-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by University of Lincoln Institutional Repository

Eating Your Own Dog Food

Jackson, Nick John Winn, Joss Luke
University of Lincoln University of Lincoln
nijackson@lincoln.ac.uk jwinn@lincoln.ac.uk

July 2012

Abstract

As part of its project to develop a new research data management system the University of
Lincoln is embracing development practices built around APIs — interfaces to the underlying data
and functions of the system which are explicitly designed to make life easy for developers by being
machine readable and programmatically accessible.

1 The Goals of Orbital

The Orbital project at the University of Lincoln aims to build a new research data management platform,
alongside creating new policies and guidance for the institutional management of data. This platform,
also named Orbital, will include a variety of features which distinguish it from a traditional repository
by encouraging programmatic use and re-use of research data not only after a project has ended, but
throughout the entire life of the project. Once a project has ended, Orbital will encourage deposition of
‘complete’ research data in more formal repositories for long-term archiving by allowing the rapid con-
densation and collation of research data, automatically supplying metadata where possible, encouraging
high quality metadata where it is manually supplied, and automating the process of depositing a record
in a repository.

2 What is a Repository?

The majority of existing repository solutions are built on the premise that items deposited in the reposi-
tory will be discrete digital objects® and that these objects will have associated metadata describing their
contents. In some cases, a deposit will consist of multiple discrete digital objects grouped together with
a common set of metadata. In the case of research data, repositories tend to adopt a similar approach —
data exists in discrete objects (for example an Excel spreadsheet, a ZIP file of images, a binary blob) and
has attached metadata which describes it. Occasionally these repositories will offer the ability to view
the contents of certain types of file natively within the application, although this is dependent upon there
being an available parser or interpreter for the data. While this is trivial to achieve for data stored in
simple, open formats such as CSV, it becomes increasingly difficult as data is represented using complex
structures in formats such as XML, and is nearly impossible in many proprietary binary blob formats.

Commonly, such repositories also offer a limited choice of ways to deposit and otherwise interact with
content. In most cases they rely on web-based user interfaces which are accessed through a browser to
manage the complete lifecycle of an item from uploading through curation, management and long-term
archiving. The SWORD?2 protocol, while offering a programmatic method of depositing and updating
files, does not offer methods of interacting with the data itself, but rather its metadata and the container
file of the data.

In designing Orbital, we are assuming that research data may be too complex or too large for storage
and transmission in file containers such as CSV or XML. In surveying researchers at the University of
Lincoln, the most pressing requirement was for managed storage of research data during the process
of research itself[4]; among the research groups that Orbital works with in the School of Engineering,
requirements also centre around the sharing and management of data during the research process. In our
experience so far, working in the domain of RDM highlights that the approach taken by the repository

10r, in some cases, digital pointers to physical objects.


https://core.ac.uk/display/8780121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

community for the management of research papers is inadequate for the management of the research data
itself and requires a reconceptualisation of what data actually is. A file-oriented approach is inappropriate
for many use cases, where researchers are collecting and analysing relational data or real-time data from
instrumentation, for example. By designing an RDM tool that respects the form of data (e.g. time-
series) rather than imposing a format (e.g. CSV), an API-driven approach to depositing, querying,
manipulating and archiving the data, provides interfaces that are native to the domain of research data,
rather than research outputs.

3 Owur Approach
3.1 Love Your Backend

The University of Lincoln is moving towards a software architecture in which APIs — interfaces which
allow systems and pieces of software to communicate in an easily machine-readable manner — are defined
and built before any interface intended for the end user. Orbital is built as an example of this thinking,
that the ‘backend’ of any system should be given attention earlier than the user-facing aspects. This is
not in conflict with a user-centric approach to application development, but rather acknowledges that
user requirements should be deeply embedded in the design of the application and not simply manifest
in a single user interface. In the case of applications which manage raw data, traditional user interface
design may be entirely inappropriate and inadequate. Many researchers already have appropriate tools
for working with data, which could not and need not be replicated by a research data management
tool, such as Orbital. The value of RDM to such researchers is the ability to reliably store, share and
selectively publish their data for scrutiny and citation.

