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Autism spectrum disorders (ASD) are thought to be associated with abnormal neural 
connectivity. Presently, neural connectivity is a theoretical construct that cannot be 
easily measured. Research in network science and time series analysis suggests that 
neural network structure, a marker of neural activity, can be measured with electro-
encephalography (EEG). EEG can be quantified by different methods of analysis to 
potentially detect brain abnormalities. The aim of this review is to examine evidence for 
the utility of three methods of EEG signal analysis in the ASD diagnosis and subtype 
delineation. We conducted a review of literature in which 40 studies were identified 
and classified according to the principal method of EEG analysis in three categories: 
functional connectivity analysis, spectral power analysis, and information dynamics. All 
studies identified significant differences between ASD patients and non-ASD subjects. 
However, due to high heterogeneity in the results, generalizations could not be inferred 
and none of the methods alone are currently useful as a new diagnostic tool. The lack of 
studies prevented the analysis of these methods as tools for ASD subtypes delineation. 
These results confirm EEG abnormalities in ASD, but as yet not sufficient to help in the 
diagnosis. Future research with larger samples and more robust study designs could 
allow for higher sensitivity and consistency in characterizing ASD, paving the way for 
developing new means of diagnosis.

Keywords: autism spectrum disorders, autism, electroencephalography, functional connectivity, spectral analysis, 
information dynamics

iNTRODUCTiON

History and Definition of Autism Spectrum Disorders (ASD) and 
its Subtypes
Autism spectrum disorders are a group of lifelong neurodevelopmental disorders. Recent epide-
miological research estimates the prevalence of ASD at around 1 in 100 children in the UK (1) and 
1 in 68 children in the USA (2). ASD include the following subtypes: autistic disorder, Asperger 
syndrome, childhood disintegrative disorder, and pervasive developmental disorder-not otherwise 
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specified (PDD-NOS) (3). In a more recent classification in the 
Diagnostic and Statistical Manual of Mental Disorders, Fifth 
Edition, all these subcategories are subsumed under “Autism 
Spectrum Disorder” (4).

Autism spectrum disorder was first described by Kanner in 
1943 who identified the triad of core characteristics: impaired 
social interaction and communication involving reduced eye 
contact, facial expression, and body gestures, a restricted range of 
interests and repetitive behavior (5). Research indicates that ASD 
are on a broad continuum of severity and differences in symptoms 
can be detected, with the clinical symptoms becoming evident 
from the second year of life. These features are thought to be the 
result of atypical neural connections within the brain (6–11). 
Electroencephalography (EEG) can measure neural activity and 
may provide a useful tool to detect children at risk of developing 
ASD and, thus, provide an opportunity for early intervention. In 
addition, it may help delineate between the subtypes.

Autism may be described as a dynamical disorder and analyzed 
from the perspective of complex dynamical systems (10, 12–15). 
Measureable changes in cortical excitability may contribute to, or 
be a manifestation of, connectivity abnormalities (16). The two 
concepts, neural connectivity and neural dynamics, are related. 
For example, studies of complex networks reveal that they can 
exhibit a kind of “spatial chaos” in which network properties 
can change drastically with small changes to key network con-
nections, analogous to the sensitive dependence of chaotic time 
series on initial conditions (17). Therefore, computing of dynami-
cal system features of the brain from EEG time series may be 
used to infer atypical neural connectivity that is associated with 
autism. Although neural connectivity can be measured directly 
using diffusion tensor imaging, non-linear time series analysis 
methods have begun to provide a tool for detecting differences 
in neural connectivity measured with EEG devices on multiple 
smaller scales through quantitative analysis of signal complexity 
(12, 18–21).

The interpretation of the EEG may be complicated by the 
presence of epilepsy, which develops in adolescence in one-third 
of the patients. Subtypes of ASD include Asperger syndrome, 
which involves social symptoms, with typical language develop-
ment and non-verbal intelligence. PDD-NOS differs from autistic 
disorder by lacking repetitive behaviors or evident social deficits. 
Disintegrative Disorder is a severe form of autism acquired after 
normal development until 2–10  years of age. This phenotypic 
diversity in ASD also involves a varying degree of impairment in 
each symptom category between individuals (22). These are not 
the only subtypes of ASD. But these are the most encountered 
ones in research papers, particularly the ones selected for this 
review.

The implication for neural connectivity disorders such as 
autism is that EEG analysis may reveal neural network abnor-
malities that are related to functional and behavioral symptoms 
associated with the disorder. Reliable and relatively low cost, 
simple EEG measurements may provide important clinical bio-
markers for early risk assessment and for monitoring the condi-
tion’s progression. The aim of this review is to evaluate evidence 
for the utility of EEG in identifying such abnormal activity for the 
diagnosis of ASD and for the delineation of its subtypes.

electroencephalography (eeG) 
and Quantitative eeG (qeeG)
Scalp EEG sensors measure the summed potentials of several 
millions of neurons. The physiological interpretations of the 
recorded signal describe both intrinsic properties of the neurons 
such as their ionic conductance, as well as connectivity character-
istics and neural networks interactions (23). These characteristics 
are typically classified in five “classic” frequency bands: delta 
(0–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and 
gamma (30–100 Hz), but the definitions of these bands may vary 
between studies. These frequencies characterize different states of 
the brain, each with a specific function, physiology, and cortical 
topography. However, newer methods of EEG analysis, such as 
using multiscale entropy (12, 13, 24), measure “scales” rather than 
the traditional frequency bands.

Evaluation of the power of EEG signals in various frequency 
bands and the nature of connectivity between brain regions 
using correlation analysis is commonly performed using qEEG: 
a collection of computerized tools and algorithms to analyze 
the EEG signal (25). The qEEG encompasses methods of EEG 
analysis, such as spectral analysis, functional connectivity 
analysis, and, recently, information dynamics, and is used in 
the search for quantitative features associated with altered 
behaviors in ASD. The values computed using various methods 
of qEEG analysis may be collectively referred to as EEG signal 
features.

The specific questions that we set out to address in this review 
were as follows: (i) can analysis of EEG be used to detect subjects 
with ASD, in particular is it useful in the diagnosis and (ii) can 
EEG features identify subtypes of ASD?

MeTHODS

Search and Selection Strategy
The literature search was conducted in three peer-reviewed 
databases: PubMed, Embase, and PsycInfo. Keyword searches 
were performed in order to identify the most suitable studies for 
this review. The key terms used were “ASD,” “Asperger,” “autism,” 
“EEG,” “encephalography,” “spectral analysis,” “functional con-
nectivity,” and “information dynamics”. On each database, the 
searches consisted of each of the three key terms describing 
the disorder and subtypes plus each of the terms describing the 
methods (Table 1).

In addition, to select the studies to be reviewed, the following 
inclusion criteria were used:

 1. The studies were performed on humans, either children or 
adults;

 2. A comparison was performed between either: (i) ASD 
patients and healthy controls or (ii) ASD patient with different 
subtypes;

 3. The studies’ outcome consisted of specific EEG features of 
ASD, not its comorbidities;

 4. The studies included patients diagnosed according to the 
clinical criteria from DSM III onward;

 5. The studies were published between 1980 and May 2016;
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TAble 2 | Total number of papers identified from each database before and after 
the exclusion of duplicates.

Database Total number of titles Total number of titles-duplicates

PubMed 2,155 1,523
Embase 2,095 1,467
PsycInfo 964 649

TAble 1 | Description of the search strategy.

Search 
element

PubMed embase Psycinfo

Disorder Autism spectrum 
disorders (ASD)

ASD ASD

Autism Autism Autism
Asperger Asperger Asperger

Method Electroencephalography 
(EEG)

EEG EEG

Encephalography Encephalography Encephalography
Spectral analysis Spectral  

analysis
Spectral  
analysis

Functional connectivity Functional 
connectivity

Functional 
connectivity

Information dynamics Information 
dynamics

Information 
dynamics
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 6. The studies were performed using EEG and the signal was 
analyzed using spectral analysis, functional connectivity 
measures, or information dynamics methods.

In order to filter the initial number of titles obtained (Table 2), 
according to the six eligibility criteria, a three-step strategy was 
followed (Figure 1). First, the titles of each of the papers yielded 
by the initial search were examined for relevance to the topic. 
The absence of any of the key words from the titles led to the 
exclusion of the studies. Second, the abstracts were scanned 
for relevance, as they briefly indicate the methods used in the 
study and their results. Animal studies, review papers, or stud-
ies combining different methods of analysis were excluded. 
The review papers were used as sources for relevant papers to 
be examined. Lastly, a full text analysis was performed, allow-
ing a closer examination of diagnostic criteria of the patients 
and the quality of their results. This process yielded the final 
collection of studies used for data extraction in the review  
(Figure 1).

Following the selection stage, the relevant data were extracted 
from each paper. For this purpose, in consistency with the 
PRISMA 2009 checklist (http://www.prisma-statement.org/), a 
template with a number of descriptive variables for each study 
such as its authors and publishing year; a detailed section describ-
ing the methods used in the study, including description of the 
patient and the control groups, the task performed, methods of 
EEG analysis as well as statistical tests; and a summary of the 
results was used. For consistency, all data were extracted from the 
studies using this template.

Inspection of the literature selected for data extraction 
revealed three types of EEG signal analysis used for detection of 

ASD: (i) spectral analysis; (ii) functional connectivity and coher-
ence analysis; and (iii) a larger category, information dynamics, 
including several methods based on dynamical systems theory 
and mathematical concepts.

