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Faced with a new concept to learn, our brain does not work in isolation. It uses all

previously learned knowledge. In addition, the brain is able to isolate the knowledge

that does not benefit us, and to use what is actually useful. In machine learning, we

do not usually benefit from the knowledge of other learned tasks. However, there is a

methodology called Multitask Learning (MTL), which is based on the idea that learning

a task along with other related tasks produces a transfer of information between them,

what can be advantageous for learning the first one. This paper presents a new method

to completely design MTL architectures, by including the selection of the most helpful

subtasks for the learning of the main task, and the optimal network connections. In

this sense, the proposed method realizes a complete design of the MTL schemes.

The method is simple and uses the advantages of the Extreme Learning Machine to

automatically design a MTL machine, eliminating those factors that hinder, or do not

benefit, the learning process of themain task. This architecture is unique and it is obtained

without testing/error methodologies that increase the computational complexity. The

results obtained over several real problems show the good performances of the designed

networks with this method.

Keywords: neural networks, multitask learning, architecture design, extreme learning machine, multilayer

perceptron

1. INTRODUCTION

The Hebbian learning in neural networks consists in establishing new synapses according to new
lived experiences. Thus, this learning is directly related to the so-called structural plasticity which
is the brain’s ability to alter their physical structure in response to the learning of new information,
skills, or habits. This means that when a human being modifies the knowledge about a particular
field with new information (both from the same field and from other related fields), new neural
connections are established and others are inhibited. This is how human beings can improve
knowledge on a specific topic: by incorporating new experiences or related knowledge.

In this context, Multitask Learning (MTL) is a type of machine learning that tries to mimic the
structural plasticity of human beings (Baxter, 1993; Caruana, 1995, 1998; Silver and Mercer, 2001).
By using a shared representation, the MTL method learns simultaneously a problem (called the
main task) along with other related problems (called secondary tasks). Thus, the artificial neural
connections obtained by MTL are different from those obtained when the main task is learned by
means of a single task learning (STL) scheme. This often leads to a better model for the main task,
because there exists a transfer of information from the secondaries to themain task, i.e., the learning
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of the main task is modified by the information of the secondary
tasks. However, in real world applications, it is not always
easy to find tasks related with the main one, or to evaluate
whether the relationship between them can produce a positive
information transfer. Moreover, for machine learning, it is
extremely difficult to determine whether the simultaneously
training of several tasks can produce a better performance for
one of them (considered the main task), in comparison with
the result obtained when it is individually trained. This is
because a task can contain information that can be helpful or
harmful.

In Bueno-Crespo et al. (2015), a method to select related
tasks with the main one is presented. Now, this method is
used as a part of a new procedure to completely design MTL
architectures. A particular pruning connections procedure leads
to a positive transfer of information from the secondary tasks
to the main task because only the most relevant connections
are preserved. In this sense, the proposed method performs
a complete design of the MTL networks. To achieve this, the
method takes advantage of the benefits of Extreme Learning
Machine algorithm (ELM) (Huang et al., 2006), specifically the
Optimally Pruned ELM (OP-ELM) (Miche et al., 2010), and
the Architecture Selection based on ELM (ASELM) procedures
(Bueno-Crespo et al., 2013).

The rest of the paper is organized as follows: Section 2.
describes the ASELM algorithm to designMultilayer Perceptrons
(MLP). A summarized description ofMTL is presented in Section
3. The proposed method is described in Section 4. Section 5
shows the results and finally, conclusions and prospective works
close the paper.

2. ARCHITECTURE SELECTION USING
EXTREME LEARNING MACHINE

The Extreme Learning Machine (ELM) is based on the concept
that if the MLP input weights are fixed to random values,
the MLP can be considered as a linear system and the output
weights can be easily obtained by using the pseudo-inverse of
the hidden neurons outputs matrix H for a given training set.
Although related ideas were previously analyzed in other works
(Pao et al., 1994; Igelnik and Pao, 1997), Huang was the author
who formalized it (Huang and Chen, 2007; Huang et al., 2011).
He demonstrated that the ELM is an universal approximator
for a wide range of random computational nodes, and all the
hidden node parameters can randomly be generated according
to any continuous probability distribution without any prior
knowledge. Thus, given a set of N input vectors, a MLP can
approximate N cases with zero error,

