The template rate model class is instantiated with an object
that represents the nonlinearity. Being instantiated at compile
time, this template solution does not incur additional overhead at
run time compared to a solution using polymorphy (inheritance).
A boolean class member linear_summation determines if
the nonlinearity should be interpreted as φ(x) (true, default
value) or ψ(x) (false). The respective other function is assumed
to be the identity function. The boolean parameter is evaluated
in every update step of each unit. Deciding upon the type
of nonlinearity at compile time would improve efficiency. In
the present architecture this would, however, result in twice
as many template instances for a given set of gain functions.
With the future capabilities of code generation (Plotnikov et al.,
2016) in mind it might be beneficial to elevate the constant
booleanmember object to a constant template parameter to allow
compilers efficient preprocessing and at the same time profit
from the code reliability achievable by modern C++ syntax.
The present base implementation reduces the effort of creating
a specific rate model of category (9) to the specification of an
instance of the template class. Afterwards an actual rate model
can be instantiated in a single line of code.

Table 1 gives an overview of template-derived rate models of
the reference implementation. These models serve as examples
for customized rate models. Activity of rate units can be recorded
using the multimeter and the recordable rate.

TABLE 1 | Template-derived rate-based models.

Gain model φ(x) or ψ (x)

lin_rate g · x with g ∈ R

tanh_rate tanh(g · x) with g ∈ R

thresholdlin_rate g · (x − θ ) · H(x − θ ) with g, θ ∈ R

Gain functions of the rate-based models available in the NEST reference implementation.

The name of a particular rate model is formed by <gain model>_ipn. The ending ipn

indicates input noise, as the noise directly enters the r.h.s. of Equation (9). H denotes the

Heaviside function.

In addition to these template-derived models of category
(9) the reference implementation also contains a rate model
called siegert_neuron. This model, described by (30)
in Section 3.3.4 is used for mean-field analysis of complex
networks and constitutes a special case with respect to the
recurrent input from the network. Firstly, it requires a
numerically stable implementation of the Siegert formula (see
Section A.1). Secondly, Equations (28) and (29) demonstrate
that for this model the input rates are weighted by separate
factors. Thus, for connections between instances of this model
two different weights need to be specified and the rate
model must be able to handle this anomaly. Therefore, the
siegert_neuron does not derive from our base class
rate_neuron_ipn, but constitutes an independent class. It
comes with the connection type diffusion_connection
providing the weight parameters. Section A.2 motivates the
parameter names and shows the usage of the model in the
reference implementation.

2.3.3. Reduction of Communication Using

Waveform-Relaxation Techniques
Instantaneous connections between rate-based models require
communication after every time step, thus in intervals of the
global computation step size h. This requires setting dmin =
h and impairs the performance and scalability, especially on
supercomputers where communication is particularly expensive,
because it is associated with a considerable latency. Therefore,
for simulations with instantaneous connections we additionally
study an iterative approach based on waveform-relaxation
techniques that arrives, after convergence, at the same results
as the standard approach, but allows us to use communication
on a coarser time grid. Originally waveform-relaxation methods
were developed (Lelarasmee, 1982) and investigated (see e.g.,
Miekkala and Nevanlinna, 1987) for ODEs. More recently they
have also been analyzed for SDEs (Schurz and Schneider, 2005)
and successfully applied to large systems of SDEs (Fan,
2013). With respect to simulations of rate-based models with
instantaneous connections the basic idea is to solve the dynamics
of the single units independently for the duration of T = αh
with α ≥ 2 by treating the influence of the other units as known
over this period of time. The solution of the original SDEs is
determined by iteratively solving the decoupled SDEs:

dX1,m = a(t,X1,m,Z1,m− 1) dt + b(t,X1,m,Z1,m− 1) dW,

...

dXi,m = a(t,Xi,m,Zi,m− 1) dt + b(t,Xi,m,Zi,m− 1) dW, (15)

...

dXN,m = a(t,XN,m,ZN,m− 1) dt + b(t,XN,m,ZN,m− 1) dW,

where in the m-th iteration Zi = (X1, . . . ,Xi− 1,Xi+ 1, . . . ,XN)
is based on the solution of the m − 1-th iteration and
hence acts as a given input to the i-th system. The solutions
improve step by step with each iteration. Schurz and Schneider
(2005) demonstrate the convergence of the method for SDEs
under mild assumptions on X, a and b. For our specific
application, systems of rate-based models with b = const.,
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TABLE 2 | Parameters of the waveform-relaxation algorithm.

Parameter name Type Default Description

use_wfr bool true Boolean parameter to enable (true) or disable (false) the use of the waveform-relaxation technique. If

disabled and any rate-based units (or neurons supporting gap junctions) are present, communication in every

step is automatically activated (dmin = h).

wfr_comm_interval double 1.0ms Instantaneous rate connections (and gap junctions) contribute to the calculation of the minimal network delay

with min (dmin,wfr_comm_interval). This way the length of the iteration interval of the waveform

relaxation can be regulated.

wfr_tol double 10−4 Convergence criterion for waveform relaxation. The iteration is stopped if the rates of all units change less

than wfr_tol from one iteration to the next.

wfr_max_iterations int 15 Maximum number of iterations performed in one application of the waveform relaxation. If the maximum

number of iterations has been carried out without reaching the accuracy goal the algorithm advances system

time and the reference implementation issues a warning. Additional speed-up in the simulation of rate-based

units can only be achieved by wfr_max_iterations < dmin/h.

wfr_interpolation_order int 3 This parameter is exclusively used for gap junctions (see Hahne et al., 2015, their Section 2.1.2) and has no

influence on the simulation of rate-based models.

The different parameters of the waveform-relaxation algorithm together with their C++ data-type, default value, and a brief description.

the influence of the stochastic part on the convergence is even
less critical. Based on our previous results in the neuroscience
context (Hahne et al., 2015), the method converges within only
a couple of iterations, due to the weak coupling of the SDEs.
For more details on waveform-relaxation methods and their
application in the neuroscience context we refer to Hahne et al.
(2015).

As outlined above, in a simulator for spiking neuronal
networks the minimal delay dmin in the network defines the
communication interval. By employing the waveform-relaxation
method with T = dmin we retain this communication interval
for simulations with instantaneous rate connections. To control
the iteration interval T of the waveform-relaxation method,
instantaneous connections contribute to the calculation of the
minimal delay with an arbitrary user specified value given by the
parameter wfr_comm_interval (see Table 2). Consequently
the actual communication interval for waveform relaxation then
is T = min

(
dmin,wfr_comm_interval

)
.

Figure 1B illustrates the concept of the iterative approach
in contrast to the standard procedure in panel A. The iterative
approach requires the repeated solution of all time steps in the
communication interval and converges to the solution obtained
with the standard approach (Figure 1A). The iteration terminates
when a user chosen convergence tolerance wfr_tol (see
Table 2) is met. If the method needs less than T/h iterations,
the approach reduces the overall number of communications
required to obtain the solution. In conclusion, the avoidance of
communication in every step comes for the price of additional
computational load.

