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Elephants are contagious!  

Be careful how you tread.  

An Elephant that's been trodde n on 

Should be confined to bed!  

 

Leopards are contagious too.  

Be careful t iny tots.  

They don't give you a temperature  

But lots and lots -  of spots.  

 

The Herring is  a lucky f ish  

From al l  disease inured.  

Should he be i l l  when caught at sea;  

Immediately -  he's cured! 
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Abstract  

_____________________________________________________________________ 
 
This thesis describes the development and implementation of an internally controlled one-

step real-time RT-PCR assay for the diagnosis of human metapneumovirus (HMPV) and 

expansion of the clinical virology diagnostic service following the evaluation of newer 

multiplex methodologies, which revealed that traditional methods of virological diagnosis 

failed to diagnose approximately 50% of respiratory infections attributed to new and well-

established viruses. The work presented here reiterates the contribution of HMPV to the 

burden of respiratory disease within the paediatric population, which accounted for 4.6% of 

acute respiratory infections previously not attributed to known respiratory pathogens in 

hospitalised children during the 3 year period investigated.  

 
HMPV co-infection with other respiratory viruses is widely reported but few studies have 

considered the importance of bacterial co-infection in HMPV-associated respiratory 

infection. The frequency of bacterial co-infections with HMPV in children hospitalised with 

symptoms of acute respiratory infection was determined to provide evidence to support a 

potential role for commensal flora of the nasopharynx in co-infections with HMPV. HMPV 

was identified more commonly with one or more concomitant bacteria than as a sole 

respiratory pathogen or in combination with other viruses, which suggests the frequent 

involvement of HMPV in the development of bacterial co-infection. Haemophilus influenzae 

and Streptococcus pneumoniae were found frequently with HMPV but only H. Influenzae 

was significantly associated with HMPV. These findings may reflect complex changes in the 

epidemiology of S. pneumoniae since the introduction of the 7-valent pneumococcal 

conjugate vaccine into the routine childhood immunisation programme in England and 

Wales in 2006.  

 
Phylogenetic analysis of sequences within the variable glycoprotein gene and conserved 

fusion gene were conducted to determine the genetic variability of HMPV lineages 

circulating within the paediatric cohort within the locality of Norwich and revealed the 

frequent displacement of the predominant circulating sublineage. Additionally, a unique 

strain circulated within the cohort, which suggests local factors influence HMPV circulation. 

Other strains identified were similar to strains circulating globally but predominant 

sublineages circulating within the cohort reflect those dominating within the UK and Ireland 

suggesting parallel changes in the circulation pattern of sublineages within the same 

geographical region. 
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1. Introduct ion 

 _____________________________________________________________________ 
 
1.1. The relationship between man and infectious diseases  
 
The relationship between man and infectious diseases is long and turbulent. It has existed 

since the dawn of civilisation with devastating consequences to susceptible human beings 

worldwide (Bollet, 1987; Burnet, 1972; Hopkins, 1983; McNeill, 1976; Zinsser, 1935). The 

early history of infectious diseases was characterised by sudden, unpredictable outbreaks, 

frequently of epidemic proportion, that ravaged cities, decimated armies and ultimately 

altered the course of history (Satcher, 1995). The appearance of such manifestations was 

regarded as a sign of divine displeasure (Scott and Duncan, 2001), a consequence of inciting 

the wrath of the gods or associated with the configuration of stars or miasmas (Rivers, 

1937). Control of many infectious diseases became possible with the pioneering work of 

Robert Koch and Louis Pasteur and the introduction of the germ theory of disease. With 

bacteriologic cultivation techniques, came the first isolation and identification of etiologic 

agents (Satcher, 1995). Identification of the life cycle and reservoir of specific 

microorganisms, coupled with improvements in food and water safety, hygiene and 

sanitation, nutrition and housing, and later the discovery of effective antimicrobial therapy 

and introduction of vaccination and disinfectants, led to major improvements in public 

health in the late 19th and early 20th century (Satcher, 1995; Cohen 2000; Fauci, 2001). 

However, declaration of victory against the threat of infectious diseases has befallen to 

realisation of the enormity of the challenges that lie ahead (Fauci, 2001). The optimism of 

the 1960s and 1970s has given way to a mature realism that the relationship between 

human beings and microbes is neither completely predictable nor biased in favour of 

humans (Zambon and Nicholson, 2003). Indeed, infectious diseases remain rank third as the 

leading cause of death worldwide (World Health Organisation, 2004). A statistic that serves 

to reinforce that the history of infectious diseases has been a history of microbes on the 

march, often in the wake of human beings, and of microbes that have taken advantage of 

the rich opportunities offered them to thrive, prosper, and spread (Morse, 1995). Indeed, 

the historical processes that have given rise to the emergence of “new” infections 

throughout history continue today with unabated force; in fact, they are accelerating, 

because the conditions of modern life ensure that the factors responsible for disease 

emergence are more prevalent than ever before (Morse, 1995). 
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1.2. The Challenge of Emerging and Re -emerging Infectious Disease 
 
The emergence of novel infectious diseases within the past few decades has attracted 

extensive global attention in both the scientific community and general media. Severe acute 

respiratory syndrome (SARS) captivated the entire global health community and led to 

unparalleled international effort coordinated by the World Health Organisation (WHO) (Riley 

et al., 2003) to produce scientific and epidemiologic discoveries with unprecedented speed 

(Gerberding, 2003) in order to understand and contain the spread of the emerging public 

health threat. A pre-occupation with hitherto unknown infectious diseases emerged in the 

aftermath of the SARS epidemic, which at first glance seemed extravagant given the massive 

immediate health burdens imposed by old scourges such as tuberculosis and malaria 

(Woolhouse and Gaunt, 2007). An obvious counter argument is the relatively recent advent 

of human immunodeficiency virus (HIV), the causative agent of acquired immunodeficiency 

syndrome (AIDS), unrecognised less than a generation ago and yet now one of the world’s 

biggest killers (Woolhouse and Gaunt, 2007). AIDS, reinforced by knowledge of other 

plagues occurring throughout human history, is a reminder that the possibility that novel 

pathogens could emerge to challenge human progress and survival is real (Morens et al., 

2004; Woolhouse and Gaunt, 2007). Indeed, it is a paradox that despite technological 

advancement, human beings remain as vulnerable to new agents as early ancestors were to 

previous plagues (Hawkey et al., 2003).  

 
Emerging infectious diseases (EIDs) are defined as those infections that have newly appeared 

in a population or have existed but are rapidly increasing in incidence or geographic range 

(Morse and Schluederberg, 1990; Morse, 1993). New diseases have been emerging at the 

historically unprecedented rate of one or more per year since the 1970s (WHO, 2007) and 

this trend is certain to continue. Indeed, more than 100 new or newly identified human 

pathogens have been identified since 1973 (ProMED, 1994-2001; WHO, 1996, 1998; Institute 

of Medicine (IOM), 2009; Olano and Walker, 2011; van der Meijden et al., 2011). Table 1.1 

lists the major diseases or etiologic agents identified during this period. 
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Year Agent Year Agent 

2010 Trichodysplasia spinulosa (TS)-associated polyomavirus (TSV) 
1991 

Nosema ocularum 

Guanarito virus 

2009 Pandemic (H1N1) 2009 influenza Encephalitozoon hellem 

2008 Merkel cell polyomavirus (MCPyV) Ehrlichia chaffeensis 

2007 

Human Rhinovirus Group C (HRV-C) 

1990 

Vittaforma corneae 

KI virus Trubanaman virus 

WU virus Semliki Forest virus 

Melaka virus Reston Ebola virus 

2005 

Human T-lymphotropic virus 4 Gan gan virus 

Human T-lymphotropic virus 3 Banna virus 

Human coronavirus HKU1 
1989 

Hepatitis C virus 

Human bocavirus European bat lyssavirus 1 

2004 Human coronavirus NL63 Corynebacterium amycolatum 

2003 SARS-CoV* 1988 Picobirnavirus 

2002 Cryptosporidium hominis Barmah Forest virus 

2001 

Cryptosporidium felis 
1987 

Suid herpevirus 1 

Human metapneumovirus Sealpox virus 

Baboon cytomegalovirus Dhori virus 

2000 Whitewater Arroyo virus 

1986 

Rotavirus C 

1999 

TT virus Kokobera virus 

Nipah virus Kasokero virus 

Ehrlichia ewingii Human immunodeficiency virus (HIV)-2 

Brachiola algerae Human herpesvirus 6 

1998 

Trachipleistophora anthropophthera European bat lyssavirus 2 

Menangle virus Cyclospora cayetanensis 

Brachiola vesicularum 
1985 

Pleistophora ronneafiei 

1997 
Laguna Negra virus Enterocytozoon bieneusi 

Bartonella clarridgeiae Borna disease virus 

1996 

Usutu virus 
1984 

Scedosporium prolificans 

Trachipleistophora hominis Rotavirus B 

Metorchis conjunctus Human torovirus 

Juquitiba virus 

1983 

Human immunodeficiency virus (HIV) -1 

Ehrlichia canis Human adenovirus F 

New variant Creutzfeldt-Jacob disease (nvCJD) Hepatitis E virus 

Australian bat lyssavirus Helicobacter pylori 

Andes virus Capnocytophaga canimorsus 

1995 

New York virus Candiru virus 

Hepatitis G virus 

1982 

Seoul virus 

Côte d’Ivoire Ebola virus Human T cell lymphotrophic virus type II (HTLV-II) 

Black creek canal virus Escherichia coli O157:H7 

Bayou virus Borrelia burgdorferi 

1994 

Sabiá virus 1981 Microsporidian africanum 

Human herpesvirus 8 1980 Puumala virus 

Human herpesvirus 7 Human T cell lymphotrophic virus typeI (HTLV-I) 

Hendra virus 

1977 

Ebola virus 

Anaplasma phagocytophila Legionella pneumophila 

1993 

Sin Nombre virus Hantaan virus 

Gymnophalloides seoi Campylobacter sp. 

Encephalitozoon intestinalis 1976 Vibrio vulnificus 

Bartonella elizabethae Cryptosporidium parvum 

1992 
Dobrava-Belgrade virus 1975 Parvovirus B19 

Bartonella henselae 1973 Rotavirus 

 

 

 

 

 

 

Table 1.1. Examples of human pathogens recognised since 1973.  

Data taken from ProMED, 1994-2001 (http://fas.org/promed/); World Health Organisation (WHO), 1996 

(http://www.who.int/whr/1996/en/whr96_en.pdf); Institute of Medicine (IOM), 2009 

(http://www.iom.edu/Reports/2009/ZoonoticDisease.aspx); Olano and Walker (2011); van der Meijden et 

al., 2011. 

 

 

 

 

*Severe Acute Respiratory Syndrome-Associated coronavirus (SARS-CoV) 

 
 

http://fas.org/promed/
http://www.who.int/whr/1996/en/whr96_en.pdf
http://www.iom.edu/Reports/2009/ZoonoticDisease.aspx
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The concept, definitions, and concerns associated with emerging microbial threats were first 

encapsulated in the landmark publication Emerging Infections: Microbial Threats to Health in 

the United States by the IOM in 1992, which defined the major issues and described the 

principal causes and mechanisms leading to infectious disease emergence (Mackenzie, 

1998). This report provoked immediate response from the US Centres for Disease Control 

and Prevention (CDC) and WHO and engendered widespread debate within the scientific 

community (CDC, 1994; Morse, 1995; Satcher, 1995; Truyen et al., 1995; CDC, 1998; Ebel and 

Spielman, 1998; Mackenzie, 1998; Binder et al., 1999; Lashley, 2003). Many diverse factors 

contribute to the emergence or re-emergence of infectious diseases (Smolinski et al., 2003) 

(Table 1.2). These factors are not mutually exclusive and indeed several factors may 

contribute to emergence of a disease (Morse, 1995). 

 

 

 

 

 

 

 

 

 

 

In common with the IOM exists a growing recognition that zoonotic infectious agents have 

provided a key element for the emergence of infectious disease episodes in humans (Morse, 

1993, 1995; Osburn, 1996; Chomel, 1998; Murphy, 1998; Palmer et al., 1998; Daszak et al., 

2000). History is rich with examples of infections that originated as zoonoses suggesting that 

the “zoonotic pool” – introductions of viruses from other species – is an important and 

potentially rich source of emerging disease while periodic discoveries of “new” zoonoses 

suggest that the zoonotic pool is by no means exhausted (Morse, 1995). Indeed, a systemic 

literature review conducted in 2001 identified 1415 species of infectious organism known to 

be pathogenic to humans. Of these species, 868 (61%) were zoonotic. Whilst among 

emerging pathogens, 175 species (12%) were associated with disease in humans and of 

these 132 (75%) were zoonotic (Taylor et al., 2001). An updated version of this review was 

generated in 2005 (Woolhouse and Gowtage-Sequeira, 2005) and more recently in 2007 to 

provide a more complete picture of new species of human pathogen (Woolhouse and Gaunt, 

2007). The latter review encompasses human pathogen species discovered since 1980 and 

 
 

 

 

Microb ia l  adaptat ion and change  

Human suscept ib i l i ty  to  infect ion  

Cl imate and weather  

Changing ecosystems  

Human demograph ics  and behavi our  

Economic development and land use 

Internat ional  travel  and  commerce  

 

 

 

 

Technology and industry  

Breakdown of  publ ic  health  measures  

Poverty  and socia l  inequal i ty  

War and famine  

Lack  o f  po l i t ica l  wi l l  

Intent  to  harm  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.2. Factors in infectious disease emergence. 
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suggests that 1399 species of human pathogen exist (Woolhouse and Gaunt, 2007). The 

slight variation that exists between each review with regard to the number of species of 

human pathogen identified reflects changes in taxonomy and discoveries of previously 

unknown pathogens (Woolhouse and Gowtage-Sequeira, 2005) as well as the methodology 

used to perform each review. However, despite these variations it is clear that viruses 

triumph as emerging human pathogens. Indeed, viruses comprise the largest group of 

emerging human pathogens despite representing only a small fraction of all recognised 

human pathogen species (Woolhouse and Gaunt, 2007). Reports of novel virus species in 

humans are occurring at a rate of over two per year, a rate that exceeds that of any other 

group of pathogens (Woolhouse and Gaunt, 2007). However, the human race is not alone in 

its conflict with infectious menaces that threaten public health. Emerging infectious disease 

of wildlife poses a substantial threat to global biodiversity (Daszak et al., 2000). Historically, 

wildlife diseases were considered important only when the health of economically important 

domestic species or humans was threatened (Daszak et al., 2000). However, infectious 

disease in wildlife species is now recognised as a substantial global threat to be taken in 

earnest (Harvell et al., 1999; Daszak et al., 2000; Daszak et al., 2001; Williams et al., 2002; 

Bataille et al., 2009; Blehert et al., 2009; Kilpatrick et al., 2010; Robinson et al., 2010).  

 

1.3. The Paramyxoviridae : An Expanding Family of Important Viral Pathogens  
  
The family Paramyxoviridae includes some of the great and ubiquitous diseasing causing 

viruses (Lamb and Parks, 2007). These viruses are responsible for some of the most severe 

and contagious diseases of susceptible human beings and domestic and wildlife species 

worldwide including measles, canine distemper, and two economically important diseases of 

livestock: rinderpest, in bovine species, and peste des petits ruminants, in goats and sheep. 

The importance and breadth of this virus family has increased during the last two decades as 

new viruses have emerged (Dutch, 2010) both fortuitously and as a consequence of 

investigations subsequent to disease outbreaks (Wang and Eaton, 2001). The host range of 

viruses within the family Paramyxoviridae is typically limited and crossover events rare 

(Virtue et al., 2009). However, several new viruses have emerged as a result of spill-over 

events in wild species that are associated with a number of severe diseases of humans and 

animals (Moreno-López et al., 1986; Murray et al., 1995; Selvey et al., 1995; Philbey et al., 

1998; Barrett, 1999, Chua et al., 2000, Di Guardo, et al., 2005). These viruses, including 

canine distemper virus, Nipah and Hendra virus have proven an exception, displaying high 

virulence and a wide host range (Virtue et al., 2009). The propensity of a number of other 
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new viruses to cause human disease is unknown (Virtue et al., 2009). However, given the 

genetic similarity to known zoonotic paramyxoviruses the potential exists for them to cross 

the species barrier into new hosts including humans (Virtue et al., 2009).  

 

1.3.1. Canine Distemper Virus 
 
Canine distemper virus (CDV) is the causative agent of a lethal infectious disease of the 

domestic dog (Canis familiaris) that has been recognised for more than 200 years (Appel, 

1991). The host spectrum of CDV is broad and all families in the order Carnivora are 

susceptible to infection (Williams, 2001). The importance of this disease has increased with 

the expansion of the host range and the dramatic emergence of large-scale epizootics of 

canine distemper in captive (Appel, et al., 1994) and free-ranging felids (Harder et al., 1995; 

Kock et al., 1998; Morell, 1994; Roelke-Parker et al., 1996) fuelled by multiple spill-overs 

from sympatric carnivore species (Craft et al., 2009) and vaccine-induced infections in a wide 

variety of species (Bush et al., 1976; Carpenter et al., 1976; Bush and Roberts, 1977; 

Halbrooks et al., 1981; Itakura et al., 1979; Kazacos et al., 1981; Sutherland-Smith et al., 

1997). However, most crucial is the direct threat that the disease presents to the persistence 

of endangered susceptible wildlife species (Anderson, 1995) and the unexpected emergence 

of canine distemper in species with no known natural susceptibility to the virus including the 

collared peccary (Tayassu tajacu) (Appel et al., 1991; Noon et al., 2003), Japanese monkeys 

(Macaca fuscata) (Yoshikawa et al., 1989), rhesus monkeys (Macaca mulatta) (Sun et al., 

2010), (Barrett et al., 2004), Baikal seals (Phoca siberica) in Siberia (Grachev et al., 1989; 

Osterhaus et al., 1989; Mamaev et al., 1996) and Caspian seals (Phoca caspica) (Kennedy et 

al., 2000) in the Caspian Sea.  

 

1.3.2. Morbillivirus Infections in Aquatic Mammals 
 
Epizootics of infectious disease attributed to infections with three novel members of the 

genus morbillivirus: phocine distemper virus (PDV), porpoise morbillivirus (PMV) and dolphin 

morbillivirus (DMV) has lead to mass die-offs of several free-living pinniped and cetacean 

populations around the world (Di Guardo et al., 2005). These include harbour seals (Phoca 

vitulina) and grey seals (Halichoerus grypus) in Europe, (Kennedy et al., 1988; Osterhaus and 

Vedder, 1988; Osterhaus et al., 1988), Mediterranean monk seals (Monachus monachus) off 

the coast of Mauritania (Osterhaus et al., 1998), striped dolphins (Stenella coeruleoalba) in 

the Mediterranean Sea (Di Guardo et al., 1992; Domingo et al., 1990, 1992; Raga et al., 2008; 

Van Bressem et al., 1991, 1993), bottlenose dolphins (Tursiops truncatus) along the United 
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States coast (Krafft et al., 1995; Lipscomb et al., 1994a; 1994b; 1996; Shulman et al., 1997; 

Taubenberger et al., 1996), common dolphins in the black sea (Birkun et al., 1999) and long 

finned pilot whales (Globicephalus melas) (Fernández et al., 2008). Among the still debated 

or even controversial issues regarding morbillivirus infection in sea mammals, the one 

related to the origin of the causative agents remains a particular concern (Di Guardo et al., 

2005). It is suggested that other species of marine mammal including pilot whales 

(Globicephala melas) and harp seals (Phoca groenlandica) acted as reservoirs of infection 

while outbreaks of disease were triggered or influenced by the synergistic interaction of 

multiple environmental factors (Di Guardo et al., 2005). These include a number of 

environmental pollutants with special emphasis on certain organochlorine compounds such 

as polychlorinated biphenyls (PCBs), dioxins, and 4-4’dichloro-diphenyl-dichloroethane (4-

4’DDE) as well as on heavy metals (Di Guardo et al., 2005).  

 

1.3.3. Paramyxoviruses in Bats 
 
Bats are the natural reservoir for six recognised paramyxoviruses: Hendra and Nipah virus, 

the only known members of the new genus, Henipavirus, as well as Menangle virus, Tioman 

virus, bat parainfluenza virus, and Mapuera virus (Breed, 2008). At least three of these are 

able to infect humans and domestic animals. Ever-increasing human encroachment on 

natural habitats, combined with the ability of some bats to adapt to anthropogenic 

environmental changes has led to increased contact between bats, domestic animals and 

humans (Breed, 2008).  

 

1.3.4. Other Emerging Paramyxoviruses 
 
A number of other emerging paramyxoviruses remain unclassified within the family 

Paramyxoviridae by the International Committee on the Taxonomy of Viruses (ICTV) and the 

propensity of these viruses to cause human disease is unknown (Virtue et al., 2009) (Table 

1.6). Although these viruses have yet to be identified as causing human disease, the 

potential for cross-species transmission exists and genetic diversity in the viral genomes may 

provide clues as to the risk of zoonoses (Virtue et al., 2009). The emergence of new 

paramyxoviruses provides a unique opportunity to study novel and important diseases, 

extend knowledge of paramyxoviruses, and appreciate the diversity of viruses in this 

important family (Wang and Eaton, 2001).  
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Table 1.3. Paramyxoviruses of unknown zoonotic potential.  

 

Adapted from Virtue et al., (2009). 

Virus Genus Year Source of Isolation Host Range Reference 

Nariva virus Unclassified 1960s Short-tailed Cane Mouse (Zygodontomys B. Brevicauda), Eastern Trinidad Mice Tikasingh et al., (1966) 

Tupaia paramyxovirus Unclassified 1970s Southeast Asian tree shrew (Tupaia belangeri), Thailand Tree Shrew Tidona et al., (1999) 

Mossman virus Unclassified 1970s Bush Rat (Rattus fuscipes) & Cape York Rat (Rattus leucopus), Australia Rats Campbell et al., (1977) 

J virus Unclassified 1972 Moribund mice (Mus musculus), Australia Mice Jun et al., 1977; Mesina et al., (1974) 

Fer-de-Lance virus Unclassified 1972 Fer-de-Lance viper (Bothrops atrox), Switzerland Snakes Fölsch, D. W., P. Leloup. (1976) 

Mapuera virus Rubulavirus 1979 Little Yellow-shouldered Bat (Sturnira lilium), Brazil Bats Zeller et al., (1989) 

Salem virus Unclassified 1992 Horses, USA Horses Renshaw et al., (2000) 

Atlantic salmon paramyxovirus Unclassified 1995 Atlantic salmon (Salmo salar L.), Norway Fish Kvellestad et al., (2003) 

Beilong virus Unclassified 2005 Human mesangial cells, China Rodents (?) Li et al., (2006) 

Tuhoko virus 1, 2, 3 Unclassified 2000s Leschenault’s Rousette (Rousettus leschenaultii), China Bats Lau et al., (2010) 
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1.4. Human metapneumovirus 
 

1.4.1. Discovery of a New Virus 
 

1.4.1.1. Virus isolation and characterisation 
 
Over a 20-year period, researchers in the Netherlands identified a virus in nasopharyngeal 

aspirate (NPA) samples taken from 28 epidemiologically unrelated children suffering from 

respiratory tract infection (RTI) (van den Hoogen et al., 2001). The cytopathic effect (CPE) 

induced by this virus on cultured cells was virtually indistinguishable from that caused by 

human respiratory syncytial virus (HRSV) with characteristic syncytia formation followed by 

the rapid internal disruption and subsequent detachment of cells from the monolayer (van 

den Hoogen et al., 2001). However, routine diagnostic studies performed by a combination 

of direct immunofluorescence assay (DFA) and indirect immunofluorescence assay (IFA) 

failed to detect common viral agents of RTI including HRSV, human parainfluenza virus 

(HPIV) types 1-3 and influenza virus types A and B (van den Hoogen et al., 2001). Negative 

contrast electron microscopy revealed the presence of pleomorphic particles in the range of 

150-600 nm, with short envelope projections in the range of 13-17 nm while nucleocapsids 

were rarely observed, suggestive of a paramyxovirus (van den Hoogen et al., 2001) (Figure 

1.1). Furthermore, consistent with the biochemical properties of enveloped viruses including 

the Paramyxoviridae, standard chloroform treatment resulted in a 10,000-fold reduction in 

infectivity, infected cell culture supernatant did not display haemagglutinating activity with 

turkey, chicken or guinea pig erythrocytes and virus replication was dependent on trypsin in 

cell cultures. These combined virological data indicated that this earlier undiscovered virus 

was a member of the family Paramyxoviridae (van den Hoogen et al., 2001).   

 
Reverse transcription polymerase chain reaction (RT-PCR) analyses using specific primer sets 

for known paramyxoviruses including HPIV types 1-4, mumps virus (MuV), measles virus 

(MeV), HRSV, simian virus type 5 (SV-5), Sendai virus (SeV) and Newcastle disease virus 

(NDV) were performed at low stringency in order to detect potentially related viruses. 

However, the virus-specific primers failed to amplify a genomic signal indicating that this 

new virus was distinct from those viruses for which the primer sets had been selected. 

Furthermore, virus-specific antisera raised in experimental ferrets and guinea pigs did not 

react in IFA with cells infected with a panel of paramyxoviruses and orthomyxoviruses (van 

den Hoogen et al., 2001). The identity of this agent remained elusive.  
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1.4.1.2. Ribonucleic acid arbitrarily primed polymerase chain reaction 

 
Identification of this newly discovered virus was accomplished by the generation of simple 

and reproducible ribonucleic acid (RNA) fingerprints of the complex viral genome using short 

primers of arbitrary nucleotide sequence and the polymerase chain reaction (PCR) (Welsh 

and McClelland, 1990). The method, RNA arbitrarily primed PCR (RAP-PCR), involves two 

cycles of low stringency complementary deoxyribonucleic acid (cDNA) synthesis followed by 

PCR amplification at higher stringency to amplify the products (Welsh and McClelland, 1990; 

Welsh et al., 1992). No prior sequence information is required. Instead, this method uses 

primers chosen without regard to the sequence of the genome to be fingerprinted (Welsh 

and McClelland, 1990). First strand cDNA synthesis by reverse transcription is initiated from 

an arbitrarily chosen primer at sites in the RNA that best match the primer. Second-strand 

synthesis is initiated by extension of the same arbitrarily primer site at sites of adequate 

match on the first-strand cDNA product by using Taq polymerase. The products of cDNA 

synthesis serve as templates for high stringency PCR and displayed on a gel as a fingerprint 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1. Negative-stain electron micrographs of human metapneumovirus.  

The centre image shows 5 pleomorphic HMPV particles; note the projections along the periphery 

of the viruses. The upper left and lower right insets show the nucleocapsid and filamentous rod-

like particle, respectively. Staining was done with 2% phosphotungstic acid (PTA). Bar markers 

represent 100 nm (Peret et al., 2002). 
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representing between 10 and 50 RNA molecules, depending on the choice of arbitrary 

primer. Any differences in the pattern produced by a primer in different RNA populations 

reflect abundance differences in individual RNAs. Many fingerprints can be displayed on a 

single gel, allowing the simultaneous comparison of abundances for several hundred RNAs 

(Ralph et al., 1993). To this end, van den Hoogen et al. (2001) infected tertiary monkey 

kidney (tMK) cells with either the novel virus or HPIV type-1 as a control. Propagated virus 

was concentrated from the supernatant by ultracentrifugation on a 20-60% sucrose 

gradient. The gradient fractions were then inspected for the presence of virus particles by 

electron microscopy and polyacrylamide gel electrophoresis followed by silver staining. Only 

fractions that appeared to contain nucleocapsids were retained for RNA isolation and RAP-

PCR. Twenty differentially displayed fragments specific for the unidentified virus were 

purified, cloned, and sequenced. Comparison of nucleotide and amino acid (aa) sequences 

with published sequences in the GenBank® genetic sequence database using the Basic Local 

Alignment Search Tool (BLAST) software (www.ncbi.nlm.nih.gov/BLAST) revealed 10 

fragments displayed resemblance to avian metapneumovirus (AMPV), also known as avian 

pneumovirus (APV) and turkey rhinotracheitis (TRTV), the etiological agent of a highly 

contagious upper respiratory disease in turkeys and swollen head syndrome in chickens 

(Cook, 2000). These 10 fragments were located in the genes coding for the nucleocapsid (N) 

protein,  the matrix (M) protein, the fusion (F) protein and the large polymerase (L) protein 

(van den Hoogen et al., 2001). Completion of sequence information for the 3’ end of the viral 

genome was achieved by designing primers based on the partial sequence information 

available for isolate 00-1 identified from the RAP-PCR fragments, and published leader and 

trailer sequences for the Pneumovirinae (van den Hoogen et al., 2001). Analysis of the 

sequences of these fragments revealed the absence of open reading frames (ORFs) of the 

non-structural proteins NS1 and NS2 at the extreme of the 3’ end of the viral genome and 

positioning of the putative F-ORF immediately adjacent to the putative M-ORF. In contrast to 

the genomic organisation of pneumoviruses, metapneumoviruses lack NS1 and NS2 genes 

while different genes occupy a position between genes M and L. The absence of ORFs 

between the M and F genes and the lack of NS1 and NS2 genes adjacent to the N gene in this 

new virus was consistent with the genomic arrangement of AMPV. Furthermore, genetic 

analysis of the translated sequences for the putative N, M, P, and F genes revealed that this 

virus displayed a high percentage of sequence homology to the recently proposed genus 

Metapneumovirus (average of 66%) as compared to the genus Pneumovirus (average of 

30%). This agreement led to the provisional classification of this novel virus as the first 

mammalian member of the genus Metapneumovirus and was named human 

http://www.ncbi.nlm.nih.gov/BLAST
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metapneumovirus (HMPV) (van den Hoogen et al., 2001). Formal classification of this virus 

within the subfamily Pneumovirinae and the genus Metapneumovirus was approved by the 

ICTV in 2005 (Fauquet et al., 2005). The Pneumovirinae are represented by the genera 

Pneumovirus and Metapneumovirus (Fauquet et al., 2005) (Figure 1.2). 
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Figure 1.2. Evolutionary relationships of the family Paramyxoviridae.  

Phylogenetic majority-rule consensus tree based on a combined cluster alignment of nucleocapsid 

and phosphoprotein amino acid sequences of selected family members. Viruses are grouped 

according to genus and abbreviated as follows: RPV: rinderpest virus, MeV: measles virus, CeMV: 

cetacean morbillivirus, PDV: phocine distemper virus, CDV: canine distemper virus; HeV: Hendra 

virus, NiV: Nipah virus; HPIV1: human parainfluenza virus type 1, HPIV3: human parainfluenza virus 

type 3, SeV: Sendai virus, BPIV3: bovine parainfluenza virus type 3; NDV: Newcastle disease virus; 

MuV: Mumps virus, HPIV2: human parainfluenza virus type 2, HPIV4A/B: human parainfluenza 

virus type 4 A/B, SV-5: simian parainfluenza virus type 5, SV-41: simian parainfluenza virus type 41; 

oRSV: ovine respiratory syncytial virus, BRSV: bovine respiratory syncytial virus, HRSV: human 

respiratory syncytial virus, MPV: murine pneumonia virus; AMPV: avian pneumovirus, HMPV: 

human metapneumovirus.  
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1.4.2. Anonymous until now…but why? 
 

Analysis of human serum samples collected in 1958 revealed that HMPV has been 

widespread in the human population for at least 50 years (van den Hoogen et al., 2001). It is 

therefore not surprising that the question has arisen why this increasingly important 

respiratory pathogen has remained elusive until now, especially in an era of advanced 

molecular technology (Domachowske, 2003). Van den Hoogen et al., (2001) attribute the 

anonymity of HMPV in part to its poor replication in continuous cell lines that are used by 

many diagnostic virology laboratories for virus isolation. Second, HMPV displays very slow 

replication kinetics in vitro in contrast to other human respiratory viruses. Indeed, van den 

Hoogen et al., (2001) reported cytopathic effects were visible 10-14 days post-inoculation 

while Boivin et al., (2002) noted that cytopathic effects were apparent after an incubation 

time of between 3-23 days (mean 17.3 days). Chan et al., (2003) observed cytopathic effects 

after 10 to 22 days incubation and suggest prolonged incubation to 28 days may improve the 

sensitivity of detection. Third, replication of HMPV in vitro appeared to be trypsin dependent 

and many of the earlier studies to find respiratory pathogens did not use trypsin. Finally, 

HMPV exhibits low nucleotide sequence homology with other members of the family 

Paramyxoviridae allowing HMPV to escape detection under low-stringency PCR conditions 

dependent on cross-reactivity with primers designed to amplify known viral sequences (van 

den Hoogen et al., 2001). Domachowske et al., (2003) suggest the most common reason for 

“false-negative” viral diagnostic evaluations is sub-optimal collection and processing of 

clinical samples. Ideally, samples collected for viral cultures should be obtained by nasal 

wash or nasal aspirate, placed on ice for transport to the clinical virology laboratory, freshly 

inoculated onto appropriate cell monolayers, and incubated at 33C. Respiratory viral 

pathogens, particularly pneumoviruses, are exquisitely temperature sensitive. HRSV for 

example becomes increasingly difficult to culture from clinical samples following overnight 

refrigeration or a single cycle of freeze-thawing. Even when they are processed and stored in 

an optimal fashion, rescuing pneumoviral isolates from clinical samples becomes increasingly 

difficult over time. However, of worth noting is the observation by van den Hoogen et al., 

(2001) of the CPE induced by HMPV in tMK cells. In the initial report, van den Hoogen et al., 

(2001) observed that the cytopathic effects induced by HMPV are virtually indistinguishable 

from HRSV, with characteristic syncytia formation followed by the rapid internal disruption 

and subsequent detachment of cells from the monolayer. However, other studies, notably 

those of Boivin et al., (2002) and Chan et al., (2003), failed to replicate the findings of the 

original study. These latter studies identified a CPE characterised by small, round, refringent 
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cells, without syncytia formation in most cases. The CPE progressed slowly to detachment 

from the cell monolayer (Chan et al., 2003). Furthermore, all studies to date have isolated 

HMPV at 37C. However, isolation of respiratory viruses requires incubation at 33C. The 

failure of these studies to confirm a consistent CPE may relate to the genetic variation 

between HMPV isolates. Van den Hoogen et al., (2004a) have identified that viruses 

genetically related to the prototype strain NL/1/100 (serotype A) revealed cytopathic effects 

more clearly on tMK cells than viruses related to prototype strain NL/1/99 (serotype B). 

Indeed, in search of a cell line similarly susceptible for both types a subclone of Vero cells 

was generated. Vero cell clone 118 was permissive for infection with viruses from all four 

lineages, and cytopathic effects were easily observed (van den Hoogen et al., 2004a).  

 

1.4.3. Virus Structure and Genome Organisation  
 

The subfamily Pneumovirinae and in particular HRSV and AMPV have provided substantial 

insight into the structure and genomic organisation of HMPV. The virion consists of a helical 

nucleocapsid contained within a lipid bilayer envelope that is derived from the plasma 

membrane of the host cell (Easton et al., 2004) (Figure 1.3). Inserted into the envelope of all 

members of the subfamily Pneumovirinae are three transmembrane surface glycoproteins, 

an attachment glycoprotein (G) that differs from haemagglutinin-neuraminidase (HN) and 

haemagglutinin (H) attachment proteins in that it has neither haemagglutination nor 

neuraminidase activity, a F protein, and a small hydrophic (SH) protein (Bossart and Broder, 

2011; Easton et al., 2004). Inside the envelope is the approximately 13,000 nucleotide single-

stranded negative sense RNA genome that is encapsidated with the N protein and contains 

eight genes in the order 3’-N-P-M-F-M2-SH-G-L-5’ that encode nine different putative 

proteins (van den Hoogen et al., 2002; Biacchesi et al., 2003) analogous to HRSV (Figure 1.4) 

and AMPV. The N protein and the genome RNA form the ribonuclease (RNase) resistant 

nucleocapsid core to which the phosphoprotein (P) and L protein are attached (Lamb and 

Parks, 2007). This complex of proteins termed the ribonucleocapsid complex (RNP) has RNA-

dependent RNA transcriptase activity and initiates intracellular virus replication (Lamb and 

Parks, 2007). In addition, the genome contains non-coding 3’ leader and 5’ trailer sequences 

and intergenic regions (Herfst et al., 2004). The viral promoter is contained within the 3’- 

terminal 57 nucleotide of the genome (Biacchesi et al., 2004a).  
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Residing between the envelope and the core is the viral M protein that is highly hydrophobic 

in character. This protein is important in virion architecture and is released from the core 

during virus entry (Lamb and Parks, 2007). The M2 gene is unique to members of the 

subfamily Pneumovirinae (van den Hoogen et al., 2002). The M2 gene of HMPV contains two 

overlapping ORFs that encode 2 proteins, M2-1, and M2-2 (Buchholz et al., 2005). Evidence 

suggests that M2-1 ORF is dispensable for virus recovery and replication in vitro. This 

presents a sharp contrast to HRSV M2-1 that is essential for viral transcription and 

replication (Buchholz et al., 2005). However, expression of M2-1 was required for detectable 

replication in vivo (Buchholz et al., 2005). M2-2 also was dispensable for growth in vitro but 

expression of the protein appears to have an authentic role in regulating RNA synthesis 

(Buchholz et al., 2005; Kitagawa et al., 2010) and maintaining genetic stability of the HMPV 

genome (Schickli et al., 2008). Thus, HMPV accessory protein M2-2 may be also a 

multifunctional protein (Kitagawa et al., 2010). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Schematic representation of the structure of members of the Pneumovirinae.  

Embedded in the lipid membrane are the attachment (G) glycoprotein, fusion (F) protein and small 

hydrophobic (SH) protein. Inside the virus is the negative-stranded virion RNA that is encapsidated 

with the nucleocapsid protein (N). The phosphoprotein (P) and large polymerase (L) protein are 

associated with the N protein and together this complex has RNA-dependent RNA transcriptase 

activity. The idealised illustration is adapted from Lamb and Parks (2007).  
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1.4.3.4. The attachment glycoprotein 
 
The organisation of the HMPV G protein is consistent with that of an anchored type II 

transmembrane protein although the G protein shares no discernible sequence identity at 

the nucleotide or aa level with other virus genes or gene products (van den Hoogen et al., 

2002). The amino (N)-terminus contains a hydrophilic cytoplasmic domain followed by a 

single short hydrophobic region and a mainly hydrophilic extracellular carboxy (C)-terminus 

(van den Hoogen et al., 2002). The high content of serine and threonine residues, potential 

sites for O-glycosylation in combination with an unusual abundance of proline residues 

confirms a heavily glycosylated mucin-like structure for the HMPV G protein (Peret et al., 

2004), which is consistent with HRSV and AMPV (van den Hoogen et al., 2002). The finding 

that the HMPV G protein is synthesised as an N-glycosylated intermediate form and 

subsequently processed to a mature form, which contains extensive O-linked carbohydrates, 

provides authentication of initial predictions of the structural features of the HMPV G 

protein that were made solely on the basis of sequence analysis (Liu et al., 2007a).  

 

 

 

 

 

 

 

 
Figure 1.4. Comparison of the genomic maps (not to scale) and encoded proteins of respiratory 

syncytial virus and human metapneumovirus positioned to align the 5’ end of the genome.  

Genes are represented as rectangles identified according to the encoded protein; in the case of 

M2, the overlapping open reading frames (ORFs) are illustrated and identified. HRSV encodes 

eleven separate proteins. In contrast to the genomic organisation of pneumoviruses, 

metapneumoviruses lack NS1 and NS2 genes while different genes occupy a position between 

genes M and L. Abbreviations: Le: Leader, NS1 and NS2: non-structural proteins 1 and 2, N: 

nucleoprotein, P: phosphoprotein, M: matrix protein, SH: small hydrophobic protein, G: 

attachment protein, F: fusion protein, M2-1: M2 OFR1 protein, M2-2: M2 ORF2 protein; L: large 

polymerase protein, Tr: trailer. M2-1 and M2-2 proteins of Pneumovirinae are regulatory proteins. 

M2-1 functions as a transcription elongation factor and M2-2 as a RNA synthesis regulatory factor 

in HRSV. Evidence suggests M2-2 is also essential for efficient HMPV replication but the function of 

M2-1 is not completely understood as M2-1 is not essential for virus viablity. The idealised 

illustration is adapted from Collins and Crowe (2007). 
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1.4.3.2. The fusion protein 
 

Analysis of the aa sequence of the HMPV F protein revealed 81% sequence identity with 

AMPV-C, 67% with AMPV-A and -B, 33–38% with other pneumovirus F proteins, and only 

10–18% with other members of the Paramyxoviridae (van den Hoogen et al., 2002). Despite 

the low sequence homology with other members of the family Paramyxoviridae, the F 

glycoprotein of HMPV appears to be similar in overall structure and function to those of the 

more highly characterized prototypic members Paramyxovirinae, such as NDV and SeV 

(Biacchesi et al., 2006). The prototypic Paramyxoviridae F protein is a type I integral 

membrane protein that spans the membrane once and contains an N-terminal cleaved signal 

peptide and a C-proximal hydrophobic transmembrane (TM) domain that anchors the 

protein in the membrane leaving a short cytoplasmic tail that extends into the cytoplasm 

(Lamb and Parks, 2007; Miller et al., 2007).  

 

1.4.3.3. The small hydrophobic protein 
 

The HMPV SH protein, similar to its HRSV counterpart is a predicted type II integral 

membrane protein that is anchored by a hydrophobic signal/anchor sequence proximal to 

the hydrophilic N-terminus and a hydrophilic extracellular C-terminus (Biacchesi et al., 2003; 

van den Hoogen et al., 2002). The SH protein of HMPV is the largest known to date among 

the Pneumoviridae (179 aa for the Canadian HMPV isolate CAN97-83, versus 174 aa for 

AMPV A, 81 aa for BRSV, and 64 aa for HRSV A) (Biacchesi et al., 2003; van den Hoogen et al., 

2002). The function of the SH protein is not completely understood but a potential role in 

regulating host immune responses is suggested (Bao et al., 2008).   
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1.4.4. The Replication Strategy of the Paramyxoviridae 
 

1.4.4.1. Viral Adsorption and Entry 
 

All aspects of the replication of Paramyxoviridae occur in the cytoplasm (Lamb and Parks, 

2007) (Figure 1.5). The process commences upon adsorption of the virus to the cellular 

receptor on the plasma membrane of a receptive host cell at the neutral pH found at the cell 

surface. Entry into target cells is mediated by the attachment glycoprotein (G, H or HN) and 

the F protein which is responsible for fusion between the virion envelope and the host cell 

plasma membrane (Smith et al., 2009). However, the attachment protein G of members of 

the subfamily Pneumovirinae may not be obligatory for attachment and viral entry in all 

cases (Smith et al., 2009). Indeed, recombinant HMPV lacking the viral attachment 

glycoprotein (∆G) can enter cells and proliferate in vitro (Biacchesi et al., 2004b; Biacchesi et 

al., 2005) and in vivo in a permissive nonhuman primate host, the African green monkey 

(Cercopithecus aethiops) (Biacchesi et al., 2005). Thus, it appears that the HMPV F protein 

alone is sufficient to mediate attachment and fusion in the absence of other surface proteins 

(Biacchesi et al., 2004b). Recent evidence suggests that the HMPV F protein engages αvβ1 

integrin receptor, a heterodimeric cell-surface molecule, as a functional receptor to mediate 

virus entry (Cseke et al., 2009). These findings also raise the important question of what 

triggers the F protein to initiate fusion since interactions with the attachment protein clearly 

do not control fusion initiation (Dutch, 2010). In fact, exposure to low pH triggers membrane 

fusion mediated by the HMPV F protein (Schowalter et al., 2006) while electrostatic 

repulsion in the heptad repeat B (HRB) linker region contributes to the triggering process 

(Schowalter et al., 2009). However, it is unlikely that exposure to low pH is a general trigger 

of the HMPV F protein for membrane fusion (Herfst et al., 2008). Recent examination of the 

biological significance of low pH fusion in virus entry suggests that HMPV utilises the 

endocytic entry mechanism (Schowalter et al., 2009). The low pH environment encountered 

after the endocytosis of HMPV may be an important physiological trigger of the F 

conformational change that results in subsequent membrane fusion (Schowalter et al., 

2009). Endosomal entry could offer protection to viruses from the host immune system and 

in combination with lowered pH provide unique environments that assist in productive 

infection (Smith et al., 2010). 
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Figure 1.5. Schematic representation of the life cycle of members of the family Paramyxoviridae.   

Adsoption of the virion to the plasma membrane is followed by fusion of the viral envelope with 

the host cell plasma membrane and delivery of the nucleocapsid into the cytoplasm. Dotted lines 

denote the post translation intracellular transport of nucleocapsid (N) and matrix (M) proteins to 

the plasma membrane and the attachment (G), fusion (F) and small hydrophobic (SH) viral 

glycoproteins from the endoplasmic reticulum (ER) to Golgi body to plasma membrane. Progeny 

virions are released from the plasma membrane by budding. The idealised illustration is adapted 

from Lamb and Parks (2007). 
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1.4.4.2. Viral RNA Synthesis 
 
The consequence of the fusion reaction is that the helical nucleocapsid containing the single-

stranded negative sense RNA genome is released into the cytoplasm (Lamb and Parks, 2007). 

At early times of infection, this genome directs the synthesis of (+) leader and viral 

messanger RNA (mRNA). After translation of the primary transcripts and accumulation of the 

viral proteins, the (-) sense genome is replicated to produce a full-length complimentary 

copy, called the antigenome, which is found only in a form that is assembled with N protein. 

After synthesis, the antigenomic RNA is used as a template to direct synthesis of genomic 

RNA. These progeny (-) sense genomes can serve three subsequent functions: as a template 

for mRNA synthesis in a phase called “secondary transcription”, as a template to produce 

additonal antigenomes, or for incorporation into progeny virions during the budding process 

(Lamb and Parks, 2007). The viral gene junctions of members of the Paramyxoviridae that 

modulate transcription can be divided into three segments: a gene end (GE) region at the 3’ 

end of the upstream gene, the intergenic region (IG) between the two genes that is normally 

not transcribed, and a gene start (GS) region for the downstream 5’ gene. The GE region 

contains a signal directing the viral RNA polymerase to terminate transcription while 

reinitiation of transcription is directed by sequences at the downstream GS site. The 

frequency of reinitiation is not perfect and not every viral RNA polymerase that terminates 

at a GE remains on the template to reinitiate transcription at the next GS. This imperfect 

reinitiation leads to a gradient of mRNA abundance that decreases according to distance 

from the 3’ genome end (Lamb and Parks, 2007).  

 

1.4.4.3. Virion Assembly and Release 
 
Our understanding of the replication of HRSV provides a framework to generate hypotheses 

regarding early virus assembly events in HMPV replication (Derdowski et al., 2008). Progeny 

virions are formed by a budding process from cellular membranes (Harrison et al., 2010). 

Infectious particles will form only after all the structural components of the viruses including 

viral glycoproteins and viral RNP have assembled at selected sites on infected cell plasma 

membranes in preparation for particle budding (Harrison et al., 2010). Viral M proteins are 

the organisers of this assembly process. These highly abundant viral proteins bind directly to 

cellular membranes and occupy a central position that allows interaction both with viral RNP 

cores and with viral glycoproteins via the cytoplasmic tails. Thus, M proteins are adapters 

that link together the structural components of virions, driving their assembly (Harrison et 

al., 2010). 
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1.4.5. Laboratory Diagnosis 
 

1.4.5.1. Cell Culture..... 
 

The initial report by van den Hoogen et al., (2001) identified that HMPV replicated slowly in 

tertiary monkey kidney (tMK) cells, very poorly in Vero (African green monkey kidney) and 

human lung adenocarcinoma (A-549) cells and could not be propagated in Madin Darby 

canine kidney (MDCK) or chicken embryo fibroblasts (CEF) cells (van den Hoogen et al., 

2001). In a later study, Boivin et al., (2002) inoculated respiratory specimens onto the 

following continuous cell lines: human laryngeal carcinoma (HEp-2), human foreskin 

fibroblast, Vero, Mink Lung, A-549, human rhabdomyosarcoma (RD), transformed human 

kidney (293), and human colon adenocarcinoma  (HT-29), MDCK and rhesus monkey kidney 

(LLC-MK2). The virus grew only on LLC-MK2 cells. Peret et al. (2002) recovered HMPV in LLC-

MK2 but no cytopathic effect was noted in MDCK or human pulmonary mucoepidermoid 

carcinoma (NCI-H292) cells. Chan et al., (2003) inoculated multiple cell lines including LLC-

MK2, HEp-2, MCDK, human embryonic lung fibroblast, Buffalo green monkey kidney (BGM) 

and Vero monolayers with respiratory specimens. A cytopathic effect of focal refractile 

rounding of cells developed in LLC-MK2 monolayers but was not observed in HEp-2, MCDK, 

human embryonic lung fibroblast, BGM, and Vero cell monolayers. However, in contrast to 

these previous studies Chan et al., (2003) used RT-PCR in combination with conventional 

virus isolation to enhance the detection of HMPV in each cell line. With this combination 

approach, Chan et al., (2003) revealed that HEp-2 and MDCK in addition to LLC-MK2 support 

the growth of HMPV. Furthermore, this study showed the sensitivity of RT-PCR in 

combination with conventional virus isolation was greater than direct detection of HMPV in 

NPA by RT-PCR alone. Chan et al., (2003) retrospectively examined 25 NPA samples 

previously positive for HMPV by RT-PCR alone and in combination with conventional virus 

isolation using HEp-2, LLC-MK2 and MDCK cell monolayers. All first round PCR products 

derived from direct NPA samples were negative for HMPV indicating nested PCR was 

required in order to determine the status of the samples. Overall, the sensitivity of direct 

detection of NPA samples by HMPV RT-PCR was only 8%. In contrast, 88% of those first 

round PCR products derived from cell cultures were positive for HMPV. Furthermore, Chan 

et al., (2003) identified that HEp-2 cell monolayers were superior to LLC-MK2 and MDCK cell 

lines for the isolation of HMPV with 88% of HEp-2 cultures positive for HMPV by RT-PCR 

while HMPV was detected in only 24% of LLC-MK2 cell cultures and 8% of MDCK cell 

cultures.  
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To ascertain that cell cultures with HMPV RT-PCR positive results represented the isolation 

of HMPV, all LLC-MK2, HEp-2, and MDCK cell cultures were passaged to LLC-MK2 cells for 

prolonged incubation of 28 days. The results showed that all passages from HMPV RT-PCR 

positive cell cultures showed a characteristic cytopathic effect of focal refractile rounding of 

cells without syncytia formation that occurred after 10 to 22 days of incubation that 

progressed slowly to detachment from the cell monolayer (Figure 1.6) (Chan et al., 2003). 

The supernatants of these passages were also positive by HMPV RT-PCR and had visible viral 

particles on electron microscopic examination (Chan et al., 2003). The passages from HMPV 

RT-PCR negative supernatants did not show positive results by the aforementioned tests 

(Chan et al., 2003). However, these findings do not present an effective argument towards a 

recommendation to discard LLC-MK2 cells in favour of HEp-2 cells since in 12% of cases 

HMPV was isolated from LLC-MK2 cells alone (Chan et al., 2003). Subsequent studies have 

demonstrated that human bronchiolar epithelial cells (16HBE140) are superior to LLC-MK2 

for the isolation of virus from nasopharyngeal secretions even in the absence of exogenous 

trypsin (Ingram et al., 2006) and more recently, a cell line derived from human hepatoma 

(HepG2) was shown to support replication of HMPV to high titres (Schildgen et al., 2010).  

 

1.4.5.2. Immunofluorescence 
 

The immunofluorescent antibody test is a rapid and inexpensive method that is commonly 

utilised within routine diagnostic virology laboratories for the rapid detection of respiratory 

viruses in clinical samples and confirmation of the presence of viruses in cell culture. 

Development of specific monoclonal antibodies (MAbs) to HMPV is an important advance in 

the field of rapid direct diagnosis of respiratory tract viral infections (Percivalle et al., 2005). 

The practical difficulties inherent in the routine isolation of HMPV from clinical samples 

(Reina et al., 2007) confirm that virus culture is not suited to timely diagnosis of this 

important respiratory pathogen in a clinical setting. However, implementation of 

immunofluorescent staining of shell vial centrifugation cultures (SVCC) with a specific murine 

monoclonal antibody (MAb-8) to HMPV matrix protein has achieved greater success in the 

rapid diagnosis of respiratory tract infection caused by this virus (Ingram et al., 2006; Landry 

et al., 2005; Reina et al., 2007). Indeed, detection of HMPV in A549, HEp-2, and LLC-MK2 

SVCC was achieved by MAb-8 staining on day 2 post-inoculation offering a great advantage 

over conventional culture methods (Landry et al., 2005) with LLC-MK2 and HEp-2 displaying 

100%  and 68.7% sensitivity, respectively (Reina et al., 2007).  
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Figure 1.6. Cytopathic effect of human metapneumovirus in rhesus monkey kidney cell monolayers.   

(A) Early cytopathic effect (CPE) of human metapneumovirus (HMPV) in rhesus monkey kidney 

(LLC-MK2) cell monolayers. A focus of infected cells that exhibit refractile rounding is indicated by 

an arrow (100X). (B) Late CPE of HMPV in LLC-MK2 cell monolayers. Infected cells progressed slowly 

from focal rounding to detachment from cell monolayer is indicated by an arrow (100X) (Chan et 

al., 2003). Available from URL: http://www.cdc.gov/ncidod/EID/vol9no9/03-0304.htm. 
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In contrast, the use of MAb-8 in staining clinical samples proved less successful due to non-

specific background staining (Landry et al., 2005) though the problem of non-specific 

staining was not limited to the use of MAb-8 (Ebihara et al., 2005; Percivalle et al., 2005). 

Indeed, the application of immunofluorescent antibody tests using specific MAbs to the 

detection of HMPV antigens in nasopharyngeal secretions for the rapid diagnosis of HMPV 

infection has achieved variable success. In a study comparing IFA with RT-PCR for detection 

of HMPV in nasal secretions from 48 hospitalised children with respiratory tract infections, 

Ebihara et al., (2005) found IFA results were positive for 11 of the 15 RT-PCR-positive 

children (sensitivity, 73.3%) and 1 of the 33 RT-PCR-negative children (specificity, 97.0%). 

