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As an emerging brain imaging technique, functional near infrared spectroscopy (fNIRS)

has attracted widespread attention for advancing resting-state functional connectivity

(FC) and graph theoretical analyses of brain networks. However, it remains largely

unknown how the duration of the fNIRS signal scanning is related to stable and

reproducible functional brain network features. To answer this question, we collected

resting-state fNIRS signals (10-min duration, two runs) from 18 participants and then

truncated the hemodynamic time series into 30-s time bins that ranged from 1 to 10

min. Measures of nodal efficiency, nodal betweenness, network local efficiency, global

efficiency, and clustering coefficient were computed for each subject at each fNIRS

signal acquisition duration. Analyses of the stability and between-run reproducibility were

performed to identify optimal time length for each measure. We found that the FC, nodal

efficiency and nodal betweenness stabilized and were reproducible after 1 min of fNIRS

signal acquisition, whereas network clustering coefficient, local and global efficiencies

stabilized after 1 min and were reproducible after 5 min of fNIRS signal acquisition for only

local and global efficiencies. These quantitative results provide direct evidence regarding

the choice of the resting-state fNIRS scanning duration for functional brain connectivity

and topological metric stability of brain network connectivity.

Keywords: resting state, connectome, functional connectivity, graph, scanning duration, fNIRS

INTRODUCTION

As an emerging brain imaging technique, functional near infrared spectroscopy (fNIRS) is
attracting increasing interests for studying human brain functional organization. The fNIRS
technique possesses several unique advantages compared to functionalmagnetic resonance imaging
(fMRI), such as simultaneous recording of signal changes in both oxygenated and deoxygenated
hemoglobin concentration, higher temporal resolution, and better portability for use (Niu and He,
2013).

Recent advances allow fNIRS to acquire whole-brain resting-state signals and to construct entire
cortical functional brain networks. Using modern graph theoretical approaches, fNIRS-derived
brain networks can be further quantified to obtain topological characteristics representing network
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organization configurations within the brain. Based on healthy
adult data, our previous study revealed several important
topological organizational principles from fNIRS brain networks,
such as small-world property, modular structure, and highly
connected hubs (Niu et al., 2012). The reproducibility and
reliability of these network measures were also further validated
based on our two-scanning-run resting-state data (Niu et al.,
2013). In addition, in Fekete et al.’s study, the authors
have also noted that the small-world properties of the
prefrontal network derived from fNIRS-based data are associated
with variability in young children’s risk of developmental
psychopathology (Fekete et al., 2014). To extend these studies
to much wider applications, such as brain development and
disease-associated studies, it is important for fNIRS data to
be able to identify development/disease-associated changes
in brain connectivity and topological metrics. Such changes
may reflect functional markers of development/disease that
could advance our understanding into brain nervous system
function/dysfunction in the future.

It is generally necessary to perform several preprocessing
procedures before constructing functional brain networks and
computing graph theory metrics. These include collecting
resting-state fNIRS time course data, preprocessing, estimating
the correlation coefficient matrix, and analyzing the functional
network using the graph theoretical method. Resting-state fNIRS
data are typically collected for ∼7–10 min (Niu and He, 2013).
However, the scanning length required to collect fNIRS data
would be challenging for brain development studies associated
with infants and young children. Certainly, such long scanning
duration could also be problematic for constrained clinical
patients, particularly for clinical imaging protocols that include
additional task-related experimental designs. Previous fMRI–
derived brain imaging studies have suggested that 5∼7 min
(Van Dijk et al., 2010; Tomasi et al., 2016), or ≥9 min (Birn
et al., 2013; Dawson et al., 2013; Laumann et al., 2015) BOLD
data can yield stable correlation strengths and ∼2 min BOLD
data can yield stable graph theoretical metrics (Whitlow et al.,
2011). However, the length of time in which the resting-
state fNIRS imaging data duration can generate stable, test-
retest reproducible functional connection, and graph theory
metrics of brain network connectivity remains unknown. Such
conclusions would provide important information for human
brain development and for the clinical implementation of fNIRS-
based techniques.

In the present study, functional brain network connectivity
and graph theoretical analyses were applied to a series of
incrementally longer temporal epochs of resting-state fNIRS
imaging data.We hypothesized that functional brain connectivity
and the corresponding graph theory metrics would stabilize
after a certain amount of time, requiring different durations
of resting-state fNIRS imaging signal acquisition for optimal
characterization. In this study, fNIRS data were collected from
18 healthy young subjects who underwent two resting-state
scanning runs. For each participant, the hemoglobin signal was
preprocessed using independent component analysis (ICA) to
reduce physiological noise and other artifacts (e.g., instrumental
noise, motion-induced artifacts, and physiological noises) from

fNIRSmeasurement. Finally, we evaluated the influence of fNIRS
signal scanning time on the stability and reproducibility of graph
theory metrics of brain networks.

MATERIALS AND METHODS

Participants and Protocol
Twenty-one healthy right-handed subjects (mean age 24.5 years,
17 males and 4 females) participated in this study. Written
informed consent was obtained from each subject prior to
the experiment. Data collection was carried out according to
the protocols approved by the Review Board at the State Key
Laboratory of Cognitive Neuroscience and Learning, Beijing
Normal University. Resting-state fNIRS data of ∼11 min in
length from each of two scanning runs (20-min intervals between
them) were obtained from each subject. During the scanning, the
subjects were asked to relax and remained still with their eyes
closed but not to fall asleep. During the interval, the subjects
were allowed to open their eyes and move their bodies and heads
slightly. The data used in this study was same as in our previous
studies that examined graph metrics reliability (Niu et al., 2013)
and evaluated brain functional connectivity dynamics (Li et al.,
2015).

Data Acquisition
A continuous wave near-infrared optical imaging system
(CW6, TechEn Inc., MA, USA) was used to measure time
courses of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR)
concentrations at a rate of 25 Hz. The system included 12
laser sources and 24 detectors, with each source including two
wavelengths (690 and 830 nm) of near infrared light. The sources
and detectors were systematically positioned on the participant’s
whole head, and the spatial separation between adjacent sources
and detectors was set to be 3.2 cm. The configuration resulted
in 46 measurement channels that covered the frontal, temporal,
parietal, and occipital lobes (Figure 1) of the cerebral cortex. The
positions of the probes were consistent with the international
10–20 system of electrode layout.