The coupling of neurons via gap junctions is instantaneous
and continuous in time and thus constitutes a very similar
problem to the rate dynamics. In order to combine gap junctions
with spiking dynamics Hahne et al. (2015) already devised an
iterative technique based on waveform-relaxation techniques
and described a suitable framework. This framework can also

A

B

FIGURE 1 | Different communication strategies for distributed

simulations. Distance between neighboring dotted orange lines indicates

computation time step of size h. Distance between neighboring dashed red

lines symbolizes one communication interval where rates (and other events like

spike events) are communicated at the end of the interval. (A) Standard

solution for rate-based models: rates are communicated in every time step.

(B) Iterative approach using waveform relaxation: rates are communicated only

after T
h
steps and the entire interval is solved repeatedly.

be employed for the simulation of rate-based models with
instantaneous connections. The dynamics of a neuron model
supporting gap junctions is solved with an adaptive step-
size ODE-solver, routinely carrying out several steps of the
employed numerical method within one global computation
time step h. The communication of a cubic interpolation of
the membrane potential provides the solver with additional
information, resulting in a more accurate solution than the one
obtained from the standard approach. For rate-based models
this additional benefit cannot be gained: The combination of
an iterative method with an adaptive step-size solver is not
applicable to SDEs, where the noise in each time step constitutes
a random number. However, an iterative approach with fixed
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step size 1t = h is applicable, as long as we ensure that the
random noise applied to the units remains the same in every
iteration. In Section 3.2 we investigate the performance of the
iterative (Figure 1B) and the standard approach (Figure 1A)
with a focus on large network simulations on supercomputers.
In our reference implementation waveform relaxation can be
enabled or disabled by a parameter use_wfr. Note that in
the traditional communication scheme for spiking neuronal
networks (Morrison et al., 2005) the first communication occurs
earliest at the end of the first update step. Therefore, in the
absence of waveform relaxation, the initial input to units from
the network is omitted.

Table 2 summarizes the parameters of our
reference implementation of the waveform-relaxation
technique. A subset (wfr_interpolation_order,
wfr_max_iterations, wfr_tol) was previously
introduced by Hahne et al. (2015), but we rename them
here to arrive at more descriptive names. The remaining
parameters (use_wfr, wfr_comm_interval) result from
the generalization to rate-based models.

3. RESULTS

In the following,weassess theaccuracyandstabilityof thedifferent
numerical solution schemes and benchmark the performance
of the reference implementation on large-scale machines, with
special focus on scalability and the comparison between the
standard solution and the iterative approach using waveform
relaxation for simulations with instantaneous connections. The
iterative approach is only discussed with respect to efficiency,
as the iteration always converges against the results of the
standard approach within only a couple of iterations (for details
see Section 2.3.3). The remainder of the section illustrates
the application of the simulation framework to a selection of
prominent problems in the neuroscientific literature.

3.1. Stability and Accuracy of Integration
Methods
In this section we investigate numerical methods (see Section 2.1)
for the solution of SDEs that can be employed to solve the
dynamics of rate-based units. We analyze the accuracy and
stability of the different numerical methods to choose the best-
suited method for application in a distributed simulation scheme
of a spiking network simulation code. The analysis only covers
methods compatible with a spiking neural network simulator,
namely (i) the Euler-Maruyama method, (ii) the implicit Euler
method solved with a parallelizable fixed-point iteration, and
(iii) the exponential Euler method where the linear part is
restricted to −I, in the following called scalar exponential Euler.
The distributed representation of the global connectivity of the
network rules out both the regular exponential Euler method
with a nondiagonal matrix A and the implicit Euler method
solved with Newton iteration (see Section 2.3.1 for details).

Consider an exactly solvable network of N linear rate units
with µ = 0 (see also Section 2.2):

τdX(t) = A · X(t) dt +
√
τσ dW(t) . (16)

The exact solution of this system of SDEs coincides with
the regular exponential Euler scheme and involves a matrix
exponential and a matrix square root (Equation 8). We analyze
two test cases, i.e., two different choices of A, to demonstrate
different stability constraints. First, an all-to-all connected
network with inhibitory connections of weight wij = −1√

N
and

hence A = −I + −1√
N

· 1, with 1 denoting a N × N all-

ones matrix (Cichocki et al., 2009). Second, a sparse balanced
excitatory-inhibitory network where the number of excitatory
units is four times larger than the number of inhibitory units. In
this network, each unit receives input from a fixed number of 0.8·
p ·N excitatory and 0.2 · p ·N inhibitory randomly chosen source
units with connection probability p and connection weights 1√

N

and −4√
N
, respectively. In the following we refer to the test cases as

inhibitory all-to-all and sparse balanced e/i test case.
First we turn to the accuracy analysis. Although the exact

solution of Equation (16) cannot be obtained with a distributed
representation of A we can compute it using methods for
numerical matrix computations implemented in MATLAB
or Python (both provide an implementation of the same
state-of-the-art algorithms, see Al-Mohy and Higham, 2009;
Deadman et al., 2012). This way we obtain the exact solution
within the accuracy of floating point numerics. This is the
reference for computing the root mean square error (RMSE) of
the different approximate methods. To employ the root mean
square error in the context of stochastic differential equations we
determine the reference solution for every tested step size and use
the same random numbers for both, the reference solution and
the approximative schemes.

Figure 2 shows the root mean square error of the different
numerical schemes for the two test cases with N = 400 units.
In both test cases all investigated methods with decreasing step
size converge toward the exact solution with convergence order
1, which is consistent with the established theory for SDEs
with additive noise (Kloeden and Platen, 1992). Figure 2A shows
the results for the inhibitory all-to-all test case. Here all three
methods require a step size 1t ≤ 0.1 to deliver reliable results.
The implicit Euler scheme solved with fixed-point iteration even
requires a step size1t ≤ 0.05. Within the stable region1t ≤ 0.1
the scalar exponential Euler yields more accurate results than the
two other methods. Figure 2B shows the results for the sparse
balanced e/i test case. Here all three methods achieve almost
identical accuracy for1t ≤ 0.1 and stability problems only occur
for the Euler-Maruyama method for step sizes1t > 0.5. For step
sizes 1t > 0.1 the implicit Euler method is more accurate than
the other two methods.

To understand the stability issues shown in Figure 2 we
turn to stability analysis. In the following we assume that A is
diagonalizable, i.e., A = T−1DT with T = (tij)N×N ∈ C

N×N and
D = diag(λ1, . . . , λN), and transform the system of SDEs with
Z(t) = T X(t). It follows

τdZ(t) = D · Z(t) dt +
√
τσT dW(t)

and Z(t0) = T X0. The transformed system consists of N
equations of the form
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A

B

FIGURE 2 | Accuracy of numerical methods for two networks of linear

rate units. RMSE =
√

1
N(tn−t0 )

∑N
i=1

∑n
j=1(X

i
j
− X̂ i

j
)2 of the solution X

obtained by the approximate solvers (blue curve: Euler-Maruyama method,

black curve: implicit Euler method solved with fixed-point iteration, red curve:

scalar exponential Euler method) with respect to the reference solution X̂ as a

function of step size in double logarithmic representation. The respectively

colored vertical lines mark the largest tested step size for which the

corresponding methods deliver a solution with RMSE ≤ 1010. RMSE

computed over 200.0ms of biological time. (A) Inhibitory all-to-all test case.

Network parameters: N = 400, µ = 0, σ = 10 and τ = 1ms. (B) Sparse

balanced e/i test case. Network parameters: N = 400, p = 0.2, µ = 0, σ = 10

and τ = 0.5ms.