Similarly, Percivalle et al., (2005) showed sensitivity and specificity of 73.9% and 94.1%, 

respectively for DFA staining of nasopharyngeal aspirates using RT-PCR as a reference 

method. However, the choice of MAbs in these early studies was limited and based on the 

ability of antibodies to stain virus in cell cultures (Fenwick et al., 2007). In contrast, later 

studies reported results comparable to those obtained by RT-PCR (Landry et al., 2008; 

Manoha et al., 2008; Vinh et al., 2008; Zhang et al., 2009) to allow immunofluorescence 

testing to retain a clinical advantage over PCR as a first-line test (Landry et al., 2008). 

Nevertheless, DFA testing is manual and requires a committed, well-trained, expert staff and 

results are highly laboratory dependent (Landry et al., 2008). This is exemplified in three 

separate evaluations of a commercially manufactured DFA kit for the detection of HMPV (D³ 

DFA Metapneumovirus Identification Kit; Diagnostic Hybrids, Athens, OH, USA). Vinh et al., 

(2008) and Zhang et al., (2009) achieved comparable sensitivities of 90% and 95.2% and 

specificities of 100% and 100%, respectively. However, with a sensitivity of 62.5% and 

specificity of 99.8%, a marked variation in the performance of the DFA kit was attained in the 

third evaluation (Aslanzadeh et al., 2008).  

 
1.4.5.3. Serology....... 
 

Serological testing only permits a retrospective diagnosis (Hamelin et al., 2004). Since 

infection is almost universal in childhood, a seroconversion or a  4-fold increase in antibody 

titres must be demonstrated to confirm recent infection (Hamelin et al., 2004). Numerous 

studies have concentrated efforts towards the serological diagnosis of HMPV infection. 

Serological tests have been based on the indirect immunofluorescence assays or enzyme-

linked immunosorbent assays (ELISA) using HMPV infected tMK (Boivin et al., 2002; Ebihara 

et al., 2003; Ebihara et al., 2004c; van den Hoogen et al., 2001), Vero (Wolf et al., 2003; 

Zhang et al., 2008) or LLC-MK2 cells (Falsey et al., 2003) or recombinant viral proteins (Leung 
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et al., 2005; Hamelin et al., 2005). In a different study, Falsey et al. (2003) developed an 

ELISA by coating microtitre plates with the lysate of HMPV infected LLC-MK2 cells. In a 

recent study, Alvarez et al. (2004) described the generation of 2 unique antibody reagents 

for the identification of metapneumoviruses using three different common diagnostic 

techniques: western blotting, ELISA, and immunohistochemistry (IHC). The first antibody 

reagent, anti-N protein10-29 antibody is the first reagent described that detects all members 

of the genus Metapneumovirus. The second antibody reagent, monoclonal antibody 22B3 is 

the first reagent described that differentiates HMPV and avian metapneumovirus group C 

from avian metapneumovirus group A and B (Alvarez et al., 2004).    

 

1.4.5.4. Reverse-transcription polymerase chain reaction 
 

The difficulties associated with conventional cell culture as a method of detection and the 

absence of specific diagnostic reagents designed for this purpose led to the need for a 

reliable, sensitive, and rapid diagnostic method. RT-PCR and real-time RT-PCR are two 

techniques that have fulfilled this requirement. These techniques provide the ultimate 

detection system at present. However, as the story of HMPV continues to unfold the 

associated demands on these techniques continue to grow. The detection of HMPV by RT-

PCR in initial studies relied on primers directed toward the L gene (Peiris et al., 2003; 

Stockton et al., 2002), F gene (Boivin et al., 2002; Esper et al., 2003; Peret et al., 2002), M 

gene, (Boivin et al., 2002; Peiris et al., 2003) and N gene (Freymuth et al., 2003; Peret et al., 

2002). These initial studies demonstrated RT-PCR assays directed at these genes were 

capable of detecting this novel virus. Indeed, several studies using primers targeting the L 

gene, (Peret et al., 2002; Stockton et al., 2002), F gene (Pelletier et al., 2002; Peret et al., 

2002; Boivin et al., 2002), and N gene (Peret et al., 2002) detected viruses from two distinct 

genetic lineages designated A and B. Yet, no systematic evaluation was conducted in this 

intense early period to determine the most appropriate gene target or the limits of 

sensitivity of such different RT-PCR assays to ensure optimal detection of both the identified 

genetic lineages of HMPV. However, Cote et al. (2003) performed a comparative evaluation 

of real-time RT-PCR assays that were designed to amplify the N, M, F, P, and L genes in order 

ascertain the best diagnostic target for the optimal detection of HMPV. In the first 

evaluation of 20 viral cultures exhibiting a cytopathic effect characteristic of HMPV, the PCR 

positivity rates were 100, 90, 75, 60, and 55% using a primer and probe set directed at the N, 

L, M, P, and F genes, respectively. Due to the superior sensitivity of the primers targeting the 

N gene, a thorough evaluation of this real-time RT-PCR assay was undertaken. In this second 
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evaluation, 10 NPA specimens from children with bronchiolitis previously positive by the 

real-time RT-PCR assay targeting the N gene were tested by those real-time RT-PCR assays 

designed to target the L, M, P and F genes. The positivity rates for the L, M, P, and F genes 

were 90, 60, 30, and 80%, respectively. This study showed that real-time RT-PCR assays 

based on N and L gene sequences of HMPV demonstrated the greatest diagnostic potential 

probably because they targeted more conserved regions of the genome (Cote et al., 2003). 

Mackay et al. (2003) identified the diagnostic potential of real-time RT-PCR assay for the 

detection of this new virus in an earlier study. In this study, 329 NPA samples from patients 

with respiratory symptoms for which an etiologic agent was not initially detected were 

tested by a novel conventional RT-PCR assay. The design of the oligonucleotide primer set 

was based on the N gene sequence of HMPV. Of the 329 samples, 32 (9.7%) were HMPV 

positive by this assay. To reduce the turn-around time of the conventional RT-PCR assay the 

existing primer set was combined with a fluorogenic TaqMan oligoprobe. This real-time RT-

PCR detected HMPV in an additional 6 out of 62 samples (9.6%) during a comparison of the 

two diagnostic methods (Mackay et al., 2003). 

 
A study by van den Hoogen et al., (2004b) showed that the two major genetic lineages of 

HMPV identified in earlier studies each comprised two sublineages designated A1, A2, B1, 

and B2. This discovery demanded the invention of a real-time RT-PCR assay with the capacity 

to detect all genetic sublineages of HMPV described to date. Maertzdorf et al. (2004) 

examined the influence of mismatches in primer and probe sequences described in earlier 

studies by Mackay et al. (2003) and van den Hoogen et al. (2003) on the capacity of these 

primers and probes to detect all four genetic lineages of HMPV. The results obtained 

indicated that the primer and probe sequences for the N gene (Mackay et al., 2003) and L 

gene (van den Hoogen et al., 2003) did amplify target sequences of HMPV belonging to 

lineage A but not lineage B. Entropy plots of oligonucleotide annealing sites in the N and L 

genes of HMPV were created with the entropy algorithm available from the BioEdit software 

programme (http://www.mbio.ncsu.edu/BioEdit/bioedit.html). The entropy plots showed 

mismatches of the primer and probe sequences with the target sequences indicating why 

the primer and probe sequences described by Mackay et al. (2003) and van den Hoogen et 

al. (2003) targeted at the N and L genes, respectively, failed to successfully detect of all four 

genetic lineages of HMPV (Maertzdorf et al., 2004). The primers and probes described by 

Mackay et al. (2003) and van den Hoogen et al. (2003) were designed on the basis of limited 

sequence information primarily available for HMPV belonging to lineage A. Hence, 

http://www.mbio.ncsu.edu/BioEdit/bioedit.html
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mismatches between primer and probe sequences and the respective target sequences 

were most severe for viruses belonging to lineage B (Maertzdorf et al., 2004).  

 
The recent identification of a further bipartition of subgroup A2 (Huck et al., 2006) reiterates 

that there is still much to discover about this novel virus. Even RT-PCR and real-time RT-PCR, 

methods widely used and indeed heavily relied upon due to the improved sensitivity of 

these techniques present continuous challenges. Studies of the heterogeneity of HMPV 

indicate the importance of optimisation of RT-PCR and real-time RT-PCR protocols in order 

to ensure optimal detection of HMPV. It is clear that there is no room for complacency. As a 

solution to these diagnostic difficulties, Chan et al. (2003) present an algorithm for the 

detection of HMPV that incorporates RT-PCR in combination with conventional virus 

isolation to enhance detect HMPV. This combination approach may enable genetic lineages 

of HMPV that remain undiscovered at present to be identified.     

 

1.4.6. Clinical importance 
 

Acute respiratory tract infection (ARTI) is a leading cause of morbidity and mortality with a 

global burden of disease (GBD) estimated at 94 037 000 disability adjusted life years (DALYs) 

and 3.9 million deaths (WHO, 2002). Acute respiratory tract infections are the most common 

illnesses regardless of age or gender (Monto, 2002). The burden of these infections is not 

only in the loss of lives. Acute respiratory tract infections are a substantial drain on meagre 

health resources. The viruses primarily associated with ARTI in children and adults include 

influenza A and B viruses, HPIV types 1, 2, and 3, HRSV, adenovirus, and human rhinovirus 

(HRV) (Mahony, 2008). Nevertheless, the aetiology of a substantial number of these 

infections remains unknown (Davies et al., 1996; Nokso-Koivisto et al., 2002; Ruiz et al., 

1999; Wright et al., 1989). Our assumption has been that the gap is attributable to a 

combination of the insufficient sensitivity of available diagnostic techniques and the 

existence of undiscovered respiratory pathogens. Both of these assumptions turn out to be 

correct (McIntosh and McAdam, 2004). This gap in sensitivity was considerably narrowed 

following the introduction of PCR to the diagnosis of viruses. In contrast, gaps associated 

with undiscovered respiratory pathogens remained largely unfilled (McIntosh and McAdam, 

2004). After the discovery of human coronavirus (HCoV) 229E and HCoV OC-43 in the 1960s, 

there was hope that other members of the family Coronaviridae would account for some of 

the undiscovered respiratory pathogens (McIntosh and McAdam, 2004). Yet, until the abrupt 

arrival of SARS-CoV, these viruses received relatively little attention as human pathogens 
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(Arden et al., 2005). However, the discovery of HMPV and the novel HCoV strains NL63 and 

HKU1, represent a significant advance in the investigation of human respiratory tract disease 

(Kahn, 2006).  

 
The identification of HMPV in children suffering from respiratory tract illness in the 

Netherlands in 2001 (van den Hoogen et al., 2001) sparked an intense flurry of international 

activity to identify this new virus as the aetiology of respiratory tract infections previously 

relegated to the "undiagnosed" category (McIntosh and McAdam, 2004) (Table 1.4). HMPV 

has rapidly emerged as a seemingly important cause of both upper and lower respiratory 

tract infections in otherwise healthy children, the elderly and immunocompromised patients 

but is a position on the list of respiratory pathogens justified? In order to establish with a 

high degree of certainty that HMPV causes ARTI, it is necessary to evaluate the evidence 

proposed in studies conducted to date. However, it is not possible to consider the 

information on its own merit since any evidence that exists to link HMPV to ARTI is purely 

circumstantial. It is therefore necessary to consider this evidence with reference to Koch’s 

postulates in order to prove to sceptics that a causal link between HMPV and ARTI does 

indeed exist.  
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Table 1.4. Detection of human metapneumovirus in patients in all age groups with respiratory tract infection 

 

Location Period of study Population No. patients tested No. positive patients Peak Age Peak Period Reference 

Canada Dec 01-Apr 02 All ages, RTI 862 20 (2.3%) 35% <5yrs Feb 02 Boivin et al., (2002) 

Hong Kong Aug 01 – Mar 02 18 yrs, ARTI 587 32 (5.5%) 3 – 72 months spring-summer Peiris et al., (2003) 

The Netherlands Sept 00 – Feb 02 All ages, RTI 681 47 (7%) 4 – 6 months Dec – Jan 02 van den Hoogen et al., (2003) 

Germany Jan 02 – May 02 <2 yrs, RTI 63 11 (17.5%) <2 years Jan – Apr 02 Viazov et al., (2003) 

Canada Dec 01 – Apr 02 3 yrs, ARTI 208 12 (5.8%) 3 – 5 months Mar – Apr 02 Boivin et al., (2003) 

Italy 

Jan 00 – May 02 

2000 

2001 

2002 

 

1– 24 months, ARTI 

 

 

19 

41 

30 

 

7 (37%) 

3 (7%) 

13 (43%) 

 

1– 24 months 

 

Jan – May Maggi et al., (2003) 

USA Oct 01 – Feb 02 <5 yrs, RTI 296 19 (6.4%) 2.5 – 58.8 months Jan – Feb 02 Esper et al., (2003) 

France Nov 01 – Feb 02 Children, ARTI 337 19 (6.6%) 3 months – 12 yrs Dec – Jan 02 Freymuth et al., (2003) 

Canada Oct 01 – Apr 02 All ages, ARTI 445 66 (14.8%) 2 months – 93 yrs Feb – Mar 02 Bastien et al., (2003) 

USA Aug 00 – Sept 01 5, ARTI 641 26 (3.9%) 6 – 24 months Jan – Apr 01 Mullins et al., (2004) 
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1.4.6.1. Koch’s postulates 
 
Koch’s postulates were formulated in 1886 by Robert Koch as guidelines to establish a 

standard for identifying the specific causation of an infectious disease (Falkow, 2004; Walker 

et al., 2006). However, the fundamental limitations of Koch's postulates are no more 

apparent than when applied to obligate parasites. Indeed, since viruses propagate by 

usurping cellular machinery so propagation in pure culture is simply not possible (Fredericks 

and Relman, 1996). A notable example is herpes simplex virus. This virus will not grow in cell-

free culture but is unequivocally pathogenic (Fredericks and Relman, 1996). Similarly, HIV 

exhibits a host range that is restricted to humans, thereby making impossible or unethical 

the fulfilment of the third postulate (Fredericks and Relman, 1996) (Table 1.5). 

 
 
 
 
 
 
 
 

  

 

 

In recognition of the weight of evidence supporting the notion that viruses cause specific 

diseases and the inability of Koch's postulates to incorporate this evidence, the original 

postulates (Fredericks and Relman, 1996) were modified by Thomas Rivers in 1937 to 

establish a causal relationship between a virus and a disease (Table 1.6) (Osterhaus et al., 

2004). If Koch’s postulates, as modified by Rivers for virus diseases (Osterhaus et al., 2004), 

are considered in relation to evidence of disease causation by HMPV then fulfilment of the 

first three criteria, namely the isolation of the virus from diseased hosts, cultivation in host 

cells and proof of filterability, was achieved early in the discovery of HMPV. 

 

 
 

The parasite occurs in every case of the disease in question and under circumstances can 

account for the pathological changes and clinical course of the disease. 

The parasite occurs in no other disease as a fortuitous and non-pathogenic parasite. 

After being fully isolated from the body and repeatedly grown in pure culture, the parasite can 

induce the disease anew. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.5. Koch’s original postulates.  

 

Adapted from Fredericks and Relman (1996).   

 

 

 
 

1. Isolation of the virus from diseased hosts 

2. Cultivation in host cells 

3. Proof of filterability 

4. Production of a comparable diseases in the original host species or a related one 

5. Re-isolation of the virus  

6. Detection of a specific immunoresponse to the virus 

 

 

 

 

 

Table 1.6. Koch’s postulates as modified by Thomas Rivers (1937).  

 

 

 Adapted from Osterhaus et al., (2004). 
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1.4.6.2. Isolation of the virus from diseased hosts 
 
The first step to establish a causal link between a virus and a disease is to isolate the virus 

from the diseased host. However, the virus must occur in the sick individual not as an 

incidental or accidental finding but as the cause of the disease under investigation (Rivers, 

1937). If the initial study conducted by van den Hoogen et al., (2001) is considered HMPV 

was isolated from nasopharyngeal aspirates taken from 28 epidemiologically unrelated 

children in the Netherlands suffering from RTI during a period of 20 years. All NPA samples 

were previously tested as part of routine investigations for the presence of HPIV types 1–3, 

HRSV and influenza virus types A and B by DFA and virus isolation. Samples showing a CPE 

after 2 or 3 passages that were negative by DFA were tested by IFA using virus-specific 

antibodies against influenza virus types A, B and C, HRSV, HPIV types 1–4, MeV, MuV, SeV, 

SV-5, and NDV. However, while a CPE was identified in cell cultures, routine investigations 

failed to identify an aetiological agent. Therefore, it was reasonable to suggest even at this 

very early stage in the discovery of HMPV that a tenable link was visible between the virus 

and a disease i.e. ARTI. Later studies confirmed that HMPV was associated with RTI in 

patients with respiratory illnesses not caused by other respiratory viruses (Table 1.7). It is 

interesting to note the increased detection rates of HMPV within retrospective studies 

compared to prospective studies, an observation that is consistent with a degree of selection 

bias (Principi et al., 2006) toward patients with respiratory tract disease without an 

aetiological diagnosis. However, it is essential not to overlook the importance of 

retrospective studies since these studies not only show that HMPV is associated with 

respiratory tract infection in symptomatic individuals but that this virus is frequently 

associated with respiratory tract disease. 

 
A further point worthy of consideration is the method used to detect HMPV. Several of these 

studies use RT-PCR or real-time RT-PCR for the detection of HMPV. However, the application 

of these highly sensitive nucleic acid amplification techniques to the diagnosis of infectious 

diseases has raised concerns about the frequency of RNA detection in non-symptomatic 

patients and the persistence of nucleic acid and therefore positivity after recovery from 

illness (Hayden, 2006). It is known that respiratory viruses can persist for prolonged periods 

in the nasopharyngeal tract without symptoms (Larcher et al., 2005). Due to the possible 

long-term persistence of nucleic acids, an increasing number of studies have used a 

combination approach based on cell culture and nucleic acid amplification techniques to 

detect active RTI with HMPV (Williams et al., 2004; Larcher et al., 2005). In this way, it is 

possible to provide evidence for the role of HMPV as a new respiratory pathogen and 
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convince sceptics that this newly identified virus is capable of causing disease. Nevertheless, 

in the quest to streamline routine diagnostic services many laboratories have replaced tissue 

culture in favour of nucleic acid amplification techniques. Hence, it is increasingly important 

to establish the appropriate interpretation of a positive result especially when attempting to 

provide an unambiguous establishment that a new pathogen is central to a disease process 

(Gao and Moore, 1996). Indeed, Falsey et al., (2006) evaluated nasal secretions from adults 

with and without respiratory illness by RT-PCR to determine if rates of detectable RNA were 

significantly higher among ill subjects compared to controls. The virus was detected in 5 of 

146 (3.4%) symptomatic adults while 0 of 158 control subjects tested positive for HMPV 

between January and April 2004, a period during which HMPV activity was expected based 

on previous epidemiological studies (Falsey et al., 2006). Whilst data on asymptomatic 

carriage of HMPV is currently limited due to the relatively recent discovery of HMPV, these 

findings confirm those of other studies that asymptomatic carriage of HMPV is an 

uncommon event (Boivin et al., 2003; Bruno et al., 2009; Rohde et al., 2005; Williams et al., 

2004; van den Hoogen et al., 2004) even during periods of peak activity. This strengthens the 

causal link between the detection of HMPV and RTI (Falsey et al. 2006). Nevertheless, it 

appears that mild infection characterised by a serological response is relatively common 

(Walsh et al., 2008) particularly in young healthy adults. Indeed, 9.5% of healthy adults <40, 

1.4% of healthy adults ≥ 65 years and 1.5% of high-risk adults without respiratory symptoms 

had evidence of HMPV infection based on serologic responses during the 1999–2001 winter 

seasons (Falsey et al., 2003). In a further study, evidence of asymptomatic infection with 

HMPV was identified in 71% of healthy adults aged 19-40 years, 44% of healthy adults ≥ 65 

years, and 39% of high-risk adults by serological testing (Walsh et al., 2008). It is perhaps not 

surprising that asymptomatic infection with HMPV was most evident in young healthy adults 

since contact with children was greatest within this cohort (Falsey et al., 2003; Walsh et al., 

2008). These findings suggest that asymptomatic carriage of HMPV might provide a 

neglected source of viral transmission in the community (Bruno et al., 2009). 

 

1.4.6.3. Cultivation in host cells 
 
Despite the difficulties associated with the isolation of HMPV by cell culture, successful 

propagation of this virus from a variety of respiratory specimens in a limited range of 

permissive cells is achievable. HMPV replicates efficiently in LLC-MK2 and Vero cell lines 

(Deffrasnes et al., 2005). Subsequent studies have demonstrated that 16HBE140 are 

superior to LLC-MK2 for the isolation of virus from nasopharyngeal secretions even in the 
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absence of exogenous trypsin (Ingram et al., 2006) while HepG2 was shown to support 

replication of HMPV to high titres (Schildgen et al., 2010).  

 

1.4.6.4. Proof of filterability 
 
HMPV was concentrated from infected tMK-cell supernatants by ultracentrifugation on a 

20–60% sucrose gradient (van den Hoogen et al., 2001). Gradient fractions were inspected 

for the presence of virus-like particles by negative contrast electron microscopy and 

revealed the presence of pleomorphic particles in the range of 150-600 nm, with short 

envelope projections in the range of 13-17 nm (van den Hoogen et al., 2001) suggestive of a 

paramyxovirus. Consistent with the properties of several members of the Paramyxoviridae 

nucleocapsids were rarely observed (van den Hoogen et al., 2001). These combined 

virological data indicated that this earlier undiscovered virus was a member of the family 

Paramyxoviridae (van den Hoogen et al., 2001).  

 

1.4.6.5. Production of a comparable diseases in the original host species or a related one 
  
In order to determine whether HMPV is a primary human pathogen or an avian pathogen 

that can also infect humans experimental infection of birds and cynomolgus macaques 

(Macaca fascicularis) was performed (van den Hoogen et al., 2001). The conjunctivae and 

respiratory tracts of four juvenile turkeys, four juvenile chickens, and four juvenile 

cynomolgus macaques were inoculated with 50,000 TCID50 (50% tissue culture infectious 

dose) of HMPV (van den Hoogen et al., 2001). None of the birds showed clinical signs or virus 

replication as determined by RT-PCR using RNA isolated from throat and cloacal swabs (van 

den Hoogen et al., 2001) although the cross-species pathogenicity of HMPV was later 

demonstrated in turkey poults (Velayudhan et al., 2006). In contrast, the virus replicated 

efficiently in the respiratory tract of all four monkeys as shown by RT-PCR of RNA isolated 

from throat swabs and 2 monkeys presented with mild upper respiratory tract signs that 

upon histological analysis proved to be associated with suppurative rhinitis (van den Hoogen 

et al., 2001).  

 
Subsequent experimental infection of cynomolgus macaques established that viral 

replication was restricted to the respiratory tract and associated with minimal to mild, multi-

focal erosive and inflammatory changes in conducting airways (Kuiken et al., 2004) and so 

substantiated that HMPV is a human respiratory pathogen (Kuiken et al., 2004).  
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Studies to identify other non-human primate models that efficiently support the replication 

of HMPV in the respiratory tract demonstrated HMPV sero-negative African green monkeys 

support replication of HMPV efficiently and produced high levels of neutralising antibody 

while only minimal virus replication was observed in rhesus monkeys (Macaca mulatta) 

(MacPhail et al., 2004). However, it also appears that the chimpanzee (Pan troglodytes) 

infected with HMPV represents the only “real” infection model (Schlidgen et al., 2007) 

following the findings that 19 of 31 (61%) captive chimpanzees were seropositive for HMPV 

while the remaining 12 animals (39%) were seronegative (Skiadopoulos et al., 2004). These 

surprising data indicate that chimpanzees are susceptible to natural infection with HMPV 

thus leading to the assumption that there is no species barrier between humans and 

chimpanzees regarding HMPV (Schlidgen et al., 2007). Indeed, a HMPV was the likely 

causative agent associated with a fatal respiratory disease outbreak in habituated wild 

chimpanzees (Kaur et al., 2008; Köndgen et al., 2008) and wild mountain gorillas (Gorilla 

beringei beringe) (Palacios et al., 2011). 

 

1.4.6.6. Re-isolation of the virus 
 
Six cynomolgus macaques were infected with 5.0 X 104 TCID50 of NL/1/100, the A1 prototype 

strain of HMPV (Kuiken et al., 2004). Clinical signs in HMPV-infected macaques were limited 

to rhinorrhoea, and corresponded with a suppurative rhinitis at pathological examination 

(Kuiken et al., 2004). Pharyngeal swabs were collected daily from 2 days post infection (dpi) 

until euthanisation or 10 dpi (Kuiken et al., 2004). Animals were euthanised at 5 (n = 2) or 9 

(n = 2) dpi, or monitored until 14 dpi (n = 2) (Kuiken et al., 2004). The virus was detected in 

pharyngeal swabs of one or more animals by RT-PCR (Kuiken et al., 2004). After an 

incubation period of 2 days at most, excretion of HMPV increased rapidly to a peak of 1.3 X 

106 TCID50/ml at 4 dpi, and then decreased gradually to zero at 10 dpi (Kuiken et al., 2004). 

The results of RT-PCR were confirmed by virus isolation (Kuiken et al., 2004). HMPV was re-

isolated from pharyngeal swabs collected at the peak of virus excretion of all six macaques 

(Kuiken et al., 2004). 
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1.4.6.7. Detection of a specific immunoresponse to the virus 
 
To determine the prevalence of HMPV within the human population, van den Hoogen et al. 

(2001) tested serum samples collected from different age groups. This analysis revealed that 

25% of children aged between 6 and 12 months in the Netherlands had antibodies to the 

virus and by 5 years of age virtually all children were seropositive (van den Hoogen et al., 

2001). Furthermore, analysis of archived serum samples collected in 1958 from humans aged 

8 to 99 years revealed a seroprevalence rate of 100%, indicating that HMPV has been 

circulating within the human population for at least 50 years (van den Hoogen et al 2001).  

 

1.4.7. Clinical manifestations of human metapneumovirus infection 
 
Preliminary data presented by van den Hoogen et al. (2001) indicated that among the 28 

children infected with HMPV the spectrum of clinical disease was largely similar to that 

associated with HRSV, ranging from mild upper respiratory tract disease to severe 

bronchiolitis and pneumonia, often accompanied by high fever, myalgia, and vomiting. 

Furthermore, some of the children required hospitalisation and mechanical ventilation. 

Subsequent studies have expanded this initial spectrum of disease associated with HMPV 

infection to include all age groups as well as risk factors for HMPV infection (Al-Sonboli et al., 

2006; Boivin et al., 2002; Esper et al., 2004; Falsey et al., 2003; Morrow et al., 2006; Paget et 

al., 2011; Robinson et al., 2005; Stockton et al., 2002; van den Hoogen et al., 2003; von 

Linstow et al., 2008; Walsh et al., 2008; Wilkesmann et al., 2006; Williams et al., 2004). Like 

other common human respiratory viruses, HMPV is associated with upper respiratory tract 

infection (URTI) (Kahn et al., 2006) as well as lower respiratory tract infection (LTRI) but 

there are also indications that the virus may have a predilection for the central nervous 

system (Arnold et al., 2009; Schildgen et al., 2005b). A number of factors are associated with 

increased risk of acquiring HMPV infection. These include a history of premature birth, 

underlying heart or lung disease, gastrointestinal reflux disease or aspiration, compromised 

immune system, exposure to household tobacco smoke or other indoor air pollution, older 

siblings, and birth in the spring (Al-Sonboli et al., 2006; Chen et al., 2010; McAdam et al., 

2004; Mullins et al., 2004; Pelletier et al., 2002; Robinson et al., 2005; von Linstow et al., 

2008; Wilkesmann et al., 2006; Williams et al., 2010). Furthermore, several studies have 

reported a trend toward male predominance in children with HMPV infection (Chan et al., 

2007; Esper et al., 2004; Ljubin-Sternak et al., 2008; McAdam et al., 2004; Morrow et al., 

2006; Peiris et al., 2003; Samransamruajkit et al., 2006; Williams et al., 2004) although this 

trend is not universal (Boivin et al., 2003; Pizzorno et al., 2010).  
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Hospitalised children with ARTI attributable to HMPV now represent the most extensively 

studied patient group (Hamelin et al., 2004). Estimates of the incidence rate of HMPV among 

children hospitalised with ARTI range from 2.5% to ≈ 15% (Table 1.7) although higher 

incidence rates have been observed (Caracciolo et al., 2008; Døllner et al., 2004; Maggi et 

al., 2003) that reflect the variable epidemiologic and molecular characteristics of virus. The 

virus is recognised as a leading cause of hospitalisation for ARTI in children <5 years of age 

(Williams et al., 2010). However, children <2 years of age are at greatest risk of 

hospitalisation (Beneri et al., 2009; Boivin et al., 2003; McAdam et al., 2004; Mullins et al., 

2004; Nicholson et al., 2006; Williams et al., 2010). Nevertheless, it is evident that children 

with HMPV infection are significantly older than children with HRSV infection (Baer et al., 

2008; Camps et al., 2008; Morrow et al., 2006; Mullins et al., 2004; Peiris et al., 2003; Wolf et 

al., 2006). This is attributed to longer-lasting maternal immunity to HMPV compared to HRSV 

or perhaps the pathogenesis of HMPV disease favours older children (Mullins et al., 2004).  

 
Most studies have focused almost exclusively on the aetiologic role of HMPV among 

hospitalised children with RTI in comparison to HRSV (Ali et al., 2010; Al-Sonboli et al., 2006; 

Boivin et al., 2004; Caracciolo et al., 2008; Foulongne et al., 2006; Morrow et al., 2006; 

Mullins et al., 2004; Oliveira et al., 2009; Viazov et al.,2003; Wolf et al., 2006), the most 

important cause of serious respiratory tract infection in infants and young children (Parrott 

et al., 1973). While risk factors for HMPV and HRSV hospitalisation appear to be similar 

(Robinson et al., 2005) controversy remains regarding the disease severity of HMPV 

compared with HRSV. Indeed, some studies reveal that infection with HRSV is associated 

with a more severe respiratory picture as evidenced by longer duration of symptoms (Viazov 

et al., 2003) or hospitalisation (Chan et al., 2007; Marguet et al., 2009) as well as more 

frequent admission to the intensive care unit (Boivin et al., 2003; Calvo et al., 2010), 

requirement for supplemental oxygen (Chan et al., 2007; van den Hoogen et al., 2003) or 

respiratory support (von Linstow et al., 2004). However, a growing number of reports exist 

that show that infection attributable to HMPV displays a clinical spectrum and disease 

severity that is indistinguishable from HRSV infection in hospitalised patients (Baer et al., 

2008; Mullins et al., 2004; Paget et al., 2011; Rigal et al., 2010; Sung et al., 2011; Viazov et 

al., 2003; Wilkesmann et al., 2006; Wolf et al., 2010). This underscores the clinical 

importance of HMPV which is now recognised as the second most frequent infectious 

aetiological agent in children hospitalised with RTI after HRSV (Foulongne et al., 2006; 

García-García et al., 2006a; Ginocchio et al., 2008; Madhi et al., 2007a; Noyola et al., 2005; 

Sarasini et al., 2006).  
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Period of study Population 
No. Patients 

Tested 

No. Positive 

Patients (%) 
Reference 

Aug 01 – Mar 02 18 yrs 587 32 (5.5) Peiris et al., (2003) 

Dec 01 – Apr 02 3 yrs 208 12 (5.8) Boivin et al., (2003) 

Jan 00 – May 02 
2000 
2001 
2002 

 
1– 24 

months 
 

 
19 
41 
30 

 
7 
3 

13 

 
(37) 
(7) 

(43) 

Maggi et al., (2003) 

Nov 01 – Feb 02 Children 337 19 (6.6) Freymuth et al., (2003) 

Jul 01 – Nov 01 

 

Children 75 4 (5) Jennings et al., (2004) 

Nov 02 – Apr 03 1 – 115 

months 

236 50 (21) Døllner et al., (2004) 

Aug 00 – Sept 01 5 yrs 641 26 (3.9) Mullins et al., (2004) 

Nov 02 – Mar 03 15 yrs 1019 42 (4.1) Bosis et al., (2005) 

Oct 02 – June 03 
July 03 – June 04 

<3 yrs 
131 
192 

8 
26 

(3.2) 
(8.4) 

Noyola et al., (2005) 

Oct 02 – May 03 

 

≤2 yrs 601 66 (11) Al-Sonboli et al., (2006) 

Dec 03 – Feb 05 <15 yrs 381 28 (7.3) Chung et al., (2006) 

Oct 00 – Jun 03 

 

<2 yrs 748 69 (9) García-García et al.,(2006a) 

Oct 00 – June 05 <2 yrs 1322 10

1 

(7.6) García-García et al., (2006b) 

Dec 03 – May 04 Children 306 40 (13.1) Sarasini et al., (2006) 

Nov 03 – May 04 
Nov 04 – May 05 

 

<5 yrs 
279 
499 

22 
32 

(7.8) 
(6.4) 

Bonroy et al., (2007) 

Sept 03 – Apr 05 <15 yrs 726 33 (4.5) Chan et al., (2007) 

Dec 02 – Apr 03 
May 03 – Apr 04 

<3 yrs 
375 
521 

38 
17 

(10.1) 
(3.3) 

Manoha et al., (2007) 

Oct 00 – Oct 07 <2 yrs 1612 10

9 

(6.8) Aberle et al., (2008) 

Oct 04 – Sept 06 <24 months 322 46 (14.3) Canducci et al., (2008) 

Oct 05 – Apr 06 
Oct 06 – Apr 07 

5 yrs 
154 
193 

39 
9 

(25.3) 
(4.7) 

Caracciolo et al., (2008) 

Jan 05 – Apr 07 <16 yrs 1214 10

2 

(8.4) Chung et al., (2008) 

Dec 03 – May 04 <5 yrs 326 8 (2.5) Kaplan et al., (2008) 

Dec 05 – Mar 06 ≤5 yrs 402 33 (8.2) Ljubin-Sternak et al., (2008) 

July 04 – June 07 ≤3 yrs 796 90 (11.3) Cilla et al., (2009) 

1987 – 2008 <2 yrs 3576 20

2 

(5.6) Aberle et al., (2010) 

Jan 07 – Mar 07 <5 yrs 743 44 (6) Ali et al., (2010) 

Oct 01 – Sept 03 <5 yrs 1104 42 (3.8) Willams et al., (2010) 

Nov 04 – Jan 08 <15 yrs 309 21 (7) Do et al., (2011) 

2004 – 2008 ≤3 yrs 240 20 (8.3) Zappa et al., (2011) 

Dec 08 – Dec 09 ≤15 yrs 575 29 (5) Zuccotti et al., (2011) 

 

 

 

 

 

 

Table 1.7. Incidence of human metapneumovirus among children hospitalised with acute 

respiratory tract infection.  
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1.4.7.1. Upper Respiratory Tract Infections 
 
The role of HMPV in the aetiology of URTI in otherwise healthy children was the focus of a 

retrospective study based over a 20-year period (Williams et al., 2006b). Children with URTI 

associated with HMPV presented with typical symptoms including fever, coryza, cough, 

hoarseness, otalgia, rhinitis, conjunctivitis, pharyngitis, and abnormal tympanic membrane 

(Williams et al., 2006b). These clinical symptoms were widely reported in addition to nasal 

congestion, rhinorrhoea, tachypnoea, dyspnoea, stridor, diarrhoea, febrile seizures, rash and  

feeding difficulties (Beneri et al., 2009; Boivin et al., 2002; Esper et al., 2003; Pelletier et al., 

2002; Peiris et al., 2003; van den Hoogen et al., 2003; Sloots et al., 2006).  

 
The crucial role of respiratory viruses in the aetiology and pathogenesis of acute otitis media 

(AOM) is well established (Bakaletz, 2010). Therefore, it is no surprise that HMPV is 

associated with AOM in children (Heikkinen et al., 2008; Schildgen et al., 2005a; Suzuki et al., 

2005; Williams et al., 2006a, b). Indeed, the high rate of AOM as a complication of HMPV-

associated RTI (Heikkinen et al., 2008; Williams et al., 2006b) suggests that HMPV is one of 

the major viruses predisposing children to AOM (Heikkinen et al., 2008). Moreover, the 

presence of HMPV in 8/144 (6%) of nasal wash specimens supports the role of HMPV in 

antecedent URTI that predisposes to the development of AOM (Williams et al., 2006a). A 

definitive role for HMPV in middle ear pathogenesis could not be established based on the 

finding of HMPV in 1/144 middle ear fluid (MEF) samples collected from children with AOM. 

Nevertheless, no bacterial pathogen was isolated from 2/8 (25%) children with HMPV 

infection suggesting HMPV may be associated with AOM as a sole pathogen (Williams et al., 

2006a). 

 

1.4.7.2. Lower Respiratory Tract Infections 
 
A longitudinal study conducted over a period of 25 years provided the first detailed insight of 

the aetiologic role of HMPV in LRTI among otherwise healthy children (Williams et al., 2004). 

HMPV is a frequent cause of hospitalisations among children with LRTI (Table 1.8) and is 

second only to HRSV as the viral aetiology of LRTI in hospitalised children in several studies 

(Chun et al., 2009; Escobar et al., 2009; Madhi et al., 2007a; Sung et al., 2011; Zucotti et al., 

2011). Clinical symptoms among children with HMPV infection of the lower respiratory tract 

are characterised primarily by preceding URTI, cough, coryza, fever, cyanosis, and dyspnoea 

and to a lesser extent irritability, anorexia, diarrhoea, and vomiting while signs of HMPV LRTI 

include tachypnoea, wheezing, retractions, rhonchi and  rales (Chen et al., 2007; Døllner et 
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al., 2004; Estrada et al., 2007; Morrow et al., 2006; Nascimento-Carvalho et al., 2011; 

Samransamruajkit et al., 2006; Thomazelli et al., 2007; Williams et al., 2004; Wolf et al., 

2006; Zucotti et al., 2011). The most frequent diagnoses in hospitalised children with LRTI 

attributable to HMPV are bronchitis, bronchiolitis, croup, pneumonia, exacerbation of 

bronchopulmonary dysplasia (BPD), and exacerbation of asthma (Boivin et al., 2003; Chen et 

al., 2010; Legrand et al., 2011; Ljubin-Sternak et al., 2008; McAdam et al., 2004; Mullins et 

al., 2004; Oliveira et al., 2009; Samransamruajkit et al., 2006; Williams et al., 2004; Williams 

et al., 2010).  

 
Chest radiography of the lungs of hospitalised children with HMPV LRTI reveal diffuse 

perihilar infiltrates (Figure 1.7), hyperinflation, peribronchial cuffing, bronchial wall 

thickening, focal consolidation and atelectasis (Esper et al., 2004; Morrow et al., 2006; 

Samransamruajkit et al., 2006; Williams et al., 2004; Wolf et al., 2006; van den Hoogen et al., 

2003) as the most common abnormalities. Some evidence exists that atelectasis is more 

common among children with HMPV infection in comparison to children with HRSV or 

influenza virus type A infections (Wolf et al., 2006), which may provide an important adjunct 

in the differential diagnosis of RTI in children.  

 

 

 

Period of study Population 
No. Patients 

Tested 

No. Positive 

Patients (%) 
Reference 

Apr 02 – May 02 
Apr 03 – May 03 

 
 

5 yrs 
111 
106 

27 
0 

(24) 
(0) 

Serafino et al., (2004) 

Sept 00 – Aug 05 ≤5 yrs 515 24  4.7) Choi et al., (2006) 

Mar 01 – Sept 03 Children 220 12 (5.4) Samransamruajkit et al., (2006) 

Nov 01 – Oct 02 <5 yrs 516 68 (13) Wolf et al., (2006) 

Jan 03 – Dec 03 <5 yrs 336 60 (17.8) Thomazelli et al., (2008) 

Jan 03 – Dec 04 

 

<2 yrs 545 56 (10.2) Escobar et al., (2009) 

Jan 03 – Dec 06 ≤5 yrs 1670 191 (11.4) Oliveira et al., (2009) 

Apr 06 – Mar 08 Children 878 227 (25.9) Chen et al., (2010) 

May – Nov 
2006 
2007 

<2 yrs 
 

208 
9 

 
17 
1 

 
(8.2) 

(11.1) 
Pizzorno et al., (2010) 

Oct 05 – Sept 07 

 

<3 yrs 440 66 (15) Singleton et al., (2010) 

Nov 02 – Mar 03 
Nov 03 – Mar 04 
Nov 04 – Mar 05 

Children 
1040 
263 

1112 

59 
17 
52 

(5.6) 
(6.4) 
(4.7) 

Legrand et al., (2011) 

Aug 08 – Aug 09 Children 169 13 (7.7) Sánchez-Yebra et al., (2011) 

Apr 07 – Dec 07 

 

<36 months 48 13 (27.1) Sung et al., (2011) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.8. Incidence of human metapneumovirus among children hospitalised with acute lower 

respiratory tract infection.  
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While it is clear that HMPV causes a similar range of clinical presentations to HSRV (Boivin et 

al., 2003; Morrow et al., 2006; Mullins et al., 2004; Sung et al., 2011; Wolf et al., 2006) 

debate exists regarding the primary manifestation of HMPV infection in hospitalised 

children. Evidence exists that bronchiolitis is the main syndrome associated with HMPV 

infection in hospitalised children (Bovin et al., 2003; Døllner et al., 2004; Williams et al., 

2004) while a diagnosis of pneumonia is made less frequently (Morrow et al., 2006). In 

contrast, other studies show that pneumonia is the primary manifestation of HMPV infection 

in this patient group (Camps et al., 2008; Samransamruajkit et al., 2006; Wolf et al., 2006). 

These variable results may reflect the capacity of the virus to cause a spectrum of lower 

respiratory illness with a tendency toward severe infection (Camps et al., 2008).  

 
1.4.7.3. Wheezing and Asthma 
 
A causative role of respiratory viruses in the initiation and progression of asthma remains a 

controversial issue (Kahn, 2006). While increasing evidence favours an association between 

HMPV infection and asthma exacerbation in children (Bosis et al., 2005; Freymuth et al., 

2003; Foulongne et al., 2006; Jartti et al., 2002; Peiris et al., 2003; Schildgen et al., 2004; 

Williams et al., 2004; von Linstow et al., 2004) support for this association is not universal 

(Rawlinson et al., 2003). Nevertheless, wheezing is a common symptom in children with 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7. Chest radiograph obtained in a six-month-old Infant with human metapneumovirus 

bronchiolitis showing hyperinflation and diffuse perihilar infiltrates.  

Image taken from Williams et al., (2004). 
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HMPV LRTI (Chen et al., 2010; Døllner et al., 2004; Esper et al., 2010; García-García et al., 

2006a; Pizzorno et al., 2010; Williams et al., 2004). The increased prevalence of asthma after 

hospital admission for wheezing in early childhood is well documented with HRSV the most 

frequently implicated (García-García et al., 2007). Limited data suggests that HMPV infection 

in infancy is one of the most significant independent factors for the development of pre-

school asthma (García-García et al., 2007). A possible mechanism for post-bronchiolitis 

disease is that HMPV might persist in the lung providing a stimulus that could contribute to 

wheezing and asthma (Liu et al., 2009). It is known that acute HMPV infection in the BALB/c 

mouse, a representative model of HMPV infection, is associated with long-term pulmonary 

inflammation that leads to significant obstructive disease of the airways (Hamelin et al., 

2006). Furthermore, primary HMPV infection elicits weak innate and aberrant adaptive 

immune reponses characterised by induction of a T helper (TH)2-type cytokine response at 

later stages of infection that coincides with increased interleukin-10 (IL-10) expression and 

persistent virus replication in the lung (Alvarez and Tripp, 2005). A recent study showed that 

HMPV mediates biphasic replication in respiratory epithelial cells and subsequently migrates 

to infect immune-privileged neuronal cells that innervate the lungs as a means to facilitate 

persistence (Liu et al., 2009). The implications of these findings are important in 

understanding HMPV disease sequelae and disease chronicity (Liu et al., 2009). 

 

1.4.7.4. Other manifestations of human metapneumovirus infection 
 
Although it is not yet confirmed there is increasing evidence that HMPV may be one 

causative agent rather than an innocent bystander and under hitherto unknown 

circumstances induces encephalitis (Schildgen et al., 2007). At present, definitive conclusions 

on possible direct effects of the virus on the central nervous system are limited to a case 

observation of fatal encephalitis in a child (Schildgen et al., 2005b). A possible etiologic 

relationship between HMPV and the observed neurological manifestations was based on the 

detection of post-mortem HMPV RNA in brain and lung tissue samples (Schildgen et al., 

2005b). Evidence of active inflammation in both the lung and brain tissues served to 

complement the virological findings further (Schildgen et al., 2005b). Other reports of HMPV 

infection with potential association to central nervous infection in children have failed to 

implicate the virus directly as a cause of neurological manifestations (Arnold et al., 2009; 

Glaser et al., 2006; Kaida et al., 2006; Hata et al., 2007). However, indirect effects of 

infection with HMPV on the central nervous system are more widely reported (Arnold et al., 

2008, 2009; IJpma et al., 2004; Kashiwa et al., 2004; Lau et al., 2006; Peiris et al., 2003; 
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Schildgen et al., 2005b). Indeed, Arnold et al., (2009) described 9 cases of neurological 

disease temporally associated with the presence of HMPV nucleic acid in the upper 

respiratory tract of children. In this study, seizures were more common in children with 

HMPV infection (6.3%) than those with HRSV infection (0.7%, P= 0.031) (Arnold et al., 2009). 

Similar findings were reported in an earlier study in which 25% of children with HMPV 

infection compared to 8% of children with HRSV infection suffered febrile seizures (Lau et al., 

2006). Peiris et al., (2003) also reported that HMPV may be an important cause of febrile 

seizures following the finding that 5/32 (15.6%) HMPV infected children suffered febrile 

seizures compared to 1/32 (3.1%) and 3/32 (9.4%) children with HRSV and influenza 

infection, respectively. Some children had multiple seizures during the same episode of 

HMPV infection (Peiris et al., (2003). The increased frequency with which febrile seizures 

occur among patients infected with HMPV in comparison to HRSV infection serves to 

highlight the potential importance of HMPV in central nervous system manifestations. 

Moreover, HMPV infection is frequently associated with high fever (>38oC) (Døllner et al., 

2004; Kashiwa et al., 2004; Takao et al., 2003), a clinical manifestation that may be caused 

by direct or indirect interaction of the virus with the central nervous system (Schildgen et al., 

2007). Indeed, HMPV infection possesses a capacity to frequently induce fever (Ali et al., 

2010; Bosis et al., 2005; Choi et al., 2006; Døllner et al., 2004; Esper et al., 2004; Peiris et al., 

2003; Samransamruajkit et al., 2006) that can exceed 39oC (Peiris et al., 2003; Takao et al., 

2003) and persist for longer than in children with other respiratory viruses (Peiris et al., 

2003; Kashiwa et al., 2004; Wang et al., 2006). However, these findings failed to attain 

statistical significance (Arnold et al., 2009; Kashiwa et al., 2004; Peiris et al., 2003). 

Ultimately, these findings are yet unsubstantiated and remain controversial. Whether HMPV 

spreads beyond the respiratory system during infection, remains to be determined (Kahn, 

2006). 
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1.4.8. Epidemiology 
 
1.4.8.1. Geographical and Seasonal Distribution  
 
Subsequent to the discovery of HMPV in 2001 (van den Hoogen et al., 2001), this novel 

respiratory virus has emerged as a human pathogen of worldwide importance (Figure 1.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8. Geographical distribution of human metapneumovirus.  

The virus has emerged as a human pathogen exhibiting worldwide distribution following the 

discovery of this virus in the Middle East (Al-Sonboli et al., 2005; Kaplan et al., 2008; Malekshahi et 

al., 2010; Rashid et al., 2008; Regev et al., 2006;), Africa (Berkley et al., 2010; El Sayed Zaki et al., 

2009; Fodha et al., 2004; Madhi et al., 2003), The Caribbean  (Matthew et al., 2009) North America 

(Boivin et al., 2002; Esper et al., 2003), Central America (Noyola et al., 2005; Ulloa-Gutierrez et al., 

2009), South America (Cuevas et al., 2003; Escobar et al., 2009; Galiano et al., 2004; Gray et al., 

2006; Pizzorno et al., 2010), Australasia (Abdullah Brooks et al., 2007; Arnott et al., 2011b; Chen et 

al., 2010; Do et al., 2011; Ebihara et al., 2004b; Kim and Lee, 2005; Li et al., 2009; Lin et al., 2005; 

Loo et al., 2007; Nissen et al., 2002; Peiris et al., 2003; Rao et al., 2004; Thanasugarn et al., 2003; 

Werno et al., 2004; Xiao et al., 2010), United Kingdom & Europe (Antunes et al., 2010; Baer et al., 

2008; Carr et al., 2005; Christensen et al., 2003;Freymuth et al., 2003; García-García et al., 2006; 

Jartti et al., 2002; Larcher et al., 2006; Ljubin-Sternak et al., 2008; Maggi et al., 2003; Pavlova et al., 

2009; Rafiefard et al., 2008; Sivaprakasam et al., 2007; Stockton et al., 2002; Tecu et al., 2007; van 

den Hoogen et al., 2001; Viazov et al., 2003; von Linstow et al., 2004; Xepapadaki et al., 2004). 
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In temperate regions of the world, a clear seasonal variation in the incidence of respiratory 

tract infections exists with the peak of activity occurring in the winter months. Despite the 

absence of a winter season in the tropics, consistent seasons of respiratory infection, albeit 

less distinct, exist (Shek and Lee, 2003). The seasonality of respiratory tract viruses is 

exemplified by HRSV and influenza virus that primarily circulate in the winter to early spring 

in temperate regions and in the late spring into the summer in the subtropics. In contrast, 

parainfluenza viruses and rhinoviruses remain endemic within the human population 

throughout the year though annual peaks of infection occurring in late autumn and winter, 

and early autumn and spring, respectively, coincide with the respiratory season in temperate 

regions (Monto and Cavallaro, 1971). Initial studies to determine the temporal pattern of 

HMPV infection were conducted within one or more typical respiratory seasons (Bastien et 

al., 2003; Boivin et al., 2003; Cuevas et al., 2003; Esper et al., 2003; Falsey et al., 2003; 

Freymuth et al., 2003; Nicholson et al., 2006; Stockton et al., 2002; Viazov et al., 2003). 

Hence, it was impossible to determine whether HMPV exhibited seasonal peaks of activity or 

circulated continually throughout the year. Subsequent surveillance studies conducted over 

one or more consecutive years revealed a pattern of alternating years of high and low 

incidence with the majority of HMPV infections occurring in late winter and spring in 

temperate zones of the southern and northern hemisphere and often concurrently with 

HRSV and influenza virus (Agapov et al., 2006; Baer et al., 2008; Esper et al., 2004; García-

García et al., 2006a; Kaida et al., 2006; Maggi et al., 2003; McAdam et al., 2004; Mullins et 

al., 2004; Oliveira et al., 2008; Robinson et al., 2005; Sloots et al., 2006; van den Hoogen et 

al., 2003). Although identification of HMPV infection in summer and autumn, albeit at low 

frequency, indicates that HMPV circulates throughout the year (Chano et al., 2005; Esper et 

al., 2004; Louie et al., 2007; McAdam et al., 2004; Mullins et al., 2004; Oliveira et al., 2009; 

van den Hoogen et al., 2003; Williams et al., 2004). In contrast, the peak of HMPV activity in 

a subtropical climate occurred in spring and the early summer months (Peiris et al., 2003; 

Wang et al., 2008). However, longitudinal studies provide the most detailed epidemiological 

picture to date of the seasonal distribution of HMPV infection in temperate climates (Aberle 

et al., 2008; Heininger et al., 2009; Rafiefard et al., 2008; Weigl et al., 2007). Indeed, these 

studies reveal that the epidemiology of HMPV differs markedly from other common 

respiratory viruses (Rafiefard et al., 2008) in that HMPV epidemics follow a biennial pattern 

of alternate winter versus spring activity (Aberle et al., 2008; Aberle et al., 2010) (Figure 1.9) 

that are anti-cyclical in rhythmicity to HRSV epidemics (Rafiefard et al., 2008; Weigl et al., 

2007).   
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1.4.8.2. Seroepidemiology 
 
Numerous methods have been utilised to estimate the seroprevalence of HMPV within the 

human population. These include indirect immunofluorescence assays using HMPV-infected 

cells (Boivin et al., 2002; Ebihara et al., 2003; Ljubin-Sternak et al., 2006; Mirazo et al., 2005; 

van den Hoogen et al., 2001; Wolf et al., 2003), enzyme-linked immunosorbent assays based 

on HMPV-infected cells (Falsey et al., 2003), specific recombinant HMPV proteins (Hamelin 

and Boivin, 2005; Huang et al., 2010; Leung et al., 2005; Lu et al., 2010; Liu et al., 2007b, 

2010; Pavlin et al., 2008) or whole virus (Okamoto et al., 2010), and neutralisation assays 

(Falsey et al., 2009; Matsuzaki et al., 2008; van den Hoogen et al., 2001). Evidence 

substantiates that HMPV is a ubiquitous pathogen (van den Hoogen et al, 2001) since 

exposure to the virus is a common phenomenon (Liu et al., 2007b) irrespective of the 

methodology employed. Primary infection occurs during early childhood (Don et al., 2008; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9. Monthly numbers of human metapneumovirus (HMPV) positive cases in even years 

(epidemiologic years beginning in an even year; hatched columns) and odd years (whole-coloured 

columns) and cumulative monthly numbers of tested samples (area under curve). 

 Epidemiologic year is defined as the beginning of October to the end of September of the following 

year. Dashed line represents change of epidemiologic years (Adapted from Aberle et al., 2010). 
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Hamelin and Boivin, 2005; Leung et al., 2005; Ljubin-Sternak et al., 2006; Okamoto et al., 

2010; van den Hoogen et al., 2001), albeit later than infection with HRSV (Ebihara et al., 

2004c; Lu et al., 2011), and by 5 to 10 years of age virtually all children are seropositive for 

the virus (Don et al., 2008; Ebihara et al. 2003; Leung et al., 2005; Lu et al., 2010; Okamoto et 

al., 2010; Regev et al., 2006; Wolf et al., 2003; van den Hoogen et al., 2001). Exposure to 

HMPV during the first 2 years of life was studied by longitudinal serological analysis in 40 

healthy children in Israel. By the age of 2 months, 80% children had anti-HMPV antibodies. 

