
July 2017 | Volume 8 | Article 1501

OpiniOn
published: 04 July 2017

doi: 10.3389/fendo.2017.00150

Frontiers in Endocrinology | www.frontiersin.org

Edited by: 
Albert Giralt Coll,  

University of Lausanne,  
Switzerland

Reviewed by: 
Daniela Gaglio,  

Institute of Molecular Bioimaging  
and Physiology (CNR), Italy

*Correspondence:
Sarah-Maria Fendt  

sarah-maria.fendt@ 
kuleuven.vib.be

Specialty section: 
This article was submitted  
to Cellular Endocrinology,  

a section of the journal  
Frontiers in Endocrinology

Received: 06 June 2017
Accepted: 15 June 2017
Published: 04 July 2017

Citation: 
Fendt S-M (2017) Is There a 

Therapeutic Window  
for Metabolism-Based  

Cancer Therapies? 
Front. Endocrinol. 8:150.  

doi: 10.3389/fendo.2017.00150

is There a Therapeutic Window  
for Metabolism-Based Cancer 
Therapies?
Sarah-Maria Fendt1,2*

1 Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium, 
2 Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven  
Cancer Institute (LKI), Leuven, Belgium

Keywords: metabolism, cancer, treatment, metastasis formation, endothelial cells, immune cells, cancer cells

Cells that have undergone an oncogenic transformation have an altered metabolism compared 
to the cells they originate from (1). This observation led to the addition of “a deregulated 
metabolism” to the hallmarks of cancer (2). Accordingly, it has been extensively demonstrated that  
many of the observed alterations in the metabolism of cancer cells are important for their pro-
liferation (1, 3, 4). However, a metabolic alteration that is important for cancer cell proliferation 
is not automatically a good target for treatment, as treatments also have to be selective toward 
cancer cells. Since almost all of the cancer-induced metabolic changes are not caused by gain of 
function mutations in specific enzymes, metabolism-based drug have to be developed against the 
naturally occurring enzymes. Thus, the valid question arises whether there is a therapeutic window 
for targeting the deregulated metabolism of cancer cells. In the following, I would like to describe 
the challenges and advocate the opportunities for metabolic drug targets in cancer treatment.  
In the first section, I will address the question whether there is in general a therapeutic window  
for metabolism-based cancer treatment, while in the second section, I will discuss new concepts 
that can refine metabolism-based anticancer strategies.

THERApEUTiC WinDOW

Is there a therapeutic window for metabolism-based cancer treatment? A major challenge for meta-
bolic drugs in cancer treatment is that metabolism is a universal cellular process and, with a few 
exceptions (such as gain of function mutations in metabolic enzymes), the metabolic alterations 
found in cancer cells are present in similar form in some non-transformed cell; i.e., while cells 
that undergo an oncogenic transformation will always change their metabolism, there is no single 
metabolic change that unifies all cancer cells and separates them from all non-transformed cells. 
Based on this fact, one could argue that targeting the metabolism of cancer cells is challenging, since 
it is not selective. However, an opportunity for treatment arises based on the fact that many meta-
bolic changes in cancer cells support cell proliferation, while the majority of the non-transformed 
cells are in a differentiated and low proliferative state. Thus, metabolic drugs that impair cellular 
proliferation preferentially target cancer cells. The validity of this reasoning is supported by the 
fact that many of the first chemotherapeutic agents that are still used in the clinics are targeting 
the metabolism of proliferating cancer cells (5). Examples are the antifolate methotrexate and the 
nucleoside analog 5-fluorouracil. Despite the fact that these agents target any highly proliferating 
cell rather than only cancer cells, their usage has revolutionized cancer treatment and the benefits 
still justify the side effects arising from their moderate selectivity. Thus, metabolism-based treat-
ments are feasible, currently used in the clinics, and a patient benefit at least in the scope of a typical 
standard of care chemotherapeutic agent can be expected.

Yet, is it possible to refine metabolism-based cancer therapies by increasing efficacy and selectiv-
ity and thus broaden the treatment window that arises from the metabolic changes that occur in 
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cancers? In the following, I will focus on three concepts that aim 
to refine metabolism-based anticancer drugs.

