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Genome-wide expression profiling of the human brain has revealed genes that are
differentially expressed across the lifespan. Characterizing these genes adds to our
understanding of both normal functions and pathological conditions. Additionally,
the specific cell-types that contribute to the motor, sensory and cognitive declines
during aging are unclear. Here we test if age-related genes show higher expression
in specific neural cell types. Our study leverages data from two sources of murine
single-cell expression data and two sources of age-associations from large gene
expression studies of postmortem human brain. We used nonparametric gene
set analysis to test for age-related enrichment of genes associated with specific
cell-types; we also restricted our analyses to specific gene ontology groups. Our
analyses focused on a primary pair of single-cell expression data from the mouse
visual cortex and age-related human post-mortem gene expression information from
the orbitofrontal cortex. Additional pairings that used data from the hippocampus,
prefrontal cortex, somatosensory cortex and blood were used to validate and test
specificity of our findings. We found robust age-related up-regulation of genes that
are highly expressed in oligodendrocytes and astrocytes, while genes highly expressed
in layer 2/3 glutamatergic neurons were down-regulated across age. Genes not
specific to any neural cell type were also down-regulated, possibly due to the bulk
tissue source of the age-related genes. A gene ontology-driven dissection of the
cell-type enriched genes highlighted the strong down-regulation of genes involved
in synaptic transmission and cell-cell signaling in the Somatostatin (Sst) neuron
subtype that expresses the cyclin dependent kinase 6 (Cdk6) and in the vasoactive
intestinal peptide (Vip) neuron subtype expressing myosin binding protein C, slow
type (Mybpc1). These findings provide new insights into cell specific susceptibility to
normal aging, and suggest age-related synaptic changes in specific inhibitory neuron
subtypes.
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INTRODUCTION

Aging is a key factor for several neuropsychiatric disorders
and for most neurodegenerative diseases with onset typically
occurring late in life and with worsening of symptoms over
time (Glorioso and Sibille, 2011). Understanding the effects of
aging at the cellular level can provide possible treatment insights
into many neuropsychiatric, neurodegenerative disorders.
It also has the potential to explain age related declines in
many motor, sensory and cognitive abilities (Ianov et al.,
2016). Genome-wide expression profiling of postmortem
brain tissue has found hundreds of age-related genes that
are differentially expressed in an age dependent manner

Abbreviations: Astro Aqp4, Astrocyte cells marked by Aqp4; Endo Xdh,
Endothelial cells marked by Xdh; Igtp, GABAergic neurons marked by
Interferon gamma-induced GTPase; L2 Ngb, Layer 2 glutamatergic neurons
marked by Ngb; L2/3 Ptgs2, Layer 2/3 glutamatergic neurons marked by
Ptgs2; L4 Arf5, Layer 4 glutamatergic neurons marked by Arf5; L4 Ctxn3,
Layer 4 glutamatergic neurons marked by Ctxn3; L4 Scnn1a, Layer
4 glutamatergic neurons marked by Scnn1a; L5 Ucma, Layer 5 glutamatergic
neurons marked by Ucma; L5a Batf3, Layer 5a glutamatergic neurons
marked by Batf3; L5a Hsd11b1, Layer 5a glutamatergic neurons marked by
Hsd11b1; L5a Pde1c, Layer 5a glutamatergic neurons marked by Pde1c; L5a
Tcerg1l, Layer 5a glutamatergic neurons marked by Tcerg1l; L5b Cdh13,
Layer 5b glutamatergic neurons marked by Cdh13; L5b Chrna6, Layer 5b
glutamatergic neurons marked by Chrna6; L5b Tph2, Layer 5b glutamatergic
neuronsmarked by Tph2; L6a Car12, Layer 6a glutamatergic neuronsmarked
by Car12; L6a Mgp, Layer 6a glutamatergic neurons marked by Mgp; L6a
Sla, Layer 6a glutamatergic neurons marked by Sla; L6a Syt17, Layer 6a
glutamatergic neurons marked by Syt17; L6b Rgs12, Layer 6b glutamatergic
neurons marked by Rgs12; L6b Serpinb11, Layer 6b glutamatergic neurons
marked by Serpinb11; Micro Ctss, Microglia marked by Ctss; Ndnf
Car4, Neurogliaform cells marked by Neuron-derived neurotrophic factor
and Car4; Ndnf Cxcl14, Neurogliaform cells marked by Neuron-derived
neurotrophic factor and Cxcl14; Oligo 9630013A20Rik, Oligodendrocyte
cells marked by 9630013A20Rik; Oligo Opalin, Oligodendrocyte cells
marked by Opalin; OPC Pdgfra, Oligodendrocyte progenitor cells cells
marked by Pdgfra; Pvalb Cpne5, Parvalbumin GABAergic neurons marked
by Cpne5; Pvalb Gpx3, Parvalbumin GABAergic neurons marked by
Gpx3; Pvalb Obox3, Parvalbumin GABAergic neurons marked by Obox3;
Pvalb Rspo2, Parvalbumin GABAergic neurons marked by Rspo2; Pvalb
Tacr3, Parvalbumin GABAergic neurons marked by Tacr3; Pvalb Tpbg,
Parvalbumin GABAergic neurons marked by Tpbg; Pvalb Wt1, Parvalbumin
GABAergic neurons marked by Wt1; Smad3, GABAergic neurons marked
by SMAD family member 3; SMC Myl9, Smooth muscle cells marked by
Myl9; Sncg, GABAergic neurons marked by synuclein gamma; Sst Cbln4,
Somatostatin GABAergic neurons marked by Cbln4; Sst Cdk6, Somatostatin
GABAergic neurons marked by Cdk6; Sst Chodl, Somatostatin GABAergic
neurons marked by Chodl; Sst Myh8, Somatostatin GABAergic neurons
marked by Myh8; Sst Tacstd2, Somatostatin GABAergic neurons marked
by Tacstd2; Sst Th, Somatostatin GABAergic neurons marked by Th; Vip
Chat, Vip GABAergic neurons marked by Chat; Vip Gpc3, Vip GABAergic
neurons marked by Gpc3; Vip Mybpc1, Vip GABAergic neurons marked
by Mybpc1; Vip Parm1, Vip GABAergic neurons marked by Parm1; Vip
Sncg, Vip GABAergic neurons marked by Sncg; Zeisel cell types: Astro1,
Astrocyte cells, subclass 1; Astro2, Astrocyte cells, subclass 2; Oligo1,
Oligodendrocyte cells, subclass 1; Oligo2, Oligodendrocyte cells, subclass
2; Oligo3, Oligodendrocyte cells, subclass 3; Oligo4, Oligodendrocyte cells,
subclass 4; Oligo5, Oligodendrocyte cells, subclass 5; Oligo6, Oligodendrocyte
cells, subclass 6; S1PyrL23, Pyramidal neurons from layer 2/3 of the
somatosensory cortex; S1PyrL4, Pyramidal neurons from layer 4 of the
somatosensory cortex; S1PyrL5a, Pyramidal neurons from layer 5a of the
somatosensory cortex.

