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Abstract 

Gene directed enzyme prodrug therapy using E.coli the enzyme nitroreductase (NR) 

to activate the prodrug CB1954, is being developed as an attractive targeted 

chemotherapy for eradication of localized tumours. In addition to direct killing of 

NR-expressing tumour cells and potentially also their immediate neighbours via 

local spread of the activated prodrug, the consequent release of tumour antigens 

from dying tumour cells has the potential to induce antitumour immune responses. 

The present study investigates the capacity of NR/CB1954-mediated tumour cell 

death to activate CD8
+
 T cell responses using ovalbumin (OVA), as a model tumour 

antigen. The transgenic adenocarcinoma mouse prostate tumour cell line (Tramp-

C1) was modified to stably express the therapeutic NR gene together OVA. These 

modified tumour cells were used to seed tumours in mice and OVA-specific T cell 

responses to gene therapy were investigated. Treatment of mice bearing NR-

expressing tumours with CB1954 enhanced expansion of endogenous OVA-specific 

CD8
+
 T cells and marginally enhanced OVA-specific cytotoxic T lymphocyte 

(CTL) activity, however long-term CD8
+
 T cell dependent immunity was 

insignificant. 

 The possibility of enhancing NR/CB1954-mediated long-term antitumour immune 

responses by combining with other immunogene therapies namely, 4-1BB 

costimulatory ligand (4-1BBL) or granulocyte macrophage colony stimulation 

factor (GM-CSF) was further explored. These combined therapies notably increased 

the frequency of memory OVA-specific CD8
+
 T cell and CTL response in some 

lymphoid tissue relative to NR/CB1954 monotherapy.  

One of the obstacles to cancer immunotherapy is the development of T cell anergy 

early in the course of tumour progression, therefore it was of interest to investigate 
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the potential of NR/CB1954 and 4-1BBL combined tumour therapy to reverse CD8
+
 

T cells anergy in vivo. This study describes preliminary results showing the effect of 

this combined therapy on the proliferative and functional responsiveness of anergic 

CD8
+
 T cells. 

In conclusion, these findings indicate that NR/CB1954-mediated tumour cell death 

is a weakly immunogenic process that facilitates short-term antitumour CD8
+
 T cell 

responses. Combining NR/CB1954 with intratumoural GM-CSF or 4-1BBL 

immunotherapy can enhance the frequency and effector function of memory tumour 

antigen-specific CD8
+
 T cells; and thus has the potential to provide long-term 

antitumour immunity. 

  



 V 

Table of contents 

1 Introduction ...................................................................................................... 1 

1.1 Overview ..................................................................................................... 2 

1.2 Cancer development ................................................................................... 3 

1.3 The immune system ..................................................................................... 4 

1.3.1 Innate immunity ..................................................................................... 5 

1.3.2 Adaptive immunity ................................................................................. 5 

1.4 Recognition of cancer by the immune cells ................................................ 7 

1.4.1 T cell antigens ........................................................................................ 8 

1.4.2 Antigen processing and presentation .................................................... 10 

1.4.2.1 The cytosolic pathway .................................................................. 11 

1.4.2.2 The endocytic pathway ................................................................. 11 

1.4.2.3 Cross presentation ........................................................................ 12 

1.5 T cells ....................................................................................................... 13 

1.5.1 Overview .............................................................................................. 13 

1.5.2 T cell receptor diversity ........................................................................ 15 

1.5.3 T cell activation .................................................................................... 16 

1.5.3.1 T cell activation and costimulation .............................................. 18 

1.5.3.1.1 Immunoglobulin gene superfamily–costimulatory molecules . 19 

1.5.3.1.2 Tumour necrosis factor receptor (TNFR) superfamily ............. 20 

1.5.4 T cell tolerance ..................................................................................... 26 

1.5.4.1 Central tolerance ........................................................................... 26 

1.5.4.2 Peripheral tolerance ...................................................................... 28 

1.5.4.2.1 Clonal ignorance ....................................................................... 29 

1.5.4.2.2 Peripheral deletion .................................................................... 30 

1.5.4.2.3 Functional inactivation ............................................................. 32 

1.6 Cancer immunosurveillance and immunoediting ..................................... 35 

1.7 Immunotherapy for cancer ....................................................................... 37 

1.7.1 Cytokines– Granulocyte Macrophage-Colony Stimulating Factor (GM-

CSF)  .............................................................................................................. 38 

1.7.2 Costimulatory molecules – 4-1BBL ..................................................... 44 

1.8 Gene therapy for cancer ........................................................................... 46 

1.8.1 Gene delivery vectors ........................................................................... 47 

1.8.1.1 Viral vectors ................................................................................. 47 

1.8.1.2 Non viral vectors .......................................................................... 50 

1.8.2 Gene directed enzyme prodrug therapy (GDEPT) ............................... 50 

1.8.2.1 Herpes simplex virus–thymidine kinase ....................................... 53 

1.8.2.2 Cytosine deaminase ...................................................................... 55 

1.8.2.3 E. coli Nitroreductase ................................................................... 57 

1.8.2.4 GDEPT – Immune bystander effect ............................................. 60 

1.9 Aims of the thesis ...................................................................................... 63 

2 Materials and Methods .................................................................................. 65 

2.1 Suppliers of the materials ......................................................................... 66 



 VI 

2.2 Molecular biology .................................................................................... 66 

2.2.1 PCR amplification for molecular cloning ............................................ 66 

2.2.2 Restriction endonuclease digestion of DNA ........................................ 67 

2.2.3 Agarose gel electrophoresis .................................................................. 68 

2.2.4 Purification of DNA from agarose ....................................................... 68 

2.2.5 DNA extraction using phenol/chloroform ............................................ 69 

2.2.6 DNA precipitation ................................................................................ 69 

2.2.7 Quantitation of DNA ............................................................................ 70 

2.2.8 Ligation of DNA fragments ................................................................. 70 

2.2.9 Bacterial cell transformation and amplification ................................... 71 

2.2.10 Small scale plasmid DNA preparation from bacteria (Mini-prep) ... 71 

2.2.11 Large scale plasmid DNA preparation from bacteria (Bulk-prep) ... 72 

2.2.12 Purification of plasmid DNA by caesium chloride density gradient 

centrifugation .................................................................................................... 73 

2.2.13 DNA sequencing .............................................................................. 74 

2.3 Cell culture ............................................................................................... 76 

2.3.1 Cell lines ............................................................................................... 76 

2.3.2 Maintenance of mammalian cell lines .................................................. 76 

2.3.3 Cell number quantitation ...................................................................... 77 

2.3.4 Cryopreservation of cell lines ............................................................... 78 

2.3.5 Microscopy ........................................................................................... 78 

2.3.6 Stable transfection of virus packaging cells ......................................... 78 

2.3.6.1 Transfection of cell with plasmid DNA using calcium phosphate 

co-precipitation ............................................................................................. 78 

2.3.6.2 Transfection of cells with plasmid DNA using Fugene®6 .......... 79 

2.3.7 Stable transduction of tumour cell lines with retroviral supernatant .... 80 

2.3.8 Generation of single-cell clones from transduced Tramp-C1 using 

limiting dilution ................................................................................................ 81 

2.4 Cellular assays ......................................................................................... 82 

2.4.1 Preparation of protein extracts from mammalian cells ........................ 82 

2.4.2 Determination of protein concentration ............................................... 82 

2.4.3 Western blot analysis of proteins separated by SDS-PAGE 

electrophoresis .................................................................................................. 83 

2.4.3.1 Denaturating SDS polyacrylamide gel electrophoresis (SDS-

PAGE) electrophoresis ................................................................................. 83 

2.4.3.2 Immunoblotting/western blotting ................................................. 84 

2.4.4 ß-galactosidase assay for activation of B3Z hybridoma ...................... 85 

2.4.5 Chromium release cytotoxicity assay ................................................... 86 

2.4.6 In vitro cytotoxicity assay: MTT test ................................................... 87 

2.4.7 Granulocyte-macrophage colony-stimulating factor enzyme-linked 

immunosorbent assay (ELISA) ........................................................................ 87 

2.5 In vivo experiments ................................................................................... 89 

2.5.1 Mice ...................................................................................................... 89 

2.5.2 Harvesting lymph nodes and spleen ..................................................... 90 

2.5.3 Preparation of single-cell suspension from lymph nodes, spleen or 

blood  .............................................................................................................. 91 

2.5.4 Ex-vivo OT-I T cell expansion for in vivo administration .................... 92 

2.5.5 Adoptive transfer of transgenic OT-I T cells ....................................... 92 

2.5.6 CB1954 prodrug administration in vivo ............................................... 92 



 VII 

2.5.7 Subcutaneous tumour inoculation in mice ........................................... 92 

2.5.8 Isolation of tumour cells from subcutaneous tumours in mice ............ 93 

2.5.9 Irradiation of mice ................................................................................ 94 

2.5.10 Flow cytometric analysis .................................................................. 94 

2.5.10.1 Surface cell staining ..................................................................... 94 

2.5.10.2 Pentamer staining ......................................................................... 95 

2.5.10.3 Intracellular cytokine cell staining ............................................... 96 

2.5.10.4 CD107a staining ........................................................................... 96 

2.5.11 In vivo cytotoxicity assay ................................................................. 96 

2.5.12 Analysis of cell proliferation ............................................................ 97 

2.5.12.1 Analysis of cell proliferation using CFSE dilution ...................... 97 

2.5.12.2 Analysis of OT-I T cell proliferation in response to target cells 

using thymidine incorporation ...................................................................... 98 

2.6 Graph plotting and statistical analysis .................................................... 99 

3 Results: Generation and characterization of TrampOVA and TrampOVA-NR 

cells  ........................................................................................................................ 100 

3.1 Introduction ............................................................................................ 101 

3.2 Generation of TrampOVA clones .............................................................. 102 

3.2.1 Construction of p-BABE-OVA-puro retroviral vector ...................... 102 

3.2.2 Generation of single cell-derived TrampOVA clones ........................... 105 

3.2.3 Detailed characterization of TrampOVA clones ................................... 107 

3.2.3.1 Detection of ovalbumin protein expression ................................ 107 

3.2.3.2 Activation of OVA-specific (B3Z) CD8
+
 T cell hybridoma by 

TrampOVA clones ........................................................................................ 108 

3.2.3.3 Lysis of TrampOVA clones by effector OT-I T cells ................... 110 

3.2.3.4 MHC class I surface expression by TrampOVA clones ............... 111 

3.2.4 Choice of TrampOVA clone 3 for establishment of the model tumour cell 

line  ............................................................................................................ 114 

3.3 Generation of TrampOVA clones expressing nitroreducatase enzyme .... 114 

3.3.1 Nitroreductase expression in TrampOVA-NR clones ........................... 115 

3.3.2 TrampOVA-NR clones sensitivity to CB1954 prodrug ........................ 115 

3.3.3 Presentation of ovalbumin epitope by TrampOVA-NR clone 11 ......... 118 

3.3.4 Bulk growth of TrampOVA and TrampOVA-NR cells in preparation for in 

vivo experiments ............................................................................................. 119 

3.4 Tumourigenicity of TrampOVA and TrampOVA-NR cells in nude C57BL/6 

mice  ................................................................................................................ 122 

3.5 Dose titration of OT- I T cells in nude C57BL/6 mice with established 

TrampOVA tumours .............................................................................................. 124 

3.5.1 Effect of 10 million naïve OT-I T cells .............................................. 124 

3.5.2 Effect of 2.5 million OT-I T cells ....................................................... 131 

3.6 Discussion .............................................................................................. 133 

4 Results: CD8
+
 T cell responses stimulated by NR/CB1954-mediated 

tumour cell killing in vivo .................................................................................... 137 

4.1 Introduction ............................................................................................ 138 



 VIII 

4.2 Donor CD8
+
 T cell responses to NR/CB1954-mediated cytotoxicity in 

immunodeficient mice ......................................................................................... 138 

4.2.1 Sensitivity of established TrampOVA-NR tumours in nude C57BL/6 

mice receiving sub-therapeutic OT-I cell dose ............................................... 138 

4.2.2 Testing for generation of CD8
+
 T cell immunity following NR/CB1954 

gene therapy ................................................................................................... 140 

4.2.3 Examining the capacity of lymphocytes from CB1954/vehicle treated 

TrampOVA-NR tumour bearing mice to provide protective antitumour immunity 

in secondary nude C57BL/6 hosts .................................................................. 145 

4.2.4 Characterization of tumour cells derived from TrampOVA tumour 

bearing mice after secondary adoptive transfer of vehicle or CB1954 primed T 

cell  ............................................................................................................ 149 

4.2.4.1 Detection of SV40 Tag and OVA genes in TrampOVA tumour .. 150 

4.2.4.2 Activation of ovalbumin-specific B3Z T cell hybridoma by tumour 

rederived cells ............................................................................................. 151 

4.2.5 Donor CD8
+
 T cell responses to NR/CB1954-mediated cytotoxicity in a 

modified model ............................................................................................... 152 

4.3 Donor CD8
+
 T cell responses to NR/CB1954-mediated cytotoxicity in 

immunocompetent mice ...................................................................................... 156 

4.3.1 Introduction ........................................................................................ 156 

4.3.2 Tumourigenicity of TrampOVA cells in wild-type C57BL/6 mice ...... 157 

4.3.3 Tumourigenicity of TrampOVA tumours using matrigel in wild-type 

C57BL/6 mice ................................................................................................ 158 

4.3.4 Tumourogenicity of TrampOVA and TrampOVA-NR tumours in irradiated 

wild-type mice C57BL/6 mice ....................................................................... 159 

4.3.5 Donor CD8
+
 T cell responses to NR/CB1954-mediated cytotoxicity in a 

short-term model ............................................................................................ 160 

4.3.5.1 OVA-specific CD8
+
 T cell proliferation .................................... 161 

4.3.5.2 OVA-specific CTL effector function ......................................... 164 

4.4 Endogenous antitumour CD8
+
 T cell responses to NR/CB1954-mediated 

cytotoxicity in wild-type C57BL/6 mice .............................................................. 166 

4.4.1 Expansion of endogenous OVA-specific CD8
+
 T cell in response to 

NR/CB1954-mediated cytotoxicity in wild-type C57BL/6 mice ................... 166 

4.4.2 Generation of OVA-specific CTLs following NR/CB1954-mediated 

cytotoxicity in wild-type C57BL/6 mice ........................................................ 170 

4.5 Discussion .............................................................................................. 173 

5 Results: CD8
+
 T cell responses to combined therapy with NR/CB1954 and 

4-1BBL or GM-CSF in vivo ................................................................................. 180 

5.1 Introduction ............................................................................................ 181 

5.2 CD8
+
 T cell responses stimulated by combined therapy of NR/CB1954 

and 4-1BB costimulatory ligand ......................................................................... 182 

5.2.1 Generation of single cell-derived TrampOVA-4-1BBL clones ............ 182 

5.2.2 Characterization of TrampOVA-4-1BBL cells ..................................... 184 

5.2.2.1 4-1BB costimulatory ligand expression by TrampOVA-4-1BBL 

clones  .................................................................................................... 184 

5.2.2.2 Presentation of OVA-epitope by TrampOVA-4-1BBL clone 21 .. 186 



 IX 

5.2.2.3 Activation of naïve OT-I CD8
+
 T cells by TrampOVA-4-1BBL cells 

  .................................................................................................... 187 

5.2.2.4 Stimulation of effector OT-I CD8
+
 T cell responses by TrampOVA-

4-1BBL cell ................................................................................................ 188 

5.2.2.5 Immunogenicity of TrampOVA-4-1BBL cells in C57BL/6 mice 189 

5.2.2.6 Characteristics of tumour cells from matrigel grown TrampOVA-4-

1BBL tumours in C57BL/6 mice ............................................................... 191 

5.2.3 Endogenous memory OVA-specific CD8
+
 T cell responses in 

TrampOVA-4-1BBL immunized C57BL/6 mice ............................................. 192 

5.2.4 Donor CD8
+
 T cell response induced by combined NR/CB1954 and 4-

1BBL treatment in a long-term in vivo model ................................................ 197 

5.2.5 Endogenous CD8
+
 T cell responses simulated by combined 

NR/CB1954 and 4-1BBL treatment in a long-term in vivo model ................. 201 

