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Abstract. Nowadays, the significance of keeping equipment function properly each time is 

obvious. If equipment fails during its use, it may have disastrous consequences. Estimating 

remaining useful life (RUL) of equipment is a key to prevent such calamities, improve its 

reliability, provide security and reduce unnecessary maintenance and operational cost. The 

evolution and tracking of damage is the foundation of RUL predicting, and also is one of the 

most important content of mechanical fault diagnosis. Slow-time variable process of 

mechanical damage would lead the phase space reconstructed by fast-time variable vibrate 

signals warping. Search the dynamics characteristic law of damage evolution analysis in the 

phase space, and build the relationship between fast-time variable signals and slow-time 

variable damage, and then damage evolution tracking is possible. To validate the theory, 

simulation model of bearing damage evolution is built, the outer-race fault evolution signals is 

obtained, and the trend of evolution of degradation of bearing fault is described with Phase 

Space Warping (PSW) theory and Smooth Orthogonal Decomposition (SOD). The results 

proved the feasibility of the methodology of PSW in damage evolution tracking.  

Keywords. Phase space warping; Slow-time variable damage; Damage evolution tracking; 

Fault diagnosis 

1. Introduction 

Damage detection, tracking, and remaining life prediction of equipment is current research focus in 

prognostics and health management (PHM) technologies. With the increase of machinery operating 

speed and precision degree in high-speed machinery, and due to the complexity and highly 

nonlinearity of internal dynamics of mechanical systems, uncertainty of operation condition and strong 

noise background, the dynamics of damage evolution of components becomes extremely complex. 

Linear vibration analysis methods are difficult to give a very reasonable explanation to the relationship 

between the inherent dynamic behavior of moving parts and vibration state, because of slow evolution 

and sudden deterioration are important features of nonlinear vibration system. Therefore, it is possible 

a better approach to solve the problem with nonlinear dynamics theory and methods. 
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The theory of phase space warping (PSW) is provide an effective approach to damage 

identification, evolution tracking and prediction based on nonlinear dynamics. In 2000, David 

Chelidze presented a nonlinear observer for damage evolution tracking
[1]

, PSW-based damage 

identification method, and applied it to a two-well electromechanical oscillator, which is a platform of 

fatigue damage simulation experiment, and then successfully tracked the fatigue damage evolution of 

experimental element. Besides, a multidimensional damage identification approach has been 

developed based on this concept and validated using numerical model simulation
[2]

. In addition, David 

B. Segala, Albert Adams and et.al applied the theory to track and predict the onset of physiologic 

fatigue in prolonged load carriage walking
[3]

. 

In this paper, simulated vibration signals are used to reconstruct damage evolution in rolling 

element bearing outer-race fault from incipient stage to severe stage in an hour. Damage is 

reconstructed in two steps: (1) phase space warping based feature vectors are estimated from vibration 

time series; and (2) smooth orthogonal decomposition is used to extract damage related trends from 

these features. The reconstructed dominant damage variable closely tracks vibration amplitude 

reflecting global evolution trend. The results show that PSW combined SOD can be used to track 

bearing damage evolution, and provide a possible approach to predict the RUL of rotating 

components. 

2. Theory of Phase Space Warping 

As structural damage in [4], mechanical damage is viewed as evolving in a hierarchical dynamical 

system where slow-time fatigue damage evolution and fast-time vibration dynamics are coupled 

through parameters of a fast-time subsystem: 

 ( , ( ), ) ,   ( , ) ,   ( )x f x t g x y h x        (1) 

where x is a fast-time dynamic variable describing vibration signals;   is a slow-time dynamic 

variable describing damage evolution, which alters a parameter vector μ in the fast-time system; t is 

time; and ε is a small rate constant describing time scale separation. A measurement function h 

generating a scalar time series y is based on the fast-time variable, x. 

The objective is to reconstruct the slow-time evolution of the fatigue damage variable   from the 

captured fast-time dynamics y. Given a time sequence of data records of scalar fast-time series fatigue 

damage is identified from the PSW-based feature vectors estimated for each fast-time data record 

using SOD. 

2.1. PSW-Based Features 

To estimate the extent of PSW, the recorded vibration acceleration time series are embedded into a 

reconstructed phase space trajectory. Given a scalar time series in one of the data records 1{ }N

i iy  , the 

corresponding fast-time phase space is reconstructed using delay coordinate embedding
[5]

, by 

generating a d-dimensional state vector 1 ( 1){ ( )}N

i dy i     

 T

( 1)( ) [ |,  ,..., ]i i i dy i y y y     (2) 

where T represents matrix transpose, d is a sufficient embedding dimension, and τ is a delay time. The 

embedding dimension is estimated by the method of false nearest neighbors
[6]

 and the time delay is 

estimated as the first local minimum of the average mutual information
[7]

.  