The Methods Categories
Functional connectivity evaluates the relationship between the 
signals recorded at different brain regions simultaneously. Usually 
these relationships are quantified in terms of some measure of 
synchronization between two signals. Synchronization may 
be defined in several different ways (26, 27). Variations of this 
analysis include coherence, phase locking index, phase synchro-
nization, phase lag index, and synchronization index. Functional 
connectivity analysis also involves measures of embedded data, 
such as cross recurrence diagrams and synchronization likeli-
hood. Often signals are decomposed into standard frequency 
bands.

Spectral analysis is the most common quantitative method 
used for EEG signal analysis and interpretation. It breaks the 
continuous range of frequencies into defined bands and evalu-
ates the signal distribution over several frequency bands, usually 
as the five divisions described above. The spectral power may 
be computed for each frequency band at each sensor (28). 
Sometimes the total power in each frequency band is summed 
over all sensors, giving a single power value over the entire scalp 
for each frequency band. For example, a power value for the 
alpha band over the entire scalp may be reported. Or, power in 
the alpha band at each sensor location may be reported. Group 
differences between populations with autism and typically devel-
oping controls were assessed. Results were presented either as 
absolute power or relative power (the ratio of band power to total 
power over bands).

Information dynamics methods make use of non-linear 
analysis methods. These include various measures of entropy, 
or other dynamical concepts such as Lyapunov exponents or 
recurrence plot analysis, among others. The meaning of these 
concepts has been derived from physical systems, but it is not 
clear how they related to neural systems. Thus, significant cor-
relations between non-linear features and neural or behavioral 
observations are sought using machine learning algorithms and 
mathematical classifiers based on neural networks, graph theory, 
fractals, or Bayesian methods. Machine learning algorithms and 
classifiers use a set of rules characterizing members of one or 
more categories and then apply these rules to a dataset for clas-
sification. The most commonly used non-linear feature used in 
neuroscience has been multiscale entropy, a measure of signal 
complexity. The original EEG signal is used to create a sequence 
of coarse-grained time series. Each scale of entropy is obtained as 
follows: scale 2 is calculated by averaging every two values, scale 
3 time series is obtained by averaging every three values, etc. The 
sample entropy is then computed for each time series to produce 
entropy as a function of time. This coarse graining procedure was 
first introduced to signal analysis by Costa et al. (29). Although 
this procedure is commonly used, it has only recently been noted 
that for powers of 2 (1, 2, 4, 8, …) the coarse graining procedure 
is mathematically identical to the Haar wavelet transform (30). 
Much is known about wavelet transforms and their relationship 
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FiGURe 1 | Flow diagram presenting the process of study selection, including the three-step strategy used to reach the final collection of studies and number  
of records in every step.
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to frequency decomposition (31). Multiscale entropy is, thus, a 
computation of sample entropy on each of the wavelet transform 
scales.

According to the PRISMA 2009 checklist, the analysis of 
the utility of each of these methods includes a general descrip-
tion, a critical evaluation of statistically significant evidence to 
differentiate between ASD patients and non-ASD subjects, or 
different ASD subtypes extracted from the literature, advantages 
the technique holds over others, as well as gaps and future lines of 
improvement followed by a conclusion summarizing the overall 
prospects of using it as a tool in ASD detection.

ReSUlTS

An evaluation of the selected literature led to the presentation of 
the papers in three EEG signal analysis methods used to charac-
terize ASD described above.

Functional Connectivity
Of the 40 studies selected for review, 12 studies compared func-
tional connectivity between ASD patients and non-ASD subjects. 
All studies reported at least one statistically significant difference 
in ASD connectivity in at least one frequency band. Of the 12 
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TAble 3 | Studies using functional connectivity.

Paper Patients characteristics Controls characteristics Condition Measure Changes in ASD

Orekhova 
et al. (32, 
33)

n = 28; mean 
age = 14.4 months; sex = 18 F, 
10 M; HR

n = 10; mean age = 
38 months; sex = 3 F, 7 M;  
High-risk ASD (HR-ASD)

3 video stimuli De-biased 
weighted phase lag 
index

HR-ASD: hyper-connectivity in alpha band in frontal 
and central areas (p < 0.05)

n = 26; mean 
age = 14.7 months; sex = 14 F, 
12 M; Low-risk (LR)

n = 18; mean age = 
38 months; sex = 15 F, 3 
M; High-risk non-ASD

The degree of hyper-connectivity correlated with 
the severity of ASD symptoms in later diagnosed

Righi  
et al. (34)

n = not specified; adults HR of 
ASD Had an older sibling with 
ASD

n = not specified; adults 
LR of ASD

Speech 
sounds

Coherence Infants at risk: reduced connectivity (p < 0.005)

Connectivity: HR-ASD < HR-NASD < LR

Barttfeld 
et al. (35)

n = 10; mean age = 23.8 years; 
sex = 1 F, 9 M; 
subtypes = autism, Asperger 
syndrome

n = 10; mean age =  
25.3 years; sex = 1 F, 9 M

Relaxed eyes 
closed

Coherence 
(synchronization 
likelihood)

Delta band: decreased long-range connectivity 
(fronto-occipital) and increased short-range 
connectivity (frontal lateral) in ASD (p < 0.05)

Murias et al. 
(36)

n = 18; adults sex = 18 M 
diagnosis = ASD; Some were 
taking medication

n = 18; age-matched 
sex = 18 M

Relaxed eyes 
closed

Coherence Theta: increased connectivity in frontal and 
temporal left hemisphere (p < 0.025)

Alpha: decreased long-range connections of the 
frontal area (p < 0.025)

Leveille 
et al. (37)

n = 9; mean age = 21.1 years; 
diagnosis = ASD

n = 13; mean 
age = 21.5 years

Rapid eye 
movement 
(REM) sleep

Coherence Theta and delta: increased long-range coherence 
between the occipital region and the rest of the 
brain and decreased the frontal area (p < 0.05)

Boersma 
et al. (38)

n = 12; mean age = 3.5 years; 
sex = 2 F, 10 M; 
subtypes = autism (2), Asperger 
syndrome (1), PDD-NOS (9); 
average IQ = 85

n = 19; mean 
age = 3.5 years; sex = 19 
M; average IQ = 108

Pictures of 
cars

Clustering Overall whole brain under-connectivity in beta, 
theta, and alpha bands (p < 0.01)

Catarino 
et al. (13, 39)

n = 15; mean age = 31 months; 
diagnosis = ASD

n = 15; mean 
age = 29 months

Object 
recognition

Coherence Decreased coherence for both tasks in alpha and 
theta bands (p < 0.05)

Carson 
et al. (40)

n = 19; mean age = 9.9 years; 
sex = 1 F, 19 M; 
diagnosis = ASD

n = 13; mean 
age = 10 years; sex = 4 
F, 9 M

Videos of 
someone 
reading a 
story

Coherence Decreased coherence in alpha band in frontal and 
temporal lobes at baseline (p < 0.05)

Cantor et al. 
(41)

n = 11; age range = 4–12 years; 
sex = 2 F, 9 M; 
subtypes = autism

n = 119; classification = 
normal children (n = 88, 
age range = 5–15 years), 
a matched group of 
intellectually disabled 
children (n = 18, age 
range = 5–15 years) 
and a group of mentally 
age-matched normal 
toddlers (n = 13, age 
range = 16 months to 
5 years)

Relaxed eyes 
open

Coherence Higher coherence between and within hemispheres 
in delta and alpha bands (p < 0.05)

Chan et al. 
(42, 43)

n = 21; mean age = 
10.27 years; sex = 2 F, 19 M

n = 21; mean age =  
9.85 years; sex = 7 F, 14 M

Object 
recognition

Coherence Increased frontal coherence in left hemisphere in 
theta bands (p < 0.05)

(Continued )
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studies employing this method of analysis, 10 use coherence as a 
measure of connectivity, 1 calculated the phase lag index of the 
time series, and 1 calculated clustering to determine the level of 
synchronization. EEG recordings were performed under relaxed, 
no task conditions, with eyes either open or closed, during sleep 
or during an object recognition, audio or video task. The overall 
patterns in results are presented in Table  3 together with the 
condition of the EEG recording and the principal measure of 
each study.

Although the results are variable, some generalizations can 
be inferred. Thus, ASD is usually associated with reduced long-
range connections in the alpha band between the frontal lobe and 
other brain regions. This finding supports the under-connectivity 
theory of ASD, which is supported by fMRI studies (47). Seven 
out of 11 studies performed coherence analyses in the alpha 
band, of which 4 supported the presence of under connectivity. 
For instance, Murias et al. studied coherence in ASD in a relaxed 
eyes closed condition, using a high-density EEG montage (124 
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Paper Patients characteristics Controls characteristics Condition Measure Changes in ASD

Coben et al. 
(44)

n = 20; mean age = 6–11 years; 
sex = 6 F, 14 M

n = 20; mean 
age = 6–11 years; sex = 6 
F, 14 M

Relaxed eyes 
close

Coherence Decreased coherence in theta and delta bands in 
frontal region (p < 0.005), delta, theta, and alpha 
in temporal region (p < 0.05) and delta, theta, and 
beta in parietal and occipital regions (p < 0.05)

Buckley 
et al. (45)

n = 87; age range = 2–6 years; 
diagnostic = ASD

n = 29; age 
range = 2–6 years (TYP)

Awake, slow-
wave sleep, 
and REM 
sleep 

Coherence, phase 
lag

Increased coherence observed in ASD compared 
to TYP, almost exclusively during slow-wave sleep, 
in the frontal–parietal areas, in long-distance pairs

n = 21; age range = 2–6 years; 
diagnosis = developmental delay 
without ASD (DD)

Lazarev 
et al. (46)

n = 14; age range = 6–14 years; 
sex = 14 M; diagnosis = ASD

n = 19; age 
range = 6–14 years; 
sex = 19 M

Intermittent 
photic 
stimulation

Coherence Significantly lower coherence in ASD than the 
control group in the beta frequencies

n, number of subjects; F, female; M, male; PDD-NOS, pervasive developmental disorder-not otherwise specified; REM, rapid eye movement; ASD, autism spectrum disorders;  
HR-ASD, High-risk ASD; HR, high-risk.