5.3 CD8
+
 T cell responses to combined therapy of NR/CB1954 and 

granulocyte macrophage-colony stimulating factor (GM-CSF) ........................ 205 

5.3.1 Generation of pxLNI-murine GM-CSF retroviral vector ................... 205 

5.3.2 Generation of TrampOVA-GM-CSF cells ............................................ 207 

5.3.3 Characterization of TrampOVA-GM-CSF cells ................................... 207 

5.3.3.1 Murine-GM-CSF production by TrampOVA-GM-CSF cells ....... 207 

5.3.3.2 Presentation of OVA-epitope by TrampOVA-GM-CSF cells ...... 208 

5.3.4 Endogenous CD8
+
 T cell responses stimulated by combined 

NR/CB1954 and GM-CSF treatment in a long-term in vivo model ............... 209 

5.4 Discussion .............................................................................................. 212 

6 Results: Effect of combined therapy of NR/CB1954 and 4-1BBL on 

anergic CD8
+
 T cell responses in vivo ................................................................. 217 

6.1 Introduction ............................................................................................ 218 

6.2 Induction of CD8
+
 T cell anergy in OT-I BoyJ mice using multiple OVA-

peptide injections ................................................................................................ 219 

6.2.1 Characterization of anergized OT-I CD8
+
 T cells in vitro ................. 219 

6.2.2 Functional and proliferative responses of anergized OT-I CD8
+
 T cells 

in vitro  ............................................................................................................ 224 

6.2.3 Characterization of anergized donor OT-I CD8
+
 T cells in C57BL/6 

mice bearing subcutaneous TrampOVA-NR cells ............................................ 227 

6.3 Examining reversal of OT-I CD8
+
 T cell hyporesponsiveness by 4-1BBL .. 

  ................................................................................................................ 231 

6.3.1 Anergized OT-I CD8
+
 T cells response to TrampOVA-4-1BBL cells in 

vitro  ............................................................................................................ 231 

6.3.2 Anergized OT-I CD8
+
 T cell responses to combined NR/CB1954 and 

4-1BBL therapy in C57BL/6 mice ................................................................. 234 

6.4 Discussion .............................................................................................. 239 

7 Summary, future work and conclusions ..................................................... 246 

7.1 Summary ................................................................................................. 247 

7.2 Future work ............................................................................................ 257 

7.3 Conclusions ............................................................................................ 259 



 X 

8 References ..................................................................................................... 260 

 



 XI 

List of Figures 

Figure ‎1-1: The interplay between innate and adaptive immunity ............................ 7 

Figure ‎1-2: Antigen processing and presentation .................................................... 13 

Figure ‎1-3: A model of CD8
+
 T cells fate during peripheral tolerance: Anergy 

versus Deletion ......................................................................................................... 32 

Figure ‎1-4: Schematic diagram of gene directed enzyme prodrug therapy (GDEPT).

 .................................................................................................................................. 53 

Figure ‎3-1: Full length chicken ovalbumin cDNA ................................................ 102 

Figure ‎3-2: p-BABE-OVA-puro (pAS09) retroviral plasmid map ....................... 104 

Figure ‎3-3: Characterization of pBABE-OVA-puro (pAS09) retroviral vector ... 105 

Figure ‎3-4: Gel electrophoresis analysis of PCR products from single cell derived 

TrampOVA clones .................................................................................................... 106 

Figure ‎3-5: Western blot analysis for ovalbumin protein in polyclonal TrampOVA 

cells ......................................................................................................................... 108 

Figure ‎3-6: B3Z T cell activation by TrampOVA clones ........................................ 110 

Figure ‎3-7: In vitro CTL assay to compare OVA-specific cytolytic sensitivity of 

TrampOVA clones .................................................................................................... 111 

Figure ‎3-8: Expression of MHC class I molecule by different TrampOVA clones . 113 

Figure ‎3-9: Nitroreductase expression in TrampOVA-NR cells .............................. 115 

Figure ‎3-10: Sensitization of TrampOVA-NR single cell-derived clones to CB1954

 ................................................................................................................................ 117 

Figure ‎3-11: B3Z T cell activation by TrampOVA-NR cells .................................. 119 

Figure ‎3-12: Sensitization of TrampOVA-NR clone 11 to CB1954 over different cell 

passages .................................................................................................................. 121 

Figure ‎3-13: Growth characteristics of subcutaneous tumours initiated by parental 

Tramp-C1 and the subclones TrampOVA and TrampOVA-NR cells ......................... 123 

Figure ‎3-14: Effect of 10x10
6
 naïve or effector OT-I T cells on subcutaneous 

tumour growth of TrampOVA cells in syngeneic nude C57BL/6 mice. .................. 125 

Figure ‎3-15: Donor CD8
+
 T cell proliferation and activation in nude C57BL/6 mice 

bearing Tramp-C1 or TrampOVA tumours .............................................................. 129 

Figure ‎3-16: Effect of 2.5x10
6
 naïve OT-I T cells on subcutaneous tumour growth 

of TrampOVA cells in syngeneic nude C57BL/6 mice ............................................ 132 

Figure ‎4-1: TrampOVA-NR tumour growth in nude C57BL/6 mice treated with 

CB1954 ................................................................................................................... 140 

Figure ‎4-2: OVA-specific CTL response following long-term tumour regression of 

CB1954 treated TrampOVA-NR tumours in nude C57BL/6 mice ........................... 143 

Figure ‎4-3: Prophylactic efficacy of lymphocytes from CB1954/vehicle treated 

TrampOVA-NR tumour bearing mice against TrampOVA tumour growth in secondary 

nude C57BL/6 mice ................................................................................................ 147 

Figure ‎4-4: Gel electrophoresis of PCR product of OVA and SV40 genes in 

genomic DNA extracted from tumour cells. .......................................................... 151 

Figure ‎4-5: OVA antigen presentation by TrampOVA tumour cells derived from 

vehicle- or CB1954-primed T cell recipients ......................................................... 152 

Figure ‎4-6: Donor CD8
+
 T cell responses to NR/CB1954-mediated cytotoxicity in 

nude C57BL/6 mice ................................................................................................ 154 

Figure ‎4-7: Growth characteristics of subcutaneous TrampOVA tumours in wild-type 

C57BL/6 mice using 10x10
6
 cell inoculum ........................................................... 157 

Figure ‎4-8: Growth characteristics of subcutaneous TrampOVA tumours in wild-type 

C57BL/6 mice in the presence of matrigel ............................................................. 158 



 XII 

Figure ‎4-9: Growth characteristics of subcutaneous TrampOVA  and TrampOVA-NR 

tumours in irradiated wild-type C57BL/6 mice ..................................................... 160 

Figure ‎4-10: Donor OVA-specific T cell expansion in response to NR/CB1954-

mediated cytotoxicity ............................................................................................. 163 

Figure ‎4-11: OVA-specific CTL response to NR/CB1954-mediated cytotoxicity 165 

Figure ‎4-12: Generation of endogenous OVA-specific CD8
+
 T cell following 

NR/CB1954 treatment ............................................................................................ 169 

Figure ‎4-13: Endogenous OVA-specific CTL response to NR/CB1954-mediated 

cytotoxicity ............................................................................................................. 172 

Figure ‎5-1: Generation of TrampOVA-4-1BBL cells. ............................................. 183 

Figure ‎5-2: Surface expression of 4-1BB ligand by TrampOVA-4-1BBL clones. .. 185 

Figure ‎5-3: B3Z T cell activation by TrampOVA-4-1BBL cells. ............................ 186 

Figure ‎5-4: Proliferation of OT-I CD8+ T cells stimulated by TrampOVA-4-1BBL 

cells. ........................................................................................................................ 187 

Figure ‎5-5: Activation of OVA-specific CTL responses following different priming 

conditions. .............................................................................................................. 188 

Figure ‎5-6: Comparison of different conditions for subcutaneous growth of 10 

million TrampOVA-4-1BBL cells in C57BL/6 mice ............................................... 190 

Figure ‎5-7: Light micrograph of tumour cells derived from TrampOVA-4-1BBL 

matrigel grown tumours in C57BL/6 mice ............................................................. 192 

Figure ‎5-8: Memory OVA-specific CD8
+
 T cell response in C57BL/6 mice 

immunized with TrampOVA-4-1BBL tumour cells ................................................. 195 

Figure ‎5-9: Donor OT-I CD8
+
 T cell responses to NR/CB1954 combined therapy in 

wild-type C57BL/6 mice ........................................................................................ 199 

Figure ‎5-10: Endogenous OVA-specific CD8+ T cell responses to NR/CB1954 and 

4-1BBL combined therapy in wild-type C57BL/6 mice ........................................ 203 

Figure ‎5-11: Map and restriction enzyme digests of the mGM-CSF expression 

vector pAS154 ........................................................................................................ 206 

Figure ‎5-12: Murine GM-CSF cytokine production by TrampOVA-GM-CSF cells

 ................................................................................................................................ 207 

Figure ‎5-13: B3Z T cell activation by TrampOVA-GM-CSF cells ......................... 208 

Figure ‎5-14: Endogenous OVA-specific CD8
+
 T cell responses to NR/CB1954 and 

GM-CSF combined therapy in wild-type C57BL/6 mice ...................................... 210 

Figure ‎6-1: Effect of multiple SIINFEKL-peptide administrations on total 

lymphocytes numbers and CD 8
+
 T cell to B cell proportion in lymphoid tissues of 

male OT-I BoyJ mice. ............................................................................................ 220 

Figure ‎6-2: Surface phenotype of OT-I CD8
+
 T cells following single or multiple 

SIINFEKL-peptide stimulations ............................................................................. 223 

Figure ‎6-3: Functional and proliferative responses of OT-I CD8
+
 T cells following 

single or multiple SIINFEKL-peptide stimulations in vivo. ................................... 226 

Figure ‎6-4: Anergized OT-I CD8
+
 T cell responses in C57BL/6 recipient mice 

inoculated with TrampOVA-NR tumour cells .......................................................... 229 

Figure ‎6-5: Activation of anergized OT-I CD8
+
 T cells following stimulation with 

TrampOVA-4-1BBL cells in vitro. ........................................................................... 233 

Figure ‎6-6: Activation of anergized donor OT-I CD8
+
 T cells following 

NR/CB1954 and 4-1BBL combined therapy in C57BL/6 mice ............................. 237 

 



 XIII 

List of Tables 

Table 1-1: Summary of clinical trials testing GM-CSF gene-transduced vaccine .. 43 

Table 2-1: Oligonucleotide sequences used in molecular cloning .......................... 67 

Table 2-2: Different cell lines used in the present study ......................................... 76 

Table 2-3: List of primary and secondary antibodies used in western blotting....... 85 

Table 2-4: List of antibodies used in flow cytometric analysis ............................... 95 

Table 3-1: TrampOVA-NR single cell-derived clones IC50 range of CB1954 ........ 118 

 

 



 XIV 

Abbreviations 

Ab 

ADEPT 

AICD 

AINR 

APC  

cDNA 

CFSE 

CMV 

CTL 

CTLA-4 

DCs 

DNA 

DLN 

DMEM 

E. coli 

ELISA 

FACS  

FCS 

FITC 

GDEPT 

GM-CSF 

Gy 

hr 

IFN 

Ig 

IL 

i.p. 

i.v. 

kb 

kDa 

kg 

LN 

M 

mAb 

MAPK 

MHC 

mg 

min 

ml 

mM 

NaCl 

N-DLN 

n.d 

ng 

NK 

NR 

OVA 

PBS 

Antibody 

Antibody directed enzyme prodrug therapy 

Activation induced cell death 

Activation induced non-responsiveness 

Antigen presenting cells 

Complementary DNA 

Carboxy Fluorescein diacetate, Succinimidyl Ester 

Cytomegalovirus 

Cytotoxic T lymphocyte 

Cytotoxic T lymphocyte antigen 4 

Dendritic cells 

Deoxyribonucleic acid 

Draining lymph node 

Dulbecco‟s modified Eagle medium 

Escherichia coli 

Enzyme-linked immunosorbent assay 

Fluorescence activated cell sorter 

Foetal calf serum 

Fluorescein isothiocyanate 

Gene directed enzyme prodrug therapy 

Granulocyte-macrophage colony stimulating factor 

Gray 

Hour 

Interferon 

Immunoglobulin 

Interleukin 

intraperitoneal 

Intravenous 

Kilobase 

Kilodalton 

Kilogram 

Lymph node 

Molar  

Monoclonal antibody 

Mitogen-activated protein kinase 

Major histocompatability complex 

Milligram 

Minutes 

Millilitre 

Millimolar 

Sodium chloride 

Non draining lymph node 

Not determined 

Nanogram 

Natural killer cells 

Nitroreductase 

Ovalbumin 

Phosphate buffered saline 



 XV 

PCR 

RAG 

RNA 

RT 

s.c. 

SDS  

TAA 

TAP  

TCR 

Tg 

Th1 

Th2 

TIL 

TNFR 

TRAF 

TRAIL 

Treg 

Tris 

TSA 

v/v 

V 

wt 

w/v 

μg 

μM 

μm 

Polymerase chain reaction 

Recombination activating gene 

Roswell Park Memorial Institute 

Room temperature  

Subcutaneous 

Sodium dodecyl sulphate 

Tumour associated antigen 

Transporters associated with antigen processing   

T cell receptor 

Transgenic 

Type 1helper T-cell  

Type 2 helper T-cell  

Tumour infiltrating lymphocytes 

Tumour necrosis factor receptor 

TNF Receptor Associated Factor 

TNF-related apoptosis-inducing ligand 

T regulatory cells 
Tris(hydroxymethyl) methylamine 
Tumour specific antigen 

Volume/volume 

Volts 

Wild type 

Weight/volume 

Microgram 

Micromolar 

Micrometer 

 

 

   

 



1 Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 2 

1.1 Overview 

Cancer is one of the leading causes of death in the world. In the next decades, the 

number of cancer cases and mortality is expected to double due to increased life 

expectancies, posing a major public health challenge (World Cancer Report 2008-

IARC). Exposure to several environmental and genetic factors contributes to 

transformation of normal cells to acquire autonomous hyperproliferative and 

limitless survival capacities capable of forming cancer. Thus far, cancer are mainly 

treated with conventional therapies including surgery, chemotherapy or radiation, 

however these treatments may have undesirable adverse effects and limited efficacy. 

The negative impact of these options and treatment failure promoted the search for 

novel approaches with reduced systemic toxicity, enhanced efficacy to improve 

patients‟ survival and quality of life. 

Among the different research areas for treatment of cancer is the use of targeted 

therapies. Ideally, these treatments endeavour to selectively kill cancerous cells 

while sparing normal cells from the harmful effects and complications of treatment. 

There are multiple types of targeted approaches available for treatment of cancer, 

including molecularly targeted therapies e.g. tyrosine kinase inhibitors and 

biologically targeted therapies such as antibodies and gene therapy. Another 

promising research field involves the use of vaccines or immunomodulatory agents 

to harness both the innate and adaptive immune system of patients to reject cancer. 

More recently there is a growing interest in the use of combined approaches for 

treatment of tumours owing to the complex nature of cancer as a disease. Indeed, 

combined therapies will offer the opportunity for tailoring of treatment according to 

the type of the tumour; also assist in overcoming resistance and recurrence of 

cancer.  One of the interesting combined approaches is to eradicate tumour cells via 
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targeted chemotherapy therapy together with stimulating the host immune system 

using immunotherapeutic agents to augment the antitumour immune response. The 

synergistic potential of these two different modalities holds potential for eliciting 

improved therapeutic results and it is likely applicable to many types of cancer 

(Baxevanis et al., 2009). 

This thesis is focussed on assessing the generation of antitumour immune response 

to one of the gene therapy approaches, which utilize E.coli nitroreductase enzyme 

(NR) to activate the prodrug CB1954 thereby inducing localized tumour cell death. 

Also, investigating improved immune response by combining with 

immunomodulatory genes.  This introduction will therefore briefly review some key 

aspects of the immune system and cancer development and immunosurveillance, 

before discussing some examples of immune and gene therapy for treatment of 

cancer. 