The reconstructed state vectors are governed by an unknown map P: R
d
 R

d
 

 ( 1) ( ( ); )y i P y i    (3) 

One way to quantify PSW is to consider the following tracking function for a point in the 

reconstructed phase space: 



 

 ( ; ) ( ; ) ( ; )R Re y P y P y     (4) 

where 
R  is the reference state of the damage variable and   is the current value. In other words, 

this metric measures the change in the direction of a trajectory caused by the drift in the damage state. 

P(y; ) in equation (4) is directly available for every data record and using equation (3) we get 

 ( ; ) ( 1) ( ( ); )R Re y y i P y i     (5) 

However, P(y(i);
R ) is only available for the points in the reference data record, and for any other 

data record, it needs to be estimated from the reference data record. For this estimation, as in [4], a 

local linear model is used: 

 ( ( ); ) ( )R i iP y i A y i b    (6) 

where the modal parameter matrix Ai R
dd

 and a parameter vector bi R
d
 are determined for each 

query point y(i). More specifically, Nm nearest neighbors of y(i) and their images one time-step later in 

the reference phase space are used to estimate Ai and bi in the least-squares sense. Thus, the tracking 

function is estimated using this single-time-step reference model prediction (STRMP) error: 

 ˆ ( ( ); ) ( 1) ( )R i ie y i y i A y i b      (7) 

The magnitude of estimates of the STRMP error is expected to vary from point to point depending 

on the local trajectory curvature since it is a measure of the distortions described by a nonlinear map P. 

Also, its accuracy depends on the local probability distribution of the reference phase space points. 

Depending on how the trajectory evolves in time, some portions of the phase space result in better 

estimates of the STRMP error. To compensate for all these factors, the phase space is partitioned into 

Ne disjoint hyper-cuboids, 1{ } eN

i i containing approximately the same number of points. Then, the 

expected value of eR(y;) is evaluated in each hyper-cuboid to get: 
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e e y
N

 

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where Ni is the number of points in Bi. Now, for each data record j (j = 1, ∙∙∙, M) the averaged errors 

were assembled into a Ne-dimensional feature vector 

 1 2[ ( ), ( ),..., ( )]
e

j

Ne e e e    (9) 

The estimated feature vectors e
j
 are then calculated for all Nr data records and row-wise concatenated 

(in time sequence) into a tracking matrix, 

 1 2[ ; ;...; ]rNY e e e  (10) 

2.2. Smooth Orthogonal Decomposition 

SOD is a multivariate data analysis tool that can be used to extract smooth trends in time from a 

multivariate time series
[8]

. We assume that mechanical damage is deterministic process, whose 

variable are evolving smoothly in time. Thus, if the tracking matrix YR
MNe

 contains information 

about the damage evolution, SOD should be able to extract corresponding smooth trends from the 

features. In particular, these trends can be identified by solving following generalized eigenvalue 

problem: 

 [ ] [( ) ]T T

i i iY Y DY DY    (11) 

where D is the discrete differential operator (e.g., based on forward difference). In practice, equation 

(11) is solved using generalized singular value decomposition of the matrix pair Y and DY, yielding: 
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 (12) 

where I is the identity matrix, the matrices U and V are unitary, X is a square matrix, and C and S are 

non-negative diagonal matrices. X
-1

 is a matrix composed of eigenvectors φi, or smooth orthogonal 

modes. The columns of matrix UC contains smooth orthogonal coordinates (SOCs), and the 

corresponding eigenvalues λi, or smooth orthogonal values (SOVs) are given by term-by-term division 

of diag(C
T
C)

1/2
/diag(S

T
S)

1/2
. The dominant eigenvalues and corresponding coordinates represent the 

smoothest trends in Y. Therefore, the higher the value of SOVs, the smoother in time is the 

corresponding SOCs and damage related trends are expected to be embedded in those SOCs. 

3. Experimental Results and Analysis 

Due to the greatly long experimental time and huge experimental data of real bearing damage 

evolution experiment, so in order to validate that the PSW method is effective in the identification for 

bearing damage degradation, we utilize the simulation model of bearing damage to produce the needed 

damage evolution signals in the paper. It is different from actual signals that, in order to cut down the 

data quantity and computational cost, we shorten the fault degradation process (incipient fault to 

severe fault) from possible thousands hours to one hour. Therefore, computational time is greatly 

shortened, and the whole trend of damage evolution would be more obvious. 

3.1. Simulation model of bearing damage evolution 

There are many simulation models for bearing fault signals, one of the models that better characterizes 

the vibration produced by defective rolling element bearings is the one produced by Randall et al. in 

[9-11]: 

 
0

( ) ( ) ( )
M

i i

i

x t A s t iT n t


      (13) 

where T is the period of impulse, s(t) is the vibration waveform and n(t) is external noise, Ai is the 

amplitude modulator, which is used to simulated the possible modulated situation, and the modulated 

period is Q. fm = 1/Q is shaft speed for inner-race fault and the cage speed for rolling element fault. τi is 

the random fluctuation around average period T, Oscillation waveforms generally decay rapidly with 

action of the system damping. 