The result of building a system in this manner is that it is inherently usable and extendable by any
other system with a minimum of effort. In repository systems which lack an API the process of adding
data to the repository may involve multiple steps of exporting data from a database, importing it to
an application such as Excel, sorting the data, exporting a spreadsheet, creating a new repository item,
uploading the exported data, adding metadata, saving and publishing. Where an API is available this
process can be automated and, as part of Orbital’s pilot scheme, users in the School of Engineering are
directly loading sensor data from a variety of sources.

In addition to providing these interfaces to the data, Orbital is exposing the entire feature set of the
repository over APIs. This is achieved by ensuring that the development team build APIs which can
expose the required functions to an external interface application rather than including any end-user
interface functionality in Orbital’s ‘core’.

Finally, since Orbital is adopting a loosely coupled RESTful? approach to APIs, no part of Orbital’s
core functionality has any particular notion of statefulness associated with it. What this means from
a practical standpoint is that it is easy to scale the platform horizontally by adding additional servers
or storage, since there is no requirement for any process to maintain communication with a particular
instance of a component.

3.2 Eat Your Own Dog Food

The Orbital project consists of two distinct components: Orbital Core, which performs all repository, data
management, security and processing functions; and Orbital Manager, which provides a web-accessible
user interface. The Manager aspect of Orbital communicates with the Core exclusively over the same
APIs which are publicly available and documented for general use, with no preferential treatment or
additional permissions as shown below in Figure 3.

A large part of building APIs lies in the documentation of available functionality both of the un-
derlying code and of external interfaces. As Orbital is developed using iterative, agile principles and
‘Continuous Integration’, this documentation is automatically generated, and it is this documentation
that is relied upon by the Orbital developers where they are unfamiliar with a part of the system. The
use of a single canonical set of documentation for both internal and external development avoids the
creation of undocumented APIs which can only be used with expert system knowledge.

2REpresentational State Transfer
3https://en.wikipedia.org/wiki/Continuous_integration


https://en.wikipedia.org/wiki/Continuous_integration

Database Application User

Figure 1: The only way to interact with this application is to either be a user, or pretend to be one (for
example via screen-scraping).

Database Application User

3rd Party

Application

Figure 2: The most common form of API, consisting of a ‘second view’ on the data and functionality of
an application. This style of API often exposes a limited subset of the application’s functionality.

API .
Database (Orbital Core) Application
F_rontend User
(Orbital Manager)

Figure 3: In an API-driven model the API is the only way to interface with the application.



3.3 Forget The Containers

There are already mature research output repository systems which store containers of data (i.e. ‘files’)
for the long term, providing archival and discovery services. Orbital is not intended to be a replacement
for such systems. However, there is a distinct lack of general purpose research data management systems
which store and help manage the data throughout the actual research process. Although Orbital does
allow researchers to upload and store discrete files[5], and we intend to provide a shared, synchronised
filesystem for researchers[6], a defining feature of the approach of Orbital is that — as far as is possible
— data can be removed from container files such as CSV files or Excel spreadsheets and stored in a
database[2].

Access to and control of this data is provided by RESTful APIs, which align with Orbital’s overall
design. These APIs can be used for the deposition of data either in large blocks or at a very granular level
(roughly equivalent to a single row in a spreadsheet), the modification and retrieval of those individual
data points, and querying of the data sets in real time using a variety of database operators, and exporting
the results of those queries as a rich JSON document or a simplified CSV document which can readily be
used for further analysis. APIs are also planned to allow for the description of data (including aspects
such as the type of data) and the addition of metadata on a data set or data point level (for example
allowing annotation of an anomalous result to be stored with the result itself).