1.2 Cancer development 

Historically, cancer development has long been considered as a multistage and a 

multifactorial process that depend on mutational events. Each mutation provides 

selective growth advantage of mutated cells to escape from their normal regulatory 

controls and become self-sufficient in survival towards tumour progression. In the 

early stages of cancer development, normal cells acquire irreversible DNA damage 

in critical genes regulating normal cell growth, differentiation and death, favouring 

uncontrolled proliferation of initiated clones (Coleman and Tsongalis, 1995). This 

clonal expansion can be triggered in somatic tissues not only by external factors but 

also by inherited mutations. During tumour progression, increased genomic 

instability enables the initiated cell population to override checkpoints and control 

mechanisms by developing self-sufficiency in growth signals, insensitivity to 
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growth inhibitory signals, and evasion of programmed cell death leading to limitless 

replicative potential.  Eventually, tumour expands obligating growth of new blood 

vessels for nutrient supply and facilitating invasion and distant settlement –

metastasis– of tumour cells in other tissues (Hanahan and Weinberg, 2000). 

In parallel to cell-intrinsic mechanisms of tumour suppression, there is compelling 

evidence that the immune system surveys for and eliminates newly transformed 

cells (Zitvogel et al., 2006); however eradication of transformed cells occurs based 

on antigenic differences and before clinical presentation (Shankaran et al., 2001). In 

contrast, there are other studies that support the role of chronic inflammation as an 

indispensable factor in the initiation and promotion of malignant disease (Balkwill 

et al., 2005; Coussens and Werb, 2002). Failure of tumour immunosurveillance is 

associated with increasingly aggressive tumour growth, further resistance to 

immune destruction and subversion of the immune response (Prestwich et al., 

2008). 

1.3 The immune system 

The host‟s immune system is the main defence mechanism against pathogenic 

micro-organisms and non infectious foreign substances. It provides a rapid and 

specific means of protection against a broad range of pathogens, toxic, and 

allergenic substances using a complex network of molecules, interdependent 

haematopoietic cells and lymphoid organs. Host protection against infection is 

provided by two types of immunity: The innate (or non specific) and the adaptive 

(or specific) immune response.  A key feature of the immune system is its ability to 

discriminate self from non-self and to avoid harmful immune response to self 

(Chaplin, 2003). 
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1.3.1 Innate immunity 

The innate immune response represents the first line of defence against invading 

pathogens. It functions through (1) physical barriers such as, epithelial layers and 

mucous membranes that produce mucus to trap pathogens, (2) phagocytic cells 

(neutrophils, monocytes, macrophages and dendritic cells) and natural killer cells 

(NK), (3) biochemical mediators including members of the complement system, 

acute phase reactants and cytokines that coordinate and activate cells of the innate 

immune system. In contrast to the adaptive immune response, innate immunity is 

rapid, short-lived and does not confer protective immunity; it helps at early times to 

limit infection and acts to regulate the adaptive immune system (Beutler, 2004). 

1.3.2 Adaptive immunity 

The adaptive immune system evolved exclusively in higher vertebrates. It is so 

called adaptive due to the ability of its cellular component to recognize or identify 

pathogen-specific antigens and respond by clonal expansion of initially rare 

precursors with antigen recognition receptors of appropriate specificity. This 

process is usually slow and it takes several days to mount an effective immune 

response and up to three weeks to eliminate these antigens. Another fundamental 

feature of the adaptive response is the diversity of antigen receptors on lymphocytes 

generated by random rearrangement of gene segments encoding each subunit of the 

antibodies from B cell and T cell receptor (TCR) of T cells (Chaplin, 2010).     

The key cellular components of the adaptive immune system are B lymphocytes and 

T lymphocytes; however their functions are mainly dependent on the antigen 

presentation process that is mediated by members of the innate immune cells, 

namely dendritic cells (DCs). Mature DCs therefore serve as a major link between 
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innate and adaptive immunity through priming of T cells which in turn play an 

important role in regulating B cell proliferation and differentiation (Fig 1-1) (Reis e 

Sousa, 2004).  

B cells are involved in the production of antibody-secreting cells that can directly 

recognise native antigen through their B cell receptors and hence constitute the 

humoral immune response. T lymphocytes, on the other hand, are responsible for 

cell-mediated immunity and can only recognize peptides displayed by antigen 

presenting cells (APCs) in the context of major histocompatability complex 

molecules.  Antibodies and cytokines produced during the adaptive immune 

response not only form the second line of immune defence against antigenic 

challenge, but are also involved in activation and modulation of innate immunity via 

recruitment of innate cells and enhancement of antibody-mediated opsonization and 

cytotoxicity (Delves and Roitt, 2000). 

Central to the adaptive immune system‟s exquisite specificity for antigens is its 

ability to form memory and life long immunity.  This feature stimulated extensive 

research towards designing strategies to harness the immune system to generate 

protective antitumour responses. Employing the host‟s immune system represents a 

more natural and safer mean to fight cancer (Steer et al., 2010).  
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Figure 1-1: The interplay between innate and adaptive immunity 

A schematic representation of the innate and the adaptive immune system, showing 

the complex interactions between cells of both subsets and their soluble factors. 

(Visser and Coussens 2005). 

 

1.4 Recognition of cancer by the immune cells 

In normal cells intracellular proteins are continuously being synthesized and 

degraded to maintain several important cellular homeostatic functions. Tumour 

cells, in contrast to normal cells, acquire several genetic and epigenetic alterations 

during the carcinogenesis process resulting in generation of novel proteins and over-

expression of pre-existing proteins. Consequently, changes in the antigenic profile 

of tumour cells can allow multiple different epitopes from tumour-related proteins 

to be presented on the cell surface, thereby increasing the chances of eliciting 

specific immune responses (Pardoll, 2003). Evidence for the involvement of tumour 

antigens in tumour protection was demonstrated by the pioneering work of Boon 

and co-workers using tumour rejection mouse models (Boon and Van Pel, 1978). 
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This was further extended to show that these antigens were recognized by cytotoxic 

T lymphocytes (CTL) but were not capable of inducing a detectable antibody 

response (Sibille et al., 1990; Van Snick et al., 1982). There is some evidence 

regarding generation of humoral immune response in tumour rejection models and 

cancer patients, however this did not correlate with tumour protection or the disease 

state (Disis et al., 1999; Qin et al., 1998). Yet other experimental studies 

demonstrated the importance of the cellular immune response rather than the 

humoral element as the mediator of tumour immunity during tumour rejection 

(Rosenberg, 2001; Townsend and Bodmer, 1989).  

Tumour cells express normal and altered proteins that are degraded into numerous 

antigens; few of these molecules are recognized by the immune system and can be 

broadly divided into two categories: tumour-associated antigens (TAA) and tumour-

specific antigens (TSA). TAA are molecules expressed by both normal and tumour 

cells, however in tumour cells they are expressed in an immunogenic form due to 

abnormal level of expression, altered post translational modification, or wrong 

location. This distinguishes them from TSA that are only expressed on tumour cells 

and are products of mutated genes (Finn, 2006). 

 

1.4.1 T cell antigens 

To date, different approaches were utilised for detection of tumour antigens, aiming 

at identification of peptides recognised by T-cells. The genetic approach entail 

transfection of complementary DNA from tumour cells into target cells to examine 

recognition by autologous tumour-specific CTLs (van der Bruggen et al., 1991).  

This strategy led to the identification of MAGE, BAGE, and GAGE gene products 

referred to as tumour rejection antigens (Miles et al., 2006). A different biochemical 
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approach involve the elution of peptides bound to major histocompatability class I 

(MHC I) complex expressed on tumour lysates followed by further fractionation 

and identification (Hunt et al., 1992). More recently, serological analysis of antigens 

by recombinant expression cloning (SEREX) has emerged as an effective approach 

for identification of tumour antigen in a wide range of tumour types. This method 

relies on the reactivity of Immunoglobulin G (IgG) antibodies in serum of cancer 

patient against proteins encoded by prokaryotic cDNA libraries from tumour cells, 

assuming that humoral immune response is generated concurrent with T cell help 

and for which CTL may exist (Chen et al., 1997; Rosenberg, 2001).    

According to the pattern of expression and potency in eliciting tumour rejection, T 

cell antigens were classified into four groups (Gilboa, 1999). Group I comprises 

patient-specific tumour antigens arising from somatic mutations in normal gene 

products due to the genetic instability of tumour cells during the oncogenic process. 

Group II represents tumour-specific antigens that are specially expressed only in 

tumour cells; however they could be shared among cancer patients. These antigens 

result from mutations in oncogenes or tumour suppressor proteins (e.g. ras and p53) 

or present in cancers of viral aetiology (epstein-barr viral antigens). Group III 

includes shared tumour antigens that correspond to normal gene products with 

highly restricted tissue distribution (e.g. cancer testis antigens; MAGE). Group IV 

also comprises shared tumour antigens, but correspond to normal tissue specific 

gene products, namely, “differentiation antigens” (such as melanocyte 

differentiation antigens; MelanA/MART-1). This group of antigens is expected to 

induce some degree of tolerance and represents the least potent tumour rejection 

antigens among the previously mentioned groups. 
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1.4.2 Antigen processing and presentation 

Initiation of an adaptive immune response begins when immature DCs, being the 

most potent APCs, capture protein antigens and process them for presentation in the 

context of MHC. Immature DCs are unable to present these antigens efficiently 

unless they become activated in response to “danger signals” resulting from reaction 

to tissue damage or recognition of invading pathogens. DCs can sense these 

maturation stimuli through pattern recognition receptors (e.g. Toll like receptors) 

that detect pathogen-associated molecular patterns (e.g. lipopolysaccharide or 

double stranded RNA) and damage-associated molecular patterns (e.g. heat shock 

proteins or uric acid), also via cytokine receptors. Influenced by the maturation 

stimulus, DCs upregulate costimulatory molecules and increase surface expression 

of adhesion and chemokine receptors to enable them to migrate through afferent 

lymphatic vessel to sentinel lymph nodes (Guermonprez et al., 2002; Steinman, 

2001). Meanwhile, naïve B and T cell clones capable of recognizing specific 

antigens are confined to secondary lymphoid tissues (lymph nodes, Peyer's patches 

and spleen and other organs) and are continually recirculating via lymph and blood 

in search of antigens. Once in the lymph nodes (LNs), mature DCs provide naïve T 

cells with immunological signals required for their activation and differentiation. 

The first stimulus is initiated by T-cell receptor (TCR) recognition of antigen 

presented in the context of MHC molecules. Accordingly, the type of MHC 

molecule determines the type of adaptive immune response (Joffre et al., 2009; 

Lammermann and Sixt, 2008).  

MHC I molecules, expressed by all nucleated cells, display normal and abnormal  

peptide antigens on their surface for CD8
+
 T cells mediating cellular immunity. On 

the other hand MHC II molecules are only expressed by APCs including 
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macrophages, B cells and DCs that present peptides from endocytosed proteins to 

CD4
+
 T cells stimulating helper T cell-dependent humoral immune response. The 

pathway for protein degradation associated with antigen processing and presentation 

are mainly determined by the subcellular localization of the antigen processing and 

can be broadly categorized into the cytosolic and the endocytic pathway (Brodsky 

and Guagliardi, 1991). 

1.4.2.1 The cytosolic pathway 

Foreign antigens present in the cytosol are products of pathogenic organisms 

infecting host cells or mutated or overexpressed genes as in tumour cells. The 

majority of these proteins are generally degraded into peptides via the ubiquitin-

proteosome system. Initially cytosolic proteins are tagged with multiple ubiquitin 

molecules in preparation for recognition and proteolysis by the proteosomes (Fig 1-

2a). The generated peptides are translocated to the endoplasmic reticulum (ER) by a 

heterodimeric peptide transporter associated with antigen processing protein (TAP-1 

and TAP-2). These proteins are members of the superfamily of ATP-binding 

cassette (ABC) transporters that utilize ATP to drive the transport of structurally 

diverse molecules. Translocated peptides bind to newly synthesized MHC class I 

molecules under the control of several ER resident chaperons (tapasin, calnexin, 

calreticulin). Stable MHC-peptide complexes are rapidly exported to the cell surface 

via the Golgi compartment for possible recognition by CD8
+
 T cells (Guermonprez 

et al., 2002; Lankat-Buttgereit and Tampe, 2002).  

1.4.2.2 The endocytic pathway 

Extracellular proteins are internalized by phagocytosis or endocytosis by specialized 

APCs. After internalization proteins are degraded into peptides within highly acidic 
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compartments of the endocytic pathway. After being synthesized in the ER, MHC 

class II αβ heterodimers are translocated in association with the invariant chain (Ii) 

protein to late endosomal compartments called the (MIIC) (Fig 1-2b). Inside this 

compartment Ii is cleaved by proteolytic enzymes leaving a short peptide from Ii, 

the MHC class II–associated invariant-chain peptide (CLIP), bound to the peptide-

binding groove. A non polymorphic protein human leukocyte antigen (HLA)-DM 

and (HLA)-DO catalyzes the dissociation of CLIP and facilitates peptide exchange. 

The MHC II-peptide complexes are then transferred to the surface of APCs for 

recognition by CD4
+
 T cells (Jensen, 2007; Landsverk et al., 2009). 

1.4.2.3 Cross presentation 

Classically, peptides from cytosolic proteins are presented by MHC-I molecule, 

while proteins internalized from external sources are expected to access the 

endocytic pathway for presentation in association with MHC-II molecules. This 

dichotomy was challenged by Bevan‟s work showing that exogenous cellular 

antigens could be captured by APCs and used to prime CD8
+
 T cells in a process 

termed „cross-priming‟ (Bevan, 1976). Carbone and colleagues, subsequently, 

defined the cellular processes involved in presentation of exogenous antigens 

associated with cross priming as „cross-presentation‟ (Fig 1-2c). Further studies 

identified B cells, endothelial cells, macrophages and in particular DCs to possess a 

unique ability to process exogenous protein through TAP-dependent and TAP-

independent mechanisms for cross presentation and stimulation of CD8
+
 T cells 

(Heath and Carbone, 2001; Jensen, 2007)
 
. Evidence from several studies suggested 

that entry of exogenous protein into the cross-presentation pathway is largely 

influenced by the nature of the antigen, its stability, level of expression, mechanism 

of internalization by APCs and the type of APCs involved (Rock and Shen, 2005). 
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The process of cross-presentation of cell-associated antigens has evolved to permit 

tissue immune surveillance and is required for generation of cellular immunity 

against intracellular infection and tumours. In some instances, the physiological 

outcome of cross presentation can lead to cross-tolerance which involves CTL 

deletion or inducing a state of T cell anergy. This process is essential for the 

maintenance of peripheral tolerance and prevention of autoimmunity (Steinman et 

al., 2003).  

 

Figure 1-2: Antigen processing and presentation 

Schematic representation of antigen processing a, via the MHC class I; b, MHC 

class II; and c, cross-presentation pathways (Heath and Carbone, 2001). 

 

1.5 T cells 

1.5.1 Overview 

Based on the type of the chain involved in the T cell receptor (TCR) that is present 

on the surface of T cells and is responsible for antigen recognition, T lymphocytes 
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can be divided into two types: alpha beta T cells (αβ T cells) and gamma delta T 

cells (γδ T cells). The heterodimeric αβ T lymphocytes account for the majority of 

circulating T cells and reside mainly in lymphoid tissue; whereas γδ T cells 

constitute 1-5% of spleen and lymph nodes T cells but are highly abundant in 

epithelial layers of various organs, such as the small intestine, liver and reproductive 

tract (Chien and Bonneville, 2006).  As αβ T cell predominate in most mammals 

and more information is available regarding their functions compared to γδ T cells, 

this discussion will therefore only consider the αβ T cell subset. 

The αβ TCR polypeptides have very short cytoplasmic tails that lack signalling 

capacity; however they contain positively charged amino acids important for 

associations between TCR and the negatively charged amino acids within the 

transmembrane regions of the CD3 signal transduction complex. The CD3 

coreceptor is composed of three invariant dimers: CD3-epsilon/gamma and CD3-

epsilon/delta heterodimers and a TCR-zeta homodimer, which are non-covalently 

associated with the TCR heterodimer (Guy and Vignali, 2009).  The intracellular 

domains of each of the CD3 chains contain immunoreceptor tyrosine-based 

activation motifs (ITAMs) that mediate downstream signalling events. 

Phosphorylated ITAMs following antigen recognition, promote the recruitment and 

subsequent activation of the protein tyrosine kinase ZAP-70 thereby initiating a 

signalling cascade which leads to T-cell activation and differentiation (Pitcher and 

van Oers, 2003). 