The seropositivity rate decreased to a minimum by age 13 months and increased to 52% by 

age 24 months (Wolf et al., 2003). In another study, the percentage of children with HMPV-

specific antibody was 89.1% in ≤5 months old,  55.0% in children 6 to 11 months old, 36.0% 

in children 12 to 23 months old, 45.0% in children 24 to 47 months old, 77.3% in children 48 

to 59 months old, 91.3% in children 5 to 10 years old, and 95.5% for individuals 11 to 20 

years old (Figure 1.10) (Leung et al., 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The decline in the proportion of seropositive individuals during the first year of life likely 

represents waning maternally acquired antibody (Leung et al., 2005). However, it appears 

that two periods of acquisition of HMPV infection in childhood also occur. The first period 

occurs within the first 3 years of life (Leung et al., 2005). During this period, the percentage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10. Seroepidemiology of human metapneumovirus.  

The number of serum samples tested (n) and the percentage (%) of human metapneumovirus 

seropositivity for each age group are indicated. Error bars represent 95% confidence intervals 

(Leung et al., 2005). 
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of individuals who are seropositive essentially remains constant at 35 to 45% for children 12 

to 47 months of age as the decline in maternal antibody is superimposed on the increase in 

antibody acquired during this first period of acquisition of HMPV infection. The second 

period occurs in children of >48 months of age. The percentage of seropositive individuals 

increases to 77.3% in children aged 48 to 59 months old and to >90% in children who are >5 

years old. This second peak likely reflects increased exposure to the virus, perhaps at day 

care or preschool environments (Leung et al., 2005). Ultimately, the dynamics of the 

seroepidemiology of HMPV within the paediatric population is complex (Leung et al., 2005). 

Despite near-universal exposure in childhood (Pavlin et al., 2008), re-infection can occur in 

all age groups throughout life (Boivin et al., 2007; Ebihara et al., 2004a; Matsuzaki et al., 

2008; Pavlin et al., 2008; Williams et al., 2004) due to incomplete protective immunity 

and/or acquisition of new genotypes (Hamelin et al., 2004). Immunocompromised, very 

young, and frail elderly hosts are at highest risk of serious sequelae as a result of HMPV re-

infection (Boivin et al., 2002; Boivin et al., 2007; Falsey et al., 2003; Martinello et al., 2006; 

Martino et al., 2005; Pelletier et al., 2002). In a recent study, it was suggested that antibody 

may play a role in protection from infection with HMPV since serum antibody levels were 

significantly lower in adults who subsequently became infected with HMPV compared to 

those who remained infection free (Falsey et al., 2010). 

 

1.4.8.3. Clinical epidemiology 
 
The relationship between disease severity and genetic variability of HMPV is a clear source 

of debate (Arnott et al., 2011b; Ljubin-Sternak et al., 2008; Pitoiset et al., 2010; Vicente et 

al., 2006; Williams et al., 2004). Indeed, the possibility that HMPV genotypes differ in 

virulence is intriguing (Esper et al., 2004). Epidemiologic studies report the general 

predominance of HMPV genotype A within the human population and certainly this is 

reflected in the increased prevalence of this genetic lineage in hospitalised children 

(Caracciolo et al., 2008; Esper et al., 2004; Loo et al., 2007; Manoha et al., 2007; Noyola et 

al., 2005; Vicente et al., 2006). However, the consequence of the higher circulation 

frequency of HMPV genotype A is perhaps more sinister since it is suggested that infection 

with lineage A is associated with greater disease severity (Kaida et al., 2006; Vicente et al., 

2006). Indeed, diagnosis of pneumonia was more common and the severity index that 

combined hospital admission, intensive care unit stay, and oxygen saturation <90% was 

higher for patients with HMPV genotype A infection (Vicente et al., 2006). In contrast, 

frequency of laryngitis was higher in children with a genotype B1 HMPV infection whereas 
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wheezing occurred more often in association with genotype B1 and B2 HMPV infections 

suggesting that differences in pathogenesis may be dependent on HMPV genotype 

(Matsuzaki et al., 2008). Nevertheless, other studies reported no clinical differences in the 

severity of disease according to genotype (Agapov et al., 2006; Bosis et al., 2008; Gaunt et 

al., 2009;  Legrand et al., 2011; Manoha et al., 2007; Pitoiset et al., 2010; Williams et al., 

2004; Xiao et al., 2010). Bosis et al., (2008) found no differences in disease presentation or in 

clinical or socioeconomic impact in relation to viral genotypes. However, HMPV viral load 

was significantly higher in children with lower respiratory tract involvement (p<0.05), 

hospitalised children (p<0.05), and the prevalence of secondary cases of a similar disease in 

the household of index cases (p<0.05) (Bosis et al., 2008). It is clear that the relationship 

between disease severity and HMPV genotype remains unresolved at present and the 

dynamics of HMPV infection are clearly multifactoral.  
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CHAPTER TWO 
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2.  General  materia l  and methods  

 _____________________________________________________________________ 
 

2.1. Aims 
 
This chapter outlines the analytical methodology and the materials that were employed in 

the routine diagnosis of respiratory tract infection and the development and 

implementation of strategies for the detection of HMPV within the Microbiology 

Department at the Norfolk and Norwich University Hospital, which was just beginning to 

develop a molecular diagnostic service. The prepondance of analytical methodology and the 

materials described were followed in subsequent experiments.  

 

2.2. Safety 
 
All laboratory procedures that necessitated the manipulation of clinical samples with the 

resultant generation of infectious aerosols were conducted within a certified class I 

Biological Safety Cabinet (BSC). A laboratory coat and disposable gloves were worn during all 

procedures. All work surfaces were decontaminated after any spill of potentially dangerous 

material and at the end of the working day. 

 

2.3. Study Population 
 
The Norfolk and Norwich University Hospitals NHS Foundation Trust provides Tertiary 

Services to a total population of 822,500 and Secondary Services to a catchment of 654,900 

across Norfolk and North Suffolk. It is an Acute Teaching Trust providing comprehensive 

General and Specialist Services on two sites: the 1,000-bed Norfolk and Norwich University 

Hospital and Cromer and District Hospital on the North Norfolk Coast. 

 
From 31st October 2005 and 31st December 2008, 1,536 NPA samples collected from 

children 18 years of age attending the Norfolk and Norwich University Hospital with acute 

respiratory symptoms were submitted to Microbiology Department for routine 

investigations for microbial causes of ARTI. The samples series amassed for archival storage 

consisted of 821 NPA samples; insufficient residual volume was available for a proportion of 

the remaining samples while other samples were not retained beyond the normal storage 

period associated with routine diagnostic practice.  

 
A second set of respiratory specimens were collected as part of the national Weekly Returns 

Service (WRS) influenza sentinel practice network of the Royal College of General 
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Practitioners (RCGP) from patients that presented with influenza-like illness (ILI) or other 

acute respiratory illness.  

 
Other respiratory specimen types that included sputum, bronchoalveolar lavage (BAL), and 

lung or endotracheal aspirate specimens as well as combined nose and throat swabs and 

throat swabs that were not collected as part of the national virological influenza surveillance 

scheme were selected for conducting evaluations of new diagnostic equipment or tests. 

 

2.4. Ethical Approval  
 
Permission to undertake retrospective investigations for HMPV on residual NPA samples was 

granted by the East Norfolk and Waveney Research Governance Committee and the Norfolk 

Research Ethics Committee (REC Reference number: 05/Q0101/77) (Appendix I). 

 

2.5. Routine Investigations for Causes of Respiratory Tract Infection 
 
2.5.1. Bacteriology 
 
The isolation of bacteria known to cause respiratory tract infection was performed in 

accordance with the National Standard Method (NSM) Bacteriology Standard Operating 

Procedure (BSOP) 57 entitled “Investigation of Bronchoalveolar Lavage, Sputum, and 

Associated Specimens” and Quality Standard Operating Procedure (QSOP) 52 entitled 

“Inoculation of Culture Media” (HPA, 2008a) issued by the Standards Unit, Department for 

Evaluations, Standards and Training (DEST), Centre for Infections (Cfl), Health Protection 

Agency (HPA).  

 
Mucoid material was first treated with Sputasol (Oxoid Ltd, Hampshire, UK), a freeze-dried 

supplement containing the mucolytic agent, dithiothreitol, by the addition of an equal 

volume of a prepared 0.1% solution of the supplement to the sample material. The mixture 

was subjected to vigorous agitation and finally incubated at 37°C, with periodic shaking, until 

liquefaction was complete. Non-mucoid samples and treated mucoid samples were 

inoculated onto Columbia agar base supplemented with 5% defibrinated horse blood, 

Columbia Agar base supplemented with chocolated horse blood and cystine lactose 

electrolyte deficient (CLED) agar (Oxoid Ltd, Hampshire, UK) using a sterile 10 µl loop. The 

inoculum was dispersed over the surface of each agar plate by the surface streak method in 

order to achieve the isolation of individual bacterial colonies. Blood agar plates were 

supplemented by the addition of an optochin disc (Oxoid Ltd, Hampshire, UK) to aid 
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differentiation between Streptococcus pneumoniae and other α-haemolytic Streptococcus 

species. A 10 µg bacitracin disc (Oxoid Ltd, Hampshire, UK) was placed on the chocolate agar 

to aid screening for Haemophilus influenzae. Both antimicrobial discs were placed near the 

edge of the plate between the area covered by the first and second spread to avoid total 

inhibition of very susceptible organisms (HPA, 2008a). The inoculated agar plates were 

incubated at 35-37°C in air enriched with 5-10% CO2 for 48 hours. The plates were read daily. 

The quantity of bacteria in culture was semi-quantitatively defined as low (+), moderate (++) 

or high (+++). Bacteria considered potential pathogens in NPA samples were S. pneumoniae, 

H. influenzae, Moraxella catarrhalis, and Staphylococcus aureus; other organisms grown in 

pure growth could be considered significant. A mixed growth of upper respiratory tract flora 

was defined as no significant growth (NSG).  

 

2.5.2. Virology. 
 
Liquid specimens including NPA, endotracheal aspirates, sputum, and BAL were tested for 

respiratory pathogens by a combination of viral culture and DFA (IMAGENTM, Oxoid Ltd, 

Hampshire, UK) while the BinaxNOW® RSV test (Binax, Inc., ME, USA) was applied to the 

investigation of NPA samples only. Viral culture alone was performed on swab specimens 

due to the absence of adequate cellular material for DFA. 

 

2.4.2.1. BinaxNOW® RSV Test  
 
This rapid immunochromatographic membrane assay for the qualitative detection of HRSV F 

protein antigen in NPA samples was performed as a rapid point of care screening test within 

the acute hospital setting as a useful adjunct to the diagnosis of HRSV infections in 

symptomatic neonatal and paediatric patients under the age of five years. Test positive and 

negative control swabs were provided once with each kit. The control swabs were used on 

first use of a new kit to ensure that the test reagents were working.  

 

2.4.2.2. Preparation of Clinical Material 
 
Successful recovery of a virus from clinical material depends on the quality of material 

received for inoculation (HPA, 2010a). Many viruses are susceptible to drying, adverse pH, 

and varying osmotic potential (HPA, 2010a). Hence, samples were placed in virus transport 

medium (VTM) as soon as possible after collection.  
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Nasopharyngeal aspirate and other liquid specimen types 
 
On receipt, all liquid specimens were mechanically homogenised by vortexing for 15 seconds 

to decrease the viscosity of the samples. Approximately 500 µl of each sample was 

transferred into a labelled VTM for routine virus isolation. An additional 1 to 2 ml of material 

taken directly from the aspirate was transferred to a labelled universal for the preparation of 

slides for DFA test. Briefly, 10 ml of phosphate buffered saline (PBS) (Appendix II) was added 

to the universal. The resultant cell suspension was centrifuged at room temperature (15oC to 

25oC) at 380xg for 10 minutes and the supernatant was removed and discarded. The cell 

pellet was re-suspended in 200 µl of PBS in order to dilute any remaining mucus whilst 

maintaining a high cell density for the preparation of slides for direct immunofluorescence 

test. The presence of excess mucus prevents adequate penetration of DFA staining reagents 

with resultant non-specific fluorescence and so to aid clarification of the cells the wash step 

was repeated until all mucoid material was removed.  

 
Swabs 
 
Swab specimens received in VTM were vortexed for 15 seconds to dislodge material on the 

swab into the transport medium. 

 

2.4.2.3. Direct immunofluorescence 
 
This rapid diagnostic test was used for the direct detection of influenza virus types A and B, 

PIV types 1-3, HRSV, adenovirus, and Chlamydia sp. in clinical specimens and confirmation of 

the presence of these respiratory pathogens in cell culture. It was performed using the 

IMAGENTM immunofluorescence test (DFA, IMAGENTM, Oxoid Ltd, Hampshire, UK), a 

commercial qualitative immunofluorescence test that contains monoclonal antibodies 

conjugated to fluorescein isothiocyanate (FITC). All methodology practised within the 

Microbiology Department reflect NSM Virology Standard Operating Procedure (VSOP) 22 

entitled “Immunofluorescence and Isolation of Viruses from Respiratory Samples” (HPA, 

2007) issued by the Standards Unit, DEST, Cfl, HPA. Positive control slides were used to 

check that the staining procedure had been satisfactorily performed. If a negative control 

was required, uninfected intact cells of the type used for the culture and isolation of 

respiratory viruses were used. 
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2.4.2.4. Isolation of Viruses from Respiratory Samples 
 
The purpose of virus isolation is to demonstrate the presence and viability of viruses in 

clinical specimens (HPA, 2007). All methodology practised within the Microbiology 

Department reflect NSM VSOP 22 entitled “Immunofluorescence and Isolation of Viruses 

from Respiratory Samples” (HPA, 2007) and NSM VSOP 39 entitled the “Procedure for the 

care and propagation of cell cultures for virus isolation” (HPA, 2009) issued by the Standards 

Unit, DEST, Cfl, HPA. All NPA samples were inoculated onto the following continuous cell 

culture monolayers: HEp-2, human hepatoma (PLC-PRF5), and normal human foetal lung 

fibroblast (MRC-5). Uninoculated HEp-2, PLC-PRF5 and MRC-5 cell culture monolayers 

containing maintenance medium only served as controls and were incubated alongside 

inoculated cell culture monolayers. The appearance of inoculated cell culture monolayers 

was compared to negative control monolayers when the tubes were observed under light 

microscopy. HEp-2, PLC-PRF5, and MRC-5 cell culture monolayers were not inoculated with 

respiratory viruses to serve as positive controls. 

 
Cell culture monolayers were supplied ready to use, in disposable glass tubes, by the Clinical 

Microbiology and Public Health Laboratory (CMPHL), Addenbrooke’s Hospital, Cambridge. 

The tubes were incubated at 33oC for 16 days on a roller drum. The tubes were observed 

every 24 or 48 hours to check for the development of CPE and contamination under light 

microscopy. Sub-passage was only necessary if cell cultures were contaminated with 

bacteria or fungi or displayed degeneration of the cell sheet. Detection of viruses that did 

not produce CPE was performed by haemadsorption. All methodology practised within the 

Microbiology Department reflect NSM VSOP 45 entitled “Haemadsorption of Viruses” (HPA, 

2010a) issued by the Standards Unit, DEST, Cfl, HPA.  

 

2.6. Specimen Storage 
 
On completion of routine investigations for microbial causes of respiratory tract infection all 

residual nasopharyngeal aspirate samples were divided into aliquots, labelled and stored at 

2°C to 8°C for no longer than 24 hours or frozen at −70°C for prolonged storage. 
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2.7. Molecular Diagnostics  
 
2.7.1. Good Laboratory Practice when Performing Molecular Amplification Assays 
 
At the start of this research degree programme the molecular diagnostic service within the 

Microbiology Department of the Norfolk and Norwich University Hospital was in its infancy. 

Careful consideration was given to facility design and operation within the Virology 

Laboratory in which nucleic acid amplification methods were to be performed. All issues 

were considered with reference to the NSM QSOP 48 entitled “Good Laboratory Practice 

When Performing Molecular Amplification Assays” (HPA, 2010b) issued by the Standards 

Unit, DEST, Cfl, HPA.  

 
2.6.1.1. Organisation of Work 
 
A major problem associated with nucleic acid amplification methods is the potential for 

cross-contamination leading to the generation of false positive results. A widely adopted 

solution to this universal problem has been to perform each individual stage within a 

separate room. Thus, three discrete areas/rooms were dedicated to the reagent 

preparation, sample preparation, PCR amplification, and analysis of PCR products. Workflow 

between these areas/rooms was unidirectional: 

 
A dedicated set of pipettes was provided in each area for use with filter tips to reduce 

aerosols. Disposable gloves were worn at all times to avoid introducing contamination from 

RNases found on most human hands. These were changed whenever suspected of 

contamination and before moving to the next work area. Dedicated laboratory coats, 

workbooks, and stationary were supplied for use in each area/room. All reagents and 

consumables used were RNase-free to avoid degradation of viral RNA by RNases. 

 

2.6.1.2. Reagent Preparation – The Clean Room 
 
It was essential that this area remained free of extraneous nucleic acid to avoid the cross-

contamination of the reagents stored here. Reagent preparation was performed to the 

highest standards of aseptic technique. Where possible, batches of reagents were aliquoted 

to protect stock reagents from contamination and to minimise the potential consequences 

should contamination occur. Furthermore, by aliquoting reagents any detrimental effects 

Reagent 

Preparation 

Sample 

Preparation 

 

Amplification 
Product 

Analysis 
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resulting from excessive freeze thawing were avoided. All aliquots were clearly labelled and 

stored separately from all other stock.  

 

2.6.1.3. Sample Preparation  
 
Nucleic acid extraction is the first step in the detection of a potential target pathogen in 

clinical specimens and therefore of great importance since it can influence the success of 

downstream applications. The provision of a separate dedicated area was thus required for 

this purpose.    

 

2.6.1.4. The Amplification Room  
 
Only essential items were taken into the amplification room. All outer packaging was 

removed before items were taken through to this room. Firstly, this was to prevent 

contamination being introduced into the room and secondly to avoid the task of disposing of 

the packaging safely. To avoid specimen contamination from seepage into poorly capped 

tubes, water baths were avoided; dry baths or dry heat blocks, if needed, were preferable. 

 

2.6.1.5. The Product Analysis Room 
 
This was designated as a contaminated area. To prevent the escape of amplicons into the 

environment, strict anti-contamination measures were applied in this room. No reagents or 

equipment was removed from this room at any time.  

 

2.6.1.6. Glassware..... 
 
Glassware was baked in an oven at 450°F for six to eight hours to eliminate potential RNase 

contamination. Prior to baking, beakers and flask tops were wrapped with aluminium foil to 

prevent contamination after baking. Treated items were marked as "RNase-free" to 

distinguish them from untreated items and stored in a clearly marked "RNase-free Zone" to 

prevent accidental contamination.  

 

2.6.1.7. Disposable plasticware  
 
The use of certified non-pyrogenic, DNase- and RNase-free consumables including tubes and 

filter pipette tips was maintained throughout procedures. 

 



 

58 | P a g e  

2.6.1.8. Non- disposable plasticware  
 
To ensure all non-disposable plasticware was free of extraneous nucleic acid prior to use, it 

was treated with 1,000 ppm chlorine solution that was prepared by combining 1 x 5.0 g 

actichlor effervescent chlorine releasing tablet (VWR International Ltd, Dublin, Ireland) in 1 

litre of water. Non-disposable plasticware was rinsed thoroughly with distilled water to 

remove residual chlorine solution.  

 

2.6.1.9. Preparing RNase-free Solutions 
 
DEPC-treatment is the most common method used to inactivate RNases in water and 

buffers. However, DEPC will react with reagents containing primary amine groups including 

Tris and so cannot be used to treat TE buffer. As an alternative to DEPC-treatment, 

RNAsecure (Applied Biosystems, Warrington, UK) a broad-spectrum RNase inhibitor, was 

used. A unique feature of RNAsecure is that it can be re-heated after the initial treatment to 

reactivate the RNase-destroying agent and eliminate any newly introduced contaminates. 

 

2.6.1.10. RNA Samples 
 
As it was possible that small amounts of RNases were co-purified with isolated RNA an 

RNase inhibitor, SUPERase-In (Applied Biosystems, Warrington, UK) was added to all RNA 

samples prior to down-stream applications. SUPERase-In RNase inhibitor is a protein based 

inhibitor of non-human origin that noncovalently binds and inhibits the most common and 

troublesome RNases including RNase A, B, C, 1 and T1. 

 

2.6.1.11. Master Mix Preparation 
 
Master mixes were prepared on ice to avoid premature cDNA synthesis at incorrect 

temperatures. Mastermixes containing fluorophores were not exposed to excessive light to 

minimise degradation by photobleaching.  

 
2.6.1.12. Other Approaches to Contamination Prevention 
 
A number of additional approaches were implemented to minimise the likelihood of 

contamination. To eliminate deoxyribonucleic acid (DNA) contamination,  decontamination 

of laboratory bench surfaces and equipment was performed daily with 1,000 ppm chlorine 

solution or a commercial, ready to use surface decontaminant called “DNA Away” (VWR 

International Ltd, Dublin, Ireland) that was suitable for equipment that was prone to 
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corrosion. All tubes were pulse centrifuged before opening to prevent aerosols. Commercial 

mastermixes containing Uracil-N-glycosylase (UNG) offered further precaution against 

potential contamination through elimination of carry-over PCR products from previous 

amplification experiments but not template DNA. However, master mixes incorporating UNG 

were not utilised in any PCR systems employed due to the association of UNG with 

decreased PCR sensitivity (Pang et al., 1992). 

 

2.7.2. Design of primer and probe sequences 
 
Primer and probe sequences were designed from nucleotide sequences in FASTA format, 

which were obtained from the National Center for Biotechnology Information (NCBI) 

(http://www.ncbi.nlm.nih.gov). Multiple sequence alignments were generated using the 

BioEdit software package (http://www.mbio.ncsu.edu/BioEdit/bioedit.html). Primer and 

probe sequences were generated from the nucleotide alignment profile using Primer Express 

Software version 2.0 (Applied Biosystems™, Warrington, UK) using parameters that met 

primer and probe design guidelines outlined in Table 2.1. The specificity of the primers was 

checked using the BLAST algorithm available from the NCBI, which provides sequence 

similarity searches of databases maintained by the NCBI, European Molecular Biology 

Laboratory (EMBL), and the DNA DataBank of Japan (DDBJ). 

 

2.7.3. Preparation of customised primer and probe sequences 
 
In general, customised oligonucleotide sequences were purchased commercially from 

Eurofins MWG Operon, Germany (www.eurofinsdna.com/) or Metabion GmbH, Germany 

(www.metabion.com/). An exception was the TaqMan® MGB™ or minor groove binder 

probes. These dual-labelled probes were purchased from Applied Biosystems™, Warrington, 

UK. The customised primer and probe sequences were ordered using convenient online 

ordering systems. All TaqMan® or TaqMan® MGB™ probes were labelled with a fluorescent 

reporter dye at the 3’ end and a compatible non-fluorescent quencher molecule at the 5’ 

end. Compatible combinations of reporter and quencher dyes were selected when more 

than one target was amplified and detected in the same PCR reaction. 

http://www.ncbi.nlm.nih.gov/
http://www.mbio.ncsu.edu/BioEdit/bioedit.html
http://www.eurofinsdna.com/
http://www.metabion.com/
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All oligonucleotides were selected for preparation at a synthesis scale of 0.2 µmol with 

exclusion of TaqMan® MGB™ probes, which were selected at synthesis scale of 20,000 pmol. 

The primers were synthesised by High Purity Salt Free purification technology (HPSF). This 

technology is based on liquid chromatography. It has been developed especially for 

unmodified and oligonucleotides with 15 to 50 bases in length. High Performance Liquid 

Chromatography (HPLC) or Reverse Phase High Performance Liquid Chromatography (RP-

HPLC) was used for purifying all oligonucleotide probes. All oligonucleotides were supplied 

lyophilised with the exclusion of TaqMan® MGB™ probes and were reconstituted with Tris-

EDTA (TE) Buffer (Ambion®, Warrington, UK) consisting of 10 mM Tris 

(tris(hydroxymethyl)aminomethane), adjusted to pH 8.0 with hydrochloric acid (HCl), and 1 

mM EDTA (ethylenediaminetetraacetic acid). A synthesis report was provided with the 

appropriate volume of TE Buffer to add to each oligonucleotide to obtain a standard stock 

concentration of 100 µM. TaqMan® MGB™ probes were received in liquid format in 1XTE 

Buffer at a concentration of 100 µM. All reconstituted primers and probes were diluted 

further in TE Buffer, pH 8.0 to obtain a working stock concentration of 20 µM and 10 µM, 

respectively. This was calculated using the formula: C1V1 = C2V2 (Figure 2.1).  

 

 

 
 

Amplicon Length 50 to 150 bases for optimum PCR efficiency 

Probe Length 13 to 30 bases if using conventional TaqMan probes 

Melting Temperature (Tm) 68 –70°C 

%GC 30 – 80% 

5’ end 
Avoid ‘guanine’ (G) residues. A ‘G’ residue adjacent to the reporter 
dye will quench the reporter fluorescence. 
 

Repeating nucleotides 

Avoid runs of an identical nucleotide. This is especially true for ‘G’ 
residues. If repeats are present, there must be fewer than four 
consecutive ‘G’ residues. 
 
 

Consecutive A residues Avoid six consecutive ‘adenine’ (A) residues anywhere in the probe. 
 

Melting Temperature (Tm) 58 –60°C 

%GC 30 – 80% 

3’ end 
The last 5 nucleotides at the 3’ end should contain no more than 2 
'G' and/or 'cytosine' (C) residues  

Repeating nucleotides 

Avoid runs of an identical nucleotide. This is especially true for ‘G’ 
residues. If repeats are present, there must be fewer than four 
consecutive ‘G’ residues. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1. Primer and probe sequences generated from the nucleotide alignment profile using 

Primer Express Software version 2.0 using recommended guidelines for the probe (top) and 

primers (bottom). 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
Primer requirements:  
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All oligonucleotides were stored at -20°C until required. Probes were protected from light to 

minimise bleaching of the fluorescent dye. Oligonucleotides in current use were stored at 2-

8°C to avoid repeated freeze–thawing cycles. Oligonucleotides were thawed no more than 

three times to ensure oligonucleotide integrity. 

 
2.7.4. Purification of viral RNA 
 
The extraction and purification of nucleic acid from clinical specimens is the obligatory but 

critical first step in the detection of any pathogen that may be present (Clewley, 1999). The 

method chosen should consist of as few steps as possible in order to reduce the chance of 

contamination with exogenous DNA or RNA, or, in the case of RNA extraction, exogenous 

RNases. There is also the potential for the loss of target nucleic acid in all protocols and this 

is increased in procedures that are complex with multiple steps (HPA, 2008b). 

 

2.6.4.1. Preparation of nasopharyngeal aspirate samples and other sample types.............. 
 
Residual clinical specimens were fresh or frozen. However, if frozen, the samples were 

thawed no more than once since cryoprecipitates accumulate when samples are subjected 

to repeated freeze–thawing cycles leading to reduced viral titres. Samples were 

mechanically homogenised by vortexing for 15 seconds to decrease the viscosity of clinical 

material prior to sample processing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C
1 

= Initial Concentration of solution  

V
1 

= Initial Volume of solution  

C
2 

= Final Concentration of solution  

V
2 

= Final Volume of solution 

 
For Example: a Molar concentration is one mole of solute in one litre of solution. Therefore, a 

100 μM solution would be 100 μmol in one litre. There is 1,000,000 μl in 1 L.  

 

So, V2
 
= 500 μl  

 
 
To achieve a final probe volume of 500 μl, add 450 μl of 1X TE to 50 μl of the 100 μM probe 

standard stock solution. 

 

 

 

 

Figure 2.1. Calculation of the working stock concentration of reconstituted oligonucleotides.  

 

 

 

 

 

       50 μl                                           100       μmols         

 1,000,000 μl       

       =                                            10        μmols         

 1,000,000 μl       

        

V2 
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2.6.4.2. Selection of controls for nucleic acid isolation 
 
Controls were included in all procedures designed for the preparation of nucleic acid to 

verify the success of the extraction procedure and safeguard against contamination. All 

extraction controls were processed alongside unknown clinical samples. In the absence of a 

commercial working reagent for HMPV and preceding identification of positive samples by 

the selected real-time RT-PCR assay, positive virus culture supernatant kindly donated by Dr 

Terry Collins, Specialist Virology Centre, Gartnavel General Hospital, Glasgow, Scotland 

served as the extraction positive control in the interim. A negative VTM served as the 

negative extraction control. 

 
2.6.4.3. Manual purification of viral RNA 
 
Manual purification of viral RNA was achieved using the QIAamp Viral RNA Mini Kit (QIAGEN 

Ltd, West Sussex, UK), an established general-purpose commercial technology for the 

isolation of RNA from a wide variety of viruses, in accordance with the manufacturer’s 

instructions. Briefly, 560 µl of prepared Buffer AVL containing carrier RNA was added to a 1.5 

ml microcentrifuge tube (Alpha Laboratories, Hampshire, UK). Next, 140 µl of sample 

material and when applicable, 20 µl of internal control was added to the Buffer AVL-carrier 

RNA in the microcentrifuge tube and mixed by pulse-vortexing for 15 seconds to yield a 

homogenous solution. The mixture was incubated for 10 minutes at room temperature (15oC 

to 25oC). Lysis of sample material under the highly denaturing conditions provided by 

guanidine salts and detergent in Buffer AVL ensured inactivation of RNases and isolation of 

intact viral RNA. Next, 560 µl of ethanol (96–100%) was added to the 1.5 ml microcentrifuge 

tube and mixed by pulse-vortexing for 15 seconds. After mixing, the 1.5 ml microcentrifuge 

tube was centrifuged briefly to remove droplets from the inside of the lid. A spin column was 

placed in a 2 ml collection tube. Carefully, 630 µl of the mixture was applied to the spin 

column without wetting the rim. The cap was closed and the spin column was centrifuged at 

8000 revolutions per minute (rpm) for 1 minute. Finally, the spin column was placed into a 

clean 2 ml collection tube, and the collection tube containing the filtrate discarded. The 

remaining mixture was added to the spin column without wetting the rim. Again, the cap 

was closed and the spin column was centrifuged at 8000 rpm for 1 minute. The spin column 

was placed into a clean 2 ml collection tube, and the collection tube containing the filtrate 

discarded. Buffer AVL in combination with ethanol created optimum binding conditions for 

the viral RNA before loading the sample onto the spin column while carrier RNA, added to 

Buffer AVL, improved the binding of viral RNA to the silica membrane, and reduced the 
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chance of viral RNA degradation. Viral RNA was absorbed onto the silica membrane during 

the two brief centrifugation steps while salt and pH conditions in the lysate ensured that 

protein and other contaminants, which can inhibit downstream enzymatic reactions, were 

not retained on the membrane. Viral RNA was bound to the silica-gel membrane while 

contaminants were washed away efficiently during the next two short centrifugation steps 

using two different ethanol-based wash buffers, AW1 and AW2. The spin column was 

opened carefully and 500 µl of Buffer AW1 was added without wetting the rim. The cap was 

closed and the spin column was centrifuged at 8,000 rpm for 1 minute. The spin column was 

placed into a clean 2 ml collection tube and the collection tube containing the filtrate 

discarded. The spin column was carefully opened and 500 µl of Buffer AW2 was added 

without wetting the rim. The cap was closed and the spin column was centrifuged at 14,000 

rpm for 3 minutes. To eliminate any chance of possible Buffer AW2 carryover, the spin 

column was placed into a clean 2 ml collection tube, and the collection tube containing the 

filtrate discarded. A final centrifugation step at 14,000 rpm for 1 minute was performed to 

eliminate all traces of residual Buffer AW2 in the eluate to avoid potential problems in 

downstream applications. The spin column was placed in a clean 1.5 ml microcentrifuge tube 

and the collection tube containing the filtrate was discarded. Finally, RNA was eluted in 

Buffer AVE, a RNase-free water that contains 0.04% sodium azide to prevent microbial 

growth and subsequent contamination with RNases. The spin column was opened carefully 

and 40 µl of Buffer AVE, equilibrated to room temperature (15oC to 25oC), was added. The 

cap was closed and the spin column was incubated at room temperature (15oC to 25oC) for 1 

minute. The spin column was centrifuged at 8000 rpm for 1 minute. To increase the yield of 

viral RNA, a second elution with Buffer AVE was performed. The spin column was carefully 

opened and 40 µl of Buffer AVE was added. The cap of the spin column was closed and then 

incubated at room temperature (15oC to 25oC) for 1 minute. The spin column was 

centrifuged at 8000 rpm for 1 minute. At the end of the viral RNA purification procedure, the 

spin column was discarded. The eluted RNA was retained in the 1.5 ml microcentrifuge tube. 

Viral RNA was then ready for direct use or prolonged storage at –20oC.  

 

2.6.4.4. Automated Purification of Viral RNA  
 
The COBAS® AmpliPrep Total Nucleic Acid Isolation (TNAI) Kit (Roche Diagnostics Ltd, 

Burgess Hill, UK) was utilised for the preparation of highly purified total nucleic acid on the 

COBAS® AmpliPrep Instrument (Roche Diagnostics Ltd, Burgess Hill, UK) (Figure 2.2), in 

accordance with the manufacturer’s instructions, to allow complete automation of the 
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sample preparation process based on Magnetic Glass Particle (MGP) technology. Briefly, 350 

µl of clinical material was transferred manually into barcode labelled sample input tubes (S-

tubes). Sample racks filled with S-tubes were loaded onto the COBAS® AmpliPrep Instrument 

together with ready to use barcode labelled reagent cassettes and generic consumables.  

 

When applicable, an appropriate dilution of internal control was prepared and loaded onto 

the COBAS® AmpliPrep Instrument with the reagent cassettes. On board the COBAS® 

AmpliPrep Instrument, sample processing was performed in a disposable sample-processing 

unit (SPU). The process commenced with the automatic addition of specimen diluent to each 

sample up to a final volume of 850 µl followed by protease solution, which digested proteins 

to facilitate the release of RNA and DNA while the addition of lysis reagent, containing 

guanidine salts, to the samples resulted in a complete lysis by denaturation of proteins. RNA 

and DNA were released and simultaneously stabilised. The released nucleic acids were 

bound to the silica surface of added magnetic glass particles due to chaotropic salt 

conditions and the high ionic strength of the lysis reagent. Next, wash reagent removed 

unbound substances and impurities such as denatured proteins, cellular debris, and 

potential PCR inhibitors such as haemoglobin and reduced the salt concentration. Finally, 

purified nucleic acids were eluted at elevated temperatures. Eluated nucleic acids were 

 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. The COBAS® AmpliPrep Instrument in combination with the COBAS® AmpliPrep Total 

Nucleic Acid Isolation Kit for fully automated sample preparation using a generic silica-based 

capture technique.  
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available for immediate use in further downstream applications or stored at –20oC until 

required.  

 
2.7.5. Real-time reverse-transcription polymerase chain reaction 
 
Real-time PCR permits the detection of a specific PCR product as it accumulates during PCR 

rather than by measuring the amount of accumulated PCR product at the end of the PCR 

process (Applied Biosystems, 2005) by means of a fluorogenic nucleic acid probe that targets 

the product between the amplimer binding regions (Lee et al., 2009). A variety of fluorogenic 

probe chemistries is available for real-time PCR. These include molecular beacon, eclipse, 

hybridisation, and hydrolysis probes. Constructed with a fluorescent reporter dye covalently 

bound to the 5´ end and a quencher dye on the 3´ end, a hydrolysis probe utilises the 5´to 3’ 

exonuclease activity of Taq DNA polymerase for fluorescence detection (Applied Biosystems, 

2005) (Figure 2.3).  

 

 
 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. TaqMan hydrolysis probe.  

(A) The probe anneals to the target sequence downstream from the primers. (B) The exonuclease 

activity of thermostable Taq polymerase cleaves the hybridised probe as the primer extends. (C) 

This cleavage serves to separate the detectable reporter fluorophore (R) from the quencher (Q). 

(D) This increases the fluorescence signal proportional to the number of amplicons generated. 

Adapted from Smart Note 6.1: Designing Real-Time Assays on the SmartCycler® II System. Available 

from URL: http://www.cepheid.com/media/files/smart-notes/SmartNote6.1.pdf. Accessed 12th 

January 2011. 

 

 

 

 

 

 

 
 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DNA Polymerase 

Primer 

B. Probe Displacement 

A. Polymerisation 

C. Probe Cleavage 

D. Signal Increases Proportionately with Cycles 

http://www.cepheid.com/media/files/smart-notes/SmartNote6.1.pdf


 

66 | P a g e  

While the probe is intact, the proximity of the quencher dye greatly reduces the 

fluorescence emitted by the reporter dye by fluorescence resonance energy transfer (FRET; 

Förster Resonance) through space. If the target sequence is present, the probe anneals 

downstream from one of the primer sites and is cleaved by the 5´ nuclease activity of Taq 

DNA polymerase as this primer is extended. This cleavage of the probe separates the 

reporter dye from the quencher dye, increasing the reporter dye signal and removes the 

probe from the target strand, allowing primer extension to continue to the end of the 

template strand. Thus, inclusion of the probe does not inhibit the overall PCR process. 

Additional reporter dye molecules are cleaved from their respective probes with each cycle, 

resulting in an increase in fluorescence intensity proportional to the amount of amplicon 

produced (Applied Biosystems, 2005). All real-time RT-PCR was performed using either the 

Rotor-Gene™ 6000 series real-time analyser (Corbett Research Ltd, Cambridge, UK) or the 

Applied Biosystems™ (ABI) Prism® 7700 Real-Time Sequence Detection System (Applied 

Biosystems™, Warrington, UK). 

 

2.6.5.1. Rotor-Gene™ 6000 series real-time analyser 
 
The Rotor-Gene™ 6000 series real-time analyser (Corbett Research Ltd, Cambridge, UK) 

(Figure 2.4) uses a unique centrifugal rotary format to ensure optimal thermal and optical 

uniformity between samples. Samples spin continually at 400 rpm during each run.  

 

 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Cross-section of the Rotor-Gene™ 6000 real-time analyser showing the optical system.   

Heating/cooling is achieved by rapid airflow in the reaction chamber. Tubes spin past the 

excitation/detection optics every 150 milliseconds enabling high-speed data capture. Available from 

URL: http://www.qiagen.com/products/rotor-geneq.aspx#Tabs=t1. Accessed 28th August 2011. 

 

 

 

 

 

http://www.qiagen.com/products/rotor-geneq.aspx#Tabs=t1
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Centrifugation prevents condensation and removes air bubbles but does not pellet DNA. 

Samples are heated and cooled in a low-mass air oven with heating achieved by a nickel-

chrome element in the lid. The chamber is cooled by venting the air out through the top of 

the chamber while ambient air is blown up through the base. The Rotor-Gene™ 6000 series 

real-time analyser provides a choice of up to six excitation sources and six detection filters 

(Table 2.2) combined with a short fixed optical path to ensure consistent excitation as each 

sample is rotated around the reaction chamber eliminating the need for a passive reference 

dye. 

 

Samples are excited from the bottom of the chamber by a high-energy light-emitting diode 

(LED). Energy is transmitted through the thin walls at the base of the tube. Emitted 

fluorescence passes through emission filters on the side of the chamber and is collected by a 

photomultiplier. The Rotor-Gene™ 6000 series real-time analyser supports multiple tube 

formats by simply switching the metal rotor that holds the tubes. The 36-well rotor and 

locking ring for use with 0.2 ml reaction tubes and the 72-well rotor and locking ring for use 

with 0.1 ml strip reaction tubes (Corbett Research Ltd, Cambridge, UK) were used in all real-

time thermal cycling. 

 

2.6.5.2. ABI Prism® 7700 Real-Time Sequence Detection System 
 
The ABI Prism® 7700 Real-Time Sequence Detection System is a 96-well block based thermal 

cycling system. The instrument utilises a single 10 mW Argon Ion Laser system as a light 

source with an output wavelength of 488 nm and is equipped with a charge-coupled device 

(CCD) camera that records all light between 500 nm and 650 nm of the fluorescent 

spectrum. The emission filters are optimised for use with standard dye sets:  FAM™/SYBR® 

Green I, VIC®/JOE™, NED™/TAMRA™, and ROX® fluorescent dyes. The instrument utilises a 

passive internal reference to which the reporter dye signal can be normalised during data 

 

 
 
 

 
 

Channel Excitation (nm) Detection (nm) Examples of fluorophores detected 

Blue 365±20 460±20 Marina Blue® 

Green 470±10 510±5 FAM®, SYBR® Green I 

Yellow 530±5 557±5 JOE®, VIC®, HEX®, TET® 

Orange 585±5 610±5 ROX® 

Red 625±5 660±10 Cy5, LightCycler® Red640 

Crimson 680±5 712 high pass LightCycler® Red705 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.2. The excitation and detection ranges for the Rotor-Gene™ 6000 series real-time analyser.  

Six channels are available for optical detection on the Rotor-Gene 6000 Instrument. Available from 

URL: http://www.qiagen.com/products/rotor-geneq.aspx#Tabs=t1. Accessed 28th August 2011. 
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analysis. Normalisation is necessary to correct for forestalment fluctuations caused by 

changes in concentration or volume. 

 

2.7.6. Reaction Mix Preparation for One- Step or Two-Step real-time RT-PCR reactions  
 
Real-Time PCR with either RT and PCR in a single reaction (one-step) or in separate reactions 

(two-step) were performed. In one-step RT-PCR, RT and PCR took place in one buffer system, 

which provided the convenience of a single-tube preparation for RT and PCR amplification. 

Two-step RT-PCR was performed in two separate reactions. First, total RNA was reverse 

transcribed into cDNA, then the cDNA is amplified by PCR.  

 
In all instances, the total volume of reaction mix required was calculated according to the 

number of reactions and 10% extra i.e. for 10 reactions prepare sufficient master mix for 11 

reactions to provide excess volume for the loss that occurs during reagent transfers.  

 
Since it is virtually impossible to eliminate genomic DNA from RNA preparations, a "no-

reverse transcriptase" control was included in all RT reactions. The "no-reverse 

transcriptase" control contained all the components of the reaction including the RNA 

template except for the reverse transcriptase enzyme. Reverse transcription therefore 

cannot take place. The presence of product in a PCR reaction was indicative of DNA 

contamination in the RNA preparation. Similarly, a “No Template Control” (NTC) was 

included in all PCR reactions to confirm the absence of cross-contamination of reagents and 

equipment. The NTC contained all the components of the reaction with exception of the 

nucleic acid template. The nucleic acid template was substituted with nuclease-free water 

(Bioline Ltd, London, UK). In both cases, the introduction of new reagents and treatment of 

equipment and instrumentation with cleaning products designed for the removal of 

contaminating DNA was required prior to all future RT and PCR reactions to prevent the 

generation of false positive results. 

 

2.6.6.1. Two-step reverse-transcription polymerase chain reaction 
 
Reverse Transcription 
 
All RT reactions were performed using the TaqMan® Reverse Transcription Reagents (Applied 

Biosystems, Warrington, UK). The RT reaction mix was prepared by combining all the non-

enzymatic components followed by the enzymatic components (Table 2.3) in a 1.5 ml 

microcentrifuge tube (Alpha Laboratories, Hampshire, UK). After mixing, the tubes were 
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Reaction Component Volume (µl) per sample Final Concentration 

10 X TaqMan RT Buffer 1.0 1X 

25 mM MgCl2 4.4 5.5 mM 

dNTP Mixture 4.0 500 µM per dNTP 

Random Hexamers 1.0 2.5 µM 

Nuclease Inhibitor 0.4 0.4 U/µl 

Multiscribe RT (50 U/µl) 0.5 1.25 U/µl 

TOTAL 12.3 - 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.3.  Preparation of working Reverse Transcription (RT) Reaction Mix for 1x reaction.  

The non-enzymatic components are shown in BLUE and enzymatic components are shown in GREY. 

 

 

 

 

 

 

 

 

centrifuged briefly to remove droplets of working RT reaction mix from inside the lid. Next, 

12.3 µl of working RT reaction mix was aliquoted into 0.2 ml reaction tubes (Alpha 

Laboratories, Hampshire, UK). Finally, 7.7 µl of total RNA template was added to each tube.  

 

The reaction tubes were loaded into the chamber of a GeneAmp 2400 Thermal Cycler 

(Perkin-Elmer, UK) that was programmed with the following cycling parameters: 25OC for 10 

minutes, 48 OC for 30 minutes and 95OC for 5 minutes. After thermocycling, the cDNA was 

stored at 2-8oC overnight or at -20oC for prolonged storage.  

 
TaqMan® Universal PCR Master Mix 
 
The TaqMan® Universal PCR Master Mix without UNG AmpErase (Applied Biosystems, 

Warrington, UK) was used in the second step of the two-step RT-PCR protocol. The TaqMan® 

Universal PCR Master Mix without UNG AmpErase contained AmpliTaq Gold® DNA 

polymerase, dNTPs with dUTP, carboxy-X-rhodamine (ROX™) Passive Reference, and 

optimised buffer components. A working reaction mix was prepared by combining the 

TaqMan® Universal PCR Master Mix without UNG AmpErase with forward and reverse 

primers, TaqMan® probe, and nuclease-free water (Bioline Ltd, London, UK) (Table 2.4) in a 

1.5 ml microcentrifuge tube. 

 

The tube was vortexed briefly to mix the contents and followed by a brief centrifugation step 

to remove droplets of working reaction mix from inside the lid and eliminate any air bubbles. 

 

 
 
 
 
 

Reaction Component Volume (µl) per sample Final Concentration 

2X TaqMan® Universal PCR Master Mix 

Mix (2X) 

12.5 1X 

Forward Primer Variable Optimal 

Reverse Primer Variable Optimal 

Probe Variable Optimal 

Nuclease-free water Variable - 

Total 20 - 
 
 

 
 

 

 

 

 

 

Table 2.4. Preparation of working TaqMan Universal PCR Master Mix without UNG AmpErase for 

1X reaction.  

. 
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Next, 20 µl of the reaction mixture was transferred to each well of a MicroAmp® Optical 96-

Well Reaction Plate (Applied Biosystems, Warrington, UK) before 5 µl of cDNA template was 

added. The plate was centrifuged briefly to spin down the contents and eliminate any air 

bubbles present after covering with MicroAmp® Optical Caps (Applied Biosystems, 

Warrington, UK). Finally, the MicroAmp® Optical 96-Well Reaction Plate was loaded into the 

ABI Prism® 7700 Real-Time Sequence Detection System that was programmed with the 

cycling parameters shown in Table 2.5. 

 

2.6.6.2. One-step reverse-transcription polymerase chain reaction 
 
The SuperScript™ III Platinum® One-Step Quantitative RT-PCR (qRT-PCR) System (Invitrogen, 

Paisley, UK) is a one-step, quantitative real-time RT-PCR system for the detection of RNA.  

This system combines the high-temperature reverse-transcription capability of SuperScript™ 

III Reverse Transcriptase with the automatic hot-start PCR provided by Platinum® Taq DNA 

polymerase. Both cDNA synthesis and PCR were performed in a single tube on the Rotor-

Gene™ 6000 series real-time analyser. The working reaction mix was prepared by combining 

the SuperScript™ III Platinum® One-Step qRT-PCR System with forward and reverse primers 

and TaqMan® or TaqMan® MGB™ probe at optimised concentrations with nuclease-free 

water (Table 2.6) in a 1.5 ml microcentrifuge tube. 

 

 
 
 
 

System 
Polymerase activation

±
 PCR 

HOLD Cycle (45 cycles) 

Denature Anneal/extend 

Temperature (°C) 95 95 60 

Time (mm:ss) 10:00 00:15 1:00 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.5. Thermal Cycling Parameters for the TaqMan Universal PCR Master Mix without UNG 

AmpErase on the ABI Prism®7700 Fast Real-Time Sequence Detection System. 

 

 

 

 

 

 

 

 

±
The 10-minute, 95 °C step is required to activate the AmpliTaq Gold® enzyme 

 

 

 

 

 

 

 

 

 
 
 
 
 

Reaction Component Volume (µl) per sample Final Concentration 

SuperScript™ II RT/Platinum® Taq Mix 0.8 - 

2X Reaction Mix 12.5 1X 

50 mM Magnesium Sulfate (MgSO4) variable 3-6 mM 

Forward Primer Variable Optimal 

Reverse Primer Variable Optimal 

Probe Variable Optimal 

Nuclease-free water Variable - 

Total 20 - 
 
 

 
 

 

 

 

Table 2.6. Preparation of working reaction mix using the SuperScript® III Platinum® One-Step 

Quantitative RT-PCR System for 1X reaction.  

. 
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After mixing, a brief centrifugation step was performed to remove droplets of reaction mix 

from inside the lid of the 1.5 ml microcentrifuge tube and eliminate any air bubbles. Finally, 

20 µl of reaction mixture was transferred into 0.2 ml reaction tubes or 0.1 ml strip reaction 

tubes (Corbett Research Ltd, Cambridge, UK) before 5 µl of total RNA was added exclusive of 

the NTC. RT-PCR was performed on the Rotor Gene 6000 (Corbett Research Ltd, Cambridge, 

UK) real-time system using the thermal cycling parameters described in Table 2.7. 

 
2.6.6.3. Preparation of carrier RNA 
 
All dilutions of RNA were prepared in carrier RNA in order to limit possible RNA degradation 

due to RNase activity and to enhance recovery when purifying small amounts of RNA. To 

prepare a 1 µg/µl stock solution of cRNA, 1350 µl of nuclease-free water (Bioline Ltd, 

London, UK) was added to 1350 µg of lyophilised carrier RNA (QIAGEN Ltd, West Sussex, UK). 

The rehydrated carrier RNA was mixed thoroughly by vortexing and centrifuged briefly at 

8,000 rpm to collect the contents at the bottom of the tube before it was divided into 

conveniently sized aliquots of 50 µl. Carrier RNA was stored at -20°C. To prepare a working 

solution of cRNA, 10 µl of the 1 µg/µl cRNA stock solution was added to 10 ml of nuclease-

free water (Bioline Ltd, London, UK) to obtain a working solution of 1 ng/µl of cRNA. The 

working solution of 1 ng/µl of cRNA was used to prepare internal or positive controls. 

 

2.6.6.4. Optimisation of Primer and Probe Concentrations of Singleplex Reactions  
 
Real-time PCR assays require optimisation in order that robust assays are developed that are 

not affected by normal variations in the target DNA, primer, or probe compositions. A robust 

assay is defined as an assay in which these ‘normal’ variations cause no effect on the 

crossing threshold (CT) and have only a minimal effect on the observed amount of 

fluorescence. The important criteria for optimisation are specificity, sensitivity, efficiency 

 

 
 

 

System 

RT activation 

RT inactivation/ 

polymerase 

activation 

PCR 

HOLD HOLD 
Cycle (45 cycles) 

Denature Anneal/extend 

Temperature (°C) 50 95 95 60 

Time (mm:ss) 30:00 2:00 00:15 1:00 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.7. Thermal Cycling Parameters for the SuperScript® III Platinum® One-Step Quantitative RT-

PCR System on the Rotor Gene 6000 real-time system. 
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and reproducibility (Edwards and Logan, 2009). The same principles of optimisation apply to 

assays run on all real-time platforms.  

 

Determining Optimal Primer Concentration  
 
A primer optimisation matrix composed of various permutations of forward and reverse 

primer in combination with a fluorogenic probe at a constant concentration was performed 

to determine optimal primer concentrations. The purpose of this procedure was to 

determine the minimum primer concentrations (Table 2.8). A PCR reaction mix was prepared 

using the TaqMan® Universal PCR Master Mix without UNG AmpErase (Applied Biosystems, 

Warrington, UK) to run four replicates of each of the 16 conditions and NTC.  

 
Primer optimisation was performed in a final reaction volume of 25 µl containing 1X 

TaqMan® Universal PCR Master Mix (Applied Biosystems, Warrington, UK), forward and 

reverse primer concentrations titrated from 50 nM to 900 nM in combination with 200 nM 

of probe and nuclease-free water (Bioline Ltd, London, UK) to a volume of 20 µl. Finally, 5 µL 

of cDNA was added exclusive of the NTC. Instead, 5 µl of nuclease-free water (Bioline Ltd, 

London, UK) was added. Determination of the volume of each component required for the 

four replicate reactions was achieved using a template devised in Microsoft Excel (Table 2.9). 

Parameters in the template were set in order to establish the volume of each reaction 

component required for the designated number of replicates. Primer optimisation was 

performed using the ABI Prism® 7700 Sequence Detection System (Applied Biosystems, 

Warrington, UK) using the thermal cycling parameters described in Table 2.5. At the end of 

runs, the results were tabulated for ∆Rn. The minimum forward and reverse primer 

concentrations that yielded the maximum ∆Rn were selected.  

 

 

 

 
 
 

  Forward Primer [nM] 

Reverse Primer [nM] 50 300 500 900 

50 50/50 50/300 50/500 50/900 

300 300/50 300/300 300/500 300/900 

500 500/50 500/300 500/500 500/900 

900 900/50 900/300 900/500 900/900 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.8. A primer optimisation matrix composed of various permutations of forward and reverse 

primer used in combination with a fluorogenic probe at a constant concentration to determine 

optimal primer concentrations. 
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Table 2.9. Template for calculating the total volume of working reaction mix required for four replicate reactions of each of the 16 conditions and no template control.  

All parameters in blue boxes were set in order to establish the volume of each reaction component required for the designated number of replicates. 