(Lu et al., 2004; Erraji-Benchekroun et al., 2005; Colantuoni et al.,
2011; Berchtold et al., 2013; Kumar et al., 2013). Age up-regulated
genes are enriched for neuroinflammatory (Bordner et al., 2011)
and overall glial (Erraji-Benchekroun et al., 2005) functions. In
contrast, age down-regulated genes are most commonly involved
in synaptic function and cell-cell signaling (Primiani et al., 2014).
These associations suggest cell-type specific changes in glial and
neuronal cells (Erraji-Benchekroun et al., 2005). More directly,
Loerch et al. (2008) tested age associations of genes enriched
in three main cell classes, where they found that neuronal
genes were down-regulated and astrocyte and oligodendrocyte
enriched genes were up-regulated with age. Most recently,
cell-type composition of 10 primary cell-types were estimated
from collated lists of cell-type specific genes (Hagenauer et al.,
2016). In prefrontal samples, the neuronal content estimates were
negatively correlated with age with no effect for the remaining
nine cell-types. However, to our knowledge, genes that mark the
wide diversity of neural cell types have not been examined in the
context of aging.

Advances in techniques for single cell isolation and RNA
sequencing have revealed transcriptomic profiles of individual
cells. Using these methods, two large studies of mouse
cortex have assayed and clustered individual cells into over
40 transcriptomic cell-type classes (Zeisel et al., 2015; Tasic
et al., 2016). These studies provide extended sets of enriched
and marker genes that can help determine which cells are
contributing to signals found in studies of bulk brain tissue (Xu
et al., 2014; Mancarci et al., 2016; Skene and Grant, 2016). This
should enable a finer dissection of age-related changes in gene
expression.

In our current study, we used genes with cell-type specific
expression to characterize age-related differences in expression
obtained from bulk tissue, i.e., combined gray matter samples
comprised of all six cortical layers. We used data obtained from
both mouse and human cerebral cortex samples. We integrated
two studies of brain aging with two cell-type specific studies
in mouse to provide a robust estimate of cell-type associated
changes in the aging brain (Figure 1). A third transcriptomic
study of age-related genes from blood and a third cell-type
study of human neural cells provided supplementary data.
Furthermore, within cell-type enriched gene sets, we tested
whether genes annotated to specific functions or processes were
up- or down-regulated across age.

MATERIALS AND METHODS

Age Associated Gene Rankings
Three gene expression studies of aging were used to rank genes
from the most significant up- to down-regulated with age. Two
studies examined expression in the frontal cortex and a third
study used whole blood samples, allowing testing of neural
specificity.

BA11/47 Ranking
This postmortem dataset of orbitofrontal cortex expression
profiles has been described previously (Seney et al., 2013;
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FIGURE 1 | Workflow overview of the study. Gene rankings from aging studies are presented at top. Single cell datasets are presented in the lower portion. The
middle visualizes the joining of the rankings and single cell datasets by marking transcriptomic cell-type enriched genes within an age-associated gene ranking. This
can also be represented with an Reciever operating characteristic (ROC) curve (middle right). The Nissl stained mouse brain sections and the template diagram of the
human cortex mark the source brain regions in green (images from the Allen Institute for Brain Science atlases, Lein et al., 2006; Ding et al., 2016). Abbreviations:
FL, frontal lobe; OL, occipital lobe; Ins, insula; TL, temporal lobe; PL, parietal lobe, Astro, astrocyte; L4, layer 4, Oligo, oligodendrocyte.

Lin et al., 2015; Chen et al., 2016). This data is available
from the Gene Expression Omnibus repository under the
accession number GSE71620. Briefly, samples were obtained
from Broadmann areas 11 and 47 for 178 Caucasian and
31 African-American individuals without any DSM-IV
diagnosis for cognitive or neurodegenerative disorders. Age
of the 209 subjects ranged from 16 years to 91 years old.
Gene expression was profiled with the Affymetrix GeneChip
1.1 ST according to manufacturer’s protocol and Robust
Multi-array averaging (RMA) was used for normalization
(Irizarry et al., 2003). For each gene, association with

age was determined by a random intercept model with
covariates for brain pH (mean 6.7), post-mortem interval
(mean 17.2 h) and sex (79% male) in each Broadmann
area separately. The Adaptively Weighted (AW) fisher
method was used to combine p-values and direction
of effect across the two regions (Li and Tseng, 2011).
The final ranking of 20,237 genes was ordered by AW
Fisher p-value and direction (from the up-regulated gene
with the lowest p-value to the down-regulated gene with
lowest p-value). We henceforth refer to this ranking as the
BA11/47 ranking.