TAble 3 | Continued

electrodes) in male adults and found significant differences in 
the alpha band between patients and controls, with reduced long-
range connections particularly from the frontal areas. Some of the 
patients were taking medication, which may have influenced the 
results (36). Catarino et al. also identified an overall decrease in 
brain connectivity in the alpha band, in subjects with ASD per-
forming two object recognition tasks (39). In a more recent study, 
Carson et al. performed a study on a younger pool of participants 
that replicated the decrease in the long-range connectivity in 
the alpha band, while they were attending to a video of either a 
familiar or unfamiliar person readying a story (40). The fourth 
study to support this theory calculates clustering as a measure 
of brain connectivity. Boersma et al. used graph analytical tools 
to demonstrate reduced whole brain connectivity in toddlers, 
particularly in the alpha band (38). However, three of the six 
studies show contradictory results. Orekhova et al. performed a 
longitudinal study, testing participants at high risk (HR) and low 
risk (LR) of developing ASD at 14 months and at 38 months, after 
part of the HR participants were diagnosed with ASD. The study 
showed significant differences between the children diagnosed 
with ASD and the other participants, with hyper-connectivity in 
the alpha band between the frontal and central areas in those at 
risk of developing autism (33). Testing participants in a relaxed 
eyes open condition, Cantor et al. supports the decrease in alpha 
connectivity, this time within and between hemispheres (41). 
Buckley et al. tested participants aged 2–6 years old during three 
sleep state conditions and found an increase in coherence in ASD 
patients compared to neurotypical subjects, particularly in long-
range connections in the frontal–parietal areas (45).

Anatomical and functional studies have also demonstrated 
short-range, local over connectivity, reflected in increases of 
short-range association fibers (48). Moreover, it is known that 
theta oscillations underlie locally dominant processes (49). Six 
out of 11 studies investigated connectivity differences in this fre-
quency band: 3 of the studies supporting previous fMRI findings 
(36, 37, 43) and 3 not finding any evidence of over connectivity 
(38, 39, 44). Murias et al. identified significant over connectivity 
in the theta band in the frontal and temporal areas of the left 

hemisphere (36). Leville et al. studied participants during rapid 
eye movement sleep and identified increased long-range connec-
tivity between the visual area V1 in the occipital lobe and other 
parts of the brain (37). During an object recognition task, Chan 
found increased frontal coherence in the theta band, confirming 
fMRI findings (43); but three studies found whole brain under 
connectivity in the theta band, the first two employing object 
recognition tasks (38, 39), while Coben et al. demonstrated under 
connectivity in the frontal, temporal, and parietal regions (44).

The delta and beta bands yielded significant results in 6 of 
the 11 functional connectivity studies, but lacked consistency. 
Barttfeld et al. showed ambivalent results in the delta band, with 
decreased long-range delta connectivity between the frontal and 
occipital areas and increased short-range delta connectivity in the 
frontal region (35). In a sleep study, Leville et al. had contradic-
tory results, showing increased long-range delta connectivity 
between the occipital area and the rest of the brain (37). Coben 
also shows decreased frontal and temporal coherence in the theta 
band (44). Decreases in connectivity were detected by Boersma 
et al. (38), Coben et al. (44), and Lazarev et al. (46) in the analysis 
of the beta band. Despite these results, it is notable that 9 of the 
11 papers did not find any significant difference in the beta band. 
Generalization, in this case, could not be inferred because of the 
different conditions of the EEG recordings and the age differences 
between the participants of each study.

Spectral Analysis
Twenty-one of the selected studies used spectral analysis to char-
acterize ASD. All studies recorded statistically significant variants 
in spectral power in ASD patients compared to non-ASD subjects 
in at least one frequency band. The studies measured differences in 
relative or absolute spectral power across frequency band, power 
spectrum density, or spectral properties such as amplitude. The 
signal was recorded during relaxed conditions with eyes either 
open or closed, during sleep, cognitive tasks, or while attending to 
video or audio stimuli. The overall trend of results can be visual-
ized in Table 4, along with participants’ characteristics, recording 
condition and the main measure of the study.
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TAble 4 | Studies using spectral analysis.

Paper Patients characteristics Controls characteristics Condition Measure Changes in ASD

Matlis  
et al. (50)

n = 27; mean age = 4–8 years; sex = 2 F, 
25 M; subtypes = autism

n = 55; mean age = 4–8 years; 
sex = 26 F, 29 M

Relaxed eyes open Spectral properties Reduced posterior/anterior power ratio in the alpha frequency range (8–14 Hz) 
(p ≤ 0.0025)

Sheikhani  
et al. (51)

n = 15; age range = 6–11 years; sex = 5 
F, 10 M; subtypes = Asperger syndrome; 
verbal IQ > 85; handedness = 1 LH, 
14RH

n = 11; age 
range = 6–11 years; sex = 4 
F, 7 M; handedness = 1LH, 
1AD, 9RH

Eyes closed, 
relaxed eyes 
opened, looking at 
3 puzzle shapes, 
looking at mother’s 
and stranger’s 
pictures upright and 
inverted

Spectral power Higher power in gamma band while resting with eyes open (p < 0.05)

Cantor  
et al. (41)

n = 11; age range = 4–12 years; 
sex = 2 F, 9 M; mean IQ = 37.5; 
subtypes = autism

n = 119; classification = normal 
children (n = 88, age 
range = 5–15 years), age-
matched group of mentally 
disabled children (n = 18, age 
range = 5–15 years) and a 
group of mentally age-matched 
normal toddlers (n = 13, age 
range = 16 months to 5 years)

Relaxed eyes 
opened

 1. relative power
 2. total power

ANCOVAs and t-tests: Lower alpha power in all regions in ASD subjects 
compared to age-matched normal and age-matched mentally disabled 
children (p < 0.001)

Higher power than the normal or mentally handicapped children in the bilateral 
fronto-temporal and left temporal regions (p < 0.005). Lower power in the 
bilateral occipital regions normal (p < 0.05). Lower power than toddlers in the 
left central, midline central, and left fronto-temporal regions (p < 0.05)

Chan  
et al. (42, 43)

n = 17; mean age = 7.1 years; sex = 3 
F, 14 M

n = 105; mean age = 7.7 years; 
sex = 61 F, 44 M

Relaxed eyes 
opened

Spectral profiles: 
absolute delta, 
theta, alpha, 
sensorimotor 
rhythm, beta; 
relative delta, theta, 
alpha, sensorimotor 
rhythm, beta bands

Absolute amplitudes: higher amplitudes in all five frequency bands (p < 0.005)

Chan  
et al. (42, 43)

n = 66; age range = 5–18 years; sex = 6 
F, 60 M

n = 90; age 
range = 6–12 years; sex = 42 
F, 48 M

Relaxed eyes 
opened

Mean absolute and 
relative power of 
typically developing 
children and 
children with ASD

ASD less relative alpha (91% sensitivity, 73% specificity) and more relative 
delta (76% sensitivity, 78% specificity) 

Daoust  
et al. (52)

n = 9; age range = 12–53 years; 
sex = 1 F, 8 M; diagnosis = ASD; 
subtypes = autism, Asperger syndrome

n = 8; age range = 8–56 years; 
sex = 1 F, 7 M

Relaxed, eyes 
closed morning and 
evening and sleep

 1. Awake absolute 
spectral power

 2. REM sleep 
spectral 
amplitude

Higher absolute theta over the left frontal pole region during evening 
wakefulness, but not during morning wakefulness

Lower absolute beta spectral amplitude over the primary (p < 0.05) and 
associative (p < 0.03) visual areas

van Diessen  
et al. (53)

n = 19; mean age = 10.6 years; sex = 3 
F, 16 M

n = 19; mean age = 10.1 years; 
sex = 3 F, 16 M; 7 taking 
medication

Relaxed, eyes 
closed

Spectral power Higher relative gamma power in frontal, parietal, and temporal regions 
(p = 0.002)

Mathewson  
et al. (54)

n = 15; mean age = 18–51 years; sex = 3 
F, 12 M; subtypes = autism, Asperger 
syndrome, PDD-NOS; medication = 8; 
handedness = 13RH, 2LH

n = 16; mean 
age = 22–47 years; sex = 4 F, 
12 M; handedness = 14RH, 
2LH

Relaxed eyes 
opened and eyes 
closed

Differences in alpha 
power

Alpha power in each region greater in ASD than in control in the eyes open 
condition (p < 0.05)
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Paper Patients characteristics Controls characteristics Condition Measure Changes in ASD

Dawson  
et al. (55)

n = 28; mean age = 11 years; 
sex = 5 F, 23 M; diagnosis = ASD; 
subtypes = autism, PDD-NOS; 
peabody picture vocabulary test-
revised scores = 39–108; verbal age 
average = 5.8

 1. n = 28; mean 
age = 11 years; sex = 5 
F, 23 M; verbal age 
average = 16

 2. n = 24; mean 
age = 4.6 years; sex = 2 
F, 22 M; verbal age 
average = 5.7

Relaxed eyes 
opened

Chronological-age-
matched power 
spectra group 
comparison

Delta: ASD reduced power in the frontal and temporal regions (p < 0.1)

Theta: ASD reduced power in all three brain regions (p < 0.05). Alpha: ASD 
reduced power in the frontal and temporal regions (p < 0.05)