Data Preprocessing
We used the modified Beer-Lambert law (MBLL) (Cope and
Deply, 1988) to compute concentration changes in hemoglobin
signals from the attenuation of light through the head at two
wavelengths. The time course of hemoglobin concentration was
subsequently subjected to a temporal ICA analysis to remove
motion-induced artifacts and systematic noise. The resulting
data was then band-pass filtered (0.01∼0.1Hz) to obtain low
frequency hemodynamic fluctuations (Biswal et al., 1995; White
et al., 2009; Sasai et al., 2012). Specifically, the ICA analysis
was conducted with the following procedures: extracting steady
hemoglobin concentration signals for all participants (e.g., 10
min scanning length in our study), reducing the dimensionality
of the hemoglobin data using principal component analysis
(PCA) for each participant, conducting ICA analysis on the
reduced dimensional data, identifying typical noise components,
removing the identified noise from the measured data, and
computing “real” neural activity signals. The components related
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FIGURE 1 | Whole-head fNIRS measurement. (A) Photograph of whole-head fNIRS measurement on participant. (B) The schematic of whole-head imaging pad (12

sources, red, 24 detectors, blue). The sources and detectors were symmetrically placed on the left and right hemispheres and constituted 46 measurement channels,

which allowed for the whole brain (i.e., frontal, temporal, parietal, and occipital lobes) to be measured. (C) Anatomical position of each measurement channel.

to noise and artifacts were identified from each individual
subject based on the following three investigations: temporal
profiles, spatial maps, and power spectra. A component would be
considered noise if it met one of the following conditions (Zhang
et al., 2010): (i) the temporal profile of the component included
sudden jumps, slowly varied U or inverted U-shaped spike,
or numerous inter-current quick spikes; (ii) the corresponding
dominant frequency of the power spectra was outside the range
of 0.01∼0.1Hz; (iii) the spatial map of the component showed
a global and spatially dispersive pattern. It has been pointed
out that the spatial map with global and spatially dispersive
pattern could represent systemic interference of superficial layer
in the head (Kohon et al., 2007). After identifying these different
kinds of noise components, the hemoglobin concentration
signal that reflected “real” brain activity was reconstructed
by eliminating the components identified as noise from the
original hemoglobin time course, by assigning zero in the
corresponding column of mixing matrix (Kohon et al., 2007).
Finally, we truncated the ICA-based denoising data into 30-s
time bins that ranged from 1 to 10 min in order to examine
the effect of scanning duration on functional brain connectivity
and network metrics. Of note, the procedures of ICA analysis
used in here was consistent with our previous studies (Niu
et al., 2013; Li et al., 2015) and Zhang et al.’s studies (Zhang
et al., 2010, 2011), and it was conducted by using a publicly
available software, FastICA v2.5 (http://www.cis.hut.fi/projects/
ica/fastica/).

Functional Network Connectivity and
Graph Theoretical Analysis
Functional Connectivity (FC) Definition
Pearson correlation and cross-correlation are the two most
commonly used approaches for measuring inter-regional
interactions or functional connectivity (FC) in the fNIRS

community. In this study, we simultaneously evaluated the
effect of different network construction approaches on the FC
and graph metrics stability associated with different fNIRS
acquisition durations (i.e., 1∼10 min in bins incrementally larger
by 30 s). For given time series between any two nodal regions,
the Pearson correlation or the cross-correlation was separately
calculated to generate a 46 × 46 correlation matrix for each time
series and subject. Considering the mean time course for one
subject as X = (xi(t)t= 1,2,...N), where xi(t)t= 1,2,...N is the mean
time series of the ith region, we calculated these two connectivity
metrics as follows:

Pearson’s correlation:

r
(

xi, xj
)

=
∑N

t=1 [xi (t) − xi]
[

xj (t) − xj
]

√∑N
t=1 [xi (t) − xi]

2√∑N
t=1

[

xj (t) − xj
]2

(1)

where xi denotes the average of xi.
Cross correlation:

rij(dij) =
∑N

t=1 [xi (t) − xi]
[

xj
(

t− dij
)

− xj
]

√∑N
t=1 [xi (t) − xi]

2 √∑N
t=1

[

xj
(

t− dij
)

− xj
]2

(2)

where dij denotes time delays between the mean time series
of the ith and jth regions, and it ranges from 0 to N-1. The
maximum rij(dij) in the series of calculation was considered
as the functional connectivity strength of these two brain
regions.

Network Thresholding
Because there is limited knowledge regarding selection of the
network threshold in fNIRS imaging data, we adopted a widely
used sparsity threshold, which is also similar to our previous

Frontiers in Neuroscience | www.frontiersin.org 3 July 2017 | Volume 11 | Article 392

http://www.cis.hut.fi/projects/ica/fastica/
http://www.cis.hut.fi/projects/ica/fastica/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Geng et al. Scanning Length for Network Study

studies (Niu et al., 2012, 2013). Sparsity is defined as the number
of existing edges divided by the maximum possible number of
edges within a network. The range of the sparsity threshold
was chosen from 0.17 to 0.5 (interval = 0.01) considering the
small-worldness of human brain networks (Watts and Strogatz,
1998). Thus, for each subject at each time scanning duration,
binarized adjacency networks were generated by using these
chosen thresholds.

Network Measures
In graph theory, the metrics of network efficiency has been
frequently proposed to characterize the capacity of information
communication within a network (Latora and Marchiori, 2001,
2003). These related measures have been used to study normal
development (Kaustubh et al., 2009; Wu et al., 2013; Cao et al.,
2014) and a variety of clinically related brain diseases (Wang
et al., 2009; Lynall et al., 2010; Rudie et al., 2012; Yu et al.,
2016) because of their conceptual and technical advantages
(Achard and Bullmore, 2007; Rubinov and Sporns, 2010). Here,
we adopted three typical network efficiency metrics, i.e., nodal
efficiency, network local efficiency, and global efficiency, to
characterize the ability of information communication in fNIRS
brain networks. Specifically, for each subject at each fNIRS
signal acquisition duration, the nodal efficiency, network local
efficiency, and global efficiency were separately computed by
using an in-house FC-NIRS package (Xu et al., 2015) at each
sparsity threshold. Furthermore, we also conducted similar
calculation on the metrics of network clustering coefficient
and nodal betweenness centrality in order to comprehensively
examine the effect of fNIRS scanning duration on networkmetric
stability. To exclude the impact of thresholds and to obtain a
threshold-independent network evaluation, we further calculated
the integral under the curve (AUC) of sparsity threshold values
for each network metric (Wang et al., 2011; Niu et al., 2012, 2013)
at each time epoch and subject. Specifically, the definitions of
these network metrics are summerized as follows:

Nodal Efficiency
Nodal efficiency (Enodal) is a measure that represents the capacity
of a node to communicate with the other nodes of the network G
and is generally defined as follows:

Enodal (i) =
1

N− 1

∑

i 6= j
∈ G

1

dij
(3)

where dij is the shortest path length between node i and node j,
and N is the number of nodes in the network.

