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Achieved motor movement can be estimated using both sensory and motor signals.

The value of motor signals for estimating movement should depend critically on the

stereotypy or predictability of the resulting actions. As predictability increases, motor

signals become more reliable indicators of achieved movement, so weight attributed to

sensory signals should decrease accordingly. Here we describe a method to quantify this

predictability for head movement during human locomotion by measuring head motion

with an inertial measurement unit (IMU), and calculating the variance explained by the

mean movement over one stride, i.e., a metric similar to the coefficient of determination.

Predictability exhibits differences across activities, being most predictable during running,

and changes over the course of a stride, being least predictable around the time of

heel-strike and toe-off. In addition to quantifying predictability, we relate this metric to

sensory-motor weighting via a statistically optimal model based on two key assumptions:

(1) average head movement provides a conservative estimate of the efference copy

prediction, and (2) noise on sensory signals scales with signal magnitude. The model

suggests that differences in predictability should lead to changes in the weight attributed

to vestibular sensory signals for estimating head movement. In agreement with the

model, prior research reports that vestibular perturbations have greatest impact at the

time points and during activities where high vestibular weight is predicted. Thus, we

propose a unified explanation for time-and activity-dependent modulation of vestibular

effects that was lacking previously. Furthermore, the proposed predictability metric

constitutes a convenient general method for quantifying any kind of kinematic variability.

The probabilistic model is also general; it applies to any situation in which achieved

movement is estimated from both motor signals and zero-mean sensory signals with

signal-dependent noise.

Keywords: efference copy, motor, sensory, prediction, variability, natural statistics, angular velocity, linear

acceleration
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INTRODUCTION

During everyday actions, the brain can estimate achieved
movement either based on sensory signals that indicate how the
body has moved or based on predictions derived from efference
copies of motor commands. The degree to which the brain relies
on the sensory vs. the motor estimate is thought to depend on the
noise associated with these estimates, with less noisy estimates
getting greater weight. This weighting scheme is well-described
by the Maximum-likelihood (ML) model of cue integration (van
Beers et al., 1999; Ernst and Banks, 2002).

Testing the model requires methods to quantify sensory and
motor noise. Traditional methods rely on 2-interval-forced-
choice tasks for quantifying sensory noise (Ernst and Banks,
2002), or analysis of trajectory endpoints for quantifying motor
(and/or proprioceptive) noise1 (van Beers et al., 1999). However,
alternative methods are required for continuous motor behaviors
such as locomotion, which is the focus of the current study.
Here we suggest that sensory and motor noises can be roughly
approximated based on continuous kinematic measurements. In
particular, we record 6-degree-of-freedom head motion during
walking and running using an inertial measurement unit (IMU).
We first describe a method for quantifying kinematic variability
and predictability based on these measurements. We then
continue to develop a model to relate these measures to sensory
and motor noise and weight during locomotion.

Recordings for a given participant are first divided into
strides and then averaged to reconstruct the mean head motion
over one stride. Total variability is calculated by squaring and
summing this average trace. Residual variability is calculated
by squaring and summing the amount by which each motion
sample deviates from the average. Finally, predictability or
stereotypy of head motion is quantified using the well-known
coefficient of determination (i.e., R2 statistic), which is the ratio
of residual to total variability. We refer to this quantity as
the kinematic predictability metric (KPM) and propose it as a
straightforward alternative to previously published measures of
kinematic predictability or stereotypy.

To relate these measures to sensory and motor noise, we
make several assumptions. We assume that an efference copy of
stepping behavior is used to increase the accuracy of the head
motion estimate. We do not have direct access to the efference
copy signal for each step so we estimate it as the average head
motion over all strides. Deviation from this average head motion
on each stride is due to a combination of (1) intended deviation,
(2) external perturbation, and (3) motor noise. If we assume
that intended deviation and external perturbation are small, the
residual variability measure described above provides an estimate
of motor noise2. Even if the above assumption is violated, the
approximation is still useful; residual variability can alternatively

1Note that motor estimates often consider the pooled effects of efference copy and

proprioceptive signals, even though proprioception is technically a sensory signal,

since these are often difficult to disentangle.
2In the following, we no longer differentiate between genuine motor noise and

variability generated by external perturbations, such as uneven ground or slipping,

and subsume both under the label motor noise. The sensory effect for both motor

noise and perturbations is a sensory feedback that deviates from the prediction

based on the efference copy and the internal model of body and sensory properties.

be interpreted as an upper limit onmotor noise, an idea we return
to in the discussion.

