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Electroencephalographic recordings (EEG) present an opportunity to monitor changes in human
brain electrical activity during changing states of consciousness like sleep or general anesthesia.
Frontal EEG recordings during surgical interventions with anesthetic-induced unconsciousness
help to estimate the patients’ level of (un)consciousness.

EEG-BASED MONITORING OF THE LEVEL OF CONSCIOUSNESS:
COMMERCIAL DEVICES

The classical way to extract information from the recorded EEG relevant for assessment of the
level of anesthesia is the application of algorithms that evaluate changes in the oscillatory behavior
of the EEG that is mainly derived from frontal EEG montages placed on the patients’ forehead.
These calculations are most often performed in the frequency domain, i.e., after transformation of
the signal, e.g., by the Fourier Transform. The most prominent commercial system, the bispectral
index (BIS, Medtronic, Dublin, Ireland) evaluates changes in the log ratio of the 30 to 47 Hz and
11 to 20 Hz EEG band power (BetaRatio) as well as a ratio of the sum of bispectrum peaks in the
0.5 to 47 Hz and the 40 to 47 Hz range (SynchFastSlow) (Rampil, 1998). The bispectrum presents
a higher order spectrum that evaluates the phase correlation of different frequency components
and is able to identify nonlinear signal properties (Rampil, 1998). The BetaRatio subparameter
outperforms SynchFastSlow and BIS in separating consciousness from unconsciousness (Schneider
et al., 2004). SynchFastSlow dominates BIS calculation during surgical levels of anesthesia (Rampil,
1998). State and Response entropy (GE Healthcare, Chicago, IL) evaluate changes in the shape
of the power spectrum (Viertio-Oja et al., 2004). Other devices like the CSI (Danmeter, Odense,
Denmark), IoC (Morpheus Medical, Barcelona, Spain), or qCON (Quantium Medical, Mataro,
Spain) use ratios of EEG band power (Jensen et al., 2006, 2014; Revuelta et al., 2008). The IoC also
processes information from the EEG after transformation to a time series of symbols (Revuelta
et al., 2008). The Narcotrend (Narcotrend, Hannover, Germany) utilizes information from the
spectral domain as well from autoregressive modeling in the time domain (Kreuer and Wilhelm,
2006). The PSI from the SEDLine monitor (Masimo, Irvine, CA) processes spectral power from
different frequency bands as well as interhemispheric power gradients and synchrony (Prichep
et al., 2004). The Brain Anesthesia Response (BAR) monitor (Cortical Dynamics Ltd., North Perth,
Australia) takes a different approach. It generates its index by modeling EEG dynamics (Liley et al.,
2010b). These devices have in common, that combining the subparameters is performed by a
proprietary algorithm, and hence the contribution of each parameter to the index is not known.
In general, these indices track the suppression of high frequency EEG activity and the activation
of low frequent oscillations, as triggered by many common anesthetics (Brown et al., 2010). By
using spectral power, or parameters derived from it, as key parameters, the monitoring systemsmay
dismiss signal information content by neglecting the phase component of the signals’ frequency and
only exploiting information from the amplitude spectrum (Callegaro, 2012). Further, the devices
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susceptibility to muscle activity (Messner et al., 2003; Schuller
et al., 2015), especially by including high EEG frequencies as well
as the time delay, necessary for index calculation (Pilge et al.,
2006; Zanner et al., 2009; Kreuzer et al., 2012) may present a
limiting factor in performance to reliably track the anesthetic
state.

EEG-BASED CONSCIOUSNESS
MONITORING IN RESEARCH:
TIME-DOMAIN ANALYTICAL
APPROACHES

More recent approaches to extract information from the EEG at
different levels of anesthesia use nonlinear parameters that reflect
signal information content, complexity, and/or predictability.
These approaches seem capable to extract non-linear information
from the signal as investigated with surrogate techniques, while
linear measures like spectral entropy or the Hurst exponent
did not detect these non-linearities (Jordan et al., 2009; Anier
et al., 2010). In EEG and anesthesia research the most prominent
players are approximate entropy (ApEn) (Pincus, 1991; Bruhn
et al., 2000) and permutation entropy (PeEn) (Bandt and Pompe,
2002; Jordan et al., 2008; Olofsen et al., 2008) for single channel
analysis and cross approximate entropy (Pincus Steven et al.,
1996; Hudetz, 2002; Kreuzer et al., 2010), (symbolic) transfer
entropy (Schreiber, 2000; Imas et al., 2005; Staniek and Lehnertz,
2008; Jordan et al., 2013), or order recurrence plots (Groth, 2006)
for bivariate analysis. These measures are applied to the EEG
time domain, usually after band-pass filtering of the EEG to a
wide frequency range with a low pass filter set to around 25 to
30 Hz to limit EEG signal contamination by electromyographic
activity (EMG). Frontal EMG activity can occur in the entire
frequency range but seems to peak between 25 and 30 Hz
(Goncharova et al., 2003). The mentioned entropy measures
usually define consecutive amplitude values or their ranks as
pieces of information, called motifs. The EEG is then represented
as series of motifs. The user can define the length m of a motif
(the number of amplitude values it is generated from), a time lag
parameter τ (to consider only each τ th amplitude value to define
amotif of lengthm), and a shift k (to shift k amplitude values from
the first amplitude value of the previous motif to start generation
of the next motif of length m with lag τ ). Figure 1 presents the
impact of k and τ on motif generation.