Nodal Betweenness
Nodal betweenness is a measure that characterizes the global role
of a node in the brain functional network and is generally defined
as follows:

bi =
1

(n− 1) (n− 2)

∑

h, j ∈ N
h 6= j; h 6= i, j 6= i

ρhj (i)

ρhj
(4)

where ρhj is the number of shortest paths between h and j, and
ρhj (i)is the number of shortest paths between h and j that pass
through i.

Network Clustering Coefficient
Network clustering coefficient is a global measure that
characterizes the extent of local interconnectivity and
cliquishness of a network and is generally defined as follows:

C =
1

n

∑

i∈N
Ci =

1

n

∑

i∈N

2ti

ki
(

ki − 1
) (5)

where Ci is the clustering coefficient of node i, ti is the actual
number of edges between neighbors of node i, and ki is the
number of neighbors of node i.

Network Global Efficiency
Global efficiency is a global measure that characterizes
information transferring ability in the entire brain network,
and it is computed as the mean of nodal efficiency across all
nodes of the network (Latora and Marchiori, 2001):

Eglob (G) =
1

N (N− 1)

∑

j 6= i∈G

1

dij
(6)

where dij is the shortest path length between node i and node j,
and N is the number of nodes in the network.

Network Local Efficiency
Network local efficiency represents the efficiency of information
flow within the local environment, and it reflects the capability
of a network to tolerate faults (Latora and Marchiori, 2001). The
local efficiency of network G is computed as follows:

Eloc (G) =
1

N

∑

i∈G
Eglob (Gi) (7)

where Eglob(Gi) the global efficiency of Gi, the subgraph of the
neighbors of node i. The neighbors of node i are defined as the
nodes those connect with node i directly.

Stability Evaluation
To evaluate the stability of FC and network efficiency metrics
associated with different fNIRS signal acquisition durations, a
series of fNIRS data collection durations for FC and graph
metric stabilization were contrasted with relatively longer 10-
min data. For instance, for FC or the nodal efficiency metric,
the linear correlation coefficient was calculated to demonstrate
the similarity strength between spatial maps from each short
duration data segment and that of the relatively longer 10-
min data segments. For local and global efficiency metrics, a
statistical analysis (paired t-test) was performed to determine
the difference between the efficiency values of each short
duration data segment and relatively longer 10-min data
segments.

Between-Run Reproducibility Evaluation
We recomputed the FC and network efficiency metrics with the
second scan data for all subjects. To assess the between-run
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reproducibility on the FC and network efficiency measures across
different fNIRS scanning durations, we conducted correlation
analysis on FC and network efficiency measures between these
two runs. Specifically, for the FC pattern, individual FC was
first calculated and then transferred into a column vector and
conducted correlation analysis for each subject between two
runs. The procedure was repeated at each fNIRS signal scanning
duration to obtain reproducibility assessment on FC. Similar
analysis was conducted in nodal efficiency measure. For network
global and local efficiency, the between-run reproducibility on
network local and global efficiency was directly measured by
calculating Pearson correlation coefficients across all subjects. In
addition, we also computed the intra-class correlation coefficient
(ICC ICC Kong et al., 2007; Niu et al., 2013) for the two-run
scanning data at each time duration to examine the effect of
different fNIRS scanning durations on the test-retest reliability of
FC and network efficiency metrics. The ICC is defined as follows:

ICC =
MSb −MSw

MSb +
(

k− 1
)

MSw
(8)

where k is the number of repeated observations per subject,MSb
is the between-subject variance and MSw is the within-subject
variance. Notably, a higher ICC value represented a more reliable
network measure under the fNIRS scanning duration, whereas
a lower ICC value represented a less reliable network measure
under the fNIRS scanning duration.

Validation Analysis
To validate the reproducibility of our results, we implemented
weighted network in addition to the binary network analysis.
The detailed description of the weighted network metrics can
be found in (Bullmore and Sporns, 2009).The weights of
connections in the weighted network in the study survived
after thresholding with sparsity from 0.17 to 0.5 with a step of
0.01(similar to binary network analysis) were applied for each
time duration bin.

RESULTS

Effect of fNIRS Scanning Duration on FC
and Network Properties Stability
Whole-brain FC and network metrics, i.e., nodal efficiency,
nodal betweenness, network local efficiency, global efficiency,
and clustering coefficient were separately computed for every
subject at each fNIRS signal collection duration. Visually, with
increasing scanning durations, the FC maps did not exhibit
relatively large pattern variations across both Pearson-correlation
(Figure 2A) and cross-correlation (Figure 2B) networks. When
contrasted with the relatively longer 10-min data acquisition
duration, these results also revealed significant (p < 0.001) and
strong correlation across each fNIRS signal time bin (the mean
correlation coefficients r = 0.98 ± 0.03 for Pearson-correlation
and r = 0.97 ± 0.04 for cross-correlation) (Figures 2C,D). This
suggests that the short-time fNIRS signal acquisition duration,
e.g., 1 min, can also bring about highly similar FC maps as those
calculated from 10-min scanning durations. For nodal efficiency,

plots of these efficiency values showed approximately horizontal
lines, with small difference between the magnitudes of nodal
efficiency across the scanning duration (Figures 3A,B left). For
nodal betweenness, plots of these betweenness centrality values
showed relatively bigger changes, compared with nodal efficiency
plots, between the magnitudes of betweenness values across the
scanning duration (Figures 3A,B right). However, the map-map
correlation analysis (Figures 3C,D) revealed significant (p <

0.001) and strong correlations between short and long scanning
duration data for both nodal efficiency and nodal betweenness,
indicating almost immediate stability for nodal efficiency and
nodal betweenness. This result was consistently found for
both Pearson-correlation-derived and cross-correlation-derived
nodal efficiency and nodal betweenness. For local efficiency,
global efficiency, and clustering coefficient metrics, these
plots of the network values also showed similar magnitudes
with the increase in scanning duration for the both the
Pearson correlation-based network and the cross-correlation-
based network (Figures 4A,B). The statistical analysis using
paired t-tests further revealed no significant difference existed in
local or global efficiencymetrics between fNIRS signal acquisition
duration (p > 0.05). This result also demonstrated that the
network efficiency and clustering coefficient computed by using
the 1.0-min fNIRS signal acquisition duration were no different
compared to these measures calculated by using the 10-min
fNIRS scanning time.