Frontiers in Aging Neuroscience | www.frontiersin.org 3 May 2017 | Volume 9 | Article 162

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


French et al. Cell-Type Characterization of Age-Related Genes

Prefrontal Ranking
A cross-laboratory meta-analysis of expression profiling data
from normal postmortem cortex provided a second ranking
of age associations (Mistry and Pavlidis, 2010). This study
combined expression data from 11 expression studies that
profiled 421 normal subjects. Age of the subjects ranged from
19 years to 106 years old (57% male). The frontal cortex was
the assayed region for all but one of the included datasets. The
dorsolateral prefrontal cortex was used in four of the studies.
RMA normalization was used to normalize the majority of
datasets used. Association with age for each gene were obtained
from Supplementary Table 10. Because this analysis was split by
direction of change, for each gene we choose the result with the
lowest p-value. The result is an up- to down- regulated ranking
as above for 17,811 genes. We henceforth refer to this ranking as
the prefrontal ranking.

Blood Ranking
A large gene expression meta-analysis provided a third ranking
based on age associations inwhole-blood (Peters et al., 2015). This
discovery analysis combined six studies (using either Illumina
or Affymetrix arrays), providing peripheral blood expression
profiles for 7074 individuals of European ancestry. P-values
and direction of age-associated expression for the 11,908 genes
tested in the discovery stage of the Peters et al. (2015) study
were obtained from column ‘‘P’’ in Supplementary data file 1.

Cell-Type Enriched Genes
Tasic Dataset
Single-cell expression profiles from the mouse primary visual
cortex are our main source of cell-type enriched genes (Tasic
et al., 2016). This RNA sequencing dataset contains information
for 1679 single cells that have been clustered into 49 named
groups. Groups were named using known cell-type marker
genes, source dissection cortical layer, in situ hybridization
images, and dissections of specific Cre lines. We used the 1424
‘‘core’’ cells that were reliably classified into a single cell-type
cluster by Tasic et al. (2016) Two additional single cells in the
(‘‘Smooth muscle cells marked by Myl9, SMC Myl9’’) cluster
that had the major cell type class listed as unknown were
removed, leaving 1422 cells. Expression data was obtained from
the Allen Cellular Taxonomy Case study website1. Genes with
zero reads for all cells were removed (2677). Gene symbols were
updated with the mygene R package (Xin et al., 2016). For
the remaining 21,380 genes, we log transformed the provided
RPKM expression values plus one. For each gene, these log
scaled values were standardized across all cells. Cells were then
grouped by provided 49 transcriptomic types and the average
standardized expression value was calculated for each gene.
Genes with average standardized expression levels higher than
two standard deviations in a given transcriptomic cell type were
considered cell-type enriched. An additional cell type nonspecific
list of genes with stable expression across the cell types was
created by selecting genes with an absolute average standardized
expression less than two for all 49 transcriptomic cell types.

1http://casestudies.brain-map.org/celltax/download_archive

Zeisel Dataset
A secondary source of expression data assayed cells from the
mouse hippocampus and cortex (Zeisel et al., 2015). Expression
data (number of molecules per cell) was obtained from the
Linnarson lab website2). This dataset assayed 3005 cells from
the somatosensory (S1) cortex and hippocampus. We used
the provided BackSPIN clustering that marked cells as one
of seven major classes (‘‘level1class’’ in data file) and 47 cell
subclasses. The seven major classes are named: interneurons,
pyramidal SS, pyramidal CA1, oligodendrocytes, microglia,
endothelial-mural and astrocytes_ependymal. Unlike the Tasic
dataset, most of the 47 subclasses have anonymous names like
‘‘Oligo6’’ but do include some names based on known markers,
layer or region information. Genes with average standardized
expression levels higher than two standard deviations in a specific
cell class and a nonspecific gene list was created using the same
method applied to the Tasic dataset.

Mapping of Mouse to Human Gene
Symbols
The cell-type associated gene lists from the mouse single cell
datasets were converted to human gene symbols using the
Homologene database (O’Leary et al., 2016) and homologene
R package by Ogan Mancarci3. Analyses of the age associated
rankings was restricted to human genes that had a homologene
mapping from the genes assayed in the mouse single cell datasets.

Enrichment Tests
The area under the receiver operating curve (AUROC) statistic
was used to measure enrichment for a cell-type enriched gene
set in an age associated gene ranking. This value is equal to
the probability that a cell-type enriched gene will rank higher
in an age-associated ranking than a gene not enriched for the
given transcriptomic cell-type. We used fast AUROC methods
from EGAD (Ballouz et al., 2017). The provided cell-type
identities or subclasses in the Tasic and Zeisel datasets were
permuted to determine the empirical p-values of the AUROCs.
False discovery rate was used to correct for multiple tests.
This empirical procedure was chosen because age associated
cell-type AUROCs reached 0.55 instead of the expected chance
performance (0.5) for randomly permuted Tasic and Zeisel
datasets. These AUROCs from the permuted cell-type data
correspond to Mann-Whitney (Wilcoxon) test P-values < 0.005
(AUROC = 0.55). This shift from 0.5 is due to many non-specific
genes being consistently down-regulated (more details are
provided in the ‘‘Results’’ Section). In the empirical procedure,
for a given cell-type transcriptomic class, AUROC values are
calculated for 10,000 random assignments of transcriptomic cell-
type. The proportion of permuted shuffles with a larger or smaller
AUROC value in comparison to the real cell type classification is
the p-value (relative to the average empirical AUROC). Due to
the finite number of permutations the floor of this p-value is set
to 1/10,000 or 0.0001 for the cases of no permuted shuffles with a

2https://storage.googleapis.com/linnarsson-lab-www-
blobs/blobs/cortex/expression_mRNA_17-Aug-2014.txt
3https://github.com/oganm/homologene
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larger or smaller AUROC values. The false discovery rate q-value
is computed by counting the proportion of random assignments
that have at least one cell-type with an equal or lower p-value for
any transcriptomic cell-type class.