To estimate sensory noise from kinematic measurements we
rely on the often-observed phenomenon that noise scales with
the magnitude of the signal, i.e., that noise is signal-dependent.
In this case, sensory noise should be proportional to the total
variability measure described above, calculated as the sum of
squares of the average trace. This approximation is useful even
if the sensory signal is derived from multiple sensory modalities
(e.g., visual, vestibular, proprioceptive), a point we return to in
the discussion.

To derive sensory and motor weights, we substitute these
noise values into the equations that describe sensory-motor
weighting under the ML integration model. The equations
express weight as dependent on the ratio of motor-to-
sensory noise, which we approximate as residual-to-total
variability. Thus, the KPM, calculated solely based on kinematic
measurements, can be used to generate a prediction of the ideal
sensory-motor weighting for any behavior that satisfies themodel
assumptions.

We use the model to predict how vestibular sensory
weight should change during locomotion. Resulting predictions
correspond well with previously observed changes in vestibular
weight, both over time within a given stride, as well as
across different locomotor activities. In particular, it has
been shown that vestibular perturbation applied via Galvanic
Vestibular Stimulation (GVS) leads to significant perturbations
in subsequent foot placement only when the stimulus is applied
at a particular time during the stride cycle, e.g., at the time of
the heel strike (Bent et al., 2004). Similarly, stochastic vestibular
stimulation (SVS) leads to highly correlated EMG activity in the
locomotor muscles of the leg during the same period of the
stride cycle (Dakin et al., 2013). Our analysis of vestibular and
motor noise based on measurement of head motion suggests that
vestibular weight should indeed be highest at these time points.

Furthermore, the present model and measurements can also
account for differences in vestibular weighting observed across
activities. In particular, susceptibility to vestibular perturbations
has been shown to be greater during walking than during running
in both healthy subjects and vestibular patients (Brandt et al.,
1999; Jahn et al., 2000). This matches with our observation that
head movement is more predictable during running than during
walking.

In addition, these findings match physiological observations
of modulation of vestibular responsiveness during active
movement across a range of animal studies. For example, studies
in tadpoles have shown that vestibular signals are suppressed and
replaced by locomotor efference copies during active swimming
(Lambert et al., 2012). Similarly, vestibular signals in the
vestibular nucleus and cerebellum are attenuated during active
head movement in monkeys (Roy and Cullen, 2004).

METHODS

Subjects
Ten subjects (5M, 5F) aged 20–37 participated in this study.
Height ranged from 163 to 193 cm and weight ranged from
47 to 84 kg. Informed written consent was obtained prior to
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participation and all procedures were approved by the ethics
committee of the LMUmedical faculty.

Procedure
All subjects did the activities for 6min each, one after the other
with breaks in between during one long session in the same order:
running, walking in the field, walking on pavement, walking
stairs. During walking stairs, subjects spent approximately the
first 3min. walking up stairs and the remaining time walking
back down. An IMU (MTx sensor from Xsens) was strapped to
the left side of the head with an elastic headband. The sensor
transmitted 3-degree-of-freedom (DOF) measurements of linear
acceleration, angular velocity, as well as orientation at 150Hz
sampling rate. A wire ran from the sensor to a lightweight laptop
carried by the subject in a backpack. Post-hoc analysis confirmed
that the sensor remained securely strapped to the head, except
for one subject during walking on pavement where it was evident
that sensor orientation relative to the head changed during the
course of recording, so data for this subject and activity had to be
excluded from further analysis.

Calibration was necessary to measure and correct for the
misalignment of the sensor from Reid’s plane. This calibration
was performed before each activity. During calibration the
subject stood with the back of the head against a flat surface and
the experimenter used a level to align the pitch of the head such
that Reid’s line (defined as the line passing through the canthus of
the eye and the meatus of the ear) was perpendicular to gravity.
Subjects were otherwise instructed to hold the head upright, thus
it was assumed that the head roll relative to gravity was zero. Once
the proper orientation was achieved, the subject remained in that
position for 60 s. The mean direction of the acceleration vector
over this period is taken to be the normal to Reid’s plane, and all
data is transformed such that the direction of the z-axis is aligned
with this vector.

Stride Identification and Exclusion
Head motion data for each activity and subject was divided into
individual strides, defined as the time between two consecutive
footfalls with the same foot, as in previous work (e.g., Hirasaki
et al., 1999; Mulavara and Bloomberg, 2002). Footfalls were
identified by the instants of maximum z-axis linear acceleration.
In experiments that have recorded both foot pressure and head
acceleration simultaneously it has been observed that peak z-axis
acceleration occurs during mid-stance, which is after heel-strike
and before toe-off (Mulavara and Bloomberg, 2002).