 

Set parameters                  

Number of replicates   4              

Reaction volume   25 µl            

Template volume per rxn   5 µl           

Probe [ ] stock   10 µM            

Probe  final [ ]   200 nM            

Forward primer [ ] stock   20 µM            

Reverse primer [ ] stock   20 µM            

                    

Primer Concentration [nM] NTC 50/50 50/300 50/500 50/900 300/50 300/300 300/500 300/900 

Reaction Mix 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 

Forward Primer 1.5 0.3 0.3 0.3 0.3 1.5 1.5 1.5 1.5 

Reverse Primer 1.5 0.3 1.5 2.5 4.5 0.3 1.5 2.5 4.5 

Probe 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

Template 0.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

Water 45.0 27.5 26.3 25.3 23.3 26.3 25.0 24.0 22.0 

Total volume 100 100 100 100 100 100 100 100 100 

                    

Primer Concentration [nM] NTC 500/50 500/300 500/500 500/900 900/50 900/300 900/500 900/900 

Reaction Mix 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 

Forward Primer 1.5 2.5 2.5 2.5 2.5 4.5 4.5 4.5 4.5 

Reverse Primer 1.5 0.3 1.5 2.5 4.5 0.3 1.5 2.5 4.5 

Probe 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

Template 0.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

Water 45.0 25.3 24.0 23.0 21.0 23.3 22.0 21.0 19.0 

Total volume 100 100 100 100 100 100 100 100 100 
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Determining Optimal Probe Concentration  
 
A probe optimisation matrix composed of five permutations of probe concentration was 

performed to determine the minimum probe concentration giving the minimum CT for each 

probe target (Table 2.10). A PCR reaction mix was prepared to run four replicates of each of 

the five conditions and NTC. Probe optimisation was performed in a final reaction volume of 

25 µl containing 1 X TaqMan® Universal PCR Master Mix (Applied Biosystems, Warrington, 

UK). The forward and reverse primer concentrations determined by the primer optimisation 

were used in the reaction mix in combination with probe concentrations titrated at 50 nM 

intervals from 50 to 250 nM and nuclease-free water (Bioline Ltd, London, UK) to a volume 

of 20 µl. Finally, 5 µl of cDNA was added exclusive of the NTC. Instead, 5 µl of nuclease-free 

water was added (Bioline Ltd, London, UK).  

 
 

 

 

 

 

 

 

 

 

 
Determination of the volume of each component required for the four replicate reactions 

was achieved using a template devised in Microsoft Excel (Table 2.11). Parameters in the 

template were set in order to establish the volume of each reaction component required for 

the designated number of replicates. The probe optimisation was performed using the ABI 

Prism® 7700 Sequence Detection System (Applied Biosystems, Warrington, UK) using the 

thermal cycling parameters described in Table 2.5. At the end of runs, the results were 

tabulated for CT. The minimum probe concentration that yielded the minimum CT was 

selected. 

 

 

 

 

 

 

 

 
 
 

  Forward Probe [nM]  

Reverse Probe [nM] 50 100 150 200 250 

50 50/50 50/100 50/150 50/200 50/250 

100 100/50 100/100 100/150 100/200 100/250 

150 150/50 150/100 150/150 150/200 150/250 

200 200/50 200/100 200/150 200/200 200/250 

250 250/50 250/100 250/150 250/200 250/250 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.10. A probe optimisation matrix composed of five permutations of probe performed in 

combination with optimised forward and reverse primer concentrations to determine the optimal 

probe concentration.  
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The SuperScript™ III Platinum® One-Step qRT-PCR System (Invitrogen, Paisley, UK) (Section 

2.6.6.2) was used as an alternative to the TaqMan® Universal PCR Master Mix (Applied 

Biosystems, Warrington, UK) for determining optimal primer and probe concentrations. A 

working reaction mix was prepared by combining the SuperScript™ III Platinum® One-Step 

qRT-PCR System with the same permutations of forward and reverse primer and TaqMan® 

probe as described in Table 2.8 and Table 2.10, respectively. Primer and probe optimisation 

using the SuperScript™ III Platinum® One-Step qRT-PCR System was performed on the Rotor-

Gene™ 6000 series real-time analyser (Corbett Research Ltd, Cambridge, UK) using the 

thermal cycling parameters outlined in section 2.6.6.2. 

 

2.7.7. Purification of amplification products 
 
Amplification products were purified using the QIAquick® PCR purification kit (QIAGEN Ltd, 

Crawley, West Sussex, UK). This commercial purification kit facilitated the removal of excess 

nucleotides and enzyme contamination from DNA fragments that would otherwise interfere 

with subsequent downstream applications using the selective binding properties of a silica 

membrane combined with spin-column technology. The protocol was performed according 

to manufacturer’s instructions. Briefly, five volumes of binding buffer PB containing pH 

 

 

 

 

 
 

Set parameters            

Number of replicates   4        

Reaction volume   25 µl      

Template volume per rxn   5 µl     

Probe [ ] stock   10 µM 

 

  

Forward primer [ ] stock   20 µM  

Reverse primer [ ] stock   20 µM  

       
Probe Concentration [nM] NTC 50 100 150 200 250 

Reaction Mix 50 50 50 50 50 50 

Forward Primer 2.5 2.5 2.5 2.5 2.5 2.5 

Reverse Primer 1.5 1.5 1.5 1.5 1.5 1.5 

Probe 1.0 0.5 1.0 1.5 2.0 2.5 

Template 0 20 20 20 20 20 

Water 45 25.5 25 24.5 24 23.5 

Total volume 100 100 100 100 100 100 

 

 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.11. Template for calculating the total volume of working reaction mix required for four 

replicate reactions of each ofthe five conditions.  

All parameters in blue boxes were set in order to establish the volume of each reaction component 

required for the designated number of replicates. 

 

 

 

 

 

 

 

Primer Final [nM] 

Forward 500 

Reverse 300 
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indicator I was added to 1 volume of the PCR sample and mixed in a 1.5 ml microcentrifuge 

tube (Alpha Laboratories, Hampshire, UK). The colour of the mixture turned to yellow. 

However, if the colour of the mixture was orange or violet, 10 µl of 3 M sodium acetate, pH 

5.0 (Sigma-Aldrich, Dorset, UK) was added to correct the pH of the binding mixture before 

proceeding with the protocol. A QIAquick spin column was placed in a 2 ml collection tube. 

To bind DNA, the sample was applied to the QIAquick column by pipetting. The column was 

centrifuged for 60 seconds at 13,000 rpm. The flow-through was discarded. The QIAquick 

spin column was placed back into the same collection tube and 0.75 ml of ethanol-

containing Buffer PE was added by pipetting. The spin column was centrifuged at 13,000 rpm 

for 60 seconds to wash away unwanted primers and impurities, such as salts, enzymes, and 

unincorporated nucleotides. The flow-through was discarded and the QIAquick spin column 

was placed back into the same collection tube. The column was centrifuged for an additional 

60 seconds at 13,000 rpm to remove any residual Buffer PE that may interfere with 

subsequent enzymatic reactions. The QIAquick spin column was placed into a clean 1.5 ml 

microcentrifuge tube (Alpha Laboratories, Hampshire, UK). To elute DNA, 30 µl of Buffer EB 

(10 mM Tris·Cl, pH 8.5) was added to the centre of the QIAquick membrane for complete 

elution of bound DNA. The column was incubated at room temperature (15C to 25C) for 60 

seconds. The column was centrifuged for 60 seconds at 13,000 rpm. The purified DNA was 

stored at –20°C until required. The purified product was run on a 2% agarose gel as 

described in section 3.3.15 in order to assess the quality and quantity of DNA.  
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CHAPTER THREE 
 _____________________________________________________________________ 
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3.  Molecular Detection of a Novel Respiratory Virus  

 _____________________________________________________________________ 
 
3.1. Introduction 
 
A longitudinal study conducted using prospectively acquired respiratory samples collected 

over a period of 25 years from otherwise healthy children with LRTI offered significant 

advancement in our knowledge of HMPV (Williams et al., 2004). Along with accumulating 

evidence from Europe, North America, and Australia, this careful study indicated that HMPV 

is, with a few differences, a kid brother or sister to HRSV that, particularly in young children, 

accounts for a very substantial proportion of cases previously relegated to the 

“undiagnosed” category (McIntosh and McAdam, 2004). Indeed, this substantial proportion 

accounted for 20% of all previously virus-negative lower respiratory tract illnesses (Williams 

et al., 2004). These findings made the implementation of tools to allow detection of this 

emerging virus an important priority. 

 
The introduction of nucleic acid amplification techniques has largely surmounted the 

problems that thwarted the diagnosis of HMPV within routine diagnostic laboratories 

(Galiano et al., 2004; Kuypers et al., 2005; Mackay et al., 2003; Hopkins et al., 2008). While 

these techniques seem to present the perfect answer to the dilemmas associated with the 

diagnosis of respiratory infection attributed to HMPV, limitations do exist within this 

technology. Indeed, an inherent problem in diagnostic nucleic acid amplification techniques 

is the presence of amplification inhibitors (Dreier et al., 2005). Numerous substances have 

the potential to inhibit this exquisitely sensitive methodology (Al-Soud et al., 2000; 2001; 

Khan et al., 1991; Lantz et al., 1997; Hartman et al., 2005; Monteiro et al., 1997; Satsangi et 

al., 1994; Wang et al., 1992). The presence of inhibitors has the potential to increase error, 

reduce assay resolution, and produce false results in both quantitative and qualitative 

molecular tests (Huggett et al., 2008). The extraction and partial purification of high quality 

nucleic acid, DNA or RNA, from clinical specimens is a critical first step in the successful 

amplification and detection of the genome of any pathogen that may be present (Clewley, 

1999). Successful isolation of nucleic acids from clinical specimens can improve the 

reproducible performance of downstream applications even with specimens containing very 

low amounts of nucleic acid (Alp and Hascelik, 2009). If, however, the nucleic acid is lost 

during the extraction process, broken down, or contains compounds that inhibit the reverse 

transcriptase or Taq polymerase enzymes used in PCR, then the whole procedure will fail, 

yielding a falsely negative result. Similarly, if during extraction the nucleic acid becomes 

cross-contaminated with genomic fragments from other specimens containing the same 
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pathogen, or with previous amplified PCR products, a falsely positive result will be obtained 

(Clewley, 1999). The procedure is complicated further by the fact that, chemically and 

biologically, RNA is significantly more labile that DNA (Promega, 1997). This feature coupled 

with the short half life of RNA once extracted and susceptibility to degradation by ubiquitous 

RNases make effective and reproducible purification of RNA from various heterogeneous 

materials a challenge (Chan and Yiap, 2009; Vomelová et al., 2009). Nevertheless, nucleic 

acid extraction is the basis for all the subsequent steps of genomic detection and 

characterisation even though it can be sometimes technically demanding (Clewley, 1999).  

 
The incorporation of a universal exogenous internal control into PCR reactions has become 

an important strategy to monitor the combined effect of extraction and amplification, 

address the problems associated with the presence of PCR inhibitors, and raise confidence in 

results generated for the viral target of interest. There are two main strategies for the use of 

an exogenous internal control (Hoorfar et al., 2004). A competitive or homologous internal 

control uses the same primer pair as the viral target sequence, but with an altered probe 

binding sequence (Stevenson et al., 2008). These controls most closely mimic amplification 

of the target sequence, but can potentially compete with target amplification to 

compromise the overall detection limit of the assay, especially if the target microbe is 

present at low levels (Dingle et al., 2004; Stevenson et al., 2008). Another limitation is that 

they normally require a different internal control for each assay and are therefore 

incompatible with multiplex PCR in which several primer pairs are required (Dingle et al., 

2004; Stevenson et al., 2008). Non-competitive or heterologous internal controls consist of 

separate amplifiable targets. Since these do not contain the target sequence, a separate 

primer pair and probe are required to amplify the internal control and the target (Espy et al., 

2006). Such controls include house-keeping genes that occur naturally in all human 

nucleated cell types  (Espy et al., 2006) and armoured RNA (Beld et al., 2004; Eisler et al., 

2004; Huang et al., 2008; Meng and Li., 2010; Stevenson et al., 2008). Animal viruses are an 

attractive and versatile alternative for use as DNA or RNA internal controls since the 

assumption is that intact virus, when used as a universal internal control, behaves more 

similarly in the extraction procedure to the target virus of interest, in contrast to using, for 

example, a plasmid as an internal control (Niesters, 2004). Animal viruses used as universal 

DNA and RNA internal controls include bovine viral diarrhoea virus (BVDV) (Cleland et al., 

1999), feline calicivirus (FCV) (Mattison et al., 2009), mengovirus (Comelli et al., 2008), PDV 

(Clancy et al., 2008), phocine herpes virus type 1 (PhHV-1) (van Doornum et al., 2003), 

murine cytomegalovirus (mCMV) (Garson et al., 2005). As established model viruses that 
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serve as surrogate markers for human disease and/or viruses that either closely resemble a 

human virus or belong to the same family as a human counterpart, animal viruses present 

good candidates for internal controls (Bidawid et al., 2003; Costafreda et al., 2006; Wilson et 

al, 2008; Yoo et al., 2006). Furthermore, these animal viruses grow readily in virus culture 

and produce clear cytopathic effects in cultures of established cell lines (Bidawid et al., 2003) 

making them easily accessible for use in clinical virology setting for routine molecular 

diagnosis. A newer alternative that is becoming increasingly popular is the use of RNA and 

DNA bacteriophages as internal controls (Blaise-Boisseau et al., 2010; Dreier et al., 2005; 

Gerriets et al., 2008; Ninove et al., 2011; Rolfe et al., 2007). The Escherichia coli 

bacteriophage MS2 has proved an ideal candidate for use as an internal control in RT-PCR 

assays (Blaise-Boisseau et al., 2010; Dreier et al, 2005; Ellis and Curran, 2010; Ninove et al., 

2011; Rolfe et al., 2007). It is prone to the same inhibition/degradation as RNA viruses, is 

non-infectious, stable, and easily propagated (Rolfe et al., 2007).  

 

3.2. Aims 
 
The premise of this initial venture was the introduction of a molecular diagnostic test for the 

detection of a newly discovered virus, HMPV. However, the basis for this introduction was 

not only the selection of an appropriate nucleic acid detection system. It was envisaged that 

this test would become part of the routine diagnostic testing repertoire for respiratory 

viruses and therefore a robust approach was required. This necessitated the incorporation of 

an internal control and the development of detection system to allow the measurement of 

multiple targets within a single tube format as the internal control would co-amplify with the 

target of interest. However, the most labour-intensive and critical step remaining for 

consideration was the efficient extraction of nucleic acids from different clinical samples 

(Niesters, 2004). Nucleic acid extraction presents a potential bottleneck to the successful 

implementation of nucleic acid detection within a routine virological setting (Niesters, 2004) 

and so the introduction of a method to allow the automation of this process was essential.   

 

3.3. Materials and Methods 
 
3.3.1. Positive control material  
 
HMPV positive culture supernatant kindly donated by Dr Terry Collins, Specialist Virology 

Centre, Gartnavel General Hospital, Glasgow, Scotland facilitated optimisation of the 

selected monoplex real-time RT-PCR assay in the absence of a commercial working reagent 

for HMPV and preceding identification of positive samples by the monoplex real-time RT-
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PCR assay. Further HMPV positive culture supernatant was identified through evaluation of 

the monoplex real-time RT-PCR. Influenza viruses were identified by routine examination of 

respiratory specimens by virus culture, and DFA (IMAGENTM, Oxoid Ltd, Hampshire, UK) 

(Section 2.4.2). 

 

3.3.2. Characteristics of patients and specimens tested 
 
In total, 128 respiratory specimens were submitted to the Microbiology Department 

between September 2007 and April 2008 for routine examination by virus culture, DFA 

(IMAGENTM, Oxoid Ltd, Hampshire, UK) for influenza virus types A and B, HRSV, PIV types 1-3, 

HRSV, adenovirus, and Chlamydia sp., and NOW® RSV Test (Binax, Inc., ME, USA) (Section 

2.4.2). A frozen aliquot of each sample was stored at -70°C for retrospective evaluation of 

the COBAS® AmpliPrep TNAI Kit on the COBAS® AmpliPrep Instrument. Clinical specimens 

were predominantly from children ≤ 18 years (n= 103; 80.5% NPA samples) that attended 

the Norfolk and Norwich University Hospital with symptoms of acute respiratory illness. 

Other specimen types included 7 combined nose and throat swabs, 16 throat swabs, 1 

sputum specimen, and 1 BAL specimen. Six combined nose and throat swabs and 9 throat 

swabs were collected from patients of all ages that presented with ILI or other acute 

respiratory illness to sentinel general practices that participated in the national virological 

influenza  surveillance scheme during winter 2007/2008.  

 

3.3.3. Primer and probe design  
 
3.3.3.1. Human metapneumovirus  
 
The primer and probe sequences selected for detection of HMPV by real-time RT-PCR were 

designed according to Maertzdorf et al. (2004) (Table 3.1). The probe was labelled at the 5’ 

end with 6-carboxyfluorescein (6-FAM) and at the 3’ end with the non-fluorescent quencher 

Black Hole Quencher™ 1 (BHQ-1).  

 

 

 

 
 

Primer  

or probe 
Sequence (5’-3’) Target Gene 

NL-N forward CAT ATA AGC ATG CTA TAT TAA AAG AGT CTC 

Nucleoprotein NL-N reverse CCT ATT TCT GCA GCA TAT TTG TAA TCA G 

NL-N probe 6-FAM – TGY AAT GAT GAG GGT GTC ACT GCG GTT G – BHQ-1 

 

 

 

 

Table 3.1. Primer and probe sequences for the detection of human metapneumovirus.  

The probe was labelled at the 5’ end with 6-carboxyfluorescein (6-FAM) and at the 3’ end with a 

non-fluorescent quencher, Black Hole Quencher™ 1 (BHQ-1). Residue Y in the third position of the 

NL-N probe represents either a cysteine (C) or a thymidine (T) residue. 
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The primer and probe sequences were located within the most conserved region of the N 

protein gene of the virus (Maertzdorf et al., 2004). This region was identified by the creation 

of entropy plots of oligonucleotide-annealing sites within the HMPV genome with the 

BioEdit software package (http://www.mbio.ncsu.edu/BioEdit/bioedit.html). Entropy plots 

also facilitated the identification of potential mismatches of the primer and probe sequences 

with the respective target sequence. Entropy plots of oligonucleotide-annealing sites in four 

different primer and probe sets of the NL-N, ALT-N, N, and L gene assays were compared 

(Figure 3.1).  

 

The N and L gene assays were previously described by Mackay et al., (2003), and van den 

Hoogen et al., (2003) while the NL-N and ALT-N assays were newly designed by Maertzdorf 

et al., (2004). A good match of the 3’ end of the primer set and 5’ end of the probe is critical 

to successful detection of viral RNA and to minimise the risk of false-negative results 

(Maertzdorf et al., 2004). Entropy plots show the sequences recognised by the individual 

oligonucleotides in each primer and the probe set when compared to all available nucleotide 

sequences of HMPV. The heterogeneities were displayed as entropy values on the x-axis. A 

higher entropy value indicated mismatches at a particular position in the oligonucleotide 

with a larger number of target sequences analysed. The number of sequences upon which 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Entropy plots of oligonucleotide-annealing sites in four different primer and probe sets 

showing the mismatches of each of the primer and probe sequences with the target sequences.  

(Maertzdorf et al., 2004). 

 

 

 

 

 

http://www.mbio.ncsu.edu/BioEdit/bioedit.html
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each plot was based was given in the upper right corner of each plot. Oligonucleotide 

positions were given in the 5'-3' direction, with position 1 being the extreme 5' nucleotide. 

The primer and probe sequences of the NL-N gene assay contain the least number of 

mismatches compared to the target sequences of all the assays that were compared. 

 

3.3.3.2. Influenza viruses 
 
The primer and probe sequences selected for detection of influenza virus types A and B were 

taken from NSM VSOP 25 entitled “Real-Time Quadriplex PCR for the Detection of Influenza” 

(HPA, 2006) issued by the Standards Unit, DEST, Cfl, HPA (Appendix III). The real-time RT-PCR 

assay incorporated primers and TaqMan® or TaqMan® MGB™ probes for the detection of all 

generic influenza virus A subtypes (H1-H15) and influenza virus B. The influenza virus A and 

influenza virus B oligonucleotides were designed from multiple alignments of matrix and 

nucleoprotein gene sequences and designed to target a 205 base pair (bp) region and a 148 

bp region, respectively. Primers and TaqMan® MGB™ probe targeted a 151 bp region in the 

haemagglutinin gene of influenza A H5 viruses only to distinguish Influenza A H5 viruses 

from other influenza viruses. MS2 bacteriophage was incorporated as an internal control and 

specific primers and probe were designed to target a 99 bp region near the 5’ end of the 

genome. No modifications were made to the original primer and probe sequences described. 

The sensitivity of the real-time quadriplex PCR for the detection of influenza was determined 

using titrated stocks of influenza virus A and influenza virus B (HPA, 2006). The specificity of 

the real-time quadriplex PCR for the detection of influenza was determined using all 15 

subtypes of influenza virus type A (H1-H15), the full range of influenza H5 viruses, including 

influenza A H5 viruses isolated in Vietnam in 2004 and Turkey in 2005, and a blind 

respiratory panel consisting of influenza A virus subtypes H1, H3 and, H5, influenza virus B, 

and other respiratory pathogens (HPA, 2006).  

 

3.3.3.3. MS2 Bacteriophage 
 
The primer and probe sequences selected for detection of MS2 Bacteriophage were taken 

from NSM VSOP 25 entitled “Real-Time Quadriplex PCR for the Detection of Influenza” (HPA, 

2006) issued by the Standards Unit, DEST, Cfl, HPA (Appendix III). No modifications were 

made to the original primer and TaqMan® probe sequences. 
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3.3.3.4. Onderstepoort strain of canine distemper virus 
 
Sequence data for the Onderstepoort strain of canine distemper virus was obtained from the 

National Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov, 

accession number AF378705). Conserved regions within the genome of Onderstepoort strain 

of canine distemper virus were identified by generating multiple sequence alignments using 

the BioEdit software package (http://www.mbio.ncsu.edu/BioEdit/bioedit.html). The N gene 

was selected for development of novel primer and probe sequences due to the high level of 

sequence conservation within this region of the genome. The nucleotide sequence of the N 

gene is a 1.57 kilobase (kb) region that stretches from base 108 to 1679. Primer and probe 

sequences were designed using the Primer Express Software (Applied Biosystems™, 

Warrington, UK) to amplify a 77 bp fragment within N gene of the virus. The selected regions 

of the genome covered by the forward primer, reverse primer and probe were nucleotide 

positions 1216 to 1235, 1269 to 1292, and 1238 to 1259 respectively (Figure 3.2). The probe 

was labelled at the 5’ end with the fluorophore ROX and at the 3’ end with the non-

fluorescent quencher, Black Hole Quencher™ 2 (BHQ-2) (Table 3.2).  

 
The degree of nucleotide sequence homology was checked using the BLAST algorithm 

available from the NCBI that provides sequence similarity searches of databases maintained 

by the NCBI, EMBL, and DDBJ. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Primer or probe Sequence (5’-3’) Target gene 

Forward primer  GGA GAT CTG CCG GCA AAG TA 
Nucleoprotein Reverse primer  

 

TGA CAC TAG CTG AGC TTC CTC CTT 

Probe 

 

ROX – CTC TGC ACT TGC CGC CGA GCT T – BHQ-2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2. Primer and probe sequences for the detection of the Onderstepoort strain of canine 

distemper virus.  

The probe was labelled at the 5’ end with ROX (carboxy-X-rhodamine) and a non-fluorescent 

quencher, Black Hole Quencher™ 2 (BHQ-2) at the 3’ end.  

 

 

 

 

http://www.ncbi.nlm.nih.gov/
http://www.mbio.ncsu.edu/BioEdit/bioedit.html
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 ATGGCTAGCCTTCTTAAAAGCCTCACACTGTTCAAGAGGACTCGGGACCAACCCCCTCTTGCCTCTGGCT 

CCGGGGGAGCAATAAGAGGAATAAAGCATGTCATTATAGTCCTAATCCCGGGTGATTCAAGCATTGTTAC 

AAGATCTCGACTATTGGATAGACTTGTTAGGTTGGTTGGTGATCCAAAAATCAACGGCCCTAAATTAACT 

GGGATCTTAATCAGTATCCTCTCCTTGTTTGTGGAATCCCCTGGACAGTTGATCCAGAGGATCATAGACN 

ACCCTGATGTAAGCATCAAGTTAGTAGAGGTAATACCAAGCATCAACTCTGTTTGCGGTCTTACATTTGC 

ATCCAGAGGAGCAAGTCTGGATTCTGAGGCAGATGAGTTCTTCAAAATTGTAGACGAAGGGTCGAAAGCT 

CAAGGGCAATTAGGCTGGTTAGAGAATAAGGATATAGTAGACATAGAAGTTGATAATGCTGAGCAATTCA 

ATATATTGCTAGCTTCCATCTTGGCTCAAATTTGGATCCTGCTAGCTAAAGCGGTGACTGCTCCTGATAC 

TGCAGCCGACTCGGAGATGAGAAGGTGGATTAAGTATACCCAGCAAAGACGTGTGGTCGGAGAATTTAGA 

ATGAACAAAATCTGGCTTGATATTGTTAGAAACAGGATTGCTGAGGACCTATCTTTGAGGCGATTCATGG 

TGGCACTCATCTTGGACATCAAACGATCCCCAGGGAACAAGCCTAGAATTGCTGAAATGATTTGTGATAT 

AGATAACTACATTGTGGAAGCTGGGTTAGCTAGTTTCATCCTAACTATCAAGTTTGGCATTGAAACTATG 

TATCCGGCTCTTGGGTTGCATGAGTTTTCCGGAGAATTAACAACTATTGAATCCCTCATGATGCTATATC 

AACAGATGGGTGAAACAGCACCGTACATGGTTATCTTGGAAAACTCTGTTCAAAACAAATTTAGTGCAGG 

GTCCTACCCATTGCTCTGGAGTTATGCTATGGGGGTTGGTGTTGAACTTGAAAACTCCATGGGAGGGTTA 

AATTTCGAGTCGTCTTACTTTGACCCAGCTTACTTCAGACTCGGGCAAGAAATGGTTAGGAGATCTGCCG 

GCAAAGTAAGCTCTGCACTTGCCGCCGAGCTTGGCATCACCAAGGAGGAAGCTCAGCTAGTGTCAGAAAT 

AGCATCCAAGACAACAGAGGACCGGACAATTCGAGCTACTGGTCCTAAGCAATCCCAAATCACTTTTCTG 

CACTCGGAAAGATCCGAAGTCGCCAATCAACAACCCCCAACCATCAACAAGAGGTCCGAAAACCAGGGAG 

GAGACAAATACCCCATTCACTTCAGTGACGAAAGGCTTCCAGGGTATACCCCAGATGTCAACAGTTCTGA 

ATGGAGTGAGTCACGCTATGACACCCAAATTATCCAAGATGATGGAAATGACGATGACCGGAAATCGATG 

GAAGCAATCGCCAAGATGAGGATGCTTACTAAGATGCTCAGTCAACCTGGGACCAGTGAAGATAGTTCTC 

CTGTTTATAATGATAGAGAGCTACTCAATTAA 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Target oligonucleotide sequences in the nucleocapsid protein gene of the 

Onderstepoort strain of canine distemper virus (accession number AF378705).  

The nucleocapsid (N) protein gene sequence data was obtained from the National Center for 

Biotechnology Information (http://www.ncbi.nlm.nih.gov. The nucleotide sequence of the N 

protein gene is a 1.57 kb region from base 108 to 1679. The forward primer, reverse primer, and 

probe represented in green, blue, and red, respectively, target a 77 bp region within the N protein 

gene of the virus. 

 

 

http://www.ncbi.nlm.nih.gov/
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3.3.4. Detection of influenza viruses using the real-time quadriplex RT-PCR assay  
 
A working reaction mix was prepared according to NSM VSOP 25 entitled “Real-Time 

Quadriplex PCR for the Detection of Influenza” (HPA, 2006) by combining the SuperScript™ III 

Platinum® One-Step qRT-PCR System (Invitrogen Ltd, Paisley, UK) with primers and TaqMan® 

probes or TaqMan® MGB™ probes at the concentrations shown in Table 3.3 with nuclease-

free water (Bioline Ltd, London, UK) to a volume of 20 µl. Finally, 5 µl of viral RNA extract 

was added exclusive of the NTC. Instead, 5 µl of nuclease-water was added. RT-PCR was 

performed on the Rotor-Gene 6000 real-time system (Corbett Research Ltd, Cambridge, UK) 

using the thermal cycling parameters (Section 2.6.6.2) acquiring on the FAM, VIC, CY-5 and 

ROX channels. Real-time measurements were taken at each cycle. 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Reagents 
Volume (µl) per 
25 µl  reaction 

Stock 
Concentration 

Final 
Concentration  

SuperScript III RT/Platinum® Taq Mix 12.5 - - 

2X Reaction Mix 0.80 2X 1X 

H5 forward primer 1.00 10 µM 400 nM 

H5 reverse primer 1.00 10 µM 400 nM 

H5 probe 0.50 5 µM 100 nM 

FA forward primer 0.50 20 µM 400 nM 

FA reverse primer 1.00 20 µM 800 nM 

FA forward primer 0.40 10 µM 160 nM 

FB forward primer 0.17 20 µM 132 nM 

FB reverse primer 0.17 20 µM 132 nM 

FB probe 0.20 3.3 µM 26 nM 

MS2 forward primer 0.10 20 µM 80 nM 

MS2 reverse primer 0.10 20 µM 80 nM 

MS2 probe 0.20 10 µM 80 nM 

Nuclease-free water 1.37 - - 

TOTAL VOLUME 20.00   

 

 

Table 3.3. Preparation of working reaction mix for the real-time quadriplex RT-PCR assay.  

The volume of each reaction component was taken from National Standard Method VSOP 25 

entitled “Real-Time Quadriplex PCR for the Detection of Influenza” issued by the Standards Unit, 

Department for Evaluations, Standards and Training, Centre for Infections, Health Protection 

Agency (HPA, 2006).  

 

 

 

Abbreviations: H5, avian influenza virus H5N1; FA, influenza virus type A; FB, influenza virus type 

B; MS2, MS2  Bacteriophage.  
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3.3.5. Growth of the Onderstepoort strain of Canine Distemper Virus  
 
3.3.5.1. EMEM maintenance medium 
 
This complete medium was supplied ready for use in 100 ml volumes with serum by the 

CMPHL, Addenbrooke’s Hospital, Cambridge. It was prepared from a basal medium of 

Eagle's minimal essential medium (EMEM) containing sodium bicarbonate, L-glutamine, and 

pH indicator and supplemented with 50 IU/ml penicillin, 100 µg/mL streptomycin, 2.5 µg/mL 

amphotericin and 1% Foetal Calf Serum (FCS). The addition of phenol red to the EMEM 

served to indicate changes in pH. EMEM with 1% FCS was stored at 2oC to 8oC.  

 
3.3.5.2. Cell culture monolayers  
 
Cell culture monolayers of kidney cells of a normal African green monkey (Vero) (Figure 3.3) 

were supplied ready to use in disposable glass tubes by the CMPHL, Addenbrooke’s Hospital, 

Cambridge. On receipt, the tubes were placed in a rack at an angle of approximately 5o and 

incubated overnight at 37oC. On the following day, the cells were examined microscopically 

using an inverted microscope to assess cell growth. Cells that had formed an approximately 

80% confluent monolayer were incubated 35oC until required. Fresh medium was applied 

every 3-4 days to maintain the condition of the cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 

 

 

 

 

Low Density                                 Scale Bar = 100 µM High Density                               Scale Bar = 100 µM 

Figure 3.3. Cell micrographs of uninfected low and high density Vero cells derived from kidney cells 

of a normal African green monkey (Cercopithecus aethiops).  

Images are available from URL: http://www.lgcstandards-atcc.org. Accessed 5th December 2010.  
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88 | P a g e  

3.3.5.3. Onderstepoort strain of canine distemper virus 
 
Cell culture supernatant containing the Onderstepoort strain of canine distemper virus was 

kindly donated by Professor Louise Crosby, Queen’s University Belfast, Northern Ireland. 

 

3.3.5.4. Specimen Inoculation for virus cell culture 
 
The Onderstepoort strain of canine distemper virus was inoculated onto confluent 

continuous cell culture monolayers of Vero cells (Figure 3.3). A sterile pastette was used to 

transfer 6 drops (0.2 ml) of well-mixed cell culture supernatant to the selected cell line. The 

tubes were incubated overnight at 37oC in a rack at an angle of approximately 5o to allow the 

inocula to absorb to the cell monolayer. The cultures were then re-fed with 1 ml of fresh 

EMEM maintenance medium and incubated at 37oC on a roller drum for no longer than 3 

days to maintain a low multiplicity of infection (MOI). The tubes were observed every 24 or 

48 hours to check for the development of cytopathic effects and contamination under light 

microscopy. Typical CPE characteristics observed for the Onderstepoort strain of canine 

distemper virus growing in continuous cell culture monolayers of Vero cells included cell-

rounding, detachment of cells and the destruction of the cell monolayer. Next, the cells were 

scraped into the medium. The tubes were vortexed briefly and then centrifuged at 3000 rpm 

for 5 minutes to remove the cellular debris. The supernatant was harvested and 6 drops (0.2 

ml) of supernatant was passaged onto fresh Vero cell monolayers. The remaining 

supernatant was stored at -70°C until required.  

 

3.3.6. Propagation of Escherichia coli Phage MS2 
 
The production of a high titre suspension of MS2 bacteriophage was achieved using the 

Double Agar Overlay method otherwise known as the “soft agar overlay”, “double agar 

layer” or “double layer” method of plaque assay (Kropinski et al., 2009), which was kindly 

donated by Dr Martin Curran, CMPHL, Addenbrooke’s Hospital, Cambridge. Dilutions of 

phage suspension were mixed with host bacteria in a dilute, molten agar or agarose matrix – 

the “top agar” or “overlay”, which was distributed evenly to solidify on a standard agar plate 

– the “bottom agar” or “underlay” (Kropinski et al., 2009). After incubation, the plaques 

were visualised as zones of clearing or diminished growth in the bacterial lawn, which grow 

in the overlay (Kropinski et al., 2009). 
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3.3.6.1. Stock Cultures 
 
Escherichia coli Phage MS2 (15597-B1™) and its bacterial E. coli host (15597™) were acquired 

from the American Type Culture Collection (ATCC) (LGC standards, UK). The freeze-dried 

cultures were stored at 5oC or colder until medium were prepared to initiate the revival of 

the freeze-dried material as directed by the instructional guide provided by the ATCC.  

 

3.3.6.2. Re-hydration of freeze-dried Escherichia coli host and host propagation  
 
The freeze-dried culture of E. coli was revived by adding 500 µl of #271 broth medium 

(Appendix II) to the freeze-dried material under aseptic conditions. The rehydrated culture 

was mixed well and then transferred to a 25 ml sterile universal containing 6 ml of #271 

broth medium. The last remaining drops of the rehydrated culture were transferred to the 

prepared nutrient agar slant (Appendix II). The enrichment broth and nutrient agar slant 

were incubated aerobically at 37°C for 24 hours. Following incubation, the enrichment broth 

was subcultured onto a solid agar plate prepared from #271 broth medium (Appendix II). 

The inoculum was dispersed over the surface of the agar plate by the surface streak method 

in order to achieve the isolation of individual bacterial colonies (Figure 3.4). The agar plate 

was incubated aerobically at 37°C for 18-24 hours. 

 

 

 

 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Schematic representation of the surface streak method used to disperse the inoculum 

over the surface of each agar plate in order to isolate individual bacterial colonies.  

Adapted from the National Standard Method Virology Standard Operating Procedure 52 entitled 

“Inoculation of Culture Media” issued by the Standards Unit, Department for Evaluations, 

Standards and Training, Centre For Infections, Health Protection Agency (HPA, 2008). 
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3.3.6.3. Re-hydration of freeze-dried bacteriophage 
 
To recover the E. coli Phage MS2 from the freeze-dried vial, the phage specimen was re-

hydrated with 1 ml of #271 broth medium under aseptic conditions. The vial was mixed well 

and then 0.25 ml of the re-hydrate was used to prepare a new high titre phage suspension. 

The remaining phage mixture was preserved in a sterile screw-capped vial at -70oC.  

 

3.3.6.4. Preparation of broth culture of Escherichia coli host 
 
It was essential that an actively growing broth culture of the E. coli host was prepared before 

opening the phage specimen. To prepare the actively growing broth culture of the host, a 

single isolated colony of E. coli was inoculated into 6 ml of #271 broth medium. The broth 

culture was incubated at 37°C for 18-24 hours prior to inoculation with revived phage.  

 

3.3.6.5. Preparation of a high-titre phage suspension 
 
A high-titre phage suspension was prepared by adding 200 µl of E. coli host and 50 µl of MS2 

bacteriophage to a sterile universal. This process was repeated 5 times. The suspension was 

incubated at room temperature (15°C to 25°C) for 10 minutes to allow the phage to adsorb 

onto the host. A control universal containing only the E. coli host was prepared by adding 

200 µl of E. coli to 50 µl of #271 broth medium. Next, 100 ml of soft overlay agar (Appendix 

II) was melted in a microwave oven. The molten agar was cooled to approximately 500C 

before aseptically adding 1 ml of 10% glucose (Appendix II), 0.2 ml of 1 M CaCl2 (Appendix II) 

and 0.1 ml of 10mg/ml thiamine hydrochloride (Appendix II). Finally, the soft overlay agar 

was transferred to a water bath to maintain the temperature of agar at 43°C to 45°C while 

six solid agar plates were pre-warmed in a 37°C incubator. Next, 4 ml of soft overlay agar 

was added to each of the 6 universals. The suspension was swirled to mix and then poured 

onto the pre-warmed solid agar plates to distribute the phage suspension in a thin even 

layer over the surface of the solid agar. The soft overlay was allowed to set at room 

temperature (15oC to 25oC). The plates were incubated aerobically at 37°C for 18-24 hours. 

Following incubation, 20 ml of #271 broth medium was added to each plate displaying clear 

confluent lysis as compared to the control plate. The soft agar surface was scraped off using 

a sterile spreader into 4 x 25 ml sterile glass universals, mixed vigorously and then 

centrifuged at 3,000 rpm for 25 minutes to sediment the cellular debris and agar. Finally, the 

supernatant containing the phage was passed through a 0.22 µm sterile 33 mm Millex-GP 

filter unit (Millipore, Watford, UK). The filtrate was stored at 2°C to 8°C or for prolonged 

storage at -20°C. 
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3.3.6.6. Determining plaque-forming units of Escherichia coli Phage MS2 by plating assays 
 
In order to determine plaque-forming units (PFU), 200 µl of E. coli host was added to a 

sterile universal. This process was repeated 4 times. Four solid agar plates were pre-warmed 

in a 37°C incubator and 100 ml of soft overlay agar was melted in a microwave oven. The 

melted agar was cooled to approximately 500C before aseptically adding 1 ml of 10% 

glucose, 0.2 ml of 1 M CaCl2 and 0.1 ml of 10mg/ml thiamine and then transferred to a water 

bath to maintain the temperature of the soft overlay agar at 43°C to 45°C. Next, 4 ml of soft 

agar was added to each universal. The contents were swirled to mix and then poured onto 

the pre-warmed solid agar plates to distribute the bacterial cells in a thin even layer over the 

surface of the solid agar. The soft agar overlay was allowed to set at room temperature 

(15°C to 25°C). A 10-fold serial dilution from 10-1 to 10-10 of MS2 bacteriophage was prepared 

in PBS (Appendix II). The solid agar plates with soft-agar overlay were divided into four 

quadrants. Using a fixed volume pipette, 25 µl of each dilution was transferred in duplicate 

onto the surface of the plates; two dilutions were put onto each plate. The plates were 

allowed to dry at room temperature (15°C to 25oC). The plates were incubated aerobically at 

370C for 18-24 hours. After incubation, the plates were examined for plaque formation. The 

number of plaques on each plate was counted and the titre of the original stock solution of 

phage (phage/ml) was calculated by multiplying the number of plaques by the dilution 

factor.  

 

3.3.7. Optimisation of the human metapneumovirus two-step real-time RT-PCR assay........  
 
To perform the optimisation of the two-step real-time RT-PCR assay for HMPV detection 

using primer and probe sequences described by Maertzdorf et al. (2004) (Section 3.3.3.1) 

RNA template was first prepared from donated HMPV positive culture supernatant (Section 

2.6.4.2) by manual purification using the QIAamp Viral RNA Mini Kit (QIAGEN Ltd, West 

Sussex, UK) (Section 2.6.4.3). In the next step, cDNA was generated using the TaqMan® 

Reverse Transcription Reagents (Applied Biosystems, Warrington, UK) in a final reaction 

volume of 20 µl with 1X RT Buffer, 5.5 mM MgCl2, 500 µM each of dATP, dCTP, dGTP, dTTP, 

2.5 µM random hexamers, 0.4 U/µl RNase inhibitor, and 1.25 U/µl Multiscribe Reverse 

Transcriptase (50 U/µl) (Section 2.6.6.1). The TaqMan® Universal PCR Master Mix without 

UNG AmpErase (Applied Biosystems, Warrington, UK) (Section 2.6.6.1) was used in 

conjunction with the cDNA template in a final reaction volume of 25 µl to determine the 

optimal primer and TaqMan® probe concentrations using an optimisation matrix (Section 

2.6.6.4).  
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3.3.8. Sensitivity of the human metapneumovirus two-step real-time RT-PCR assay.......... 
 
The sensitivity of the two-step real-time RT-PCR for HMPV detection was established using 

donated positive virus culture supernatant that was serially diluted (10-1, 10-2, 10-3 to 10-10) in 

a working solution of 1 ng/µl of cRNA (Section 2.6.6.3) before manual extraction using the 

QIAamp Viral RNA Mini Kit (QIAGEN Ltd, West Sussex, UK) (Section 2.6.4.3). Finally, the two-

step real-time RT-PCR assay was performed (Section 2.6.6.1) in triplicate for each dilution 

using cDNA template generated from lower dilutions (10-3 to 10-10) of positive virus culture 

supernatant. 

 

3.3.9. A one-step real-time RT-PCR for streamlined human metapneumovirus detection 
 
The two-step real-time RT-PCR for HMPV detection was improved further by streamlining 

the assay to a one-step protocol using the SuperScript™ III Platinum® One-Step qRT-PCR 

System (Invitrogen, Paisley, UK) (Section 2.6.6.2) in combination with forward and reverse 

primers and TaqMan® probe at concentrations determined from the optimisation of the 

two-step reaction. The one-step real-time RT-PCR assay was performed in a final reaction 

volume of 25 μl containing 12.5 μl of reaction buffer with a final magnesium sulphate 

(MgSO4) concentration of 3 mM, 0.8μl Platinum® Taq DNA polymerase and 600 nM of NL-N 

forward primer, 200 nM of NL-N reverse primer, 200 nM of NL-N probe, and nuclease-free 

water (Bioline Ltd, London, UK) to a volume of 20 μl. Finally, 5 µl of RNA extract was added 

exclusive of the NTC. Instead, 5 µl of nuclease-free water (Bioline Ltd, London, UK) was 

added. The one-step RT-PCR real-time assay was performed on the Rotor-Gene™ 6000 series 

real-time analyser (Corbett Research Ltd, Cambridge, UK) using the thermal cycling 

parameters outlined in Section 2.6.6.2 and acquiring on the FAM channel. 

 
The sensitivity of the one-step RT-PCR reaction for HMPV detection was established using 

donated positive virus culture supernatant that was serially diluted (10-1, 10-2, 10-3 to 10-10) in 

a working solution of 1 ng/µl of cRNA (Section 2.6.6.3) before manual extraction using the 

QIAamp Viral RNA Mini Kit (QIAGEN Ltd, West Sussex, UK) (Section 2.6.4.3). The one-step 

real-time RT-PCR assay was performed (Section 2.6.6.2) in triplicate for each dilution using 

cDNA template generated from lower dilutions (10-3 to 10-10) of positive virus culture 

supernatant. 
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3.3.10. Validation of novel primer and probe sequences to detect the Onderstepoort 
vaccine strain of canine distemper virus 

 
Initial studies were conducted to determine the capacity of the novel primer and probe 

sequences to detect the Onderstepoort vaccine strain of canine distemper virus. RNA was 

extracted from virus previously grown on Vero cells (Section 3.3.6.4) using the QIAamp Viral 

RNA Mini Kit (QIAGEN Ltd, West Sussex, UK) (Section 2.6.4.3). Next, cDNA was generated 

using the TaqMan® Reverse Transcription Reagents (Applied Biosystems, Warrington, UK) in 

a final reaction volume of 20 µl with 1X RT Buffer, 5.5 mM MgCl2, 500 µM each of dATP, 

dCTP, dGTP, dTTP, 2.5 µM random hexamers, 0.4 U/µl RNase inhibitor, and 1.25 U/µl 

Multiscribe Reverse Transcriptase (50 U/µl) (Section 2.6.6.1). Reverse transcription was 

performed on the GeneAmp 2400 Thermal Cycler (Perkin-Elmer, UK) (Section 2.6.6.1). The 

TaqMan® Universal PCR Master Mix without UNG AmpErase (Applied Biosystems, 

Warrington, UK) (Section 2.6.6.1) was used in combination with 400 nM of forward and 

reverse primers and 200 nM of TaqMan® probe. Oligonucleotide concentrations were not 

optimal but were suitable to allow assessment of the viability of the selected primer and 

probe sequences. Finally, 5 µl of cDNA template and nuclease-free water were added to a 

final reaction volume of 25 µl. Real-time PCR was performed on the ABI Prism® 7700 Real-

Time Sequence Detection System (Applied Biosystems, Warrington, UK) (Section 2.6.6.1). 

 

3.3.11. Optimisation of the Bacteriophage MS2 internal control assay 
  
Optimisation of the MS2 bacteriophage detection system was performed using commercially 

available MS2 RNA (Roche Diagnostics Ltd, Burgess Hill, UK) that was supplied at a 

concentration of 0.8 µg/µl. A 10-6 dilution of MS2 RNA was prepared in a working solution of 

1ng/µl of cRNA (Section 2.6.6.3) before manual purification using the QIAamp Viral RNA Mini 

Kit (QIAGEN Ltd, West Sussex, UK) (Section 2.6.4.3). Optimisation was performed using an 

optimisation matrix (Section 2.6.6.4) in conjunction with the SuperScript™ III Platinum® One-

Step qRT-PCR System and RNA template in a final reaction volume of 25 µl on the Rotor-

Gene 6000 series real-time analyser (Corbett Research Ltd, Cambridge, UK) using outlined 

thermal cycling parameters (Section 2.6.6.2).  

 
3.3.12. Determination of optimal input concentration of MS2 bacteriophage per extraction  
 

A 10-fold dilution series from 10-1 to 10-8 was prepared from the MS2 bacteriophage stock 

solution in PBS (Appendix II) in order to determine the optimal input concentration of MS2 

bacteriophage required per nucleic acid extraction using the QIAamp Viral RNA Mini Kit 
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(QIAGEN Ltd, West Sussex, UK) (Section 2.6.4.3). Manual purification was performed in 

accordance with the manufacturer’s instructions with the addition of 20 μl of internal 

control material at dilutions 10-1 to 10-8 to Buffer AVL alongside 140 μl of HMPV negative 

clinical material. Next, 5 μl of RNA template was added to a reaction mix containing the 

SuperScript™ III Platinum® One-Step qRT-PCR System in combination with primers and 

TaqMan® probe at optimal concentrations (Section 3.3.12). Real-time RT-PCR assay was 

performed on the Rotor-Gene 6000 series real-time analyser (Corbett Research Ltd, 

Cambridge, UK) using outlined thermal cycling parameters (Section 2.6.6.2).  

 

3.3.13. Optimisation of Primer and Probe Concentrations for Duplex Reactions 
 
The individual detection systems designed for HMPV and MS2 bacteriophage were 

combined in order to achieve simultaneous amplification of the two target sequences within 

a single reaction. To validate the change to a duplex format, a 10-fold dilution series was 

prepared from HMPV positive culture supernatant (Section 3.3.1) in a working solution of 1 

ng/µl of cRNA (Section 2.6.6.3). The HMPV dilution series as well as a selection of HMPV 

positive respiratory specimens were prepared without MS2 bacteriophage and in 

combination with the optimal internal control input concentration by manual extraction 

using the QIAamp Viral RNA Mini Kit (QIAGEN Ltd, West Sussex, UK) (Section 2.6.4.3). Real-

time RT-PCR was performed using the SuperScript™ III Platinum® One-Step qRT-PCR System 

in combination with HMPV primers and TaqMan® probe at optimised concentrations but the 

internal control oligonucleotide concentrations were reduced to ensure the duplex reaction 

favoured HMPV detection. Instead, primer and TaqMan® probe concentrations outlined in 

NSM VSOP 25 entitled “Real-Time Quadriplex PCR for the Detection of Influenza” (HPA, 2006) 

were used. The amended working reaction mix for duplex reactions is shown in Table 3.4. 

 
 
 
 
 
 
 
 
 
 
 

Reagents 
Volume (µl) per 
25 µl  reaction 

Stock 
Concentration 

Final 
Concentration  

SuperScript III RT/Platinum® Taq Mix 12.5 - - 

2X Reaction Mix 0.80 2X 1X 

NL-N forward primer 1.50 20 µM 600 nM 

NL-N reverse primer 0.50 20 µM 200 nM 

NL-N probe 1.00 10 µM 200 nM 

MS2 forward primer 0.10 20 µM 80 nM 

MS2 reverse primer 0.10 20 µM 80 nM 

MS2 probe 0.20 10 µM 80 nM 

Nuclease-free water 1.37 - - 

TOTAL VOLUME 20.00   

 

 

Table 3.4. Preparation of working reaction mix for the human metapneumovirus real-time RT-PCR 

assay incorporating MS2 bacteriophage as the internal control.  
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3.3.14. Evaluation of the COBAS AmpliPrep TNAI Kit for Automated Nucleic Acid Extraction. 
 
The performance of the COBAS® AmpliPrep TNAI Kit (Roche Diagnostics Ltd, Burgess Hill, UK) 

on the COBAS® AmpliPrep Instrument (Roche Diagnostics Ltd, Burgess Hill, UK) was validated 

for the preparation of highly purified nucleic acid from respiratory specimens including MS2 

bacteriophage as an internal control in comparison to the QIAamp Viral RNA Mini Kit 

(QIAGEN Ltd, West Sussex, UK). In total, 128 archived, frozen respiratory specimens 

including 103 NPA, 16 throat swabs, 7 combined nose and throat swabs, 1 sputum and 1 BAL 

submitted to the Microbiology Department between September 2007 and April 2008 were 

included in the retrospective evaluation. All samples were examined routinely by virus 

culture, DFA (IMAGENTM, Oxoid Ltd, Hampshire, UK) for influenza virus types A and B, HRSV, 

PIV types 1-3, HRSV, adenovirus, and Chlamydia sp, and NOW® RSV Test (Binax, Inc., ME, 

USA) (Section 2.4.2). Total nucleic acid was extracted manually from 140 µl of sample 

material and eluted in a final volume of 60 µl using the QIAamp Viral RNA Mini Kit (QIAGEN 

Ltd, West Sussex, UK) (Section 2.6.4.3). A second 350 µl aliquot of all 128 specimens was 

extracted on the COBAS® AmpliPrep Instrument (Roche Diagnostics Ltd, Burgess Hill, UK) 

using the COBAS® AmpliPrep TNAI Kit (Roche Diagnostics Ltd, Burgess Hill, UK) with a final 

elution volume of 75 µl (Section 2.6.4.4). Twenty microlitres of MS2 bacteriophage at the 

optimal input concentration was included in the manual extraction procedure that was 

performed using the QIAamp Viral RNA Mini Kit (QIAGEN Ltd, West Sussex, UK) (Section 

2.6.4.3). Additional internal control at the optimal input concentration was prepared from 

the MS2 bacteriophage stock solution in PBS (Appendix II). A minimum of 1.1 ml of working 

internal control was prepared for 12 tests and a maximum of 4.0 ml for 48 tests. Finally, the 

internal control was loaded onto the COBAS® AmpliPrep Instrument (Roche Diagnostics Ltd, 

Burgess Hill, UK). Qualitative real-time RT-PCR was performed for the viral targets HMPV, 

and all generic influenza virus A subtypes (H1-H15) and influenza virus B (Section 3.3.4) using 

the SuperScript™ III Platinum® One-Step qRT-PCR System on the Rotor-Gene 6000 series 

real-time analyser (Corbett Research Ltd, Cambridge, UK) (Section 2.6.6.2).  

 

3.3.15. Agarose Gel Electrophoresis 
 
Amplification products of expected size were visualised by gel electrophoresis on a 2% (w/v) 

agarose gel. The agarose gel was prepared by gently heating 1 g of UltraPure™ Agarose 

(Invitrogen, Paisley, UK) in 50 ml of 1X Tris-Borate-EDTA (TBE) buffer (Ambion®, Warrington, 

UK) (Appendix II) until dissolved. The molten agarose gel was cooled to 60oC before adding 1 

µl of 10 mg/ml ethidium bromide solution (Sigma-Aldrich, Dorset, UK). An 8-well comb was 
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inserted into gel casting plate about 5 to 10 mm from the end of the plate. The agarose gel 

was gently poured into a 7 x 10 cm UV-transparent gel tray (Bio-Rad, Hertfordshire, UK). 

Bubbles were removed. The gel was allowed to set for approximately 30 minutes at room 

temperature (15oC to 25oC). Once the gel was set, the comb was removed and the gel tray 

carefully placed into the Mini-Sub Cell GT Cell Tank (Bio-Rad, Hertfordshire, UK). The gel tank 

was carefully filled with 1X TBE buffer (Appendix II) ensuring that no air remained in the 

wells by washing with 1X TBE.   

 
Samples were prepared  by adding 1 µl of ready-to-use 5X DNA Loading Buffer (Bioline Ltd, 

London, UK) to 4 µl of PCR product. Next, 5 µl of each prepared DNA sample was loaded 

alongside 5 µl of HyperLadder™ V, a ready-to use 25 bp molecular weight marker (Bioline 

Ltd, London, UK). Each marker contained multiple standard bands of between 40 ng to 80 ng 

of DNA and two intensive bands of 120 ng of DNA to facilitate DNA quantification and size 

DNA fragments. The gel was run at a constant voltage of 120 V/cm until the dye had 

migrated approximately half to three quarters of the length of the gel. DNA fragments were 

visualised under ultra-violet (UV) light using the UVP BioDoc-it™ Imaging System (Ultra-

Violet Products Ltd, Cambridge, UK) and the gel image captured using Polaroid film.  

 

3.3.16. Cloning real-time RT-PCR products  
 
Amplification products purified using the QIAquick® PCR purification kit (QIAGEN Ltd, 

Crawley, West Sussex, UK) were cloned into the plasmid vector pCR®2.1-TOPO® using the 

TOPO TA Cloning® Kit (Invitrogen, Paisley, UK) and transformed into One Shot® Mach1™-T1® 

Chemically Competent Escherichia coli (Invitrogen, Paisley, UK) subsequent to confirmation 

of the presence of a single discrete band by agarose gel electrophoresis.  