τdZi(t) = λi · Zi(t) dt +
N∑

j= 1

√
τσ tij dWj(t) i = 1, . . . , n

(17)
that depend on the eigenvalues λi of A and are pairwise
independent except for the common contributions of the Wiener
processesWj(t). In the following we only consider networks with
bounded activity which requires eigenvalues λi ∈ Cwith negative
real part Re(λi) < 0. The solution of the i-th transformed
equation then satisfies

|Zi(t)− Z̃i(t)| = eλi(t− t0)/τ |Zi
0 − Z̃i

0| < |Zi
0 − Z̃i

0| (18)

for two different initial values Zi
0 and Z̃i

0. It is a desirable stability
criterion that a numerical method applied to Equation (16)
conserves this property. This requirement is closely related to
the concept of A-stability for SDEs (see Kloeden and Platen,
1992, Chapter 9.8) and A- respectively B-stability for ODEs
(Hairer and Wanner, 1991). To derive stability conditions for the

numerical schemes, we apply one update step (t0 to t1 = t0+1t)
of the methods to Equation (17) and investigate under which
circumstances the property |Zi

1 − Z̃i
1| < |Zi

0 − Z̃i
0| is conserved.

Here Zi
1 denotes the approximation to the exact solution Zi(t1)

obtained by the numerical scheme. A straight forward calculation
shows that the Euler-Maruyama method retains the property if
|1+λi ·1t/τ | < 1 holds. We conclude that the Euler-Maruyama
scheme is stable for maxλi ζEM(λi) < 1 with ζEM(λi) = |1 + λi ·
1t/τ |. The scalar exponential Euler method demands a splitting
of A = −I + W into −I and W. Here the stability condition is
derived from the modified transformed system

τdZi(t) = (−1+ λ̃i) ·Zi(t) dt+
N∑

j= 1

√
τσ tij dWj(t) i = 1, . . . , n

(19)
where λ̃i are the eigenvalues of the matrix W. The scalar
exponential Euler method conserves the property (Equation 18)
if |e−1t/τ + λ̃i · (1 − e−1t/τ )| < 1. We conclude that the scalar
exponential Euler scheme is stable for maxλi ζEXP(λi) < 1 with
ζEXP(λi) = |1+ λi · (1− e−1t/τ )|.

The implicit Euler method solved with fixed-point iteration
is stable, given the convergence of the fixed-point iteration. For
the transformed system the employed fixed-point iteration on the
single-unit level (Equation 12) reads

8(Zi,m
k+ 1) =

1

1+1t/τ
(Zi

k + λ̃i Z
i,m
k+ 11t/τ +

N∑

j= 1

1√
τ
σ tij1W

j

k
) .

It converges if the scheme8 is contractive, i.e., if the inequality

|8(Zi,0
k+ 1)−8(Z̃

i,0
k+ 1)|

!
< |(Zi,0

k+ 1 − Z̃i,0
k+ 1)|

holds for two different initial values Zi,0
k+1 and Z̃i,0

k+1. It follows

that the fixed-point iteration converges if | 1t/τ
1+1t/τ λ̃i| < 1. Thus,

the implicit Euler method solved with fixed-point iteration is
stable if maxλi ζIE(λi) < 1 with ζIE(λi) = 1t/τ

1+1t/τ |λi + 1|.
Hence for all investigated methods the stability depends on the
eigenvalues of the matrix A, the time constant τ and the step size
1t. To conclude restrictions on the step size 1t we analyze the
eigenvalues of A for our examples.

For the inhibitory all-to-all test case we determine the
eigenvalues λ1 = −1 −

√
N and λ2 = . . . = λN = −1

of the matrix A = −I + −1√
N

· 1 analytically. It follows that

the Euler-Maruyama scheme satisfies the stability criterion for
1t ≤ 2τ√

N+ 1
, the scalar exponential Euler method demands

1t ≤ −τ · ln(
√
N− 1√
N+ 1

) and the implicit Euler method with fixed-

point iteration requires 1t ≤ τ√
N− 1

. For the example of 400

units with τ = 1 in Figure 2A this yields step size restrictions of
1t ≤ 2

21 for the Euler-Maruyama method, 1t ≤ − ln( 1921 ) ≈ 0.1

for the scalar exponential Euler method and 1t ≤ 1
19 for the

implicit Euler method. This is consistent with the numerically
obtained result (see vertical lines). For all methods the stability
criterion implies that the step size 1t needs to be reduced with
increasing network size N or decreasing time constant τ .
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This fully connected network, however, constitutes the worst
case test for the class of rate-based models (Equation 9), as the
absolute value of the negative eigenvalue quickly increases with
the number of units N. Our second test case, the sparse balanced
e/i network does not suffer from this problem (Rajan and Abbott,
2006), as it is a perfectly balanced network of excitatory and
inhibitory units. In a scaling of the connection weights as 1√

N
,

the spectral radius of A and therefore the subsequent stability
analysis is independent of N. Here the stability analysis is more
complicated, as most of the eigenvalues of A are complex and
need to be computed numerically.

Figure 3A shows the eigenvalues of A for a network of 2000
units. Figure 3B demonstrates that for this test case the scalar
exponential Euler method and the implicit Euler method are
stable regardless of the step size 1t. For the Euler-Maruyama
the step size is restricted to 1t < 1.2τ . This is again consistent
with the results obtained in Figure 2B, where τ = 0.5 and
therefore the stability criterion of the Euler-Maruyama method
yields1t < 0.6.

Random inhibition-dominated networks exhibit
characteristics of both examples. First the matrix A contains a
real eigenvalue λ1 = −1 − α

√
N which scales with the network

size, however, with a proportionality constant 0 < α < 1

A

B

FIGURE 3 | Stability analysis for the sparse balanced e/i test-case.

(A) Black circles show the eigenvalues λi of the matrix A. Network parameters:

N = 2000, p = 0.2. (B) The curves show the maximum of the stability function

ζ (λi ) over all eigenvalues λi for the investigated methods (ζEM: blue, ζIE: black,

ζEXP: red) with respect to 1t/τ . The gray area indicates the region where the

stability criterion is met.

which is reduced compared to the fully connected inhibitory
network and determined by the sparseness and the imbalance
between excitation and inhibition. Secondly, the matrix A
contains eigenvalues which constitute a cloud in the complex
plane that is determined by the randomness of the connectivity.
For these random networks λmax = argmaxλi ζ (λi) is a real
eigenvalue. Figure 4 shows the step size restrictions of the
different numerical methods with respect to the absolute value
of λmax. For |λmax| < 2 the scalar exponential Euler methods
and the implicit Euler are stable regardless of the step size 1t.
Starting at |λmax| ≥ 2.8 the scalar exponential Euler is more
stable than the implicit Euler method solved with fixed-point
iteration. With increasing |λmax| the step size restrictions of the
scalar exponential Euler method converges against the step size
restriction of the Euler-Maruyama method.