Supplemental Gene Sets
In addition to the mouse datasets above, human gene sets
were used to examine cell-type enrichment in the age rankings.
From the first single cell transcriptome analysis of healthy
human adult cortical samples, we obtained six lists of the
top 21 most enriched genes in six transcriptomic determined
cell-types (via clustering, Supplementary Table S3; Darmanis
et al., 2015). This dataset profiled expression in 466 human
cortical cells that were obtained from four embryonic samples
and eight adult samples. Selected cell clusters excluded gene
sets corresponding to clusters of mixed and fetal cell types.
Top 21 lists identified as astrocytes, neurons, oligodendrocytes,
oligodendrocyte precursors, microglia and endothelial cell
clusters remained. The number of genes tested in each ranking
varies because not all of these 21 genes were assayed in the
age-associated datasets. Bonferroni multiple test correction was
applied to correct for the six tests in a given ranking. Separately,
a list of housekeeping genes that are expected to maintain
constant expression levels in all cells was also used (Eisenberg and
Levanon, 2013). RNA-seq data from 16 human tissues (including
brain) was used to create this list of 3804 genes.

Gene Ontology Analysis
Gene ontology gene groups were obtained using the GO.db
and org.Hs.eg.db packages in R (Carlson, 2016a,b). The
annotations were recent, with a GO source version date of March
14,2016. GO annotations from all three domains were used
(cellular component, molecular function and biological process).
Cell-type enriched human gene sets were ranked using the age
associations. Within these rankings, we calculated the AUROCs
for GO groups that were over 10 and less than 200 genes in size
after intersection with the specific cell-type list. Mann-Whitney
(Wilcoxon) test p-values were calculated and corrected for the
many cell-type by GO group tests (FDR method).

Availability
Scripts and data files for the analyses are available online at
https://github.com/leonfrench/CellTypesAging.

RESULTS

Comparison of Age-Associated Gene
Rankings
We first compared the three age-associated rankings. Across
the 9032 genes that were assayed in all three studies, the
highest correlation was between the two cortical datasets
(Spearman’s rho = 0.597, p< 0.0001). The Prefrontal ranking was
weakly correlated with the Blood age associations (rho = 0.06,
p < 0.0001) but the orbitofrontal BA11/47 ranking was not
(rho = 0.007, p > 0.5).

In this article, we focus on the BA11/47 ranking and Tasic
cell-type dataset due to its use of targeted transgenic Cre lines.

Selection and conversion of cell-type enriched lists from the
Tasic single cell dataset resulted in 17,590 mouse genes that are
enriched in at least one of the 49 cell types. The number of
enriched genes per cell type ranged from 221 to 1500. In contrast,
3781 genes did not show clear enrichment for a specific cell type.
These gene lists are reduced after conversion to human genes and
intersected with a specific age associated ranking.

Cell-Type Enriched Gene Set Tests
Using the Tasic genes lists and BA11/47 ranking, we next
tested if specific cell type linked genes were over- or under-
expressed with age (Figure 2 and Table 1). Genes with enriched
expression in Oligodendrocytes marked by the Opalin or
9630013A20Rik genes, and Astrocytes were upregulated with age
in the BA11/47 samples (AUROC > 0.63, empirical q < 0.05).
In the context of neurons, all but one of the 42 neuron-type gene
lists were down-regulated with age but only three were significant
after correction. Specifically, genes enriched in glutamatergic
layer 2/3 (marked by the Ptgs2 gene), layer 4 (Arf5) and
layer 5 (Batf3) neurons showed lower expression with age
(AUROC < 0.47, q < 0.05). Genes lacking clear enrichment
for a specific cell type were also expressed at lower levels in
older samples (AUROC = 0.37, q < 0.02). This enrichment
for age-associated down-regulation of non-specific genes was
observed with random assignments of cell-type (Table 1,
Permuted AUROC = 0.414). Because a gene cannot be both
non-specific and cell-type enriched, this down-regulation of
broadly expressed genes results in empirical AUROCs above
0.5 for genes enriched in any subset of cells (Table 1, mean
Permuted AUROC = 0.534, max = 0.56). Across the 49 cell-
types, the number of cells per cell-type was negatively correlated
with age-associated p-values (rho = −0.58, p < 0.0001). This
maybe due to rare cell-types contributing less signal in the
aging studies of bulk tissue. In contrast, the number of enriched
genes per cell-type was not correlated with placement in the
BA11/47 ranking (rho = 0.07, p > 0.5).

Validation in Additional Age-Associated
Gene Rankings
We next used the Prefrontal and Blood age-associated gene
rankings to seek an independent validation of our finding by
testing the tissue specificity of the BA11/47 findings (Table 2).
We note that the number of human genes in these rankings
varied (BA11/47: 14,782 genes, Prefrontal: 11,661, Blood: 10,585
(counts after homologene mapping)) and that the origin of
brain cortical tissue also varied across the datasets. Nonetheless,
we demonstrated that the seven significant cell-type gene lists
identified in the BA11/47 dataset were also enriched in the
Prefrontal ranking (empirical p < 0.04 and matching directions
for all types). Also, the AUROC values correlated across the
seven gene lists with only the Astrocyte cells marked by
Aqp4 (Astro Aqp4) and Oligo Opalin types switching places
for the highest AUROC value between the BA11/47 and
Prefrontal results (Pearson r = 0.94). In the Blood ranking,
only genes that lacked cell-type enrichment mirrored the
findings in the brain datasets with lower expression in older
blood samples (p < 0.0005), consistent with the fundamental
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FIGURE 2 | (A) ROC curves for the seven significant cell-type enriched gene sets from the Tasic dataset, projected on the BA11/47 age ranking. The curves show
the proportion of transcriptomic-type enriched genes that overlap (y-axis, true positive fraction) in varying lengths of the age-associated gene ranking (approximated
by the x-axis, false positive fraction). Colored lines mark genes enriched in transcriptomic cell types that were age-associated after correction and light gray lines
mark the remaining cell types that were not. (B) Distributions of the seven significant gene sets across the age-associated ranking with each transcriptomic cell-type
enriched gene representing a single black line. Gradient bars that begin as darker shades and move to white mark age up-regulated enrichment, with the opposite
pattern for down-regulation. The gene sets are arranged from most up-regulated (Oligo Opalin) to most down-regulated (Non-specific genes).
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TABLE 1 | Age associations of transcriptomic cell-type enriched gene sets using the Tasic dataset and BA11/47 ranking (see abbreviation list).