METABOLiC VULnERABiLiTiES ARiSinG 
FROM THE CAnCER-SpECiFiC GEnETiC 
LAnDSCApE

One of the earliest approaches to refine metabolism-based 
anticancer drugs has focused on metabolic vulnerabilities that 
arise due to the genetic loss of tumor suppressors or hyperactiva-
tion of oncogenes. The rationale for this approach is that many 
tumor suppressors and oncogenes regulate metabolic genes and 
consequently loss or hyperactivation of this regulation creates 
dependencies on specific metabolic pathways (6). This approach 
led to the identification of an oncogene specific and targetable 
metabolism in cultured cancer cells. Yet, recent in vivo data show 
that the organ microenvironment and the cell origin can redefine 
the oncogene-imposed metabolic dependencies of cancer cells 
and thus can lead to impaired in vivo efficacy of metabolic drugs 
(7–11). A solution to this challenge is the integration of oncogene 
profiles with the cell origin and the organ microenvironment. 
An example for the validity of this concept is the finding that 
cancers with KrasG12D/+; Trp53−/− background originating and 
growing in the lung are susceptible to branched chain amino acid 
metabolism inhibition, while this is not the case for cancers with 
the same genetic background but originating and growing in the 
pancreas (10). Thus, the cancer-specific oncogene and tumor 
suppressor landscape can be exploited to increase the efficacy of 
metabolic drugs in the context of the cell origin and the organ 
microenvironment.

Another concept that builds on the genetic landscape of 
cancers to increase the selectivity of metabolic drugs focuses 
on the metabolic vulnerabilities arising from a mutation in or 
gene loss of a metabolic enzyme (Figure 1A). The rationale of 
this concept is that normal cells have the metabolic flexibility to 
cope with drugs that (partially) inhibit an enzyme, while cancer 
cells fail to have this flexibility due to a mutation or loss in an 
enzyme concomitant to the enzyme targeted by the drug. An 
example for this concept are cancers with homozygous loss of 
p16/CDKN2A resulting in the passenger deletion of the enzyme 
methylthioadenosine phosphorylase (MTAP) (which is found in 
~15% of all cancers and>50% of glioblastoma multiforme) and 
inhibition of the enzyme arginine methyltransferase (PRMT5) 
(12–14). Mechanistically, loss of MTAP results in the accumula-
tion of its metabolite substrate methylthioadenosine, which 
partially inhibits PRMT5 activity. Consequently, cancers with 
loss of MTAP and therefore already impaired PRMT5 activity 
are hypersensitive toward PRMT5 inhibitors (12–14). Another 
example for this concept is demonstrated by the effectiveness of 
a pyruvate carboxylase (PC) knockdown to impair the prolifera-
tion of paraganglioma with mutation in succinate dehydrogenase 
(SDH) (15, 16). Mechanistically, mutations in SDH result in a 
truncated tricarboxylic acid cycle and therefore impaired glu-
tamine anaplerosis (17), which is a process that supports aspartate 
production required for nucleotide biosynthesis. Consequently, 
SDH mutant tumors switch to PC-dependent anaplerosis to 

sustain nucleotide biosynthesis. In turn, SDH mutant tumors are 
hypersensitive toward PC knockdown, while non-transformed 
cells have the flexibility to use either path of tricarboxylic acid 
cycle anaplerosis. Thus, combining the genetic loss of an enzyme 
with a metabolic drug creates hypersensitivity specifically in 
cancer cells. Taken together, identifying the metabolic vulner-
abilities that arise from the cancer-specific genetic landscape 
can be conceptualized to increase the selectivity and efficacy of 
metabolic drugs.

CAnCER CELL pHEnOTYpES BEYOnD 
pROLiFERATiOn

A recent concept to refine metabolic drugs is focused on under-
standing the metabolic vulnerabilities of metastasizing rather 
than proliferating cancer cells. As described in the first section, 
most metabolism-based anticancer drugs inhibit the prolifera tion 
of cancer cells (1, 18). Unquestionable, this is a very important 
aspect of cancer therapy. However, this focus on proliferation con-
tributes to the moderate selectivity of metabolism-based drugs 
(and many other drugs that target cancer cell proliferation), since 
some non-transformed cells also proliferate. A solution to this 
challenge is the concept to go beyond the proliferative phenotype 
of cancer cells and target their single cell survival and coloniza tion 
capacity (Figure 1B). These latter phenotypes are less frequently 
found in normal cells compared to the proliferation phenotype. 
Moreover, they are particularly important for cancer progression 
toward metastasis formation, which results in up to 90% of the 
patient mortality. Thus, considering phenotypes beyond prolif-
eration can increase selectivity of metabolic drugs and advance 
their application toward inhibition of metastasis formation. An 
example for this concept is the recent discovery that inhibition 
of proline catabolism impairs metastasis formation by breast 
cancer cells without apparent adverse effects on normal cells 
and organ function (19). Mechanistically, metastasizing cancer 
cells rely on proline catabolism to fuel their increased energy 
need during the colonization of distant organs. Consequently, 
targeting proline metabolism does not affect primary cancer 
growth or non-transformed cells, but impairs metastasis forma-
tion in distant organs (19). Another example for this concept 
is the finding that the survival of metastasizing cancer cells in 
the circulation depends on their antioxidants metabolism (20). 
Consequently, targeting one carbon metabolism that contributes 
via NADPH production to the cellular antioxidants response 
[e.g., by inhibiting methylenetetrahydrofolate dehydrogenase 
(MTHFD1)] decreases the survival of cancer cells in the circula-
tion and subsequently metastasis formation in distant organs 
(20). Taken together, targeting cancer cell phenotypes beyond 
proliferation refines metabolic drugs and extends their applica-
tion toward anti-metastatic agents.