Antigen recognition by T cells is a selective and restricted process that involves 

engagement of the TCR/CD3 complex to antigenic peptide in association with 

major histocompatability proteins expressed on the surface of target cells or APCs 

in a phenomenon termed “MHC restriction”. Antigens presented by MHC class I 
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molecules are recognized by cytotoxic CD8
+
 T lymphocytes (CTL), whereas 

peptides displayed by MHC class II molecules are identified by helper CD4
+
 T cells 

(Th).  

In general, T helper cells are a major source of cytokine production that provide 

help for other effector cells of the immune system and are particularly important for 

B cell proliferation and maturation into antibody secreting cells; while cytotoxic T 

cells are programmed to destroy cells expressing foreign antigens bound to class I 

MHC molecules. However, in reality, the functions of these cells are much more 

diverse and highly integrated. 

1.5.2 T cell receptor diversity 

T cell receptor is a heterodimer composed of transmembrane polypeptides α and β 

chains. The two chains are covalently linked to each other by disulphide bonds. 

Each chain of the heterodimer contains an invariant membrane proximal domain 

termed the constant or C region and a highly variable membrane distal domain 

known as V region. The variable domains are encoded in the germline by a multiple 

variable (V) regions, joining (J) regions, and in some cases diversity (D) regions. 

Within these variable regions of both α and β chains there are three hypervariable 

loops corresponding to most of the variability and complementary in structure to the 

antigenic determinant or epitope; these are therefore known as complementarity-

determining regions (CDRs) (Nikolich-Zugich et al., 2004; Schatz et al., 1992).   

TCR diversity is generated during T cell development by combinatorial 

rearrangement of the V, D, and J gene segments initiated by two Recombination 

Activating Gene products known as RAG-1 and RAG-2. In the V(D)J 

recombination process, RAG proteins excise the DNA between a pair of specific 

recombination signal sequences (RSSs) adjacent to the V(D)J gene segments. 
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Additional TCR diversity is generated by random insertion or deletion of non-

germline encoded nucleotides into the junctions before joining during the break 

repair process, thus the TCR diversity estimate is expected to be more than 1 10
13

 

TCR- αβ receptors (Davis and Bjorkman, 1988; Krangel, 2009). 

1.5.3 T cell activation 

T cells play a major role in regulating the adaptive immune response; however their 

specialized functions are only prominent once they become activated. The events of 

T cell activation is initiated by the interaction of TCR complex with foreign 

antigens bound to MHC molecules presented on the surface of APCs. This signal 

alone evokes antigen-specific unresponsiveness (termed T cell anergy) or apoptotic 

T cell death, and needs to be complemented by other receptor/ligand interaction 

between T cells and APCs for optimal T-cell activation and acquisition of effector 

functions. This second signal is provided by specialized costimulatory molecules 

such as B7-1 (CD80) and B7-2 (CD86), expressed by the DCs, and which trigger 

CD28 expressed on naive T cells. Moreover, a third signal mediated by the cytokine 

milieu provides instructive signals for full differentiation of T cells into various 

effector subsets (Bretscher, 1999; Corthay, 2006; Prlic et al., 2007).  

T cell activation is a multistep dynamic process that involves establishment of initial 

T cell/APC intimate physical contact to allow scanning for foreign peptide-MHC 

(p-MHC) complexes. In absence of antigen, T cells continue to crawl around the 

APCs or leave for another target cell. This initial contact is mainly dependent on 

loose adhesion forces generated by appropriate ligand/receptor interactions such as 

CD28/B7, CD2/CD58, or LFA-1 (lymphocyte function–associated 

antigen1)/ICAMs (immunoglobulin superfamily ligand). Once T cells encounter 

immunogenic p-MHC complex, the scanning process will halt resulting in 
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formation of the immunological synapse (IS) (Acuto and Cantrell, 2000; van Der 

Merwe and Davis, 2002). At this stage TCR activation initiates T cell cytoskeletal 

reorganisation that bring about microclustering of the TCR  and segregation of other 

molecules including the coreceptor CD4 or CD8, costimulatory receptor CD28, the 

adhesion molecule CD2 and various associated signalling molecules to form the 

central supramolecular activation complex (cSMAC). The peripheral edge of the 

SMAC is surrounded by a ring of the cognate LFA-1 integrin and its cognate ligand 

ICAM- 1, defined as the pSMAC (peripheral SMAC). The region outside the 

pSMAC is enriched with large molecules such as CD43, CD45 and CD148, and 

referred to as the dSMAC (distal SMAC) (Freiberg et al., 2002; Valitutti, 2008). 

Although the main role of Immunological synapse is generally controversial, 

several studies suggest that it serves in stabilization of the T cell–APC conjugation 

to sustain signalling through the TCR for the long duration required for productive 

T-cell activation and execution of effector functions (Davis and van der Merwe, 

2001; Rodriguez-Fernandez et al., 2010).  

The T cell response to an antigenic stimulus can be divided into three successive 

phases: expansion, contraction and memory. The expansion phase involves the 

initial encounter of antigen by antigen-specific T cells that undergo antigen-driven 

clonal proliferation and differentiate into effector cells. Activated T cells are 

characterized by their ability to secret cytokines, mediate cytotoxic activity and 

upregulate tissue homing receptors to extravasate into non lymphoid tissues. This 

enables activated T cells to survey peripheral tissues and execute their effector 

function where antigens on the surface of infected cells or tumour cells are present. 

T cell expansion usually plateaus within 1-2 weeks after the initial antigen challenge 

and is followed by a contraction phase, whereby 90–95% of the effector T cells 
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present will undergo apoptosis over the next 2-4 weeks. During the memory phase, 

the remaining 5-10% of T cells survives for extended periods as differentiated 

memory T cells. Unlike naïve T cells, memory T cells are more readily activated in 

the presence of low antigen levels and have less stringent requirement for 

costimulatory molecules to undergo proliferation. Memory T cells can also rapidly 

acquire effector functions such as the ability to kill target cells and/or secrete 

inflammatory cytokines upon re-exposure to antigens (Ahmed and Gray, 1996; 

Kaech et al., 2002; Tan and Surh, 2006).  

1.5.3.1 T cell activation and costimulation 

Optimal activation of naïve T cells requires recognition of a p-MHC complex and is 

particularly dependent on the CD28 costimulation to augment initial clonal 

expansion by increasing the strength of signalling and protection against cell death. 

This initial costimulatory signal is triggered within the early hours after 

encountering an antigen and seems to be insufficient to provide long-term survival 

of T cells; however additional sustained or at least periodic costimulatory signalling 

is required to support longevity of effector or memory cells. This explained the 

existence of a diverse range of costimulatory molecules with distinct and 

overlapping functions that is tightly regulated by the different activation status of 

the T cells and the associated inflammatory environment (Croft, 2003; Lenschow et 

al., 1996; Song et al., 2004).  

The receptor-ligand couples providing costimulatory signal for T cells, belong to a 

broad array of proteins and are involved in various cellular functions regulating T 

cell activation and tolerance. These molecules can be classified based on their 

molecular structure into two main groups namely: immunoglobulin (Ig) family 

members such as CD28 and the inducible costimulator (ICOS), and the tumour 
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necrosis factor receptor (TNFR) superfamily members including 4-1BB receptor. 

The cytokine receptors possessing the common γ-chain such as IL-2R, IL-4R, IL-

7R, and IL-15R could also be considered as a group of costimulatory molecule, 

since they play an important role in regulating T cell survival (Croft, 2003; Vinay 

and Kwon, 2009). 

At the same time, T cell responses are negatively regulated by inhibitory signals via 

programmed death 1 (PD-1) and cytotoxic T lymphocyte antigen (CTLA-4) 

receptors that have been described to down modulate ongoing T cell responses 

thereby preventing T-cell hyperactivation and maintaining self tolerance (Driessens 

et al., 2009).  

The next section will briefly cover some key aspects of the two main families of the 

costimulatory molecules before discussing 4-1BB receptor/4-1BB ligand 

costimulatory system in more detail.    

1.5.3.1.1 Immunoglobulin gene superfamily–costimulatory molecules 

Costimulatory receptors of this group, also called the B7/CD28 family, are type I 

transmembrane proteins with a single IgV extracellular domain while the ligands 

are type I transmembrane proteins with both IgV and IgC extracellular domains. 

There are currently several known ligand members for this family mainly: B7.1 

(CD80), B7.2 (CD86), inducible costimulator ligand (ICOS-L), programmed death-

1 ligand (PD-L1), programmed death-2 ligand (PD-L2), B7-H3, and B7-H4. 

The best characterized costimulatory pathway of this family involves B7-1(CD80) 

and B7-2 (CD86), which bind to two structurally related but functionally distinct 

receptors, CD28 and CTLA-4 (CD152). CD28 is constitutively expressed on the 

surface of naïve T cells and interaction with its ligand on antigen-presenting cells 

induces cell proliferation, interlukin-2 (IL-2) production and provides a critical 
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survival signal via activation of antiapototic factor Bcl-XL. CD28 mediated 

costimulation also enhances the expression of other costimulatory molecules 

(CD40L) in addition to other inducible costimulatory receptors OX-40 and 4-1BB 

essential for Th-independent CTL immunity (Diehl et al., 2002; Walker et al., 1999; 

Yang and Wilson, 1996). 

In contrast to CD28 receptor, CTLA-4 expression is rapidly upregulated within the 

early hours following T cell activation and is dependent on initial TCR engagement 

and CD28 costimulation. Moreover, CTLA-4 exhibit higher affinity for B7-1 and 

B7-2 than CD28, facilitating preferential engagement of CTLA-4 receptor on 

activated T cells and blockade of the B7/CD28 costimulatory pathway.  Ligation of 

CTLA-4 delivers inhibitory signals that antagonize the initial stimulatory effects of 

CD28/B7 interaction and dampens the T cell response. In this way, CTLA-4 acts as 

a cell intrinsic inhibitor of inappropriate activation of T cells and for preservation of 

homeostasis. Indeed, CTLA-4 polymorphisms in humans have been associated with 

several autoimmune disease including Graves' disease, autoimmune hypothyroidism 

and type 1 diabetes (Ueda et al., 2003).  

1.5.3.1.2 Tumour necrosis factor receptor (TNFR) superfamily 

Different types of TNF family receptors can be classified based upon their 

cytoplasmic sequences and signalling properties into three major groups, namely, 

death domain (DD)–containing receptors, decoy receptors (DcR), and TNF 

receptor-associated factor (TRAF) binding receptors. Those with the death domain 

are known as death receptors (DRs) such as DR1 (also known as TNF-R1), DR2 

(Fas), DR3, DR4 (also known as TNF-related apoptosis-inducing ligand receptor 1; 

TRAIL-R1), DR5 (also known as TRAIL-R2) and DR6. Crosslinking of these 

receptors by their corresponding ligands stimulate recruitment of DD-containing 
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signalling intermediates such as Fas associated death domain (FADD) and TNFR 

associated DD (TRADD) to activate caspase cascades, leading to apoptosis. 

Interestingly decoy receptors, DcR1 and DcR2 do not contain functional 

intracellular signalling domains or motifs and are capable of competing with DR4 or 

DR5 receptors for binding to the ligand (TRAIL), thereby inhibiting activation of 

signal transduction pathways by other TNF receptors (Aggarwal, 2003; Watts, 

2005). Several members belonging to the third group of receptors, TRAF binding 

receptor, e.g. CD27, CD134 (OX-40), CD137 (4-1BB) herpes virus entry mediator/ 

(HVEM) T, CD30, and Glucocorticoid-induced TNFR family related receptor 

(GITR) has been reported to serve as costimulatory molecules for T-cell activation. 

Although, the cytoplasmic tail of this group lacks the DD, they contain TRAF-

interacting motifs (TIMs) that function to recruit TRAF proteins. Mammalian 

TRAFs are a family of intracellular adaptors proteins (TRAF1 to 6) primarily 

involved in activation of signal transduction pathways such as NF-κB, JNK, ERK, 

p38 and PI3K, which regulate several cellular developmental and differentiating 

processes (Dempsey et al., 2003).  

The expression of TNFR family members that provide costimulatory signals are 

generally inducible following antigen recognition except for CD27 and HEMV that 

are constitutively expressed by naïve T cells at a low level and are modulated after 

T cell activation. Similarly, the ligands for these receptors are not constitutively 

expressed by resting or immature APCs, but are activation induced, possibly in 

parallel with the upregulation of the expression of their receptors by T cells (Croft, 

2003, 2009). 
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1.5.3.1.2.1 4-1BB Receptor/4-1BB Ligand 

4-1BB (CD137) is a type I membrane protein, containing a cysteine rich 

extracellular domain, and a member of the TNFR gene family that provides another 

T cell co-stimulatory signal. It was originally identified by Kwon and coworker as 

an inducible molecule expressed by murine helper and cytolytic T cells (Kwon and 

Weissman, 1989). In addition to activated T cells, 4-1BB has been detected on 

activated NK, DCs and neutrophils from mice, whereas in humans 4-1BB 

expression was extended to include other cells e.g. follicular DCs, monocytes, and 

hepatoma cells (Cheuk et al., 2004). A soluble form of 4-1BB has also been 

identified in sera of patients with rheumatoid arthritis (Michel et al., 1998).  4-1BB 

expression by T cells in response to antigen stimulation was reported to reach its 

peak by 60 hr and decline within 4-5 days in mice; however the response in human 

is more rapid reaching a maximal level of expression by 8 hr and diminishes by 48 

hr (Cheuk et al., 2004). During primary response, the expression of 4-1BB receptor 

coincides with the upregulation of the early activation antigen CD69 and precedes 

the transition to the CD44
hi

 effector phenotype (Dawicki and Watts, 2004). 

Ligand binding and aggregation of 4-1BB on the surface of T cells is associated 

with recruitment of TRAF1 and TRAF2 leading to downstream activation of 

mitogen-associated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K) 

and NF-κB signalling which contribute to cell division, enhanced cell survival and 

cytokine production. The NF-κB signalling pathway is known to be important for 

cell survival via regulation of prosurvival members of the Bcl-2 family including 

Bcl-XL and BFL1, and also promotes the production of cytokines, including IL-2, 

IL-4, IL-5 and interferon-γ (IFN-γ). Activation of the extracellular signal-regulated 

kinase (ERK) acts in synergy and down-regulates the pro-apoptotic molecule Bim; 
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while activation of other MAPK including c-Jun N-terminal Kinases and p38-

MAPK promote production of cytokines (Croft, 2009; Wang et al., 2009). 

The ligand for 4-1BB receptor, 4-1BBL (CD137L), is an inducible type II 

transmembrane glycoprotein with an extracellular carboxyterminal domain. The 

mouse 4-1BBL gene encodes 309 amino acids, which is poorly conserved with the 

human 4-1BBL protein, having only 36% amino acid identity with its human 

counterpart (Alderson et al., 1994; Goodwin et al., 1993). 4-1BB ligand is largely 

expressed following stimulation on professional APC such as DC, macrophages, 

and B-cells. In addition, 4-1BBL was reported to be expressed on tumour cells of 

myeloid, lymphoid and solid origin as well as by non-haematopoietic cells during 

inflammation (Cheung et al., 2007; Salih et al., 2000).  

1.5.3.1.2.2 Costimulation of T cells by 4-1BB/4-1BBL 

Evidence for a costimulatory role of 4-1BB/4-1BBL interaction on T cells comes 

from several studies using ligand transfected cells, antibodies to block 

receptor/ligand interactions or a soluble form of the 4-1BB fusion protein. 4-1BB 

ligation was reported to synergize with B7 molecule to stimulate proliferation, cell 

cycle progression and promote the overall cytokine secretion of naïve CD4 and CD8 

T cells (Gramaglia et al., 2000; Vinay and Kwon, 1998). Studies using human and 

murine systems demonstrated that 4-1BB triggering preferentially augments the 

production of Th1 type cytokines (IFN-γ), as compared to that of the Th2 type (IL-

4) (Maerten et al., 2006; Wen et al., 2002). In addition, 4-1BB costimulation 

protects activated T cells from activation induced cell death (AICD) contributing to 

an enlarged memory population (Hurtado et al., 1997). In relation to this effect, 

Takahashi et al. (1999) showed that agonistic anti-4-1BB antibody (mAb) 

preferentially inhibited peripheral death and deletion of super-antigen stimulated 
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CD8
+
 T cells relative to CD4

+
 T cells (Takahashi et al., 1999). The ability of 4-1BB 

signalling to promote proliferation and cytokine production of CD28 deficient
 
T 

cells in response to TCR stimulation is also well-documented in the literature. A 

study by Maus et al. (2002) demonstrated that 4-1BBL engagement can replace 

CD28 signal during early T cell expansion in vivo (Maus et al., 2002). 4-1BB 

costimulation however can induce similar level of IL-2 production to that of the 

CD28 signal only when a strong TCR stimulus is provided, while it is less effective 

than CD28 mediated costimulation under conditions of limited antigenic stimulation 

(Saoulli et al., 1998).  