Our analysis depends on identifying the average head motion
across the stride for each subject and activity to find what we
call the stride-cycle attractor, and we chose to normalize stride
duration before averaging. Stride data was resampled to a total
of 200 samples per stride via spline interpolation (“interp1”
function in Matlab). Thereafter, sample number, or equivalently
proportion of elapsed stride, was used as the index of time
within the stride. The average stride duration for each activity
was as follows: RUN (running) 0.75 (±0.02) s, WAP (walking on
pavement) 1.10 (±0.06) s, WAF (walking on field) 1.13 (±0.06)
s, WUP (walking up stairs) 1.24 (±0.11) s, WDN (walking down
stairs) 0.90 (±0.14) s.

Because our focus is on head motion during steady-state
locomotion, we excluded irregular strides (caused for example
by events such as tripping, stopping, or tying a shoelace) as
follows. Half-strides (i.e., inter-footfall intervals) were identified
as outliers if their duration was too long or too short [i.e., >Q3+
1.5(IQR) or <Q1 - 1.5(IQR)]. The outliers were excluded and
strides were extracted following such outliers only if there were 20
consecutive acceptable half-strides (10 full strides) immediately
following the outlier. If this criterion was not met, all data
between consecutive outliers was discarded. This resulted in
discarding the following percentage of the data, on average (SD),
across subjects: RUN 1 (±1)%, WAP 3 (±3)%, WAF 3 (±3)%,
WUP 7 (±5)%, and WDN 11 (±11)%. The average number of
strides collected per subject for each activity was as follows: RUN
477 (±15), WAP 311 (±23), WAF 299 (±38), WUP 144 (±34),
and WDN 140 (±49).

Quantifying Predictability
Predictability or stereotypy of head motion is quantified based
on measured variability in head motion. In particular, we
calculate the total head motion variability (SStot) and quantify
the proportion which can be predicted or explained by the
stride-cycle attractor (Vexp, also known as the coefficient
of determination or R2) and the proportion of residual or
unexplained variance (Vres) across a total of N strides as follows,

Vexp + Vres = 1 (1)

V(t)res = SS (t)res/SS(t)tot (2)

SS(t)tot = 1

N

N
∑

i=1

∑

d

(

m(t)d,i −md

)2
(3)

SS(t)res = 1

N

N
∑

i=1

∑

d

(

m(t)d,i − f (t)d
)2

(4)

md is average head motion along dimension d (either x, y, or z
axis) over all strides and times. m(t) is head motion measured
at normalized stride time t, on stride number i along dimension
d. f(t) is the average head motion for that stride time and
dimension (i.e., the corresponding value from the stride-cycle
attractor). Thus, SSres quantifies signal deviation from the stride-
cycle attractor, and SStot quantifies deviation from the mean
signal. Note that deviations are expressed as Euclidean distances,
which allows summing across dimensions to obtain a single
metric of multidimensional variability.

Relating Predictability to Sensorimotor
Weighting
In accordance with the widely accepted MLE model of cue
integration (e.g., van Beers et al., 1999; Ernst and Banks, 2002),
we assume that head motion (H) is estimated as a weighted linear
combination of vestibular (sensory, S) and efference copy (motor
M) signals with weights (w) determined by the relative reliability
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(or variability) of these signals:

Ĥ = wsens · S+ wmot · M (5)

wsens = σ 2
mot

σ 2
sens + σ 2

mot

wmot =
σ 2
sens

σ 2
sens + σ 2

mot

(6)

These weights can be calculated based on the head movement
measurement data given the following assumptions. First, we
assume that sensory noise is signal dependent, i.e., that its
variance is proportional to the squared signal. If our signal has
zero mean (i.e., md = 0), which is approximately true for these
oscillatory motions after subtracting gravity, we can then express
sensory noise relative to our head movement measurements as
σ 2
sens = k · SStot where k < 1 is an unknown proportionality

constant. We assume a single multimodal sensory signal coding
head motion in space that is determined predominantly by
vestibular input but can include other components such as
optic flow, proprioceptive, or somatosensory signals. We focus
on vestibular signals here because we attempt to explain
observations of changes in vestibular weight reported in the
literature. If contributions of other sensory modalities are
large, vestibular weight will be reduced accordingly. Finally, we
assume that the intended/expected head movement on every
stride is equal to the stride cycle attractor. Therefore, efference
copy/motor noise is equal to the deviation of actual head
movements relative to this attractor, which can be expressed as
σ 2
mot = SSres. Substituting and rearranging, we now predict

that sensory weight should depend on the proportion of residual
variance of head motion relative to the stride cycle attractor as
follows

wsens =
SSres

k · SStot + SSres
= Vres

Vres + k
(7)

Notice that this model of ML sensory-motor weighting
generalizes to any situation in which achieved movement
is estimated from both efference copy and a zero-mean
sensory signal with signal-dependent noise; weight given to the
sensory signal decreases for more predictable, repeatable, and/or
stereotyped movements.