Beta: no significant differences

Machado  
et al. (56)

n = 11; mean age = 70.3 months; 
sex = 4 F, 7 M; diagnosis = ASD; 
subtypes = autism

n = 14; mean 
age = 66.7 months; sex = 5 
F, 9 M

Control: relaxed 
eyes opened; 
watching a popular 
cartoon; watching 
the cartoon without 
audio

PSD Decreased PSD in the central region for delta and theta, and in the posterior 
region for sigma and beta bands, lateralized to the right hemisphere (p < 0.05)

Maxwell  
et al. (57)

n = 15; mean age = 15.1 years; sex = 15 
M; diagnosis = ASD; subtypes = 14 
Asperger syndrome, 1 autism

n = 18; mean age = 14.2 years; 
sex = 18 M

Relaxed eyes 
opened

Resting gamma 
power

Decreased gamma power at the right lateral electrodes (p = 0.04)

Scope  
et al. (58)

n = 20; mean age = 12 years; sex = 2 F, 
18 M; subtypes = 9 autism, 8 Asperger 
syndrome, 3 PDD-NOS

n = 20; mean age = 13 years; 
sex = 2 F, 18 M

Looking at Gabor 
patches of different 
frequencies

Differences in 
changes in alpha 
and gamma 
frequencies of 
independent 
components

Induced alpha power of components that were in or near the cingulate gyrus 
was increased in ASD (p < 0.05)

Stroganova  
et al. (59)

n = 40; age range = 3–8 years; sex = 40 
M; subtypes = 38 autism, 2 PDD = NOS

n = 40; age range = 3–8 years; 
sex = 40 M

Sustained visual 
attention

Spectral power Increase of gamma at the electrode locations distant from the sources of 
myogenic artifacts (p < 0.05)

Stroganova  
et al. (59)

n = 44; age range = 3–8 years; sex = 44 
M; diagnosis = ASD; subtypes = 42 
autism, 2 PDD-NOS

n = 44; age range = 3–8 years; 
sex = 44 M

Sustained visual 
attention

Spectral power Higher amount of prefrontal delta in autism (p < 0.05)

Tani  
et al. (60)

n = 20; mean age = 27.2 years; 
subtype = Asperger syndrome; 
diagnosis = ASD

n = 10; mean age = 26.5 years Asleep Spectral power Non-significant trend toward decreased relative delta power and increased 
theta power in slow-wave sleep was found in the AS group

Yang  
et al. (61)

n = 5; age range = 16–22 years; sex = 1 
F, 4 M; subtype = Asperger syndrome

n = 7; age matched Looking at 
photographs of 
familiar faces

Spectral power Decrease following the stimulus onset in two time-frequency intervals—(1) 
150–300 ms in the 1–16 Hz frequency range and (2) 300–650 ms in the 
1–8 Hz range (p < 0.01)

Tierney  
et al. (62)

n = 168l; diagnosis = ASD Longitudinal studies: 
same patients at 6, 9,12, 
18,24 months

Resting state Change over time in 
spectral power

Across all bands, spectral power was lower in high-risk infants as compared 
to low-risk infants at 6 months of age (p < 0.01)

Sheikhani  
et al. (51)

n = 17; age range = 6–11 years; 
sex = 4 F, 13 M; diagnosis = ASD; 
handedness = 1LH, 1 AD, 15 RH

n = 11; age 
range = 6–11 years; sex = 4 
F, 7 M

Relaxed eyes 
opened

Accuracy in 
differentiating ASD 
using spectrogram 
criteria

Alpha frequency band had the best distinction level of 96.4% in relaxed 
eye-opened condition using spectrogram criteria. ASD had significant lower 
spectrogram criteria values in left hemisphere (p < 0.01), at F3, T3, FP1, F7, 
C3, Cz, and T5 electrodes (p < 0.05)

(Continued)
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Inconsistencies are observed in the spectral band findings, 
although some generalizations can be inferred. First, significant 
differences in the alpha band were shown by five studies with 
relaxed eyes open condition (41, 42, 50, 54, 55). While four 
studies show a decrease in absolute spectral power in ASD in 
children of similar ages (41, 42, 50, 55), another showed elevated 
absolute alpha power in adults (54). The inconsistencies might 
be attributed to the age differences between participants and 
differing developmental trajectories in children with ASD. Yang 
et al. tested participants while they were performing a cogni-
tive task and showed an increase in alpha power compared to 
non-ASD controls, but insufficient studies calculated similar 
measures under the same conditions to make robust conclu-
sions (61).

Calculating spectral amplitudes in all frequency bands, Chan 
et al. also found significantly increased amplitudes in the ASD 
population. Moreover, using discriminant function analyses, the 
study finds that beta amplitudes had high specificity (98.1%) and 
sensitivity (77.8%) in differentiating ASD from non-ASD subjects 
(70). The most consistent result that could lead to a generaliza-
tion is an increase in absolute gamma power in ASD compared 
to non-ASD subjects. Sheikhani et al. tested their participants in 
a variety of conditions and found statistically significant elevated 
gamma power, particularly in the relaxed eyes open condition 
(51). van Diessen et al. confirms the increase in gamma power, 
particularly in the frontal, parietal, and temporal regions in the 
relaxed eyes open condition (53). Stroganova et al. replicate this 
finding, using a visual attention task (59), while Lushchekina 
et al. supports these findings in two studies involving a cognitive 
task (64).

As for the theta band, none of the results could be validated 
due to inconsistencies. While Daoust et al., Tani et al., Elhabashy 
et al., and Yang et al. show increased power in the theta band in 
two studies performed during sleep, one during a relaxed eyes 
open and one involving a cognitive task (52, 60, 61, 65); three 
studies show a reduction in theta power in relaxed eyes open 
conditions and during a cognitive task (55, 56, 64). Variations in 
the participants’ age, as well as small sample sizes might lead to 
the lack of consistency in these results.

information Dynamics
Information dynamics comprises a collection of new methods 
derived (28) from analysis of non-linear physical systems using 
new computational methods from the mathematics of complex 
dynamical systems (71, 72). Of the all studies representing the 
final literature pool considered in this review, six studies used 
these interdisciplinary methods to compare ASD patients and 
non-ASD subjects. These studies may use machine learning 
algorithms, neural networks, graph theory, or Bayesian meth-
ods to find group differences from features computed with 
non-linear algorithms, such as multiscale entropy or fractal 
analysis. The challenge with these methods is to determine 
neurophysiological meaning associated with the measures. All 
studies reported at least one statistically significant difference in 
at least one variable measured and very high classification capa-
bilities based on those variables. Of the six studies employing 
such methods of analysis, only two have a common measure. 
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TAble 5 | Studies using information dynamics.

Paper Patients 
characteristics

Controls 
characteristics

Condition Measure Changes in ASD

Bosl  
et al. (12, 30)

n = 46; age 
range = 6–24 months; 
diagnosis = HRA

n = 33; age 
range = 6–24 months

Infants’ 
attention was 
engaged by 
the researcher 
blowing 
bubbles

 1. mMSE
 2. Machine learning 

classification accuracy

 1. HRA lower mean complexity over all channels; most 
prominent differences between groups was the 
change in mMSE between 9 and 12 months

 2.  Machine learning techniques threshold p = 0.05: 
HRA and control groups classified at age 9 months 
for boys and girls together and for boys separately 
with accuracies of 80% and well over 90%, respectively

Eldridge  
et al. (66)

n = 19; age 
range = 6–10 years; 
diagnosis = ASD

n = 30; age 
range = 6–10 years

Auditory 
paradigm 
(oddball 
paradigm)

 1. Classification 
accuracy using robust 
features, a support 
vectormachine, logistic 
regression, and a naive 
Bayes classifier

 1. Bayesian classification: sensitivity of 79% was 
achieved for classifying ASD and non-ASD subjects

Gregory and 
Mandelbaum 
(67)

n = 56; age 
range = 2–22 years; 
diagnosis = ASD

n = 56; age 
range = 2–22 years

Relaxed eyes 
open

Differences in posterior 
dominant EEG rhythm 
(PDR) between groups

 1. 2-sampled t-tests: across the entire pool of 
participants: significantly different PDR between ASD 
and non-ASD subjects (p = 0.014) ages

 2. 2–5.9 years (n = 22): significantly different 
PDR between ASD and non-ASD subjects 
(p = 0.047).ages 6–22 years (n = 34): no significant 
differences in PDR between ASD and non-ASD 
subjects (p > 0.05)

Ahmadlou  
et al. (68, 69)

n = 9; age 
range = 7–13 years; 
subtypes = autism

n = 9; age 
range = 7–13 years

Resting state, 
eyes closed

 1. Discriminative 
capacity of functional 
connectivity within and 
between regions

 2. Accuracy of EPNN 
classification of ASD 
and non-ASD

 1. One way ANOVAs: Theta band right-temporal-right-
temporal; Occipital-Frontal; Parietal-Right-temporal; 
Occipital-Central (p < 0.0005)

 2. 95.5% sensitivity with 1.2% variance of classification 
of ASD and non-ASD subjects

Ahmadlou  
et al. (69)

n = 9; age 
range = 6–13 years; 
sex = 2 F, 7 M

n = 8; age 
range = 7–13 years; 
sex = 2 F, 6 M

Resting state, 
eyes closed

 1. Discriminative capacity 
of Fractal Dimensions 
(FD) in 5 sub-bands

 2. Accuracy of Radial 
Basis Function Neural 
Network classification 
of ASD and non-ASD

 1. One way ANOVAsSignificant differences using Katz’s 
Fractal Dimension: gamma in temporal regions, delta 
in frontal and central regions (p < 0.001)

 2. 90% accuracy in the 3 parameter feature space with 
0.15% variance

Catarino  
et al. (13, 39)

n = 15; mean 
age = 31.4 years; 
diagnosis = ASD

n = 15; mean 
age = 29.4 years

Face and chair 
detection task

Signal complexity 
(multiscale entropy)

 1. ASD decreased multiscale entropy over temporo-
parietal and occipital regions (p = 0.036)

n, number of subjects; F, female; M, male; HRA, high risk for autism; mMSE, modified multiscale entropy; ANOVAs, analyses of variance; ASD, autism spectrum disorders.
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as multiscale entropy shows an overall different developmental 
trajectory for infants at HR of developing ASD compared to LR 
infants. Bosl et  al. used classification algorithms to show that 
children with a HR of developing autism based on family history 
could be detected with high accuracy at 9–12 months of age, lead-
ing to the more important question of whether an autistic neu-
roelectrophysical phenotype could be detected early in infancy. 
This supervised learning experiment yielded a sensitivity value of 
over 80% at 9 months of age, remaining very high (70–90%) until 
12 months of age (12).