In vitro, studies using anti-4-1BB mAb to stimulate CD4
+
 and CD8

+
 T cells 

demonstrated that 4-1BB signalling resulted in a four fold increase in proliferative 

capacity of CD4
+
 T cells, while increasing the sensitivity for TCR stimulus and 

expansion of CD8
+
 T cells by 100 fold (Shuford et al., 1997). These studies 

provided initial evidence for the preferential role of 4-1BB stimulation on CD8
+
 T 

cells. This was further substantiated in vivo using 4-1BB and 4-1BBL deficient mice 

(DeBenedette et al., 1999; Kwon et al., 2002). Although, these animals showed 

normal development of lymphocytes and lymphoid organs, T cell effector functions, 

mainly CTL-mediated immune response were diminished in various viral and graft 

versus host rejection models (Bertram et al., 2002; Shedlock et al., 2003; Tan et al., 

1999). Furthermore, tumour suppression observed in response to anti-4-1BB mAb 

treatment is believed to be mediated via enhanced CD8
+
 T cell-mediated immunity 

(Miller et al., 2002; Taraban et al., 2002). Nevertheless, selective depletion of CD4
+
 

T cells in vivo resulted in loss of the antitumour effect (Melero et al., 1997). This 

was further explained by Giuntoli et al. (2002) demonstrating that helper T cells are 
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essential for maintenance and potentiation of the proliferative response and effector 

function of CTLs (Giuntoli et al., 2002). 

In support of the role of 4-1BB signalling in augmenting secondary CTL response, 

Tan et al. (2000) showed that agonistic anti-4-1BB mAb can restore CD8
+
 T cell 

responses in 4-1BBL
-/-

 mice to a level similar to those in 4-1BBL
+/+

 mice following 

immunization with lymphocytic choriomeningitis virus peptide (LCMV), however 

secondary CTL response was abrogated in 4-1BBL
-/-

 mice upon viral rechallenge 

and in the absence of the agonistic anti-4-1BB mAb. The lack of secondary CTL 

response was attributed to lower numbers of viral-specific T cells with impaired 

ability to eliminate the infection compared to 4-1BBL
+/+

 mice upon viral challenge 

(Tan et al., 2000). Similarly, Zhu et al. (2007) reported that 4-1BB deficient 

memory T cells failed to respond to CD137 mAb and that 4-1BB engagement 

selectively triggers memory but not naive T-cell proliferation in vivo (Zhu et al., 

2007). 

Interestingly, the 4-1BB receptor/ligand system mediates bidirectional transduction 

of signals for both interacting T and APCs. Binding of 4-1BBL on APCs provides a 

proliferative signal for B cells synergistically with anti-IgM antibody, while 

stimulating secretion of pro-inflammatory cytokines by macrophages such as IL-6, 

IL-8 and TNF-α, facilitating recruitment to the site of inflammation (Kang et al., 

2007; Lippert et al., 2008; Vinay and Kwon, 1998). In addition, reverse signalling 

into lymphocytes through 4-1BB ligand appears to regulate T cell proliferation, 

increase expression of CD95 and induce apoptosis (Kwon et al., 2000; Suzuki and 

Fink, 1998).  
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1.5.4 T cell tolerance 

The stochastic nature of the TCR rearrangement process may inevitably results in 

the generation of T cell that recognize self components , and thus having the 

potential to attack healthy tissues and posing a threat of developing autoimmune 

diseases. Different T cell tolerance mechanisms, however, have evolved as a fine 

balancing act to ensure maintenance of tolerance to self-antigens while retaining the 

capacity to mount robust immune responses against diverse antigenic stimuli during 

an adaptive immune response. These control mechanisms are broadly categorized 

into central and peripheral tolerance. 

1.5.4.1 Central tolerance 

Originally, T lymphocytes are generated from bone marrow progenitor cells that 

migrate and mature in the thymus. During αβ T cell maturation, T lymphoid 

progenitor cells undergo sequential rearrangement of the β and the α chains of the T 

cell receptor and initiate expression of both the CD4 and CD8 coreceptors, 

generating CD4
+
CD8

+
 double-positive (DP) thymocytes that express low levels of 

CD3/TCR complex  (Lacorazza and Nikolich-Zugich, 2004; Rothenberg, 2002). In 

the thymic cortical epithelium, DP thymocytes capable of low affinity recognition 

of peptides bound to MHC I and MHC II molecules receive survival signals 

resulting in positive selection of these thymocytes and further differentiation into 

CD4
+
 or CD8

+
 single-positive (SP) T cells. In contrast, high-affinity interactions 

induce apoptotic death signals and negative selection of self reactive thymocytes. 

Only 3–5% of DP thymocytes survives these checkpoints and migrates as SP 

thymocytes to the medulla for further screening to ensure deletion of autoreactive 

thymocytes that have escaped negative selection. After maturation CD4
+
 or CD8

+ 
T 



 27 

cells specialized as helper and cytotoxic T cells, respectively, are then exported 

from the thymus and enter the peripheral circulation (Palmer, 2003; Takahama, 

2006) 

Remarkably, medullary thymic epithelial cells (m-TECs) posses the capacity to 

express a diverse range of tissue-restricted antigens (TRAs) in a process known as 

promiscuous gene expression. Although epigenetic mechanism and other 

transcriptional factors might be involved in TRAs expression, the transcriptional 

autoimmune regulator (AIRE) was reported to largely modulate the expression of a 

large proportion of TRAs in mTECs and function to induce negative selection of 

autoreactive thymocytes (Kont et al., 2008; Kyewski and Derbinski, 2004). In 

humans, as in mice, mutations in the AIRE gene results in autoimmune diseases that 

are characterized by the presence of autoantibodies to multiple self antigens and 

lymphocytic infiltration in target organs (Bjorses et al., 1998; Ramsey et al., 2002). 

Despite the highly efficient negative selection process for thymocytes that recognize 

self-peptide–MHC complex with high affinity, some of the medium to high-affinity 

self-reactive T cells (mainly CD4
+
 T cells) escape this process and undergo non-

deletional central tolerance to give rise to natural T regulatory cells (nTregs). This 

subpopulation of T cells is essential for maintenance of immunologic self-tolerance 

and T cell homeostasis in non-inflammatory settings (Bluestone and Abbas, 2003; 

Sakaguchi, 2004). 

Thymic derived Tregs arise from deletion resistant CD4
+
 T cells that preferentially 

express the interleukin (IL) 2 receptor α chain (CD25) and the Forkhead box P3 

(Foxp3) transcription factor. The importance of Foxp3 expression in development 

and function of Tregs was established by the observation that mutations in Foxp3 

constitute the molecular cause of Treg deficiency resulting in fatal autoimmune 
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lymphoproliferative disease in both humans and in mice (Fontenot and Rudensky, 

2005). While Foxp3 is selectively expressed in nTreg cells, peripheral naïve and 

effector T cells remain Foxp3-negative unless activated in the presence of 

immunosuppressive cytokines e.g. IL-10 and TGF-β, which stimulate their 

development into cells with Treg activity. These induced Treg cell population is 

termed adaptive Treg cells that function predominantly during self damaging 

inflammatory immune activation and autoimmunity (Bluestone and Abbas, 2003; 

Rothstein, 2006). 

1.5.4.2 Peripheral tolerance 

Although central tolerance is the main mechanism for elimination of autoreactive T 

cells, it remains incomplete where some T cells fail the intrathymic selection 

process and escape to the periphery. Therefore, the immune system provides other 

extrathymic control mechanisms to regulate peripheral self-reactive T cells and 

maintenance of immune tolerance to self. Arnold and colleagues described 

peripheral tolerance as a multistep mechanism that depends on the tolerogenic 

signal in inducing different levels of T cell tolerance, and that deeper states of 

tolerance can be achieved by sustained tolerogenic stimulation (Arnold et al., 1993).  

There are several mechanisms by which peripheral tolerance is achieved, however 

these can be broadly classified into clonal ignorance, death by deletion and 

functional unresponsiveness (Fazekas de St Groth, 2001). These mechanisms of 

peripheral tolerance are likely to be operating during the course of tumour 

development and progression contributing towards tumour-induced T cell tolerance 

and inefficient generation of antitumour immune response (Swann and Smyth, 

2007). 
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1.5.4.2.1 Clonal ignorance 

According to the affinity-based selection of thymocytes, autoreactive T cells 

entering the periphery have self-specific TCR of low affinity and hence can remain 

naïve even when auto-antigens are presented in the periphery. In support of this 

notion, Girgis et al. demonstrated that low avidity self-reactive T cells did not 

induce any signs of autoimmunity in transgenic mice expressing the cognate neo-

self antigen; however high avidity T cells transferred into these animals proliferated 

and differentiated in response to the neo-self antigens. They also showed that low 

avidity T cells exhibit an anergic phenotype, which is responsible for maintenance 

of functional tolerance in vivo (Girgis et al., 1999).  

The majority of tumour antigens identified to date are self-non mutated proteins that 

were found to be expressed within the thymus. As a result, many potentially high 

avidity tumour-reactive T cells are often eliminated from the T cell repertoire early 

during T cell development in the thymus (Sarma et al., 1999). The residual low 

affinity tumour-specific T cells were shown to lack the ability to recognise tumour 

cells or trigger suboptimal T cell activation contributing to the failure of the 

immune system in controlling tumour growth (Carrabba et al., 2003; Iero et al., 

2007).   

Peripheral high affinity/avidity T cells can also remain ignorant when the antigens 

are sequestered in immune-privileged sites such as the testis, central nervous system 

and the eye. However, there are pathological conditions when these sequestered 

antigens are presented in the presence of the right stimulatory conditions resulting in 

deleterious inflammatory immune responses. In such sites peripheral tolerance is 

normally maintained by other mechanisms including local production of 

immunosuppressive cytokines such as interleukin 10 (IL-10) and transforming 
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growth factor β (TGF-β), or expression of the inhibitory ligands e.g. FasL (Harber et 

al., 2000).  

1.5.4.2.2 Peripheral deletion 

Although clonal deletion of self- reactive T cells was thought to occur mainly in the 

thymus, evidence for extrathymic deletion in response to self-antigens was provided 

from earlier studies using mice that constitutively express self-superantigen derived 

from the Minor lymphocyte stimulating locus (Mls) (Webb et al., 1990). In addition 

to endogenous superantigens, peripheral deletion of T cells was also demonstrated 

for bacterial superantigens and other conventional viral and peptide antigens in both 

naïve CD4
+
 and CD8

+
 T cells (Fazekas de St Groth, 2001).   

Subsequent studies using adoptive transfer of naive antigen-specific TCR transgenic 

(Tg) T cells into mice, containing defined antigens expressed under the control of 

tissue specific promoters, verified that deletion of autoreactive CD8
+
 T cells was the 

primary mechanism by which these potentially damaging cells are regulated in the 

periphery (Garza et al., 2000; Kurts et al., 1997).  

Deletional tolerance was also observed in tumour setting, over-expression of the 

p53 tumour antigen was reported to induce functional deletion of CD8
+
 T cells 

carrying TCRs with the highest affinity for p53, resulting in selection of  p53-

specific, low avidity effector CTL (Hernandez et al., 2000). 

Mature lymphocytes destined for deletion usually undergo passive apoptotic cell 

death due to the lack of survival stimuli, such as costimulators and cytokines, 

resulting in loss of expression of antiapoptotic proteins, mainly the Bcl family. In 

other instances apoptotic death occurs actively and is termed activation-induced cell 

death (AICD) that is mediated by molecules of TNFR superfamily e.g. Fas receptor. 

Activation of T cells causes upregulation of the death receptor, Fas (CD95), and its 
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ligand, FasL, stimulating T cells to kill each other through downstream components 

of Fas-mediated death signalling (Van Parijs and Abbas, 1996, 1998).  

Another possible mechanism responsible for T cell deletion was recently proposed 

and involves the homeostatic cytokine IL-7.  In the absence of the cognate antigen, 

naïve T cells express IL-7 receptor (IL-7R), which inhibits programmed cell death 

by the up-regulation of members of the anti-apoptotic bcl-2 family, and therefore 

maintain long-term survival of T cells in the peripheral compartment (Fry and 

Mackall, 2001). Stimulation of T cells with the Ag/MHC complexes promotes 

proliferation of T cells coupled with downregulation of the IL-7R which in turn 

results in stimulation of the proapoptotic Bim molecule implicated in clonal deletion 

(Bouillet et al., 2002). Redmond and Sherman proposed that weak antigenic 

stimulation under tolerogenic conditions induces elimination of the majority of T 

cells through a TCR-mediated proapoptotic signal (Fig 1-3). Upon chronic antigen 

exposure, the T cell population surviving the initial AICD would face either 

deletion or anergy which is mainly dependent on the strength of the antigenic 

stimulus.  In situations of weak TCR stimulation, cells downregulate IL-7R and are 

unable to maintain expression of anti-apoptotic proteins and are therefore steered 

into the path of clonal deletion. In the second scenario, strong TCR signalling is 

associated with inhibition of Ras/ERK pathway, involved in T cell activation, 

leading to the emergence of an anergic phenotype (Redmond and Sherman, 2005). 
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Figure 1-3: A model of CD8
+
 T cells fate during peripheral tolerance: Anergy 

versus Deletion 

In tolerogenic conditions, chronic exposure to antigen induces CD8
+
 T cell 

proliferation and promotes downregulation of the IL-7R coupled with inhibition of 

anti-apoptotic genes that triggers deletion of activated cells. A small population of 

activated T cells can survive this deletional phase, however, if the antigenic stimuli 

continue these cells face different fates that are mainly determined by the strength of 

the antigenic stimulus. When T cells are exposed to low level of antigen, the 

balance is tipped towards death by deletion via a TCR-mediated proapoptotic signal. 

While in presence of a strong TCR-antigen interaction, inhibition of the Ras/ERK 

signalling pathway but not the proapoptotic signal is involved in induction of CD8
+
 

T cell anergy (Redmond and Sherman, 2005). 

 

1.5.4.2.3 Functional inactivation 

The term anergy was initially defined for B cells to describe a state of functional 

inactivation observed following administration of the relevant antigen in vivo. As 

the phenomenon of B cell unresponsiveness was antigen-specific, the  description 

for this state was further refined to clonal anergy (Nossal and Pike, 1980). 

Subsequently, this term was used to describe murine and human T cell responses 

following tolerogenic stimulation that is characterized by impairment of the T cell  

ability to proliferate and produce IL-2 upon restimulation in the presence of a 
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costimulatory signal in vitro (Schwartz, 1990). In some cases clonal anergy is also 

associated with reduced production of IL-3, granulocyte macrophage colony 

stimulating factor and IFN-γ; however T cell responsiveness can be restored by 

addition of IL-2 (Beverly et al., 1992; Hollsberg et al., 1996). Since then any form 

of limited T cell proliferation, differentiation or cytokine production observed in a 

variety models of suboptimal T cell activation is generally termed „anergy‟.  

1.5.4.2.3.1 CD8
+
 T cell anergy 

The first observation of anergy in CD8
+ 

T cells was reported using murine T cell 

clones stimulated with antigen and APC lacking costimulatory molecules. Anergic 

CD8
+
 T cells were defective in IL-2 production and failed to proliferate but effector 

function including IFN-γ production and CTL activity were normal. Otten and 

Germain termed this form of unresponsiveness as „split anergy‟ as costimulation 

was required for only certain TCR-dependent effector functions (Otten and 

Germain, 1991). Another level of CD8
+
 T cell anergy was induced by stimulation of 

cells with allo-antigen in the presence of IL-10 treated DC. These conditions 

resulted in reduced CTL response in addition to the loss of proliferative capacity of 

anergic CD8
+
 T cells (Steinbrink et al., 1999).  Preckel et al. also found that 

impaired proliferative and cytolytic CD8
+
 T cell responses resulting from 

presentation of altered hapten ligands by DC can be reversed  upon addition of 

interleukin IL-2 or IL-12 plus IL-18 (Preckel et al., 2001). 