Interestingly, Equation 7 implies an upper limit for the sensory
weight given that the stride cycle attractor is not degenerate
(i.e., not a constant): in this case Vres ≤ 1, because the residual
variability SSres will always be smaller than the total variability
SStot . Therefore, wsens ≤ 1/

(

1+ k
)

< 1, which means that
the contribution of sensory signals to the estimate of achieved
movement cannot exceed an upper bound which depends on
k, the proportionality constant for signal dependent noise. The
estimate will always be determined in part by the efference copy.

RESULTS

Linear and angular head motion across the 6-min recording
period can be visualized for each subject and activity as distinctive
3D point clouds (e.g., Figure 1A). Due to the periodic nature of
the headmotion it is possible to identify an attractor in each point

cloud, which is calculated as the average linear (Figures 1B,C)
and angular (Figures 1D,E) head motion during one stride.

This attractor is further used to quantify the predictability
of head motion. Specifically, for each subject and activity we
calculate the proportion of variance that cannot be explained
by the stride-cycle attractor, i.e., the proportion of residual
variance (Vres, Equations 1, 2). This quantity depends on total
variance (SStot), which is calculated as deviation from the
mean signal (Equation 3), and residual variance (SSres), which
is deviation from the stride-cycle attractor (Equation 4). The
approach is illustrated in Figure 2 which compares variability
of linear head motion during running (left) and walking (right)
for the same individual subject shown in Figure 1. The top row
(Figures 2A,B) shows residual variance (SSres), the middle row
(Figures 2C,D) shows total variance (SStot), and the bottom row
(Figures 2E,F) plots the ratio of the two, which is the proportion
of residual variance (Vres). A value of Vres closer to zero means
that head motion can be predicted very well based only on
knowledge of where you are in the stride cycle, information that
is readily available from central pattern generator or efference
copy signals during locomotion. On the other hand, a higher
value of Vres indicates less predictive value of stride-cycle timing
information and thus increased expected utility/importance of
vestibular sensory signals for estimating head motion. This
intuition is expressed mathematically in Equation 7, where larger
values of Vres correspond to larger sensory weights.

Despite considerable across-subject differences in height,
weight, and gender, there are commonalities in how head motion
and head motion variability are modulated across the stride
cycle. This is illustrated in Figure 3 which shows across-subject
mean and SD for linear (left) and angular (right) head motion
(top row) and Vres (bottom row) for both running and walking.
Variability across subjects appears greater for angular than linear
head motion. This is likely because the range of angular head
motion is rather small, so even minimal differences in angular
head motion across subjects results in standard deviations that
appear large in comparison.

It is interesting to note the distinctive peaks in residual
variance (Vres) for linear head motion (Figures 3E,F). These
peaks indicate time-points during which head motion is not
well-predicted, such that vestibular signals might be expected to
play a more critical role. These peaks occur just before and just
after the peaks in z-axis linear head acceleration (Figures 3A,B,
red). Maximum z-axis acceleration occurs during mid-stance
(Mulavara and Bloomberg, 2002), so the peaks inVres correspond
roughly to heel-contact and toe-off which occur before and
after maximum z-axis acceleration, approximately when z-axis
acceleration is near zero. Studies that have examined the phase
dependence of vestibular influence on locomotion have identified
exactly these time points as the ones where vestibular influence is
maximal (Bent et al., 2004; Dakin et al., 2013).

In addition to large variations in predictability across the
stride for a given activity, there are considerable differences
across activities. Figure 4 shows across-subject averages of
total and residual variability (Figures 4A,B) for all activities,
as well as Vres (Figures 4C,D), and hypothetical vestibular
weight (Figures 4E,F). Proportion of residual variance (Vres) was
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FIGURE 1 | Average head motion during locomotion: example subject. (A) Stride-cycle attractor for linear head acceleration during running. Linear acceleration

samples over the 6min. recording period form a 3D point cloud in the space of possible head accelerations. The surface of this cloud is rendered at a density of 20

points per cubic cm/s2. Mean acceleration over the stride cycle defines an attractor in this space (red line). (B–E) Stride-cycle attractors for linear (top) and angular