Transcriptomic type Cell count Gene count Permuted AUROC AUROC p q

Oligo Opalin 30 448 0.544 0.730 0.0001 0.005
L2/3 Ptgs2 92 316 0.560 0.455 0.0001 0.005
Astro Aqp4 43 830 0.553 0.673 0.0003 0.0146
Non-specific NA 3257 0.414 0.368 0.0004 0.0195
L4 Arf5 31 1097 0.545 0.411 0.0005 0.0243
L5a Batf3 57 158 0.558 0.462 0.0005 0.0243
Oligo 9630013A20Rik 7 1089 0.499 0.630 0.001 0.048
SMC Myl9 11 1095 0.511 0.639 0.0014 0.0669
Sst Cbln4 66 156 0.560 0.490 0.0022 0.1031
L6a Sla 53 168 0.557 0.484 0.0051 0.2282
Vip Parm1 38 127 0.550 0.466 0.0078 0.326
Vip Gpc3 45 160 0.554 0.475 0.0081 0.3359
L5a Hsd11b1 42 330 0.552 0.475 0.0083 0.3434
Endo Xdh 14 738 0.520 0.625 0.009 0.3678
L4 Scnn1a 64 271 0.559 0.521 0.0793 0.9845
Vip Chat 46 187 0.555 0.511 0.0801 0.9851
L6a Mgp 37 207 0.549 0.498 0.0824 0.9869
OPC Pdgfra 22 828 0.534 0.594 0.1137 0.9979
Ndnf Cxcl14 30 153 0.544 0.497 0.1467 0.9996
Sst Myh8 38 181 0.550 0.509 0.1513 0.9996
Pvalb Wt1 46 431 0.555 0.519 0.1513 0.9996
Sst Chodl 41 536 0.552 0.514 0.16 0.9998
Pvalb Tacr3 63 393 0.559 0.530 0.1771 0.9999
Vip Mybpc1 24 187 0.537 0.495 0.2407 1
L5b Cdh13 30 396 0.544 0.509 0.2695 1
L5b Tph2 25 717 0.538 0.502 0.3059 1
Sst Th 16 297 0.524 0.564 0.3282 1
L4 Ctxn3 55 123 0.558 0.536 0.34 1
L6b Rgs12 13 745 0.517 0.477 0.3426 1
Micro Ctss 22 1030 0.534 0.565 0.3965 1
L6b Serpinb11 16 488 0.524 0.492 0.4305 1
L5a Tcerg1l 20 380 0.531 0.506 0.5127 1
Pvalb Rspo2 21 567 0.533 0.556 0.5331 1
L6a Car12 14 508 0.519 0.496 0.5719 1
Vip Sncg 13 397 0.517 0.494 0.5822 1
L5a Pde1c 12 391 0.514 0.491 0.5926 1
Igtp 10 439 0.510 0.533 0.6176 1
Sst Tacstd2 12 605 0.515 0.495 0.6566 1
Sst Cdk6 14 389 0.519 0.501 0.6635 1
Smad3 12 679 0.515 0.500 0.7292 1
Ndnf Car4 24 246 0.537 0.528 0.7871 1
Pvalb Cpne5 14 315 0.519 0.528 0.8163 1
L5b Chrna6 8 824 0.504 0.493 0.8324 1
Pvalb Gpx3 54 131 0.557 0.553 0.8366 1
Sncg 9 703 0.506 0.515 0.8503 1
L5 Ucma 12 611 0.515 0.523 0.8513 1
Pvalb Obox3 16 968 0.524 0.519 0.904 1
L6a Syt17 12 594 0.515 0.519 0.9227 1
L2 Ngb 16 536 0.524 0.527 0.9444 1
Pvalb Tpbg 12 315 0.514 0.512 0.9497 1

differences in cell type compositions between the two tissues
types.

Confirmation with Alternate Sources of
Single Cell Expression Information
Next, to control for the source of single cell expression data, we
tested our results in the Zeisel dataset. Cell-type enriched lists
from the dataset contain 18,658 mouse genes that are enriched
in at least one of the 47 cell types. In contrast, 1314 genes
show no enrichment for a specific cell type. Based on the given

cell-type labels, we mapped the six significant gene groups found
in the Tasic dataset to 12 cell-types in the Zeisel dataset. This
expansion is primarily due to six classes of oligodendrocytes
in the Zeisel dataset (two in the Tasic set). Mapping between
these classes was guided by the expression levels of the Opalin
and 9630013A20Rik marker genes. Using the Zeisel dataset, the
direction of effect for the 24 relationships (12 mapped cell-types
by two brain based age rankings) matched the Tasic based
findings (Table 3). However, age-associated down-regulation
of layer 5a pyramidal neuron (S1PyrL5a) genes tested with
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TABLE 2 | Cell-type enriched gene set enrichment across three age-associated gene rankings.

Ranking: BA11/47 Prefrontal Blood

Transcriptomic type AUROC p q AUROC p AUROC p

Oligo Opalin 0.73 0.0001 0.005 0.65 0.035 0.58 0.42
L2/3 Ptgs2 0.46 0.0001 0.005 0.48 0.0074 0.58 0.35
Astro Aqp4 0.67 0.0003 0.015 0.69 0.0009 0.58 0.87
Non-specific 0.37 0.0004 0.02 0.31 0.0001 0.41 0.0001
L4 Arf5 0.41 0.0005 0.024 0.45 0.0062 0.54 0.63
L5a Batf3 0.46 0.0005 0.024 0.49 0.022 0.56 0.34
Oligo 9630013A20Rik 0.63 0.001 0.048 0.63 0.013 0.51 0.49

TABLE 3 | Top cell-type enriched gene set enrichment results across three age-associated in the mapped Zeisel dataset.