Based on the results in this section we employ the scalar
exponential Euler to solve rate-based model dynamics (Equation
9) in our reference implementation. Figure 4 demonstrates that
it is the most stable algorithm compatible with the constraints of
the distributed simulation scheme for spiking neural networks.
Furthermore, the results in Figure 2 indicate that it is the
most accurate method in the case of an all-to-all connected
network with inhibitory connections. For the sparse balanced
excitatory-inhibitory network the analysis exhibits an accuracy
similar to the implicit Euler method. However, the solution of
the implicit Euler method with fixed-point iteration requires
the application of an iterative scheme in each single time step
with communication between the units after every iteration. This
algorithm is therefore more time consuming than the scalar
exponential Euler scheme. Besides the choice of method the
analysis in this section indicates that numerical stability is an
issue for all tested methods depending on step size 1t and time
constant τ . Although the applications in Section 3.3 show that
many practical examples do not suffer from stability issues, when

AB

FIGURE 4 | Step size restrictions of the numerical methods. Largest

ratio 1t/τ for which the different numerical methods (blue curve:

Euler-Maruyama method, black curve: implicit Euler method solved with

fixed-point iteration, red curve: scalar exponential Euler method) are stable

shown against the absolute value of λmax = argmaxλi ζ (λi ) ∈ R. The gray

area indicates the region where the scalar exponential Euler method and the

implicit Euler method are stable without any restrictions on 1t/τ . The dotted

vertical lines correspond to the examples presented in the panels of Figure 2.
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a commonly used simulation step size is employed, the inevitable
restrictions on the step size 1t should be taken into account in
simulations of rate-model networks. For simulations of linear
rate models an appropriate step size can be determined by an
analysis of the eigenvalues of A.

3.2. Performance of the Reference
Implementation
This section investigates the performance of the rate model
reference implementation. We are interested in i) the scalability
of the rate model framework and ii) the comparison between
the standard implementation with communication in every
computation time step and the iterative approach using
waveform relaxation (see Section 2.3.3 for details). We perform
the simulations on the JUQUEEN BlueGene/Q supercomputer
(Jülich Supercomputing Centre, 2015) at the Jülich Research
Centre in Germany. It comprises 28, 672 compute nodes, each
with a 16-core IBM PowerPC A2 processor running at 1.6 GHz.
For our benchmarks we use 8 OpenMP threads per JUQUEEN
compute node and denote by VP = 8 · #nodes the total number
of virtual processes employed.

As a test case we employ the sparse balanced e/i test case of
linear rate units (φ(x) = ψ(x) = x) introduced in Section 3.1, but
with a fixed number of 2000 inputs independent of the number
of units to allow for an unbiased weak scaling.

A weak scaling (Figure 5A) shows that the scalability of the
standard implementation is impaired by the massive amount of
communication. While for perfect scaling the simulation time
should be constant over the number of virtual processes, the
actual simulation time is increased by 15–25% when the number
of virtual processes is doubled for VP < 256 and even up to 83%
from 8, 192 to 16, 384 virtual processes. For the iterative method,
the scaling behavior is close to constant up to 1, 024 virtual
processes. When more processes are employed, the simulation
time is increasing. However, the iterative method shows a
better scaling behavior as the increase is weaker compared to
the standard computation due to the lower total number of
communication steps. Due to the higher computational load of
the iterative method (see Section 2.3.3) the simulation time is
larger compared to the straight forward approach for a small
number of VP, where communication is not that crucial. For
VP ≥ 1024, the iterative approach is superior with a speed
up factor close to three for 16, 384 virtual processes (1, 209 s vs.
3, 231 s).

The strong scaling scenario with a fixed total number of
N = 51, 200 units in Figure 5B constitutes a similar result.
The iterative approach is beneficial for more than 1, 024 virtual
processes and the scaling behavior of the iterative method
outperforms that of the standard computation. Starting at 4, 096
virtual processes the savings in computation time decrease, which
is explained by the very low workload of each single compute
node. Again, for a smaller number of virtual processes the
amount of additional computations is too high to outperform the
standard implementation.

Despite the overall good scaling behavior, the performance
in terms of absolute compute time is inferior to a simulator

A

B

FIGURE 5 | Scaling behavior of an excitatory-inhibitory network.

Simulation time with waveform relaxation (red curves,

wfr_comm_interval: 1.0ms, wfr_tol: 10−4) and without waveform

relaxation (blue curves) as a function of the number of virtual processes in

double logarithmic representation. The simulations span T = 100ms of

biological time at a computation step size of h = 0.1ms. Sparse balanced e/i

test case but with a fixed number of 2,000 inputs per unit. Other parameters:

µ = 0, σ = 1 and τ = 10ms (A) Weak scaling with 100 units per virtual

process VP. (B) Strong scaling with a total number of N = 51, 200 units.

specifically designed for rate-based models alone (not shown).
In the latter case it increases performance to collect the states of
all units in one vector. If further the connectivity is available in
form of a matrix and the delays are zero or homogeneous, the
network can be efficiently updated with a single matrix-vector
multiplication. Thus, the increased functionality and flexibility
of having rate- and spiking models unified in one simulator
comes for the price of a loss of performance for the rate-based
models. However, as noted in the introduction, the number of
units in rate-based network models is usually small and therefore
performance is not as critical as for spiking network models.

3.3. Applications
First, we discuss a random inhibition-dominated network of
linear rate units, then include nonlinear rate dynamics in a
random network, and spatially structured connectivity in a
functional neural-field model. In each case, simulation results are
compared to analytical predictions. Furthermore, we simulate a
mean-field model of a spiking model of a cortical microcircuit
and discuss possible generalizations.
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3.3.1. Linear Model
In the asynchronous irregular regime which resembles cortical
activity, the dominant contribution to correlations in networks
of nonlinear units is given by effective interactions between
linear responsemodes (Pernice et al., 2011; Trousdale et al., 2012;
Grytskyy et al., 2013; Dahmen et al., 2016). Networks of such
noisy linear rate models have been investigated to explain
features such as oscillations (Bos et al., 2016) or the smallness
of average correlations (Tetzlaff et al., 2012; Helias et al., 2013).
We here consider a prototypical network model of excitatory and
inhibitory units following the linear dynamics given by Equation
9 with φ(x) = ψ(x) = x, µ = 0, and noise amplitude σ ,

τdXi(t) =


−Xi +

N∑

j= 1

wijXj(t)


 dt +

√
τσdWi(t) . (20)

Due to the linearity of the model, the cross-covariance between
units i and j can be calculated analytically and is given
by Ginzburg and Sompolinsky (1994); Risken (1996); Gardiner
(2004); Dahmen et al. (2016):

c(t) =
∑

i,j

viTσ 2vj

λi + λj
uiujT

(
H(t)

1

τ
e−λi

t
τ +H(−t)

1

τ
eλj

t
τ

)
, (21)

where H denotes the Heaviside function. The λi indicate the
eigenvalues of the matrix 1 − W corresponding to the i-th left
and right eigenvectors vi and ui respectively. Nonzero delays
yield more complex analytical expressions for cross-correlations.
In the population-averaged case, theoretical predictions are
still analytically tractable (Equation 18 in Grytskyy et al., 2013).
Figure 6 shows the cross-covariance functions for pairs of
instantaneously coupled units in a large network, as well
as population-averaged covariance functions in a network of
excitatory and inhibitory units with delayed interactions. In both
cases, simulations are in good agreement with the theoretical
predictions.