Data itself is stored in the MongoDB No-SQL database, which provides a number of advantages
over traditional SQL databases with regard to research data storage. MongoDB is a document storage
database which holds representations of data objects as opposed to structured, tabular data. These
objects may be heterogeneous with little or nothing in common, a feature which allows individual data
points to contain differing quantities or properties depending on what is known about them. This means
that a data point may initially be deposited with relatively little information and subsequently updated
with additional facts, notes or analysis after the fact and with no impact on the underlying storage
engine. As explored in Section 3.4, data may also be subject to automated processing which expands
upon the original data.

By removing the data from container files and allowing direct deposition and access, Orbital exposes
data for re-use the moment it has been stored. This dramatically reduces the amount of time spent
waiting for data to be made available to researchers following its collection, which is of particular interest
to the project’s pilot users in the Lincoln School of Engineering. Where previously data could take
upwards of a week to be moved from its collection point through various storage systems and then
manually exported in the appropriate format for further research, Orbital now produces daily datasets
for the same work.

3.4 Make It Extensible

Due to the document storage model and API accessibility used within Orbital it is relatively simple
for data objects to be updated with additional information by the means of single purpose, automated
applications. Again in the case of the Lincoln School of Engineering, some data requires processing with
a variety of signal filters in order to become usable for further statistical modelling. Previously this
would have been a batch operation in which the researcher would take the original data, perform the
processing, and store the output in a separate file. Using Orbital’s data storage engine the results of
the processing are stored alongside the original data and are similarly queryable or usable in subsequent
tasks.

By encouraging the breaking down of data into smaller chunks, Orbital also encourages the reduction
of the processes involved in research into smaller, more manageable and above all re-usable aspects. It
is envisioned that researchers will be able to build complex automated workflows, including import from
external sources, processing of data using pre-built or custom modules, and subsequent export to files or
specialist tools from directly within Orbital.

One thing that Orbital isn’t designed to do is replicate the functionality of more traditional and
established repositories. Although Orbital is designed to be able to hold files in perpetuity following
the end of a project it will also use protocols such as SWORD2 to allow rapid deposition of a record of
research data — including all relevant metadata — with an existing institutional repository.



4 Why Data-Driven Development?

4.1 We Build Better Stuff

Adopting a data-centric, API driven approach to building Orbital has resulted in the development of
APIs which are easily understood, easily implementable, behave in a reliable and predictable manner and
which are robust enough to withstand heavy usage. APIs which lack these criteria are quickly identified
and refactored, since they are being used by members of the Orbital team to build the Manager platform.
Since APIs are the exclusive method of interfacing with the underlying data storage and the functions
of Orbital the APIs must expose a complete set of functionality|3].

Reliability of these APIs is also critical to the usability of the entire data storage platform, which
encourages better design of resiliency and error handling; and usability of the API is essential which
encourages better documentation. By forcing the consideration of data types, methods and architecture
early on it is easier to achieve a consistent design and behaviour across the entire Orbital platform, as
well as an underlying structure which encourages the development of reusable, well-defined code.

Finally, by combining the aspects of reusable components and consistent APIs, Orbital is able to
easily implement a robust universal security model using the OAuth 2 specification which encompasses
all data access regardless of source. Since any frontend can only interface with the data via the controlled
APIs, and since access to the data is governed on a per-user-per-application basis there is a reduced
scope for accidental or intentional damage or loss of data, and a lower risk of the accidental disclosure
of commercially sensitive data. OAuth 2 also enables the development of third-party tools which can
interact with data in Orbital without exposing any user credentials[1], encouraging the building of tools
which extend the ecosystem.

4.2 TImproved Data Visibility from Day One

The DAF* survey conducted as part of Orbital’s research shows that although most researchers know
roughly how much data they have, that data is stored primarily on non-managed devices such as internal
and external hard-disks, USB memory sticks, and third-party data storage systems[4]. During user
meetings and observations of research by the Orbital team it was found that among these various locations
there was often confusion over where a particular file was stored, which version any particular file may
be, and if any given file actually contained the data in question.