Elridge et  al. used Bayesian methods to perform a similar 
classification between ASD and typically developing children, 
between 6 and 10 years old. This study extracted robust features 
such as variance in time, entropy, or sum of signed differences 
from the EEG signal and then used logistic regression and a native 
Bayes classifier to divide the two groups with a 79% accuracy (66). 
Ahmadlou et al. used a different method of classification based 

The other four studies use distinct variables and concepts with 
the same goal. EEG recordings were performed under relaxed, 
no task conditions, with eyes either open or closed, or during an 
object recognition or audio task. The overall patterns in results 
are presented in Table 5, which show the condition of the EEG 
recording and the main measure of each study or means of 
classification.

Multiscale entropy measurements were employed by Catarino 
et al. and Bosl et al. to measure brain signal complexity in children 
with autism, infants at HR of developing ASD and non-ASD sub-
jects during a relaxed eyes open condition and an object detection 
task, respectively. Catarino et  al. found significantly decreased 
multiscale entropy in ASD-diagnosed participants compared to 
controls, predominantly in temporo–parietal and occipital areas 
of the brain (13). Bosl et al. found the same results in multiscale 
entropy, averaged over the entire scalp. The latter found that the 
greatest differences are observed between 9 and 12 months of age, 
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on complexity and chaos theory. Two types of fractal dimensions 
were used to assess dynamical changes in the brains of ASD chil-
dren and non-ASD subjects in all frequency sub-bands: Higuchi’s 
Fractal Dimension and Katz’s Fractal Dimension, which indicate 
non-integers or fractional dimensions of time series, based on 
regularity or self-similarity of a time series. After computation 
of fractal dimensions, the most significant characteristics were 
extracted using analysis of variance. Finally, a Radial Basis 
Function Neural Network classifier was used to separate ASD 
from non-ASD subjects. The accuracy of this classification was 
90 % (68).

DiSCUSSiON

The aim of this review is to determine the utility of EEG in iden-
tifying abnormal activity in brain signal to help in the diagnosis 
of ASD and for the delineation of its three main subtypes; autism, 
Asperger syndrome, and PDD-NOS.

Most of the reviewed studies identify differences between 
ASD and non-ASD subjects regardless of the recording condi-
tions or analysis. However, there is no sufficient evidence to 
support any of these methods in the diagnosis of ASD. Sources 
of heterogeneity such as gaps in study designs were identified and 
recommendation for future research is given.

Functional Connectivity—Utility, Research 
Gaps, and Future Directions
Functional connectivity studies showed consistent decreased 
long-range connectivity in the alpha band and short-range 
connectivity in the theta band in ASD. However generalizations 
cannot be inferred yet due to either contradictory results of some 
studies, or differences in study design. These results only indicate 
potential reasonable utility of using functional connectivity 
measures for ASD detection. Methodological challenges involve 
interpretation of functional connectivity between surface or scalp 
regions. More than six different methods can be found to define 
synchronization between time series alone (73). Coherence, 
correlation, and synchronization can then be used in different 
ways to determine the strength of connectivity between sensor 
locations.

It should be noted that EEG recordings usually involve more 
complex electrode montages and advanced computational 
capacity for this method of data analysis. These requirements 
may not necessarily involve the simple, lightweight devices, 
with high portability that could be operated by non-specialized 
staff. In addition, the computational challenges required by this 
type of analysis should not be underestimated. Moreover, since 
there is little homogeneity in the results obtained using this 
method, future studies should take into consideration current 
limitations. Numerous concerns of study design suggest that 
future research must ensure robust experimental designs and 
limited reliance on patients with comorbidities, such as epilepsy 
or subjects taking medication. Epilepsy, one of the most com-
mon comorbidities of ASD, is associated with abnormal EEGs 
and this may complicate the separation of those effects by those 
caused by ASD (22). Moreover, different types of medication 

have varied effects on the EEG signal and could be a source of 
heterogeneity in the results (74). The different means of com-
puting coherence should also be investigated, since different 
studies yielded contradicting results depending on the analysis 
method.

In the context of ASD, functional connectivity has not 
been studied as extensively as spectral analysis. The number 
of studies identified indicates that coherence may have high 
utility as a means of accurately detecting ASD. However, the 
heterogeneity of the coherence results comes partly from 
a disregard of developmental trajectories of this variable. 
Previous studies showed that coherence is elevated with age 
in the high-frequency bands. Children with ASD undergo a 
slower maturation process and they show generally greater 
long-range coherence than typical developing children. As 
coherence increases with age, the values become comparable 
in adulthood between ASD and non-ASD subjects (75). Thus, 
age and developmental trajectories must be included in any 
studies that examine differences between children with ASD 
and typically developing children.

Spectral Analysis—Utility, Research Gaps, 
and Future Directions
Spectral analysis was the most common method of EEG signal 
interpretation for the detection of ASD identified in this review. 
The most consistent finding was an increase in absolute gamma 
power in ASD compared to non-ASD controls. However, 
inconsistencies between the studies appear due to differences 
in experimental designs. These may be related to differences in 
the age of the population studied and failure to fully account for 
developmental changes.

A major feature of spectral analysis that reinforces its utility 
for ASD detection is the fact that it does not require elaborate 
electrode montages, as the analysis can be performed on signals 
extracted from one single electrode. It is also simple to compute 
and interpret. However, it is highly reliant on the study condition 
given that, in essence, it gives a description of the signal in terms 
of its frequencies, which are dependent on the task performed. 
For example, greater alpha amplitudes may reflect inhibition 
of unnecessary activity and better performance on the task, 
in accordance with the neural efficiency hypothesis (76, 77). 
Therefore, generalization can only be drawn from studies testing 
their participants in very similar experimental conditions. Future 
studies might consider examination of lower frequency bands, 
such as every 2 or 5 Hz.

Spectral analysis measurements are also dependant on brain 
maturation and developmental trajectories. For instance, in 
typically developing children, power distribution tends to shift to 
higher frequencies with age, with lower frequencies decreasing in 
relative power (78). Therefore, the age is critical in the interpreta-
tion of the results and has to be taken into consideration when 
comparisons are drawn.

Another important aspect that requires consideration 
in future studies is whether patients are taking medication. 
Different types of medicine could influence the EEG signal. For 
example, many ASD patients receive antiepileptic medication, 
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which shows abnormal brain topography particularly in the 
gamma band (74).

information Dynamics—Utility, Research 
Gaps, and Future Directions
Information dynamics was used in a limited number of studies 
in this review. This is due in part to the fact that these methods 
have been more recently developed in the mathematical com-
munity, and are less well known in general as signal analysis 
tools. Information dynamics computations are also more dif-
ficult to perform and fewer ready-to-use software packages are 
available. The preliminary results, thus, far indicate potential for 
accurately classifying ASD and non-ASD subjects. However, the 
limited number of studies must be replicated more widely and 
with much larger sample sizes before their clinical usefulness can 
be determined. Conclusions and generalizations on the utility of 
information dynamics methods cannot yet be drawn as a number 
of technical difficulties, such as appropriate sample sizes, have to 
be overcome. A much higher number of studies are required in 
order to assess and compare these methods with more common 
spectral power methods used in the field. Further research using 
measurements such as entropy is encouraged as they interpret the 
EEG recording as a non-linear signal and bring new perspectives 
to the field.

eeG—General Utility
Besides the direct relation between EEG and the neurophysi-
ological features described above, EEG provides a much lower 
cost, ease of use, as it is portable and can be applied by someone 
with minimal training, compared to neuroimaging methods. 
Moreover, EEG data have excellent temporal resolution and 
measures brain activity directly. This facilitates research as it 
allows for numerous analyses revolving around direct responses 
to stimuli, inter-regional connectivity, or topography of brain 
oscillations. The low cost and ease of use also means that 
EEG findings have potential clinical application in primary 
care settings. Therefore, an understanding of qEEG methods 
and an evaluation of their utility is very important for future 
research and for the prospective use of EEG in a clinical con-
text. Furthermore, as discussed, developmental trajectories 
may be more important than single measurements in time for 
determining functional brain development patterns. The low 
cost and ease of use of EEG devices is a prerequisite for a brain-
based measurement that can be used routinely to monitor brain 
development.