Although full activation of CD4
+
 T cells can be achieved by TCR and CD28 

signalling, a third signal that can be provided by IL-12 or type I IFN seems to be 

required for productive activation of naïve CD8
+
 T cells. The Mescher group 

showed that stimulation of CD8
+
 T cells with high level of peptide/MHC complex 

and B7 protein immobilized on microtitre wells induced T cell proliferation but they 
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failed to develop cytolytic activity (Curtsinger et al., 2003a). Thus, at high levels of 

TCR engagement, optimal proliferation requires only IL-2, but development of 

cytolytic function requires IL-12; whereas low TCR engagement levels requires 

both cytokines for proliferation and acquisition of effector function. However, 

addition of IL-12 to the culture restored the cytolytic function of CD8
+
 T cell 

induced in absence of the signal 3 stimulus (Curtsinger et al., 2003b).  

Some of the coinhibitory receptors upregulated following engagement of the TCR 

by p-MHC present on APCs seems to play a role in induction of T cell anergy. 

Although CTLA-4 has been implicated in CD4
+
 T cell anergy, CD8

+
 T cell from 

CTLA-4 deficient mice were not susceptible to anergy similar to those observed in 

T cells from wild-type mice (Frauwirth et al., 2001; Greenwald et al., 2001). In 

contrast, PD-1 receptor was involved in establishment of tolerance in both CD4
+
 

and CD8
+
 T cells. PD-1/PD-L1 interactions play an important role in regulation of 

autoimmune disorders observed in experimental models and inhibition of 

antitumour immune response (Srinivasan and Frauwirth, 2009). PD-1 and PD-L1 

deficient CD8
+
 OT-I Tg T cells proliferated vigorously upon tolerogenic stimulation 

and resisted induction of anergy, while wild-type OT-I T cells were rendered 

tolerant (Tsushima et al., 2007). Upregulation of PD-1 following antigen encounter 

suppresses IL-2 production in CD8
+
 T cells during anergy induction. However, the 

proliferative response of anergic CD8
+
 T cells was restored by addition of IL-2, 

irrespective of PD-1 expression by T cells (Chikuma et al., 2009). 

Interestingly, effector CD8
+
 T cells that initially received a full set of signals can 

develop a form of anergy termed activation-induced non-responsiveness (AINR). 

These cells are characterized by rapid decline in their proliferation rate and inability 

to produce IL-2; however they retain their capacity to mediate CTL response and 
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produce IFN-γ in response to antigenic stimulation (Deeths et al., 1999). This form 

of CD8
+
 T cell anergy has been also observed in vivo and accounted for defective 

CD8
+
 T cell response against tumour and virus models (Mescher et al., 2007).  

1.6 Cancer immunosurveillance and immunoediting 

The notion that the immune system can recognize and eliminate cancerous and/or 

precancerous cells before they develop into clinically apparent tumours was first 

proposed by Ehrlich in 1909. After fifty years, Burnet and Thomas formulated the 

concept of cancer immunosurveillance based on in vivo studies that promoted better 

understanding of tumour immunity.  However, initial experimental examination of 

this hypothesis provided inadequate evidence to support suppression of cancer cells 

by the immune system and thus challenging the existence of the concept of cancer 

immunosurveillance. The comeback of the immunosurveillance concept was 

initiated by providing evidence that IFN-γ and lymphocytes control development of 

transplanted tumour and protect against chemically induced tumourogenesis. Since 

then, other studies have demonstrated the role of immune effector cells, such as B, 

T, NK and natural killer T (NKT) cells, and of type I and II IFNs in tumour immune 

surveillance (Dunn et al., 2002; Reiman et al., 2007). Supportive clinical 

information for involvement of the immune system in cancer control was concluded 

based on compelling evidence in three research areas including: the observation that 

immunocompromised patients are at higher risk of development viral cancers than 

the normal population; generation of endogenous immunity to autologous tumour 

cells; the presence of immune effector cells infiltrating tumour tissues that is 

positively correlated with patient survival (Dunn et al., 2004b).  

Despite of the continuous cancer immune surveillance process, tumours can still 

develop in individuals with functioning immune system. Experimental studies 
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however provided evidence demonstrating the capacity of the immune system in 

selection of less immunogenic tumour variants capable of developing into cancer. 

The scope of this process was suggested to encompass three phases namely: 

elimination, equilibrium and escape (Dunn et al., 2004a; Zitvogel et al., 2006). 

The classical concept of cancer immunosurveillance was modified to represent the 

elimination phase occurring in the early stages of tumour development, during 

which the innate and adaptive immune system work together to recognize and 

destroy tumour cells. In the elimination phase, the innate immune system responds 

to the proinflammatory signal –produced by tumour cells or the surrounding 

microenvironment– by migration to the developing tumour site. The innate immune 

cells including NK, NKT and γδ T cells may recognize tumour cells via NKG2D 

ligands resulting in production of IFN-γ and maturation of DCs. Mature DCs ingest 

tumour antigens released from dying tumour cells, induced by INF-γ dependent 

processes or NK-mediated cell killing, and migrate to lymph nodes to activate and 

recruit the adaptive immune cells. The generated tumour-specific T lymphocytes 

orchestrate the elimination of tumour cells and generation of antitumour immunity.  

Although direct evidence for this process was difficult to find, the observation that 

immunodeficient mice lacking B, T, NK or NKT cells or cytokines are more 

susceptible to tumour development; also studies comparing tumour initiation, 

growth, and metastases in wild-type versus immunodeficient mice revealed the 

importance of the immune components in elimination of developing tumours (Kim 

et al., 2007).  

As the elimination process continues, sculpting of the tumour cells yields tumour 

cell clones with a less immunogenic phenotype capable of evading immune 

destruction. This will initially lead to a state of equilibrium between tumour cell 
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death and escape. The duration of this phase is expected to occur over a period of 

many years and which would be mainly dependent on the efficiency of the 

individual immune system in controlling tumour cells. In support of this notion, 

Mackie et al. reported a case of two patients that received kidney transplants from a 

donor that has been treated from primary melanoma and was in remission for 16 

years. The allograft recipients developed metastatic melanoma 1-2 years post 

transplantation suggesting that the donor‟s immune status maintained the tumour 

growth within the equilibrium phase; however transplantation in recipients with 

compromised immune system favoured progressive clinical metastatic disease 

(Dunn et al., 2004b; MacKie et al., 2003). 

Eventually, tumour cells acquire multiple genetic and epigenetic alterations 

enabling them to evade and suppress antitumour immune responses and 

consequently develop into clinically detectable tumours. Tumour escape can be 

achieved on the tumour cell level by several mechanisms including loss of tumour-

specific antigen recognition by the immune system –due to alteration in antigen 

processing and presentation–, and reduced susceptibility to tumour cell death.  

Additionally tumour cells can regulate antitumour immune responses by direct 

secretion of immunosuppressive cytokines e.g. IL-10 and transforming growth 

factor β (TGF-β) or indirectly via regulatory T cells, and hence contributing to 

induction of immunological tolerance (Prestwich et al., 2008).  

1.7 Immunotherapy for cancer 

Over the last two decades immunotherapy has evolved as a promising therapeutic 

modality for treatment of cancer. The current established therapies employ a broad 

range of approaches that exploit components of the adaptive and the innate 

immunity to selectively attack and eliminate tumour cells.  These approaches can be 
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broadly characterized as passive or active therapies. In passive interventions, 

effector molecules or cells are administered to the patients to mediate direct tumour 

cell killing, e.g. monoclonal antibodies and Tg TCR T cells targeted at specific 

tumour antigens. By contrast active therapies involve harnessing the individual‟s 

immune system to elicit antitumour immune response e.g. vaccines, cytokines, 

costimulatory molecules and others (Dougan and Dranoff, 2009; Murphy, 2010). In 

some instances, different active immunotherapeutic strategies are combined together 

to potentiate tumour-specific immune responses for example, gene transfer of 

cytokines (Granulocyte Macrophage Colony-Stimulating Factor; GM-CSF, IL-2) 

into allogeneic, or autologous tumour cells in the form of cytokine gene-tumour cell 

vaccine (Jaffee et al., 2001; Palmer et al., 1999). Another form of combined 

immunotherapeutic approach involves co-administration of mAb against 

costimulatory receptors e.g. anti-OX-40 or anti-4-1BB mAbs together with 

vaccination with tumour antigen–loaded DC (Sharma et al., 2006).  

There are an overwhelming number of clinical and preclinical studies available in 

the field of cancer immunotherapy; however the next section will focus on 

immunotherapies relevant to the present study. 

1.7.1 Cytokines– Granulocyte Macrophage-Colony Stimulating Factor (GM-

CSF) 

Cytokines are a large family of low-molecular weight proteins, released mainly by 

cells of the immune system, that are involved in several biological processes from 

cell proliferation to inflammation, immunity, migration, fibrosis, repair, and 

angiogenesis.  These molecules act as a short-range chemical mediator between 

different immune cells and bind to high affinity receptors that require low receptor 

occupancy for optimal immune stimulation. During immune responses, cytokines 
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are secreted within the tissues at high concentration with a short-half life thereby 

reducing the amount reaching the circulation (Feldmann, 2008; Khawli et al., 2008). 

However, in severe inflammatory conditions aberrant cytokine secretion is 

associated with increased cytokine level in the blood resulting in inflammation and 

tissue damage. Therefore, systemic administration of cytokines is often associated 

with adverse effects including fever, hypotension, headache, malaise, weakness and 

capillary leaky syndrome (de Gast et al., 2000). This makes it difficult to achieve a 

clinically relevant dose without having unfavorable reaction; and hence limits the 

therapeutic application of systemic cytokines. Alternatively, other targeted 

rationales are adopted including direct intratumoural cytokine application, the use of 

cytokine-antibody fusion proteins with specificity for tumour-associated antigens, 

or cytokine-gene based approaches (Hornick et al., 1999; Jinushi and Tahara, 2009; 

Sone and Ogura, 1994).  

It is a well established that DCs play an essential role in tumour surveillance by 

enhancing the cross-presentation of immunogenic tumour antigens and triggering 

adaptive immune T and B cell responses. Given the importance of DC in induction 

of antitumour immune response, targeting DCs at the tumour microenvironments 

represent a potential therapeutic strategy for a wide range of tumours. 

Among the different cytokines that promote activation and differentiation of DC, 

GM-CSF was identified as the most potent cytokine mediating long lasting 

antitumour immunity following vaccination with cytokine-secreting tumour cells 

(Dranoff et al., 1993). GM-CSF is a member of a large family of glycoprotein 

growth factors that regulate the growth and differentiation of haematopoietic 

progenitor cells from various lineages, including granulocytes, macrophages, 

eosinophils and erythrocytes. It is produced by macrophages, T cells, mast cells, 
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endothelial cells, and fibroblasts in response to different immune and inflammatory 

stimuli (Gasson, 1991; Liu and Grundstrom, 2002). 

The initial comparative analysis conducted by Dranoff et al. demonstrated the 

superiority of GM-CSF-secreting murine melanoma tumour cells in inducing 

tumour rejection relative to a variety of cytokines tested including IL-1, IL-2, IL-5, 

IL-6, INF-γ and TNF-α (Dranoff et al., 1993). The potency of GM-CSF at the 

vaccine site was related its ability to recruit and activate DCs to cross present 

tumour antigens for priming of CD4
+
 T cells, CD8

+
 T cells, and CD1-restricted 

invariant natural killer T (iNKT) cells to mediate antitumour immune response 

(Gillessen et al., 2003). Consistently, histological analysis of biopsies from the sites 

of injection with GM-CSF gene-modified tumour cell vaccine (GVAX) in patients 

with metastatic renal cell carcinoma and pancreatic cancer undergoing phase I 

clinical trial revealed dense macrophage, dendritic cell, eosinophil, neutrophil 

infiltrate up to 3 days from vaccination that was replaced by T-cell infiltrates by day 

seven (Jaffee et al., 2001; Simons et al., 1997).  

In a dose-response preclinical study, the minimum level of GM-CSF secretion 

required for effective vaccination was 35 ng/10
6
 cells/24 h, while higher doses did 

not improve the antitumour immune response (Jaffee et al., 1996). Serafini and 

colleagues further found that high doses of GM-CSF substantially diminish antigen-

specific T cell mediated antitumour immune responses by recruitment of myeloid-

derived suppressor cells (Serafini et al., 2004). In addition to the level of cytokine, 

distribution of the vaccine inoculum to different site can significantly modulate the 

therapeutic index of the vaccine. Indeed, vaccination of mice with a single vaccine 

dose that is divided over three different limbs provided improved vaccine-induced 

immunity compared to administration of the same dose at a single location. The 
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vaccine potency was also improved when tumour cell expressing lower levels of 

GM-CSF that showed reduced antitumour immune response –on single site 

administration– was distributed to several sites (Jaffee and Pardoll, 1997). 

Interestingly, the use of GM-CSF-secreting allogeneic tumour cell vaccine in 

preclinical model enhanced specific-antitumour immunity by increasing the 

immunogenicity of tumour cells thereby providing an alternative mean to overcome 

the technical difficulty of expanding primary autologous human tumour cells (Li et 

al., 2009; Thomas et al., 1998). 

Promising results observed with GM-CSF-secreting cancer vaccine in preclinical 

studies led to phase I and phase I/II clinical testing of both autologus and allogeneic 

GM-CSF-secreting tumour cells. These clinical trials established safety and 

bioactivity –inferred from distinctive infiltrates of CD4
+
 T cells, CD8

+
 T cells, DCs 

and other inflammatory cells– following different dose escalation schemes in 

patients with metastatic renal cell carcinoma (RCC), metastatic melanoma, 

metastatic prostate carcinoma and early or advanced non-small cell lung cancer 

carcinoma (NSCLC) (Emens, 2009).  The major side effects observed in some of 

the clinical trials using autologus tumour cells included erythema, swelling, pruritus 

and pain with systemic low grade fevers, chills and fatigue, while local grade 1 and 

2 erythema, indurations and tenderness at the vaccine site was observed with 

allogeneic tumour cell vaccine.  

The level of GM-CSF secretion by tumour cell vaccine varies between clinical trials 

(Table 1-1); however most clinical trials uses a dose cell range of 1x10
6
 -1×10

7 
cell 

per vaccine. A phase II clinical trial conducted in patient with stage II or III 

pancreatic cancer received escalating high doses in the range of 1×10
7
- 50×10

7
 cells 

of allogeneic GM-CSF secreting tumour cells (220ng/10
6
 cells/24 hr) demonstrated 
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that the highest dose of 5x10
8
 cell vaccine was well tolerated by patients and 

showed preliminary efficacy (Borrello and Pardoll, 2002; Eager and Nemunaitis, 

2005).  

Clinical evidence from phase I and II trials provided the base for further testing of 

GM-CSF-secreting tumour cell vaccination to phase III trials in prostate cancer. 