The transfer entropies that quantify directed information
flow include another parameter δ (Staniek and Lehnertz, 2008)
to define transfer lags or transmission time of the motif of
information between the two channels. The time lag parameters
δ may evaluate changes in signal information roughly associated
with a certain frequency range. When compared to spectral
approaches and commercial monitors, the univariate measures
ApEn and PeEn showed higher performance in distinguishing
EEG recorded during consciousness from EEG recorded during
unconsciousness and to reflect different levels of general
anesthesia (Bruhn et al., 2000; Jordan et al., 2008; Liang et al.,
2015). A newly proposed, multimodal index, integrates PeEn
to separate consciousness from unconsciousness and ApEn to

scale different levels of anesthesia (Schneider et al., 2014). The
use of the bivariate transfer entropies revealed a loss of cortical
feedback connectivity as a key mechanism of anesthetic-induced
unconsciousness that is universal for most anesthetics (Ku et al.,
2011; Jordan et al., 2013; Lee et al., 2013; Ranft et al., 2016).
Interestingly the parameter settings were targeted toward the
EEG beta frequency range. This frequency range may play an
important role in synchronizing different cortical regions (von
Stein and Sarnthein, 2000; Bassett et al., 2009; Hipp et al., 2011).
So although these nonlinear parameters are applied to a wide
frequency range, their intrinsic setting defines the information to
be extracted from the signal.

DIFFERENT ENTROPIES EVALUATE
DIFFERENT PROPERTIES

These findings are a strong claim to include nonlinear analysis
techniques in commercial “depth of anesthesia” monitoring as
well as to extend the EEG electrode layout to at least one
electrode placed in parietal or occipital regions to be able to
monitor the loss of cortical feedback activity. Further, there
is something to be mentioned regarding “entropy analysis” in
anesthesiology. Often, for instance at conferences there is just
a discussion about “entropy” analysis without defining what
method really has been used. These measures, even if they
share the term “entropy” analyze different signal features. A
very prominent example is the spectral entropy, a measure
evaluating the change in shape of the power spectrum (Viertio-
Oja et al., 2004). It evaluates the changes in the frequency
domain, so it cannot be compared to analytical techniques in
the time domain. Another example is the difference between
ApEn and PeEn. The ordinal PeEn evaluates the probability
distribution of amplitude rank patterns in the signal, while
ApEn evaluates the probability of similar absolute amplitude
patterns detected in the signal remain similar if they are extended
by one more amplitude value. In order to define similarity
of two absolute amplitude values, the algorithm contains a
tolerance that acts like a low pass filter on the signal, while
the formation of rank pattern in the PeEn is more like a
high pass that removes slow underlying trends in amplitude
from the signal. Figure 2 presents a graphical example of the
described differences. As mentioned earlier, ApEn and PeEn have
different strengths. ApEn seems strong in scaling different levels
of unconsciousness, while PeEn presents a strong parameter to
separate consciousness from unconsciousness (Schneider et al.,
2014).

Hence, the EEG time series is converted to a series of rank
patterns. The more uniform the probability distribution of the
m! possible rank patterns, the higher is PeEn. ApEn evaluates
the predictability of a time series by evaluating the occurrence
of similar patterns of length m. Similar means that the maximum
difference of the EEG amplitude values is smaller than a tolerance
r. The concept of ApEn is to evaluate the probability, that if a
similar pattern of length m was detected, the patterns extended
to m+1 will be similar as well. The higher this probability, the
lower ApEn will be.