Evaluation of Between-Run Reproducibility
and Reliability
We further evaluated the effect of resting-state fNIRS signal
acquisition duration on the reproducibility and reliability of FC
and these network metrics mentioned above. For the Pearson-
correlation network, the FC maps showed high similarity
between the two runs at each fNIRS signal time bin (mean
correlation coefficients r = 0.53± 0.067, p < 0.001) (Figure 5A),
and the ICC values of the FC also demonstrated approximately
or equally excellent reliability as the scanning duration ranging
from 1 to 10 min (Figure 5C). Similarly, the nodal efficiency and
nodal betweenness also showed good reproducibility between
two scanning runs (r = 0.31 ± 0.04 for nodal efficiency,
and r = 0.28 ± 0.04 for nodal betweenness, p < 0.001)
(Figure 6A) and high reliability (mainly for fair to excellent
levels) (Figure 6C) with the increase in the scanning duration.
This suggested that fNIRS data as short as a 1-min resting-
state fNIRS signal can yield reproducible and reliable FC
maps, nodal efficiencies and nodal betweenness. For global
network metrics, a high repeatability between runs was found
for global and local efficiency as scanning durations ≥ 5 min
(Figure 7A); correspondingly, the analysis of ICC values also
revealed better reliability for relatively longer scanning durations,
e.g., longer than 5 min (Figure 7C). However, the clustering
coefficient showed relatively lower between-run repeatability and
reliability.

For cross-correlation constructed networks, good
repeatability between runs is found in FC maps (Figure 5B,
mean correlation coefficients r = 0.43 ± 0.056, p < 0.001),
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FIGURE 2 | Effect of fNIRS signal acquisition duration on the stability of the spatial FC map. (A,B) Graphs show FC patterns plotted vs. the duration of fNIRS signal

duration (1.0–10.0 min in 30 s bins). (C,D) Between-map correlation coefficients calculated for spatial pattern of FC between short and long (up to 10-min) signal

durations. The red-filled circles indicate significant correlation between the 10-min signal duration based spatial FC pattern and spatial FC pattern derived from each

fNIRS signal acquisition duration from 1 to 10 min with a 30-s increment. The FC in (A,C) and (B,D) calculated from Pearson correlation-derived and cross-

correlation-derived networks, respectively.

nodal efficiency (Figure 6B, r = 0.22 ± 0.04, p < 0.001), and
nodal betweenness (r = 0.16 ± 0.04, p < 0.001) for each time
bin, respectively. However, the reliability for FC and nodal
efficiency is much lower compared to that from the Pearson-
correlation network, e.g., the general reliabilities for the FC
(Figure 5D) and nodal efficiency (Figure 6D) were low and
fair levels, respectively. For global and local efficiency, a good
repeatability between runs was found for scanning duration ≥
8 min (Figure 7B) and a high reliability was found for scanning
duration≥5min (Figure 7D). Similarly, the clustering coefficient
calculated using cross-correlation constructed networks showed
relatively low between-run repeatability and reliability.

Validation Results
All the network analysis results using weighted network are
presented in Supplementary Figures 1–4 in Supplementary
Material. In general, we found few differences in the main
results using weighted network analysis when compared to those
using binary network analysis. For example, nodal efficiency
and nodal betweenness stabilized and were reproducible
after 1 min of fNIRS signal acquisition, whereas network
local efficiency, global efficiency, and clustering coefficient
stabilized after 1 min and were reproducible after 5 min of
fNIRS signal acquisition only for network local and global
efficiency.
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FIGURE 3 | Effect of fNIRS signal acquisition duration on the stability of nodal efficiency and nodal betweenness. The nodal efficiency and nodal betweenness in (A)

and (C) were calculated from Pearson correlation-derived networks. (A) Graphs show magnitude of nodal efficiency and nodal betweenness plotted by the duration of

fNIRS signal acquisition (1∼10 min in bins incrementally larger by 30 s). (C) Between-map correlation coefficients calculated between short and long (10-min) signal

durations for spatial pattern of nodal efficiency and nodal betweenness, respectively. The red-filled shapes indicate significant correlation between the spatial pattern

of nodal efficiency or nodal betweenness associated with a given fNIRS signal acquisition duration and that computed using 10 min of fNIRS data. (B) was similar to

(A) and (D) was similar to (C) except that the nodal efficiency and nodal betweenness were calculated from cross-correlation-derived networks.

FIGURE 4 | Effect of fNIRS signal acquisition duration on the stability of local efficiency, global efficiency, and clustering coefficient. (A,B) Graphs show the magnitude

(mean ± SD) of local efficiency, global efficiency, and clustering coefficient plotted by duration of fNIRS signal acquisition (1.0∼10.0 min in 30-s bins). The efficiency

metrics and clustering coefficient in (A) and (B) calculated from Pearson correlation-derived and cross-correlation-derived networks, respectively. Statistical analysis

using paired t-test indicates no significant differences in the magnitude of a graph metric associated with a given fNIRS signal acquisition duration compared with the

magnitude of the same graph metric when computed by using 10 min of fNIRS data. These data constitute nearly horizontal lines, with little difference between the

magnitudes of the computed graph metrics at each data collection duration.