 

3.3.16.1. Addition of 3’ A-Overhangs Post-Amplification 
 
The SuperScript™ III One-Step RT-PCR System utilised in the one-step real-time RT-PCR assay 

for HMPV detection uses Platinum® Taq DNA Polymerase High Fidelity, an enzyme mixture 

composed of recombinant Taq DNA polymerase, Pyrococcus species GB-D polymerase, and 

Platinum® Taq antibodies. Pyrococcus species GB-D polymerase is a proofreading enzyme 

that possesses a 3’ to 5’ exonuclease activity. Direct cloning of DNA amplified by 

proofreading polymerases into TOPO TA Cloning vectors is often difficult because 

proofreading polymerases remove the unpaired 3’ adenine nucleotides necessary for TA 

Cloning®. Taq polymerase was used to ensure the presence of 3’adenine (A) overhangs on 
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the PCR product to permit TA Cloning of blunt-ended fragments. The addition of 3’ A-

overhangs was performed in a final reaction volume of 100 μl containing 90 μl of fresh PCR 

product, 0.5 μl Taq DNA polymerase, and 0.5 μl of dNTPs. The reaction was incubated for 10 

minutes at 72C on a PTC-200 DNA Engine Peltier Thermal Cycler (MJ Research, Inc., 

Massachusetts, USA). At the end of incubation the samples were placed on ice before 

treatment the QIAquick® PCR purification kit (QIAGEN, Crawley, West Sussex, UK). 

 

3.3.16.2. Setting up the Cloning Reaction 
 
With the desired PCR product ready, the next step was to clone the product into the 

pCR®2.1-TOPO® using the TOPO TA Cloning® Kit (Invitrogen, Paisley, UK). The TOPO Cloning 

reaction for eventual transformation into chemically competent TOP10F One Shot  E. coli 

was performed according to manufacturer’s instructions. Briefly, 1 μl, 2 μl or 4 μl of fresh 

PCR product, 1 μl of salt solution, and 1 μl of TOPO vector were combined in a 0.2 ml 

reaction tube (Alpha Laboratories, Hampshire, UK) with nuclease-free water to a final 

reaction volume of 6 μl. The tubes were mixed gently before incubation at room 

temperature (15C to 25C) for 5 minutes. At the end of incubation the samples were placed 

on ice until required to transform the pCR®2.1-TOPO® construct into competent E. coli. 

 

3.3.16.3. Transforming One Shot Mach1-T1R Competent Cells 
 

Transformations using the Mach1-T1R strain allowed visualisation of colonies 8 hours after 

plating on ampicillin selective plates or overnight after plating on kanamycin selective plates. 

A vial of One Shot Mach1-T1R Chemically Competent E. coli was thawed on ice for each 

transformation. The pUC19 control plasmid DNA supplied with the kit was used to verify the 

efficiency of the transformation experiment. Next, 2 µl of the prepared plasmid DNA was 

added to a vial of One Shot cells and 1 µl of pUC19 control was added to a separate vial of 

One Shot cells. The vials were mixed gently, incubated on ice for 30 minutes and then 

placed in a water-bath equilibrated to 42C for 40 seconds in order to heat-shock the cells. 

The vials were removed from the water bath and immediately placed on ice for 2 minutes. 

Next, 250 µl of room temperature 2x YT Microbial Medium (Appendix II) was added to each 

vial. Each vial was closed tightly before the cells were incubated at 37C for 1 hour with 

horizontal shaking at 225 rpm. In the interim, LB agar plates containing 50 µg/ml of 

ampicillin or kanamycin (Appendix II) were warmed at 30oC for 30 minutes. Next, the LB agar 

plates were spread with 40 µl of 40 µg/ml 5-Bromo-4-chloro-3-indolyl-β-D-

galactopyranoside (X-GAL) solution (Melford Laboratories Ltd, Suffolk, UK) (Appendix II). The 
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plates were incubated at 37oC until required. After incubation, 2 different volumes of 

transformation mix, 25 µl, and 50 µl, was spread onto separate pre-warmed LB agar plates 

to ensure that well-spaced colonies grew on at least one plate. After overnight incubation at 

37C, the plates were stored at 4oC to allow the blue colour to develop fully.  

 

3.3.16.4. Cultivation of transformants  
 

Individual white or pale blue colonies were selected for culture in 5 ml of pre-warmed LB 

medium containing 50 µg/ml of ampicillin or kanamycin (Appendix II). The LB medium was 

incubated in an orbital shaker at 37C for 16 hours with vertical shaking at 220 rpm.  

 

3.3.17. Purification of Plasmid DNA 
 

On removal from the orbital shaker, the cultures were centrifuged at 5000 rpm for 10 

minutes to pellet the bacterial cells. The supernatant was removed and the pelleted 

bacterial cells were resuspended in 250 µl of Buffer P1, containing a final concentration of 

100 µg/ml of RNase A solution and LyseBlue reagent, a simple visual identification system to 

prevent common handling errors that lead to inefficient cell lysis and incomplete 

precipitation of SDS, cell debris, and genomic DNA. LyseBlue formed a precipitate after 

addition to Buffer P1 at a ratio of 1:1000. This was the first stage in the purification of 

plasmid DNA using the QIAprep® Miniprep Kit (QIAGEN, Crawley, West Sussex, UK), which 

was performed in accordance with the manufacturer’s instructions. All centrifugation steps 

were performed at 13,000 rpm in a conventional, tabletop microcentrifuge. The cell 

suspension was transferred to a 1.5 ml microcentrifuge tube (Alpha Laboratories, 

Hampshire, UK) and following the addition of 250 μl of lysis buffer, Buffer P2, turned blue as 

the LyseBlue precipitate dissolved. The cell suspension was mixed thoroughly by inverting 

the tube six times to produce a homogenously coloured suspension. Next, 350 μl of Buffer 

N3 was added. The cell suspension mixed thoroughly immediately after the addition of the 

N3 neutralisation buffer by inverting the tube 6 times until all trace of blue disappeared and 

a homogenous colourless suspension remained that indicated that the SDS from the lysis 

buffer had been precipitated effectively. The suspension was centrifuged for 10 minutes to 

form a compact white pellet. A QIAprep spin column was placed in a 1.2 ml collection tube 

and the supernatant was applied to QIAprep spin column by pipetting. The column was 

centrifuged for 60 seconds and the through-flow was discarded. The QIAprep spin column 

was placed back into the same collection tube and 0.5 ml of Buffer PB was added to the 

QIAprep spin column. The spin column was centrifuged for 60 seconds and the through-flow 
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was discarded. This brief wash step was necessary to remove trace endonuclease activity 

that was associated with using endA+ and wildtype strains with high nuclease activity such as 

the Mach1-T1R E. coli strain to prevent degradation of the plasmid DNA. The QIAprep spin 

column was placed back into the same collection tube and 0.75 ml of ethanol-containing 

Buffer PE was added. The column was centrifuged for 60 seconds in a second brief wash step 

to remove salts. The flow-through was discarded and the QIAprep column was placed back 

in the same collection tube. The column was centrifuged for an additional 60 seconds to 

remove any residual Buffer PE that may inhibit subsequent enzymatic reactions. After 

centrifugation, the QIAprep spin column was opened for 60 seconds to allow any remaining 

ethanol to evaporate. Finally, the column was placed into a clean 1.5 ml microcentrifuge 

tube (Alpha Laboratories, Hampshire, UK) and 50 μl of Buffer EB (10 mM Tris·Cl, pH 8.5) was 

dispensed directly onto the centre of the QIAprep membrane for optimal elution of bound 

plasmid DNA. The column was incubated at room temperature (15C to 25C) for 60 seconds 

before a final centrifugation step for 60 seconds. The purified DNA was stored at –20°C until 

required. 

 

3.3.18. Restriction enzyme digestion analysis of plasmid DNA 
 
A typical restriction digest reaction containing 1 µg of plasmid DNA, 2.5 μl of 5X SuRE/Cut 

Buffer H (Roche Diagnostics Ltd, East Sussex, UK), 1 unit of EcoR I (Roche Diagnostics Ltd, 

East Sussex, UK) and nuclease-free water (Bioline, London, UK) to a final reaction volume of 

25 μl were combined in a 0.2 ml reaction tube (Alpha Laboratories, Hampshire, UK). The 

contents were mixed by pipetting up and down and centrifuged briefly at 12,000 xg to 

collect the contents at the bottom of the tube. The reaction was incubated for 1 hour at 

37C on a PTC-200 DNA Engine Peltier Thermal Cycler (MJ Research, Inc., Massachusetts, 

USA) before EcoR I was heat-inactivated by incubating at 65C for 15 minutes. At the end of 

incubation, 6 μl of 5X DNA loading buffer (Bioline, London, UK) was added to the resultant 

products of the restriction enzyme digestion reaction and analysed by agarose gel 

electrophoresis on a 2% agarose gel containing 10 mg/ml ethidium bromide solution as 

described previously.  

 

3.3.19. Sequence analysis of constructs 
 
The construct was sequenced by Genome Enterprise Limited, The Genome Analysis Centre, 

Norwich Research Park, Norwich, UK, using the M13 Forward primer (-20) (5´-

GTAAAACGACGGCCAG-3’) included in the TOPO TA Cloning® Kit (Invitrogen, Paisley, UK) in 
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combination with the BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, 

Warrington, UK) on the 3730xl DNA Analyser (Applied Biosystems, Warrington, UK). 

 

3.3.20. Long-term storage of plasmids 
 
A glycerol stock of the transformants was prepared for long-term storage once the correct 

clone was identified. The original colony was streaked out on LB plates containing 50 μg/ml 

kanamycin. A single colony was inoculated into 2 ml of LB medium containing 50 μg/ml 

kanamycin. Bacterial cells were grown until the culture reached stationary phase. Next, 0.85 

ml of bacterial culture was combined with 0.15 ml of sterile glycerol (Invitrogen, Paisley, UK) 

and transferred to a cryovial (Alpha Laboratories, Hampshire, UK). The culture was stored at 

-80°C for prolonged storage. 

 

3.4. Results 
 

3.4.1. A streamlined real-time RT-PCR assay for human metapneumovirus detection....... 
 
The fully optimised conditions for the two-step real-time RT-PCR assay for HMPV detection 

on the ABI Prism® 7700 Real-Time Sequence Detection System (Applied Biosystems, 

Warrington, UK) are outlined in Table 3.5.  

 

The optimisation was performed to determine the minimum primer and probe 

concentrations to ensure the generation of specific, repeatable, reproducible, and sensitive 

data. The sensitivity of the two-step real-time RT-PCR for HMPV detection was thoroughly 

examined by Maertzdorf et al., (2004) using serially diluted RNA from virus stocks and RNA 

runoff transcripts from the N protein gene of four prototype HMPV strains. Hence, only 

minimum experiments were performed here to ensure that the two-step real-time RT-PCR 

assay worked well within a different laboratory setting. The lowest reproducibly detected 

 

 
 

Reagents 
Volume (µl) per 

sample 
Stock 

Concentration 
Final 

Concentration  

TaqMan® Universal PCR Master Mix 

(2X) 

12.5 2X 1X 

NL-N forward primer 0.75 20 µM 600 nM 

NL-N reverse primer 0.25 20 µM 200 nM 

NL-N probe 0.50 10 µM 200 nM 

Nuclease-free water 6.00 - - 

TOTAL VOLUME 20.00   

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.5. Optimised conditions for a two-step real-time RT-PCR assay for the detection of human 

metapneumovirus on the ABI Prism® 7700 Real-Time Sequence Detection System. 
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dilution was determined as the cut-off (Figure 3.5). The two-step real-time RT-PCR assay 

demonstrated consistent detection capabilities over the range of dilutions investigated (10-3  

to 10-10) (Figure 3.5). The final detection limit of the two-step real-time RT-PCR assay was 

attained at the 10-9 dilution. 

 
The two-step real-time RT-PCR assay for HMPV detection was improved further by 

streamlining the assay to a one-step protocol using the SuperScript™ III Platinum® One-Step 

qRT-PCR System (Invitrogen, Paisley, UK) in combination with forward and reverse primers 

and TaqMan® probe at optimised concentrations determined for the two-step real-time RT-

PCR assay. Comparison of CT values between the two-step and one-step real-time RT-PCR 

assays was performed to ensure that the change to a one-step protocol did not have a 

negative influence on the sensitivity of the assay. The CT values of the HMPV dilution series 

in the one-step protocol were within +/- 1 cycle of those of the two-step real-time RT-PCR 

assay (Table 3.6). 

 
 
 

 

 Dilution CT 

 Water Negative 

 10-3 15.14 

 10-3 14.80 

 10-3 15.16 

 10-4 18.17 

 10-4 18.25 

 10-4 18.11 

 10-5 21.76 

 10-5 21.91 

 10-5 21.96 

 10-6 24.92 

 10-6 24.86 

 10-6 25.11 

 10-7 30.17 

 10-7 30.44 

 10-7 30.37 

 10-8 32.35 

 10-8 32.63 

 10-8 33.00 

 10-9 34.34 

 10-9 38.01 

 10-9 38.20 

 10-10 Negative 
 10-10 Negative 
 10-10 Negative 
 NTC Negative 
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Figure 3.5. The sensitivity of the two-step real-time RT-PCR for human metapneumovirus detection 

was performed using 10-fold serial dilutions of positive virus culture supernatant from 10
-3

 to 10
-10

.  

All dilutions were detected successfully excepting the 10-
10 

dilution.  
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3.4.2. Internal control strategies  
 

3.4.2.1. Optimisation of the Bacteriophage MS2 internal control assay 
 

The fully optimised conditions for MS2 bacteriophage detection on the Rotor-Gene 6000 

series real-time analyser (Corbett Research Ltd, Cambridge, UK) achieved using commercially 

available MS2 RNA (Roche Diagnostics Ltd, Burgess Hill, UK) are outlined in Table 3.7.  

 

 

 

 

 

 

 

 

 

 

3.4.2.2. Optimal input concentration of MS2 bacteriophage per extraction............  
 
The titre of the original stock solution of MS2 bacteriophage (phage/ml) was calculated by 

multiplying the number of plaques by the dilution factor following plating assays. Plaques 

were too numerous to count at dilutions 10-1 to 10-7 and were discounted. In contrast, 

plaques were no longer visible at the 10-10 dilution. However, plaques were clearly visible at 

dilutions 10-8 and 10-9 and so the stock solution of MS2 phage was calculated as 24 x 107 

pfu/ml and 3 x 108 pfu/ml, respectively. The optimal input concentration of MS2 

 

 

 
 

Virus dilution 
 Mean  CT values Difference in 

CT values (+/-) Two-step real-time RT-PCR One-step real-time RT-PCR 

10
-3 

15.03 15.69 +0.66 

10
-4 

18.18 19.06 

1.19 

+0.88 

10
-5 

21.88 22.74 +0.86 

10
-6 

24.96 25.21 +0.25 

10
-7 

30.33 29.85 -0.48 

10
-8 

32.66 33.27 +0.61 

10
-9 

36.85 36.12 -0.73 

10
-10

 Negative Negative - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.6. Comparison of cycle threshold (CT) values between the two-step and one-step real-time 

RT-PCR assays for the detection of human metapneumovirus on the ABI Prism® 7700 Real-Time 

Sequence Detection System and Rotor-Gene 6000 series real-time analyser, respectively. 

 

 

 

 

 

 

 

 

 
 

 

 

Reagents 
Volume (µl) per 

sample 
Stock 

Concentration 
Final 

Concentration  

SuperScript III RT/Platinum® Taq Mix 12.5 - - 

2X Reaction Mix 0.8 2X 1X 

MS2 forward primer 0.1 20 µM 50 nM 

MS2 reverse primer 0.3 20 µM 200 nM 

MS2 probe 0.3 10 µM 100 nM 

Nuclease-free water 6.1 - - 

TOTAL VOLUME 20.00   

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.7. Optimised conditions for a one-step real-time RT-PCR assay for the detection of MS2 

bacteriophage on the Rotor-Gene 6000 series real-time analyser. 
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bacteriophage required per nucleic extraction was ascertained through manual extraction of 

MS2 bacteriophage at dilutions 10-1 to 10-8 alongside HMPV negative clinical material. All 

MS2 bacteriophage dilutions were detected successfully but only the 10-6 and 10-7 dilutions 

offered suitability for inclusion in nucleic acid extraction alongside the primary target. MS2 

bacteriophage at dilutions 10-1 to 10-5 was detected at CT values <25 indicating that the 

internal control target was too abundant and may interfere with amplification of the primary 

target. In contrast, MS2 bacteriophage was detected at a CT value >30 at the lowest dilution, 

which reduced the reliability of the internal control (Figure 3.6). 

 

3.4.2.3. Combination of the detection systems designed for HMPV and MS2 bacteriophage 
 
No detrimental effect was observed on the sensitivity of the primary target within the 

duplex assay in comparison to the monoplex assay subsequent to the inclusion of MS2 

bacteriophage as the internal control target since only minor variation in CT values was 

observed between dilutions (Figure 3.8) and respiratory specimens (Figure 3.9) that were 

amplified with and without MS2 bacteriophage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Dilution CT 

 Water Negative 

 10
-1

 7.16 

 10
-2 

10.94 

 10
-3

 14.74 

 10
-4 

18.58 

 10
-5

 21.65 

 10
-6 

26.10 

 10
-7

 29.36 

 10
-8

 32.12 

 NTC Negative 
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Figure 3.6. Detemination of the optimal input concentration of MS2 bacteriophage required per 

nucleic extraction was ascertained using eight 10-fold serial dilutions prepared from the MS2 

bacteriophage stock solution in PBS, which was co-extracted with human metapneumovirus 

negative clinical material using the QIAamp Viral RNA Mini Kit. 
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 Figure 3.7. Comparison of cycle threshold (CT) values of serially diluted human metapneumovirus 

positive culture supernatant with and without MS2 bacteriophage to determine the effect of the 

addition of the internal control target on detection of human metapneumovirus in the duplex real-

time RT-PCR assay. Only minimum differences in CT values were observed between dilutions 

amplified with and without MS2 bacteriophage. 
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  Water 
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Threshold 

  Sample 

  Water 

  MS2 

  NTC 

 

Cycle 

Sample 
CT values Difference in 

CT values + 
MS2 

- 
MS2 10

-1 
9.22 8.99 0.23 

10
-2 

12.49 12.41 0.08 

10
-3 

16.08 16.01 0.07 

10
-4 

19.22 18.87 0.35 

10
-5 

23.04 22.96 0.08 

10
-6 

26.54 26.50 0.04 

10
-7 

31.45 31.20 0.25 
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  Sample 

  Water 

  Without MS2
 

  With MS2
 

Cycle 

Sample 
CT values Difference in 

CT values + 
MS2 

- 
MS2 1

 
34.51 33.75 0.76 

2
 

34.07 33.70 0.37 

3
 

35.14 34.74 0.40 

4
 

33.88 33.37 0.51 

5
 

34.19 33.85 0.34 

6
 

34.56 34.31 0.25 

7
 

29.37 29.01 0.36 

8
 

34.59 34.05 0.54 

9
 

34.06 33.83 0.23 

10
 

34.01 33.87 0.14 

11
 

29.90 29.03 0.87 

12
 

31.79 31.57 0.22 

13 33.84 33.32 0.49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Comparison of cycle threshold (CT) values among human metapneumovirus positive 

clinical samples with and without MS2 bacteriophage to determine the effect of the addition of the 

internal control target on detection of human metapneumovirus in the duplex real-time RT-PCR 

assay. The difference in CT values for each clinical specimen with and without MS2 bacteriophage is 

shown in the table. 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Threshold 

  Sample 

  Water 

  With MS2
 

  NTC 

 

  Sample 

  Water 

  Without MS2
 

  NTC 

 

Cycle 

N
o

rm
. F

lu
o

ro
. 

 

N
o

rm
. F

lu
o

ro
. 

Threshold 

Sample 
CT values Difference in 

CT values + 
MS2 

- 
MS2 1

 
34.51 33.75 0.76 

2
 

34.07 33.70 0.37 

3
 

35.14 34.74 0.40 

4
 

33.88 33.37 0.51 

5
 

34.19 33.85 0.34 

6
 

34.56 34.31 0.25 

7
 

29.37 29.01 0.36 

8
 

34.59 34.05 0.54 

9
 

34.06 33.83 0.23 

10
 

34.01 33.87 0.14 

11
 

29.90 29.03 0.87 

12
 

31.79 31.57 0.22 

13 33.84 33.32 0.49 
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3.4.2.4. Detection of the Onderstepoort vaccine strain of canine distemper virus..............  
 
Initial studies demonstrated that the novel primer and probe sequences selected within the 

N gene of the Onderstepoort vaccine strain of canine distemper virus successfully detected 

the virus (Figure 3.7). However, no further work was performed on this target subsequent to 

these preliminary investigations. The MS2 bacteriophage was selected as the preferential 

target for inclusion in the real-time RT-PCR assay for HMPV detection.  

 

3.4.3. Evaluation of the COBAS AmpliPrep TNAI Kit for Automated Nucleic Acid Extraction 
 
The evaluation of the performance of the COBAS® AmpliPrep TNAI Kit (Roche Diagnostics 

Ltd, Burgess Hill, UK) for automated nucleic acid extraction on the COBAS® AmpliPrep 

Instrument (Roche Diagnostics Ltd, Burgess Hill, UK) included 128 archived, frozen 

respiratory specimens. Qualitative real-time RT-PCR was performed for the viral targets 

HMPV, influenza virus type A, and influenza virus type B. HMPV was detected in 9 (7.0%) of 

respiratory specimens by real-time RT-PCR assay while influenza virus type A and influenza 

virus type B were detected by the real-time quadriplex PCR in 7 (5.5%) and 9 (7.0%) 

respiratory specimens, respectively. The CT values obtained for positive respiratory 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Amplification plots showing the cycle threshold (CT) values obtained for the 

Onderstepoort vaccine strain of canine distemper virus (CDV) demonstrating the ability of the novel 

primer and probe sequences targeting the nucleoprotein gene to detect the virus. Validation studies 

were performed using virus grown on confluent continuous cell culture monolayers of Vero cells. 
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specimens following extraction by the COBAS® AmpliPrep TNAI Kit (Roche Diagnostics Ltd, 

Burgess Hill, UK) on the COBAS® AmpliPrep Instrument  (Roche Diagnostics Ltd, Burgess Hill, 

UK)  in comparison to the QIAamp Viral RNA Mini Kit (QIAGEN Ltd, West Sussex, UK) varied 

between -1.33 and 2.40 with an average variance of 0.68 (Table 3.8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.4. Plasmid generation as an alternative human metapneumovirus positive control....... 
 
A plasmid offered an alternative source of control material in the absence of a commercial 

working reagent for HMPV. The plasmid was generated by cloning the 170 bp region within 

the HMPV N gene into the vector pCR®2.1-TOPO®. Sequencing was performed using the M13 

Forward primer included in the TOPO TA Cloning® Kit (Invitrogen, Paisley, UK) (Section 

3.3.19) to confirm that the gene was cloned in the correct orientation. Restriction 

 

 

 
 
 
 
 

VIrus Sample 
COBAS® AmpliPrep TNAI Kit QIAamp Viral RNA Mini Kit Difference in 

CT values  
(+/-) 

Status CT Status CT 

HMPV 

49/07 Positive  32.75 Positive 31.75 1 

51/07 Positive  26.93 Positive 28.08 -1.15 

52/07 Positive  26.89 Positive 25.89 1 

12/08 Positive  31.65 Positive 30.59 1.06 

13/08 Positive  26.83 Positive 24.58 2.25 

15/08 Positive  35.95 Positive 35.16 0.79 

45/08 Positive  26.97 Positive 25.76 1.21 

55/08 Positive  20.28 Positive 21.61 -1.33 

59/08 Positive  34.52 Positive 32.12 2.40 

FA 

56/07 Positive  23.68 Positive 22.95 0.73 

58/07 Positive  21.85 Positive 20.87 0.98 

01/08 Positive  37.25 Positive 37.93 -0.68 

14/08 Positive  23.34 Positive 22.67 0.67 

17/08 Positive  26.29 Positive 24.56 1.73 

30/08 Positive  35.82 Positive 36.37 -0.55 

58/08 Positive  26.52 Positive 27.69 -1.17 

FB 

24/08 Positive  30.53 Positive 29.66 0.87 

28/08 Positive  35.50 Positive 34.27 1.23 

31/08 Positive  26.30 Positive 23.97 2.33 

44/08 Positive  20.54 Positive 19.67 0.87 

46/08 Positive  30.54 Positive 29.43 1.11 

49/08 Positive  22.38 Positive 23.14 -0.76 

51/08 Positive  24.95 Positive 24.14 0.81 

65/08 Positive  14.78 Positive 14.14 0.64 

66/08 Positive  27.73 Positive 26.70 1.03 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.8. Comparison of crossing threshold (CT) values obtained for positive respiratory specimens 

following automated extraction by the COBAS® AmpliPrep TNAI Kit on the COBAS® AmpliPrep 

Instrument and manual extraction by the QIAamp Viral RNA Mini Kit.  
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endonuclease digestion of plasmid DNA was performed to confirm the presence and correct 

orientation of the insert using EcoR I, a class II restriction enzyme (Section 3.3.18). A glycerol 

stock of the transformants was prepared for long-term storage at -80°C once the correct 

clone was identified (Section 3.3.20). 

 

3.5. Discussion  
 
The exploration of molecular diagnostic techniques for the detection of viruses has heralded 

major changes within the routine diagnostic virology setting, which is classically defined by 

the use of virus culture to grow viruses (Carman and Niesters, 2007). This has particular 

relevance to the Microbiology Department at the Norfolk and Norwich University Hospital, 

which is embracing a move from traditional virus culture to molecular diagnostic techniques 

for diagnosis of respiratory virus infection. The introduction of a real-time RT-PCR assay for 

HMPV detection marked the inception of the molecular diagnostic repertoire. This molecular 

diagnostic test was based on primer and probe sequences described by Maertzdorf et al. 

(2004), which demonstrated the capacity to detect HMPV from the four genetic lineages 

with equal sensitivity and specificity in comparison to previously described assays (Mackay et 

al., 2003; van den Hoogen et al., 2003). Though novel primer and probe sequences were not 

designed for the purpose of this study, improvements to the original assay described by 

Maertzdorf et al. (2004) were undertaken. The substitution of the quencher molecule, 

TAMRA (6-carboxy-tetramethylrhodamine) with BHQ-1 at the 3’ end of the TaqMan® probe 

was the only modification made to the original primer and probe sequences described by 

Maertzdorf et al. (2004). Nevertheless, this substitution was performed due to the inherent 

fluorescence properties of TAMRA that result in a relatively poor signal-to-noise ratio. 

Moreover, the original two-step real-time RT-PCR assay described by Maertzdorf et al. 

(2004) was streamlined into a routine diagnostic friendly one-step RT-PCR assay using the 

SuperScript™ III Platinum® One-Step qRT-PCR System (Invitrogen Ltd, Paisley, UK). Finally, 

MS2 bacteriophage was incorporated successfully as an internal control. Although at one 

time it was considered that the use of a one-step method offered reduced sensitivity in 

contrast to a two-step method, the findings within the present study do not support this 

generalisation, which perhaps reflects improvements in the enzymes used in one-step kits. 

In fact, the one-step real-time RT-PCR protocol offered many advantages over the two-step 

format including reduced hands-on time as well as opportunities for error and 

contamination. The successful implementation of the streamlined one-step RT-PCR assay for 

HMPV detection also increased the feasibility of implementing other in-house designed 
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molecular diagnostic systems for the diagnosis of respiratory virus infections within the 

routine diagnostic setting, which is restricted by turnaround times, since multiple targets can 

be detected in a single tube using the same thermocycling parameters.  

 
The use of a second target nucleic acid, which serves as an internal control has become an 

important strategy in diagnostic PCR to combat the inherent problems associated with the 

presence of amplification inhibitors in clinical specimens (Dreier et al., 2005). Obtaining a 

positive signal from the second target demonstrates successful nucleic acid extraction and 

amplification, thereby validating a negative result for the primary target (Rosenstraus et al., 

1998). Many different types of internal control have been utilised (Hoorfar et al., 2004; Espy 

et al., 2006). Ideally, an internal control for diagnostic RT-PCR assays should be 

straightforward and economical to produce and standardise and should have sufficient 

stability for routine storage and use. Its sequence should be absent from clinical samples, 

and it should be suitable for many different assays, the results of which should be simple to 

interpret (Dingle et al., 2004). It was considered that the Onderstepoort strain of canine 

distemper virus would fulfil all such criteria as demonstrated previously by the inclusion of 

animal viruses as universal internal DNA and RNA controls (Cleland et al., 1999; Mattison et 

al., 2009; Comelli et al., 2008; Clancy et al., 2008; van Doornum et al., 2003). Moreover, the 

virus was selected for investigation as a novel internal control for inclusion in the diagnostic 

RT-PCR assay based on the assumption that as a RNA virus and a member of the family 

Paramyxoviridae it would behave more similarly in the extraction procedure to the target 

virus. However, the production of animal viruses raises issues of safety (Dingle et al., 2004; 

Drier et al., 2005). Furthermore, the foreseeable end to the use of virus culture within the 

routine diagnostic setting compelled consideration of other favourable options. The E. coli 

Phage MS2 presented an ideal alternative to the Onderstepoort strain of canine distemper 

virus as it is prone to the same inhibition/degradation as RNA viruses, is non-infectious, 

stable, and easily propagated (Rolfe et al., 2007). The versatility of MS2 bacteriophage as an 

internal control is increasingly described (Blaise-Boisseau et al., 2010; Dreier et al, 2005; Ellis 

and Curran, 2010; Ninove et al., 2011; Rolfe et al., 2007), which is perhaps also reflected in 

the inclusion of MS2 bacteriophage as an internal control in the xTAG® respiratory virus 

panel (RVP) test (Luminex Molecular Diagnostics Inc., Toronto, Canada), a commercial 

diagnostic test for the detection of multiple respiratory viruses and subtypes. It was decided 

that bacteriophage MS2 would offer greater suitability as an internal control than the 

Onderstepoort strain of canine distemper virus after consideration of issues of safety related 

to the propagation of an animal virus and the uncertain future of virus culture facilities 
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within the Microbiology Department. MS2 bacteriophage was incorporated successfully as 

an internal control into all subsequent in-house designed molecular diagnostic systems in 

order to enhance the quality of routine molecular diagnosis provided by the Microbiology 

Department (Ninove et al., 2011). MS2 bacteriophage has offered great viability, which has 

ensured its continued utilisation as an internal control within the Microbiology Department. 

It is relatively easy to produce new stocks of MS2 bacteriophage although a commercial MS2 

RNA is available. Moreover, MS2 bacteriophage offers excellent stability for long-term 

storage. Indeed, stock has been stored at -70°C for 4 years with no increase in the 

concentration required in the nucleic acid extraction.  

 
It is without a doubt that the successful implementation of molecular diagnostic systems for 

the detection of HMPV and other respiratory viruses into routine molecular diagnostic 

service within a demanding laboratory would have been more challenging without an 

automated system for nucleic acid extraction. The COBAS® AmpliPrep Instrument in 

combination with the COBAS®
 
TaqMan

 
48 Analyser (Roche Diagnostics Ltd, Burgess Hill, UK) 

was purchased originally for quantitation of HIV-1 and Hepatitis C virus (HCV) RNA. However, 

the availability of the COBAS® AmpliPrep TNAI Kit for the preparation of highly purified total 

nucleic acid on the COBAS® AmpliPrep Instrument made automation of nucleic acid 

extraction a feasible option. The COBAS® AmpliPrep TNAI Kit presented a major advantage 

over the QIAamp Viral RNA Mini Kit (QIAGEN Ltd, West Sussex, UK) as PCR reactions for DNA 

and RNA viruses could be performed from the same nucleic acid eluate. Moreover, the 

COBAS® AmpliPrep TNAI Kit on the COBAS® AmpliPrep Instrument reduced the overall 

processing time for 24 samples from 180 minutes using the manual QIAamp Viral RNA Mini 

Kit to 120 minutes, offered freedom from this otherwise laborious and time-consuming task, 

enabled standardisation of the process and limited human error and contamination. 

Utilisation of the COBAS® AmpliPrep Instrument in combination with the COBAS® AmpliPrep 

TNAI Kit for the extraction of total nucleic acid from a range of respiratory specimen types 

presented a novel application, which subsequently gained interest from other clinical 

laboratories as well as a request to present the results of a preliminary evaluation at a 

sponsored symposium. Although recently superseded by newer more sensitive nucleic acid 

extraction platforms, the COBAS® AmpliPrep Instrument in combination with the COBAS® 

AmpliPrep TNAI Kit provided comparable sensitivity to the manual QIAamp Viral RNA Mini 

Kit and enabled successful automation of nucleic acid extraction when the molecular 

diagnostic service was in its infancy.          
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One of the most difficult aspects with undertaking a research project on a new virus is 

obtaining positive control material. The virus could not be easily grown using cell lines 

available within the routine diagnostic setting and no commercial positive control material 

was available early in the discovery of the virus. Colleagues at the Specialist Virology Centre, 

Gartnavel General Hospital, Glasgow, Scotland made the early stages in the development of 

the real-time RT-PCR assay for HMPV detection possible until positive clinical specimens 

were identified. The generation of a plasmid seemed a positive alternative at the beginning 

of this study and although the plasmid was generated successfully, it was after all a creation 

of PCR product, which does not provide a useful source of control material in molecular 

techniques that are designed for the detection of RNA viruses. Furthermore, no suitable 

facilities for the generation of new plasmid were available within the Microbiology 

Department to prevent the contamination of other areas dedicated to molecular diagnostics. 

The plasmid is not in routine use within the routine diagnostic setting. At present, all positive 

control material is derived from residual positive respiratory specimens.  

 
In conclusion, the real-time RT-PCR assay for HMPV detection was improved successfully by 

streamlining the assay into a one-step format, which offered greater flexibility while the 

inclusion of MS2 bacteriophage as an internal control addressed inherent problems 

associated with the presence of PCR inhibitors and so raised confidence in results generated 

for the viral target of interest. The successful implementation of the real-time RT-PCR assay 

for HMPV detection within a demanding clinical virology laboratory was aided by the 

replacement of the manual nucleic acid extraction procedure with an automated method, 

which offered additional benefits of reduced processing and hand-on time, enabled 

standardisation of the process and limited human error and contamination. The success of 

this molecular diagnostic system has been demonstrated through participation in the 

external quality assessment programme, Quality Control for Molecular Diagnostics (QCMD) 

since 2008, which has seen a 100% pass rate and subsequent development of the service to 

include other respiratory viruses.  
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4.  Frequent involvement of human metapneumovirus  with Haemophi lus 
inf luenzae  in respiratory infect ion in children 

___________________________________________________________________ 
 
4.1. Introduction 
 
Many respiratory viruses share seasonality and susceptible populations (Sloots et al., 2008). 

So, it is not surprising that co-infection of HMPV with other respiratory viruses is widely 

reported (Al-Sonboli et al., 2005; Bosis et al., 2005; Canducci et al., 2008; Caracciolo et al., 

2008; Choi et al., 2006; Cilla et al., 2008; Cuevas et al., 2003; De Paulis et al., 2011; Foulonge 

et al., 2006; Greensill et al. 2003; Pilger et al., 2011; Sánchez-Yebra et al., 2011; Sasaki et al., 

2005; Sung et al., 2011; Viazov et al. 2003; Wolf et al., 2006; Xepapadaki et al., 2004; Xiao et 

al., 2010). However, the importance of co-infection with HMPV remains inconclusive at 

present. Several studies have presented evidence to implicate co-infection with HMPV as a 

marker of severity (Greensill et al., 2003, König et al., 2004; Semple et al., 2005). Greensill et 

al. (2003) reported 70% (21/30) of infants requiring admission to the Paediatric Intensive 

Care Unit (PICU) with severe HRSV bronchiolitis were co-infected with HMPV. Subsequent 

demonstration that dual infection with HMPV and HRSV conferred a 10-fold increase in the 

relative risk (RR) of admission to PICU for mechanical ventilation confirmed an association 

between severe disease and co-infection by HMPV and HRSV (Semple et al., 2005). However, 

support for a cumulative pathogenic effect on disease severity conferred by this viral 

partnership is limited (Ali et al., 2010; Foulongne et al., 2006; König et al., 2004) and 

conflicted by evidence that suggests that HMPV co-infection is uncommon in severe HRSV-

associated RTI (De Paulis et al., 2011; Lazar et al., 2004; Sung et al., 2011; van Woensel et al., 

2006). So the chance of a co-infection appears more stochastical than representative of a 

specific relationship between two pathogens at present (Weigl et al., 2007). Likewise 

evidence of co-infection of HMPV with other respiratory viruses is not associated with 

increased disease severity (Falchi et al., 2011; García-García et al., 2006a; Sloots et al., 2006; 

Wilkesmann et al., 2006; Wolf et al., 2006). However, statistical evidence strongly supports 

an interaction between HMPV and HRSV subtype A and B in ARTI (Brunstein et al., 2008).  

 
While the debate on the interaction between HMPV and other respiratory viruses continues, 

few studies have directly considered the importance of bacterial co-infection in HMPV-

associated RTI (Ampofo et al. 2008; Kukavica-Ibrulj et al., 2009; Lehtinen et al., 2006; Lin et 

al., 2005; Ludewick et al., 2011; Madhi et al., 2006; Verkaik et al., 2011) despite the well 

documented importance of respiratory viruses in facilitating secondary bacterial infections 

(Ampofo et al., 2008; Kim et al., 1996; Talbot et al., 2005). The earliest published scientific 
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work to examine the importance of bacterial co-infection in the pathogenesis of HMPV was 

conducted in South Africa in a cohort of children randomised to receive a 9-valent 

pneumococcal conjugate vaccine (PCV9) or placebo (Madhi et al., 2006). NPA samples were 

tested for the presence of HMPV when children within the cohort were hospitalised with 

LRTI (Madhi et al., 2006). Among fully vaccinated HIV–uninfected children, the incidence of 

HMPV-associated LRTI was reduced by 45%, and the incidence of clinical pneumonia was 

reduced by 55%. Similarly, in fully vaccinated HIV-infected children, the incidence of HMPV-

associated LRTI was reduced by 53%, and that of clinical pneumonia was reduced by 65% 

suggesting that co-infection with S. pneumoniae is an essential part of the pathogenesis of 

most severe HMPV infections progressing to pneumonia (Madhi et al., 2006).  

 
Interactions of different infectious agents often modify the outcome of an infection, 

compared to the course of infections caused by only a single agent (Degré, 1986). Viral 

infection is one common factor that can upset the delicate balance of the respiratory tract 

and the combined viral-bacterial infection aggravates the clinical disease to predispose to 

subsequent secondary bacterial superinfection (Degré, 1986). To investigate the potential 

synergistic interaction of HMPV with S. pneumoniae, an experimental murine model was 

established that closely mimicked the clinical exacerbation of HMPV-associated respiratory 

disease by S. pneumoniae (Kukavica-Ibrulj et al., 2009). Four-to-six week old BALB/c mice 

were infected intranasally on day 0 with low viral inocula of HMPV that would not produce 

overt clinical symptoms followed by a superinfection 5 days later with a non-lethal dose of S. 

pneumoniae. Pulmonary cytokine and chemokine levels were measured in the lungs of 

sacrificed mice on days 6, 7, and 8 after virus infection, corresponding to 24, 48, and 72 

hours following bacterial superinfection, respectively (Kukavica-Ibrulj et al., 2009). Evident 

from this study was the concept that infection with HMPV creates an environment in the 

respiratory tract that predisposes the host to an exacerbated response to subsequent 

bacterial infections, akin to influenza A virus (Kukavica-Ibrulj et al., 2009). Mice with 

bacterial superinfection demonstrated significant weight loss and higher levels of airway 

obstruction compared to mice infected with HMPV, or pneumococcus alone. Bacterial 

counts increased from 5 x 102 colony-forming units (CFU)/lung in mice infected with 

pneumococcus only to 107 and 109 CFU/lung in mice with prior infections with HMPV 

(Kukavica-Ibrulj et al., 2009). The low viral inocula used for initial infection resulted in a 

minimal increase of the proinflammatory cytokines and chemokines expressed in lungs of 

infected mice. In contrast, the lungs of superinfected mice displayed a dramatic increase in 

pulmonary levels of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-α), 
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interferon-gamma (IFN-γ), interleukin-1 α (IL-1α), interleukin-1 beta (IL-1β), IL-6 and IL-12 

(p70) as well as the anti-inflammatory cytokine IL-13 and the chemokines macrophage 

inflammatory protein 1α (MIP-1α), monocyte chemotactic protein 1 (MCP-1), the mouse IL-8 

homologue KC. Of particular note was the very important increase of granulocyte colony-

stimulating factor (G-CSF) and, to a lesser extent, granulocyte-monocyte colony-stimulating 

factor (GM-CSF) in lungs of superinfected mice (Kukavica-Ibrulj et al., 2009). G-CSF, which 

regulates the maturation, differentiation, and proliferation of neutrophils, may increase 

neutrophil survival, allowing the sustained secretion of tissue-damaging molecules in the 

lungs of superinfected animals, which together with high pulmonary levels of 

proinflammatory cytokines likely contribute to the enhanced pneumococcal disease seen 

after HMPV virus infection (Kukavica-Ibrulj et al., 2009). Hence, these results suggest that 

multiple inflammatory mediators are synergistically exacerbated and contribute to the 

morbidity and mortality seen in the murine model (Kukavica-Ibrulj et al., 2009). However, 

this synergistic interaction is limited to the period of active HMPV replication in contrast to 

the long-term effects caused by influenza A virus (Ludewick et al., 2011).    

 
While virus infection in the respiratory tract is usually perceived to pave the way for 

subsequent bacterial superinfection (Degré, 1986) it is unusual to consider that bacterial 

exposure can influence susceptibility to virus infection. However, recent studies suggest that 

exposure to S. pneumoniae is associated with increased susceptibility to HMPV infection 

(Verkaik et al., 2011). Serum samples and colonisation data for H. influenzae, M. catarrhalis, 

S. aureus and S. pneumoniae were collected from 57 children at 1.5, 6, 14 and 24 months of 

age (Verkaik et al., 2011). Seroconversion rates to HMPV were determined and related to 

bacterial carriage. Frequent nasopharyngeal carriage (≥2 times in the first two years of life) 

of S. pneumoniae, but not of the other three pathogens, was associated with increased 

seroconversion rates of infants to HMPV at the age of two (frequently vs. less exposed, 93% 

vs. 59%; P<0.05) (Verkaik et al., 2011). Subsequently, the susceptibility of well-differentiated 

normal human bronchial epithelial cells (wd-NHBE) pre-incubated with bacterial pathogens 

to in vitro HMPV infection was evaluated (Verkaik et al., 2011). Pre-incubation of wd-NHBE 

with S. pneumoniae resulted in increased susceptibility to infection with HMPV-enhanced 

green fluorescent protein (EGFP), as determined by enumeration of EGFP-positive cells 

(Verkaik et al., 2011). This was not the case for cells pre-incubated with H. influenzae, M. 

catarrhalis, and S. aureus (Verkaik et al., 2011). The combined in vivo and in vitro data 

suggest that exposure to S. pneumoniae can modulate HMPV infection (Verkaik et al., 2011). 

Nevertheless, the specific interaction between S. pneumoniae and HMPV infection that 
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contributes to the modification in the clinical outcome of HMPV infection is purely 

speculative at present. Pneumococcal virulence and immune evasive factors, including 

capsule or pneumolysin, may facilitate HMPV infection in multiple ways (Verkaik et al., 

2011). First, these factors may penetrate the mucus layer and inhibit ciliary beating of 

respiratory epithelial cells. This could expose susceptible human epithelial cells, resulting in 

enhancement of HMPV infection or spread. In addition, influx or activation of immune cells 

residing in or associated with the respiratory epithelium may facilitate HMPV infection 

(Verkaik et al., 2011). Moreover, bacterial factors stimulating pulmonary toll-like receptor 2 

(TLR2) and TLR4 responses may provoke an enhanced immune response following HMPV 

infection (Verkaik et al., 2011). Furthermore, lipopeptides in the bacterial cell wall may lead 

to enhanced viral binding to target cells, facilitating HMPV infection, and spread (Verkaik et 

al., 2011). In addition, pneumococcal immune evasive factors counteract host innate 

immune responses, which may also facilitate HMPV infection (Verkaik et al., 2011). 

 

4.2. Aims 
 
Current studies support the role of HMPV in the development of invasive pneumococcal 

pneumonia. However, evidence is lacking to form a complete picture of the relationship 

between HMPV and other bacteria that are habitually implicated in mixed viral-bacterial 

respiratory tract infections. These include H. influenzae, M. catarrhalis, S. aureus, and 

Streptococcus pyogenes. The aim of this study was to determine the frequency of bacterial 

and viral co-infections in children hospitalised with symptoms of ARTI in order to provide 

evidence to support a potential role for other commensal flora of the nasopharynx in co-

infections with HMPV. 

 

4.3. Materials and Methods 
 
4.3.1. Overview of study design 
 
This retrospective, cross-sectional study included 726 frozen, archived NPA samples 

preserved in VTM that were collected between 31st October 2005 and 31st December 2008 

from children 18 years attending the Norfolk and Norwich University Hospital with 

symptoms of ARTI and submitted to the Microbiology Department for investigations for 

microbial causes of respiratory tract infection. All samples were examined routinely by virus 

culture, DFA (IMAGENTM, Oxoid Ltd, Hampshire, UK), and NOW® RSV Test (Binax, Inc., ME, 

USA) for influenza virus types A and B, HRSV, PIV types 1-3, HRSV, adenovirus, and 
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Chlamydia sp and cultured on appropriate bacteriological media for the isolation of target 

organisms including H. influenzae, M. catarrhalis, S. aureus, S. pneumoniae (Section 2.4).  

 
All samples were assigned a laboratory accession number that was unique to each routine 

diagnostic investigation and linked to patient record data via the iSOFT TelePath computer 

system. Demographic information relating to age, gender, date of sample collection, routine 

investigations performed as well as test results was sought in the computer system in order 

to generate a database within Microsoft Excel and SPSS version 17.0 (SPSS Inc, Chicago, 

Illinois, USA) before anonymisation of archived NPA samples in preparation for subsequent 

comprehensive retrospective screening for HMPV using molecular methodology. 

 

4.3.2. Ethical Approval 
 
Permission to undertake retrospective screening of residual NPA samples for HMPV was 

granted by the East Norfolk and Waveney Research Governance Committee and the Norfolk 

Research Ethics Committee (REC Reference number: 05/Q0101/77) (Appendix I). 

 

4.3.3. Retrospective screening for human metapneumovirus 
 
All samples were subjected to nucleic acid extraction using the COBAS® AmpliPrep TNAI Kit 

(Roche Diagnostics Ltd, Burgess Hill, UK) on the COBAS® AmpliPrep Instrument (Roche 

Diagnostics Ltd, Burgess Hill, UK)  (Section 3.3). Total nucleic acid was screened for the 

presence of HMPV by duplex one-step real-time RT-PCR on the Rotor-Gene 6000 series 

real-time analyser (Corbett Research UK Ltd, Cambridge, UK) (Section 3.3) using established 

primer and probes sequences designed according to Maertzdorf et al. (2004) (Section 3.3).  

 

4.3.4. Statistical analysis 
 
Characteristics and outcomes according to pathogen were compared using Spearman's rank 

correlation coefficient and the Mann-Whitney U test. Statistical calculations were performed 

with SPSS version 17.0 (SPSS Inc, Chicago, Illinois, USA). A p value of <0.05 was considered 

statistically significant. 
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4.4. Results 
 
4.4.1. Characteristics of patients and specimens tested 
 
The sample series consisted of 821 frozen, archived NPA samples collected between 31st 

October 2005 and 31st December 2008 from children 18 years attending the Norfolk and 

Norwich University Hospital between 31st October 2005 and 31st December 2008 with 

symptoms of ARTI. Of these, 726 (88.4%) samples were included in this retrospective study; 

comprehensive virological and bacteriological screening was incomplete for the remainder 

of the archived samples. 

 
Rates of hospitalisation for RTI were highest in males (442/726; 60.9%) compared to females 

(284/726; 39.1%). A higher percentage of RTI was observed among males with HRSV 

(157/726; 21.6%) or HMPV (24/726; 3.3%) infection than females with HRSV (100/726; 

13.8%) or HMPV (14/726; 1.9%) infection. Ages ranged from 0 to 144 months with a mean 

and median age of 6.8 months and 4.1 months, respectively. The majority of episodes of 

ARTI occurred in paediatric patients aged <1 year (616/726; 84.8%). The incidence of RTI was 

most acute among paediatric patients <3 months (Figure 4.1).  

 

More than 90% of all respiratory tract infections attributable to HMPV and HRSV occurred in 

the first year of life (Figure 5.2). Children with HMPV-associated RTI were older in 

comparison to children with HRSV respiratory infection (Figure 5.2). The peak age for HRSV 

infections was less than 3 months and 6 to 11 months for HMPV infections (Figure 4.2).  

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.  Age distribution of children hospitalised for acute respiratory tract infection. 
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The majority of NPA samples included in this retrospective, cross-sectional study were 

submitted during the winter season (October–March) (Figure 4.3). It is clear that HMPV co-

circulates with HRSV. A partial overlap with the annual HRSV epidemic occurred during 

2005/2006 and 2007/2008 but coincided completely with seasonal HRSV activity during 

2006/2007 with peak HMPV activity mirroring peak HRSV activity during seasons 2006/2007 

and 2007/2008 (Figure 4.3). Nevertheless, it is also of worth noting that the seasonal 

circulation of HMPV between 31st October 2005 and 31st December 2008 among paediatric 

patients with acute respiratory symptoms also differed from the circulation pattern of HRSV. 

Circulation of HRSV commenced in early autumn within this paediatric cohort with annual 

peaks of infection occurring in winter (Figure 4.3). In contrast, identification of the first 

HMPV infections occurred several months after the start of the HRSV epidemic with the 

majority of HMPV infections occurring in winter and spring (Figure 4.3). HMPV infections 

were limited in autumn and no HMPV infections occurred during the summer months of all 

three consecutive years. While there is no clear biennial pattern of alternate winter versus 

spring HMPV activity, the incidence of the virus within this paediatric cohort is markedly 

more conspicuous in spring 2006 and 2008 in contrast to spring 2007 with infection 

occurring within this paediatric cohort until April (Figure 4.3).  

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Age distribution of paediatric patients infected with human respiratory syncytial virus 

and human metapneumovirus. 
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4.4.2. Respiratory Pathogens  
 
In total 585/726 (80.6%) were positive for a respiratory pathogen; no pathogen was 

identified in 141/726 (19.4%) of NPA samples. The aetiological agents identified among 

paediatric patients attending the Norfolk and Norwich University Hospital with symptoms of 

ARTI are shown in Figure 4.4. Of those paediatric patients for whom a pathogen was 

identified, 100/726 (13.8%) had a single or multiple viral infection, 248 (34.2%) had a single 

or multiple bacterial infection, and 237 (32.6%) had a mixed viral and bacterial infection 

(Figure 4.4). 

 

4.4.3. Respiratory Viruses 
 
A total of 303/726 (41.7%) NPA samples were positive for 1 or more respiratory viruses by a 

combination of virus culture, DFA and NOW® RSV Test between 31st October 2005 and 31st 

December 2008. HRSV was detected in 257/726 (35.4%) NPA samples; other viruses included 

rhinovirus (15/726; 2.1%); PIV (14/726; 1.9%); influenza virus type A (9/726; 1.2%), influenza 

virus type B (3/726; 0.4%); adenovirus (2/726; 0.3%), enterovirus (2/726; 0.3%) and a co-

infection between adenovirus and enterovirus (1/726, 0.14%). HMPV was detected 
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Figure 4.3. Comparison of the seasonal circulation patterns of human respiratory syncytial virus 

and human metapneumovirus among nasopharyngeal aspirate samples submitted to the 

Microbiology Department, Norfolk & Norwich University Hospital between 31st October 2005 and 

31st December. 

 

 

Abbreviations: HRSV, human respiratory syncytial virus; HMPV, human metapneumovirus  
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retrospectively by real-time RT-PCR as the sole viral aetiologic agent in an additional 34/726 

(4.7%) NPA samples that were previously identified as negative for respiratory viruses by a 

combination of virus culture, DFA, NOW® RSV Test and as co-pathogen with HRSV (3/726; 

0.4%) and rhinovirus (1/726; 0.14%). 

 
4.4.4. Respiratory Bacteria 
 
A total of 1 or more respiratory bacteria were isolated from 485/726 (66.8%) NPA samples 

by bacterial culture. S. pneumoniae was isolated from 196/726 (27.0%) NPA samples and 

was the most common target bacterial pathogen isolated followed by H. influenzae 

(186/726; 25.6%), S. aureus (96/726; 13.2%) and M. catarrhalis (59/726; 8.1%). A single 

bacterial pathogen was isolated from 376 (51.8%) NPA samples while NPA samples with 2 or 

more bacteria was less common (109, 15%). S. pneumoniae and H. influenzae were the most 

common pairing in NPA samples with mixed bacterial aetiology (9.2%). No significant 

bacterial pathogen was isolated from 191 (26.3%) NPA samples and bacterial growth was 

absent from 50 (6.9%) samples.  
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Figure 4.4. Aetiologial agents identified in nasopharyngeal aspirate samples collected from children 

18 years attending the Norfolk and Norwich University Hospital with symptoms of acute 

respiratory tract infection between 31st October 2005 and 31st December 2008. 
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4.4.5. Viral and Bacterial Co-infections 
 
A total of 237/726 (32.6%) NPA samples were co-infected with respiratory viruses and 1 or 

more concomitant pathogenic bacteria. Bacterial and viral co-infections were more 

numerous than viral mono- and co-infections (13.8%) but less common than RTI caused by 

bacteria alone (34.2%). Multi-viral and bacterial co-infections were detected in 2 (0.28%) 

NPA samples; HMPV was detected as a co-pathogen with HRSV, S. pneumoniae and H. 

influenzae (1, 0.14%) and rhinovirus and S. pneumoniae (1, 0.14%). Concurrent infections 

with one or more respiratory bacteria and RSV or HMPV were identified in 180 (24.8%) and 

27 (3.7%) NPA samples, respectively. S. pneumoniae (14.0%) was the most frequent bacterial 

pathogen occurring in combination with HRSV in NPA samples, followed by H. influenzae 

(9.4%), S. aureus (4.0%), and M. catarrhalis (2.8%). In contrast, H. influenzae (2.6%) 

succeeded S. pneumoniae (2.1%) as the dominant bacterial co-pathogen in paediatric 

patients with concurrent HMPV infection. However, S. pneumoniae and H. influenzae 

occurred as the principal union in NPA samples harbouring more than 1 bacterial pathogen 

and HRSV (4.0%) or HMPV (1.0%) as the viral co-pathogen. Concurrent infections with one or 

more respiratory bacteria and HRSV or HMPV was not significant (Mann-Whitney U test, p = 

0.188) (Table 4.1).  