However, results from a completed phase III trial in hormone-refractory metastatic 

prostate cancer patients immunized with irradiated allogeneic GM-CSF-secreting 

tumour cells failed to provide evidence for clinical benefit compared to the standard 

docetaxel anticancer drug. These disappointing results led to the proposition of 

integrating GM-CSF-secreting tumour cell vaccination with other approaches e.g. 

anticancer drugs and immunostimulatory molecules (Gupta and Emens, 2010; 

Jinushi and Tahara, 2009).   
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Cancer 

(Stage) 

Vaccine Vector Number 

of 

patients 

Dose 

(number 

of 

irradiated 

cell) 

GM-CSF 

production 

(ng/10
6
 

cells/24 h) 

Renal cell 

(IV) 

 

Autologus Retrovirus 16 4x10
6 

-

4x10
8
 

17 -149 

Melanoma 

(IV) 

 

Autologus Retrovirus 5 1x10
7
 56 -100 

Melanoma 

 

Autologus Retrovirus 29 ND 84 - 965 

Pancreatic 

cancer 

(I,II,III) 

 

Allogeneic Plasmid 14 1x10
7  

-

5x10
8
 

ND 

Prostate 

 

 

Autologus Adenovirus 8 1x10
7 

or 

5x10
7
 

143 - 1403 

NSCLC 

 

 

Autologus Adenovirus 35 1x10
6 

- 

1x10
7
 

Mean 233 

Melanoma 

(IV) 

 

Autologus Adenovirus 9 2x10
6 

- 

1x10
7
 

80 - 424 

Melanoma 

(IV) 

 

Intratumoural 

injection 

Vaccinia 

virus 

7 N/A N/A 

Solid 

tumour 

 

 

Intratumoural 

injection 

Herpes 

simplex 

type 1 

15 N/A N/A 

Melanoma 

(IV) 

 

Autologus Adenovirus 35 1x10
6 

- 

1x10
7
 

745 

Prostate 

 

 

Allogeneic Adenovirus 34 1x10
8 

- 

3x10
8
 

- 

Prostate 

 

 

Allogeneic Adenovirus 65 1x10
8 

- 

3x10
8
 

- 

NSCLC 

 

 

Autologus Adenovirus 83 5x10
6 

- 

1x10
8
 

50 - 1871 

Table 1-1: Summary of clinical trials testing GM-CSF gene-transduced vaccine 

(Eager and Nemunaitis, 2005) 

ND, not described; N/A, not available 
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1.7.2 Costimulatory molecules – 4-1BBL 

The role of 4-1BB costimulatory molecule in T cell activation was extensively 

studied as discussed in section 1.5.3.1.2.2. These studies have identified 4-1BB 

costimulation as a potential target for immunotherapeutic strategies aiming at 

enhancing the activation and maintenance of tumour-specific T cells.  

In preclinical tumour models and clinical studies, provision of a costimulatory 

signal to tumour-specific T cells can be achieved using agonistic anti-4-1BB mAb 

that would enhance direct activation of tumour infiltrating lymphocytes (TIL) by 

tumour antigens without the need for APC costimulation. Systemic administration 

of agonistic anti-4-1BB mAbs eradicated established large tumours in mice, 

including the poorly immunogenic Ag104A sarcoma, B10.2 fibrosarcoma and 

EL4E7 lymphomas as well as the highly tumorigenic P815 mastocytoma. Tumour 

rejection was associated with marked augmentation of tumour specific CTL 

response (Melero et al., 1997; Miller et al., 2002; Wilcox et al., 2002). Furthermore, 

enhanced systemic antitumour immune response was observed in mice bearing 3 

days intracranial MCA 205 sarcoma or GL262 glioma; however agonistic anti-4-

1BB mAbs failed to demonstrate beneficial impact on metastasized poorly 

immunogenic tumours, including B16/D5 melanoma, C3 tumour, TC-1 lung 

carcinoma and B16-F10 melanoma (Kim et al., 2001; Wilcox et al., 2002). Wilcox 

and coworker‟s reported that failure of anti-4-1BB mAbs in treatment of these 

tumours was due to that immunological ignorance, rather than anergy or deletion of 

tumour-specific CTLs during the progressive tumour growth. T cell ignorance can 

be overcome by immunization with a tumour antigen–derived peptide together with 

anti-4-1BB mAbs treatment; however this was still insufficient for complete 

eradication of tumours (Wilcox et al., 2002).  
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Another approach of 4-1BB costimulation targeted cancer immunotherapy is 

genetic modification of tumour cells to express 4-1BBL. Tumour cells transduced 

with 4-1BBL cDNA showed reduced tumourogenicity and increased survival of 

rechallenged mice. The observed antitumour effect have been ascribed to production 

of Th1 CD4
+ 

T cell cytokines including IFN-γ, IL-2 and TNF-α and increased CTL 

activity. The same Th1 helper response and tumour rejection following vaccination 

was reported in mice immunized with K1735 melanoma transduced with membrane 

bound single-chain Fv fragments (scFv) of anti-4-1BB, however tumour regression 

was CD4
+
 T cell and NK cell dependent, but CD8

+ 
T cell independent  (Li et al., 

2008; Ye et al., 2002).  

Despite the efficiency of anti-4-1BB monoclonal in inducing antitumour immunity, 

Sun and colleagues demonstrated that anti-4-1BB antibodies can ameliorate the 

incidence and severity of experimental autoimmune encephalomyelitis 

autoimmunity and to suppress humoral immunity in mice (Sun et al., 2002a; Sun et 

al., 2002b). 4-1BB-mediated inhibition of immune response and blocking of disease 

progression has been reported in  other autoimmune and inflammatory models in 

mice including experimental lupus, collagen-induced arthritis, graft-versus-host 

disease (GVHD), and allergic asthma (Lee et al., 2009). Controversially, 4-1BB 

costimulation can have a dual outcome by either stimulation or suppression of 

immune responses in tumour and autoimmune models, respectively. This dichotomy 

is apparently dependent on the type of lymphocyte involved, cellular activation 

status, and the nature of the immune response and thus targeting 4-1BB pathway for 

immunotherapy requires careful understanding of the pathogenesis, cellular 

component involved in the target disease, and the health situation of individual 

selected for therapy (Sun et al., 2004). 
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In other experimental studies, ex vivo generation of tumour-specific T cells using 

anti-4-1BB mAbs or tumour cell expressing 4-1BBL intended for adoptive therapies 

has been found to mediate superior antitumour immunity in different mouse tumour 

models (Strome et al., 2000; Yi et al., 2007). 

These promising results were recently translated into a phase I study to examine 

tolerability and clinical activity of an anti-4-1BB mAb, designated BMS-663513, in 

melanoma, RCC, ovarian and prostate cancer patients. BMS-663513 was proven 

tolerable over a wide dose range (0.3-15 mg/kg) and showed increased levels of 

circulating activated CD8
+
 and CD4

+
 T cells, also increased expression of IFN-γ in 

post treatment tumour biopsies (Sznol M, 2008).  

1.8 Gene therapy for cancer 

Gene therapy is the delivery of functioning genes into cells or tissues with the aim 

to restore normal gene function or to provide new cellular function for treatment or 

slowing down the progression of a particular disease or for prophylactic purposes. 

The concept of gene therapy emerged early in 1960‟s and was pioneered following 

the progress in molecular cloning of mammalian genes into prokaryotic plasmids 

together with the development of viral vectors as a mean for gene transfer (Cotrim 

and Baum, 2008; Flotte, 2007). Early in the 1990‟s the first clinical gene therapy 

trial was started in patients with severe combined immunodeficiency (SCID) due to 

adenosine deaminase (ADA) deficiency. Since then, gene therapy is being 

considered as a potential new approach for treatment of a variety of disease such as 

monogenic disorders, cardiovascular and neurological diseases and cancer (Blaese 

et al., 1995; Culver et al., 1991). By 2010, the number of clinical trials for gene 

therapy reached 1703 study, 64.7% of which were for treatment of cancer. These 

cancer gene therapy trials encompassed a broad range of strategies that involve 
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mainly immunological targeted therapies (some examples were mentioned in 

section 1.6), tumour suppressor gene replacement, oncogene inactivation, suicide 

gene (gene directed enzyme prodrug), inhibition of angiogenesis, and viral 

oncolysis (www.wiley.co.uk/genmed/clinical).  

In the next part of the introduction will briefly review the different types of vector 

that are available for gene therapy and then will focus on gene directed enzyme 

prodrug therapy as another form of targeted strategy, with greatest emphasis on the 

Nitroreductase/CB1954 system.  

1.8.1 Gene delivery vectors 

The transfer of genetic material to cancer cells or the tumour microenvironment 

represent a crucial step in gene therapy, thus several delivery systems have been 

developed to accommodate different experimental and clinical settings. The ideal 

delivery system for a successful gene therapy protocol would specifically target 

tumour cells, tissue or organ of interest, achieve transgene expression at a level 

sufficient for therapeutic benefit over a desired time course and capable of 

delivering large size therapeutic gene as well as being immunologically inert and 

safe for use in humans. Transgene delivery systems falls into two broad categories: 

viral and non-viral based vectors (Pfeifer and Verma, 2001). 

1.8.1.1 Viral vectors 

Viral vectors are genetic shuttles generated by replacing essential viral sequences –

dispensable for replication, assembly or virulence– with therapeutic genes and 

transcriptional regulatory elements. These vectors are replication deficient and can 

only be replicated in packaging cell lines engineered to provide the deleted viral 

gene product for the production of recombinant virus. Some viral vectors have the 
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ability to integrate into the human genome and thus achieve long-term gene 

expression (such as retroviruses). The other non-integrating vectors remain 

episomal (e.g. adenoviral vector) and are prone to loss during cell division 

contributing to transient gene expression (Verma and Weitzman, 2005). Because of 

the efficiency of retroviral and adenoviral vectors in transgene delivery and the 

improved vector design, these vectors are the most commonly used delivery systems 

in gene therapy clinical trials and account together for nearly 45% of the gene 

transfer methods used in humans (www.wiley.co.uk/genmed/clinical). 

Retroviruses are lipid enveloped viruses with single-stranded RNA genome, and can 

be classified into oncoretroviruses, lentiviruses, and spumaviruses. The simplest 

retroviral genome contains three essential genes, gag, pol, and env that are flanked 

by long terminal repeats (LTR); however complex retroviruses contain other genes 

encoding for accessory proteins required for viral life cycle. Early retroviral vectors 

for gene therapy have been derived from the simple MuLV by removal of viral 

proteins and insertion of up to 8 kb therapeutic gene downstream the 5′ LTR 

together with the packaging signal (Ψ). Transgene expression is regulated from the 

promoter/enhancer elements present in the U3 region of the 5‟ LTR or from an 

exogenous promoter (Hu and Pathak, 2000). However viral regulation of transgene 

expression under the enhancer/promoter elements of LTRs can lead to insertional 

activation of cellular oncogenes located adjacent to the vector integration site 

thereby increasing the risk for initiation of cancer. To increase the safety of 

retroviral vectors, self inactivating (SIN) vectors were engineered to contain an 

additional internal promoter to drive transgene expression but lack the U3 region of 

the 3‟ LTR and thus abolishing LTR driven transcriptional activity (Yu et al., 1986). 
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Although MuLV retroviral vectors can provide long-term gene expression, they 

have relatively low vector titre and can transduce only dividing cells. The latter 

limitation is a significant disadvantage in cancer gene therapy since typically minor 

fraction of the tumour cell will only be dividing at the time of gene therapy. This 

hurdle was overcome by generation of lentiviral vectors derived from human 

immunodeficiency virus 1 (HIV-1) that are capable of targeting both dividing and 

quiescent tumour cells in addition to improved virus titre level (Miyoshi et al., 

1998).  

Currently, adenoviral-based viral vectors are the most commonly used gene delivery 

system in gene therapy clinical studies. Although more than 52 human serotypes 

have been identified, the most commonly used adenoviral (Ad) vectors for gene 

delivery are generated from human adenoviruses of serotype 2 and 5. Human 

adenoviruses are a family of non-enveloped, double stranded DNA viruses. The 

adenoviral genome is composed of various transcriptional regions which include 

early regions (E1, E2, E3, E4), two delayed early units (IX and IVa2), and a late 

region (L1 through L5). Deletion of the E1 region of the adenoviral genome renders 

the virus replication-deficient and eliminates the potential for oncogenicity. The first 

generation of replication-deficient adenoviral vectors were E1 and often E3 deleted 

with a transgene cassette being inserted into the E1 deleted region. Further deletion 

of the E3 locus increases the capacity of Ad vectors to accommodate large transgene 

cassettes of up to 7.5 kb in size (Volpers and Kochanek, 2004). However, several 

reports recorded generation of humoral and cellular immune response against 

adenoviral proteins predisposing patients to severe immune and inflammatory 

symptoms and accounting for short-term transgene expression (Bessis et al., 2004; 

Ritter et al., 2002). More recently gutless or helper-dependent Ad was generated by 
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deleting all essential viral coding sequences to increase the safety and transgene 

capacity of Ad vectors (Alba et al., 2005).    

Overall, adenoviral vectors are promising delivery system for gene therapy due to 

their high in vivo gene transfer efficiency, their ability to infect a wide spectrum of 

both dividing and non dividing cells of a variety of cell types and their capacity to 

deliver relatively large segments of foreign DNA. In clinical application, the 

relatively short-lived transgene expression renders adenoviral vectors more suitable 

for treatment of cancer but not monogenic disorders that require long-term gene 

expression provided by the DNA integrating viral vector (Bouard et al., 2009). 

1.8.1.2 Non viral vectors 

Another successful approach for the delivery of therapeutic transgene system is the 

use of non-viral vectors, which are increasingly used in clinical trials. These 

systems were developed to avoid some of the critical problems observed with viral 

vectors, such as the immune response, and limited packaging capacity. Potentially, 

their low toxicity and immunogenicity will allow repeated safe administration of 

gene therapy to achieve efficient long-term expression of therapeutic genes. Non 

viral gene therapy vectors are also an attractive tool due to their relatively simple 

manipulation and lower production cost. There are three general non viral vector 

systems currently being studied: cationic liposomes, DNA polymer conjugates, and 

naked DNA (Edelstein et al., 2007; Hughes, 2004). 

1.8.2 Gene directed enzyme prodrug therapy (GDEPT) 

Classical chemotherapy is an invaluable treatment for controlling and delaying the 

progress of many types of cancers. However, it is limited by insufficient therapeutic 

index, a lack of specificity, and the emergence of drug-resistant cell subpopulations, 
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resulting in reduced efficacy of drug therapies. This is particularly more pronounced 

when treating solid tumours with poor internal vascularization, imposing difficulty 

in systemic delivery of the drug and thus rendering solid tumours refractory to the 

therapy (Greco and Dachs, 2001; Niculescu-Duvaz and Springer, 2005). Moreover, 

many available chemotherapeutic agents are designed to selectively target rapidly 

dividing cells, resulting in considerable side effects to highly mitotic normal tissues 

such as bone marrow and the lining of the gastrointestinal tract. 

One potential area to improve the selectivity of cancer chemotherapy for solid 

tumours is the promising field of enzyme prodrug gene therapy. In such a strategy, a 

non-mammalian enzyme (viral, bacterial or yeast) is delivered intratumorally, 

followed by systemic administration of enzyme-specific non-cytotoxic prodrugs, 

resulting in conversion of the prodrug into active cytotoxic substance that causes 

direct tumour cell death (Fig 1-4). In the literature, this strategy is known by 

different names: gene directed enzyme prodrug therapy (GDEPT); suicide gene 

therapy (SGT); virus directed enzyme prodrug therapy (VDEPT); and gene prodrug 

activation therapy (GPAT) (Niculescu-Duvaz et al., 1998). 

The GDEPT approach offers several appealing features over the chemotherapy in 

treatment of cancer patients. Most importantly, the prodrug is activated only within 

the vicinity of tumour cells and thus sparing off-target organs from the adverse 

effects of toxic metabolites. Tumour selectivity can be also increased by expressing 

the prodrug-activating enzyme from a tumour or tissue-specific promoter, thereby 

delivering the therapeutic gene preferentially to the tumour cells. However, in some 

localized tumours such as locally recurrent prostate cancer or gliomas direct 

delivery of the gene can be achieved via localized injection. 
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Although, the therapeutic benefit of this approach is limited to the number of cell 

transduced with the transgene at the injection site, the generated metabolite can 

diffuse to neighbouring untransduced tumour cells inducing tumour cell death. This 

phenomenon is termed local bystander effect and helps overcome the problem of 

suboptimal gene delivery. In addition, the release of tumour antigens from dying 

cells can activate the host immune system via T and NK cells to eliminate local and 

distant untransduced tumour cells; this is known as the immune bystander effect. 

Both the local and immune bystander effect greatly contributes towards the 

observed therapeutic benefit observed in many studies (Freeman et al., 1996; 

Portsmouth et al., 2007; Saukkonen and Hemminki, 2004).  

An ideal prodrug should be of high affinity to enzymes encoded by the transgenes 

used in therapy, metabolically stable in its prodrug state and able to diffuse 

efficiently through tissues. Moreover, the generated metabolite should be cell cycle 

independent and have satisfactory half life to allow for diffusion and mediation of a 

bystander effect (Portsmouth et al., 2007). 