DISCUSSION

For functional network connectivity methods to be useful
in practical applications, non-invasive fNIRS brain imaging

techniques need provide direct evidence to confirm that sufficient

fNIRS imaging data with shortest reasonable scanning time

was used for data analysis, which—to our knowledge—has not

been investigated for FC and graph theoretical study. Here, our
results showed that fNIRS brain FC and network properties (e.g.,
nodal efficiency, nodal betweenness, network local, and global
efficiency) can be accurately calculated from as short as 1 min
of resting-state fNIRS imaging data. A series of fNIRS data with
different collection durations for graph metric stabilization is
contrasted with data recorded with relatively longer durations
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FIGURE 5 | Evaluation of the effect of fNIRS signal acquisition duration on the reproducibility of spatial FC patterns. (A,B) Between-run correlation coefficients for FC

patterns plotted by duration of fNIRS signal acquisition (1.0∼10.0 min in 30-s bins) at individual level. The red-filled circles indicate significant correlations in the spatial

patterns of FC map in (A,C) and (B,D) calculated from Pearson correlation-derived and cross-correlation-derived networks, respectively.

of 10 min, and the results revealed high similarity in the FC
and graph theory metrics between short and long acquisition
durations. These results are also consistent with our hypothesis
that the correlation coefficient data and the corresponding
computed network measures stabilize with increasing scanning
time, and such results indicate that different resting-state fNIRS
imaging durationsmight be applied depending on the outcome of
interest. Although these data were consistent with our proposed
hypothesis, the magnitude in fNIRS signal collection duration
required for data reproducibility between the metrics was
somewhat different. For example, the FC, nodal efficiency and
nodal betweenness metrics could be reliably reproduced between
runs after 1-min fNIRS signal acquisition duration, whereas the
local and global efficiency could be reliably reproduced after∼5-
min fNIRS signal acquisition durations. One possible explanation
for the quick reproducibility of both the FC and nodal centrality
is that the intrinsic organizational configuration between nodal
brain regions emerged at the earliest scanning time (Whitlow
et al., 2011). However, for local and global efficiency, the
metric reproducibility depends on the elaborate structure of
the measured networks, whereas the elaborate structure might

be sensitive to the scanning duration of the fNIRS signal.
Furthermore, it is possible that the local and global efficiency
metrics characterize aspects of intrinsic network properties in
the brain, while the intrinsic network properties can be less
robustly calculated using short fNIRS signal(s) (Wang et al., 2011;
Niu et al., 2013). This was also found in the network clustering
coefficient (Figure 7). In the future, studies based on large sample
data sets are expected to provide further evidence to understand
the temporal dynamics underlying the differences in network
reproducibility/reliability.

Notably, the current study suggests that short data, i.e., 1 min
of fNIRS signal acquisition is sufficient for obtaining FC and
network metric stabilization, and is inconsistent with previous
fMRI reports. Using fMRI, Van Dijk et al. demonstrated ∼5–6
min (VanDijk et al., 2010) andWhitlow reported 2min (Whitlow
et al., 2011) of minimum data collection duration were required
for FC stability. Recent studies from Laumann et al. (2015),
Tomasi et al. (2016), Birn et al. (2013), and Dawson et al. (2013)
showed that longer data collection duration (e.g., >9 min) is
required to yield the stable FC pattern. The fNIRS data owns a
high temporal sampling rate (e.g., 25 Hz for the current study) for
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FIGURE 6 | Evaluation of the effect of fNIRS signal acquisition duration on the reproducibility of nodal efficiency and nodal betweenness. The nodal efficiency and

nodal betweenness in (A) and (C) were calculated from Pearson correlation-derived networks. (A) Between-run correlation coefficients for nodal efficiency and nodal

betweenness plotted by duration of fNIRS signal acquisition (1.0∼10.0 min in 30-s bins), respectively. The red-filled shapes indicate significant correlations in the

spatial patterns between two runs at the same signal acquisition bin for nodal efficiency and nodal betweenness, respectively. (C) The ICC values for nodal efficiency

and nodal betweenness, respectively. (B) was similar to (A) and (D) was similar to (C) except that the nodal efficiency and nodal betweenness were calculated from

cross-correlation-derived networks.

recording the dynamic hemodynamic signals within the brain,
which is a marked advantage and is also a difference between
fNIRS data and fMRI data. Therefore, it is unknown whether the
sampling rate difference leads to the discrepancy in the observed
results. Beyond the technical factors, the discrepancies among
the results could be attributed to the analysis methods (including
correlation analysis and variability analysis), the network size (46
and 116), and the network threshold selection (cost from 0.1
to 0.4 and sparsity from 0.17 to 0.5) between previous studies
and the current study. Resting-state imaging data capture the
information of complex integration among various brain regions
and that the integration always exhibits a dynamic, time-varying
fashion on the order of seconds or minutes (Bullmore and
Sporns, 2009; Chu et al., 2012; Niu et al., 2013). Therefore, it
would be of great interest to compare FC and graphic metric
stabilization using the simultaneous acquisition of fNIRS and
BOLD-fMRI in the future.

We evaluated the effect of different network construction
approaches (Pearson correlation and cross-correlation) on the
FC and graph metrics stability associated with different fNIRS
acquisition durations. Although our main aim was not to
determine which type of network construction approach is
optimal for obtaining the minimum scanning stability and
reproducibility of FC and network metrics, we did find that the
reliability of the FC, the nodal efficiency and betweenness metric,

and the run-run repeatability for local and global efficiencies
the clustering coefficients were much better when employing the
Pearson correlation approach. This conclusion is also compatible
with a previous fMRI study that demonstrated graph metrics
derived from Pearson’s-correlation-based networks are more
reliable for both short-term scans and long-term scans (Liang
et al., 2012). However, when considering only the stability of FC
and graph theorymetrics associated with different fNIRS imaging
durations, the two correlation approaches are not significantly
different. As such, a 1 min duration seems to be an appropriate
choice for brain imaging studies in which graph theoretical
analyses of functional brain networks are used.

The systemic artifacts from the scalp and the skull is
considered as a dominant noise sources in resting-state fNIRS
signal, and has been an active area of research in recent
years. Currently, there are three different types of methods
developed for separating the noise sources from real neuronal
signals, which includes short separation regression (Gagnon
et al., 2011; Saager et al., 2011), ICA (Kohon et al., 2007),
and adaptive filter (Zhang et al., 2007, 2009). These noise
reduction approaches are playing important roles in improving
signal quality of spontaneous neural activity. Among them, both
the short-distance regression and the adaptive filter methods
require a specially designed measurement channels (about 1 cm
in spatial separation between source and detector) to record
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FIGURE 7 | Evaluation of the effect of fNIRS signal acquisition duration on the reproducibility of local efficiency, global efficiency and clustering coefficient. The local

efficiency, global efficiency, and clustering coefficient in (A) and (C) were calculated from Pearson correlation-derived networks. (A) Between-run correlation coefficients

for the global network metrics plotted by duration of fNIRS signal acquisition (1.0–10.0 min in 30-s bins). The red-filled shapes indicate significant correlations between

two runs at the same signal acquisition bin for the global network measures. (C) The ICC values for the global network metrics, respectively. (B) was similar to (A) and