∑N
i=1 ‖yi − ti‖ = 0, being

yi ∈ R
m the output network for the input vector xi ∈ R

n with
target vector ti ∈ R

m. Thus, there exist βj ∈ R
m, wj ∈ R

n and
bj ∈ R such that,

yi =

M
∑

j=1

βjf (wj · xi + bj) = ti, i = 1, ...,N. (1)

where βj = [βj1,βj2, ...,βjm]
T is the weight vector connecting the

jth hidden node with the output nodes, wj = [wj1,wj2, ...,wjn]
T is

the weight vector connecting the jth hidden node with the input
nodes, and bj is the bias of the jth hidden node.

For a network withM hidden nodes, the previousN equations
can be expressed by

HB = T, (2)

where

H(w1, . . . ,wM , b1, . . . , bM , x1, . . . , xN) =

=







f (w1 · x1 + b1) . . . f (wM · x1 + bM)
... . . .

...
f (w1 · xN + b1) . . . f (wM · xN + bM)







N×M

(3)

B =







βT
1
...

βT
M







M×m

and T =







tT1
...

tTN







N×m

(4)

where H ∈ R
N×M is the hidden layer output matrix of the MLP,

B ∈ R
M×m is the output weight matrix, and T ∈ R

N×m is the
target matrix of the N training cases. Thus, as wj and bj with
j = 1, ...,N, are randomly selected, the MLP training is given
by the solution of the least square problem of Equation (2), i.e.,
the optimal output weight layer is B̂ = H‡T, where H‡ is the
Moore-Penrose pseudo-inverse (Serre, 2002).

ELM for training MLPs can be therefore summarized as
shown in Algorithm 1.

Algorithm 1 Extreme Learning Machine (ELM)

Given a training set D =
{

(xi, ti)| xi ∈ R
n, ti ∈ R

m, i = 1,
. . . ,N}, an activation function f and an hidden neuron
numberM,

1: Assign arbitrary input weights wj and biases bj, j = 1, . . . ,M.
2: Compute the hidden layer output matrix H using

Equation (3).
3: Calculate the output weight matrix B = H‡T, where B and T

are both defined in Equation (4).

ELM provides a fast and efficient MLP training (Huang et al.,
2006), but it needs to fix the number of hidden neurons to
obtain a good generalization capability. In order to avoid the
exhaustive search for the optimal value of M, several pruned
methods have been proposed (Mateo and Lendasse, 2008; Miche
et al., 2008a,b; Rong et al., 2008; Miche and Lendasse, 2009;
Miche et al., 2010). Among them, the most commonly used
is the ELM Optimally Pruned (OP-ELM) (Miche et al., 2010).
The OP-ELM sets a very high initial number of hidden neurons
(M≫N) and, by using Least Angle Regression algorithm (LARS)
(Similä and Tikka, 2005), sorts the neurons according to their
importance to solve the problem (Equation 2). The pruning of
neurons is done by utilizing Leave-One-Out Cross-Validation
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(LOO-CV) and choosing the combination of neurons (which
have been previously sorted by the LARS algorithm) that provides
lower LOO error. The LOO-CV error is efficiently computed
using the Allen’s formula (Miche et al., 2010). For more detail,
a summary of the OP-ELM algorithm is shown in Algorithm 2
(García-Laencina et al., 2011).

Algorithm 2 Optimally Pruned-ELM (OP-ELM)

Given a training set D =
{

(xj, tj)|xj ∈ R
n, tj ∈ R

m, j = 1,
. . . ,N}, a mix of activation functions (sigmoid, gaussian, and
linear), and a large number of neuronsM,

1: Randomly assign input weights
{

wi, bi
}M

i=1
.

2: Calculate the hidden layer output matrix H using X and
input weights.

3: Ranking the hidden outputs using the MRSR algorithm, i.e.,
H is ranked, and setH0 as an empty matrix.