Simplify the vibration waveform s(t) to an exponential damping cosine signal 

 ( ) cos(2 )Bt

n ss t e f t    (14) 

Also simplify the amplitude modulator {Ai} to a cosine signal 

 0 cos(2 )i m AA A f t     (15) 

where A0 is the common amplitude of impulse, and assume A0 is almost stationary in a second, iT+τi is 

the specific time of the impulse，fm is the modulation frequency (outer-race fault: fm = 0; inner-race 

fault: fm = fr; rolling element fault: fm = fb). It is assumed that the first impulse occurs at time t = 0 

without slip, so τ0 = 0. The original phase is also reasonable assumed φA = 0. Substitutions of equation 

(14) and (15) into (13), and added Gaussian white noise n(t), lead to the simplified model of fault 

signals of rolling element bearing 
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Take the outer-race fault as an example, let fm = 0Hz, the nature frequency of bearing fn = 2000Hz, 



 

the characteristic frequency of outer-race fault fo = 50Hz, so set T = 0.02s, and substitutions it into 

equation (16), compute with Matlab software, we could obtain the result shown as figure 1. 
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Figure 1. Simulated signals of bearing outer-race fault. 

 

Based on the model above, simulate the process of outer-race fault of bearing from incipient stage 

to severe stage (failure) in an hour, which expressed as the variation of vibration impulse amplitude. 

Assume A0 increases in power-law-type, shown as figure 2. 

Take sample frequency fs = 10kHz, and compute every second’s simulated vibration signals with 

model (16), respectively. And then take another fs = 200Hz to resample the signals obtained above, we 

consequently get the needed damage evolution simulated signals, which can be shown as figure 3. 
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Figure 2. The hypothetic trend of amplitude of bearing damage 

evolution vibration signals. 

3.2. Analysis of simulated signals 

Calculate the damage tracking matrix Y of simulated signals with PSW first, and in order to extract the 

smooth trend, then take the SOD to Y, which can obtain the smooth orthogonal values and 

corresponding smooth orthogonal coordinates. Meanwhile, use average mutual information method 

and false nearest neighbors method to calculate the time delay τ = 7, and embedding dimension d = 8, 

respectively. The results of signals analysis depicted in figure 4 and 5, where largest 32 SOVs and the 

first four dominant SOCs are shown. Results show that object signal has generally smoother trend in 

the dominant SOC as indicated by the larger corresponding SOV. The signals have one or two modes 

that are somewhat separate from the rest; The SOC1 corresponding to the largest SOV indicate that 

object signal seem to have a monotonic increasing trend, but SOC1 didn’t tracked the actual trend very 

closely. It is smooth to track the trend in the first 40 minutes, whereas, the drastic increasing in last 15 



 

minutes didn’t captured. 
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Figure 3. Simulated signals of bearing damage evolution (a) without noise (b) with white noise. 

0 5 10 15 20 25 30
10

-1

10
0

10
1

10
2

10
3

Index of SOVs

L
o

g
 o

f 
S

O
V

s

 

Figure 4. Largest 32 SOVs. 

 

Therefore, we take first two dominant SOCs to be linearly combined and projected onto amplitude 

trend of vibration signal to show that information contained in the simulated signals. It is clear that the 

projected trends track the signals amplitude trend quite well, which can be shown as figure 6.The 

actual trend is captured by the SOCs. 

On the base of damage tracking with PSW method, in addition, we could try to develop a reliable 

feature for evaluating damage extent, and build the RUL curves for object bearing, achieve RUL 

assessment of diagnostic object bearing. 



 

0 20 40 60
-0.2

0

0.2

0.4

0.6

0 20 40 60
-0.4

-0.2

0

0.2

0.4

0 20 40 60
-0.4

-0.2

0

0.2

0.4

0 20 40 60
-0.4

-0.2

0

0.2

0.4

Data Records

S
O

C
1

S
O

C
2

S
O

C
3

S
O

C
4

Data Records

Data Records Data Records
 

Figure 5. Corresponding dominant SOCs to largest four SOVs. 
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Figure 6. Comparison between the trend tracking result (dash line) 

and actual damage evolution trend (solid line). 

4. Conclusion 

In this paper, we applied the PSW method to the research of damage evolution tracking of bearing. 

After the introduction of PSW theory, firstly built the approved simulation model of bearing damage 

evolution signals, and obtained the simulation data of bearing outer-race damage short time span 

evolution. Then analyze the simulation data with PSW method, from the results, the trend of vibration 

signals amplitude is closely tracked with first two dominant SOCs which are linearly combined and 

projected onto original trend. It validates the feasibility of PSW in the research on bearing damage 

evolution tracking, and we could see its potential using in remaining useful life assessment of other 

rotating components, such as shaft, gear etc.. 
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