(D) was similar to (C) except that the local efficiency, global efficiency, and clustering coefficient were calculated from cross-correlation-derived networks.

the superficial signal from the scalp and the skull. More
importantly, this design needs to be considered in advance
and simultaneously accomplished with the measurement in the
regions of interest during the stage of data collection. Recently,
Gagnon et al. pointed out that the location of short separation
measurement placed in participants’ head seriously impacted
the performance of superficial noise regression in resting-state
fNIRS signal (Gagnon et al., 2012). As such, considering the
number and location of short-separation channels is of great
importance and essential while applying these two methods.
In contrast, the ICA is a data-driven method and does not
require prior considerations for short-channel measurement
during experimental acquisition. Due to the ability of blind
source separation, ICA can separate multiple types of noise and
artifacts from the measured data. This has been empirically
confirmed in both task-based and resting-state fMRI studies.
With the ICA method, Zhang et al. identified and removed
several noise components in the resting-state fNIRS signal

including head motion noise and physiological artifacts. They
also confirmed the superior performance for ICA-based noise
reduction approach in identifying functional connectivity (Zhang
et al., 2010, 2011). Similarly, in our previous studies (Niu et al.,
2013; Li et al., 2015), we also demonstrated the usefulness
of ICA approach on removing typical noise components by
evaluating the between-run reproducibility and reliability for
graph metrics and brain functional connectivity dynamics.
Nevertheless, it is also noted that the characteristic of blind
source separation of the ICA approach is not based on
physiological components and could lead to difficulties to
completely identify and remove physiological and neural noise
components from the measured signals. Future studies are
needed to further test whether the current results could be
remained as utilizing recording respiration and heart rates
while collecting resting-state fNIRS data or other noise-
reduction approaches simultaneously (e.g., short-separation
measurement).
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A few issues need to be further addressed. First, while we
adopted different network construction approaches (Pearson’s
correlation and cross-correlation) to obtain graph metrics of the
brain network, we aim not to provide a gold standard for the
selection of network construction approaches but to primarily
observe how the correlation approaches affect the reproducibility
of graph metrics along with different temporal trajectories.
Certainly, the network properties and their reproducibility can
also be affected by some other technical details, for example,
whether there exists global signal regression and how to select
the frequency band during preprocessing, which is important
to examine but beyond the scope of this paper and is worth
conducting separate studies in the future. Second, we only
evaluated several typical graph theory metrics associated with
increasing fNIRS signal acquisition durations, and thus, it
remains unknown whether the current findings, i.e., that FC and
network efficiency metrics can be accurately calculated from as
little as 1.0 min of fNIRS scanning duration, are valid for the
other network metrics. Third, we observed temporal stability
of graph metrics based on an integrated sparsity threshold,
but it is also interesting to investigate the influence of distinct
network sparsity thresholds on the reproducibility of graph
metrics computed from different fNIRS acquisition durations.
Finally, the resting-state fNIRS imaging data used in this study
was from healthy adult participants. As such, the current results
have not been validated in the other participant population (e.g.,
early children and clinical populations). It is known that the
developmental aspects of the children brains and abnormalities
of the central nervous system in patients may change the stability
of the FC and graph theory metrics, possibly requiring longer
fNIRS data collection durations. Therefore, it is important to
explore possible specificities of such populations with respect

to specific fNIRS imaging durations, which may have important
implications in the application of network analyses to healthy and
diseased brains.

In summary, as little as 1 min of resting-state fNIRS imaging
signal may be sufficient to obtain stable graph theory metrics
for brain network study. Thus, our finding provides direct
evidence for healthy adult studies involving to the choice of
the resting-state fNIRS scanning duration in functional brain
connectivity and topological metric stability of brain connectivity
network.

AUTHOR CONTRIBUTIONS

SG, XL, and HN put forward academic problem; SG analyzed the
data and wrote part of the manuscript; HN and BB revised the
manuscript.

ACKNOWLEDGMENTS

The authors thank Prof. Fang Fang at Peking University, for his
valuable comments and help on data collection. This study was
supported by the Natural Science Foundation of China (Grant
nos. 81571755, 31521063, and 81201122), Beijing Municipal
Science & Technology Commission (Z151100003915122), and

the Open Research Fund of the State Key Laboratory of Cognitive
Neuroscience and Learning.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnins.
2017.00392/full#supplementary-material

REFERENCES

Achard, S., and Bullmore, E. (2007). Efficiency and cost of

economical brain functional networks. PLoS Comput. Biol. 3:e17.

doi: 10.1371/journal.pcbi.0030017

Birn, R. M., Molloy, E. K., Patriat, R., Parker, T., Meier, T. B., Kirk,

G. R., et al. (2013). The effect of scan length on the reliability of

resting-state fMRI connectivity estimates. Neuroimage 83, 550–558.

doi: 10.1016/j.neuroimage.2013.05.099

Biswal, B., Yetkin, F. Z., Haughton, V., andHyde, J. (1995). Functional connectivity

in the_motor cortex resting human brain using echo-planar MRI.Magn. Reson.

Med. 34, 537–541. doi: 10.1002/mrm.1910340409

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical

analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.

doi: 10.1038/nrn2575

Cao, M., Wang, J. H., Dai, Z. J., Cao, X. Y., Jiang, L. L., Fan, F. M., et al.

(2014). Topological organization of the human brain functional connectome

across the lifespan. Dev. Cogn. Neurosci. 7, 76–93. doi: 10.1016/j.dcn.2013.

11.004

Chu, C. J., Kramer, M. A., Pathmanathan, J., Bianchi, M. T., Westover,

M. B., Wizon, L., et al. (2012). Emergence of stable functional networks

in long-term human electroencephalography. J. Neurosci. 32, 2703–2713.

doi: 10.1523/JNEUROSCI.5669-11.2012

Cope, M., and Deply, D. (1988). System of long-term measurement of

cerebral blood and tissue oxygenation on new born in fants by near

infra-red transillumination. Med. Biol. Eng. Comput. 26, 289–294.

doi: 10.1007/BF02447083

Dawson, D. A., Cha, K., Lewis, L. B., Mendola, J. D., and Shmuel,

A. (2013). Evaluation and calibration of functional network modeling

methods based on known anatomical connections. Neuroimage 67, 331–343.

doi: 10.1016/j.neuroimage.2012.11.006

Fekete, T., Beacher, F. D., Cha, J., Rubin, D., and Mujica-Parodi, L. R. (2014).