4: for k = 1 to N do

5: Add the k-th node to the model → Hk =
[

Hk−1, hk

]

, being

hk the k-th column ofH.
6: Computes LOO error (ǫPRESS

k
) withHk.

7: end for

8: Select the network size (M∗) according to ǫM
∗

PRESS <

ǫkPRESS,∀k ∈ (1, 2, . . . ,M).
9: Calculate the output weights matrix: B∗ = (H∗)‡T.

Recently, a new method to design MLP architectures has been
presented in Bueno-Crespo et al. (2013). It is called ASELM
(“Architecture Selection Using Extreme Learning Machine”) and
is based on the OP-ELM. Thus, once the initial MLP architecture
is defined, the OP-ELM optimally discards those hidden neurons
whose combination of input variables is not relevant to the
target task. Because of the binary value of the input weights,
the selection of hidden nodes implies also the selection of
those relevant connections between the input and hidden layers.
Thus, only input connections corresponding to selected hidden
neurons and with input weights values equal to 1 will be part
of the final architecture. A summary of the ASELM algorithm is
shown below (Algorithm 3).

3. MULTITASK LEARNING ARCHITECTURE

The MTL architecture for a neural network is similar to the
classical scheme STL (Single Task Learning). They differ in that
MTL scheme has an output for each task to be learned, whereas
STL scheme has a separate network for each one (Figure 1). Thus,
when we speak about MTL, we are referring to a type of learning
where a main task and other tasks (considered as secondary
tasks) are learned all at once in order to help learning of the
main one.

In a MTL scheme, there is a common part shared by all
tasks and a specific one for each task. The common part is
formed by the weights connections from the input features to
the hidden layer, allowing common internal representation for
all tasks (Caruana, 1993). Thanks to this internal representation,

Algorithm 3 Architecture Selection ELM (ASELM)

Given a training set D =
{

(xi, ti)|xi ∈ R
n, ti ∈ R

m, i = 1,
. . . ,N}, activation function f , an hidden neuron number
2n − 1, where n is the number of input features, proceed as
follows:

1: The weights of the input layer are initialized with binary
values by considering all possible combinations of inputs.
The case of all weights set to zero is discarded.

2: MLP network is trained by the OP-ELM and, then, useless
hidden neurons are discarded according to the ranking given
by LARS and LOO-CV procedure.

3: The final MLP architecture is given by the selected hidden
neurons with its corresponding input(s) weight(s) equal to
one.

learning can be transferred from one task to another (Caruana,
1998). The specific part, formed by the weights that connect the
hidden layer to the output layer, specifically allows modeling each
task from the common representation. The main problem with
this type of learning is to find tasks related to the main one. Even
in case of finding them, it may be difficult to know the kind of
relationship they have, because it can be a positive or negative
influence to learn the main task.

4. PROPOSED METHOD

The method proposed in this paper is called MTLASELM since
it is based on the ASELM to design MTL architectures. To do
this, it is necessary to introduce a couple of modifications to the
original method so as to adapt it to MTL. Firstly, the targets of
secondary tasks will be used as new input features (removing
them from the outputs of the classic MTL scheme) so that a
similar architecture to that shown in Figure 1A is obtained. There
is only a single output corresponding to the main task and an
input vector composed now by the original input features and
the targets of secondary tasks. This network is designed and
trained using ASELMwhich, as it was commented before, realizes
a selection of hidden nodes that implies also the selection of those
relevant connections between the input and hidden layer. The
selection of relevant secondary tasks is now performed since they
are part of the input vector.

In a second stage, a MTL architecture is created. The
secondary tasks selected in the previous stage as themost relevant
to learn the main task are included as output components in the
MTL neural network. A scheme of the proposed method can be
seen in Figure 2.

This idea of exchanging outputs for inputs is not new. Caruana
proposed that some inputs may work better as outputs, i.e., as
new secondary tasks (Caruana, 1998). This idea is very interesting
in machine learning and it has been used, for example, for
developing efficient procedures to classify patterns with missing
data (García-Laencina et al., 2010, 2013).