BA11/47 Prefrontal Blood

Zeisel class Cell count Mapped tasic type Tasic AUROC Tasic q Zeisel AUROC p AUROC p p

Oligo2 98 Oligo Opalin 0.73 0.005 0.72 0.0001 0.65 0.0005 0.49
Oligo3 87 Oligo Opalin 0.73 0.005 0.66 0.0009 0.63 0.0048 0.17
Oligo4 110 Oligo Opalin/9630013A20Rik 0.73 0.005 0.66 0.0003 0.62 0.0052 0.18
Oligo5 120 Oligo Opalin 0.73 0.005 0.74 0.0001 0.66 0.0002 0.71
Oligo6 360 Oligo Opalin 0.73 0.005 0.74 0.0001 0.66 0.0001 0.56
S1PyrL23 74 L2/3 Ptgs2 0.46 0.005 0.39 0.0001 0.43 0.0019 0.26
Astro1 68 Astro Aqp4 0.67 0.015 0.7 0.0007 0.74 0.0003 0.72
Astro2 61 Astro Aqp4 0.67 0.015 0.68 0.0019 0.71 0.0016 0.54
CelltypeNonSpecific NA CelltypeNonSpecific 0.37 0.02 0.37 0.022 0.31 0.0038 0.57
S1PyrL4 26 L4 Arf5 0.41 0.024 0.44 0.039 0.47 0.12 0.58
S1PyrL5a 28 L5a Batf3 0.46 0.024 0.52 0.62 0.5 0.3 0.65
Oligo1 45 Oligo 9630013A20Rik 0.63 0.048 0.61 0.042 0.62 0.066 0.96

TABLE 4 | Enrichment of top human cell-type enriched genes across the
age-associated rankings.

Ranking

Name BA11/47 Prefrontal Blood

Astrocytes 0.89∗∗∗ 0.84∗∗∗ 0.91∗

Endothelial 0.65 0.81∗∗∗ 0.74∗

Microglia 0.39 0.56 0.71∗

Neuron 0.31∗ 0.18∗∗∗ 0.52
Oligo 0.97∗∗∗ 0.7∗ 0.56
OligoPrecusors 0.29∗∗ 0.51 0.68

∗p < 0.05; ∗∗p < 0.005; ∗∗∗p < 0.0005 (Bonferroni corrected within a

ranking/column).

the BA11/47 or Prefrontal rankings did not reach significance.
Down-regulation of layer 4 pyramidal neuron (S1PyrL4) genes
and up-regulation of one oligodendrocyte class (Oligo1) tested
with the Prefrontal ranking failed to reach significance but have
similar AUC scores and directions of effect. Like the Tasic
findings, AUROCs for the 12 Zeisel based gene lists are correlated
between the BA11/47 and Prefrontal results (Pearson r = 0.94).
No significant associations were observed with the Blood derived
ranking.

We next evaluated our above findings without the use
of mouse datasets to test if using only human data changes
our results due to species specific expression signatures
between mouse and human cortex (Zeng et al., 2012). We
tested the top 21 most specific genes for six cell-types derived

from transcriptome profiles of healthy human temporal
cortex that were obtained through surgery (Darmanis et al.,
2015). Unlike the Tasic and Zeisel datasets, these gene
lists were not obtained with our gene selection methods,
suggesting that our results were not specific to our thresholded
z-score technique. While at a coarser resolution of cell
identity, these human gene lists confirm our findings for
astrocyte and oligodendrocyte enriched genes (Prefrontal
and BA11/47 rankings, AUROC > 0.7, Table 4). While this
dataset cannot point to a specific neuron type, age-associated
down-regulation was seen for genes specific to neurons
(Prefrontal and BA11/47 rankings, AUROC < 0.31). Genes
enriched in astrocytes, endothelial and microglia cell-types
were significantly upregulated in the Blood age association
ranking (AUROC > 0.7, corrected p < 0.05). Mirroring our
results for the non-specific genes, a list of housekeeping
human genes obtained from a cross-tissue analysis are
down-regulated across age in all three rankings (AUROC:
0.40–0.42, p < 0.00001).

Gene-Ontology Driven Dissection of
Cell-Type Enrichment
To further examine the age-associated gene rankings, we sought
to determine if specific biological processes, subcellular locations,
or molecular functions were disrupted in a cell-type enriched
manner. We used gene set enrichment analysis within the sets of
cell-type enriched genes to determine if specific Gene Ontology
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FIGURE 3 | Distributions of BA11/47 age-related gene rankings in the genomic, somatostatin (Sst) cyclin dependent kinase 6 (Cdk6) and synaptic
transmission contexts. Each black line marks a gene, with blue lines for genes enriched in Sst Cdk6 transcriptomic types and annotated for synaptic transmission.
The first row of lines shows the overrepresentation of age-associated down-regulation genes within synaptic transmission genes (area under the receiver operating
curve), (area under the receiver operating curve, AUROC = 0.36, 660 genes). The second row of marks shows the Sst Cdk6 enriched genes that are evenly
distributed across the age-associated gene ranking (AUROC = 0.5, 389 genes). The last row shows only the Sst Cdk6 enriched genes and marks the genes also
annotated for synaptic transmission which are mostly age down-regulated (AUROC = 0.16, 25 genes).

terms showed strong age associations. For each cell-type gene
group, this analysis first subsets the rankings for a specific
cell-type enriched list then tests for enrichment of GeneOntology
annotations within that smaller age-associated gene ranking.
This can reveal cases where a molecular process in a specific
cell-type may change with age, while all other genes enriched
in the cell-type are not consistently up- or down-regulated
with age.