The significance of the association between HMPV and bacterial pathogens found in NPA 

samples was determined using Spearman's Rank Correlation Test. The presence of H. 

influenzae was positively correlated with the presence of HMPV (Spearman correlation 

coefficient = 0.131; p = 3.91E-04). However, no direct correlation was evident between the 

presence of S. pneumoniae and the presence of HMPV (Spearman correlation coefficient = 

 
 

 
 

 
 

 

 
 

Number of associated 

bacterial pathogens 

No. positive NPA samples (%) 

HMPV HRSV 

0 9 (23.7) 76 (29.6) 

1 18 (47.4) 135 (52.5) 

2 11 (28.9) 41 (16.0) 

3 0 (0.0) 5 (1.9) 

TOTAL 38 (100) 257 (100) 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1. Comparison of the number of bacterial pathogens isolated by bacterial culture from 

nasopharyngeal aspirate samples collected between 31st October 2005 and 31st December 2008 

from paediatric patients with concurrent human respiratory syncytial virus or human 

metapneumovirus infection. 

 

 

Abbreviations: NPA, nasopharyngeal aspirate; HRSV, human respiratory syncytial virus; HMPV, 

human metapneumovirus. 
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0.066; p = 0.075). In contrast, the presence of HRSV was not correlated with the presence of 

H. influenzae (Spearman correlation coefficient = 0.014; p = 0.702) but strongly correlated 

with the presence S. pneumoniae (Spearman correlation coefficient = 0.212; p = 8.53E-09). 

No association was substantiated between HRSV or HMPV and other concurrent bacterial 

pathogens identified in NPA samples. Logistic regression analysis was performed on viral and 

bacterial co-infections that included HMPV as the viral co-pathogen and H. influenzae and S. 

pneumoniae. Interestingly, only H. influenzae remained independently correlated with 

HMPV (Table 4.2) 

 

4.5. Discussion 
 
Viral potentiation of bacterial superinfection of the respiratory tract due to the synergism 

between bacteria and viruses is well documented (Ampofo et al., 2008; Creer et al., 2006; 

Don et al., 2005; Finelli et al., 2008; Hamano-Hasegawa et al., 2008; Juvén et al., 2000; 

Lehtinen et al., 2006; McCullers and Bartmess 2003; O’Brien et al., 2000; Thorburn et al., 

2006. However, the discovery of new respiratory viruses has commanded the continued 

surveillance of concomitant bacterial and viral respiratory tract infections in order to 

understand the nature of that synergism that predisposes to a protracted bacterial infection 

(Beder et al., 2009; Madhi et al., 2006; Kukavica-Ibrulj et al., 2009; Wolf et al., 2009). 

Evidence to support the importance of HMPV in the pathogenesis of LRTI suggests that 

preceding infection with HMPV predisposes the host to subsequent secondary bacterial 

infections (Ampofo et al., 2008; Kukavica-Ibrulj et al., 2009; Madhi et al., 2006; Wolf et al., 

 
 

 
 

 
 

 

Bacterial pathogen 
Total no. bacterial  

isolates 

Total no. mixed virus-bacteria infections 

(spearman correlation coefficient, p value) 

HMPV HRSV 

Streptococcus pneumoniae 196 15 (0.066, 0.075) 102 (0.212, 8.53E-9) 

Haemophilus influenzae 186 19 (0.131*, 3.91E-4) 68 (0.014, 0.702) 

Moraxella catarrhalis 59 3 (-0.002, 0.957) 20 (-0.009, 0.802) 

Staphylococcus aureus 96 1 (-0.073, 0.048) 29 (-0.042, 0.254) 

Coliform sp. 25 1 (-0.010, 0.778) 3 (-0.092, 0.013) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2. Associations between human respiratory syncytial virus or human metapneumovirus 

infection and concurrent bacterial pathogens identified in nasopharyngeal aspirate samples 

collected from paediatric patients between 31st October 2005 and 31st December 2008.  

 

 

Probabilities of association by chance (p-values) are shown with figures indicating significant 

correlations at the 0.05 (*) level higlighted in red. Abbreviations: HRSV, human respiratory 

syncytial virus; HMPV,  human metapneumovirus. 
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2009). While these studies provide evidence to support the role of HMPV in the 

development of invasive pneumococcal pneumonia, evidence is thus so far lacking to form a 

complete picture of the relationship between HMPV and other bacteria that are habitually 

implicated in mixed viral-bacterial respiratory tract infections including H. influenzae, M. 

catarrhalis, S. aureus, and S. pyogenes. The aim of this observational study, based on the 

retrospective investigation of frozen, archived NPA samples, was to determine the frequency 

of bacterial and viral co-infections in children 18 years attending the Norfolk and Norwich 

University Hospital between 31st October 2005 and 31st December 2008 with symptoms of 

ARTI and provide evidence to support a potential role for other commensal flora of the 

nasopharynx in co-infections with HMPV.  

 
A direct comparison of prevalence of one virus with other viruses requires a measure of 

caution when the diagnosis of viral disease is undertaken by different methods (Williams et 

al., 2004). It is widely reported that utilisation of molecular methodology for the diagnosis of 

respiratory viral infections offers greater sensitivity with a resultant increase in the detection 

rate of respiratory viral pathogens in comparison to traditional diagnostic methods (Balada-

Llasat et al., 2010; Coiras et al., 2004; Gadsby et al., 2010; Kehl et al., 2001; Kuypers et al., 

2006; 2009; Marshall et al., 2007; Nolte et al., 2007; Templeton et al., 2004; Weinberg et al., 

2004). Nevertheless, this increase in sensitivity is not universal for all viral respiratory 

pathogens (Balada-Llasat et al., 2010; Gröndahl et al., 1999; Marshall et al., 2007; Puppe et 

al., 2004). Indeed, the increase in the detection rate of HRSV achieved by molecular 

methodology in comparison to traditional methods of virological diagnosis is less 

pronounced than for other viruses (Kuypers et al., 2006; LeGoff et al., 2008; Nolte et al., 

2007). Hence, it is possible to attempt to establish the frequency of these viruses either 

alone or in combination with other bacteria that are habitually implicated in mixed viral-

bacterial RTI in order to understand better the microbial community in children with ARTI. 

While the absence of molecular methodology for the detection of viruses other than HMPV 

is offered as a limitation of the present study, it is possible to find similarities with other 

studies regarding the epidemiology of RTI in hospitalised children. Bacteria and viruses 

accounted for 66.8% and 46.4% of infections, respectively, within this cohort. In an earlier 

study, bacteria and viruses accounted for 60% and 45% of infections, respectively (Michelow 

et al., 2004). Most significant was the finding that bacterial and viral co-infections accounted 

for 32.6% of infections. This suggests that co-detection of pathogens is the norm, not the 

exception, among acute-phase respiratory samples (Brunstein et al., 2008), which once again 

raises the important question of whether sequential or concurrent viral and bacterial 
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infections have a synergistic impact on the evolution of disease in children (Michelow et al., 

2004). At present, this question remains unresolved. 

 
HMPV was identified in 38 (5.2%) NPA samples, which in conjunction with other studies 

suggests that this virus causes respiratory tract infection in children at a relatively high 

frequency (Williams et al., 2004). Also comparable to earlier studies was the finding of male 

predominance in subjects with HMPV infection (Chan et al., 2007; Esper et al., 2004; Ljubin-

Sternak et al., 2008; McAdam et al., 2004; Morrow et al., 2006; Peiris et al., 2003; 

Samransamruajkit et al., 2006; Williams et al., 2004). However, this trend is not universal 

(Boivin et al., 2003; Pizzorno et al., 2010). It is also equally plausible that the predilection for 

male gender is a reflection of the higher proportion of ARI hospitalisations in males. 

Nevertheless, male gender is associated with increased risk of LRTI (Simoes, 2003). 

Respiratory tract infection attributable to HMPV and HRSV occurred predominantly in the 

first year of life. In agreement with other studies, children with HMPV-associated RTI were 

older in comparison to children with HRSV-associated RTI (Baer et al., 2008; Camps et al., 

2008; Morrow et al., 2006; Mullins et al., 2004; Peiris et al., 2003; Wolf et al., 2006). The 

difference could be due to longer lasting maternal immunity to HMPV compared with HRSV, 

or perhaps the pathogenesis of HMPV disease favours older children. More research is 

needed to answer these questions (Mullins et al., 2004).  

 
Respiratory infections attributed to HMPV coincided with the annual HRSV epidemic in part 

or entirely with peak HMPV activity mirroring or following peak HRSV activity as reported 

elsewhere (Aberle et al., 2008). However, differences in the seasonal incidence of these 

viruses exist within this paediatric cohort. In general, HRSV infections occurred mainly in 

autumn and winter while HMPV infections occurred in winter and spring. This pattern of 

seasonality is widely reported in conjunction with alternating years of high and low 

incidence (Agapov et al., 2006; Baer et al., 2008; Esper et al., 2004; Kaida et al., 2006; Maggi 

et al., 2003; McAdam et al., 2004; Mullins et al., 2004; Oliveira et al., 2008; Robinson et al., 

2005) although within the present study this seasonal rhythm of HMPV activity is only 

evident during 2005/2006 and 2007/2008.  

 

HMPV was identified as the sole etiological agent in 7 (1%) NPA samples but was more 

commonly associated with 1 or more concomitant respiratory bacteria (27; 3.7%). Co-

infections with HMPV and other respiratory viruses (2; 0.28%) and other respiratory viruses 

and bacteria (2; 0.28%) were rare. These results suggest the direct involvement of HMPV in 
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the development of bacterial-viral co-infections and reiterate that the pathogenesis of 

HMPV-associated ARTI frequently involves bacterial co-infection (Madhi et al., 2006). 

Asymptomatic nasopharyngeal carriage of S. pneumoniae, H. influenzae, M. catarrhalis, and 

S. aureus is common in children (Pettigrew et al., 2008). However, these bacteria also remain 

an important cause of LRTI in children and so their presence in respiratory specimens can be 

difficult to interpret (Wolf et al., 2007). Bacterial growth from NPA samples is not indicative 

of infection in the lower respiratory tract (Korppi et al., 1992). Yet, it is unjustified to exclude 

the contribution of these potential bacterial pathogens to the development of RTI and in 

particular in the presence of concomitant viral infections that predispose to bacterial 

superinfections of the respiratory tract (Bakaletz, 1995). Long-standing epidemiological 

evidence supports that the pairing of certain infectious agents is not a random association 

but a synergistic or sequential enterprise between complementary partners that leads to 

modification of the outcome of an infection compared to the course of infections caused by 

single pathogen (Bakaletz, 2004; Degré, 1986). Data analysis showed that the presence of H. 

influenzae was positively correlated with the presence of HMPV (Spearman correlation 

coefficient = 0.131; p = 3.91E-04). However, no direct correlation was evident between the 

presence of S. pneumoniae and HMPV (Spearman correlation coefficient = 0.066; p = 0.075). 

In contrast, the presence of S. pneumoniae was strongly correlated with the presence HRSV 

(Spearman correlation coefficient = 0.212; p = 8.53E-09). This is consistent with reported 

interactions between this viral-bacterial pairing (Hament et al., 2005) and epidemiologic 

observations of increased incidence of invasive disease when S. pneumoniae and RSV co-

circulate (Talbot et al., 2005).  

 
Failure to establish a direct link between HMPV and S. pneumoniae within this study may 

reflect epidemiological differences in the UK compared to elsewhere. Madhi et al. (2006) 

demonstrated that vaccination with PVC9 reduced the incidence of HMPV-associated LRTI 

among a cohort of children in South Africa in a study designed to determine the efficacy of 

the vaccine to prevent invasive pneumococcal disease (IPD) and radiographically confirmed 

pneumonia. In addition, the observations from a cohort study conducted in the Netherlands 

revealed that frequent nasopharngeal carriage of S. pneumoniae, but not H. influenzae, M. 

catarrhalis or S. aureus, was associated with increased seroconversion rates of infants to 

HMPV at the age of 2 years. However, vaccination against S. pneumoniae was not part of the 

National Immunisation Programme at the time of serum collection (Verkaik et al., 2011). A 7-

valent pneumococcal conjugate vaccine (PCV7, Prevenar™) providing protection against 

serotypes 4, 6B, 9V, 14, 18C, 19F and, 23F was introduced into the routine childhood 
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immunisation programme in England and Wales in September 2006 (Kaye et al., 2009) to 

reduce the burden of IPD (DoH, 2006). Current data for England and Wales show a dramatic 

41% decrease in the number of IPD cases in children under 5 years of age between 

epidemiological years 2005–2006 (797 cases) and 2007–2008 (470 cases) following the 

introduction of the vaccine (Kaye et al., 2009). Moreover, IPD attributed to serotypes 

present in PCV7 which, accounted for 70% of cases of IPD among this age group in 

epidemiological year 2005/2006 decreased to 24% in 2007/2008 and 10% in 2008/2009 

(Kaye et al., 2009; Pichon et al., 2009). In addition to the decrease in IPD in the vaccinated 

population, herd immunity to vaccine serotypes has been induced in the UK population as an 

indirect effect of infant PCV7 immunisation (Gladstone et al., 2011) with decreases in all 

vaccine serotypes in all age groups (Miller et al., 2011). Given the marked reduction in rate 

of cumulative increase of cases of IPD caused by the vaccine serotypes since vaccine 

introduction (Kaye et al., 2009), the lack of correlation between HMPV and S. pneumoniae in 

the present study may reflect the reduction in the nasopharyngeal carriage of vaccine 

serotypes of S. pneumoniae that has arisen through widespread vaccination with PCV7.  

 
The introduction of PCV7 into the childhood immunisation schedule in the United States has 

directed a marked decline in vaccine serotypes carried in the nasopharynx of young children, 

with a coincident rise in the prevalence of non-vaccine serotypes (Pelton et al., 2004). 

Interestingly, a recent study carried out in Utah demonstrated that preceding respiratory 

tract infection with HMPV was associated with increases in IPD in children attributable to 

non-vaccine serotypes (Ampofo et al., 2008). Hence, the postulated association between 

HMPV and pneumococcal infection may present an emerging health threat in the UK since 

an increase in the incidence of IPD caused by pneumococci of non-vaccine serotypes, a 

phenomenon known as ‘serotype replacement’ has occurred in the UK (Gladstone et al., 

2011).  

 
It is clear that widespread PC7 vaccination is having a significant impact on the epidemiology 

of pneumococcal disease among children as well as adults. The reduction in nasopharyngeal 

colonisation by vaccine serotypes has placed non-vaccine serotypes in a prime position to fill 

the specific niche vacated by their counterparts in an environment under vaccine pressure 

(Gladstone et al., 2011). However, it seems the changes imposed on the colonisation of the 

nasopharynx by S. pneumoniae following the introduction of the PCV7 vaccine are not 

limited to this specific bacterial species. Indeed, the reduction in vaccine serotypes has 

exposed a niche for enhanced colonisation and disease caused by other commensals of the 
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nasopharynx (van Gils et al., 2011). Several studies have demonstrated an inverse 

relationship between S. pneumoniae carriage, and specifically vaccine serotypes, and S. 

aureus carriage in children (Bogaert et al., 2004; Regev-Yochay et al., 2004; Madhi et al., 

2007b; McNally et al., 2006; Pettigrew et al., 2008). The implication of this relationship is 

that S. pneumoniae carriage provides protection against S. aureus carriage (Brogden et al., 

2005). This has raised concerns that the reduction in nasopharyngeal carriage of vaccine-

type S. pneumoniae could result in a concomitant increase in carriage rates of S. aureus 

including methicillin-resistant S. aureus and an associated increase in Staphylococcus-related 

infections (Brogden et al., 2005; Singh, 2007).  

 

Recognition of this previously unrecognised interaction between S. pneumoniae and S. 

aureus has raised awareness of the possible effects of PCV-7 on the natural balance of other 

commensal flora of the nasopharynx. Indeed, a demonstrable shift in frequency of causative 

organisms recovered from children with AOM (Casey et al., 2004; Block et al., 2004) and 

acute bacterial maxillary sinusitis (Brook et al., 2007) was observed with the replacement of 

S. pneumoniae with H. influenzae as the dominant pathogen (Brook et al., 2007; Casey et al., 

2004) following the introduction of universal immunisation with PCV7 in the United States. 

The reduction in the nasopharyngeal carriage of vaccine serotypes of S. pneumoniae that has 

arisen through widespread vaccination with PCV7 in England and Wales may offer H. 

influenzae a competitive advantage to colonise the vacant nasopharyngeal niche unimpeded 

by S. pneumoniae.  

 
Our understanding of the competitive interactions between S. pneumoniae and H. influenzae 

are limited. Competition between H. influenzae and S. pneumoniae for mucosal surfaces of 

the respiratory tract in a murine model induced the recruitment and activation of innate 

immune responses by H. influenzae, leading to the effective clearance of S. pneumoniae 

(Lysenko et al., 2005). In vitro studies also demonstrate competition between H. influenzae 

and S. pneumoniae but predict that S. pneumoniae should inhibit the growth of H. influenzae 

(Pettigrew et al., 2008). In vitro co-culture experiments conducted to examine the 

interactions of the co-inhabitants of the heavily colonised mucosal surface of the human 

upper respiratory tract suggest that elevated hydrogen peroxide production may provide a 

means by which S. pneumoniae is able to inhibit H. influenzae in the aerobic environment of 

the upper respiratory tract (Pericone et al., 2000). In addition, S. pneumoniae expresses 

neuraminidase which desialylates the lipopolysaccharide of H. influenzae (Shakhnovich et al., 

2002), potentially giving S. pneumoniae a competitive advantage by increasing the 
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susceptibility of H. influenzae to complement-mediated clearance (Pettigrew et al., 2008). 

While in vivo and in vitro studies show interesting and sometimes contradictory results 

(Murphy et al., 2009), such studies reiterate that the pathophysiology associated with these 

organisms is complex. It is plausible that the reduction in the nasopharyngeal carriage of 

vaccine serotypes of S. pneumoniae that has arisen through widespread vaccination with 

PCV7 in the England and Wales has offered H. influenzae a competitive advantage to 

colonise the nasopharyngeal niche whichever model of the polymicrobial competition is 

considered. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

130 | P a g e  

CHAPTER FIVE  
_____________________________________________________________________ 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

131 | P a g e  

5.  Frequency of multiple pathogens in acute respiratory infections  

_____________________________________________________________________ 
 
5.1.  Introduction  
 
Virus isolation by cell culture using a variety of permissive cell lines and DFA staining with 

monoclonal antibodies are two of the most commonly used techniques for detecting 

respiratory viruses in routine diagnostic laboratories (Syrmis et al., 2004). Virus culture has 

long served as the “gold standard” for laboratory diagnosis of respiratory viruses (Leland and 

Ginocchio, 2007). However, it is often too slow to be an optimal diagnostic technique 

(Englund, 2001) and therefore, its clinical value is limited (Templeton et al., 2004). Antigen 

detection via enzyme immunoassays or immunofluorescence microscopy, are widely used in 

the establishment of viral aetiologies of respiratory tract infection (Carroll, 2002) but suffer 

greatly from lack of sensitivity and specificity, especially during times of low prevalence or in 

special populations, such as the immunocompromised or the elderly (Henrickson, 2004). 

While the combination of both these techniques can provide an increase in the number of 

positive results, a significant proportion of specimens remain negative despite clinical 

suspicion of viral infection (Syrmis et al., 2004). A shortage in the necessary skills and 

resources to culture most viruses also represents a foreseeable challenge to many clinical 

virology laboratories. Notwithstanding advancements made in these traditional methods or 

the continued importance of virus culture and related techniques in special situations 

including the identification of unknown infectious agents, their limitations have led to unmet 

needs within the diagnostic laboratory being addressed by new tools, most notably nucleic 

acid amplification techniques (Krunic et al., 2011; Olofsson et al., 2011). Many molecular 

diagnostic methods are now widely accepted as the gold standard for the detection of 

respiratory viruses owing to resolution of intrinsic limitations associated with traditional 

diagnostic techniques through the coalescence of enhanced sensitivity, specificity, wide 

linear dynamic range, and speed (Ellis and Curran, 2010; Beck and Henrickson, 2010; 

Henrickson, 2004; Syrmis et al., 2004). However, it is important to recognise that the use of 

culture-independent techniques are based on the same diagnostic processes as traditional 

diagnostic methods, which assume a single agent aetiology and cease with the detection of 

the first relevant infectious agent (Brunstein et al., 2008; Rogers et al., 2010). This approach 

has often hampered the translatable clinical benefits achieved by the diagnostic use of PCR 

(Rogers et al., 2010).  

 
The arrival of multiplexed molecular methods has introduced a significant new element to 

the diagnosis of infectious disease, which has proved invaluable in the context of outbreak 
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management, improvements to patient treatment, and the efficient use of precious 

antibiotics and antiviral drugs (Lin et al., 2007; Mahony, 2007). However, the biggest 

transformation has arisen within the clinical virology setting, particularly in relation to the 

diagnosis of respiratory virus infection. Multiplexed PCR has provided a rapid, sensitive, 

specific, and cost effective alternative to traditional methods and monospecific PCR since it 

permits the simultaneous detection and identification of multiple infectious agents in a 

single reaction (Templeton et al., 2004). Furthermore, these methods have enabled 

laboratories to meet the diagnostic challenge associated with the emergence of new 

respiratory viruses, which have proven difficult to detect by traditional methods (Krunic et 

al., 2011). A  variety of multiplexed molecular methods are described including conventional 

multiplex RT-PCR (Bellau-Pujol et al., 2005; Coiras et al., 2004; Gröndahl et al., 1999; Osiowy, 

1998), multiplex real-time RT-PCR (Gunson et al., 2005; Kuypers et al., 2006; Templeton et 

al., 2004), as well as an increasing number of novel multiplex PCR systems (Brunstein et al., 

2008; Kim et al., 2009; Li et al., 2007; Mahony et al., 2007; Nolte et al., 2007; Poritz et al., 

2011). The increased sensitivity and expanded diagnostic arsenal that has accompanied 

these multiplexed molecular methods (Olofsson et al., 2011) has also revealed that 

respiratory virus infection with multiple agents is a frequent occurrence (Brunstein et al., 

2008; Greer et al., 2009; Peng et al., 2009). The idea that some infectious diseases involve 

multiple pathogenic players is not new (Brogden and Guthmiller, 2003). Indeed, the mixed 

microbial nature of diseases of humans and animals was recognised early in the 20th century 

(Bakaletz, 2004). While these infections—variously called co-infections or complex 

infections, complicated infections, dual infections, mixed infections, secondary infections, 

synergistic infections, or polymicrobial infections—are more commonly accepted as 

occurring in respiratory infections than in many other clinical settings, diagnostic bias 

towards single pathogen detection and subsequent treatment is still prevalent (Brogden and 

Guthmiller, 2003; Brunstein et al., 2008). However, respiratory infection with multiple 

respiratory viruses is found in 5.2 to 35% of patients (Bellau-Pujol et al., 2005; Calvo et al., 

2008; Cilla et al., 2008 ; Coiras et al., 2004; Frobert et al., 2011; Gadsby et al., 2010; Mahony 

et al., 2007) depending on the number of viruses targeted in the diagnostic panel. Co-

infections with HMPV as well as HRSV, HRV, and human bocavirus (HBoV) are often reported 

(Brunstein et al., 2008; García-García et al., 2006a; Maggi et al., 2003; Richard et al., 2008; 

Schildgen et al., 2008). At present, the clinical significance of co-infection with these viruses 

remains controversial as evidence to support an association between co-infection and 

disease severity (Calvo et al., 2008; Foulongne et al., 2006; Greensill et al., 2003; König et al., 

2004; Richard et al., 2008; Semple et al., 2005) is confounded by reports that contest an 
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association (Greer et al., 2009; Söderlund-Venermo et al., 2009; van Woensel et al., 2006; 

Wilkesmann et al., 2006; Wolf et al., 2006). A resolution to the conundrum may lie in the 

ability to determine the quantity of co-infecting infectious agents in order to distinguish a 

true aetiological agent from an innocent bystander (Olofsson et al., 2011). Indeed, a broad 

diagnostic panel offers additional diagnostic value. First, the validity of a negative result is 

improved when many infectious agents are targeted and second, the quantitative 

component of the test, as measured by CT values, enhances the interpretation of a positive 

result, particularly when several agents are detected and the CT values of those agents can 

be compared (Olofsson et al., 2011).  

 
The recent advancement in molecular techniques has enhanced the identification and 

characterisation of the vast microbial diversity colonising the human body (Brogden et al., 

2005) and may also clarify which virus is the true aetiological agent but also the passenger 

virus in these infections (Olofsson et al., 2011). Whilst many of these techniques have not 

yet reached laboratories in a scale to assist clinicians in practice (Brogden et al., 2005), 

multiplexed methods, which allow the identification of even minor populations of co-

infecting viruses, are beginning to provide a more accurate representation of the true 

pathogen spectrum present in acute-phase respiratory specimens (Brunstein et al., 2008; 

Olofsson et al., 2011), particularly in relation to polyviral respiratory infections, which are 

poorly understood in vivo (Ruuskanen et al., 2011). Perhaps, in future this will extend to 

bacterial pathogens, which are generally studied individually, although in their natural 

environment they often co-exist or compete with multiple microbial species (Murphy et al., 

2009). Highly evolved relationships exist between microbes and it is important to 

understand these relationships, especially in settings when flora is manipulated with the 

possibility of affecting other pathogens (Murphy et al., 2009). The first detailed studies of 

multipathogen interactions demonstrate that viral co-infections are not random; significant 

correlations for the occurrence of certain viral agents exist (Brunstein et al., 2008). In 

contrast to bacteria, the role of viruses has historically been as the instigators of infection 

rather than as colonising commensals. However, a new hypothesis suggests that the 

presence of viruses in the respiratory tract may not always be as a cause of infection (Greer 

et al., 2009). Indeed, Greer et al., (2009) suggest that acquisition of HRV infection can 

protect its host from infection by other, often more cytopathic, viruses. Other evidence 

suggests that most interactions between pathogens with resultant co-suppression are 

reciprocal and occur between single-stranded RNA viruses inferring the activation of non-

specific antiviral functions by the first infecting agent; inhibition of infection initiation by a 
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second RNA virus in the face of multiple activated antiviral responses would be a plausible 

outcome (Brunstein et al., 2008). While this phenomenon is new to respiratory viruses 

perhaps relationships long regarded as ‘common lore’ (Bakaletz, 1995) may be assuaged in 

consideration of new paradigms generated by molecular techniques regarding the role of 

viruses in the development of respiratory tract infection.  

 
5.2. Aims 
 
The current chapter commences with an evaluation of the xTAG® RVP test, a proprietary test 

that simultaneously detects up to 20 distinct respiratory virus targets in parallel with 

traditional diagnostic methods. This evaluation was performed in order to determine the 

frequency of emerging respiratory viruses, which have proven difficult to detect by 

traditional methods as well as well-established respiratory viruses, since it is widely reported 

the contribution of these viruses to respiratory infection is under-represented by traditional 

diagnostic methods in comparison to nucleic acid amplification techniques. The outcome of 

this initial aim provided the basis to construct a plan of change that comprised a 

retrospective evaluation of an in-house multiplex real-time RT-PCR assay for the diagnosis of 

an extended panel of respiratory viruses with a view to introducing this non-commercial 

assay into routine service provision.  

 
In the second part of this chapter, the interactions among pathogens in multipathogen 

infections in hospitalised children with ARTI were examined with particular reference to 

HMPV. Recent advances in methods to diagnose respiratory infections have provided 

evidence that simultaneous infection with multiple respiratory viruses is a frequent 

occurrence in children admitted with ARTI. However, few studies have examined the 

interactions of well-established viruses with emerging respiratory viruses or respiratory 

bacteria.  

 

5.3. Materials and Methods 
 
5.3.1. Overview of study design 
 
This study was based on the investigation of 201 respiratory specimens, which were 

submitted to the Specialist Virology Centre, Norfolk and Norwich University Hospital during 

the period October 2007 to December 2008. Approximately 16 specimens were selected at 

random each month for retrospective testing by the xTAG® RVP test at Lab21 Ltd, a 

commercial healthcare diagnostics company based in Cambridge, UK. Frozen aliquots of 
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xTAG® RVP tested samples were subsequently retrieved from storage at -70°C, and tested in 

a retrospective evaluation of an in-house multiplex real-time RT-PCR assay for the diagnosis 

of 12 different respiratory viruses and subtypes. 

 
Comprehensive virological and bacteriological screening was available for 140 NPA samples 

collected from children 18 years attending the Norfolk and Norwich University Hospital 

with symptoms of acute respiratory tract infection.  

 

5.3.2. Routine Diagnosis of Respiratory Infection  
 
All samples were examined by virus culture, DFA (IMAGENTM, Oxoid Ltd, Hampshire, UK), and 

NOW® RSV Test (Binax, Inc., ME, USA) for influenza virus types A and B, HRSV, PIV types 1-3, 

HRSV, adenovirus, and Chlamydia sp and cultured on appropriate bacteriological media for 

the isolation of target organisms including H. influenzae, M. catarrhalis, S. aureus, S. 

pneumoniae (Section 2.4). A new direct immunofluorescence test for the rapid detection 

and identification of HMPV (IMAGENTM, Oxoid Ltd, Hampshire, UK) in clinical specimens was 

in routine usage throughout the evaluation the xTAG® RVP test. 

 

5.3.3. Nucleic acid extraction  
 
Total nucleic acid was extracted from NPA samples preserved in VTM using the COBAS® 

AmpliPrep TNAI Kit (Roche Diagnostics Ltd, Burgess Hill, UK) on the COBAS® AmpliPrep 

Instrument (Roche Diagnostics Ltd, Burgess Hill, UK), according to manufacturer’s 

instructions  (Section 2.6.4.4). A positive control for each viral target and a negative control 

consisting of nuclease-free water were included in each run. 

 

5.3.4. Selection of primers and probes 
 
The real-time quadriplex PCR for the detection of influenza (HPA, 2006) (Appendix III) was 

combined with primer and probe sequences designed according to Dr Martin Curran, 

CMPHL, Addenbrooke’s Hospital, Cambridge to facilitate the simultaneous detection and 

identification of an extended panel of human respiratory virus types and subtypes, including 

all generic influenza virus A subtypes (H1-H15) and specifically H5 subtypes; influenza virus 

type B; HPIV types 1 to 4; HRSV; HMPV; adenovirus; HRV, and human enterovirus. The 

primer and probe sequences for the 12 different respiratory virus types and subtypes were 

divided into three multiplex real-time RT-PCR assays with up to 4 viral targets detected in a 

single tube (Appendix IV). The viruses and subtypes within each multiplex real-time RT-PCR 
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assay were discriminated using TaqMan® or TaqMan® MGB™ probes labelled with a 

fluorescent reporter dyes 6-FAM, VIC®,  a proprietary dye only available from Applied 

Biosystems, ROX or cyanine (CY)-5 at the 3’ end and a compatible non-fluorescent Black Hole 

Quencher molecule at the 5’ end. The real-time quadriplex RT-PCR assay for the detection of 

influenza viruses formed the first panel. The second and third panel comprised HRSV, HPIV 

types 1 and 3, and adenovirus and third panel HPIV types 2 and 4, HMPV, HRV and 

enterovirus, respectively. The third panel was optimised already for HMPV detection and so 

was not altered under the proviso that the existing sequences compared favourably with the 

primer and probe sequences described by Maertzdorf et al., (2006). The primer and probe 

sequences that comprised each panel and the gene targets are shown in Appendix III.  

 

5.3.5. Detection of respiratory viruses using three multiplex RT-PCR assays 
 
A working reaction mix was prepared for each respiratory virus panel by combining the 

SuperScript™ III Platinum® One-Step qRT-PCR System (Invitrogen Ltd, Paisley, UK) (Section 

2.6.6.2) in a final reaction volume of 25 μl with the appropriate combination of primers and 

TaqMan® or TaqMan® MGB™ probes at the concentrations shown in Table 3.3 in section 

3.3.4)  for panel I, and Table 5.1 for panels II and III with nuclease-free water (Bioline Ltd 

London , UK) to a volume of 20 µl. Finally, 5 µl of viral RNA extract was added exclusive of 

the NTC. Instead, 5 µl of nuclease-free water was added. RT-PCR was performed on the 

Rotor-Gene 6000 real-time system (Corbett Research Ltd, Cambridge, UK) using the thermal 

cycling parameters (Section 2.6.6.2) acquiring on the FAM, VIC, CY-5 and ROX channels. Real-

time measurements were taken at each cycle. 
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Panel II Reagents 
Volume (µl) per 

25 µl  reaction 

Stock 

Concentration 

Final 

Concentration  

SuperScript III RT/Platinum® Taq Mix 12.5 - - 

2X Reaction Mix 0.8 2X 1X 

Magnesium sulphate (MgSO4) 1.5 50 mM 4.5 mM 

HRSV forward primer 0.50 20 µM 400 nM 

HRSV reverse primer 0.50 20 µM 400 nM 

HRSV probe 0.20 10 µM 80 nM 

HPIV 1 forward primer 0.50 20 µM 400 nM 

HPIV 1 reverse primer 0.50 20 µM 400 nM 

HPIV 3 forward primer 0.50 20 µM 400 nM 

HPIV 3 reverse primer 0.50 20 µM 400 nM 

HPIV 1&3 probe 0.20 10 µM 80 nM 

ADENO forward primer 0.16 20 µM 128 nM 

ADENO reverse primer 0.16 20 µM 128 nM 

ADENO probe 0.10 10 µM 40 nM 

Nuclease-free water 1.38 - - 

TOTAL VOLUME 20.00   
 

Panel III Reagents 
Volume (µl) per 

25 µl  reaction 

Stock 

Concentration 

Concentration 

(nM) 

SuperScript III RT/Platinum® Taq Mix 12.5   

2X Reaction Mix 0.8 2X 1X 

Magnesium sulphate (MgSO4) 1 50 mM 4 mM 

EnV/hRV forward primer 0.50 10 µM 400 nM 

EnV/hRV reverse primer 0.50 10 µM 400 nM 

EnVprobe 0.30 5 µM 120 nM 

hRV probe 0.30 20 µM 120 nM 

hMPV forward primer 0.50 20 µM 400 nM 

hMPV reverse primer 0.50 20 µM 400 nM 

hMPV probe 0.30 10 µM 120 nM 

HPIV 2 forward primer 0.25 20 µM 200 nM 

HPIV 2 reverse primer 0.25 20 µM 200 nM 

HPIV 2 probe 0.10 10 µM 40 nM 

HPIV 4 forward primer 0.25 20 µM 200 nM 

HPIV 4 reverse primer 0.25 20 µM 200 nM 

HPIV 4 probe 0.10 10 µM 40 nM 

Nuclease-free water 1.60 - - 

TOTAL VOLUME 20.00   

 

Table 5.1. Concentrations of oligonucleotides added to the reaction mixture in preparation of 

panel II and panel III of the respiratory multiplex real-time reverse-transcriptase polymerase chain 

reaction assay for the detection of an extended panel of respiratory viruses 
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5.3.6. xTAG® Respiratory Virus Panel Test 
 
The xTAG® RVP test is a multiplexed nucleic acid assay for the simultaneous detection and 

identification of 20 different human respiratory virus types and subtypes, including influenza 

virus type A as well as subtypes H1, H3, and H5; influenza virus type B; HPIV types 1 to 4; 

HRSV subtypes A and B; HMPV; adenovirus; rhinovirus; enterovirus; and HCoV OC43, HCoV 

229E, HCoV NL63, HCoV HKU1, and SARS-CoV (Mahony et al., 2007). In addition, RNA 

bacteriophage MS2 serves as the internal positive control to monitor the effect of extraction 

and address the problems associated with the presence of PCR inhibitors while DNA 

bacteriophage lambda is used as an amplification and assay performance control (Pabbaraju 

et al., 2011). The xTAG® RVP test incorporates a coupled multiplex RT-PCR to generate 

specific amplicons followed by a multiplex Target-Specific Primer Extension (TSPE) (Merante 

et al., 2007). The target-specific primers are chimeric primers containing the target sequence 

juxtaposed to a proprietary Universal Tag sequence which allow for sorting on the Luminex® 

xMAP® platform (Merante et al., 2007). Viral nucleic acid was extracted from respiratory 

specimens and a multiplex RT-PCR was performed under optimised conditions in a single 

multiplex (16-plex) RT-PCR producing amplicons for each of the virus types/subtypes present 

in the specimens. The amplification products once generated were treated with Shrimp 

Alkaline Phosphatase (SAP) to inactivate unincorporated nucleotides and Exonuclease I 

(EXO) to degrade unutilised single stranded primers (Merante et al., 2007). The treated 

amplification products were subjected to multiplex TSPE reaction to detect viral targets 

present in the sample. In this step, each virus target was specifically hybridised to a Target-

Specific Primer (TSP) possessing a unique DNA tag. A DNA polymerase extended perfectly 

formed complements and simultaneously incorporated biotin-dCTP into the extension 

product (Merante et al., 2007). After TSPE, the extension products were added directly to 

microwells containing an anti-tag coupled 21-bead array. The beads contained an anti-tag 

sequence unique to each specific viral target and were spectrally distinguishable from each 

other (Merante et al., 2007). A fluorescent reporter molecule, typically streptavidin-

phycoerythrin, was hybridised to the biotin-labelled TPSE products. Each tagged primer 

hybridised only to its unique anti-tag complement; therefore, each bead represented a 

specific virus by virtue of the bead/anti-tag/tagged primer association. The beads were 

sorted and analysed by the Luminex® xMAP® platform (Merante et al., 2007). The platform 

contains two lasers: one identifies the fluorescent bead signature, and the other identifies 

the presence or absence of primer extension products through the phycoerythrin reporter 

molecule (Merante et al., 2007). The median fluorescent intensity (MFI) of each specific 
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bead population in the solution microarray is recorded. Results for viral targets are 

categorised as positive (MFI ≥ 300), negative (MFI < 150), or “no call.” Assuming adequate 

performance of the internal control, a no-call result for a viral target is likely due to an MFI 

value in the equivocal zone (150 ≤ MFI < 300) (McCloskey et al., 2011). 

 
 

5.3.7. Statistics 
 
Characteristics and outcomes according to pathogen were compared using Spearman's rank 

correlation coefficient. Statistical calculations were performed with SPSS version 17.0 (SPSS 

Inc, Chicago, Illinois, USA). A p value of <0.05 was considered statistically significant. 

 

5.4. Results 
 
5.4.1. Characteristics of patients and specimens tested 
 
From clinical respiratory specimens submitted to the Microbiology Department for routine 

microbiological investigations between October 2007 and December 2008, 201 were 

selected at random for retrospective testing by the xTAG® RVP test at Lab21 Ltd, a 

commercial healthcare diagnostics company based in Cambridge, UK. All samples were 

surplus to routine diagnostic requirements. Clinical specimens were predominantly from 

children ≤ 18 years (n= 154; 77% NPA samples) that attended the Norfolk and Norwich 

University Hospital with symptoms of acute respiratory illness. Other specimen types 

included 18 combined nose and throat swabs, 23 throat swabs, 1 sputum specimen, 2 BAL 

specimens, 2 lung aspirate specimens, and 1 endotracheal aspirate specimen. Seventeen 

combined nose and throat swabs and 9 throat swabs were collected from patients of all ages 

that presented with ILI or other acute respiratory illness to sentinel general practices that 

participated in the national virological influenza surveillance scheme during winter 

2007/2008 and 2008/2009.  

 

5.4.2. Performance of the xTAG® RVP test in relation to traditional diagnostic methods 
 

The results of the xTAG® RVP test were analysed in parallel with results obtained during 

routine investigations for respiratory viruses by a combination of virus culture, DFA, and 

NOW® RSV Test. In total, a respiratory virus was identified in 151/201 (75%) specimens by 

the xTAG® RVP test compared with only 46/201 (23%) specimens by virus culture, DFA, and 

NOW® RSV Test. Concordance between the xTAG® RVP test and virus culture, DFA, and 

NOW® RSV Test was achieved for 94/201 (47%) specimens (Table 5.2). Respiratory viruses 
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common to the xTAG® RVP test and the virus culture, DFA, and BinaxNOW® RSV test panel 

including HMPV, influenza viruses type A and B, HRSV, HPIV types 1 to 4, and adenovirus 

were identified in 45/201 (22%) specimens. One specimen, which was HRSV positive by virus 

culture was not detected by the xTAG® RVP test. An additional 106 specimens were positive 

by the xTAG® RVP test. The combination of virus culture, DFA, and BinaxNOW® RSV test 

failed to diagnose mutual viruses in 42/106 (40%) specimens, while 64/106 (60%) specimens 

were negative for viruses not included in the current diagnostic panel offered by the 

combination of virus culture, DFA, and BinaxNOW ® RSV test.  

 
The performance of the combination of virus culture, DFA, and BinaxNOW® RSV test relative 

to the xTAG® RVP test for diagnosis of respiratory virus infection is shown in Table 5.3 using 

the xTAG® RVP test as the gold standard. The overall sensitivity and specificity of the 

combination of virus culture, DFA, and BinaxNOW® RSV test in comparison to the xTAG® RVP 

test as the gold standard was 24.9% and 99.9%, respectively. Discrepancies between the 

xTAG® RVP test and the combination of virus culture, DFA, and BinaxNOW® RSV test were 

most prominent for enterovirus/rhinovirus, HRSV, and HMPV. Respiratory virus infection 

attributed to enterovirus/rhinovirus was diagnosed in an additional 83 respiratory 

specimens by the xTAG® RVP test while an extra 10 infections with HRSV and 14 infections 

with HMPV were identified by the xTAG® RVP test in comparison to the combination of virus 

culture, DFA, and BinaxNOW® RSV test (Table 5.3). 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

No specimens Virus Culture/DFA/ NOW®RSV Test  xTAG® RVP test  

45 Positive Positive 

49 Negative Negative 

1 Positive Negative 

106 Negative Positive 

 
 
 

 

Table 5.2. Distribution of results obtained by the xTAG® respiratory virus panel test and a 

combination of virus culture, direct immunofluorescence and BinaxNOW® RSV Test for 201 

respiratory specimens. 

 

 

 

 

 

 

 

 

 

 Abbreviations: RVP, respiratory virus panel; DFA, direct immunofluorescence 
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The results of the xTAG® RVP test revealed that multiple infections are frequent. In total, 125 

(62%) specimens were positive for 1 respiratory virus, while 22 (11%) were positive for 2 

respiratory viruses and 4 (2.0%) were positive for 3 respiratory viruses (Figure 5.1).  

 

 
 
 

 

 
 
 
 
 

 
 
 
 
 

 

Figure 5.1. Prevalence of respiratory viruses detected by the xTAG® respiratory virus panel test in 

each clinical specimen.  
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Virus 
CTP + 

xTAG + 
CTP – 

xTAG + 
CTP + 

xTAG – 
CTP – 

xTAG – 
Sensitivity 

(%) 
Specificity 

(%) 

EnV/HRV 7 83 0 111 
 
 
 
 
 
 
 

7.80 100.0 

HRSV 24 10 1 167 70.6 99.4 

HPIV 5 7 0 189 41.7 100.0 

HMPV 1 14 0 186 6.70 100.0 

FA 3 5 0 193 37.5 100.0 

FB 5 5 0 191 50.0 100.0 

AdV 0 4 0 197 0.00 100.0 

 
 

 

Abbreviations: EnV/HRV, human enterovirus/human rhinovirus, HRSV, human respiratory syncytial 

virus; HPIV, human parainfluenza virus; HMPV, human metapneumovirus; FA, influenza virus type 

A; FB, influenza virus type B; AdV, adenovirus; RVP, respiratory virus panel; CTP, combined testing 

procedure. 

 

 

 

 

 

 

 

 

 

 

Table 5.3. Performance of the xTAG® respiratory virus panel test and a combination of virus culture, 

DFA, and BinaxNOW
®
 RSV Test for diagnosis of respiratory virus infection in 201 respiratory 

specimens. The combined testing procedure was compared to the xTAG® RVP test as gold standard 

for viruses common to both tests. 
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Within specimens that yielded concordance between the xTAG® RVP test and the 

combination of virus culture, DFA, and BinaxNOW® RSV, co-infections with other respiratory 

viruses were found in 8/45 (18%) specimens by xTAG® RVP test; a second respiratory virus 

was found in 6 specimens and 2 specimens were co-infected with 2 further viral pathogens. 

Of the 106 specimens that were positive by the xTAG® RVP test only, a single pathogen was 

identified in 88/106 (83%) while co-infections with 2 or more respiratory viruses were found 

in 18/106 (17%) clinical specimens. The overall prevalence of viruses that were detected by 

the xTAG® RVP test in contrast to the routine diagnostic repertoire is shown in Figure 5.2.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Overall, 136 additional respiratory viruses were detected in 114/201 (57%) specimens by the 

xTAG® RVP test (Figure 5.2). The respiratory viruses detected by the xTAG® RVP test were 

identified as a primary, secondary or tertiary pathogen based on the strength of the MFI 

signal (Figure 5.3). The following agents were detected in order of frequency as a primary 

pathogen (n, % of positives): enterovirus/rhinovirus (n = 73, 40.3%), HRSV subtype A (n = 20, 

11.0%), HRSV subtype B (n = 14, 7.7%), HMPV (n = 13, 7.2%), influenza virus type B (n = 10, 

5.5%), HPIV type 3 (n = 6, 3.3%), influenza virus type A H1 (n = 5, 2.8%), HPIV type 1, 

influenza virus type A H3 and HCoV 229E (n = 2, 1.1%), HPIV type 2,  HPIV type 4, H0CoV 

OC43, influenza virus no-specific type A (n = 1, 0.6%) (Figure 5.3).  
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Figure 5.2. Prevalence of respiratory viruses detected by the xTAG® respiratory virus panel test and 

the combined testing procedure of virus culture, direct immunofluorescence, and NOW® RSV Test. 

 

 

 

 

 

 

 

 

 



 

143 | P a g e  

 
5.4.3. Comparison of the xTAG® RVP test with an in-house multiplex real-time RT-PCR 

assay for the diagnosis of respiratory virus infection 
 
Comparison of the xTAG® RVP test and an in-house multiplex RT-PCR for the diagnosis of 

respiratory virus infection was performed using 201 frozen aliquots of xTAG® RVP tested 

clinical specimens. The in-house multiplex RT-PCR comprised 3 separate panels for the 

diagnosis of 12 different respiratory virus types and subtypes including all generic influenza 

virus A subtypes (H1-H15) and specifically H5 subtypes; influenza virus type B;  HPIV types 1 

to 4; HRSV; HMPV; adenovirus; HRV, and human enterovirus. In addition to these mutual 

respiratory virus targets, the xTAG® RVP test incorporated the following viral targets: HCoV 

OC43, HCoV 229E, HCoV NL63, HCoV HKU1, and SARS-CoV, and offered additional subtyping 

capabilities for influenza virus type A subtypes H1, H3, and H5, and HRSV subtypes A and B. 

The xTAG® RVP test used a single set of primers for detection of HRV and enterovirus, and 

therefore could not discriminate between these viruses in contrast to the in-house multiplex 
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Figure 5.3. Prevalence of respiratory viruses detected by the xTAG® respiratory virus panel test.  

The columns correspond to the prevalence of individual respiratory viruses detected in 

nasopharyngeal aspirate samples by the xTAG® respiratory virus panel test. Viruses were identified 

as a primary, secondary or tertiary pathogens based on the test signal with Median Fluorescent 

Intensity (MFI). Abbreviations: EnV/HRV, enterovirus/human rhinovirus, HRSV, human respiratory 

syncytial virus; HPIV, human parainfluenza virus; HMPV, human metapneumovirus; FA, influenza 

virus type A; FB, influenza virus type B; AdV, adenovirus; HCoV, human coronavirus; SARS-COV, 

severe acute respiratory syndrome coronavirus. 
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RT-PCR assay. The results generated by in-house multiplex RT-PCR assay for these targets 

were combined for comparative analysis with the xTAG® RVP test. Similarly, the results 

obtained for influenza A subtypes H1, H3, and H5, and HRSV subtypes A and B were 

combined in order to generate a dataset that was compatible with data produced by the in-

house multiplex RT-PCR assay. In total, a respiratory virus was identified in 151/201 (75.1%) 

respiratory specimens by the xTAG® RVP test compared with 134/201 (66.7%) specimens by 

in-house multiplex RT-PCR; no respiratory virus was identified in 50/201 (24.8%) specimens 

by the xTAG® RVP test. Concordance between the xTAG® RVP test and in-house multiplex 

RT-PCR was achieved for 178/201 (88.6%) respiratory specimens (Table 5.4).  

 

Respiratory viruses common to the xTAG® RVP test and in-house multiplex RT-PCR assay 

including influenza viruses type A and B, HRSV, HPIV types 1 to 4, HMPV, and adenovirus 

were identified in 131/201 (65.2%) specimens. The performance of the in-house multiplex 

RT-PCR assay relative to the xTAG® RVP test for diagnosis of respiratory virus infection is 

shown in Table 5.5 using the xTAG® RVP test as the gold standard. In total, 181 pathogens 

were detected in 151 specimens by the xTAG® RVP test with the viral targets HCoV 229E and 

HCoV OC43 identified as aetiological agents responsible for 8/181 (4.4%) infections. In 

comparison, the in-house multiplex RT-PCR assay diagnosed 146 mutual viruses in 134 

specimens (Table 5.5). Discrepancies between the xTAG® RVP test and in-house multiplex 

RT-PCR assay were most prominent for HRSV and enterovirus/rhinovirus. Respiratory virus 

infection attributed to HRSV was diagnosed in an additional 9 respiratory specimens by the 

xTAG® RVP test while an extra 15 infections with enterovirus/rhinovirus were identified by 

the xTAG® RVP test in comparison to the in-house multiplex RT-PCR assay. The overall 

sensitivity and specificity of the in-house multiplex RT-PCR assay in comparison to the xTAG® 

RVP test as the gold standard was 82.7% and 99.6%, respectively.  

 

 

 

 
 

No specimens xTAG® RVP test in-house multiplex real-time RT-PCR 

131 Positive Positive 

47 Negative Negative 

20 Positive Negative 

3 Negative Positive 

 
 
 

 

Abbreviation: RVP, respiratory virus panel. 

 

 

 

 

 

 

 

 

 

Table 5.4. Distribution of results obtained by the xTAG® respiratory virus panel test and in-house 

multiplex real-time RT-PCR assays for 201 respiratory specimens 
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5.4.4. Frequency of multipathogen infections in children with acute respiratory infections  
 
In total, 154 NPA samples were included in this retrospective study to re-examine the 

interactions among multipathogen infections in hospitalised children with acute respiratory 

tract infection. However, only 140/154 (88.4%) samples were included for further 

investigation; comprehensive virological and bacteriological screening was incomplete for 

the remainder of the stored samples. In total, 112/140 (80%) were positive for a respiratory 

pathogen; no pathogen was identified in 28/140 (20%) NPA samples. 

 
5.4.4.1. Respiratory Viruses................................................ 
 
The resulting data of the xTAG® RVP test were analysed in parallel with results obtained 

during routine investigations for microbial causes of respiratory tract infection. In total, 

92/140 (65.7%) specimens were positive for 1 respiratory virus, while 17/140 (12.1%) were 

positive for 2 respiratory viruses and 3/140 (2.1%) were positive for 3 respiratory viruses by 

the xTAG® RVP test. Viral co-infections with HMPV accounted for 3/15 (20%) of all HMPV 

infections. In contrast, viral co-infections with HRSV and enterovirus/rhinovirus accounted 

for 11/32 (34.4%) and 18/70 (25.8%) infections attributed to these viruses, respectively. 

Enterovirus/rhinovirus was detected in 16/20 (80%) specimens with 2 or more respiratory 

viruses. The prevalence of respiratory viruses detected in NPA samples by the xTAG® RVP 

test is shown in Figure 5.4. Enterovirus/rhinovirus was detected in 70/140 (50%) specimens 

 

 
 

 
 
 

Virus 
RT-PCR + 
xTAG + 

RT-PCR – 
xTAG + 

RT-PCR + 
xTAG – 

RT-PCR – 
xTAG – 

Sensitivity 
(%) 

Specificity 
(%) 

EnV/HRV 73 17 1 110 81.1 99.1 

HRSV 25 9 1 166 73.5 99.4 

HPIV 10 2 0 189 83.3 100.0 

HMPV 14 1 0 186 93.3 100.0 

FA 8 0 0 193 100.0 100.0 

FB 10 0 0 191 100.0 100.0 

AdV 1 3 3 194 25.0 98.5 

 
 

 

Table 5.5. Performance of the xTAG® respiratory virus panel test and in-house multiplex real-time 

RT-PCR assay for diagnosis of respiratory virus infection in 201 respiratory specimens.  

The in-house multiplex real-time RT-PCR assay was compared to the xTAG® respiratory virus panel 

test as gold standard for viruses common to both tests. 

 

 

 

 

 

 

 

 

Abbreviations: EnV/HRV, human enterovirus/human rhinovirus, HRSV, human respiratory syncytial 

virus; HPIV, human parainfluenza virus; HMPV, human metapneumovirus; FA, influenza virus type 

A; FB, influenza virus type B; AdV, adenovirus; XTAG; xTAG® respiratory virus panel test. 
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by the xTAG® RVP test followed by HRSV subtype A and B (32/140, 22.9%), HPIV types 1 to 4 

(10/140, 7.1%), and HMPV (9/140, 6.4%) (Figure 5.4). Respiratory viruses detected by the 

xTAG® RVP test were identified as a primary pathogen, secondary or tertiary pathogen based 

on the strength of the MFI signal. The following agents were detected in order of frequency 

as a primary pathogen (n, % of positives): enterovirus/rhinovirus (54/140, 38.6%), HRSV type 

A (19/140; 13.6%), HRSV type B (13/140; 9.3%), HMPV (8/140; 5.7%), HPIV type 3 (6/140; 

4.3%), influenza virus type H1 (3/140; 2.1%), influenza virus type B, HCoV 229E, and HPIV 

type 1 (2/140; 1.4%), HPIV type 4, influenza virus type A H3, HCoV 229E (1/140; 0.7%) (Figure 

5.4).   
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Figure 5.4. Prevalence of respiratory viruses detected by the xTAG® respiratory virus panel in 

children with acute respiratory tract infection.  