MTLASELM method allows pruning to take place both at
the hidden layer and the output layer, at the same time that
provides a unique solution. This uniqueness comes from the
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FIGURE 1 | Different learning schemes. In (A), a STL architecture is shown. It is used to solve a single task alone. In (B), a set of tasks are learned simultaneously by

means of a MTL architecture. In this case, there is a common part (from the input to the hidden layer) and a specific part (from the hidden layer to the output) for each

task.

binary initialization of the hidden weights, which eliminates the
random component thereof.

To further clarify the MTLASELM method, the following
section includes an example of how the method is applied step
by step to solve a particular problem (Logic Domain problem).

5. EXPERIMENTS

In order to show the goodness of the MTLASELM method for
designing an MTL architecture, results of classification test
obtained with the single-task learning (STL), classic multitask
learning (MTL), and MTLASELM have been compared. While
the MTLASELM architecture is directly obtained by the proposed
method, the best architecture for STL and MTL has been selected
by cross-validation. For experiments, the three architectures
are trained using the stochastic back-propagation with a cross-
validation with 10-fold × 30 initializations. “Logic Domain,”
“Monk’s Problems,” “Telugu,” “Iris Data,” and “User Knowledge
Modeling” datasets, will be used to show the performance of the
method. These data sets are available at the UCI ML Repository
(Asuncion and Newman, 2007), excepting “Logic Domain”
problem (McCracken, 2003). Specific details about results for
each dataset are described below.

“Logic Domain” dataset is used to see howMTL architecture is
created by the MTLASELM method. This dataset is a toy problem
specially designed for multitask learning. In this problem, targets
are represented by the combination of four real variables (from
seven inputs: x1,...,x7), considering the first task as the main task,
and the others as secondary ones.

Table l shows the logical expression for each task. Note, that
the main task (Tp) is only determined by the first four features
of the problem. The secondary tasks share one or more variables

with the main one. Nevertheless, only the second secondary task
(TSec2 ) shares a common logic subexpression (x3 > 0.5 ∨ x4 >

0.5) with the main task.
Initially, the neural network architecture is composed by

M = 1023 (2n − 1, with n = 10; seven input features + three
extra features corresponding to three secondary tasks) hidden
units (see Figure 3). This suppose a large enough hidden layer
number according to the ELM theory. Once this model is trained
with ASELM method, the result is quite significant. The ASELM
selects only two hidden neurons as the most relevant to learn the
main task (Bueno-Crespo et al., 2013). By relevance order, these
hidden weights are w194 = [0 0 1 1 0 0 0 0 1 0] and w768 = [1
1 0 0 0 0 0 0 0 0] corresponding to hidden neuron number 194
and 768, respectively. For simplicity, we will be referred to them
as first neuron orw1 and second neuron orw2. Fromw1, it can be
observed that the first selected hidden neuron is only connected
to input features x3 and x4, as well as the second secondary task
(TSec2 ). From w2, it follows that only x1 and x2 contribute to
learning through their connection to the second hidden neuron
(see Figure 3).

This means that only TSec2 is influencing in the learning of
the TP through the first neuron that learns the input features x3
and x4, which is an expected result according to the previous
comment indicating the relationship between Tp and Tsec2 (see
Table 1). The second selected hidden neuron is only composed
by the input features x1 and x2, without any input connection
from the secondary tasks. Figure 4 shows the final architecture
given by ASELMmethod.

Next, a MTL architecture is created considering as outputs
those corresponding to the main task and secondary ones
selected in the previous stage. The latter are incorporated into
the output layer preserving the connections established by the
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FIGURE 2 | Flowchart of the proposed method.

TABLE 1 | Description of the “Logic Domain” tasks.

Task Logical expression

TP (x1 > 0.5 ∨ x2 > 0.5) ∧ ( x3 > 0.5 ∨ x4 > 0.5)

TSec1 (x2 > 0.5 ∨ x3 > 0.5) ∧ ( x4 > 0.5 ∨ x5 > 0.5)

TSec2 (x3 > 0.5 ∨ x4 > 0.5) ∧ ( x5 > 0.5 ∨ x6 > 0.5)

TSec3 (x4 > 0.5 ∨ x5 > 0.5) ∧ ( x6 > 0.5 ∨ x7 > 0.5)

Each task is described by a logical combination of four input features.