Using the Tasic dataset and BA11/47 ranking we computed
AUROC values for each of the 38,092 combinations of gene
ontology terms and cell type lists. Of these tests, 48 survived
multiple test correction (q < 0.05), with 45 involving the genes
lacking enrichment for a specific cell type. The gene ontology

groups involved in these 45 were primarily associated with
neurons: synaptic transmission, ion transmembrane transport,
axon, sensory perception and behavior (Supplementary
Table S1). The highest ranked combination that involved
a specific transcriptomic cell-type was the age-associated
down-regulation of synaptic transmission genes that were
also enriched for a specific somatostatin (Sst) inhibitory
cell-type (Sst Cdk6, AUROC = 0.16, q < 0.001, Figure 3).
All but two of these 25 genes were down-regulated with age
(Supplementary Table S2). In comparison, the broader set of
Sst Cdk6 enriched genes were randomly distributed across
the BA11/47 ranking (AUROC = 0.5). Furthermore, we note
that 25 synaptic transmission genes were not more specifically
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FIGURE 4 | Distributions of Prefrontal age-related gene rankings in the genomic, synaptic transmission and Int2 (matched to Sst Cdk6) gene set
contexts. Each black line marks a gene, with blue lines for genes enriched in Int2 cells and annotated for synaptic transmission. The first row of lines shows the
overrepresentation of age-associated down-regulation genes within synaptic transmission genes (AUROC = 0.37, 591 genes). The second row of marks shows the
Int2 enriched genes that are evenly distributed across the age-associated gene ranking (AUROC = 0.49, 467 genes). The last row shows only the Int2 enriched
genes and marks the genes also annotated for synaptic transmission which are mostly age down-regulated (AUROC = 0.26, 31 genes).

enriched in this cell type in comparison to the whole set
of enriched genes (AUROC = 0.57, p > 0.5). The cell-cell
signaling group was also significant for the Sst Cdk6 cell-
type, primarily because the synaptic transmission genes were
contained in the group (25 of 36 genes). Cell-cell signaling
genes within the vasoactive intestinal peptide (Vip) myosin
binding protein C (Mybpc1) cell-type enriched genes provides
the only remaining significant age association (18 genes,
AUROC = 0.13, q < 0.02). All three of these cell-type specific
gene ontology group combinations were reproduced when using
the Prefrontal age-associated ranking (all p-values < 0.0001).
In the Blood ranking, the two Sst Cdk6 relationships reverse

direction (synaptic transmission: AUROC = 0.69, p = 0.04;
cell-cell signaling: AUROC = 0.65, p < 0.058) and the Vip
Mybpc1 finding with cell-cell signaling is not significant
(AUC = 0.37, p = 0.2).

We next tested the above associations involving Sst Cdk6 and
Vip Mybpc1 with the Zeisel dataset. Like above, this required
mapping these two transcriptomic cell-types from the Tasic data
into the Zeisel subclasses. Of the 16 numbered interneuron
subclasses in the Zeisel dataset, Int1 and Int2 have the
highest Sst expression. Only the Int2 subclass has cells with
non-zero expression for the Cdk6 gene, providing the best
match for the Sst Cdk6 transcriptomic class in the Tasic
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dataset. In the Zeisel dataset, synaptic transmission genes
were also age-downregulated in context of the Int2 enriched
gene set for both the BA11/47 and Prefrontal age rankings
(Figure 4, AUROC < 0.26, p < 106) which again reversed
direction in the Blood ranking (AUROC = 0.65, p < 0.05).
Similarly, the Int10 subclass had the highest expression of Vip
and Mybpc1 genes across all subclasses in the Zeisel dataset.
Corroborating the Tasic results, cell-cell signaling genes are also
age-downregulated within the set of Int10 enriched genes for
both the BA11/47 and Prefrontal (AUROC < 0.36, p < 0.006)
but not Blood rankings.

DISCUSSION

We investigated cell-type enriched genes for age-related changes
in three transcriptomic studies of aging. In agreement with
past research, we found that genes specifically expressed
in oligodendrocytes and astrocytes were up-regulated with
age (Erraji-Benchekroun et al., 2005; Primiani et al., 2014;
Ianov et al., 2016). This finding is consistent across the
two tested sources of neural age-related associations and two
cell-type databases and may correspond to changes in the size,
metabolism, reactivity, or numbers of neuroglial cells. Detailed
studies in monkeys have shown an increase in oligodendrocyte
numbers with age (Peters, 2009). For astrocytes, counts in the
human brain do not appear to differ across age (Pelvig et al., 2008;
Fabricius et al., 2013). Animal studies have found age-dependent
increases in astrocytic reactivity and hypertrophy but these
findings are considered controversial (Rodríguez-Arellano et al.,
2016).

While past studies have observed age-related up-regulation of
immune related genes (Erraji-Benchekroun et al., 2005; Cribbs
et al., 2012; Primiani et al., 2014; Ianov et al., 2016), we did
not observe age-related differences in expression of microglia
enriched genes. Most recently, a multiregion expression analysis
of the human brain found global age-associated up-regulation
of microglia-specific genes (Soreq et al., 2017). In these studies,
enrichment of neuroinflammation and microglia associated
genes may be due to other factors that affect gene expression in
the postmortem brain. These factors include: the region assayed,
post-mortem interval and agonal state. Also, conflicting results
may be due to a lack of activated microglia in the source cell-type
databases that are from younger brains. However, we note that
our lack of microglia association agrees with a protein level study
that measured translocator protein 18 kDa (TSPO), a marker of
activated microglia to assay neuroinflammation. Administration
of a TSPO radioligand in healthy subjects and followed by
positron emission tomography (PET) found no change across the
lifespan (Suridjan et al., 2014). While focused on a single protein,
this study was not affected by postmortem factors and supports
our finding of stable microglia enriched gene expression.