The columns correspond to the prevalence of individual respiratory viruses detected in 

nasopharyngeal aspirate samples by the xTAG® respiratory virus panel test. Viruses were identified 

as a primary pathogen, secondary or tertiary pathogen based on the test signal with Median 

Fluorescent Intensity (MFI). Abbreviations: EnV/HRV, enterovirus/human rhinovirus; HRSV, human 

respiratory syncytial virus; HPIV, human parainfluenza virus; HMPV, human metapneumovirus; FA, 

influenza virus type A; FB, influenza virus type B; AdV, adenovirus; HCoV, human coronavirus; 

SARS-COV, Severe acute respiratory syndrome coronavirus. 
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5.4.4.2. Respiratory Bacteria................................................ 
 
Respiratory bacteria were detected in 102/140 (72.9%) NPA samples by bacterial culture. In  

total, 78/140 (55.7%) samples were positive for 1 bacterial pathogen while 21/140 (15.0%) 

were positive for 2 bacterial pathogens; mixed infections with 3 bacterial pathogens were 

uncommon (3/140; 2.1%). No significant bacterial pathogen was isolated from 36/140 

(25.7%) NPA samples and no bacterial pathogen was isolated from the remaining 2/140 

(1.4%) samples. H. influenzae was the most common single bacterial pathogen isolated from 

NPA samples (41/140; 29.3%) followed by S. pneumoniae (38/140; 27.1%); S. aureus 

(19/140; 13.6%), and M. catarrhalis (18/140; 12.9%). H. influenzae and S. pneumoniae were 

the dominant combination with in NPA samples with mixed bacterial aetiology (17/140; 

12.1%). 

 

5.4.4.3. Bacterial and Viral Co-infections................................................ 
 
Bacterial and viral co-infections (87/140; 62.1%) were more numerous than viral mono- and 

co-infections (25/140; 17.9%) and bacterial mono- and co-infections (15/140; 10.7%). Co-

infections with a single viral and bacterial co-pathogen (54/140; 38.6%) were more common 

than infections with multiple viral and bacterial pathogens (33/140; 23.6%) (Figure 5.5). The 

associations among respiratory viruses and bacteria in children attending the Norfolk and 

Norwich University Hospital with ARTI are shown in Appendix IV.  

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Aetiologial agents identified by the xTAG® respiratory virus panel and bacterial culture 

in nasopharyngeal aspirate samples collected from children 18 years attending the Norfolk and 

Norwich University Hospital with symptoms of acute respiratory tract infection between between 

October 2007 and December 2008. 
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Significant associations between pathogen pairs were determined using Spearman's Rank 

Correlation Test. Significant associations were demonstrated for six pathogen pairs (Table 

5.6). The presence of H. influenzae was positively correlated with the presence of HMPV 

(Spearman correlation coefficient = 0.343; p = 3.29E-05) and S. pneumoniae (Spearman 

correlation coefficient = 0.207; p = 1.40E-02). Positive correlations were also demonstrated 

between HCoV and AdV (Spearman correlation coefficient = 0.237; p = 4.75E-03) and 

enterovirus/rhinovirus and S. pneumoniae (Spearman correlation coefficient = 0.225; p = 

7.56E-03). Negative correlations were observed between enterovirus/rhinovirus and HRSV 

(Spearman correlation coefficient = -0.204; p = 1.56E-02) and influenza virus type A, 

(Spearman correlation coefficient = -0.171; p = 4.28E-02), respectively (Table 5.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 

 
 
 
 

  
 
 
 
 
 
 
 
 
 

HMPV HRSV HPIV FA FB HCoV ADV RV/EV SPNE HINF 

HMPV 1.00 -0.143 -0.073 -0.045 -0.032 -0.050 -0.039 -0.149 0.036 0.343** 

HRSV   1.00 -0.151 -0.093 -0.066 0.079 0.037 -0.204* 0.165 -0.014 

HPIV     1.00 -0.048 -0.033 0.096 -0.041 -0.111 0.018 0.126 

FA       1.00 -0.021 -0.033 -0.025 -0.171* -0.105 0.078 

FB         1.00 -0.023 -0.018 0.000 -0.073 -0.077 

HCoV           1.00 0.237** 0.038 -0.031 0.045 

AdV             1.00 0.049 0.132 0.122 

RV/EV               1.00 0.225** 0.110 

SPNE                 1.00 0.207* 

HINF                   1.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.6. Associations between aetiologial agents identified by the xTAG® respiratory virus panel 

and bacterial culture in nasopharyngeal aspirate samples collected from children 18 years 

attending the Norfolk and Norwich University Hospital with symptoms of acute respiratory tract 

infection between October 2007 and December 2008. Associations were determined by 

Spearman's rank correlation coefficient. 

 

Probabilities of association by chance (p-values) are shown with figures indicating significant 

correlations at the 0.01 (**) and 0.05 (*) level highlighted in red. Abbreviations: HMPV, human 

metapneumovirus; HRSV, human respiratory syncytial virus; HPIV, human parainfluenza virus; FA, 

influenza virus type A; FB, influenza virus type B; HCoV, human coronavirus; AdV, adenovirus; 

RV/EV, human enterovirus/human rhinovirus; SPNE, Streptococcus pneumoniae; HINF, 

Haemophilus influenzae. 
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5.5. Discussion 
 
Many of the advances in clinical virology have come about because of the ability to grow 

viruses in the laboratory (Jeffery and Aarons, 2009). With the appropriate specimens and 

optimal cell lines, this technique can be highly sensitive and specific, with a presumptive 

diagnosis made based on a characteristic cytopathic effect and the particular diagnosis 

confirmed by haemadsorption or by immunofluorescence using a virus-specific antibody 

labelled with a fluorescent dye (Jeffery and Aarons, 2009). The judicious selection of two or 

three cell lines will allow the detection of the majority of cultivable viruses of clinical 

importance (Jeffery and Aarons, 2009). While virus isolation has always been recognised as a 

relatively late diagnosis, involving a few days to weeks in culture, it is no longer acceptable, 

particularly when the goal of the modern clinical virology laboratory is the provision of a 

rapid and comprehensive diagnostic service to facilitate the implementation of prompt 

clinical action (Ogilvie, 2001). Furthermore, the unreliability of culture for the isolation of 

slow growing or labile viruses as well as several of the newer respiratory viruses, which fail 

to proliferate in traditional virus cultures as a result of fastidious growth requirements, has 

brought the diagnostic value of virus culture under further criticism (van den Hoogen et al., 

2001; Leland and Ginocchio, 2007; Mahony, 2008; Pavia, 2011; Storch, 2000; Talbot and 

Falsey, 2010). Indeed, the problems that contributed to the anonymity of HMPV, namely 

poor replication in continuous cell lines, very slow replication kinetics in vitro in contrast to 

other human respiratory viruses, trypsin dependence, and absence of haemagglutinating 

activity with turkey, chicken, or guinea pig erythrocytes, largely pertain to diagnostic virology 

laboratories (van den Hoogen et al., 2001).  

 
The development of molecular methods has revolutionised the diagnosis of respiratory virus 

infections. It is widely reported that utilisation of molecular methodology for the diagnosis 

of respiratory virus infections offers greater sensitivity with a resultant increase in the 

detection rate of respiratory viral pathogens in comparison to traditional diagnostic methods 

(Balada-Llasat et al., 2010; Coiras et al., 2004; Gadsby et al., 2010; Kehl et al., 2001; Kuypers 

et al., 2006; 2009; Marshall et al., 2007; Nolte et al., 2007; Templeton et al., 2004; Weinberg 

et al., 2004) and the findings in the present study provide no exception. Excepting HRSV, 

detection rates among HPIV types 1 to 4, influenza virus type A and influenza virus type B, 

which represent the principal targets of traditional diagnostic methods, achieved using a 

combination of virus culture and DFA were much lower than those obtained by the xTAG® 

RVP test and in-house multiplex real-time RT-PCR assay. Historically, HRSV has been more 

difficult to culture than other respiratory viruses since it is quickly inactivated in samples that 
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are not kept refrigerated or inoculated into virus culture within a short time after specimen 

collection (Leland and Ginocchio, 2007; Mahony, 2008). This was particularly problematic for 

the Microbiology Department as an off-site facility where specimen transport was required 

and could provide an explanation for the low detection rate of HRSV achieved. In contrast, 

virus culture is most useful for relatively hardy viruses, such as influenza virus, which can 

survive transportation to a laboratory (Talbot and Falsey, 2010). The microscopic 

examination of the unstained cell culture monolayer for CPE is the simplest and most widely 

used criterion for infection in virus culture (Condit, 2007; Leland and Ginocchio, 2007). The 

CPE may be sufficiently distinctive to allow unequivocal identification of a virus but some 

viruses including influenza and parainfluenza viruses may produce only subtle morphologic 

changes in the cell monolayer and so in these cases other methods must suffice (Ashley, 

1999; Condit, 2007; Storch, 2007; Winn et al. 2006). Detection of these viruses was 

performed by haemadsorption, which utilises the erythrocyte binding capabilities of the viral 

attachment glycoprotein, haemagglutinin (Storch, 2007). However, both techniques require 

considerable technical expertise, which at times was in shortage. Further difficulties with 

diagnosis of influenza virus and parainfluenza virus infections related to the change in cell 

line in routine diagnostic use. The PLC/PRF/5 cell line was introduced as an alternative to 

primary rhesus monkey kidney (RhMK) cells following cessation of the use of this cell line for 

ethical reasons in 2006 (HPA 2010a). This cell line was received infrequently as a monolayer 

with resultant rapid cell degeneration, which presented difficulties in the interpretation of 

the haemadsorption test. This combination of factors may provide an explanation for the 

reduction in detection rate of influenza and parainfluenza viruses in relation to the xTAG® 

RVP test. Nevertheless, diagnosis of virus respiratory infection was supported by non-culture 

methods including detection of viral antigens by DFA and the BinaxNOW® RSV test. DFA tests 

for the detection of HRSV surpass the diagnostic sensitivity of conventional virus culture for 

the diagnosis of HRSV infection (Leland and Ginocchio, 2007; Mahony, 2008). Indeed, the 

majority of HRSV infections were diagnosed by DFA in combination with the BinaxNOW® RSV 

test, which has comparable sensitivity to DFA for the detection of HRSV (Jonathan, 2006; 

Mackie et al., 2004). However, another plausible explanation for the high false-negative rate 

achieved for HRSV pertains to BinaxNOW® RSV test. This test was performed as a rapid point 

of care screening test within the acute hospital setting as a useful adjunct to the diagnosis of 

HRSV infections in symptomatic neonatal and paediatric patients under the age of five years. 

Although the need for technical expertise is advertised as being minimal for performance of 

this rapid test, testing that is carried out by technicians or other personnel who are less 

experienced with test kits, especially in reading results that are weakly positive, yields lower 
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sensitivity and specificity relative to cell culture (Leland and Ginocchio, 2007). This is a 

common finding amongst institutions that utilise point-of-care testing (POCT) (Mackie et al., 

2004) including our own and underlines the necessity for rigorous training and quality 

control for even the most user-friendly assay (Mackie et al., 2004). Furthermore, it is 

important these tests be performed in conjunction with routine testing in order to 

ameliorate the implications of a POCT false negative result and allow diagnosis of mixed viral 

respiratory infections (Khanom et al., 2011).  

 
The reported sensitivities of IF testing for the other respiratory viruses compared to virus 

isolation in cell culture are lower than those reported for HRSV, and vary considerably from 

report to report, which reflects the variable performance of the test in relation to virus type, 

specimen quality, and interpretation of a positive result, which is subjective and requires a 

great deal of technical skill (Leland and Ginocchio, 2007; Syrmis et al., 2004). However, it is 

also important to consider that older adults generally have lower viral loads in their 

respiratory secretions, which may affect the sensitivity of traditional diagnostic methods 

(Talbot and Falsey, 2009). As a result, the recognition and diagnosis of infection due to many 

viral respiratory pathogens in older adults can be elusive (Talbot and Falsey, 2009). 

Molecular diagnostic techniques now offer the potential to diagnose a greater breadth of 

viral respiratory infections including viruses not routinely detected by traditional diagnostic 

methods, such as coronavirus and HMPV, as well as provide a more accurate diagnosis in this 

specific population (She et al., 2010; Talbot and Falsey, 2009). This is especially useful in 

elderly patients for whom viruses can cause severe to fatal respiratory disease (Boivin et al., 

2007; Liao et al., 2011; She et al., 2010) with the additional benefit within the nursing home 

setting to identify sources of outbreaks (Talbot and Falsey, 2009). 

 
The failings of traditional diagnostic methods for the diagnosis of respiratory virus infections 

are perhaps most pertinent to HRV and HCoV. Historically, HRV culture was fraught with 

unreliability (Arden and MacKay, 2010). The range of susceptibility of different cell lines and 

even different lots of the same cells made HRV isolation difficult as more than one cell line 

was often required for optimal sensitivity. Furthermore, HRV serotypes lack a common 

group antigen, making the possibility of broadly reacting antibodies unlikely. With the 

advent of diagnostic molecular methods, it became apparent that HRV infections are the 

most frequent of viral respiratory infections, even in hospitalised children (Arden and 

Mackay, 2010). Comparison with the xTAG® RVP test and in-house multiplex real-time RT-

PCR assay in the present study exemplifies the failings of virus culture for the diagnosis of 
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HRV infection, which was a severely under-represented aetiologic agent by this method. In 

contrast, picornaviruses were detected in 44.7% and 36.3% of specimens by the xTAG® RVP 

and multiplex RT-PCR assay, respectively. A breakdown of the results generated by the in-

house multiplex RT-PCR assay for the specific virus targets revealed that human enterovirus 

and HRV were detected in 8.0% and 29% of specimens, respectively. This dramatic increase 

in the frequency of HRV detection emphasises the improved sensitivity that molecular 

methods offer comparative to cultivations methods and the clinical importance of this virus 

as a respiratory pathogen (Mackay, 2008).  

 
The xTAG® RVP test and in-house multiplex real-time RT-PCR assay significantly improved 

the detection of HMPV in comparison to DFA, which was performed using the IMAGEN™ 

hMPV immunofluorescence test (Oxoid Ltd, Hampshire, UK). The xTAG® RVP test and in-

house multiplex real-time RT-PCR assay enabled the positive diagnosis of HMPV infection in 

an additional 7% and 6.5% of specimens, respectively, which were negative by DFA.  

 
The overall sensitivity and specificity of the in-house multiplex RT-PCR assay in comparison 

to the xTAG® RVP test as the gold standard was 82.7% and 99.6%, respectively, reflecting a 

range of sensitivities among the common viral targets. Discordant results between these 

tests were most prominent for the picornaviruses and HRSV, which perhaps represents 

suboptimal primer binding or the difficulty in accommodating strain diversity with a single 

probe and RNA viruses, which exhibit considerable genetic diversity, present particular 

challenge (Ratcliff et al., 2007). It is difficult to comment on the results obtained for 

adenovirus by both the xTAG® RVP and multiplex RT-PCR assay due to the limited number of 

specimens that were positive for this virus target and in the absence of re-testing discordant 

results. However, the inadequacy of the xTAG® RVP in the detection of adenovirus is 

reported previously (Gadsby et al., 2010; Pabbaraju et al., 2008). Pabbaraju et al., (2008) 

observed that there was a significant reduction in the detection of adenovirus in younger 

patients by the xTAG® RVP; however, there was no significant difference based on sample 

type, and analysis of serotypes was too limited to draw complete conclusions. Suboptimal 

primer binding in particular adenovirus serotypes may also account for the low sensitivity for 

observed for this virus target (Gadsby et al., 2010).  

 
The results of the xTAG® RVP test and in-house real-time RT-PCR assay clearly indicate why 

the advent of molecular methods have changed our view of the aetiology and clinical 

spectrum of viral respiratory infections (Olofsson et al., 2011). Molecular methods have 

revolutionised the diagnosis of viral respiratory infections not only because of the new 
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unparalleled detection sensitivities achieved, but also because of the option of simultaneous 

assay for a great number of infectious agents, at a reasonable cost (Olofsson et al., 2011). 

Molecular methods have revealed that multiple respiratory virus infections are more 

frequent than previously expected (Olofsson et al., 2011) and within the present study the 

presence of multiple infectious agents was the norm, not the exception, among acute phase 

respiratory specimens tested in concordance with earlier investigations of the true pathogen 

spectrum of respiratory infections (Brunstein et al., 2008). Respiratory infections with 2 co-

pathogens were diagnosed in 38.6% of specimens and accounted for the largest proportion 

of co-infections. However, overall co-infections with 2 or more infectious agents accounted 

for 65% of all respiratory infections with the remaining 25.7% of infections attributed to a 

single respiratory pathogen.  

 
One of the most exciting interactions to emerge from the application of molecular methods 

to the diagnosis of respiratory viruses pertains to HRV. These viruses, previously called 

coryzaviruses, ECHO 28-rhinovirus-coryzaviruses (ERCs), muriviruses, enterovirus-like 

viruses, nasal secretion agents and Salisbury strains are the most common cause of ARTI and 

URTI, traditionally defined as ‘common colds’ (Mackay, 2008). However, recent wider use of 

molecular detection methods in viral diagnostic screening has contributed to the reappraisal 

of HRV, as has the quite unexpected discovery of an entirely novel species of HRV designated 

species C, which is refractory to previously used virus isolation methods (Simmons et al., 

2010; Wisdom et al., 2009). Ironically, this forgotten diagnostic target is now the focus of 

investigations in which other viruses are sometimes forgotten (Arden and Mackay, 2010). 

Historically, the elevated involvement of HRV in co-infections with other viruses in acute 

respiratory infections provided a reason to diminish the causal role of HRV infections in 

clinical outcomes other than the common cold (Greer et al., 2009). However, an increasing 

weight of evidence disputes these superficial observations and indirectly indicates an 

aetiological role for HRV in respiratory disease (Greer et al., 2009). The most striking 

observation amongst investigations conducted so far is the predominance of co-infections 

with HRSV despite differences in the study years and molecular methodology utilised, which 

has provoked a rethink of the role of these viruses as unobtrusive passengers in favour of 

these viruses driving respiratory illness (Arden and Mackay, 2010). Evidence for 

contemporaneous detections with other respiratory viruses including adenovirus, HCoV, 

HBoV, HMPV, influenza virus type A, HPIV, and the polyomaviruses KIPyV and WUPyV are 

reported (Brunstein et al., 2008; Greer et al., 2009; Wisdom et al., 2009), which reveal a 

consistent pattern of HRV detection associated with a reduced likelihood of co-detection 
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with these viruses (Greer et al., 2009). No correlation was observed between HMPV and HRV 

within the present study although negative correlations were observed between 

enterovirus/rhinovirus and HRSV (Spearman correlation coefficient = -0.204; p = 1.56E-02) 

and influenza virus type A, (Spearman correlation coefficient = -0.171; p = 4.28E-02), 

respectively. This has prompted a new hypothesis, which contrary to the role that has 

historically held viruses as instigators of infection suggests that HRV infection may offer 

protection as a paradoxical viral commensal and temporarily protect its host from infection 

by other, often more cytopathic, viruses (Greer et al., 2009). Indeed, the unexpected delay in 

the emergence and spread of the novel pandemic (H1N1) 2009 influenza virus in several 

European countries is attributed to interference with other viruses. HRV is suggested as the 

most probable culprit; a hypothesis supported by a significant inverse relationship between 

HRV and the 2009 H1N1 virus irrespective of the time period and the age group analysed 

(Ånestad and Nordbø, 2009; 2011; Casalegno et al., 2010; Linde et al., 2009). Few co-

infections with HMPV and other respiratory viruses were observed within the present study, 

which may explain the association absence between HMPV and HRV. Nevertheless, these 

viruses represented the most common pairing within the present study. Equally, the finding 

that HMPV is often associated with a reduced likelihood co-detection of other respiratory 

viruses (Greer et al., 2009) may support the limited number of co-infections observed. 

 
Some have ascribed the increased frequency of viral co-detection to simple coincidental 

overlap of epidemic seasons (Greer et al., 2009). However, analysis indicates that these 

associations do not occur by chance, which suggests more complex mechanisms are 

responsible (Greer et al., 2009). HRV is considered to mediate illness through immunological 

rather than cytopathic mechanisms (Greer et al., 2009). HRV replication, as for HRSV and 

influenza viruses, produces double-stranded RNA (dsRNA) replicative intermediates; 

molecules that mediate triggering of IFN-stimulated genes inducing an antiviral state (Greer 

et al., 2009). It is hypothesised that the putative interference patterns observed are related 

to the induction of this innate IFN response by HRV infection in the respiratory tract, which 

creates a hostile environment and shields neighbouring cells from infection with other 

viruses (Greer et al., 2009; Wisdom et al., 2009). Even though HRSV, through expression of 

NS-1, can prevent IFN induction on infection of a cell, this countermeasure may be largely 

ineffective in a respiratory tract already induced into an antiviral state by prior infection with 

HRV (Wisdom et al., 2009). If, however, HRSV infected the respiratory tract first, then this 

would have no effect on the subsequent susceptibility of the individual to HRV (Wisdom et 

al., 2009). The rapid and highly cytopathic replication cycle of rhinoviruses and enteroviruses 
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that seems designed to infect and escape from cells before IFN-mediated responses become 

effective, may indeed have a more general interfering effect on more sensitive RNA and DNA 

viruses that infect the respiratory tract (Wisdom et al., 2009). Like HRSV, successful 

colonisation of the respiratory tract by coronaviruses, influenza viruses, and parainfluenza 

viruses is dependent on a wide variety of evolved mechanisms to evade intracellular 

defences that are ineffective in presensitised cells induced by IFN into an antiviral state 

(Wisdom et al., 2009).  

 
Almost all mammalian viruses have developed strategies to avoid host immune responses by 

attacking the IFN system (Ren et al., 2011). HRSV preferentially inhibits IFN-α/β signalling by 

expression of viral non-structural proteins NS1 and NS2. Thus, HRSV infection causes a 

marked decrease in STAT2 levels and the consequent downstream IFN-α/β response (Lo et 

al., 2005). In contrast, HMPV lacks the non-structural proteins NS1 and NS2, which suggests 

that the virus may encode unique mechanisms to subvert viral clearance (Dinwiddie and 

Harrod, 2008) and in fact, HMPV infection interferes with type I IFN signalling, leading to 

inhibition of IFN-β signalling transduction (Ren et al., 2011). The inhibitory effect of HMPV 

on type I IFN signalling occurs at different levels of the signalling cascade, as the virus 

partially blocks JAK1 and TYK2 gene transcription, facilitates JAK1 and TYK2 degradation, and 

lowers IFNAR1 membrane expression, ultimately leading to inhibition of STAT1 and STAT2 

activation (Ren et al., 2011). However, the differences in the interplay between HMPV and 

host immune defences in comparison to HRSV does not seem to offer any additional 

advantage to HMPV in evading intracellular defences in presensitised cells induced by IFN 

into an antiviral state by prior HRV infection (Wisdom et al., 2009).  

 
The effect of the order in which infections are acquired may additionally influence the 

outcomes of co-infections with adenoviruses. These viruses express a plethora of evasion 

molecules that substantially influence the intracellular environment of the cell that they 

infect as well as a broader paracrine effect on cytokine production in the respiratory tract 

and induction of local immunity (Wisdom et al., 2009). The frequent long-term persistence 

of adenovirus infections suggest that a more permissive environment for infection and 

replication by other viruses may exist in the respiratory tract of adenovirus-infected 

individuals, and underlie the increased detection frequencies of HRSV, HRV and other 

respiratory viruses in coinfected subjects (Wisdom et al., 2009). This infectivity enhancing 

mechanism may offer a pertinent explanation for the positive correlation observed between 

HCoV and adenovirus (Spearman correlation coefficient = 0.237; p = 4.75E-03) within the 
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present study, which represents a little acknowledged association at present. However, 

examination of the literature suggests co-infections with adenovirus deserve heightened 

recognition. Numerous studies have reported a high rate of viral co-infection with 

adenovirus (Choi et al., 2006; Coyle et al., 2004; Jennings et al., 2004; Martin et al., 2012; 

Wong et al., 2008) but this finding is not universal (Cilla et al., 2008). Furthermore, severe 

respiratory infections following co-infection by HRSV and adenovirus are documented, which 

suggests that adenovirus has the potential to promote a more severe evolution of infection 

since long-term sequelae associated with HRSV infection in previously healthy infants and 

children are rarely reported (Hirschheimer et al., 2002; Kaida et al., 2007; Massie and 

Armstrong, 1999; Murtagh et al., 2009). In contrast, co-infections between HMPV and 

adenovirus are not associated with more severe infection (Kaida et al., 2007). Interestingly, 

Martin et al., (2012) found adenovirus was most commonly detected in co-infections 

followed by HCoV but illnesses with multiple virus detections were correlated with less 

severe disease (Martin et al., 2012). Moreover, adenovirus viral quantities were significantly 

reduced in samples from multiple virus illnesses compared with single virus illnesses (Martin 

et al., 2012). Perhaps the relationship between HRV and adenoviruses epitomises the 

relationship between adenovirus and other respiratory viruses. Evidence from studies 

amongst military recruits suggests a strong negative association exists between HRV and 

adenovirus (Wang et al., 2010). In recruits, high rates of HRV within healthy recruits was 

associated with low rates of adenovirus and conversely adenovirus febrile respiratory illness 

was associated with decreased HRV titres. The inference from these findings is the existence 

of some form of interference between these viruses; a refractory period during HRV 

infections and shedding may thwart subsequent adenovirus infection while the fevers 

induced by adenovirus infection may be sufficient to restrict replication of HRV (Wang et al., 

2010). In line with this theory, Martin et al., (2012) found that HRSV, influenza virus type A  

HPIV type 3, and HMPV viral loads were consistently high whether or not another virus was 

detected. These associations may offer insight into which virus predominates in a multiple 

virus illness. Notably, 82% of co-infections consisted of one virus from the group with 

consistently high viral load combined with an alternate virus (HCoV, HPIV type 1, or 

adenovirus). This may suggest a possible model for virus co-infections that include one 

predominant virus and one virus that is present at a lower quantity and does not confer 

increased severity (Martin et al., 2012). Unfortunately, the total number of viral co-

infections was likely underestimated, as the presence of HRV was not included in the 

evaluation but the relationship between viral load and multiple virus infections was virus 

specific within the limits of the study (Martin et al., 2012). 
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While S. pneumoniae and HRV are among the most common aetiologic agents in children 

with community-acquired pneumonia (Juvén et al., 2000; Nascimento-Carvalho et al., 2008) 

few studies have addressed the pathogenesis of mixed rhinoviral-bacterial infections (Peltola 

et al., 2008), which is perhaps attributed to the legacy of neglect that has surrounded HRV. 

Nonetheless, it seems that the use of molecular detection methods has inspired a 

reappraisal of HRV in viral-bacterial co-infections as it has viral co-infections. Recent albeit 

limited studies, report that HRV and S. pneumoniae were the most commonly found 

combination of virus and bacterial pathogen in children with community-acquired 

pneumonia (Honkinen et al., 2011; Lahti et al., 2009). Another recent study found a 

temporal association between HRV circulation in the community and IPD in children younger 

than 5 years of age, suggesting that HRV infection may be a contributor in the development 

of IPD in this population (Peltola et al., 2011). While mixed HRV and S. pneumoniae infection 

was associated with severe pneumonia in adults with community-acquired pneumonia 

(Jennings et al., 2008]. These studies suggest an association exists between these respiratory 

pathogens and indeed within the present study a positive correlation was observed between 

enterovirus/rhinovirus and S. pneumoniae (Spearman correlation coefficient = 0.225; p = 

7.56E-03). S. pneumoniae adheres to the airway epithelial cells and vascular endothelial cells 

via binding to a receptor for the G protein–coupled platelet-activating factor (PAF), N-

acetylgalactosamine b-1–4-galactose, or N-acetylgalactosamine b-1–3-galactose (Ishizuka et 

al., 2003). Activation of human epithelial and endothelial cells by IL-1α and TNF–α produced 

in inflamed sites induces the adherence of this bacteria to PAF receptor (PAF-R) (Ishizuka et 

al., 2003). Studies demonstrate that HRV infection can reach, penetrate, and replicate in 

lower airway epithelium and induce the production of a variety of inflammatory cytokines by 

the alveolar and bronchial epithelial cells as well as surface expression PAF-R, which 

increases the adherence of S. pneumoniae to human tracheal epithelial cells (Ishizuka et al., 

2003; Papadopoulos et al., 2000). Furthermore, impairment of cytokine responses to 

bacterial lipopolysaccharide and lipoteichoic acid by alveolar macrophages in response to 

infectious HRV represents a novel mechanism by which HRV can impair the innate immune 

response in alveolar macrophages and thereby provide an environment that facilitates 

additional bacterial infection. Other mechanisms likely also play a role in the development of 

secondary bacterial pneumonia during or after HRV infection (Peltola et al., 2008) as it is 

clear that new battles are underway against these most abundant and equally 

misunderstood viral foes (Mackay, 2008). These finding also lend interesting possibilities to 

the role of bacteria in multiple virus infections, which are severely under-represented in 

studies conducted to date. It is plausible that the relationship bacteria and viruses in 
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multiple virus infections may provide the missing link in the development of severe 

infections with multiple viruses including HMPV. 
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CHAPTER SIX  
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6.  Molecular epidemiology of human metapneumovirus   

 _____________________________________________________________________ 
 
6.1. Introduction  
 

The existence of two distinct genetic lineages of HMPV, A and B, circulating within the 

human population was demonstrated early in the discovery of this previously unknown virus 

(Boivin et al., 2002; Boivin et al., 2004; Madhi et al., 2003; Peiris et al., 2003; Peret et al., 

2002; Stockton et al., 2002; van den Hoogen et al., 2001). Subsequent analysis of the 

nucleotide and predicted amino acid sequences of the F and G protein genes has further 

addressed the genetic heterogeneity of HMPV and revealed that the two main genetic 

lineages represent two serotypes of HMPV with further division of each serotype into two 

genetic sublineages, tentatively named A1, A2, B1 and B2 (van den Hoogen et al., 2004b). 

More recently, evidence has revealed a further bipartition of sublineage A2 into two new 

genetic clusters, designated A2a and A2b (Huck et al., 2006). The F protein is highly 

conserved exhibiting high percentage identities between members of the same sublineage 

(nt: 97%–100%, amino acids [aa]: 99%–100%), members of the two different sublineages 

within each main lineage (nt: 94%–96%, aa: 97%–99%), and between members of the two 

different main lineages A and B (nt: 84%–86%, aa: 94%–97%) (van den Hoogen et al., 2004b). 

Similarly, the G protein demonstrates a relatively high percentage identity between 

members of the same sublineage (nt: 93%–100%, aa: 75%–99.5%) and between members of 

the two different sublineages within each main lineage (nt: 76%–83%, aa: 60%–75%) but is 

highly variable between members of the two different main lineages A and B (nt: 50%–57%, 

aa: 30%–37%) (van den Hoogen et al., 2004b), which suggests that the G protein is 

continuously evolving (Bastien et al., 2004).  

 
The epidemiology of HMPV is complex and dynamic (Kahn, 2006). Annual circulation of 

HMPV genotypes, A and B, is observed worldwide and concurrent annual circulation of all 

four genetic lineages of the virus is common (Huck et al., 2006; Ludewick et al., 2005; 

Mackay et al., 2006). However, a highly localised and community based phenomenon also 

exists (Arnott et al., 2011b; Gaunt et al., 2011; Kahn, 2006) with fluctuating circulation 

frequencies of genotypes giving rise to frequently observed switching of the predominant 

circulating genotype over consecutive epidemic seasons (Aberle et al., 2010; Gaunt et al., 

2011). The dynamic nature of localised HMPV epidemics is increasingly highlighted by 

studies throughout the world (Aberle et al., 2010; Agrawal et al., 2011; Arnott et al., 2011b; 

Carr et al., 2008; Chung et al., 2008; Escobar et al., 2009; Galiano et al., 2006; Legrand et al., 

2011; Ljubin-Sternak et al., 2008; Ludewick et al., 2005; Mackay et al., 2006; Oliveira et al., 
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2009; Pitoiset et al., 2010; Wang et al., 2008). It has become clear that sublineages of HMPV 

do not persist and that old lineages may be replaced with newly emerging variants 

(Schildgen et al., 2011).  

 
The F protein is a major antigenic determinant that mediates extensive cross-lineage 

neutralisation and protection (Skiadopoulos et al., 2004). Cross-challenge experiments 

aimed at inducing antibodies against the conserved HMPV F protein in animal models 

revealed that primary infection with either of the two main genetic lineages of HMPV 

induced protective immunity against subsequent challenge with homologous or 

heterologous virus (MacPhail et al., 2004; Skiadopoulos et al., 2004; van den Hoogen et al., 

2007). Conversely the glycoproteins G and SH play minor or insignificant roles in stimulating 

neutralisation and protection (Biacchesi et al., 2005) and it is postulated that antigenic 

variability of the G gene may play an important role in the ability of this virus to escape the 

pre-existing immune response (Kahn, 2006).  

 

6.2. Aims 
 
In this chapter, the identification of circulating HMPV genotypes and associated sub-

genotypes within the locality of Norwich was sought through nucleotide analysis of the 

highly conserved F gene and the diverse G gene regions of the HMPV genome in order to 

determine the geographical and temporal distribution of HMPV within this undescribed 

region. Finally, nucleotide sequence data generated within the present study was compared 

against data available from the genetic sequence database, GenBank®, to facilitate the 

assessment of current knowledge on the molecular epidemiology of this complex and 

dynamic virus.  

 

6.3. Materials and Methods 
 
6.3.1. Overview of study design 
 

The molecular epidemiology and genetic diversity of HMPV within children 18 years 

attending the Norfolk and Norwich University Hospital with symptoms of acute respiratory 

tract infection between 31st October 2005 and 31st December 2008 was characterised using 

positive frozen, archived NPA samples that were identified as described previously (Section 

4.4.3). In total, 36 positive NPA samples were available for sequence analysis; two samples 

were excluded from the analysis as insufficient clinical material remained.  
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6.3.2. Selection of primer sequences for phylogenetic analysis 
 
Primer pairs selected from the F gene ORF and G gene ORF  (Table 6.1) corresponding to 

those published by Huck et al., (2006) and Ludewick et al., (2005), respectively were selected 

for phylogenetic analysis. The F gene ORF and G gene ORF forward and reverse primers 

targeted a 507 bp and 897 bp region within the F gene and G gene of the virus, respectively. 

The regions of the genome covered by the forward and reverse primers targeting the F gene 

ORF and G gene ORF were nucleotide positions 3,624–4,130 and 6285 to 7181, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3.3. Nucleic Acid Extraction 
 
All samples were subjected to nucleic acid extraction using the COBAS® AmpliPrep TNAI Kit 

(Roche Diagnostics Ltd, Burgess Hill, UK) on the COBAS® AmpliPrep Instrument (Roche 

Diagnostics Ltd, Burgess Hill, UK), according to manufacturer’s instructions  (Section 2.6.4.4).  

 

6.3.4. Agarose Gel Electrophoresis 
 
Gel electrophoresis was performed using E-Gel® pre-cast 2% agarose gels with SYBR Safe™ 

DNA gel stain (Invitrogen, Paisley, UK). Each gel contained a single row of 12 sample wells. E-

Gel® agarose gels were prepared using the one-step loading method according to the 

manufacturer’s instructions. Samples were prepared by adding 3.3 µl of a 1:10 dilution of 

TrackIt™Cyan/Yellow Loading Buffer (6X) (Invitrogen, Paisley, UK) that was prepared  in 

deionised water to 6.7 µl of PCR product and 10 µl of deionised water to a final volume of 20 

 
 

Primer or probe Sequence (5’-3’) Target Gene 

Forward GTY AGC TTC AGT CAA TTC AAC AGA AG 
Fusion 

Reverse 

 

CCT GTG CTG ACT TTG CAT GGG 

 
 

 
 

Primer or probe Sequence (5’-3’) Target Gene 

Forward GAG AAC ATT CGR RCR ATA GAY ATG 
Glycoprotein 

Reverse 

 

AGA TAG ACA TTR ACA GTG GAT TCA 

 

Table 6.1. Composition of primer pairs selected for phylogenetic analysis. 

 

 

 

 

 

 

 

 

 

Primer sequences for the detection of the fusion (F) gene open reading frames (ORF) of human 

metapneumovirus (HMPV). Residue Y in the third position of the forward primer represents either 

a cytosine (C) or a thymidine (T) residue.  

 

 

Residue Y in the twenty-first position of the NL-N p represents either a C or a T residue. 

 

 

 

 

 

Primer sequences for the detection of the glycoprotein (G) gene open reading frame (ORF) of 

human metapneumovirus (HMPV). Residue R in the twelfth, thirteenth, and fifteenth position of 

the forward primer and the twelfth position of the reverse prime represents either an adenine (A) 

or a guanine (G) residue. Residue Y in the twenty-first position of the forward primer represents 

either a C or a T residue. 

 

 

 

Residue Y in the twenty-first position of the NL-N p represents either a C or a T residue. 
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μl. The gel was inserted into the E-Gel® PowerBase™ v.4. Next, 20 µl of each prepared DNA 

sample was loaded alongside 10 µl of E-Gel® Low Range Quantitative DNA Ladder that was 

diluted with 10 µl of deionised water. The E-Gel® Low Range Quantitative DNA Ladder 

consists of five linear double-strand DNA fragments (100-2000 bp). Electrophoresis of 10 μl 

of the ladder resulted in bands containing 100, 40, 20, 10, and 5 ng of DNA, respectively. 

Empty wells were loaded with 20 μl of deionised water. The gel was run at a constant 

voltage of 60-70 volts for 30 minutes. At the end of the run, the gel cassette was removed 

from the power unit. DNA fragments were visualised under UV light using the MiniBIS Pro 

Gel Documentation System (Berthold Technologies (U.K.) Ltd, Hertfordshire, UK) in 

combination with two software packages, GelCapture for imaging acquisition and GelQuant 

for image analysis that were supplied with the MiniBIS Pro Gel Documentation System. 

 

6.3.5. Conventional RT-PCR using the QIAGEN® OneStep RT-PCR Kit 
 
Conventional block-based RT-PCR was performed using the OneStep RT-PCR Kit (QIAGEN Ltd, 

Crawley, West Sussex, UK) in order to amplify two independent regions of the F and G gene 

open reading frames of HMPV for sequencing and phylogenetic analysis. The OneStep RT-

PCR Kit contained a specially formulated OneStep RT-PCR Enzyme Mix for reverse 

transcription and PCR using a unique combination of Omniscript and Sensiscript Reverse 

Transcriptases that have high affinity for RNA templates and HotStar Taq DNA Polymerase in 

addition to 5X OneStep RT-PCR Buffer containing 12.5 mM MgCl2, dNTP Mix containing 10 

mM each of dATP, dCTP, dGTP, and, dTTP, and nuclease-free water. A negative control was 

included in each experiment. One-step RT-PCR was performed in a final reaction volume of 

50 μl containing 10 μl of 1x RT-PCR Buffer, 2.0 μl dNTP Mix containing 400 μM of each 

deoxyribonucleotide (dNTP), 2.0 μl of RT-PCR Enzyme Mix, 1.5 μl each of F gene ORF or G 

gene ORF forward and reverse primers, and nuclease-free water to a volume of 45 μl (Table 

6.2). The working one-step RT-PCR reaction mix was aliquoted into 0.2 ml reaction tubes 

(Alpha Laboratories, Hampshire, UK). Finally, 5 µl of viral RNA extract was added exclusive of 

the NTC. Instead, 5 µl of nuclease-free water was added.  
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The GeneAmp 2400 Thermal Cycler (Perkin-Elmer, UK) was programmed with separate 

conditions for the F gene and G gene to accommodate the Tm of the primers (Table 6.3).  

 

The annealing temperature of thermal cycling conditions for the G gene was decreased 

incrementally if no bands were visible in the agarose gel (Table 6.4). The reaction tubes were 

placed on ice until the thermal cycler reached 50°C. Finally, the reaction tubes were loaded 

into the chamber of thermal cycler. After thermocycling, the cDNA was stored at 2oC to 8oC 

overnight or at -20oC for prolonged storage.   

 

 
 

 

Step Temperature Time Cycles 

Reverse transcription: 50
o
C 30 minutes 1 cycle 

Initial PCR activation step: 95
o
C 15 minutes 1 cycle 

3-step cycling    

Denaturation: 94
o
C 30 seconds 

40 cycles Annealing: 58
o
C 60 seconds 

Extension: 72
o
C 60 seconds 

Final Extension: 72
o
C 10 minutes 1 cycle 

 

Step Temperature Time Cycles 

Reverse transcription: 50
o
C 30 minutes 1 cycle 

Initial PCR activation step: 95
o
C 15 minutes 1 cycle 

3-step cycling    

Denaturation: 94
o
C 60 seconds 

40 cycles Annealing: 55
o
C 60 seconds 

Extension: 72
o
C 60 seconds 

Final Extension: 72
o
C 10 minutes 1 cycle 

 

 

 

 

 

 

 

 

 

 

 

Table 6.3. Thermal cycling conditions for the OneStep RT-PCR Kit.  

The annealing conditions differed for the fusion (top) and glycoprotein (bottom) primer pairs to 

accomodate the differences in Tm of the primers.  

 

 

 

 

 

 

 

 

 

 

 

Reaction Component 
Volume (µl) per 

50 µl reaction 

Stock 

Concentration 

Final 

Concentration 

5 X QIAGEN OneStep RT-PCR Buffer* 10.0 5x 1x 

dNTP Mixture 2.0 10 nM each 400 µM each 

dNTP Forward Primer 1.5 20 µM 600 nM 

Reverse Primer 1.5 20 µM 600 nM 

QIAGEN OneStep RT-PCR Enzyme 

Mix 

0.2 - - 

Nuclease-free water 28.0 - - 

TOTAL VOLUME 50 µl - - 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.2. Preparation of working OneStep RT-PCR Kit  reaction mix for 1x reaction. 

 

 

 

 

 

 

 

 
* Contains 12.5 mM MgCl2 
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6.3.6. Purification of amplification products 
 
Amplification products were purified using the QIAquick® PCR purification kit (QIAGEN Ltd, 

Crawley, West Sussex, UK) to remove excess nucleotides and enzyme contamination from 

DNA fragments that would otherwise interfere with subsequent downstream applications 

according to manufacturer’s instructions (Section 3.3). 

 

6.3.7. Sequence determination 
 
Sequencing reactions were performed by Genome Enterprise Limited, The Genome Analysis 

Centre, Norwich Research Park, Norwich, UK using the gene specific forward and reverse 

primers described in section 6.3.2 in combination with the BigDye® Terminator v3.1 Cycle 

Sequencing Kit (Applied Biosystems, Warrington, UK) on the 3730xl DNA Analyser (Applied 

Biosystems, Warrington, UK). 

 

6.3.8. Sequence analysis and alignment 
 
All F and G gene sequences downloaded from GenBank® were analysed altogether 

(unrooted). Pairwise and multiple nucleotide sequence alignments were generated with 

ClustalW software. Sequences were viewed using Molecular Evolutionary Genetics Analysis 

(MEGA) software version 5.0 (Tamura et al., 2011) or Geneious Pro™ software version 5.4 

(Drummond et al., 2011). Phylogenetic trees were constructed from 1000 samplings of 

 

 
 

 

 

 

 

Step Temperature Time Cycles 

Reverse transcription: 50
o
C 30 minutes 1 cycle 

Initial PCR activation step: 95
o
C 15 minutes 1 cycle 

3-step cycling    

Denaturation: 94
o
C 60 seconds 

5 cycles Annealing: 55
o
C 60 seconds 

60 seconds Extension: 72
o
C 60 seconds 

 Denaturation: 94
o
C 60 seconds 

5 cycles Annealing: 50
o
C 60 seconds 

60 seconds Extension: 72
o
C 60 seconds 

Denaturation: 94
o
C 60 seconds 

30 cycles Annealing: 45
o
C 60 seconds 

60 seconds Extension: 72
o
C 60 seconds 

Final Extension: 72
o
C 10 minutes 1 cycle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.4. Thermal cycling conditions for the OneStep RT-PCR Kit.  

The annealing temperature of thermal cycling conditions for the G gene was decreased 

incremenatally if no bands were visible in the agarose gel. 
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maximum composite likelihood (MCL) distances by neighbour-joining method with pair-wise 

deletions for missing nucleotides in MEGA 5 (Tamura et al., 2011). 

 

6.3.9. Statistical Analysis 
 
Statistical calculations were performed with SPSS version 17.0 (SPSS Inc, Chicago, Illinois, 

USA). A p value of <0.05 was considered statistically significant. To test the hypothesis that 

HMPV strains circulating within the locality of Norwich differed from other strains within a 

sublineage, a one-way analysis of variance (ANOVA) was used for the comparison of 

continuous variables.  

 

6.4. Results 
 
6.4.1. Analysis of the fusion and glycoprotein protein genes of human metapneumovirus 
 
In total, 36 NPA samples collected between 31st October 2005 and 31st December 2008, 

which were positive for HMPV by real-time RT-PCR targeting the N gene of the virus were 

analysed by a conventional end-point RT-PCR assay targeting two independent regions of 

the HMPV F gene ORF and G gene ORF using the same nucleic acid eluate. The PCR products, 

which were analysed using 2% pre-cast agarose gels were then identified as the correct size 

using a Quantitative DNA Ladder (Figure 6.1 and 6.2). Overall, 100% of samples were positive 

by the end-point RT-PCR assay targeting the F gene ORF while 86.1% samples were positive 

for the G gene ORF target sequence. The sensitivity and specificity of the gene-specific 

primer pairs were not evaluated in the present study. No extraneous bands were visualised 

on the agarose gels inferring specificity of the primer pairs but the absence of a discrete 

band corresponding to the 807 bp fragment of the G gene suggests that the conventional 

end-point RT-PCR assay failed to amplify the target sequence from nucleic acid extracted 

from five NPA samples. The additional intervention of incrementally decreasing the 

annealing temperature of thermal cycling conditions for the G gene primer pair failed to 

provide a resolution to the absent PCR product. Real-time RT-PCR was performed using 

primers and TaqMan® probe designed to target the HMPV N gene prior to the conventional 

end-point RT-PCR assay with the G gene and F gene primer pairs to ensure the positive 

status of all clinical samples. The fluorescent signal produced for some samples was weak 

and it is plausible that this contributed to the unsuccessful amplification of the respective 

target sequence. However, since all 36 samples were identified using the F gene primer pair 

it is more likely that the primers targeting the G gene ORF failed to amplify the target 

sequence. 
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Figure 6. 1. Images of fusion gene and glycoprotein gene PCR products following separation on E-Gel® pre-cast 2% agarose gels with SYBR Safe™ DNA gel stain.  

Total nucleic acid from NPA samples represented by the numbers lanes was amplified using the OneStep RT-PCR Kit and forward and revere primers, which targeted a 

507 bp region of the fusion gene open reading frame (ORF) from base 3624 to 4130 and 897 bp region of the glycoprotein gene ORF from base 6285 to 7181, 

respectively. The image shows amplicons of the correct size. Other bands indicative of primer non-specificity are absent. Abbreviations: bp, base pairs; L, E-Gel® Low 

Range Quantitative DNA Ladder; B, blank well; ng, nanogram. 
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6.4.2. Phylogenetic analysis of HMPV Fusion and Glycoprotein Gene Sequences 
 

The molecular epidemiology of HMPV was examined by phylogenetic analysis of partial 

nucleotide sequences within the F gene ORF and G gene ORF of HMPV strains circulating 

among a cohort of paediatric patients within the locality of Norwich during a three-year 

period together with all publicly available F and G gene sequences within the NCBI 

nucleotide database. This revealed the major HMPV genetic lineages, A and B, which were 

further divided into sublineages A1 and A2 (Figure 6.2) and B1 and B2 (Figure 6.3). The A2 

sublineage was further bi-partitioned into two distinct clusters representing A2a and A2b 

(Figure 6.2). Sequences from HMPV positive samples collected from paediatric patients 

attending the Norfolk and Norwich University Hospital were assigned to genetic lineage A 

and B and further partitioned into sublineages A2a, A2b, B1, and B2; no sequences within 

the sublineage A1 were identified. Genetic lineage distribution between partial F and G gene 

sequences was identical for mutual HMPV strains circulating within the cohort. The 

phylogenetic tree generated from partial G gene sequences showing the partitioning of 

genetic lineages A and B is shown in Figure 6.2 and Figure 6.3, respectively. The existence of 

the two major genetic lineages, A and B, and sublineages A1, A2, B1, and B2 was strongly 

supported by bootstrap analysis. Lineage A and B were separated in 100% of bootstrap 

replicas while sublineages A1 and A2, B1, and B2 were separated in 95-100% of bootstrap 

replicas. The estimated nucleotide identities between strains circulating within the locality of 

Norwich are displayed within a pairwise identity heatmap (Figure 6.4). The same sublineage 

appears as blocks shaded black while different sublineages appear as blocks shaded palest 

gray indicative of high and low sequence homology, respectively. The estimated percentage 

nucleotide identities for the G gene between the two major lineages, A and B were 51.3% - 

54.8% but higher percentage identities were observed within sublineages (Table 6.5). 

Unfortunately, only one strain belonging to sublineage B1 was identified within the cohort 

so it was not possible to determine the nucleotide identities within sublineage B1. 

  

 

 

 

 

 

 

 

 

 

 
 

 

 
 
 

 

                            Percentage (%) nucleotide identities 

Sublineages A2a A2b B1 B2 

A2a 91.8-97.4 83.1-87.6 53.3-54.8 53.3-58.0 

A2b  87.4-95.7 51.8-53.1 51.8-56.5 

B1   N/A 72.7-75.1 

B2    86.7-98.0 

 

 

 

 

 

Table 6.5. Percentage nucleotide identities for the glycoprotein gene of predominant strains of 

human metapneumovirus circulating within a cohort of paediatric patients within the locality of 

Norwich between 31
st

 October 2005 and 31
st 

December 2008..  
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Figure 6.2. Phylogenetic trees of partial nucleotide sequences of the glycoprotein gene of human 

metapneumovirus showing genetic sublineages A1, A2a, and A2b. 

The phylogenetic tree was constructed in Molecular Evolutionary Genetics Analysis software 

version 5.0 (Tamura et al., 2011) using the neighbour-joining method with 1000 bootstrap 

replicates from partial glycoprotein gene sequences available from the National Center for 

Biotechnology Information database and sequences identified within the present study during 

2005 (
 
), 2006 (

 
), and 2008 ( ). Genetic lineage A1 is represented as a compressed subtree as no 

sequences within this lineage were identified within the present study.  
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Figure 6.3. A phylogenetic tree of partial nucleotide sequences of the glycoprotein gene of human 

metapneumovirus showing genetic sublineages B1 and B2. 

The phylogenetic tree was constructed in Molecular Evolutionary Genetics Analysis software 

version 5.0 (Tamura et al., 2011) using the neighbour-joining method with 1000 bootstrap 

replicates from partial glycoprotein gene sequences available from the National Center for 

Biotechnology Information database and sequences identified within the present study during 

2005 (
 
), 2006 (

 
), 2007, (

 
), and 2008 (

 
).  
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Figure 6.4. A pairwise nucleotide identity heatmap displaying sequence homology between strains of human metapneumovirus circulating amongst a cohort of 

paediatric patients within the locality of Norwich.  

A pairwise nucleotide sequence alignment for all 31 glycoprotein gene sequences was performed using Geneious Aligner™ within Geneious Pro™ softare version 5.4 

(Drummond et al., 2011). Sequence identity between each pair of sequences was measured. The heatmap was generated using Geneious Pro™ software version 5.4 

(Drummond et al., 2011) as a two-dimensional graphical representation of the values of the pairwise distance matrix.  
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6.4.3. Seasonal variability of HMPV lineages and sublineages 
 
The two major genetic lineages, A and B, co-circulated among the cohort of paediatric 

patients each epidemiological year, which was defined as May 1st to April 30th of the 

following year. Lineage A remained dominant throughout the study period with 61.1% 

(22/36) of all strains circulating within the cohort belonging to this lineage. Lineage A 

predominated in 2004/2005 and 2005/2006 whilst circulation of lineage B remained 

constant but an increase in circulation of lineage B during epidemiologic year 2007/2008 

arose following a decline in lineage A (Figure 6.5). A switch in predominance occurred again 

in 2008/2009 with the increase in circulation of lineage A.  

 

The distribution of the genetic sublineages A2a, A2b, B1, and B2 varied each respiratory 

season (Figure 6.6). Sublineage A2a established dominance throughout the three-year 

period with 14/36 (38.9%) strains circulating within the cohort belonging to this sublineage 

followed by sublineages B2 (n= 11; 30.6%), A2b (n= 8; 22.2%) and finally B1 (n= 3; 8.3%) 

(Figure 6.6). There was a shift in dominance from sublineage A2a in 2004/2005 to A2b in 

2005/2006 following a decline in circulation of sublineage A2a and a corresponding surge in 

circulation of sublineage A2b. Both sublineage B1 and B2 circulated among the paediatric 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5. Distribution of the two distinct genetic lineages of human metapneumovirus, A and B, 

circulating among a cohort of paediatric patients within the locality of Norwich each 

epidemiological year.  

The partitioning of lineages, A and B, is based on phylogenetic analysis of partial fusion gene 

sequences.  
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cohort in 2004/2005 and 2005/2006 but sublineage B1 disappeared entirely from circulation 

in subsequent epidemic years with a corresponding increase in circulation of sublineage B2. 

A further transferral of dominance to sublineage B2 was observed in 2006/2007, which 

continued in 2007/2008. Sublineage B2 was superseded by sublineage A2b in 2008/2009 as 

the dominant circulating sublineage (Figure 6.6).  