Frontiers in Computational Neuroscience | www.frontiersin.org 2 June 2017 | Volume 11 | Article 56

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kreuzer Advancing EEG-Based Anesthesia Monitoring

FIGURE 1 | In order to generate a motif as used for the nonlinear, entropy based approaches, motive length m, time delay τ , and shift k have to be defined. The

parameter k defines the shift. For a k = 1, the first motif of length m = 3 starts at data point i, and the second at i+k = 2 and so on (red). For a k of 2, the first motif

would start at data point i, and the second at i+k = 3, and so on (yellow). The parameter τ defines how many data points are left out to generate the motif. E.g., for a

τ = 1 and m = 3, the data points i, i+1, and i+2 are used to generate the motif (light blue). For a τ = 1, the data points i, i+2, and i+4 are used (pink).

FIGURE 2 | Left: in order to calculate the spectral entropy as for example used in the GE Entropy Module, the EEG power spectrum is calculated from the recording.

The spectral entropy value reflects the shape of the power spectrum. The more uniformly distributed the power is among the frequencies, the higher is the spectral

entropy value. Right: permutation entropy (PeEn, top) and approximate entropy (ApEn, bottom) in contrast are directly derived from the EEG time series. For the

ordinal PeEn motifs of length m are represented as a series of ranks, with the lowest amplitude value being equal to rank 0 and the highest amplitude value being

equal to rank m−1.
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PROPOSED RELATIONSHIPS BETWEEN
EEG FREQUENCY AND COMMUNICATION

Although the nonlinear approaches seem to reflect the level
of consciousness in a superior way, there is a strong point in
favor of continuing to use spectral analyses, together with the
aforementioned approaches to optimize monitoring. It is the
assumption that (frontal) EEG oscillations of certain frequencies
seem to correlate with interactions of the monitored cortical
area with other cortical or subcortical areas. In general, the
EEG mainly reflects cortical activity (Fisch and Spehlmann,
1999), but this cortical activity also carries information from
subcortical regions. Frontal EEG theta power for instance
seems associated with working memory (Klimesch et al., 1994;
Summerfield and Mangels, 2005). The prominent alpha peak
that develops in the EEG power spectrum during general
anesthesia is potentially caused by synchronous activity in the
thalamocortical loop (John and Prichep, 2005; Ching et al., 2010).
But this thalamocortical relationship and the contribution of
each region to alpha EEG is controversially discussed, as nicely
reviewed by Liley and coworkers. The thalamus may not present
the principal source because thalamocortical projections are
sparse, the amplitude of thalamocortical excitatory postsynaptic
potentials is small, the corticocortical activity is more coherent
than thalamocortical activity, the isolated cortex is able to
generate rhythmic oscillations, and drugs may modulate alpha
oscillations in cortex and thalamus in a different way (Liley et al.,
2010a). As mentioned earlier, activity in EEG beta-band may
play a role in synchronizing cortical regions (von Stein et al.,
1999; John and Prichep, 2005; Bassett et al., 2009; Hipp et al.,
2011). Hence changes in these frequency bands’ spectral power
may help to understand anesthetic-induced changes in brain
activity among different regions and possibly target different
components of general anesthesia. These relationships between
EEG frequency and the brain’s communication structure may
help future research to improve EEG based patient monitoring
in anesthesia with a new focus on adding an “anesthesia quality”
component to monitoring, i.e., to associate EEG recorded during
anesthesia maintenance and emergence with adverse outcomes
like pain or delirium following anesthesia.

CORRELATION OF INTRAOPERATIVE EEG
MARKERS AND ADVERSE OUTCOMES

The current monitoring systems as well as the presented results
using nonlinear approaches to EEG-based monitoring focus on
a reliable separation of different hypnotic levels that range from
“fully awake” to “(burst) suppression.” Hence, these monitoring
systems/approaches may be able to prevent too deep levels
of general anesthesia. Prevention of too deep anesthesia may
help to reduce delirious outcomes (Chan et al., 2013). But
there is no algorithm component that specifically deals with the
detection of intraoperative EEG markers that may be associated
with postoperative adverse outcomes. There seems increasing
evidence that investigation of EEG alpha-band activity may
present a good start to research intraoperative EEG and its

association with post-anesthetic adverse outcomes, at least for
the commonly used propofol and inhaled ethers. For anesthesia
emergence, results suggest that returning from anesthesia-
induced unconsciousness may be more complex than anesthesia
induction. The patients’ EEG can follow different emergence
trajectories that put patients at higher or lower risk when
it comes to adverse outcomes in the postoperative care unit.
Patients that abruptly transition from spectral EEG patterns of
unconsciousness to spectral “wake” EEG seem more vulnerable
to express pain and delirium in the postoperative care unit
than patients that show episodes of non-slow wave anesthesia
during emergence (Chander et al., 2014; Hight et al., 2014; Garcia
et al., 2016; Kreuzer et al., 2017). During anesthesia maintenance
patients most often develop a so called alpha peak in frontal
EEG for the most common anesthetics propofol and sevoflurane
that seems to reflect reverberations in the thalamocortical loop at
least in part caused by hyperpolarization of the thalamus (Akeju
et al., 2014b). Evaluation of spectral alpha peak properties may
help to estimate “anesthesia quality.” Strong surgical stimulation
can cause a reduction of the peak (Kochs et al., 1994) and may
even lead to disappearance of the peak. Because of the possible
association of alpha oscillations with the thalamus, this reduction
may be caused by desynchronization of thalamocortical activity
that may represent arousal (McCormick and Bal, 1997).