(bottom) head motion during running (left), and walking on a field (right) for an example subject. Traces illustrate the x (blue), y (green), and z (red) components of head

motion averaged over all strides. Shaded area indicates SD across all strides. Vertical dashed lines are approximate timepoints of heel strike and toe-off, computed as

5% stride-cycle timing before and after point of maximum z-axis acceleration. Note, linear acceleration plotted in the upper panels is only the component of

acceleration due to linear head motion, i.e., the total acceleration (as in A) minus the gravitational component. Orientation data from the sensor was used to estimate

and then subtract the gravitational component at each time point.

minimal for running (RUN), meaning that head motion was
well-predicted by the stride-cycle attractor. Vres increased for
walking on pavement (WAP) and field (WAF) and was greatest
for walking up (WUP) and down (WDN) stairs. The change in
proportion of residual variance across activities was not driven
solely by residual variance (SSres, numerator) or total variance
(SStot denominator), both of which showed a different pattern
of modulation across activities (Figure 4, top). Most notably for
running, total variance is approximately one order of magnitude
greater than for other activities, while residual variance remains
of the same order as for the other activities, which leads to the
lowest Vres for this activity. In fact, head motion is significantly
more predictable during running compared to walking on a field
(paired t-test on Vres values; linear, p < 0.001; angular, p = 0.07).
This seemingly paradoxical result can explain why patients with
vestibular deficits and healthy participants exposed to vestibular
perturbations are less susceptible to adverse vestibular activation
during running than during walking (Brandt et al., 1999; Jahn
et al., 2000).

In addition to explaining vestibular reliance, head motion
predictability provides a convenient metric for quantifying
differences in stability, even within a given activity. For example,
Vres is less for walking on pavement than for walking on a field

(linear, p = 0.04; angular, p = 0.4), and less for ascending
than for descending stairs (linear, p < 0.001; angular, p =
0.22), observations that also match with qualitative differences in
postural/locomotor stability across these activities. In both these
cases, differences in Vres are driven primarily by differences in
residual rather than total variance (Figure 2, top). Thus, while
both total and residual variance can vary considerably across
activities, it is ultimately the ratio of the two that provides the
best quantification of postural stability and vestibular reliance.

Even though predictability of linear and angular head motion
co-vary across activities (rho = 0.69, p < 0.001), linear head
motion is much more predictable than angular (p < 0.001).
This suggests that efference copy-based mechanisms will be more
useful for linear than angular stabilization. Conversely, angular
stabilization should be more dependent on vestibular signals. A
related prediction is that patients with localized damage to the
canals should be more impaired than those with only damage to
the otoliths.

DISCUSSION

Above we proposed a KPM based on the coefficient of
determination for the average, time-normalized trajectory over
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FIGURE 2 | Variability of linear acceleration during running and walking: example subject. (A,B) Variation in head motion relative to the stride-cycle attractor (SSres)

calculated as the sum of squared residuals (Equation 4). Shown is the mean SSres across all strides for this subject for running (A) and walking (B). Colors indicate the

separate x (blue), y (green), and z (red) components of variability. Note y-axis scale is an order of magnitude larger for running than walking. (C,D) Total variation in

head motion (SStot ) calculated as the sum of squared deviation from the signal mean (Equation 1). Shown is the mean SStot across all strides for this subject for

running (C) and walking (D). Note y-axis scale is an order of magnitude larger for SStot (C,D) than SSres (A,B). (E,F) Proportion of residual variance (Vres, black line)

calculated as the ratio of residual to total variance (Equation 2) for each time point in the stride-cycle for running (E) and walking (F). The model predicts that vestibular

signals should be weighted most highly during time points in the stride with a high proportion of residual variance. The dashed red line shows the mean Vres across

the mean stride which provides a single value to quantify either linear or angular head motion variability for each subject and activity. Note that even though overall

variance is greater during running (A,C) than walking (B,D;see y-axis scales), proportion of residual variance (Vres) is reduced (E<F). Vertical dashed lines are

approximate timepoints of heel strike and toe-off, computed as 5% stride-cycle timing before and after point of maximum z-axis acceleration.

repeatedmovements (Equations 1–4) andwe applied thismethod
to head motion recordings during various locomotor activities.
With some assumptions, we show that this measure should
reflect the relative weight given to sensory and motor signals
for estimating head movement (Equations 5–7). Below we
discuss these assumptions and we show that predictions of the
model are consistent with previously observed differences in
vestibular weight across activities, as well as over time within
a single stride. We also show that the proposed vestibulo-
motor interactions are consistent with known physiological
convergence and vestibular suppression in animals. While these
relationships are suggestive, they do not prove the model. We
therefore discuss possible experiments that would test the model.
We conclude with speculation about clinical applications of the
KPM and generalizability of the sensorimotor weighting model.