Small-world network properties in prefrontal cortex correlate with predictors

of psychopathology risk in young children: a NIRS study. Neuroimage 85(Pt 1),

345–353. doi: 10.1016/j.neuroimage.2013.07.022

Gagnon, L., Cooper, R. J., Yucel, M. A., Perdue, K. L., Greve, D. N.,

and Boas, D. A. (2012). Short separation channel location impacts the

performance of short channel regression in NIRS. Neuroimage 59, 2518–2528.

doi: 10.1016/j.neuroimage.2011.08.095

Gagnon, L., Perdue, K., Greve, D. N., Goldenholz, D., Kaskhedikar, G., and Boas, D.

A. (2011). Improved recovery of the hemodynamic response in diffuse optical

imaging using short optode separations and state-space modeling. Neuroimage

56, 1362–1371. doi: 10.1016/j.neuroimage.2011.03.001

Kaustubh, S., Mark, M., and Vinod, M. (2009). Development of large-

scale functional brain networks in children. PLoS Biol. 7:e1000157.

doi: 10.1371/journal.pbio.1000157

Kohon, S., Miyai, I., Seiyama, A., Oda, I., Ishikawa, A., Tsuneishi, S., et al.

(2007). Removal of the skin blood flow artifact in functional near-infrared

spectroscopic imaging data through independent component analysis. J.

Biomed. Opt. 12, 062111. doi: 10.1117/1.2814249

Frontiers in Neuroscience | www.frontiersin.org 11 July 2017 | Volume 11 | Article 392

http://journal.frontiersin.org/article/10.3389/fnins.2017.00392/full#supplementary-material
https://doi.org/10.1371/journal.pcbi.0030017
https://doi.org/10.1016/j.neuroimage.2013.05.099
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1038/nrn2575
https://doi.org/10.1016/j.dcn.2013.11.004
https://doi.org/10.1523/JNEUROSCI.5669-11.2012
https://doi.org/10.1007/BF02447083
https://doi.org/10.1016/j.neuroimage.2012.11.006
https://doi.org/10.1016/j.neuroimage.2013.07.022
https://doi.org/10.1016/j.neuroimage.2011.08.095
https://doi.org/10.1016/j.neuroimage.2011.03.001
https://doi.org/10.1371/journal.pbio.1000157
https://doi.org/10.1117/1.2814249
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Geng et al. Scanning Length for Network Study

Kong, J., Gollub, R. L., Webb, J. M., Kong, J. T., Vangel, M. G., and

Kwong, K. (2007). Test-retest study of fMRI signal change evoked

by electroacupuncture stimulation. Neuroimage 34, 1171–1181.

doi: 10.1016/j.neuroimage.2006.10.019

Latora, V., and Marchiori, M. (2001). Efficient behavior of small-world

networks. Phys. Rev. Lett. 87:198701. doi: 10.1103/PhysRevLett.87.1

98701

Latora, V., and Marchiori, M. (2003). Economic small-world behavior

in weighted networks. Eur. Phys. J. B Condens. Matter 32, 249–263.

doi: 10.1140/epjb/e2003-00095-5

Laumann, T. O., Gordon, E. M., Adeyemo, B., Snyder, A. Z., Joo, S. J.,

Chen, M. Y., et al. (2015). Functional system and areal organization

of a highly sampled individual human brain. Neuron 87, 657–670.

doi: 10.1016/j.neuron.2015.06.037

Li, Z., Liu, H., Liao, X., Xu, J., Liu, W., Tian, F., et al. (2015). Dynamic

functional connectivity revealed by resting-state functional near-infrared

spectroscopy. Biomed. Opt. Express 6, 2337–2352. doi: 10.1364/BOE.6.

002337

Liang, X., Wang, J., Yan, C., Shu, N., Xu, K., Gong, G., et al. (2012). Effects of

different correlation metrics and preprocessing factors on small-world brain

functional networks: a resting-state functional MRI study. PLoS ONE 7:e32766.

doi: 10.1371/journal.pone.0032766

Lynall, M. E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller, U.,

et al. (2010). Functional connectivity and brain networks in schizophrenia. J.

Neurosci. 30, 9477–9487. doi: 10.1523/JNEUROSCI.0333-10.2010

Niu, H., and He, Y. (2013). Resting-state functional brain connectivity: lessons

from functional near-infrared spectroscopy. Neuroscientist 20, 173–188.

doi: 10.1177/1073858413502707

Niu, H., Li, Z., Liao, X., Wang, J., Zhao, T., Shu, N., et al. (2013). Test-retest

reliability of graph metrics in functional brain networks: a resting-state fNIRS

study. PLoS ONE 8:e72425. doi: 10.1371/journal.pone.0072425

Niu, H., Wang, J., Zhao, T., Shu, N., and He, Y. (2012). Revealing

topological organization of human brain functional networks with

resting-state functional near infrared spectroscopy. PLoS ONE 7:e45771.

doi: 10.1371/journal.pone.0045771

Rubinov, M., and Sporns, O. (2010). Complex network measures of brain

connectivity: uses and interpretations. Neuroimage 52, 1059–1069.

doi: 10.1016/j.neuroimage.2009.10.003

Rudie, J. D., Brown, J. A., Beck-Pancer, D., Hernandez, L. M., Dennis, E.

L., Thompson, P. M., et al. (2012). Altered functional and structural

brain network organization in autism. Neuroimage Clin. 2, 79–94.

doi: 10.1016/j.nicl.2012.11.006

Saager, R. B., Telleri, N. L., and Berger, A. J. (2011). Two-detector Corrected Near

Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses

more robustly than single-detector NIRS. Neuroimage 55, 1679–1685.

doi: 10.1016/j.neuroimage.2011.01.043

Sasai, S., Homae, F., Watanabe, H., Sasaki, A. T., Tanabe, H. C., Sadato, N., et al.

(2012). A NIRS-fMRI study of resting state network. Neuroimage 63, 179–193.

doi: 10.1016/j.neuroimage.2012.06.011

Tomasi, D. G., Shokri-Kojori, E., and Volkow, N. D. (2016). Temporal evolution

of brain functional connectivity metrics: could 7 min of rest be enough? Cereb.