ASELM. In our case, only TSec2 has been selected. Figure 5
shows the finalMTLASELM architecture.MTLASELM has removed
the input features x5, x6, and x7, and has selected only 2

neurons in the hidden layer from the 1023 neurons initially
considered.

Figure 6 shows the MTLASELM schemes for other studied

datasets. “Monk’s Problems” dataset is a collection of three toy

problems that present the same domain (six input features). In

this problem, the targets associated to each task are described by

the logical relations. Thus, Monk 1 (TP) is described by (x1 = x2)

∨ (x5 = 1); in Monk 2 (TSec1 ) exactly two identities from x1 =

1, x2 = 1, x3 = 1, x4 = 1, x5 = 1, x6 = 1 must be satisfied; and

in Monk 3 (TSec2 ), (x5 = 3 and x4 = 1) or (x5 6= 4 and x2 6= 3)
have to be fulfilled. MTLASELM selects 14 neurons in the hidden

layer from a total of 255. Figure 6A presents the first five neurons

and the last one for the selected architecture. For example, if we
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FIGURE 3 | Logic Domain problem. Scheme to learn the main task using secondary tasks as inputs. 1023 neurons in the hidden layer have been generated. After

ASELM is applied only two hidden neurons are selected whose weight vectors are shown in black boxes. The first neuron has three connections corresponding to the

input features x3 and x4 and the second secondary task (TSec2 ). The second neuron is represented only by the input features x1 and x2.

FIGURE 4 | Logic Domain problem. Intermediate scheme where connections are pruned after ASELM. It can be observed how the input features x5, x6, and x7, all

hidden nodes least two, and secondary tasks TSec1 and TSec3 are removed because they are irrelevant for the learning of the TP.

observe the first neuron, it connects the input feature x5 with the
outputs of TP and TSec1 , but not with TSec2 . It can be observed
that target associated to TP and TSec1 match the value of x5, what
does not happen for TSec2 .

“Telugu” language dataset represents one of six languages
designated a classical language of India. This datasets consists
of three input features that represent language formants. For
“Telugu,”MTLASELM selects 4 neurons in the hidden layer from a
total of 255 initial neurons. Figure 6B shows the final architecture
obtained. As can be seen, this architecture uses only two of the

three input features, what is quite interesting because in dialects
with fewer than six vowels, two formants are only required to
classify (Pal and Majumder, 1977).

“Iris Data” (Figure 6C) represent a dataset of three types
of flowers represented by four input features. For this
dataset, 5 neurons are selected in the hidden layer from
a total of 63 neurons. It can be observed that the input
feature x1 has been removed. The results show that the
proposed method has a much more simplified architecture
than classical multitask learning, although the classification
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FIGURE 5 | Logic Domain problem. Final architecture obtained with

MTLASELM. TP shares a hidden layer neuron with TSec2 , which learns the

common part of both tasks.

test is similar due to the simplicity of the problem (see
Table 2).

“User Knowledge Modeling” (Figure 6D) is the real dataset
about the students’ knowledge status about the subject of
Electrical DC Machines. The target is represented by four levels
(very low, low, middle, and high). To give a multitasking
approach a pairwise combination has been made (TP = (very low
∨ low), TSec1 = (low ∨middle), and TSec2 = (middle ∨ high)). It
can be observed that TSec1 is removed. It is because TSec2 is more
important to TP, since TSec2 represents its opposite. Finally, 5
neurons are selected in the hidden layer from a total of 127 initial
neurons.

Table 2 shows the classification accuracy results for all the data
sets. Because the Logic Domain is an easy problem to solve for
an MLP in an STL scheme, the number of samples has been
reduced to 50 so that multitask learning can be appreciated.
With all training samples, the result between STL andMTLASELM
is practically invaluable. Taking into account this reduction of
samples for the Logic Domain problem, MTLASELM presents
better classification accuracy than STL and MTL. However, STL
is better than the classic MTL, since MTL presents a completely
interconnected scheme that is positively influenced by the related
task (TSec2 ) and negatively by unrelated tasks (TSec1 y TSec3 ). This
is not a general rule but it is an empirical result that shows

FIGURE 6 | Final MTLASELM architectures for “Monk’s Problems” (A), “Telugu” (B), “Iris Data” (C), and “User Knowledge Modeling” (D).
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TABLE 2 | Classification Test “CT” (mean ± standard deviation) with different

schemes on several datasets.