 

HMPV sublineage A2a emerged as the primary cause of HMPV infection in January 2005. A 

surge in circulation of sublineage A2a was observed within the cohort during March 2005 

(Figure 6.7). Sublineage A2a receded in April 2005 but continued to circulate within the 

cohort during February and March 2006 albeit at a much reduced level and emerged again 

for a final appearance in December 2006 before disappearing entirely until December 2008 

(Figure 6.7). Sublineage A2b emerged in February 2006 with a peak in circulation in April 

2006, which represented a potential second outbreak of HMPV infection. This lineage 

disappeared from circulation until a fleeting appearance in January 2008 (Figure 6.7). 

Sublineage B1 and B2 continued to circulate at a low level with sublineage A2a and A2b 

throughout the winter-spring seasons 2004/2005 and 2005/2006, respectively but a switch 

to sublineage B2 dominance arose, which appeared to correspond with disappearance of 

sublineage A2 from circulation. The last episode of HMPV infection associated with 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6. Phylogenetic evolution of human metapneumovirus among a cohort of paediatric 

patients within the locality of Norwich by epidemiological year.  

The repartition of human metapneumovirus between genetic sublineages A2, B1, and B2 is 

displayed for each epidemiologic year. The partitioning of sublineages, A2, B1, and B2, is based on 

phylogenetic analysis of partial fusion gene sequences. 
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sublineage B2 occurred in October 2008 and was followed by a surge in circulation of 

sublineage A2 in December 2008 (Figure 6.7). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Interestingly, the majority of HMPV strains within sublineage A2a circulating among the 

cohort within the locality of Norwich were clustered tightly together and were generally 

distinct from most other strains within this sublineage (Figure 6.8). A one-way ANOVA was 

undertaken to test the hypothesis that the majority of HMPV strains within sublineage A2a 

circulating within the locality of Norwich represented a distinct subcluster. 

 

 

 

 
 

 SS df MS F 
Significance of ratio 

p value 

Between Groups 628.6975 2 314.3488 5.736949 0.006 

Within Groups 2246.542 41 54.79372   

Total 2875.24 43    
 

 

 

 

 

 

 

 

 

 

 

 

Table 6.6. A one-way ANOVA was undertaken to test the hypothesis that the majority of HMPV 

strains within sublineage A2a circulating within the locality of Norwich represented a distinct 

subcluster. A p value of <0.05 was considered statistically significant. 

 

 

 

 

 

 

Abbreviations: SS, Sum of Squares; df, degrees of freedom; MS, Mean Square; F; ratio of the mean 

squares. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7. The repartition of human metapneumovirus between sublineages A2, B1, and B2 

among a cohort of paediatric patients within the locality of Norwich is displayed each month 

during the three-year period investigated. The partitioning of sublineages, A2, B1, and B2, is based 

on phylogenetic analysis of partial fusion gene sequences. 
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The one-way, between-subjects analysis of variance revealed that HMPV strains clustered 

within sublineage A2a circulating within the locality of Norwich represent a distinct 

subcluster (Table 6.6). Consequently, it appears that a novel strain or closely related strains 

within sublineage A2a caused a large outbreak within the paediatric cohort in 2005 and 

continued to contribute to smaller outbreaks in subsequent years. 

 
Comparison of HMPV strains circulating amongst the paediatric cohort with strains within 

the NCBI public database also reveals the longevity and wide geographical distribution of 

several strains belonging to sublineages A2b (Figure 6.2), B1 and B2 (Figure 6.3) circulating 

within the locality of Norwich.   
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Figure 6.8. Phylogenetic trees of nucleotide sequences of the glycoprotein gene and fusion gene of human metapneumovirus showing the genetic lineages and 

sublineages of the virus. 

The phylogenetic trees were constructed in Geneious Pro™ software version 5.4 (Drummond et al., 2011) using the neighbour-joining method with 1000 bootstrap 

replicates from partial glycoprotein and fusion gene sequences available from the National Center for Biotechnology Information database and sequences identified 

within the present study during 2005, 2006, 2007, and 2008 (
 
). The outbreak of human metapneumovirus within the paediatric cohort is clearly visible within the 

phlyogenetic tree of partial nucleotide sequences of the gycoprotein gene and fusion gene. Abbreviations: AMPV-C, avian metapneumovirus. 
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6.5. Discussion 
 
The present study provides support to existing phylogenetic analysis conducted within the 

highly variable G gene (Ludewick et al., 2005; van den Hoogen et al., 2004b) and conserved 

regions of the HMPV genome including the N (Gerna et al., 2005; Huck et al., 2006), P 

(Mackay et al., 2004), and F genes (Galiano et al., 2006; Gerna et al., 2005; Huck et al., 2006; 

Ludewick et al., 2005; Oliveira et al., 2009) for the years 2005 to 2008. Epidemiologic 

surveillance and molecular biology are slowly revealing the complex and dynamic 

epidemiology (Kahn, 2006) of this ubiquitous respiratory pathogen. Global co-circulation of 

genetic sublineages, A1, A2, B1, and B2, within a single year is not unusual (Aberle et al., 

2010; Carr et al., 2008; Gerna et al., 2005; Huck et al., 2006; Mackay et al. 2006; Sloots et al., 

2006). Both major genetic lineages, A and B, co-circulated among the cohort within the 

locality of Norwich but sublineages, A1, A2, B1, and B2 failed to continue the trend 

established by the parental lineages. Nevertheless, multiple sublineages circulated within 

the cohort each epidemiologic year. Many of the strains circulating among the paediatric 

cohort were clustered within the subclusters, A2a and A2b, within sublineage A2 (Huck et al., 

2006). Recently, Carr et al., (2008) described two new genetic subclusters within sublineage 

B2, referred to as B2a and B2b. There has been limited acknowledgement of the further 

bipartition of sublineage B2 in contrast to sublineage A2. However, two subclusters within 

sublineage B2 are clearly discernible within the phylogenetic tree of partial nucleotide 

sequences of the G gene (Figure 6.8).  

 
The absence of sublineage A1 within the present cohort is echoed within studies conducted 

in years 2006 to 2010 (Agrawal et al., 2011; Arnott et al., 2011b; Carr et al., 2008; Banerjee 

et al., 2011; Gaunt et al., 2009; Lamson et al., 2012; Li et al., 2012; Mizuta et al., 2010). 

However, sublineage A1 circulated widely within the human population between 1982 and 

2005 (Aberle et al., 2010; Hopkins et al., 2008; Gerna et al., 2005; Mackay et al. 2006; Wang 

et al., 2008; Williams et al., 2006b) and dominated the circulation hierarchy in most studies 

conducted in years 2000, 2001, and 2002 (Aberle et al., 2010; Gerna et al., 2005; Legrand et 

al., 2011; Ludewick et al., 2005; Mackay et al. 2006; Sloots et al., 2006), a finding that 

suggests that specific strains may co-exist across geographic areas in a given epidemic 

(Ludewick et al., 2005). Whilst sublineage A1 was displaced from predominance by the 

emergence of sublineage B1 in the Southern Hemisphere (Ludewick et al., 2005; Mackay et 

al. 2006; Sloots et al., 2006) parallel studies in the Northern Hemisphere report differences 

in the predominant circulating subtype (Aberle et al., 2010; Gerna et al., 2005). It is unclear 

whether the predominance of sublineage B1 within the Southern Hemisphere was a 
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coincidental finding or a spatial and temporal anomaly. Certainly, geographic and temporal 

distinction is associated with HRSV (Choi and Lee, 2000). Discrimination of potential trends 

confounded by conflicting nomenclature (Hopkins et al., 2008) and inconsistent classification 

of genetic lineages, which conceals the genetic variability exhibited by the virus (Huck et al., 

2006). Furthermore, limited studies present detailed extended longitudinal evidence of the 

molecular epidemiology of this virus (Aberle et al., 2010) and although studies invariably 

overlap gaps remain between studies conducted over different time scales (Agrawal et al., 

2011; Carr et al., 2008; Gerna et al., 2005; Huck et al., 2006; Ludewick et al., 2005; Oliveira et 

al., 2009; Pitoiset et al., 2010; Pizzorno et al., 2010; Sloots et al., 2006; Wang et al., 2008). 

Furthermore, the majority of the studies were conducted in the Northern Hemisphere and 

few data exist from extended studies over several years that involve populations in other 

parts of the world (Oliveira et al., 2009). 

 
Although, the present study was restricted to a single geographical region it was possible to 

determine some parallel changes within the UK and Ireland. Carr et al., (2008) evaluated the 

genetic diversity of HMPV circulating within hospitalised children <5 years presenting with 

respiratory tract infection in Dublin, Ireland between March and May 2006 and November 

and February 2007, which revealed sublineages A2 and B2 circulating within the population. 

Sublineage A2b dominated in 2005/2006 while B2 dominated in 2006/2007 akin to the 

present study. In another study, Gaunt et al., (2009) screened respiratory samples collected 

between 1 July 2006 and 30 June 3008. Sublineage A2b predominated in 2006/2007 in 

contrast to the circulation pattern observed in Dublin and Norwich. However, a switch to 

sublineage B2 dominance in 2007/2008 united the circulation patterns observed within 

England, Ireland, and Scotland suggesting that other factors influence HMPV circulation. In 

fact, Gaunt et al., (2009) included respiratory samples collected from all age groups within 

hospital and primary care settings, which suggests that HMPV circulation within distinct 

communities may be highly variable like HRSV (Arnott et al., 2011a) but also that similar 

strains cycle through adjacent geographic areas (Larcher et al., 2008). Nevertheless, 

evidence for the longevity and wide geographical distribution of HMPV lineages and 

sublineages (Gaunt et al., 2009) is provided by strains circulating within the paediatric 

cohort, which resemble strains circulating globally. Sublineage A2b strains resembled strains 

circulating in India (Agrawal et al., 2011) and Uruguay (Pizzorno et al., 2010) whilst B1 and B2 

strains were similar to strains circulating in Japan (Ishiguro et al., 2004) and China (Liu et al., 

2010), Taiwan (Huang et al. 2010), and Canada (Biacchesi et al., 2003), respectively. The 

identification of very similar strains present simultaneously in widely geographical regions is 
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described for HRSV, suggesting that outbreak strains may spread globally (Peret et al., 1998). 

It is plausible that HMPV strains from different geographical regions  can be introduced into 

a community, but then local factors, such as population patterns of strain-specific immunity, 

determine which of these strains circulate efficiently and become 'outbreak strains' as is 

suspected to occur with respect to HRSV (Peret et al., 1998). 

 
The displacement of the predominant circulating sublineage in successive epidemics is a 

habitual finding (Chung et al., 2008; Gaunt et al., 2009; Huck et al., 2006; Mackay et al. 2006; 

Pitoiset et al., 2010) but is not universal to all studies including the present one (Galiano et 

al., 2006; Sloots et al., 2006). Aberle et al., (2010), demonstrated this episodic change in 

predominant circulating sublineage most succinctly during a 21-year period. Within this 

study, one sublineage predominated each year, but was displaced by another sublineage 

every 1 to 3 years (Aberle et al., 2010). Many human infecting viruses undergo a turnover 

and replacement of predominant lineages with emergent strains (Gaunt et al., 2011). 

Indeed, consistent shifts in the predominant genotype or subtype over successive epidemics 

is a phenomenon exhibited by HRSV, which confers a significant advantage to the virus since 

the 'novel' virus is better able to evade previously induced immunity in the population and 

consequently either circulates more efficiently or is more pathogenic (Cane et al., 1994; 

Peret et al., 1998; Seki et al., 2001). Similarly, it is hypothesised that switching of the 

predominant circulating HMPV lineage is brought about by short-lived lineage-specific herd 

immunity in a population generated over one or two seasons, which favours dissemination 

of the alternate lineage in a subsequent season (Gaunt et al., 2011).  

 
Two distinct serotypes corresponding to the two major genetic lineages of HMPV, A and B, 

were defined on the basis of sequence diversity between attachment protein genes and 

differences between homologous and heterologous virus neutralisation titres in sera 

obtained from ferrets infected with HMPV belonging to different genetic sublineages (van 

den Hoogen et al., 2004b). Higher virus neutralisation titres were demonstrated against 

homologous virus than heterologous virus within the neutralisation assays (van den Hoogen 

et al., 2004b). Likewise, cross-challenge experiments aimed at inducing antibodies against 

the conserved HMPV F protein in animal models revealed that primary infection with either 

of the two main genetic lineages of HMPV induced protective immunity against subsequent 

challenge with homologous or heterologous virus (MacPhail et al., 2004; Skiadopoulos et al., 

2004; van den Hoogen et al., 2007). Together these experimental studies demonstrate that 

the F protein is a major antigenic determinant that mediates extensive cross-lineage 
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neutralisation and protection (Skiadopoulos et al., 2004). Conversely the glycoproteins G and 

SH play minor or insignificant roles in stimulating neutralisation and protection (Biacchesi et 

al., 2005). It is postulated that antigenic variability of the G gene may play an important role 

in the ability of this virus to escape the pre-existing immune response (Kahn, 2006) and a 

selective advantage for heterologous virus during subsequent epidemics, even in the 

presence of the broadly cross-reactive anti-F humoral immunity in the population (Schildgen 

et al., 2011). Genetic variability is a strong indicator of positive selection and affects the 

ability of a virus to continue circulating in a population (Ludewick et al., 2005). The HMPV G 

gene is highly variable, particularly in the extracellular domain, because of nucleotide 

substitutions, insertions, and the use of alternative termination transcription codons 

(Ludewick et al., 2005). In a recent study, positively selected sites found for the G protein 

were located in the extracellular domain and corresponded to potential O-linked 

glycosylated sites (de Graaf et al., 2008). It is known that simian immunodeficiency virus 

(SIV), HIV, influenza virus, HCV, Ebola virus, and porcine reproductive and respiratory 

syndrome virus (PRRSV) rely on glycosylation modification of envelope proteins to evade the 

host immune response (Vu et al., 2011). Evidence suggests that HMPV may too utilise this 

mechanism to shelter the virus from immunologic recognition (Bastien et al., 2004), which 

may explain the transient nature of the anti-G antibody response (Endo et al., 2008) and the 

high rate of re-infection observed in all age groups throughout life, which facilitates frequent 

outbreaks of infection in vulnerable populations including children, the 

immunocompromised, and the elderly (Boivin et al., 2007; Døllner et al., 2004; Heikkinen et 

al., 2008; Honda et al., 2006; Kim et al., 2009; Liao et al., 2011; Louie et al., 2007; Omura et 

al., 2011; Osbourn et al., 2009; Pabbaraju et al., 2007) despite high seroprevalence rates 

(Lüsebrink et al., 2010). Furthermore, inhibition of IFN signalling may help explain why long-

term protective immunity is not seen with HMPV infection (Dinwiddie and Harrod, 2008). 

Proper signalling by IFN-α and IFN-γ is vital for clearance of viral pathogens because of their 

immunoregulatory functions that affect both innate and adaptive immunity (Dinwiddie and 

Harrod, 2008). Thus, inhibition of IFN signalling by HMPV may alter the host’s ability to 

develop proper adaptive immunity leaving the host susceptible to re-infection (Dinwiddie 

and Harrod, 2008). Ultimately, further detailed extended longitudinal studies of the 

molecular epidemiology of this virus are required that extend to all parts of the world in 

order to gain a better understanding of the genetic heterogeneity of circulating HMPV 

lineages. This will allow the further resolution of the HMPV G protein including identification 

of other sites under positive selection, which perhaps contribute to the observed differential 

disease severity caused by different HMPV lineages. Certainly, the recent identification of 
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two epitopes within the central conserved region of the HRSV G protein ectodomain showed 

that the region between amino acids 149 and 177 played no role in virus infectivity. It is 

predicted that the loss of these residues may therefore reduce virus immunogenicity while 

having no effect on virus infectivity. These observations together with previous reports of 

premature stop codons and frame shifts within the G protein of HRSV subgroup B suggest 

that this subgroup may use quite different mechanisms to evade host immune responses 

(Gaunt et al., 2011). It seems that the differential location of positive selected sites within 

the HMPV G protein of different HMPV lineages may also occur in keeping with the 

observations made of HRSV (Gaunt et al., 2011).  

 
Phylogenetic data from Edinburgh indicates re-circulation of strains over at least 8 years 

(Gaunt et al., 2009). It is postulated that strains may circulate within a community during an 

epidemic season, migrate to evade induced immunity and return when transient anti-

glycoprotein immunity has waned (Gaunt et al., 2009). Similarly, circulation of sublineage 

A2a waned and eventually disappeared in 2006/2007 after an outbreak of HMPV infection 

within the paediatric cohort during epidemiologic year 2004/2005 only to reappear in 

epidemiologic year 2008/2009. Unfortunately, the re-emergence of sublineage A2a 

corresponded with end of the study period so it was not possible to determine whether 

sublineage A2a became dominant once more although sublineage A2a predominated in 

other regions in the Northern Hemisphere during the 2009/2010 winter-spring season 

including the United States (Lamson et al., 2012) and South Korea (Kim et al., 2012). 

Interestingly, recent evidence suggests that sustained circulation of contemporary HMPV 

lineages for decades and the global dissemination of the virus demonstrate that switching of 

the predominant genetic group did not arise through the emergence of novel lineages each 

respiratory season, but through the fluctuating circulation frequencies of pre-existing 

lineages, which undergo proliferative and eclipse phases. Proliferation occurs when the 

lineage is of minimal susceptibility to the adaptive immune responses of the host population, 

and a regression in circulating frequency occurs as the host population is increasingly 

exposed. During the eclipse phase, the virus evolves immune evasive characteristics, which 

when accumulated sufficiently permit a new phase of widespread circulation (Gaunt et al., 

2011). 

 
Phylogenetic analysis of partial G gene sequences revealed a unique strain or closely related 

strains within sublineage A2a circulating within the locality of Norwich, which was 

responsible for a large outbreak of infection within the paediatric cohort in epidemiologic 
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year 2004/2005. Phylogenetic analysis of F gene sequences also revealed this distinct 

subcluster within sublineage A2a although it is clustered with other strains, which suggests 

closer similarities to other strains than apparent from analysis of the G gene sequences. This 

might be a reflection of the genetic variability of the G gene or increased utilisation of the F 

gene for molecular surveillance because of difficulties in amplifying regions within the G 

gene (Arnott et al., 2011b; Pizzorno et al., 2010; van den Hoogen et al., 2004b). Boivin et al., 

(2004) highlighted that primer design for the G gene selected from the sequence of the 

prototype strain for lineage A1, NL/1/00 (GenBank accession no. AF371337) might not be 

optimal for successful amplification of strains belonging to lineage B. The primer pair 

selected for detection of the G gene ORF within this study was designed from NL/1/00 

(Ludewick et al., 2005) providing a possible explanation for failure to successfully amplify the 

target sequence from 5 NPA samples, which were identified as belonging to lineage B by 

phylogenetic analysis of F gene sequences.  

 
 



 

183 | P a g e  

CHAPTER SEVEN 
 _____________________________________________________________________ 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

184 | P a g e  

7.  Concluding remarks and  future research needs  

_____________________________________________________________________ 
 
It has been 10 years since HMPV was identified as a causative agent of respiratory illness in 

humans (Schildgen et al., 2011). The anniversary was marked by the publication of two 

review articles celebrating the achievements in the understanding of this novel respiratory 

virus over the past decade (Schildgen et al., 2011; Feuillet et al., 2011). The discovery of 

HMPV has influenced many of the developments in the diagnosis of respiratory virus 

infection. The inability to diagnose HMPV infection by traditional diagnostic methods 

compelled many diagnostic laboratories to reconsider the clinical utility of existing diagnostic 

tests and offered an opportunity to promote the need for new technology and scientific 

tools (Chapter 3). Nucleic acid amplification techniques soon became the method of choice 

for HMPV detection owing to the resolution of intrinsic limitations associated with 

traditional methods and were introduced increasingly within the diagnostic setting reflecting 

the clinical demand for routine HMPV testing (Hopkins et al., 2008).  

 
This work commenced soon after the discovery of HMPV with the development of an 

internally controlled one-step real-time RT-PCR assay for the diagnosis of HMPV infection, 

which signalled the start of the expansion of the clinical virology diagnostic service within 

the Microbiology Department (Chapter 3). Ultimately, the requirements of the clinical 

virology diagnostic service have served to shape as well as limit the scope of research 

undertaken. Nevertheless, work presented here reiterates the contribution of HMPV to the 

burden of respiratory disease within the paediatric population, which accounted for 4.6% of 

acute respiratory infections previously not attributed to known respiratory pathogens in 

hospitalised children during the 3 year period investigated (Chapter 4). Moreover, the 

prevalence of the virus across categories of age and gender and the seasonal and annual 

distribution pattern of HMPV in contrast to other well-established respiratory viruses were 

in agreement with previous studies, which offered clarification of the epidemiological 

characteristics of the virus amongst this population within the UK as well as the rest of the 

world (Chapter 4). These findings provided justification for the implementation of routine 

HMPV testing, which has facilitated public health surveillance and supported patient 

management and the prevention and control of infection within the hospital setting.  

 
The introduction of newer multiplexed methodologies, which permit the simultaneous 

detection and identification of multiple infectious agents in acute-phase respiratory 

specimens (Brunstein et al., 2008) has further revolutionised the diagnosis of respiratory 
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virus infections within the routine diagnostic setting (Chapter 5). Retrospective evaluations 

of newer multiplexed methodologies including the xTAG® RVP test and a panel of 3 in-house 

multiplex real-time RT-PCR assays revealed that the existing combination of virus culture, 

DFA and NOW® RSV Test failed to diagnose approximately 50% of respiratory infections 

attributed to new and well-established respiratory viruses (Chapter 5). This startling 

revelation further supported the change to sensitive molecular systems for the diagnosis of 

respiratory virus infections. The evaluation also revealed that multiple infections are 

frequent and provided further evidence for complex interactions between different 

infectious agents (Brunstein et al., 2008) (Chapter 5). No associations were observed 

between HMPV and other respiratory viruses within this study, which reiterates that the 

majority of HMPV infections are not associated with other viruses (Schildgen et al., 2011) 

(Chapter 4). However, significant negative associations were identified between other 

respiratory viruses convincingly demonstrated in previous studies (Chapter 5), which in light 

of the restricted sample size investigated provides further import to the idea that 

associations do not occur by chance (Greer et al., 2009). Interest in polyviral infections is an 

emergent area within the discipline of virology aided by the introduction of newer multiplex 

molecular methods. Whilst few studies have acknowledged specific patterns between 

viruses as something more than a simple overlap of epidemic seasons there is growing 

evidence for complex interactions between viruses present in co-detections. The work 

presented here offers a significant and important contribution to limited studies conducted 

hitherto through substantiation of newly recognised associations between viruses present in 

co-detections. Certainly, the suggestion that HRV infection can act an inadvertent natural 

moderator of other viral infections (Greer et al., 2009) may in this new role, re-write our 

understanding of commensal flora and viral respiratory infections (Chapter 5). Nevertheless, 

interpreting the mechanisms underlying these observations of virus interference is complex 

(Wisdom et al., 2009). It is not easy to determine whether such co-infections are sequential 

or simultaneous viral infections (Söderlund-Venermo et al., 2009), and if sequential, what is 

the order of acquisition of these infections (Wisdom et al., 2009). This unknown factor may 

significantly contribute to the outcome of polyviral interactions (Wisdom et al., 2009) and 

elucidate differences between studies in relation to the clinical severity of HMPV infection. 

Moreover, this missing link may offer insight for the disparity in the association between 

HMPV and HRV observed here in contrast to an earlier study (Greer et al., 2009). As a novel 

area of investigation, further studies are required to clarify the nature of the interaction 

between these viruses, which may have important future implications since HRV acquisition 

may reduce the risk of HMPV infection and thus, indirectly, the spread of the virus. Future 
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studies should aim to illuminate the role of HRV in viral interference whilst no prophylaxis or 

vaccine exists against either HMPV or HRV, which may alter the interaction between this 

virus pair before we can fully decipher it. 

 
Even fewer studies have considered the importance of bacterial co-infection in HMPV-

associated RTI. While a direct interaction between S. pneumoniae and HMPV infection is 

suggested evidence is thus so far lacking to form a complete picture of the relationship 

between HMPV and other bacteria habitually implicated in mixed viral-bacterial respiratory 

infections despite the well documented importance of respiratory viruses in facilitating 

secondary bacterial infections. HMPV was identified more commonly with one or more 

concomitant respiratory bacteria than as a sole respiratory pathogen or in combination with 

other viruses within the present study (Chapter 4). These results suggest the direct 

involvement of HMPV in the development of bacterial-viral co-infections and reiterate that 

the pathogenesis of HMPV-associated acute respiratory infection frequently involves 

bacterial co-infection (Madhi et al., 2006). Both H. influenzae and S. pneumoniae were found 

frequently with HMPV in NPA samples, either as a solitary companion to HMPV or in 

combination with other bacterial pathogens. However, only H. Influenzae was significantly 

associated with HMPV infection (Chapter 4). While previous studies have implicated HMPV 

in the pathogenesis of pneumococcal pneumonia, no direct correlation was evident between 

S. pneumoniae and HMPV in the present study. Instead, a positive correlation with the 

presence of H. influenzae and HMPV was found. These unique findings may reflect complex 

changes in the epidemiology of S. pneumoniae since the introduction of the PCV7 in the 

England and Wales. Current evidence suggests that exposure to S. pneumoniae can influence 

susceptibility to HMPV infections (Madhi et al., 2006; Verkaik et al., 2011) (Chapter 4). 

However, in vivo studies were conducted in populations where vaccines to control S. 

pneumoniae were not currently part of the immunisation programme (Verkaik et al., 2011) 

or in use in a specific population (Madhi et al., 2006) while in vitro studies do not take into 

consideration complex microbial community interactions (Kukavica-Ibrulj et al., 2009; 

Verkaik et al., 2011) (Chapter 4). These findings serve to reiterate that the prevalence of 

pathogens within the human population is changing, and often to an extreme degree, as a 

direct effect of medical practices and lifestyle changes (Blaser and Falkow, 2009). While the 

impact of some of these changes is now appreciated, it is plausible that the correlation 

between HMPV and H. influenzae represents a previously unreported repercussion of the 

use of this vaccine to control S. pneumoniae infection in children (Chapter 4). A 

comprehensive investigation is required in order to determine the full extent to which these 
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changes have influenced the relationship between S. pneumoniae and other commensal 

flora of the respiratory tract that interact with respiratory viruses. Moreover, consideration 

of potential changes within the microbial communities of other age groups is currently 

lacking despite the finding that herd immunity to pneumococcal vaccine serotypes has been 

induced in the UK population as an indirect effect of infant PCV7 immunisation (Gladstone et 

al., 2011) with decreases in all vaccine serotypes in all age groups (Miller et al., 2011). 

Hence, it would be interesting to determine whether the positive association between 

HMPV and H. influenzae is observed in other age groups. The ability to characterise 

accurately bacterial communities may be crucial if pathogenesis is related to changes in 

community composition (Rogers et al., 2009). It would seem imprudent to ignore the effect 

that social and medical progress is having on the composition of the human microbiota, as it 

seems that there may be a price to pay for the lack of appreciation of these changes. A 

greater understanding of the characteristics of a host’s genome and microbiota, and their 

interactions, will lead to individualised approaches to the prevention and treatment of 

specific diseases (Blaser and Falkow, 2009). It is hoped that the work presented here will 

make a valuable contribution to the understanding of HMPV and particularly in relation to 

the role of vaccination on relationships between respiratory viruses and common bacterial 

pathogens and that the points raised will open discussion on the implications of vaccination 

on mixed viral-bacterial respiratory infections.  

 
The human microbiome, in general, is assumed beneficial to the host due to stimulation and 

maturation of immune systems, promotion of mucosal structure and function and providing 

actual ‘colonisation resistance’ against pathogen invasion (Bogaert et al., 2011). However, by 

creating an imbalance in the composition of microbiota does vaccination alter the 

stimulation and maturation of the immune system and so increase the ability of a virus to 

create a niche for other pathogenic organisms to colonise? This paradigm may offer a new 

outlook to explain the variability in the severity of disease observed with HMPV. Obviously, 

answers to these questions are beyond the scope of the present study but it is clear that 

there is much to understand in relation to this virus and the discovery of previously unknown 

relationships suggests that a major re-appraisal is required of the role of viral and bacterial 

pathogens in the development of respiratory infection. Such is the importance of this work 

that ideally studies would be collaborative and conducted at a global level. Future studies 

should examine a much larger data set of respiratory specimens for multiple pathogens to 

enable a more thorough interpretation of the results presented here. It is imperative that 

diagnostic methods start to generate a complete picture of infection rather than as we have 
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presently a rather incomplete and possibly distorted one (Rogers et al., 2009). Newer 

multiplexed methods will allow direct comparisons of the prevalence of multiple respiratory 

pathogens, which in parallel with clinical data from case-controlled studies should further 

illuminate the clinical significance of these interactions. Perhaps future projects centred on 

the human microbiome might consider characterisation of viruses relative to microbial 

communities within the human nasopharyx, which would offer a universal view of the 

dynamic relationships between bacteria and viruses.  

 
Chronic bacterial infections of the lower airways and specifically those that occur in cystic 

fibrosis patients represent an ideal model system for investigating the processes that are 

involved in the development and dynamics of polymicrobial infections (Rogers et al., 2009) 

while the naive lung of young children is offering the opportunity to observe the evolution of 

resident microbiota before exposure to influences that lead to the imbalance in its 

composition (Bogaert et al., 2011). Consideration must also be given to genetic factors that 

have the potential to influence our susceptibility to the nasopharyngeal microbiota as well as 

viruses such as polymorphisms in the structural and promoter sequences of the mannose-

binding lectin (MBL) gene, which affect the assembly of this complex molecule and interfere 

with its complement activating function (Eisen, 2010). Ultimately, the ability to characterise 

accurately the cause of infection is fundamental to effective treatment. Molecular 

approaches that assess the content of clinical samples promise to change dramatically the 

types of data that are obtained routinely from clinical samples. In addition to the technical 

advance that these methodologies offer, a conceptual advance in the way that we reflect on 

the information generated is also required. Through the development of both of these 

advances, our understanding of infection, as well as the ways in which infections can be 

treated, may be improved (Rogers et al., 2009).  

 
Phylogenetic analysis approaches are helping to improve our understanding of the nature of 

HMPV respiratory infections. Within the present study, phylogenetic analysis of sequences 

within the highly variable G gene and conserved F gene was conducted in order to determine 

the relative genetic variability of all known HMPV lineages circulating within the paediatric 

cohort within the locality of Norwich (Chapter 6). Unfortunately, the present study was only 

conducted over a 3-year period, which provided limited opportunity to discern the molecular 

epidemiology of the virus. However, in combination with other studies it seems a pattern is 

emerging of the circulation frequencies of the two distinct genetic lineages of HMPV despite 

the paucity of longitudinal studies. It is clear that many aspects of the molecular 
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epidemiology of HMPV and HRSV exist in parallel. Indeed, these ubiquitous respiratory 

viruses are counterparts in many ways and the analogies between these viruses have 

provided a greater understanding of HMPV. In agreement with other studies conducted to 

investigate the molecular epidemiology of HMPV, the findings presented in this study 

suggest that HMPV exhibits local and global circulation of both genetic lineages akin to HRSV 

with switching of the predominant circulating sublineage every 1 to 3 years (Chapter 6). 

Additionally, the data suggests that a unique strain circulated within the paediatric cohort 

within the locality of Norwich, which suggests local factors influence HMPV circulation 

although these are yet to be determined but may include population patterns of strain-

specific immunity. Future extended longitudinal studies conducted in worldwide 

collaboration are required to determine the long-term and spatial circulation trends of 

predominant virus lineages. Such studies will be essential to the understanding of 

differences in clinical severity between the two major genetic lineages, A and B. 

Investigations should include the causative aetiology of respiratory infection inclusive of viral 

and bacterial pathogens using consistent methodologies and ideally based on sensitive 

molecular methodologies in order to determine the full infection picture, which may also 

influence disease severity. 

 
The last decade has witnessed a major contribution toward the understanding of HMPV but 

much remains to be discovered. The molecular epidemiology of the virus and the 

consequent persistent evasion of a sustained immune response remains the biggest 

conundrum. Certainly, the implications of the circulation of two serotypes of HMPV have 

raised uncertainty regarding the viability of an effective vaccine since early in the discovery 

of the virus (van den Hoogen et al., 2004b). For HRSV, the importance of difference in 

antigenicity between the two subgroups regarding protective immunity and vaccine 

development is still a subject of discussion, which provides an indication of the difficulties 

yet to come in the production of a vaccine for HMPV. Perhaps those waiting for a safe and 

effective HRSV vaccine may question the validity of vaccine development for HMPV when 

there is still no effective vaccine for HRSV. However, the importance of HMPV and HRSV in 

the development of severe infections in the immunocompromised, very young, and frail 

elderly hosts emphasises the need for effective vaccines, particularly within the developing 

world, where supportive therapy is not available (Lindell et al., 2011).  
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APPENDIX I I :  Culture media,  nutr it ion al supplements,  antibiotics,    
miscellaneous buffers and solutions  

_____________________________________________________________________ 
 
Phosphate Buffered Saline (Dulbecco `A’ Tablets) 

Phosphate buffered saline (PBS) was prepared by dissolving 10 tablets (Oxoid Ltd, 

Hampshire, UK) in 1 litre of double distilled water. The buffer was sterilised by autoclaving at 

1150C for 10 minutes at a pressure of 1.1 bar (15 Ib/in2 or 15 psi) and stored at room 

temperature (15oC to 25oC). 

 

4 M Sodium Hydroxide (NaOH) 

A 4 M NaOH solution was prepared by adding 160 g NaOH (Sigma-Aldrich, Dorset, UK) to 1 

litre of double distilled water. 

  

10X Tris-Borate-EDTA (TBE) buffer 

To prepare a 10X TBE solution, the contents of 1 package of 10X crystalline TBE (Ambion®, 

Warrington, UK) was combined with 1 L of double distilled water until completely dissolved.  

 

1X Tris-Borate-EDTA (TBE) buffer 

To prepare a 1X working solution containing 89 mM Tris, 89 mM Borate, and 2 mM EDTA, 

100 ml of 10X TBE solution was diluted with 1 L of double distilled water.  

 

10% Glucose 

A 10% glucose solution was prepared by adding 10 g of anhydrous D(+)-glucose (VWR 

International Ltd,  Dublin, Ireland) to 100 ml of double distilled water. The solution was filter 

sterilised through a 0.22 µm sterile 33 mm Millex-GP filter unit (Millipore, Watford, UK) and 

stored at 2oC to 8oC in 10 ml aliquots.  

 

1 M calcium chloride (CaCl2) 

A 1 M calcium chloride solution of calcium chloride (CaCl2) was prepared by adding 14.701 g 

of CaCl2 (Sigma-Aldrich, Dorset, UK) to 100 ml of double distilled water. The solution was 

filter sterilised through a 0.22 µm sterile 33 mm Millex-GP filter unit (Millipore, Watford, UK) 

and stored at 2oC to 8oC in 10 ml aliquots.  
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Thiamine hydrochloride (10 mg/ml)  

A 10 mg/ml solution of thiamine hydrochloride was prepared by adding 10 g of thiamine 

hydrochloride (Sigma-Aldrich, Dorset, UK) to 1 L of double distilled water. The solution was 

filter sterilised through a 0.22 µm sterile 33 mm Millex-GP filter unit (Millipore, Watford, UK) 

and stored at 2oC to 8oC in 10 ml aliquots wrapped in foil to protect from light.  

 

Kanamycin solution (25 mg/ml) 

A 25 mg/ml stock solution of kanamycin was prepared by adding 2.5 g of kanamycin 

sulphate (Sigma-Aldrich, Dorset, UK) to 100 ml of double distilled water. The solution was 

filter sterilised through a 0.22 µm sterile 33 mm Millex-GP filter unit (Millipore, Watford, UK) 

and stored at -20oC in 5 ml aliquots.  

 

Broth Medium #271 

Broth medium #271 was prepared by dissolving 10 g of tryptone powder (Oxoid Ltd, 

Hampshire, UK), 1.0 g of yeast extract powder (Oxoid Ltd, Hampshire, UK), 8.0 g of sodium 

chloride (NaCl) (VWR International Ltd, Dublin, Ireland) in 1 litre of double distilled water. 

Once combined the medium was autoclaved at 1210C for 15-20 minutes at a pressure of 1.1 

bar (15 lb/in2 or 15 psi). The medium was cooled to approximately 500C before aseptically 

adding 10 ml of 10% glucose, 2.0 ml of 1M CaCl2 and 1.0 ml of 10 mg/ml thiamine 

hydrochloride. The medium was stored at 2oC to 8oC for not more than 1 month prior to use. 

 

Solid Agar Underlay  

Solid agar was prepared by dissolving 10 g of tryptone powder (Oxoid Ltd, Hampshire, UK), 

1.0 g of yeast extract powder (Oxoid Ltd, Hampshire, UK), 8.0 g of NaCl (VWR International 

Ltd, UK), and 15 g of Agar Bacteriological (Agar No 1.) (Oxoid Ltd, Hampshire, UK) in 1 litre of 

distilled water. Once combined the medium was autoclaved at 1210C for 15-20 minutes at a 

pressure of 1.1 bar (15 ib/in2 or 15 psi). The molten agar was cooled to approximately 500C 

before aseptically adding 10 ml of 10% glucose, 2ml of 1M CaCl2 and, 1 ml of 10 mg/ml 

thiamine hydrochloride. The molten agar was poured into petri-dishes and allowed to 

solidify at room temperature (15 oC to 25oC). The plates were inverted once the agar was set 

to avoid condensate that formed on the lid from falling onto the agar surface. A nutrient 

agar slant was prepared by transferring 5 ml of molten agar to a 10 ml sterile glass universal. 

The universal was retained at a 45o angle whilst the medium solidified. All solid media were 

stored at 2oC to 8oC for not more than 1 month prior to use. 
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Soft Agar Overlay 

Soft agar to overlay the solid agar was prepared by dissolving 1.0 g of tryptone powder, 0.1 g 

of yeast extract, 0.8 g of NaCl, 0.5 g of Difco™ Noble Agar (BD Diagnostics, Oxford, UK) in 100 

ml of distilled water. Once combined the medium was autoclaved at 1210C for 15-20 

minutes at a pressure of 1.1 bar (15 Ib/in2 or 15 psi). The medium was stored at 2oC to 8oC 

for not more than 1 month prior to use. 

 

Luria-Betani (LB) medium 

LB medium was prepared by dissolving 10 g of Bacto™ Tryptone (BD Diagnostics, Oxford, 

UK), 5.0 g of Bacto™ Yeast Extract (BD Diagnostics, Oxford, UK), 10 g of NaCl (VWR 

International Ltd, UK) in 950 ml of double distilled water. Once combined, the pH of the 

medium was adjusted to pH 7 with dropwise additions of NaOH (Appendix II) before the 

volume was made up to 1 litre with double distilled water. The medium was poured into 100 

ml glass bottles with loosened caps and autoclaved at 1210C for 25 minutes at a pressure of 

1.1 bar (15 lb/in2 or 15 psi). The molten medium was cooled to <500C to prevent excessive 

heat from degrading the antibiotic before aseptically adding 50 µl of 100 mg/ml ampicillin 

ready-made solution (Sigma-Aldrich, Dorset, UK) to give a final concentration of 50 µg/ml. 

Alternatively, 200 µl of 25 mg/ml kanamycin solution (Sigma-Aldrich, Dorset, UK) (Appendix 

II) was added to the molten medium to give a final concentration of 50 µg/ml. LB medium 

was stored at room temperature (15oC to 25oC). 

 

LB agar plates 

LB agar was prepared by dissolving 10 g of Bacto™ Tryptone (BD Diagnostics, Oxford, UK), 

5.0 g of Bacto™ Yeast Extract (BD Diagnostics, Oxford, UK), 10 g of NaCl (VWR International 

Ltd, UK), and 15 g of Bacto™ Agar (BD Diagnostics, Oxford, UK) in 950 ml of double distilled 

water. Once combined, the pH of the medium was adjusted to pH 7 with dropwise additions 

of NaOH before the volume was made up to 1 litre with double distilled water. The medium 

was poured into 100 ml glass bottles with loosened caps and autoclaved at 1210C for 25 

minutes at a pressure of 1.1 bar (15 lb/in2 or 15 psi). The molten agar was cooled to ~500C to 

prevent excessive heat from degrading the antibiotic before aseptically adding 50 µl of 100 

mg/ml ampicillin ready-made solution (Sigma-Aldrich, Dorset, UK) to give a final 

concentration of 50 µg/ml. Alternatively, 200 µl of 25 mg/ml kanamycin solution (Sigma-

Aldrich, Dorset, UK) (Appendix II) was added to the molten agar to give a final concentration 

of 50 µg/ml. The molten agar was poured into sterile petri-dishes using approximately 40 ml 

per plate and allowed to solidify at room temperature (15oC to 25oC). The plates were 
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inverted once the agar was set to avoid condensate that formed on the lid from falling onto 

the agar surface. The plates were stored at 4oC. 

 

5-Bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-GAL) 

A 40 mg/ml stock solution of X-GAL (Melford Laboratories Ltd, Suffolk, UK) was prepared by 

dissolving 40 mg of X-GAL in 1 ml of N, N-Dimethylformamide (DMF) (Sigma-Adrich, Dorset, 

UK). The solution was stored at -20oC wrapped in foil to protect from light.  

 

2x Yeast-Tryptone (YT) Microbial Medium   

2x YT microbial medium is a standard nutrient media for maintenance and propagation of 

recombinant strains of Escherichia coli. It was prepared by dissolving 16 g of Bacto™ 

Tryptone (BD Diagnostics, Oxford, UK), 10 g of Bacto™ Yeast Extract (BD Diagnostics, Oxford, 

UK), and 5g of NaCl (VWR International Ltd, UK) in 1 litre of double distilled water. The 

medium was autoclaved at 1210C for 25 minutes at a pressure of 1.1 bar (15 lb/in2 or 15 psi). 

2x YT microbial medium was stored at room temperature (15 oC to 25oC). 
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APPENDIX I I I :  Real -t ime multiplex one-step RT-PCR assay for the detection 
of respiratory viruses  

_____________________________________________________________________ 

 

 

 

 
 
 
 
 
 

 

 
 
 

Primer or probe Sequence (5’-3’) Target gene 

Forward Primer GCC GAA TGA TGC MAT MAA YT 

Haemagglutinin Reverse primer CGC ACC CAT TGG AGT TTG AC 

Probe 6-FAM – CAT TGC TCC AGA AWA T – MGBNFQ 

 

 

Primer or probe Sequence (5’-3’) Target gene  

Forward primer GAG TCT TCT AAC MGA GGT CGA AAC GTA 

Matrix Reverse primer GGG CAC GGT GAG CGT RAA 

Probe VIC – TCC TGT CAC CTC TGA C – MGBNFQ 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primer or probe Sequence (5’-3’) Target gene 

Forward primer GCA GCT CTG ATG TCC ATC AAG CT 

Nucleoprotein Reverse primer CAG CTT GCT TGC TTA RAG CAA TAG GTC T 

Probe Cy5 – CCA GAT CTG GTC ATT GGR GCC CAR AAC TG – BHQ-3 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primer or probe Sequence (5’-3’) Target gene 

Forward primer TGG CAC TAC CCC TCT CCG TAT TCA CG  

3’ end 

 

Reverse primer GTA CGG GCG ACC CCA CGA TGA C 

Probe ROX – CAC ATC GAT AGA TCA AGG TGC CTA CAA GC – BHQ2 

 
 

 

 

 

 

 

 

 

 

Primer and probe sequences that comprise the real-time quadriplex reverse-transcription 

polymerase chain reaction assay for the detection of influenza viruses.  

Residue M represents an adenine (A) or a cytosine (C) residue, residue Y is either a C or a 

thymidine (T) residue, residue W is either an A or T residue, and residue R is either an (A) or a 

guanine (G) residue. 

 

 

 

 

 

 

 

 

 

Primer and probe sequences for influenza virus type A. The TaqMan® MGB™ probe was labelled at 

the 5’ end with the fluorescent reporter dye VIC® and a NFQ at the 3’ end. VIC® is a proprietary 

dye only availble from Applied Biosystems. 

 

 

 

 

 

 

 

Primer and probe sequences for MS2 Bacteriophage. The probe was labelled at the 5’ end with the 

fluoresecent reported dye carboxy-X-rhodamine (ROX) and a non-fluorescent quencher, Black Hole 

Quencher™ 2 (BHQ-2) at the 3’ end.  

 

 

 

 

 

 

Primer and probe sequences for influenza virus type B. The probe was labelled at the 5’ end with 

the fluorescent reporter dye Cyanine (CY)-5 and a non-fluorescent quencher, Black Hole 

Quencher™ 3 (BHQ-3) at the 3’ end. 

 

 

 

 

 

 

 

Primer and probe sequences for influenza A virus subtype H5. The TaqMan® minor groove binder 

(MGB™) probe was labelled at the 5’ end with the fluorescent reporter dye 6-carboxyfluorescein 

(6-FAM) and a non-fluorescent quencher (NFQ) at the 3’ end. 
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Composition of the second panel of the real-time reverse-transcription polymerase chain reaction 

assay for the detection of respiratory viruses that included human respiratory syncytial virus, 

human parainfluenza virus types 1 and 3, and adenovirus.  

Residue K represents a G or T residue, residue M represents an A or a C residue, residue R 

represents an A or G residue, residue W represents an A or T residue, residue Y represents a C or T 

residue, and residue X is a modified purine base A or G. 

 

 

 

 

 

 

 

 

 

 

Primer or probe Sequence (5’-3’) Target Gene 

HRSV Forward GGG WGG WGA AGC WGG ATT CTA CC 

 Nucleoprotein HRSV Reverse ACC TCT RTA CTC TCC CAT TAT GCC TAG 

 HRSV Probe 6FAM – TAG GCA ATG CWG C C – MGBNFQ  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primer and probe sequences for human respiratory syncytial virus (HRSV). The TaqMan® MGB™ 

probe was labelled at the 5’ end with the fluorescent reporter dye 6-carboxyfluorescein (6FAM™) 

and a nonfluorescent quencher (NFQ) at the 3’ end. 

 

 

 

 

 

 

 

 

 

Primer or probe Sequence (5’-3’) Target Gene 

AdV Forward GCC CCA RTG GKC NTA CAT GCA CAT C 

 Hexon AdV Reverse GCC ACX GTG GGR TTY CTR AAC TT 

 AdV Probe ROX – TGC ACC AGA CCC GGR CTC AGR TAC TCC GA – BHQ2 

  
 

 

 

 

 

 

 

 

 

 

 

 

Primer and probe sequences for adenovirus. The probe was labelled at the 5’ end with the 

fluresecent reported dye carboxy-X-rhodamine (ROX) and a non-fluorescent quencher, Black Hole 

Quencher™ 2 (BHQ-2) at the 3’ end.  

 

 

 

 

 

 

 

 

 

Primer or probe Sequence (5’-3’) Target Gene 

HPIV1 Forward 

 

GCY CCT TTY ATA TGT ATA CTC AGA GAC CCA 

 

Haemagglutinin 

HPIV1 Reverse 

 

TGT TCT TCC AGT TAC ATA YTG TTG CAT AGC 

HPIV3 Forward 

 

GCT CCT TTY ATC TGT ATC CTC AGA GAT CC 

HPIV3 Reverse 

 

TGA TCT TCC CGT CAC ATA CTG TTG CAT G 

HPIV13 Probe 

 

VIC – TGG AGY TAY GCA ATG GG – MGBNFQ 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primer and probe sequences for human parainfluenza virus (HPIV) types 1 and 3. The combined 

HPIV 1 and 3 TaqMan® MGB™ probe was labelled at the 5’ end with the fluorescent reporter dye 

VIC® and a nonfluorescent quencher (NFQ) at the 3’ end. VIC is a proprietary dye only availble 

from Applied Biosystems. 
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 Composition of the third panel of the real-time reverse-transcription polymerase chain reaction 

assay for the detection of respiratory viruses that included human parainfluenza virus types 2 and 

4, human metapneumovirus, human rhinovirus, and enterovirus.  

Residue R represents an adenine (A) or guanine (G) residue and residue Y represents a cytosine (C) 

or thymdine (T) residue. 

 

 

 

 

 

 

 

 

 

Primer or probe Sequence (5’-3’) Target Gene 

EnV/HRV Forward CGG CCC CTG AAT GYG GCT AA 

 3’ untranslated 

region 

EnV/HRV Reverse GAA ACA CGG ACA CCC AAA GTA 

 EnV Probe 6-FAM – TCT GYR GCG GAA CCG ACT – MGBNFQ 

 HRV Probe VIC – TCY GGG AYG GGA CCR ACT A – MGBNFQ  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primer and probe sequences for human rhinovirus (HRV), and enterovirus (EnV). The EnV 

TaqMan® minor grove binder (MGB™) probe was labelled at the 5’ end with the fluoresecent 

reporter dye 6-carboxyfluorescein (6-FAM) and a non-fluorescent quencher (NFQ) at the 3’ end. 

The HRV TaqMan® MGB™ probe was labelled at the 5’ end with the fluorescent reporter dye VIC® 

and a NFQ at the 3’ end. VIC® is a proprietary dye only availble from Applied Biosystems. 

  and a nonfluorescent quencher (NFQ) at the 3’ end. 

 

 

 

 

 

 

 

 

 

Primer or probe Sequence (5’-3’) Target Gene 

HPIV2 Forward 

 

AAG TGY ATG ACT GCT CCT GAT CAR CC 

 

Haemagglutinin 

HPIV2 Reverse 

 

TTG CCA ATR TCT CCC ACC ATR GCA TA 

 HPIV2 Probe 

 

ROX – TCA GAA TGC CAT CCG CAA GTC AAT GG – BHQ2 

 HPIV4 Forward 

 

AAA TGY ATG ACA GCT TAT GAT CAA CCC A 

 HPIV4 Reverse 

 

TTT GCA ATR TCT CCC ACC ATR GCA TA 

 HPIV4 Probe 

 

ROX – CAG CTG ATA ARG TAG GTG CTT ATA CTA ACA G – BHQ2 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primer and probe sequences human parainfluenza virus (HPIV) types 2 and 4. Both probes were 

labelled at the 5’ end with the fluorescent reported dye carboxy-X-rhodamine (ROX) and a NFQ, 

Black Hole Quencher™ 2 (BHQ-2) at the 3’ end.  

 

 

 

 

 

 

 

 

 

Primer or probe Sequence (5’-3’) Target Gene 

hMPV Forward CAT CAG GTA AYA TCC CAC AAA AYC AG 

 

 

Nucleoprotein hMPV Reverse GTG AAT ATT AAR GCA CCT ACA CAT AAT AAR A 

 hMPV Probe CY5 – CCY TCA GCA CCA GAC ACA CC – BHQ2 

  
 

 

 

 

 

 

 

 

 

 

Primer and probe sequences for human metapneumovirus (HMPV). The probe was labelled at the 

5’ end with the fluorescent reported dye cyanine (CY)-5 and a NFQ, Black Hole Quencher™ 2 

(BHQ2) at the 3’ end.  
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APPENDIX IV:  Associat ions  between respiratory pathogens in paediatric 
patients with respiratory infect ion  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Percentage (%)

 contribution to infection

Negative 13 9.3 9.3

Single bacterial pathogen

PSEU 1 0.7

SAUR 7 5.0

COLI 1 0.7

CALB 1 0.7

SPNE 1 0.7

HINF 1 0.7

STRB 1 0.7

Single viral pathogen

FB 1 0.7

EnV/HRV 12 8.6

HRSV subtype A 5 3.6

HRSV subtype B 2 1.4

HPIV type 1 1 0.7

FA type H1 2 1.4

2 bacterial co-pathogens

SAUR & PSEU 1 0.7

HINF & SAUR 1 0.7

2 viral co-pathogens

HRSV subtype B & EnV/HRV 1 0.7

HCoV 229E & EnV/HRV 1 0.7

2 co-pathogens

HINF & HPIV type 4 1 0.7

HINF & HMPV 3 2.1

COLI & HMPV 1 0.7

SPNE & HPIV type 3 1 0.7

HINF & HPIV type 3 2 1.4

MCAT & HPIV type 3 1 0.7

HINF & FA type H1 1 0.7

HINF & FA type H3 1 0.7

HINF & HRSV subtype B 1 0.7

SPNE & EnV/HRV 9 6.4

HINF & EnV/HRV 7 5.0

MCAT & EnV/HRV 9 6.4

SAUR & EnV/HRV 3 2.1

MRSA & EnV/HRV 1 0.7

PSEU & EnV/HRV 1 0.7

COLI & EnV/HRV 2 1.4

MCAT & HRSV subtype A 2 1.4

SAUR  & HRSV subtype A 3 2.1

SPNE  & HRSV subtype A 3 2.1

SPNE & HRSV subtype B 2 1.4

3 co-pathogens

HINF & HRSV subtype B & EnV/HRV 1 0.7

PSEU & FB & EnV/HRV 1 0.7

MCAT & HCoV 229E & AdV 1 0.7

SPNE & HINF & HRSV subtype B 3 2.1

SPNE & HRSV subtype B & EnV/HRV 2 1.4

SPNE & MCAT & EnV/HRV 1 0.7

SPNE & HINF & EnV/HRV 6 4.3

MCAT & HRSV subtype A & EnV/HRV 1 0.7

MCAT & HRSV subtype A & HCoV 229E 1 0.7

SPNE & HRSV subtype A & EnV/HRV 1 0.7

HINF & HRSV subtype A & EnV/HRV 2 1.4

SPNE & SAUR & HPIV type 3 1 0.7

HINF & MCAT & HMPV 2 1.4

SPNE & HINF & HMPV 1 0.7

4 co-pathogens

SPNE & HINF & HMPV & EnV/HRV 1 0.7

SPNE & HINF & SAUR & EnV/HRV 1 0.7

SPNE & HINF & EnV/HRV & HMPV 1 0.7

SPNE & HINF & EnV/HRV & AdV 1 0.7

HINF & HCoV OC43 & HPIV3 & EnV/HRV 1 0.7

5 co-pathogens

SPNE & HINF & HRSV subtype A & EnV/HRV & AdV 1 0.7

SPNE & HINF & HRSV subtype B & CoV 229E & EnV/HRV 1 0.7

SAUR & COLI & CALB & HPIV type 1 & ENV/HRV 1 0.7

SPNE & HINF & SAUR & HPIV type 3 & EnV/HRV 1 0.7

TOTAL 140 100.0 100.0

Respiratory Pathogen No. pathogens Percentage (%)

9.3

16.4

38.6

17.1

3.6

2.9

1.4

1.4