EXTEnSiOn TO STROMAL AnD  
iMMUnE CELLS

An additional concept to refine the use of metabolic drugs in 
cancer treatment is targeting the entire cellular composition of 
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FiGURE 1 | Novel concepts to refine metabolism-based cancer therapies. (A) Loss or mutation of enzymes in cancer cells can create hypersensitivity of the cancer 
cells toward the inhibition of a concomitant enzyme. (B) Targeting cancer cell phenotypes beyond proliferation such as single cell survival and colonization can 
increase the selectivity of metabolism-based drugs and broaden their application toward metastases prevention and treatment. (C) Manipulating the cellular tumor 
composition by targeting stromal and immune cells with metabolism-based drugs can enable a comprehensive cancer therapy.
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a cancer, which includes stromal and immune cells. Classically, 
metabolism-based drugs have been developed against cancer 
cells. However, within the tumor, not only cancer cells but 
also stromal and immune cells are found. Many stromal and 
some immune cells (such as tumor-associated macrophages) 
are reprogrammed to support the development and progres-
sion of cancer, while other immune cells within the tumor 
(such as cytotoxic T-cells) counteract cancer development and 

progression. Thus, targeting stromal and/or immune cells along 
with the cancer cells can be a comprehensive treatment concept 
(Figure 1C). The effectiveness of this concept has been shown 
for stromal cells: tumor endothelial cells display an aberrant 
activation (in form of proliferation and migration), which leads 
to tumor vascularization, but also vascular permeability. This 
aberrant activation is at least in part driven by high glycolytic 
rates (21). Consequently, downregulating glycolysis in tumor 
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endothelial cells can normalize the tumor vasculature, which 
has been shown to result in increased efficacy of chemotherapy 
and decreased metastasis formation (21). Both effects relied on 
a tightened vascular barrier that resulted in improved delivery 
of chemotherapeutic agents to the cancer and decreased success 
of cancer cell intravasation to the vasculature. Thus, targeting 
tumor-associated stromal cells and cancer cells at the same time 
can provide a synergistic anticancer efficacy.

Targeting the metabolism of immune cells emerges to be more 
complex, since the different subclasses of immune cells exhibit 
either pro- or antitumor capacities (22, 23). Therefore, any  
metabolism-based therapy targeting immune cells needs to either 
hamper the fitness of immune cells with protumor capacity or 
boost the fitness of immune cells with antitumor capacity. To 
achieve such selectivity, an increased understanding of the  
metabolism of immune cells is needed. An approach to circum-
vent the above-described complexity is to stimulate the meta-
bolic fitness of antitumor immune cells ex vivo and combine it  
with a consecutive adoptive transfer. For example, it has been 
shown that the ex vivo treatment of cytotoxic T-cells with the 
metabolite S-2-hydroxyglutarate (not to be confused with the 
oncometabolite R-2-hydroxyglutarate) results (after adoptive 
transfer) in enhanced in vivo proliferation, survival, and antitu-
mor capacity of the treated cytotoxic T-cells (24). Mechanistically, 
S-2-hydroxyglutarate treatment induced changes in histone and 
DNA methylation as well as the activation of HIF-1α-dependent 
transcriptional programs (24). Thus, while approaches targeting 
the metabolism of immune cells in vivo require further research, 

ex vivo approaches show promising results. Taken together, 
targeting the metabolism of stromal and immune cells can refine 
cancer treatment.

In conclusion, metabolism-based drugs are important con-
tributors to cancer treatment. Novel concepts such as targeting 
metabolic vulnerabilities of cancer cells arising from their genetic 
landscape, metabolic requirements of metastasizing cancer cells, 
and stromal and immune cells have the potential to refine metab-
olism-based anticancer therapies. Moreover, combining current 
and future metabolism-based drugs with targeted delivery such 
as nanobodies (25) and magnetic nanoparticles (26) can further 
advance their use in cancer treatment. Thus, my answer to the 
question “Is there a therapeutic window for metabolism-based 
cancer therapies?” is yes.
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