Delineation of Subtypes
The second goal of this review was to identify the utility of EEG 
in the delineation of ASD subtypes. Out of 40 papers, only seven 
stated the subtype of the ASD group tested. However, testing 
was not done in comparison between subtypes, which would 
help delineate them according to one or more characteristics. 
In addition, none of the studies explores the genetic aspect of 
neurophysiological subtypes in ASD. Subtypes may be associated 
with a candidate gene, or complex gene profiles, and, therefore, 
future studies should consider association between genetic 

underpinnings and abnormal neurophysiological activity. ASD 
subtypes also have differences both in their neurological and 
behavioral manifestations. Moreover, different subtypes may have 
different developmental trajectories (62). Together, these become 
sources of heterogeneity in the results. This lack of evidence to 
help a distinction between different subtypes on the spectrum, 
represents nothing but strong motivation for further research, 
with experimental designs that would differentiate, classify, and 
compare their populations.

Lastly, it is notable that the brain’s electrical activity and 
indeed overall function necessarily exhibits individual char-
acteristics that vary from subject to subject. Taking this into 
consideration has a substantial impact on establishing a baseline 
before any analysis is performed. Even within the broad autism 
phenotype, there is wide variation in intelligence, social skills, 
language ability, and other specialized abilities in music, visual 
arts, and motor development. Deciphering the characteristics 
that are essential to the autism phenotype within the background 
of widely varying cofounding functional brain characteristics is 
a major challenge.

Conclusion and Recommendations
Overall current EEG signal analysis is not able to identify 
children with ASD with sufficient sensitivity or specificity 
to be clinically useful at this time. However, these methods 
of analysis and their results to date suggest high utility in 
characterizing the disorder and may be a vital complement to 
other existing technologies. The use of EEG as a brain develop-
ment measure may eventually become useful as an indicator 
that a child requires further evaluation. The current literature 
supports further research, suggesting different electrophysi-
ological features of high importance and major gaps that can 
be filled. Bearing in mind that ASD is a neurodevelopmental 
disorder, diagnosed in childhood, age should be considered 
when designing the experiment. Moreover, longitudinal stud-
ies could reinforce important findings and also delineate devel-
opmental stages of ASD. New, advanced methods of analysis 
should be considered and combined with already established 
ones in order to fulfill the final goal: early detection of emerg-
ing autism, which may open a window for early intervention 
and prevention.

AUTHOR CONTRibUTiONS

OG developed the protocol, she then followed to perform the 
literature search, followed by a three-step selection that led 
to the final pool of articles to review. She performed the data 
extraction and analysis and wrote the review accordingly. CN 
and WB supervised the entire process closely, playing a role in 
the selection of the final literature pool and in the editing of the 
paper.

FUNDiNG

This study was supported by the Wellcome Trust, through 
a senior research fellowship (083744) to Professor Charles 
Newton.

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive


13

Gurau et al. EEG in ASD

Frontiers in Psychiatry | www.frontiersin.org July 2017 | Volume 8 | Article 121

ReFeReNCeS

1. Baird G, Simonoff E, Pickles A, Chandler S, Loucas T, Meldrum D, et  al. 
Prevalence of disorders of the autism spectrum in a population cohort of 
children in South Thames: the special needs and autism project (SNAP). 
Lancet (2006) 368(9531):210–5. doi:10.1016/S0140-6736(06)69041-7 

2. Centers for Disease Control and Prevention. Prevalence of autism spectrum 
disorders autism and developmental disabilities monitoring network, 14 sites, 
United States, 2008. MMWR Surveill Summ (2012) 61(3):1–19. 

3. American Psychiatric Association. Autism Spectrum Disorder. Diagnostic and 
Statistical Manual of Mental Disorders. Washington, DC: American Psychiatric 
Association (1994).

4. American Psychiatric Association. Autism Spectrum Disorder. Diagnostic and 
Statistical Manual of Mental Disorders. Washington, DC: American Psychiatric 
Association (2013).

5. Kanner L. Autistic disturbances of affective contact. Acta Paedopsychiatrica 
(1968) 35(4):100–36. 

6. Wang J, Barstein J, Ethridge LE, Mosconi MW, Takarae Y, Sweeney JA. Resting 
state EEG abnormalities in autism spectrum disorders. J Neurodev Disord 
(2013) 5(1):1–14. doi:10.1186/1866-1955-5-24 

7. Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, 
Webb SJ. Autism and abnormal development of brain connectivity. J Neurosci 
(2004) 24(42):9228–31. doi:10.1523/JNEUROSCI.3340-04.2004 

8. Assaf M, Jagannathan K, Calhoun VD, Miller L, Stevens MC, Sahl R, et al. 
Abnormal functional connectivity of default mode sub-networks in autism 
spectrum disorder patients. Neuroimage (2010) 53(1):247–56. doi:10.1016/j.
neuroimage.2010.05.067 

9. Minshew NJ, Keller TA. The nature of brain dysfunction in autism: functional 
brain imaging studies. Curr Opin Neurol (2010) 23(2):124–30. doi:10.1097/
WCO.0b013e32833782d4 

10. Sato JR, Vidal M, de Siqueira Santos S, Massirer KB, Fujita A. Complex 
network measures in autism spectrum disorders. IEEE/ACM Trans Comput 
Biol Bioinform (2015). doi:10.1109/TCBB.2015.2476787 

11. Nelson  CA III. Introduction to special issue on the role of connectivity in 
developmental disorders: genetic and neural network approaches. Dev Sci 
(2016) 19(4):523. doi:10.1111/desc.12477 

12. Bosl WJ, Tierney A, Tager-Flusberg H, Nelson CA. EEG complexity as a 
biomarker for autism spectrum disorder. BMC Med (2011) 9(18). doi:10.1186/ 
1741-7015-9-18 

13. Catarino A, Churches O, Baron-Cohen S, Andrade A, Ring H. Atypical EEG 
complexity in autism spectrum conditions: a multiscale entropy analysis. 
Neurophysiol Clin (2011) 122(12):2375–83. doi:10.1016/j.clinph.2011.05.004 

14. Perez Velazquez JL, Galan RF. Information gain in the brain’s resting state: a 
new perspective on autism. Front Neuroinformatics (2013) 7:37. doi:10.3389/
fninf.2013.00037 

15. Megremi A. Autism spectrum disorders through the lens of complex-dynamic 
systems theory. Open Access Autism (2014) 22(2):1–10. 

16. Boutros NN, Lajiness-O’Neill R, Zillgitt A, Richard AE, Bowyer SM. 
EEG changes associated with autistic spectrum disorders. Neuropsychiatr 
Electrophysiol (2015) 1(1):1–20. doi:10.1186/s40810-014-0001-5 

17. Motter A, Albert R. Networks in motion. Phys Today (2012) 65(4):43–8. 
doi:10.1063/PT.3.1518 

18. Janjarasjitt S, Scher MS, Loparo KA. Nonlinear dynamical analysis of the 
neonatal EEG time series: the relationship between neurodevelopment 
and complexity. Neurophysiol Clin (2008) 119(4):822–36. doi:10.1016/j.
clinph.2008.03.024 

19. Lippe S, Kovacevic N, McIntosh AR. Differential maturation of brain signal 
complexity in the human auditory and visual system. Front Hum Neurosci 
(2009) 3:48. doi:10.3389/neuro.09.048.2009 

20. Takahashi T, Cho RY, Mizuno T, Kikuchi M, Murata T, Takahashi K, et al. Anti-
psychotics reverse abnormal EEG complexity in drug-naive schizophrenia: a 
multiscale entropy analysis. Neuroimage (2010) 51(1):173–82. doi:10.1016/j.
neuroimage.2010.02.009 

21. Takahashi T. Complexity of spontaneous brain activity in mental disorders. 
Prog Neuropsychopharmacol Biol Psychiatry (2013) 45:258–66. doi:10.1016/j.
pnpbp.2012.05.001 

22. Tuchman R, Rapin I. Epilepsy in autism. Lancet Neurol (2002) 1(6):352–8. 
doi:10.1016/S1474-4422(02)00160-6 

23. Coben R, Myers TE. Connectivity theory of autism: use of connectivity 
measures in assessing and treating autistic disorders. J Neurotherapy (2008) 
12(2–3):161–79. doi:10.1080/10874200802398824 

24. Okazaki R, Takahashi T, Ueno K, Takahashi K, Ishitobi M, Kikuchi M, et al. 
Changes in EEG complexity with electroconvulsive therapy in a patient 
with autism spectrum disorders: a multiscale entropy approach. Front Hum 
Neurosci (2015) 9:106. doi:10.3389/fnhum.2015.00106 

25. Billeci L, Sicca F, Maharatna K, Apicella F, Narzisi A, Campatelli G, et al. On 
the application of quantitative EEG for characterizing autistic brain: a system-
atic review. Front Hum Neurosci (2013) 7:442. doi:10.3389/fnhum.2013.00442 

26. Pikovsky A, Rosenblum M, Kurths J. Synchronization: A Universal Concept in 
Nonlinear Sciences. Cambridge: Cambridge University Press (2001).

27. Wen D, Zhou Y, Li X. A critical review: coupling and synchronization analysis 
methods of EEG signal with mild cognitive impairment. Front Aging Neurosci 
(2015) 7:54. doi:10.3389/fnagi.2015.00054 

28. Rapp PE, Keyser DO, Albano A, Hernandez R, Gibson DB, Zambon RA, et al. 
Traumatic brain injury detection using electrophysiological methods. Front 
Hum Neurosci (2015) 9:11. doi:10.3389/fnhum.2015.00011 

29. Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of biological 
signals. Phys Rev E Stat Nonlin Soft Matter Phys (2005) 71(2 Pt 1):021906. 
doi:10.1103/PhysRevE.71.021906 

30. Bosl WJ, Tager-Flusberg H, Nelson CA. EEG complexity for early detection of 
autism spectrum disorder and the broader autism phenotype. (in preparation).