3.3.2. Non-linear Model
So far we considered a network with linear couplings between
the units. Qualitatively new features appear in the presence
of nonlinearities. One of the most prominent examples is the
emergence of chaotic dynamics (Sompolinsky et al., 1988) in a
network of nonlinearly coupled rate units. The original model
is deterministic and has been recently extended to stochastic
dynamics (Goedeke et al., 2016). The model definition follows
from Equation (9) with µ = 0, φ(x) = x, ψ(x) = tanh(x), i.e.

τdXi(t) =


−Xi(t)+

N∑

j= 1

wij tanh
(
Xj(t)

)

 dt +

√
τσ dWi(t) ,

(22)

where wij ≈ N (0, g2/N) are Gaussian random couplings. In
the thermodynamic limit N → ∞, the population averaged
autocorrelation function c(t) can be determined within dynamic
mean-field theory (Sompolinsky et al., 1988; Goedeke et al., 2016;

A

B

FIGURE 6 | Linear rate model of a random excitatory-inhibitory

network. (A) Cross-correlation functions of two pairs of excitatory units

(black, red) and an excitatory-inhibitory unit pair (blue) in a network without

delay. The variability across correlation functions arises from heterogeneity in

network connections (difference between black and red curves) and from

different combinations of cell types (e.g., difference between black and blue

curves). (B) Population-averaged autocorrelation function for excitatory (black)

and inhibitory units (red), and cross-correlation function between excitatory

and inhibitory units (blue) in a network with delay d = 2ms. Symbols denote

simulation results, curves show theoretical predictions. Parameters: NE = 80

excitatory and NI = 20 inhibitory units, random connections with fixed

out-degree, connection probability p = 0.1, excitatory weight

wE = 1/
√
NE + NI, inhibitory weight wI = −6wE , τ = 1ms, µ = 0, σ = 1.

Step size h = 0.1 ms.

Schuecker et al., 2016). Comparing c(t) obtained by simulation of
a network (Equation 22) with the analytical result (Goedeke et al.,
2016, their Equations 6 and 8) demonstrates excellent agreement
(Figure 7). The simulated network is two orders of magnitude
smaller than the cortical microcircuit, illustrating that in this
context finite-size effects are already negligible at this scale.

3.3.3. Functional Model
Complex dynamics not only arises from nonlinear single-
unit dynamics, but also from structured network connectivity
(Yger et al., 2011). One important nonrandom feature of
brain connectivity is the spatial organization of connections
(Malach et al., 1993; Voges et al., 2010). In spatially structured
networks, delays play an essential role in shaping the collective
dynamics (Roxin et al., 2005; Voges and Perrinet, 2012). Patterns
of activity in such networks are routinely investigated using
neural-field models. In contrast to the models discussed above,
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A

B

FIGURE 7 | Nonlinear network model. Simulation of the network specified

by Equation (22) with N = 1000 units. (A) Noisy example trajectories of two

units. (B) Autocorrelation function obtained by simulation averaged over all

units (dots) and theory (solid curve). Other parameters: τ = 1ms, σ = 0.5,

g = 0.5. Step size h = 0.1 ms.

field models require a discretization of space for numerical
simulation. Such discretization can be done in the real space,
leading effectively to a network of units at discrete positions in
space, or alternatively, for particular symmetries in the couplings,
in k-space (Roxin et al., 2006). Here, we follow the more general
approach of discretization in real space.

A prototypical model of a spatial network is given by
Roxin et al. (2005), where the authors consider the neural-field
model

τdX(ϕ, t) =(
−X(ϕ, t)+ φ

[
Iext +

∫ π

−π
dϕ′ w(|ϕ − ϕ′|)X(ϕ′, t − d)

])
dt

(23)

with delayed (delay d) interactions, constant input Iext, threshold-
linear activation function φ = x ·H(x) and periodic Mexican-hat
shaped connectivity

w(|ϕ − ϕ′|) = w0 + w1 cos(ϕ − ϕ′). (24)

The spatial variable ϕ can also be interpreted as the preferred
orientation of a set of units, thus rendering Equation (23) amodel
in feature space (Hansel and Sompolinsky, 1998). Discretizing
space into N segments yields the following set of coupled ODEs:

A B

C D

FIGURE 8 | Spatial patterns in functional neural-field model. Vertical axis

shows unit indices organized according to ascending angle ϕ ∈ [−π ,π ).
Activity Xi (t) = X (ϕi , t) encoded by gray scale with white denoting no activity.

Initial transients not shown. Patterns reproduce the analytically derived phase

diagram in the original study by Roxin et al. (2005). Parameters: N = 100,

d = 0.1ms, τ = 1ms, Iext = 1, w0 = −80, w1 = 15 (A), w1 = 5 (B),

w1 = −46 (C), w1 = −86 (D). Initial condition: Xi (0) = X (ϕi , 0) = π2 − ϕ2
i
.

Step size h = 0.01 ms.

τdXi =


−Xi + φ


Iext +

N∑

j= 1

wijXj(t − d)




 dt (25)

with connectivity wij = 2π
N w(|ϕi − ϕj|), ϕi = −π + 2π

N · i for i ∈
[1,N] and discretization factor 2π

N that scales the space constants
w0 and w1 with the neuron density. The spatial connectivity
together with a delay in the interaction introduce various spatial
activity patterns depending on the shape of the Mexican-hat
connectivity.

To illustrate applicability of the simulation framework to
neural-field models, we reproduce various patterns (Figure 8)
observed by Roxin et al. (2005). Although the discrete and
continuous networks strictly coincide only in the thermodynamic
limit N → ∞, numerically obtained patterns shown in Figure 8

well agree with the analytically derived phase diagram of the
continuous model (Roxin et al., 2005) already for network sizes
of only N = 100 units.

3.3.4. Mean-Field Analysis of Complex Networks
A network of spiking neurons constitutes a high dimensional
and complex system. To investigate its stationary state, one can
describe the activity in terms of averages across neurons and time,
leading to population averaged stationary firing rates (Brunel,
2000). Here, the spatial average collapses a large number of
neurons into a single population, which is interpreted as a single
rate unit. The ability to represent spiking as well as rate dynamics
by the same simulation framework allows a straight-forward
analysis of the spiking network by replacing the spiking neuron
populations by single rate-based units.

In more formal terms, we now consider networks of neurons
structured into N interconnected populations. A neuron in
population α receives Kαβ incoming connections from neurons
in population β , each with synaptic efficacy wαβ . Additionally,
each neuron in population α is driven by Kα,ext Poisson sources
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with rate Xext and synaptic efficacy wext. We assume leaky
integrate-and-fire model neurons with exponentially decaying
post-synaptic currents. The dynamics of membrane potential V
and synaptic current Is is (Fourcaud and Brunel, 2002)

τm
dV i

dt
= −V i + Iis

τs
dIis
dt

= −Iis + τm
N∑

j= 1

wij
∑

k

δ(t − t
j

k
− d) , (26)

where t
j

k
denotes the k-th spike-time of neuron j, and τm and τs

are the time constants of membrane and synapse, respectively.
The membrane resistance has been absorbed in the definition
of the current. Whenever the membrane potential V crosses
the threshold θ , the neuron emits a spike and V is reset to
the potential Vr, where it is clamped for a period of length τr.
Given that all neurons have identical parameters, a diffusion
approximation, assuming asynchronous and Poissonian spiking
statistics as well as small synaptic couplings, leads to the
population-averaged firing rates Xα (Fourcaud and Brunel, 2002)

1

Xα
= τr + τm

√
π

∫ (θ−µα)/σα+γ
√
τs/τm

(Vr−µα)/σα+γ
√
τs/τm

eu
2
(1+ erf(u)) du

=: 1/8α(X) (27)

µα = τm
∑

β

KαβwαβXβ + τmKα,extwextXext (28)

σ 2
α = τm

∑

β

Kαβw
2
αβXβ + τmKα,extw2

extXext. (29)

Here, γ = |ζ (1/2)|/
√
2, with ζ denoting the Riemann zeta

function (Abramowitz and Stegun, 1974). We find the fixed
points of Equation (27) by solving the first-order differential
equation (Wong and Wang, 2006; Schuecker et al., 2017)

τ
dXα
dt

= −Xα +8α(X), (30)

which constitutes a network of rate units with the dimension
equal to the number of populations N.