In terms of direction, we observed broad down-regulation
of genes with enriched expression in neurons. However,
we observed significant age-related signal for only three of
the 42 neuronal transcriptomic types. Genes with enriched
expression in layer 2/3 glutamatergic neurons were consistently

down-regulated across single-cell datasets and brain based
age-associated gene rankings. In support, a study of rhesus
monkeys observed a decline of synapses in layers 2/3 (Peters
et al., 2008). Studies of neuron vulnerability across layers
have found that layer 2/3 neurons were more susceptible
to insults in comparison to layers 4 and 5 (Gómez-Isla
et al., 1996; Fugistier et al., 2014). In addition, senile plaques
were more common in layers 2 and 3 (Duyckaerts et al.,
1986). Our results may help link genes to this laminar
specific degeneration. Genes enriched in the remaining two
neuron types, excitatory neurons in layers 4 and 5a were
age-associated in only one of the three dataset-by-ranking
combinations.

We speculate that the broad down-regulation of genes with
neuron enriched expression, and up-regulation of astrocyte
enriched genes are linked. In gray matter, astrocytes are the
primary glial cell type. Of the glial types in the Tasic dataset, Astro
Aqp4 has the largest cell count. In mice, astrocyte territories and
volume increase in old mice (21 months old) when compared
to adults (5 months; Grosche et al., 2013). Age up-regulated
gene expression and volume increases in astrocytes may signal
processes that maintain the same number of tripartite synapses
per astrocyte while accommodating reduced neuropil from
pyramidal neurons.

We also observed strong down-regulation of genes that
were not specific to any cell type. This is consistent across
age-related gene rankings and sources of single-cell data. In
our gene ontology analysis we found that this non-specific
gene set contains many synaptic and ion transport genes
which are down-regulated with age in the context of the full
non-specific gene set. This may be due to the focus on neurons
in the Tasic dataset, combined with broad down-regulation of
neuron genes. We note that this downregulation of broadly
expressed ion transport genes support the Calcium Hypothesis
of Alzheimer’s Disease and Brain Aging which links altered
Ca2+ homeostasis with brain aging (Khachaturian, 1994; Toescu,
2007). However, this association between non-specific genes
and aging holds when using data from other tissues. First,
this is the only finding that is reproduced when using the
blood derived age-associated gene ranking (using the Tasic but
not Zeisel dataset). Second, use of a cross-tissue source of
human housekeeping genes that are expressed at constant levels
confirms this finding. This strong nonspecific signal may be
due to the bulk tissue sources of the age-related rankings. In
bulk tissue, nonspecific genes are probably expressed at higher
levels, with less noise that could be attributed to differences in
cell-type proportions across samples. This stronger signal would
provide better estimates of age-associations in comparison to
cell-type markers. While we lack a clear understanding of this
non-specific signal, our empirical testing procedure was able to
control for it in order to accurately highlight transcriptomic cell-
types.

Several studies have found that numbers of neurons remain
constant while changes at synapses occur with aging (Burke and
Barnes, 2006; Loerch et al., 2008; Mostany et al., 2013; Petralia
et al., 2014). Our findings support this: genes with enriched
expression in the majority of the neuronal transcriptomic types
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do not show age-related expression patterns. This is coupled
with strong age-downregulation of synaptic transmission genes
and a broad down-regulation of neuron enriched genes in
general. Splitting our cell-type enriched gene lists by gene
ontology groups helped focus our findings by marking two
inhibitory transcriptomic cell-types with stronger than expected
down-regulation of synaptic transmission and cell-cell signaling
genes. In contrast, the broader set of genes enriched in these
cell-types are not age up- or down-regulated. These findings
were robust to different sources of cell-type expression and
age-associated rankings. These inhibitory cells represent 14.5%
of the Vip and 7.5% of the Sst cells in the Tasic dataset. More
broadly, Vip and Sst interneurons have been linked to neuronal
vulnerability, neuropsychiatric disorders and dementia (Martel
et al., 2012; Lin and Sibille, 2015; Wang et al., 2015; Deng
and Jin, 2017). At the synaptic level, we note that Sst and Vip
interneurons inhibit each other. In the visual cortex, Sst neurons
inhibit all neuron types except other Sst neurons, while Vip
neurons preferentially inhibit Sst interneurons (Pfeffer et al.,
2013). Our work suggests follow-up studies that examine the
age-related changes in the synapse, should target Sst and Vip
neurons marked by Cdk6 and Mybpc1, respectively.

There are some limitations of our study. We relied upon
mouse single cell expression data for characterizing the human
age-related data. Homologous genes and cell-types may not
match well across the two species (Zeng et al., 2012), but
our use of large enriched gene sets should counter these
effects in aggregate. In addition, we employed human single
cell expression marker genes to reproduce some findings for
cell-type classes that provide the resolution needed (Darmanis
et al., 2015). Similarly, while we used only cortical data, the
subregions varied from occipital, somatosensory, orbitofrontal
and prefrontal cortices. We note that the cerebral cortex is a
homogeneous brain region and past studies of age-associated
genes have found patterns to be conserved across brain regions
(Jaffe et al., 2014). Our limited neuron specific findings may
be due to the small sizes of neuronal cell clusters in the
single cell data, which had an overrepresentation of neurons.
At the same time, these cells would contribute a relatively
small portion of the expression signal in the bulk tissue
sources for the aging studies. Lastly, another limit is the
different classifications of transcriptomic-types across datasets.
Going forward, we believe more single cell datasets will
coalesce our understanding and classification of cell-types in the
brain.

CONCLUSION

We found robust age-related up-regulation of genes highly
expressed in oligodendrocytes and astrocytes. Genes expressed
highly in layer 2/3 glutamatergic neurons were down-regulated
across age. Genes not specific to any neural cell type were also
down-regulated, possibly due to the bulk tissue source of the
age-related genes. Analyses restricted to gene ontology groups
highlights strong down-regulation of synaptic transmission and
cell-cell signaling genes in the Sst neuron subtype that expresses
Cdk6 and in the Vip neuron subtype expressing Mybpc1.
These restricted findings provide new insight into which specific
cell-type may be susceptible to aging, and suggest age-related
synaptic changes in specific inhibitory neuron subtypes. Broadly,
our findings suggest that further investigation of oligodendrocyte
and astrocyte function across age is needed.
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