Cortex. doi: 10.1093/cercor/bhw227. [Epub ahead of print].

Van Dijk, K. R., Hedden, T., Venkataraman, A., Evans, K. C., Lazar, S. W.,

and Buckner, R. L. (2010). Intrinsic functional connectivity as a tool for

human connectomics: theory, properties, and optimization. J. Neurophysiol.

103, 297–321. doi: 10.1152/jn.00783.2009

Wang, J. H., Zuo, X. N., Gohel, S., Milham, M. P., Biswal, B. B., and He, Y. (2011).

Graph theoretical analysis of functional brain networks: test-retest evaluation

on short- and long-term resting-state functionalMRI data. PLoS ONE 6:e21976.

doi: 10.1371/journal.pone.0021976

Wang, L., Zhu, C., He, Y., Zang, Y., Cao, Q., Zhang, H., et al. (2009).

Altered small-world brain functional networks in children with

attention-deficit/hyperactivity disorder. Hum. Brain Mapp. 30, 638–649.

doi: 10.1002/hbm.20530

Watts, D. J., and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’

networks. Nature 393, 440–442. doi: 10.1038/30918

White, B. R., Snyder, A. Z., Cohen, A. L., Petersen, S. E., Raichle, M. E.,

Schlaggar, B. L., et al. (2009). Resting-state functional connectivity in the human

brain revealed with diffuse optical tomography. Neuroimage 47, 148–156.

doi: 10.1016/j.neuroimage.2009.03.058

Whitlow, C. T., Casanova, R., and Maldjian, J. A. (2011). Effect of resting-

state functional MR imaging duration on stability of graph theory metrics of

brain network connectivity. Radiology 259, 516–524. doi: 10.1148/radiol.111

01708

Wu, K., Taki, Y., Sato, K., Hashizume, H., Sassa, Y., Takeuchi, H., et al. (2013).

Topological organization of functional brain networks in healthy children:

differences in relation to age, sex, and intelligence. PLoS ONE 8:e55347.

doi: 10.1371/journal.pone.0055347

Xu, J., Liu, X., Zhang, J., Li, Z., Wang, X., Fang, F., et al. (2015). FC-NIRS:

a functional connectivity analysis tool for near-infrared spectroscopy data.

Biomed Res. Int. 2015:248724. doi: 10.1155/2015/248724

Yu, M., Gouw, A. A., Hillebrand, A., Tijms, B. M., Stam, C. J., van Straaten, E.

C. W., et al. (2016). Different functional connectivity and network topology in

behavioral variant of frontotemporal dementia and Alzheimer’s disease: an EEG

study.Neurobiol. Aging 42, 150–162. doi: 10.1016/j.neurobiolaging.2016.03.018

Zhang, H., Duan, L., Zhang, Y. J., Lu, C. M., Liu, H., and Zhu, C. Z. (2011).

Test-retest assessment of independent component analysis-derived resting-

state functional connectivity based on functional near-infrared spectroscopy.

Neuroimage 55, 607–615. doi: 10.1016/j.neuroimage.2010.12.007

Zhang, H., Zhang, Y. J., Lu, C. M., Ma, S. Y., Zang, Y. F., and Zhu, C.

Z. (2010). Functional connectivity as revealed by independent component

analysis of resting-state fNIRS measurements. Neuroimage 51, 1150–1161.

doi: 10.1016/j.neuroimage.2010.02.080

Zhang, Q., Brown, E. N., and Strangman, G. E. (2007). Adaptive filtering

for global interference cancellation and real-time recovery of evoked brain

activity: a Monte Carlo simulation study. J. Biomed. Opt. 12, 044014.

doi: 10.1117/1.2754714

Zhang, Q., Strangman, G. E., and Ganis, G. (2009). Adaptive filtering

to reduce global interference in non-invasive NIRS measures of brain

activation: how well and when does it work? Neuroimage 45, 788–794.

doi: 10.1016/j.neuroimage.2008.12.048

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Geng, Liu, Biswal and Niu. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 12 July 2017 | Volume 11 | Article 392

https://doi.org/10.1016/j.neuroimage.2006.10.019
https://doi.org/10.1103/PhysRevLett.87.198701
https://doi.org/10.1140/epjb/e2003-00095-5
https://doi.org/10.1016/j.neuron.2015.06.037
https://doi.org/10.1364/BOE.6.002337
https://doi.org/10.1371/journal.pone.0032766
https://doi.org/10.1523/JNEUROSCI.0333-10.2010
https://doi.org/10.1177/1073858413502707
https://doi.org/10.1371/journal.pone.0072425
https://doi.org/10.1371/journal.pone.0045771
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.nicl.2012.11.006
https://doi.org/10.1016/j.neuroimage.2011.01.043
https://doi.org/10.1016/j.neuroimage.2012.06.011
https://doi.org/10.1093/cercor/bhw227
https://doi.org/10.1152/jn.00783.2009
https://doi.org/10.1371/journal.pone.0021976
https://doi.org/10.1002/hbm.20530
https://doi.org/10.1038/30918
https://doi.org/10.1016/j.neuroimage.2009.03.058
https://doi.org/10.1148/radiol.11101708
https://doi.org/10.1371/journal.pone.0055347
https://doi.org/10.1155/2015/248724
https://doi.org/10.1016/j.neurobiolaging.2016.03.018
https://doi.org/10.1016/j.neuroimage.2010.12.007
https://doi.org/10.1016/j.neuroimage.2010.02.080
https://doi.org/10.1117/1.2754714
https://doi.org/10.1016/j.neuroimage.2008.12.048
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	Effect of Resting-State fNIRS Scanning Duration on Functional Brain Connectivity and Graph Theory Metrics of Brain Network
	Introduction
	Materials and Methods
	Participants and Protocol
	Data Acquisition
	Data Preprocessing
	Functional Network Connectivity and Graph Theoretical Analysis
	Functional Connectivity (FC) Definition

	Network Thresholding
	Network Measures
	Nodal Efficiency
	Nodal Betweenness
	Network Clustering Coefficient
	Network Global Efficiency
	Network Local Efficiency

	Stability Evaluation
	Between-Run Reproducibility Evaluation
	Validation Analysis

	Results
	Effect of fNIRS Scanning Duration on FC and Network Properties Stability
	Evaluation of Between-Run Reproducibility and Reliability
	Validation Results

	Discussion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References