Next we apply this framework to a cortical microcircuit model
(Potjans and Diesmann, 2014) constituting roughly 80, 000
spiking neurons structured into 8 populations across 4 layers
[L23, L4, L5, L6], with one excitatory and one inhibitory cell type
each (Figure 9). The model exhibits irregular and stationary
spiking activity (Figure 9C). Replacing each population by a
single rate unit (Figure 9B) results in an eight-dimensional
rate network (Equation 30) which converges to a fixed point
corresponding to the population-averaged firing rates obtained
from direct simulation of the spiking model (Figure 9D).

The analysis only considers the stationary state of the
microcircuit, which can as well be determined using
the population-density approach (Cain et al., 2016). While
the mean-field approach presented is strictly valid only in the
thermodynamic limit, finite-size fluctuations around this state
are accessible using the noisy linear-rate model (Section 3.3.1) as
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FIGURE 9 | Reduction of spiking microcircuit model to rate dynamics.

(A) Sketch of a microcircuit model (Potjans and Diesmann, 2014) with

excitatory (blue triangles) and inhibitory (red disks) neuron populations, each

consisting of a large number of neurons indicated by the small triangles and

disks respectively. Arrows between populations indicate the in-degree K.

(B) Sketch of the corresponding reduced model where each population is

replaced by a single rate unit. (C) Spiking activity in the different layers.

(D) Dynamics of the eight units of the rate network (Equation 30) (curves) and

comparison to population-averaged firing rates obtained from direct

simulations of the spiking network (diamonds).

elaborated by Bos et al. (2016) or within the population-density
approach (Schwalger et al., 2016).

3.3.5. Further Rate Models

3.3.5.1. Non-linear dynamics
A characteristic feature of rate models considered so far is the
leaky dynamics, i.e., the linear term −Xi(t) in Equation (9).
However, the presented framework can be extended to nonlinear
dynamics as used for example by Stern et al. (2014). In a more
general form Equation (9) reads

τdXi(t) =


a(Xi(t))+ φ




N∑

j= 1

wijψ
(
Xj(t − d)

)



 dt

+
√
τσdWi(t) (31)

where a characterizes the intrinsic rate dynamics. If a does not
contain a linear part, the Euler-Maruyama scheme can be used
for the update, i.e.,

Xi
k+ 1 = Xi

k +


a(Xi

k)+ φ




N∑

j= 1

wijψ

(
X
j

k− d
1t

)


 1

τ
1t

+ 1√
τ
σ1Wi

k. (32)
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If a also contains a linear part, so that a(Xi) = −Xi + f (Xi), one
can use an exponential Euler update approximating the nonlinear
part as constant during the update. This leads to

Xi
k+ 1 = e−1t/τXi

k +
(
1− e−1t/τ

)

f (Xi

k) + φ




N∑

j= 1

wijψ

(
X
j

k− d
1t

)




+
√
1

2
(1− e−21t/τ ) σηik, (33)

with ηi
k
∼ N (0, 1).

3.3.5.2. Multiplicative coupling
Another possible extension is a multiplicative coupling between
units as for example employed in Gancarz and Grossberg (1998)
or the original works of Wilson and Cowan (1972, 1973). In the
most general form, this amounts to

τdXi(t) =


−Xi(t)+H(Xi) · φ




N∑

j= 1

wijψ
(
Xj(t − d)

)



 dt

+
√
τσdWi(t) , (34)

which, again assuming the coupling term to be constant during
the update, can be solved using the exponential Euler update

Xi
k+ 1 = e−1t/τXi

k +
(
1− e−1t/τ

)

H(Xi

k) · φ




N∑

j= 1

wijψ

(
X
j

k− d
1t

)




+
√
1

2
(1− e−21t/τ ) σηik, (35)

with ηi
k
∼ N (0, 1).

3.3.5.3. Multiplicative noise
So far, we have considered rate models subject to additive noise
corresponding to b(t, x(t)) = b(t) in Equation (4). The linear
rate model considered in Section 3.3.1 describes the dynamics
around a stationary state and due to the stationary baseline,
the noise amplitude is constant. However, one might relax the
stationarity assumption which would render the noise amplitude
proportional to the time dependent rate, i.e., a multiplicative
noise amplitude. The presented framework covers the latter since
the exponential Euler update is also valid for multiplicative noise
(Equation 8).

3.3.5.4. Output noise
Grytskyy et al. (2013) show that there is a mapping between a
network of leaky integrate-and-fire models and a network of
linear rate models with so-called output noise. Here the noise is
added to the output rate of the afferent units

τ
dXi(t)

dt
= −Xi(t)+ µ+ φ




N∑

j= 1

wijψ
(
Xj(t − d)+

√
τσξ j(t)

)



i = 1, . . . ,N (36)

and we cannot write the system as a SDE of type (2), as the
nonlinearities φ(x) and ψ(x) are also applied to the white noise
ξ j. In addition to the implementation rate_neuron_ipn for
the rate-based models (Equation 9) discussed in the present
work, our reference implementation also contains a base
implementation rate_neuron_opn for models with output
noise. For these models, the stochastic exponential Euler method
can not be employed. Instead the solver assumes the noise ξ j to
be constant over the update interval which leads to the update
formula

Xi
k+ 1 = e−1t/τXi

k +
(
1− e−1t/τ

)

µ+ φ




N∑

j= 1

wijψ

(
X
j

k
+
√
τ

1t
ση

j

k

)


 . (37)

The term X
j

k
+
√

τ
1tση

j

k
with η

j

k
∼ N (0, 1) is calculated

beforehand in the sending unit j, which results in the same
amount of communicated data as in the case of models with input
noise.

4. DISCUSSION

This work presents an efficient way to integrate rate-based
models in a neuronal network simulator that is originally
designed for models with delayed spike-based interactions.
The advantage of the latter is a decoupling of neuron
dynamics between spike events. This is used by current
parallel simulators for large-scale networks of spiking neurons
to reduce communication between simulation processes and
significantly increase performance and scaling capabilities up to
supercomputers (Morrison et al., 2005). In contrast, rate-based
models interact in a continuous way. For delayed interactions,
rate dynamics are still decoupled for the minimal delay of the
network such that information can be exchanged on a coarse
time-grid. For instantaneous coupling, communication in every
time step is required. This is feasible for small networks that
can be simulated on small machines and thus require only a
small amount of communication. For improved efficiency of
simulations of large networks on supercomputers, we implement
an iterative numerical solution scheme (Lelarasmee, 1982).
Furthermore, we investigate several standard methods for the
solution of rate model equations and demonstrate that the scalar
exponential Euler method is the best choice in the context of a
neuronal network simulator that is originally designed formodels
with delayed spike-based interactions. Afterwards, we show the
applicability of the numerical implementation to a variety of
well-known and widely-used rate models and illustrate possible
generalizations to other categories of rate-based models.