31. Al-Fahoum AS, Al-Fraihat AA. Methods of EEG signal features extraction 
using linear analysis in frequency and time-frequency domains. ISRN Neurosci 
(2014) 2014:730218. doi:10.1155/2014/730218 

32. Orekhova EV, Stroganova TA, Nygren G, Tsetlin MM, Posikera IN, Gillberg C,  
et  al. Excess of high frequency electroencephalogram oscillations in boys 
with autism. Biol Psychiatry (2007) 62(9):1022–9. doi:10.1016/j.biopsych. 
2006.12.029 

33. Orekhova EV, Elsabbagh M, Jones EJH, Dawson G, Charman T, Johnson MH,  
et  al. EEG hyper-connectivity in high-risk infants is associated with later 
autism. J Neurodev Disord (2014) 6(1):1–11. doi:10.1186/1866-1955-6-40 

34. Righi G, Tierney AL, Tager-Flusberg H, Nelson CA. Functional connectivity 
in the first year of life in infants at risk for autism spectrum disorder: an EEG 
study. PLoS One (2014) 9(8):e105176. doi:10.1371/journal.pone.0105176 

35. Barttfeld P, Amoruso L, Ais J, Cukier S, Bavassi L, Tomio A, et  al. 
Organization of brain networks governed by long-range connections index 
autistic traits in the general population. J Neurodev Disord (2013) 5(1):1–9. 
doi:10.1186/1866-1955-5-16 

36. Murias M, Webb SJ, Greenson J, Dawson G. Resting state cortical connectivity 
reflected in EEG coherence in individuals with autism. Biol Psychiatry (2007) 
62(3):270–3. doi:10.1016/j.biopsych.2006.11.012 

37. Leveille C, Barbeau EB, Bolduc C, Limoges E, Berthiaume C, Chevrier E, et al. 
Enhanced connectivity between visual cortex and other regions of the brain 
in autism: a REM sleep EEG coherence study. Autism Res (2010) 3(5):280–5. 
doi:10.1002/aur.155 

38. Boersma M, Kemner C, De Reus MA, Collin G, Snijders TM, Hofman D, 
et al. Disrupted functional brain networks in autistic toddlers. Brain Connect 
(2013) 3(1):41–9. doi:10.1089/brain.2012.0127 

39. Catarino A, Andrade A, Churches O, Wagner AP, Baron-Cohen S, Ring H. 
Task-related functional connectivity in autism spectrum conditions: an 
EEG study using wavelet transform coherence. Mol Autism (2013) 4(1):1. 
doi:10.1186/2040-2392-4-1 

40. Carson AM, Salowitz NM, Scheidt RA, Dolan BK, Van Hecke AV. Electro-
encephalogram coherence in children with and without autism spectrum 
disorders: decreased interhemispheric connectivity in autism. Autism Res 
(2014) 7(3):334–43. doi:10.1002/aur.1367 

41. Cantor DS, Thatcher RW, Hrybyk M, Kaye H. Computerized EEG analyses 
of autistic children. J Autism Dev Disord (1986) 16(2):169–87. doi:10.1007/
BF01531728 

42. Chan AS, Sze SL, Cheung MC. Quantitative electroencephalographic pro-
files for children with autistic spectrum disorder. Neuropsychology (2007) 
21(1):74–81. doi:10.1037/0894-4105.21.1.74 

43. Chan AS, Han YM, Sze SL, Cheung M-C, Leung WW-M, Chan RC, et  al. 
Disordered connectivity associated with memory deficits in children with 
autism spectrum disorders. Res Autism Spectr Disord (2011) 5(1):237–45. 
doi:10.1016/j.rasd.2010.04.005 

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive
https://doi.org/10.1016/S0140-6736(06)69041-7
https://doi.org/10.1186/1866-1955-5-24
https://doi.org/10.1523/JNEUROSCI.3340-04.2004
https://doi.org/10.1016/j.neuroimage.2010.05.067
https://doi.org/10.1016/j.neuroimage.2010.05.067
https://doi.org/10.1097/WCO.0b013e32833782d4
https://doi.org/10.1097/WCO.0b013e32833782d4
https://doi.org/10.1109/TCBB.2015.2476787
https://doi.org/10.1111/desc.12477
https://doi.org/10.1186/1741-7015-9-18
https://doi.org/10.1186/1741-7015-9-18
https://doi.org/10.1016/j.clinph.2011.05.004
https://doi.org/10.3389/fninf.2013.00037
https://doi.org/10.3389/fninf.2013.00037
https://doi.org/10.1186/s40810-014-0001-5
https://doi.org/10.1063/PT.3.1518
https://doi.org/10.1016/j.clinph.2008.03.024
https://doi.org/10.1016/j.clinph.2008.03.024
https://doi.org/10.3389/neuro.09.048.2009
https://doi.org/10.1016/j.neuroimage.2010.02.009
https://doi.org/10.1016/j.neuroimage.2010.02.009
https://doi.org/10.1016/j.pnpbp.2012.05.001
https://doi.org/10.1016/j.pnpbp.2012.05.001
https://doi.org/10.1016/S1474-4422(02)00160-6
https://doi.org/10.1080/10874200802398824
https://doi.org/10.3389/fnhum.2015.00106
https://doi.org/10.3389/fnhum.2013.00442
https://doi.org/10.3389/fnagi.2015.00054
https://doi.org/10.3389/fnhum.2015.00011
https://doi.org/10.1103/PhysRevE.71.021906
https://doi.org/10.1155/2014/730218
https://doi.org/10.1016/j.biopsych.2006.12.029
https://doi.org/10.1016/j.biopsych.2006.12.029
https://doi.org/10.1186/1866-1955-6-40
https://doi.org/10.1371/journal.pone.0105176
https://doi.org/10.1186/1866-1955-5-16
https://doi.org/10.1016/j.biopsych.2006.11.012
https://doi.org/10.1002/aur.155
https://doi.org/10.1089/brain.2012.0127
https://doi.org/10.1186/2040-2392-4-1
https://doi.org/10.1002/aur.1367
https://doi.org/10.1007/BF01531728
https://doi.org/10.1007/BF01531728
https://doi.org/10.1037/0894-4105.21.1.74
https://doi.org/10.1016/j.rasd.2010.04.005


14

Gurau et al. EEG in ASD

Frontiers in Psychiatry | www.frontiersin.org July 2017 | Volume 8 | Article 121

44. Coben R, Clarke AR, Hudspeth W, Barry RJ. EEG power and coherence in autis-
tic spectrum disorder. Neurophysiol Clin (2008) 119(5):1002–9. doi:10.1016/ 
j.clinph.2008.01.013 

45. Buckley AW, Scott R, Tyler A, Mahoney JM, Thurm A, Farmer C, et al. State-
dependent differences in functional connectivity in young children with 
autism spectrum disorder. EBioMedicine (2015) 2(12):1905–15. doi:10.1016/ 
j.ebiom.2015.11.004 

46. Lazarev VV, Pontes A, Mitrofanov AA, deAzevedo LC. Reduced interhemi-
spheric connectivity in childhood autism detected by electroencephalo-
graphic photic driving coherence. J Autism Dev Disord (2015) 45(2):537–47. 
doi:10.1007/s10803-013-1959-8 

47. Just MA, Keller TA, Malave VL, Kana RK, Varma S. Autism as a neural systems 
disorder: a theory of frontal-posterior underconnectivity. Neurosci Biobehav 
Rev (2012) 36(4):1292–313. doi:10.1016/j.neubiorev.2012.02.007 

48. Herbert MR, Ziegler DA, Makris N, Filipek PA, Kemper TL, Normandin JJ,  
et al. Localization of white matter volume increase in autism and develop-
mental language disorder. Ann Neurol (2004) 55(4):530–40. doi:10.1002/
ana.20032 

49. Collura TF. Neocortical dynamics and human EEG rhythms. J Clin Neuro
physiol (1996) 13(2):177–8. doi:10.1097/00004691-199603000-00010 

50. Matlis S, Boric K, Chu CJ, Kramer MA. Robust disruptions in electroenceph-
alogram cortical oscillations and large-scale functional networks in autism. 
BMC Neurol (2015) 15:97. doi:10.1186/s12883-015-0391-4 

51. Sheikhani A, Behnam H, Noroozian M, Mohammadi MR, Mohammadi M.  
Abnormalities of quantitative electroencephalography in children with 
Asperger disorder in various conditions. Res Autism Spectr Disord (2009) 
3(2):538–46. doi:10.1016/j.rasd.2008.11.002 

52. Daoust A-M, Limoges E, Bolduc C, Mottron L, Godbout R. EEG spectral 
analysis of wakefulness and REM sleep in high functioning autistic spectrum 
disorders. Neurophysiol Clin (2004) 115(6):1368–73. doi:10.1016/j.clinph. 
2004.01.011 

53. van Diessen E, Senders J, Jansen FE, Boersma M, Bruining H. Increased power 
of resting-state gamma oscillations in autism spectrum disorder detected by 
routine electroencephalography. Eur Arch Psychiatry Clin Neurosci (2015) 
265(6):537–40. doi:10.1007/s00406-014-0527-3 

54. Mathewson KJ, Jetha MK, Drmic IE, Bryson SE, Goldberg JO, Schmidt LA. 
Regional EEG alpha power, coherence, and behavioral symptomatology 
in autism spectrum disorder. Clin Neurophysiol (2012) 123(9):1798–809. 
doi:10.1016/j.clinph.2012.02.061 

55. Dawson G, Klinger LG, Panagiotides H, Lewy A, Castelloe P. Subgroups 
of autistic children based on social behavior display distinct patterns of 
brain activity. J Abnorm Child Psychol (1995) 23(5):569–83. doi:10.1007/
BF01447662 