Dataset Scheme CT (mean ± std) Removed

Logic Domain STL 0.730 ± 0.038

MTL 0.702 ± 0.026

MTLASELM 0.746 ± 0.035 x5, x6, and x7

Monk’s Problems STL 0.954 ± 0.016

MTL 0.982 ± 0.026

MTLASELM 0.991 ± 0.016 none

Telugu STL 0.836 ± 0.012

MTL 0.841 ± 0.011

MTLASELM 0.866 ± 0.026 x1

Iris Data STL 0.978 ± 0.005

MTL 0.973 ± 0.014

MTLASELM 0.970 ± 0.003 x1

User Knowledge Modeling STL 0.913 ± 0.019

MTL 0.928 ± 0.036

MTLASELM 0.950 ± 0.006 x4

For MTLASELM, removed inputs are shown.

that there are tasks that help the main task and others that are
harmful.

For the rest of the data sets, the MTLASELM always provides
the best results on average with a low standard deviation. This
robustness in the solution is due to the particular initialization of
the hidden weights thatMTLASELM realizes.

To validate this assertion, a non-parametric statistical test
has been performed. Specifically, the Wilcoxon Signed Ranks
Test is used (Kruskal, 1957). A peer review has been performed.
Comparing MTLASELM to STL, the p-value obtained is 0.078,
which indicates that there are significant differences to 92%,
being the best MTLASELM . Likewise, when applying the test with
MTLASELM against classic MTL, the p= 0.080 indicates that there
are significant differences to 92%, being MTLASELM better than
MTL. However, there are no significant differences between STL
and MTL, since the p= 0.683.

6. DISCUSSION AND FUTURE WORK

This paper presents a method to select tasks to be used in a
MTL scheme providing information about weight connection,
hidden nodes, input features, and most helpful secondary tasks
for the learning of the main task. This method has been
named MTLASELM because it is based on the ASELM algorithm
(Bueno-Crespo et al., 2013), which proves to be an efficient
method and single solution for the complete design of a MLP

(input features, weights connections, and hidden nodes). By
using secondary tasks as input features, MTLASELM applies the
ASELM on the initial network which only has a single output
corresponding to the main task. Thus, irrelevant nodes and
connections are eliminated, what implies a selection of features
(among which are the secondary tasks). After this stage, a final
network is built with a dimension in the output layer equal to
the number of secondary tasks selected as relevant plus one.
Thus, the main drawback of multitask learning is eliminated,
i.e., the negative influence of unrelated tasks. In addition, the
modification of ASELM method to adapt it for a multitask
scheme is achieved not only to eliminate connections from inputs
features to hidden layer, but also from hidden to output layer.
It is worth highlighting that, as well as ASELM, the MTLASELM
method provides a single solution. This is due the fact that a
binary initial selection of the hidden weights substitutes any
random initialization process. Another important advantage is
that it requires no parameter to be configured by the user.
In the experiments section, it has been observed over real
problems that the method MTLASELM gets a simplified solution
with good generalization capabilities, in comparison to those
obtained by a fully connected solution given by the classic MTL
scheme.

Authors are working on extending the method to other
learning models, such as Radial Basis Functions (RBF). Applying
MTLASELM to regression problems is another research field
since the ASELM is optimized for classification according to
Huang et al. (2010). This limitation of the present method
is due to the nature of ELM method, which is based on the
pseudoinverse calculation. In this regard, we are working to
use the sequential calculation pseudoinverse of Moore-Penrose
(Van Heeswijk et al., 2011; Tapson and Van Schaik, 2013).
Another line of research is to extend this method in the field
of Deep Learning since new works on MultiTask Learning have
lately appeared, most of them within the scope of Deep Learning
(Liu et al., 2015; Thanda and Venkatesan, 2017).
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