Assumptions for Deriving Sensory and
Motor Noise from Kinematic Data
To derive motor noise, we first calculate the mean head motion
during one stride cycle and we assume that this is equivalent
to the intended head motion on every stride. However, the
efference copy during an individual stride can be supposed to
carry much more information than just the average amplitude
over all strides. If, for example, a subject encounters an obstacle
which requires them to alter their stereotypical stepping pattern,
or if they simply turn their head to look at something eccentric
to their path of travel, this information can be supposed to
be included in the efference copy and thus be accounted
for by multimodal integration, but not by our experimental
measurements. Recordings were conducted on uniform terrain
(e.g., a soccer field) and subjects most commonly look where they
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FIGURE 3 | Across-subject average head motion (top) and residual variance (bottom) during running and walking. (A–D) Average stride cycle for linear (A,B) and

angular (C,D) head motion during running (A,C) and walking (B,D). Colors indicate the separate x (blue), y (green), and z (red) components. (E–H) Average proportion

of residual variance (Vres) for linear (E,F) and angular (G,H) head motion during for running (E,G) and walking (F,H). Shaded area indicates ±SD across subjects.

Vertical dashed lines are approximate timepoints of heel strike and toe-off, computed as 5% stride-cycle timing before and after point of maximum z-axis acceleration.

are going. Because we average over∼100–400 strides (depending
on activity, see Methods), it is unlikely that a few deviant strides
will have a significant impact on the mean stride cycle. However,
because we estimate motor noise as the deviation from this
average stride, we will interpret intentional deviations (e.g., head
turns) as noise. In this way, our present estimate of motor noise
can be interpreted as an upper limit on motor noise; the true
motor noise is likely to be reduced relative to what we measure.

To derive our measure of sensory noise, we assume only
one sensory signal, when in reality, multiple sensory signals
are available for estimating head motion, in particular visual,
and proprioceptive as well as vestibular signals. In order for
the model to reliably predict vestibular weight these additional
signals should be highly variable, such that they receive little
weight and have little impact on vestibular weights predicted
by the model (wvest ≈ wsens). Alternatively, if the variability
of the other sensory signals is approximately proportional
to that of the vestibular signal, our estimates of vestibular
weight will be smaller by a fixed constant (wvest ≈ wsens/c)
but still change in the same proportion over conditions. If
other sensory signals are much less variable than vestibular
and motor estimates, they will receive increased weight and
vestibular weights will be reduced relative to model predictions.
This could happen, for example, if visual self-motion signals
remained reliable despite large head motions during running
because of precise image stabilization via oculomotor and neck-
motor reflexes. In this case, visual noise would not increase
proportional to total head motion, and noise on this signal may
remain small. However, to our knowledge, the amount of noise
on the visual self-motion signal during running has not been

quantified. Stabilization reflexes are driven predominantly by
vestibular signals: a major complaint after vestibular damage
is oscillopsia during walking and running, i.e., the inability to
evaluate visual input due image slip caused by uncompensated
head movements. Vestibular signals are known to be affected
by signal-dependent noise, at least for perception (Mallery
et al., 2010; Nesti et al., 2014). Thus, the visual self-motion
signal will be affected not only by vestibular but also by
oculomotor noise, because oculomotor signals (e.g., efference
copy or proprioception) are required both for image stabilization
and to convert visual motion signals from retinal to head
coordinates. Overall, we suggest that the assumption of signal-
dependent noise on the overall sensory self-motion estimate is
fairly reasonable.

Admittedly, the strength of our conclusions is limited by the
above assumptions. Nevertheless, based on these assumptions the
model makes several predictions which agree with observations
in the literature about difference in vestibular weighting across
the stride (see next section) and across activities (see the following
section). Importantly, alternative unified explanations for these
observations are lacking to date.

Model Predicts Differences in Vestibular
Weight over Time within a Single Stride
Previous studies have observed that the influence of vestibular
signals on locomotor behavior varies systematically over time
during the course of a single stride. For example, GVS applied
either at heel contact or during toe-off, but not during the mid-
stance phase (i.e., single leg support), leads to perturbed foot
placement on a subsequent step (Bent et al., 2004). Similarly,
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FIGURE 4 | Variability of head motion and predicted vestibular weight across subjects and activities. (A,B) Residual (blue) and total (red) variability for linear

acceleration (A) and angular velocity (B) during running (RUN), walking on pavement (WAP), walking on a field (WAF), walking up stairs (WUP), and walking down stairs