The current reference implementation uses an exponential
Euler scheme (Adamu, 2011; Komori and Burrage, 2014) with
a diagonal matrix A (scalar exponential Euler): The additive
noise as well as the leaky dynamics of single neurons are
exactly integrated while the network input to the rate units is
approximated as piecewise constant. The analysis in Section 3.1
demonstrates that the scalar exponential Euler is the most
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accurate, stable and efficient standard-method for SDEs that is
applicable to a distributed spiking simulator. In particular for
all-to-all connected networks of linear rate units the distributed
design renders implicit methods less feasible, as the convergence
of the involved fixed-point iteration requires small time-steps.
For all methods the computation step size needs to be compared
against the time constant τ . Therefore, stable solutions for small
values τ≪ 1 may require to decrease the step size below a default
value.

The reference implementation provides an optional iterative
method, the waveform relaxation (Lelarasmee, 1982), for
networks with instantaneous rate connections. This method
obtains the same results as the standard approach, but
improves scalability by reducing communication at the cost
of additional computations. As a consequence, the optimal
method (standard vs. iterative) depends on the numbers of
compute nodes and virtual processes. In our test case the
use of the waveform-relaxation technique is beneficial for
1024 or more virtual processes. It is therefore recommended
to employ the iterative scheme for large-scale simulations
on supercomputers, but to disable it for smaller rate-model
simulations on local workstations or laptops. This can easily
be achieved by the parameter use_wfr (see Section 2.3.3 for
details) of the algorithm. In general, the scalability for simulations
of rate models is worse than for spiking network simulations
(Kunkel et al., 2014) and comparable to simulations with gap
junctions (Hahne et al., 2015). This is expected since for rate
connections as well as for gap junctions a large amount of data
needs to be communicated compared to a spiking simulation.
Future work should assess whether this bottleneck can be
overcome by a further optimized communication scheme.

While our reference implementation uses the simulation
software NEST as a platform, the employed algorithms
can be ported to other parallel spiking network simulators.
Furthermore, the implementation of the example rate models
as templates allows customization to arbitrary gain functions.
Researchers can create additional models, without in-depth
knowledge of simulator specific data structures or numerical
methods. In addition, the infrastructure is sufficiently general
to allow for extensions to other categories of rate models
as shown explicitly for nonlinear dynamics, multiplicative
coupling, and other types of noise. This design enables the
usage of the framework for a large body of rate-based network
models. Furthermore, the generality of the model equations
supports applications beyond neuronal networks, such as
in computational gliascience (Amiri et al., 2012) or artificial
intelligence (Haykin, 2009).

Some design decisions for the reference implementation come
with an up- and a downside and may at the present state of
knowledge and experience constitute judgment calls: The choice
to determine the type of nonlinearity of the recurrent network
input with a boolean parameter is based on the assumption
that this implementation covers the majority of rate models
used in neuroscience today. The solution has an advantage in
maintainability as it results in half as many template instances
for a given set of gain functions than the alternative solution
discussed above. It also avoids the introduction of potentially
confusing names of rate models encoding the nature of the

nonlinearity. On the downside models that do actually employ
both nonlinearities at once cannot be expressed. Furthermore,
a decision that can already be made at the time when the
model instance is created, is delayed to the simulation phase.
The decision to create a separate connection type for mean-field
models of the siegert type is led by the ambition to avoid
memory overhead. This comes at the price that units of this type
cannot be connected to instances of rate models using the generic
rate connection. Adapter elements like the parrot_neuron
(see Kunkel et al., 2011, for a recent application) are one way
to overcome this problem. Only the experience of researchers
with the present implementation will inform us on whether
characteristics and user interface serve the purpose of the
community or if particular decisions need revision.

Mean-field theory has built a bridge between networks of
spiking neurons and rate-based units that either represent single
neurons or populations (Buice and Chow, 2007; Buice et al.,
2010; Ostojic and Brunel, 2011; Bressloff, 2012; Grytskyy et al.,
2013). In the latter case, the rate-based approach comes along
with a considerable reduction of dimensionality (Section 3.3.4).
Due to a possibly large number of populations, the fixed-
point solution of the stationary activity can generally not
be determined analytically, but still be found by evolving a
pseudo-time dynamics. Within the presented framework, this
approach is much faster than the spiking counter-part and thus
facilitates the calibration of large-scale spiking network models
(Schuecker et al., 2017).

Our unifying framework allows researchers to easily switch
between rate-based and spiking models in a particular network
model requiring only minimal changes to the simulation
script. This facilitates an evaluation of the different model
types against each other and increases reproducibility in the
validation of reductions of spiking networks to rate-based
models. Furthermore, it is instructive to study whether and how
the network dynamics changes with the neuron model (Brette,
2015). In particular, functional networks being able to perform
a given task are typically designed with rate-based units. Their
validity can now be evaluated by going from a more abstract
rate-based model to a biologically more realistic spiking neuron
model. The present reference implementation does not allow for
interactions between spiking and rate-based units. While this
is technically trivial to implement, the proper conversion from
spikes to rates and vice versa is a conceptual issue that has to be
explored further by theoretical neuroscience.

The presented joined platform for spike-based and rate-
based models hopefully triggers new research questions by
facilitating collaboration and translation of ideas between
scientists working in the two fields. This work therefore
contributes to the unification of both modeling routes in
multi-scale approaches combining large-scale spiking networks
with functionally inspired rate-based elements to decipher the
dynamics of the brain.
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A. APPENDIX

A.1. Numerical Evaluation of the Siegert
Formula
We here describe how to numerically calculate Equation (27),
frequently called Siegert formula in the literature (for a recent
textbook see Gerstner et al., 2014), which is not straight forward
due to numerical instabilities in the integral. First we introduce
the abbreviations yθ = (θ − µ)/σ + γ

√
τs/τm and yr = (Vr −

µ)/σ + γ√τs/τm and rewrite the integral as

√
π

∫ yθ

yr

eu
2
(1+ erf(u))du

=2

∫ yθ

yr

eu
2
∫ u

−∞
e−v2 dv du

=2

∫ yθ

yr

∫ u

−∞
e(u+v)(u−v) dv du .

Here, the numerical difficulty arises due to a multiplication of

a divergent (eu
2
) and a convergent term (1 + erf(u)) in the

integrand. We therefore use the variable transform w = v − u
and obtain

= 2

∫ yθ

yr

∫ u

−∞
e(u+ v)(u− v) dv du

=2

∫ yθ

yr

∫ 0

−∞
e(2u+w)(−w) dw du

=
∫ ∞

0
e−w2 e2yθw − e2yrw

w
dw ,

where we performed the integral over u in the last line.
For yr , yθ < 0 the integrand can be integrated

straightforwardly as

∫ ∞

0

e2yθw−w2 − e2yrw−w2

w
dw , (A1)

where the two terms in the integrand converge separately and
where, in approximation, the upper integration bound is chosen,
such that the integrand has dropped to a sufficiently small value
(here chosen to be 10−12). Here, for w = 0, the integrand has to

be replaced by limw→0
e2yθw − e2yrw

w = 2
(
yθ − yr

)
.