Patients that are not expressing strong alpha power during
anesthesia or react to surgical stimulation in a stronger fashion
may be at higher risk of delirium in postoperative care unit
(PACU-D, unpublished data). Although PACU-D is a transient
phenomenon current results highlight the association with
postoperative long-term complications (Card et al., 2015; Garcia
et al., 2016). Hence, avoiding or detecting PACU-D as early as
possible may help to decrease the risk of developing long-term
adverse outcomes. Information from the EEG alpha range may
help to identify this subset of patients at risk. The correlation of
lower alpha power and PACU-D may reflect a patient population
with a “frailer” brain that is not able to maintain a state of
stable thalamocortical synchronization. So it would definitely
make sense to additionally monitor the patients’ EEG reaction
following surgical stimuli, adding a nociception component to
EEG-based monitoring.

THERE IS (ALMOST) NO EEG BASED
(COMBINED HYPNOSIS AND)
ANALGESIA/NOCICEPTION MONITORING

Hagihira et al. showed that bicoherence peaks around 10 Hz
and around 20 Hz, that are typical for gas anesthesia, decrease
with noxious stimulation if no opioid is given (Hagihira et al.,
2004). But these observations have not been used for current
monitors of nociception. These devices use processed EEG like
the BIS as subparameters (Ellerkmann et al., 2013; Castro et al.,
2016), a wide range of spectral band power (Jensen et al., 2014),
or non EEG information from heart rate variability (Ledowski
et al., 2013), modeled drug and opioid concentrations (Luginbühl
et al., 2010), or the polysynaptic spinal withdrawal reflex (Von
Dincklage et al., 2012). One exception is the BAR. It uses two
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measures, cortical state and cortical input that are designed to
reflect the hypnotic and analgesic component of anesthesia (Liley
et al., 2010b). The Cortical Dynamics website claims that BAR
detect the effects of a range of analgesic agents and hence lead
the way toward a combined EEG-based analgesia and anesthesia
monitoring.

Besides the susceptibility of the intraoperative EEG alpha
peak to stimulation, age also influences EEG power. There is a
negative absolute alpha power and total frontal EEG power to
age relationship (Klimesch, 1997; Purdon et al., 2015) and age
presents a risk factor for the development of delirious outcomes
(Deiner and Silverstein, 2009) after general anesthesia. Cortical
thinning seems to occur with age (Fjell et al., 2009). Consequently
the number of (pyramidal) neurons and the number of synapses
decreases as well (Teplan, 2002). The decrease in volume and
neurons may present a reason for the observed reduction on
total EEG power. As a consequence, the brain’s communication
may become more fragile and less robust to influences like
surgical stimuli. All these associations indicate the usefulness to
pay attention to what is happening to EEG alpha oscillations
during general anesthesia maintenance and emergence. Previous
research and commercial applications for monitoring anesthesia
have not specifically focused on this EEG frequency range, as
mentioned earlier. The addition of information extracted from
the EEG alpha range may help to include a factor predictive for
adverse outcomes to “depth of anesthesia” monitoring. All the
findings regarding adverse outcomes base on frequency domain
analyses. Additional information from nonlinear analytical
approaches in the time domain may help to optimize and

improve intraoperative monitoring to identify patients at risk
for adverse outcomes in the future. While this article mainly
deals with the EEG alpha range, probably numerous other
markers in other EEG frequencies from frontal and non-frontal
electrode locations exist that may help to optimize monitoring.
Further the described findings are probably not valid for certain
drugs like (S-)ketamine or dexmeditomitine that affect EEG
activity in completely different ways than sevoflurane or propofol
(Maksimow et al., 2006; Akeju et al., 2014a).

I think that around 20 years after the introduction of EEG
based anesthesia monitoring to the operating room and ongoing
optimization of analytical algorithms, the inclusion to consider
the well-being of the patient in the postoperative period seems the
logical next step. Recent and future findings from the correlation
of intraoperative EEG (alpha) activity may help to introduce a
new generation of anesthesia monitoring. It may present the
transition from EEG-based “depth of anesthesia” to “quality of
anesthesia” monitoring.
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