(WDN). A single value was calculated for each subject and activity as the mean across the mean stride (e.g., mean values from Figures 2A–D). Shown here are the

mean (±SE) values across the 10 subjects. (C,D) Proportion of residual variance for linear acceleration (C) and angular velocity (D) for all activities. A single value was

calculated for each subject and activity as the mean across the mean stride (e.g., mean values from Figures 2E,F). Shown here are the mean (±SE) values across the

10 subjects. (E,F) Predicted sensory (vestibular) weight for each activity calculated according to Equation 7 using the Vres values shown in (C,D) and a hypothetical

value of k = 0.2 as the proportionality constant for signal-dependent noise. Shown here are the mean (±SE) values across the 10 subjects. Note that while Vres can

reach a value of 1, sensory weight cannot exceed a maximum value equal to 1/(1 + k); this limit is approached in (F) (see text for additional discussion on this point).

when SVS is applied during locomotion, the largest correlations
with EMG recorded acrossmultiple legmuscles was observed just
after heel-strike (Dakin et al., 2013).

Our model makes predictions that agree with these empirical
results. It suggests that vestibular signals should be weighted
most highly when Vres is highest (see Figure 3, bottom). Peaks
in Vres occur just before and after the instants of peak z-axis
acceleration during both walking and running. Since maximum
z-axis acceleration occurs during mid-stance (Mulavara and
Bloomberg, 2002), these time points correspond roughly to heel-
contact and toe-off.

Phasic modulation of vestibular impact has been proposed to
reflect changes inmuscle activation and the impact activation will
have on stabilization behavior (Dakin et al., 2013). Alternatively,

it has been suggested that planning of foot placement is most
active during these time points (Bent et al., 2004). Here we
suggest instead that this phenomenon could reflect dynamics
in relative magnitude of sensory and motor noise. Specifically,
peaks inVres are observed when instantaneous linear acceleration
at the head is near zero, such that SStot , the Vres denominator
and the main determinant of sensory noise, is small. Note that
these experiments were conducted with eyes open such that
visual head motion estimates may have contributed, leading
to a decrease in vestibular weight. However, unless the visual
head motion estimate was very precise, the model still predicts
that dynamics of vestibular and motor variability should lead
to phasic modulation in vestibular weight that resembles the
observed patterns.
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Model Predicts Differences in Vestibular
Weight across Activities
Prior research has found that vestibular perturbations have
a greater impact on locomotion during walking than during
running (Brandt et al., 1999; Jahn et al., 2000). This finding is
interpreted as evidence that the weight given to vestibular signals
varies depending on activity, in that more “automatic” behaviors,
such as running, tend to rely less on sensory feedback than less
automatic behaviors, such as walking slowly. Here we propose an
alternative explanation for this finding, namely that the ratio of
sensory to motor noise is greater for activities such as running,
which leads to downweighting of sensory relative to efference
copy signals.

Among prior studies that have specifically measured head
motion during walking (e.g., Pozzo et al., 1990; Crane andDemer,
1997; Hirasaki et al., 1999; Mulavara and Bloomberg, 2002; Menz
et al., 2003; MacDougall and Moore, 2005; Carriot et al., 2014),
very few quantify spatial variability across strides. Most similar
to the current approach, (Menz et al., 2003) report root-mean-
square head acceleration (≈

√
SStot)as well as what they call

acceleration amplitude variability (≈
√
SSres) for five different

walking speeds, however they do not analyze the ratio between
these measures (≈

√
Vres). Judging from their data (see Figures

4, 5 in Menz et al., 2003), this ratio decreases with increasing
walking speed, meaning that linear head acceleration becomes
more predictable with increasing walking speed. Accordingly,
our model predicts that vestibular signals should receive more
weight at slower walking speed, and this agrees with prior reports
demonstrating that vestibular perturbations have greater effect at
slower walking speeds (Dakin et al., 2013).

In this way, the model generalizes to explain not only
observed differences in vestibular reliance between running
and walking (Brandt et al., 1999), but also differences as
a function of walking speed (Jahn et al., 2000). These
studies were conducted with blindfolded subjects, so the
potential impact of visual head motion signals can be ignored.
Based on the current measurements, we suggest that the
model can be generalized even further and we predict
that vestibular reliance is greater when walking on uneven
compared to level ground (i.e., field vs. pavement), and greater
for walking down than up stairs. These predictions agree
with reports of vestibular patients who feel more unsteady
when walking on uneven ground and when walking down
stairs.