56. Machado C, Estevez M, Leisman G, Melillo R, Rodriguez R, DeFina P, 
et al. QEEG spectral and coherence assessment of autistic children in three 
different experimental conditions. J Autism Dev Disord (2015) 45(2):406–24. 
doi:10.1007/s10803-013-1909-5 

57. Maxwell CR, Villalobos ME, Schultz RT, Herpertz-Dahlmann B, Konrad 
K, Kohls G. Atypical laterality of resting gamma oscillations in autism 
spectrum disorders. J Autism Dev Disord (2015) 45(2):292–7. doi:10.1007/
s10803-013-1842-7 

58. Scope A, Pascalis O, Buckley D, Makeig S. Independent component analysis 
reveals atypical electroencephalographic activity during visual perception in 
individuals with autism. Biol Psychiatry (2009) 65(1):22–30. doi:10.1016/j.
biopsych.2008.07.017 

59. Stroganova TA, Nygren G, Tsetlin MM, Posikera IN, Gillberg C, Elam M, et al. 
Abnormal EEG lateralization in boys with autism. Neurophysiol Clin (2007) 
118(8):1842–54. doi:10.1016/j.clinph.2007.05.005 

60. Tani P, Lindberg N, Nieminen-von Wendt T, von Wendt L, Virkkala J,  
Appelberg B, et  al. Sleep in young adults with Asperger syndrome. 
Neuropsychobiology (2004) 50(2):147–52. doi:10.1159/000079106 

61. Yang HH, Savostyanov AN, Tsai AC, Liou M. Face recognition in Asperger 
syndrome: a study on EEG spectral power changes. Neurosci Lett (2011) 
492(2):84–8. doi:10.1016/j.neulet.2011.01.061 

62. Tierney AL, Gabard-Durnam L, Vogel-Farley V, Tager-Flusberg H, Nelson 
CA.Developmental trajectories of resting EEG power: an endophenotype of autism 
spectrum disorder. PLoS One (2012) 7(6):e39127. doi:10.1371/journal.pone.0039127 

63. Lushchekina E, Podreznaya E, Lushchekin V, Strelets V. A comparative EEG 
study in normal and autistic children. Neurosci Behav Physiol (2012) 42(3): 
236–43. doi:10.1007/s11055-012-9558-2 

64. Lushchekina E, Podreznaya E, Lushchekin V, Novototskii-Vlasov V, Strelets V.  
Comparative studies of EEG theta and gamma rhythms in normal children 
and children with early childhood autism. Neurosci Behav Physiol (2014) 
44(8):902–8. doi:10.1007/s11055-014-9999-x 

65. Elhabashy H, Raafat O, Afifi L, Raafat H, Abdullah K. Quantitative EEG 
in autistic children. Egypt J Neurol Psychiatry Neurosurg (2015) 52(3):176. 
doi:10.4103/1110-1083.162031 

66. Eldridge J, Lane AE, Belkin M, Dennis S. Robust features for the automatic 
identification of autism spectrum disorder in children. J Neurodev Disord 
(2014) 6(1):12. doi:10.1186/1866-1955-6-12 

67. Gregory MD, Mandelbaum DE. Evidence of a faster posterior dominant 
EEG rhythm in children with autism. Res Autism Spectr Disord (2012) 
6(3):1000–3. doi:10.1016/j.rasd.2012.01.001 

68. Ahmadlou M, Adeli H, Adeli A. Fractality and a wavelet-chaos-neural network 
methodology for EEG-based diagnosis of autistic spectrum disorder. J Clin 
Neurophysiol (2010) 27(5):328–33. doi:10.1097/WNP.0b013e3181f40dc8 

69. Ahmadlou M, Adeli H, Adeli A. Fuzzy synchronization likelihood-wavelet 
methodology for diagnosis of autism spectrum disorder. J Neurosci Methods 
(2012) 211(2):203–9. doi:10.1016/j.jneumeth.2012.08.020 

70. Chan AS, Leung WW. Differentiating autistic children with quantitative 
encephalography: a 3-month longitudinal study. J Child Neurol (2006) 
21(5):391–9. doi:10.1177/08830738060210050501

71. Marwan N, Romano MC, Thiel M, Kurths J. Recurrence plots for the 
analysis of complex systems. Phys Rep (2007) 438:237–329. doi:10.1016/j.
physrep.2006.11.001 

72. Webber CL, Marwan N, editors. Recurrence Quantification Analysis. Under
standing Complex Systems. New York: Springer (2015).

73. Sakkalis V, Doru Giurc Neanu C, Xanthopoulos P, Zervakis ME, Tsiaras V, 
Yang Y, et al. Assessment of linear and nonlinear synchronization measures for 
analyzing EEG in a mild epileptic paradigm. IEEE Trans Inf Technol Biomed 
(2009) 13(4):433–41. doi:10.1109/TITB.2008.923141 

74. Arzy S, Allali G, Brunet D, Michel CM, Kaplan PW, Seeck M. Antiepileptic 
drugs modify power of high EEG frequencies and their neural generators. 
Eur J Neurol (2010) 17(10):1308–12. doi:10.1111/j.1468-1331.2010.03018.x 

75. Marosi E, Harmony T, Sánchez L, Becker J, Bernal J, Reyes A, et  al. 
Maturation of the coherence of EEG activity in normal and learning- 
disabled children. Electroencephalogr Clin Neurophysiol (1992) 83(6):350–7. 
doi:10.1016/0013-4694(92)90070-X 

76. Doppelmayr MM, Klimesch W, Pachinger T, Ripper B. The functional signifi-
cance of absolute power with respect to event-related desynchronization. Brain 
Topogr (1998) 11(2):133–40. doi:10.1023/A:1022206622348 

77. Klimesch W, Doppelmayr M, Russegger H, Pachinger T, Schwaiger J. Induced 
alpha band power changes in the human EEG and attention. Neurosci Lett 
(1998) 244(2):73–6. doi:10.1016/S0304-3940(98)00122-0 

78. Gasser T, Verleger R, Bächer P, Sroka L. Development of the EEG of school-
age children and adolescents. I. Analysis of band power. Electroencephalogr 
Clin Neurophysiol (1988) 69(2):91–9. doi:10.1016/0013-4694(88)90205-2 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2017 Gurau, Bosl and Newton. This is an openaccess article distributed 
under the terms of the Creative Commons Attribution License (CC BY). The use, 
distribution or reproduction in other forums is permitted, provided the original 
author(s) or licensor are credited and that the original publication in this journal 
is cited, in accordance with accepted academic practice. No use, distribution or 
reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive
https://doi.org/10.1016/j.clinph.2008.01.013
https://doi.org/10.1016/j.clinph.2008.01.013
https://doi.org/10.1016/j.ebiom.2015.11.004
https://doi.org/10.1016/j.ebiom.2015.11.004
https://doi.org/10.1007/s10803-013-1959-8
https://doi.org/10.1016/j.neubiorev.2012.02.007
https://doi.org/10.1002/ana.20032
https://doi.org/10.1002/ana.20032
https://doi.org/10.1097/00004691-199603000-00010
https://doi.org/10.1186/s12883-015-0391-4
https://doi.org/10.1016/j.rasd.2008.11.002
https://doi.org/10.1016/j.clinph.2004.01.011
https://doi.org/10.1016/j.clinph.2004.01.011
https://doi.org/10.1007/s00406-014-0527-3
https://doi.org/10.1016/j.clinph.2012.02.061
https://doi.org/10.1007/BF01447662
https://doi.org/10.1007/BF01447662
https://doi.org/10.1007/s10803-013-1909-5
https://doi.org/10.1007/s10803-013-1842-7
https://doi.org/10.1007/s10803-013-1842-7
https://doi.org/10.1016/j.biopsych.2008.07.017
https://doi.org/10.1016/j.biopsych.2008.07.017
https://doi.org/10.1016/j.clinph.2007.05.005
https://doi.org/10.1159/000079106
https://doi.org/10.1016/j.neulet.2011.01.061
https://doi.org/10.1371/journal.pone.0039127
https://doi.org/10.1007/s11055-012-9558-2
https://doi.org/10.1007/s11055-014-9999-x
https://doi.org/10.4103/1110-1083.162031
https://doi.org/10.1186/1866-1955-6-12
https://doi.org/10.1016/j.rasd.2012.01.001
https://doi.org/10.1097/WNP.0b013e3181f40dc8
https://doi.org/10.1016/j.jneumeth.2012.08.020
https://doi.org/10.1177/08830738060210050501
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1109/TITB.2008.923141
https://doi.org/10.1111/j.1468-1331.2010.03018.x
https://doi.org/10.1016/0013-4694(92)90070-X
https://doi.org/10.1023/A:1022206622348
https://doi.org/10.1016/S0304-3940(98)00122-0
https://doi.org/10.1016/0013-4694(88)90205-2
http://creativecommons.org/licenses/by/4.0/

	How Useful Is Electroencephalography in the Diagnosis of Autism Spectrum Disorders and the Delineation of Subtypes: A Systematic Review
	Introduction
	History and Definition of Autism Spectrum Disorders (ASD) and Its Subtypes
	Electroencephalography (EEG) and Quantitative EEG (qEEG)

	Methods
	Search and Selection Strategy
	The Methods Categories

	Results
	Functional Connectivity
	Spectral Analysis
	Information Dynamics

	Discussion
	Functional Connectivity—Utility, Research Gaps, and Future Directions
	Spectral Analysis—Utility, Research Gaps, and Future Directions
	Information Dynamics—Utility, Research Gaps, and Future Directions
	EEG—General Utility
	Delineation of Subtypes
	Conclusion and Recommendations

	Author Contributions
	Funding
	References