For yθ > 0 and yr < 0 only the combination of the two terms
in Equation (A1) converges. So we rewrite

∫ ∞

0
e−w2 e2yθw − e2yrw

u
dw

=
∫ ∞

0
e2yθw−w2 1− e2(yr − yθ )w

w
dw

= ey
2
θ

∫ ∞

0
e−(w− yθ )2

1− e2(yr − yθ )w

w
dw . (A2)

The integrand has a peak near yθ . Therefore, in approximation,
the lower and the upper boundary can be chosen to be left
and right of yθ , respectively, such that the integrand has

fallen to a sufficiently low value (here chosen to be 10−12).
For w = 0 we replace the integrand by its limit, which is

limw→0 e
−(w−yθ )2 1−e2(yr−yθ )w

w = e−y2θ 2
(
yθ − yr

)
.

We actually switch from Equations (A1) to (A2) when
yθ > 0.05|Ṽθ |/σα with Ṽθ = Vθ + γ

√
τs/τm. This provides

a numerically stable solution in terms of a continuous
transition between the two expressions. Our reference
implementation numerically evaluates the integrals using
the adaptive GSL implementation gsl_integration_qags
(Galassi et al., 2006) of the Gauss-Kronrod 21-point integration
rule.

A.2. Usage of the NEST Reference
Implementation
We here give a brief description of how to use our reference
implementation of the continuous-time dynamics in the
simulation code NEST with the syntax of the PyNEST interface
(Eppler et al., 2009). Complete simulation scripts will be made
available with one of the next major releases of NEST. The
description focuses on rate-model specific aspects. A general
introduction to PyNEST can be found on the simulator website
(http://www.nest-simulator.org).

Script 1 shows the creation of an excitatory-inhibitory
network of linear rate units as used in our example in
Section 3.3.1. Researchers already familiar with the PyNEST
interface notice that there is no fundamental difference to
scripts for the simulation of spiking neural networks. Line 4
illustrates how to disable the usage of the waveform-relaxation
method. This is advisable for simulations on local workstations
or clusters, where the waveform-relaxationmethod typically does
not improve performance (see Section 3.2). The iterative method
is enabled by default, as it is also employed for simulations
with gap junctions, where it improves performance and even
accuracy of the simulation, regardless of network size and
parallelization (Hahne et al., 2015). Instances of the linear rate-
based model are created by calling nest.Create in the
usual way with model type lin_rate_ipn. The parameter
linear_summation characterizes the type of nonlinearity (φ
or ψ , see Section 2.3.2) of the rate model. In this particular
example the explicit specification of the parameter is added for
illustrative purposes only as i) the employed model is a linear
rate model, where regardless of the choice of the parameter
φ(x) = ψ(x) = x holds and ii) the default value is True
anyway. Lines 13-14 and 31 demonstrate how to record the rate
activity with the multimeter. The record_from parameter
needs to be set to rate to pick up the corresponding state
variable. As this particular network model includes delayed rate
connections the synapse model delay_rate_connection
is chosen (lines 17–20). In order to create instantaneous
rate connections instead one changes the synapse model to
rate_connection and removes the parameter delay from
the synapse dictionary. For the simultaneous use of delayed
and instantaneous connections one duplicates lines 17–28
and adapts the synapse and connection dictionaries of the
copy according to the needs of the additional instantaneous
connections.
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Script 1 | Simulation of an excitatory-inhibitory network of linear rate units.

1 import nest

2
3 # Disable usage of waveform-relaxation method

4 nest.SetKernelStatus({’resolution’: h, ’use_wfr’: False})

5
6 # Create rate units and recording device

7 n_e = nest.Create(’lin_rate_ipn’, NE,

8 params = {’linear_summation’: True,

9 ’mean’: mu, ’std’: sigma, ’tau’: tau})

10 n_i = nest.Create(’lin_rate_ipn’, NI,

11 params = {’linear_summation’: True,

12 ’mean’: mu, ’std’: sigma, ’tau’: tau})

13 mm = nest.Create(’multimeter’, params = {’record_from’: [’rate’],

14 ’interval’: h, ’start’: T_start})

15
16 # Specify synapse and connection dictionaries

17 syn_e = {’weight’: w, ’delay’: d,

18 ’model’: ’delay_rate_connection’}

19 syn_i = {’weight’: -g * w, ’delay’: d,

20 ’model’: ’delay_rate_connection’}

21 conn_e = {’rule’: ’fixed_outdegree’, ’outdegree’: KE}

22 conn_i = {’rule’: ’fixed_outdegree’, ’outdegree’: KI}

23
24 # Connect rate units

25 nest.Connect(n_e, n_e, conn_e, syn_e)

26 nest.Connect(n_i, n_i, conn_i, syn_i)

27 nest.Connect(n_e, n_i, conn_i, syn_e)

28 nest.Connect(n_i, n_e, conn_e, syn_i)

29
30 # Connect recording device to rate units

31 nest.Connect(mm, n_e + n_i)

32
33 # Start simulation

34 nest.Simulate(T)

Here and in the following scripts we use the syntax of the PyNEST interface (Eppler et al., 2009) of the NEST simulation software as of version 2.10.0 (Bos et al., 2015).

The script excludes the definitions of the parameters (h,NE,NI,mu,sigma,tau,T_start,w,d,g,KE,KI,T).

Script 2 shows a code snippet from a simulation script
employing model (30) used for mean-field analysis of complex
networks in Section 3.3.4. Here single rate units of type
siegert_neuron represent an entire population of spiking
neurons (lines 3-7). The units are coupled by connections
of type diffusion_connection. This connection type is
identical to type rate_connection for instantaneous rate
connections except for the two parameters drift_factor

and diffusion_factor substituting the parameter weight
(lines 11–13). These two parameters reflect the prefactors in
front of the rate variable in Equations (28) and (29). In
general the prefactors differ from these well known forms;
for example in case of distributed connection weights (see
Helias et al., 2008, their Equation 33). Therefore, we prefer a
generic parameterization over more specific alternatives like the
pair weight and convergence.
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Script 2 | Connecting units of typesiegert_neuron.

1 import nest

2
3 # Create one siegert_neuron for the excitatory population

4 s_ex = nest.Create(’siegert_neuron’, 1)

5 # Create one siegert_neuron for the inhibitory population

6 s_in = nest.Create(’siegert_neuron’, 1)

7
8 [...]

9
10 # Create connections originating from the excitatory unit

11 syn_e = {’drift_factor’: tau_m * K * w,

12 ’diffusion_factor’: tau_m * K * w * w,

13 ’model’: ’diffusion_connection’}

14 nest.Connect(s_ex, s_ex + s_in, ’all_to_all’, syn_e)

15
16 [...]

The script shows how connections between units of type (30) are created in PyNEST. Again the code snippet does not contain the definitions of the parameters (tau_m,K,w)

for brevity.
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