More generally, thorough testing of the model presented
here would require kinematic measurements and matched
measurement of vestibular weighting in the same subjects
under a range of conditions, such as walking, running, walking
stairs, etc. Ideally, reliance on alternative sensory cues would
be reduced, e.g., by using a blindfold or otherwise reducing
visual self-motion cues. Also, it is important to note that
the above comparison does not consider a key difference
between running and walking, which is that running does
not include a double support phase during which both feet
are on the ground, and often includes an aerial phase with
a deterministic trajectory. Despite these qualitative differences,
which likely exist for other activities as well, the model treats

all activities in the same way, based on predictability of head
motion.

Physiological Mechanisms for
Vestibulo-Motor Convergence and
Vestibular Suppression
The idea that efference copies of motor commands are used in
conjunction with sensory signals in order to estimate achieved
movement has a long history in neuroscience (Sperry, 1950; von
Holst and Mittelstaedt, 1950; Sommer and Wurtz, 2002). Several
animal studies have described early integration of efference
copy and vestibular sensory signals. Vestibular input for gaze
stabilization during active locomotion in the tadpole (Lambert
et al., 2012) and also in the adult frog (von Uckermann et al.,
2013) is suppressed and substituted by spinal efference copy
at the level of brainstem ocular motor neurons. Based on
these results and in agreement with our data, it has been
suggested that similar mechanisms hold for quadrupedal animals
because of the considerable predictability of visual perturbation
during locomotion as quantified by cross-correlations between
head and foot movements (Chagnaud et al., 2012). Phasic
modulations of vestibulospinal neurons have been documented
during locomotion in quadrupeds (Matsuyama and Drew, 2000).
While the relation of this modulation to muscle activations
have been investigated, the relation to vestibular input has
not been explored because head acceleration was not recorded
simultaneously with neural activity.

For active head movements in the guinea pig, an anticipatory
vestibulo-ocular reflex, driven by efference copy has been
demonstrated (King, 2013). Similarly, mice and rhesus monkeys
show partial suppression of vestibular input during self-
generated head movements at the level of brainstem vestibular
neurons (Cullen, 2014). There is evidence that the cerebellum
could play a crucial role in predicting sensory consequences of
movement (Cullen and Brooks, 2015). Recent findings in humans
on gaze control during active head movements also underline
the importance of efference copy signals in accordance with the
optimal motor control framework (Saglam et al., 2014).

Applications of the Kinematic Predictability
Metric and Generalizability of the
Sensorimotor Weighting Model
Extensive prior research has investigated locomotion and gait
in normal subjects as well as in elderly subjects or patients
with motor or neurological deficits (e.g., Maki, 1997), and many
prior studies have identified mean kinematic (e.g., stride cycle)
patterns, like the ones presented here (e.g., Hirasaki et al., 1999;
Mulavara and Bloomberg, 2002; Duhamel et al., 2004; Chau et al.,
2005), as a way to quantify the ideal intended movement on
each stride. It has been observed that stable healthy gait patterns
(i.e., those associated with the lowest risk of falling) are those
that exhibit the least variability (Maki, 1997; Hamacher et al.,
2011), consistent with the assumption that the goal of locomotion
is repeatable, deterministic motor behavior. Therefore, much
attention has been devoted to methods for analyzing variability
in locomotor data (Duhamel et al., 2004; Chau et al., 2005;
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Hamacher et al., 2011). Often, variability is quantified based
on temporal characteristics such as stride timing (Hausdorff
et al., 1996; Maki, 1997). Stride-to-stride stability or repeatability
of spatial, kinematic measurements, such as accelerometer or
positional tracking data, has been quantified multiple ways
(e.g., Floquet multipliers; Dingwell and Kang, 2007, Lyapunov
exponents van Schooten et al., 2011, etc, see Bruijn et al., 2009 for
a comparison), but straightforward analysis of spatial variability
(i.e., the KPMbased on R2) has not been reported before. Here we
show that this measure can explain degree of vestibular reliance
across activities. If it can further be shown that it is a useful
indicator of fall risk, it could constitute a relatively simple but
useful clinical outcome measure for gait variability, not only for
vestibular patients, but also for neurological or aging populations,
particularly because IMU, whether mounted at the head or
elsewhere on the body, constitute a low-cost and unobtrusive
method for collecting clinical diagnostic data.

However, the KPM is not constrained to inertial data.
Position tracking and other multiple-DOF kinematic data may be

analyzed the same way. Likewise, the model of sensory andmotor
weight is not constrained for estimation of headmotion; it applies
to any situation in which achieved movement is estimated based
on efference copy and a zero-mean sensory signal with signal
dependent noise. In future, we expect the KPM could be applied
to gain insight on sensorimotor integration for motor behaviors
other than locomotion.
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