By stripping away the container file and allowing searches to be run across the entirety of a data set
— even up to the scale of millions of data points — the entire dataset becomes visible to the researcher at
once for the purposes of finding what they’re looking for.

Orbital also has the potential to provide improved information on the quantity of data being stored
for the purposes of planning and reporting, giving academics a truer indication of the amount of resources
being used and giving research administrators a clearer idea of the requirements for future research. In
addition, since Orbital exposes its complete subset of functionality, it can quickly be integrated with other
University systems such as staff directories or our Awards Management System to assemble disparate
information regarding research data.

4.3 Scale To Infinity

A major benefit of using loosely coupled components which communicate using RESTful APIs, along
with using an inherently scalable database solution such as MongoDB, is that the Orbital platform can
scale horizontally to a very large system simply by adding new nodes. An example of an expanded,
scaled deployment is given in Figure 4 on the next page.

Although in development Orbital is not using a deployment of this size, the application is designed
to be inherently scalable as the number of users and size of datasets grows.

5 The Problems of This Approach

API-driven development, whilst having many benefits, does have downsides which have become apparent
during the development of Orbital. Firstly, development must — in many instances — be ‘doubled up’
as developers create both the underlying functionality and API endpoints in Orbital Core, and then an

4Data Assets Framework



Load Balancer

— T

Web Server
(Manager)

Web Server
(Manager)

—

Load Balancer

Web Server Web Server
(Core) (Core)
MongoDB MongoDB MongoDB MongoDB
Shard Service Shard Config Shard Service Shard Config
\ \ ] |
3y 3
MongoDB MongoDB MongoDB MongoDB MongoDB MongoDB
Al A2 B1 B2 C1 Cc2
3 - -
MongoDB MongoDB MongoDB
A3 B3 C3
MongoDB Shard A / \ MongoDB Shard B / \ MongoDB Shard C

Figure 4: Example of a scaled Orbital environment, with sharded and replicated database, load balanced
Core servers and load balanced Manager frontends.




API interface and user front-end in Orbital Manager. Although this does allow rapid development and
development of better software at a later point initial work can appear slow and unnecessarily complex.

Secondly, there is also a significant challenge in ensuring that the transfer of data over APIs is fast
and reliable enough for intended applications. The HTTP protocol can introduce an element of overhead
which can rapidly accumulate in applications which are making a large number of API calls, and in
some cases the Orbital project has modified APIs to be more lightweight or to allow for more intelligent
grouping of requests. There has also been a significant amount of work and re-work around error handling
— particularly with regard to correctly handling security-based errors, an area in which development is
still ongoing.

References

[1] Alex Bilbie. What is OAuth? [online]. July 2012. Available from: http://lncn.eu/dfps.
[2] Nick Jackson. And now. .. dynamic data! [online]. June 2012. Available from: http://lncn.eu/cjv2.

[3] Nick Jackson. Why orbital is all about the api [online]. January 2012. Available from: http:
//1lncn.eu/euwb.

[4] Joss Winn. Data assets framework survey summary [online]. April 2012. Available from: http:
//1lncn.eu/rs2.

[5] Joss Winn. A minimum viable product: Orbital v0.1 [online]. May 2012. Available from: http:
//1lncn.eu/y26.

[6] Joss Winn. Shared, versioned network drives [online]. May 2012. Available from: http://lncn.eu/
egjT.


http://lncn.eu/dfps
http://lncn.eu/cjv2
http://lncn.eu/euw5
http://lncn.eu/euw5
http://lncn.eu/rs2
http://lncn.eu/rs2
http://lncn.eu/y26
http://lncn.eu/y26
http://lncn.eu/egj7
http://lncn.eu/egj7

	The Goals of Orbital
	What is a Repository?
	Our Approach
	Love Your Backend
	Eat Your Own Dog Food
	Forget The Containers
	Make It Extensible

	Why Data-Driven Development?
	We Build Better Stuff
	Improved Data Visibility from Day One
	Scale To Infinity

	The Problems of This Approach