There are several enzyme and prodrug combinations that were proposed as 

promising GDEPT; however the most common enzyme-prodrug systems studied 

will be described below.  
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Figure 1-4: Schematic diagram of gene directed enzyme prodrug therapy 

(GDEPT). 

A transgene encoding an enzyme is delivered the tumour using viral or non-viral 

vectors. Only a fraction of the target cells will express the foreign gene and 

synthesise the enzyme. After systemic administration of the prodrug, local prodrug 

activation takes place within transduced tumour cells inducing cell death. Toxic 

metabolites diffuse between tumour cells allowing for bystander eradication of 

neighbouring untransduced cells (McCormick, 2001). 

 

 

1.8.2.1 Herpes simplex virus–thymidine kinase 

The most widely studied GDEPT system is the herpes simplex virus (HSV) 

thymidine kinase (tk) enzyme in combination with the prodrug ganciclovir (GCV). 

Moolten first reported the potential value of this system by demonstrating 

chemosensitization of tk-transduced murine cell to a nucleoside analogue in vitro 

and in vivo (Moolten, 1986). HSV-tk is capable of phosphorylating purine 

nucleoside derivatives e.g. ganciclovir, acyclovir and bromovinyl-deoxyuridine to 

monophosphates. These analogues are usually used for the treatment of herpes 

simplex virus infections in humans and have poor affinity for the mammalian tk. 

The generated monophosphates are further phosphorylated by cellular guanylate 

kinase into to diphosphate and triphosphate forms. GCV-triphosphate is a 

nucleotide analogue which competes with deoxyguanosine triphosphate (dGTP) for 
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incorporation
 
into elongating DNA by DNA polymerase α, causing premature strand 

termination, replication failure and cell death (Elion, 1983; Ilsley et al., 1995).  

The HSV-tk/GCV system was reported to mediate S/G2-phase cell cycle arrests 

associated with apoptotic cell death; however the mode of cell death is seemingly 

dependent on the specific cell type used in the study (Wei et al., 1998).  Given that 

GCV is cell cycle specific, this makes it particularly appropriate for targeting 

rapidly dividing tumour cells such as glioblastoma, medulloblastoma, and anaplastic 

astrocytoma (Chen et al., 1994). However, the proportion of dividing cells in rapidly 

growing tumours does not exceed 20% and thus the HSV-tk/GCV system has been 

considered less effective for slowly dividing tumours (Hoshino et al., 1986). 

Nevertheless, tumour regression was observed in subcutaneous adenocarcinoma and 

fibrosarcoma preclinical models when 10% of the tumour cells expressed HSV-tk. 

This was attributed to the transfer of activated GCV through gap junctions or via 

uptake of apoptotic vesicles by the surrounding cells and hence mediating bystander 

cell killing. The transfer of cytotoxicity to adjacent non-transduced cells requires 

tight cell to cell contact to allow for intracellular gap junction communication, since 

the highly charged ganciclovir triphosphate is lipid-insoluble and can not diffuse 

freely across the lipid bilayer of cell membranes (Culver et al., 1992; Mesnil and 

Yamasaki, 2000). 

A number of gene delivery systems were shown suitable and efficient in the transfer 

of the HSV-tk including retroviral and adenoviral vectors, direct intratumoural 

naked DNA adminstration and liposomal polymers. Successful delivery of HSV-tk 

gene was also translated into promising preclinical results in animal models with 

established glioblastomas, liver metastases, hepatocellular carcinomas, human head 

and neck carcinomas, and human mesotheliomas (Greco and Dachs, 2001). The 
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system progressed further into clinical studies demonstrating initial efficacy and 

tolerability in patients with brain, colorectal, ovarian, prostate, head and neck, and 

malignant glioma (Fillat et al., 2003). In a phase III clinical trial, non significant 

benefit was observed in glioma patients receiving HSV-tk-expressing retrovirus 

producer cells coupled with GCV. This was explained by inefficient transgene 

delivery through the non-migratory vector-producing cells (Rainov, 2000). 

However, injection of an adenovirus expressing HSV-tk into the wound bed 

following resection of glioma, in combination with GCV administration, 

significantly increased median survival from 37.7 to 62.4 weeks (Immonen et al., 

2004).  

1.8.2.2 Cytosine deaminase 

The system consisting of cytosine deaminase (CD) and 5-fluorocytosine (5-FC) has 

been considered particularly useful for the treatment of patients with metastatic 

colorectal carcinoma, since CD catalyzes the deamination of the antifungal agent 5-

FC to 5-fluorouracil (5-FU), which is a chemotherapeutic agent widely used in the 

treatment of colorectal cancer (Palmer et al., 2002). Although, cytosine deaminase 

has been found in both bacteria and yeast, previous studies have reported that CD 

obtained from yeast is more efficient in converting 5-FC into 5-FU than its bacterial 

counterpart. This was also coupled with improved therapeutic outcome when using 

yeast CD compared to the bacteria enzyme in in vivo tumour models (Kievit et al., 

1999).    

The bioactivated 5-FU is further converted by cellular enzymes into 5-fluoro-

deoxyuridine-5´-monophosphate (5-FdUMP) or phosphorylated to 5-

fluorodeoxyuridine-5´-triphosphate (5-FdUTP). The earlier derivative is a 

thymidylate synthase inhibitor capable of inducing thymidine starvation leading to 
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cell death; while 5-FdUTP can replace UTP in RNA synthesis resulting in the 

inhibition of nuclear mRNA transport and ultimately DNA damage (Kerr et al., 

1997). 

CD/5-FU has been studied successfully as a potential gene therapy strategy for 

treatment of cancer from different origin in in vitro and in vivo tumour models. 

However, the therapeutic effect of the CD/5-FU system could be further enhanced 

by fusion of the CD gene to uracil phosphoribosyltransferase (UPRT) that catalyzes 

the direct conversion of 5-FU into its active metabolites, resulting in a more 

effective treatment of colorectal cancer in a preclinical model. This approach also 

markedly increased the bystander effect of CD/5-FU when examined in vitro 

(Chung-Faye et al., 2001b).  A significant bystander effect was also reported in 

nude mice bearing colorectal tumour xenografts that express CD as few as 2% of 

tumour cells (Huber et al., 1994). Unlike HSV-tk/GCV, the local bystander effect of 

CD/5-FU does not require direct cell to cell contact or functional intracellular gap 

junction, since 5-FU can diffuse freely across the  cell membrane by non-facilitated 

diffusion suggesting improved bystander effect over HSV-tk/GCV (Lawrence et al., 

1998). Indeed, CD/5-FU showed higher in vitro bystander effect and therapeutic 

benefit than HSV-tk/GCV in Epstein Barr virus-associated lymphomas (Rogers et 

al., 1996), renal cell carcinoma (Shirakawa et al., 1999), and thyroid carcinomas 

(Nishihara et al., 1998). 

The safety of CD/5-FU system as GDEPT was first examined in a phase I clinical 

trial in patients with breast cancer by direct intratumoural injection of a plasmid 

construct (Pandha et al., 1999). Subsequently, CD/5-FU was used in a phase I 

clinical trial in combination with HSV-tk gene therapy using replication-competent 

Ad viral vector for the treatment of prostate cancer (Freytag et al., 2002). The 
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double suicide gene therapy was again examined in prostate cancer patients but 

using replication-competent Ad viral vector with oncolytic properties concomitant 

with radiation therapy (Freytag et al., 2003).  This Phase I/II clinical trial 

demonstrated absence of dose-limiting toxicities and of treatment-related severe 

adverse effects of the replication-competent adenovirus-mediated double-suicide 

gene therapy when combined with conventional radiotherapy. A different delivery 

system involving intratumoural injection of an attenuated strain of Salmonella 

typhimurium expressing the E. coli CD gene in refractory cancer patients, showed 

safety and promising efficacy in 2/3  patients (Nemunaitis et al., 2003).  

1.8.2.3 E. coli Nitroreductase 

In the GDEPT systems mentioned so far, the prodrug is converted by the enzyme to  

activated metabolites that  are only toxic to actively dividing cells. However, the 

system using the wild-type E. coli nitroreductase, encoded by the NfsB gene, and the 

prodrug 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) generates very potent 

DNA cross linking agents whose effects are largely cell cycle-independent (Kerr et 

al., 1997). 

CB1954 is a weak monofunctional alkylating agent that was found to have a high 

therapeutic index against Walker rat carcinoma tumour model but was inactive 

against other tumours used for screening of anticancer drugs (Niculescu-Duvaz et 

al., 1998). The sensitivity of the Walker carcinoma cells was subsequently reported 

to be due to a high level expression of Walker rat DT diaphorase, a dehydrogenase 

enzyme that can use either NADH or NADPH as a cofactor. This enzyme catalyses 

the reduction of CB1954 to the bifunctional alkylator 5-(aziridin-1-yl)-4-

hydroxylamino-2-nitrobenzamide, which after further reactions is converted to a 

more potent electrophile capable of forming permanent DNA interstrand cross-links 
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(Knox et al., 1988a; Knox et al., 1988b). However, the use of CB1954 against 

human cancer was limited by the poor efficiency of human DT diaphorase in 

conversion of CB1954 into its toxic metabolite (Boland et al., 1991).  

Nitroreducatase (NR) isolated from the E. coli bacteria was found to bioactivate 

CB1954 up to 90 times faster than Walker rat DT diaphorase, suggesting that the 

nitroreducatase enzyme and the prodrug CB1954 (NR/CB1954) have the potential 

as directed enzyme/prodrug therapy (Anlezark et al., 1992). Subsequently, cloning 

and integration of the nfsB gene product, NR enzyme, in a retroviral vector allowed 

its evaluation in the GDEPT approach. NR expression in murine fibroblast NIH3T3 

cells and several human cancers including melanoma, ovarian carcinoma or 

mesothelioma cells were rendered sensitive to CB1954 killing (Bridgewater et al., 

1995; Michael et al., 1994). Also, NR/CB1954 showed promising results in 

preclinical studies using human tumour xenografts and syngeneic tumour models 

(Clark et al., 1997; Dachs et al., 2009; Djeha et al., 2000; Weedon et al., 2000). The 

toxic CB1954 metabolite induces p53 independent apoptosis resulting from 

inhibition of DNA function due to formation of DNA adducts and interstand cross 

links at higher rates than other potent DNA cross linking agents (Cui et al., 1999; 

Drabek et al., 1997; Friedlos et al., 1992) . This is reflected by the rapid cell death 

of NR expressing cells when treated with CB1954 following a short exposure time 

of 4 hours in vitro. Importantly, the DNA crosslinking agents are cell cycle 

independent and are capable of killing both proliferating and non-proliferating cells 

(Bridgewater et al., 1995). 

GDEPT using NR/CB1954 system was reported to mediate an efficient bystander 

effect in a number of murine and human cell lines, since the primary CB1954 toxic 

metabolites are membrane permeable prodrugs and can diffuse freely through cell 
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membranes, regardless of the presence or absence of gap junctions or tight cell to 

cell contact (Bridgewater et al., 1997; Djeha et al., 2000; Green et al., 2003; 

McNeish et al., 1998). In vitro studies using mixed unmodified and NR-expressing 

ovarian carcinoma or pancreatic cancer cells showed that a significant bystander 

effect was observed when just 5-10% of total cell population express NR (Green et 

al., 1997). Similarly, a potent bystander effect was reported in in vivo tumour 

models with hepatocellular carcinoma and burkitt lymphoma when only 5-30% of 

tumour cells express the therapeutic enzymes (Djeha et al., 2000; Westphal et al., 

2000). 

On the basis of these promising preclinical studies, the safety and tolerability of 

CB1954 was examined in patients with gastrointestinal malignancies; this study 

determined a recommended an i.v dose of 24 mg/m
2
. Based on in vitro studies, such 

a dose is likely to be associated with a clinical benefit in the presence of adequate 

NR expression.  A phase I clinical trial was conducted using replication-defective 

adenovirus encoding nitroreducatase (CTL102) in patients with primary and 

secondary liver cancers prior to resection. This trial reported that up to 5 x 10
11

 

particles of CTL102 can be administered by direct intratumoural injection resulting 

in high levels of NR expression in tumours with minimal side effects (Chung-Faye 

et al., 2001a; Palmer et al., 2004). The combination of CTL102 and CB1954 was 

subsequently tested in a phase I/II clinical trial for treatment of prostate cancer 

demonstrating safety and tolerability of this system. In addition, the trial also 

provided preliminary evidence suggesting partial biological efficacy represented, by 

a change in prostate specific antigen (PSA) kinetics in some patients (Patel et al., 

2009). 
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In an attempt to increase the therapeutic efficacy of NR/CB1954, NR was subjected 

to modification based on structural activity relationship studies, designed to 

generate mutant NR with improved prodrug activation. Recently two NR mutants 

(T41L/N71S and T41L/F70A) were engineered with superior efficiency (14-17-

folds) than wild-type NR at sensitising the cancer cells to CB1954 (Jaberipour et al., 

2010). Also, several highly promising new prodrugs has been developed showing 

increased potency and greater bystander effect relative to the original CB1954 

(Helsby et al., 2004; Jiang et al., 2006; Singleton et al., 2007). 

1.8.2.4 GDEPT – Immune bystander effect 

The notion that GDEPT systems can induce antitumour immune response was first 

suggested following the observation of intense inflammatory infiltrates of 

macrophages, CD4
+
 and CD8

+
 lymphocytes in tumours from immunocompetent 

mice treated with HSV-tk/GCV or CD/5-FC systems (Barba et al., 1993; Caruso et 

al., 1993; Consalvo et al., 1995). Ramesh and colleagues also detected 

proinflamatory cytokine TNF-α, IL-1, and IL-6 within HSV-tk expressing tumours 

24 hours following GCV treatment, while INF-γ and GM-CSF was upregulated 

after 3-4 days, indicating that HSV-tk/GCV treatment initiates an intratumoural 

cytokine cascade that is favourable for generation of antitumour immune responses 

(Pope et al., 1997; Ramesh et al., 1996). The same study also showed that an intact 

host immune system is required for mediation of in vivo bystander effect, since 

athymic mice succumb to tumour development when only 50 % of tumour cell 

populations express HSV-tk. In contrast, an efficient bystander cell killing led to 

tumour rejection when tumours were established in immunocompetent animals.  

An immune bystander effect helps improve the efficiency of the GDEPT by 

promoting the development of a systemic antitumour immunity. Indeed, a number 
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of studies demonstrated that HSV-tk or CD expressing tumours were eliminated in 

vivo following the systemic administration of prodrug. Treated animals remained 

tumour-free and were able to reject tumour cells following a rechallenge with a 

tumourigenic dose of untransduced parental tumour cells (Kuriyama et al., 2004). 

The protective immunity observed with CD-induced tumour regression in an 

adenosarcoma tumour model was found to be tumour specific and does not confer 

immunity against a rechallenge with wild-type fibrosarcoma (Mullen et al., 1994). 

Classical preclinical studies to examine the distant bystander effect showed that 

treatment of subcutaneous HSV-tk or CD expressing tumours on one flank of 

immunocompetent mice had no effect on the progression or the size of unmodified 

parental tumour cells established on the contralateral flank (Freeman et al., 1993; 

Mullen et al., 1994). However, other studies reported the regression of anatomically 

distant hepatic, lung, and colorectal metastases as well distant ovarian tumours 

following ablation of localized HSV-tk or CD tumours (Misawa et al., 1997; Nagy 

et al., 2000; Pierrefite-Carle et al., 2002; Pierrefite-Carle et al., 1999). This 

discrepancy could be due to different transgene expression levels, immunogenicity 

of tumour cells or the anatomical location of tumour deposits. 

In vivo depletion studies showed that CD8
+
 T-cells or granulocytes but not CD4

+
 T 

cells are critical for initial tumour regression in CD/5-FC treated mice; however 

long-term antitumour immunity was dependent on both CD4
+
 and CD8

+ 
T cells 

(Consalvo et al., 1995). Yamamoto and colleagues reported that growth inhibition 

of a second tumour challenge in tumour-cured mice, treated with HSV-tk /GCV, 

was associated with efficient tumour-specific CTL response that was mainly 

mediated by CD8
+ 

T cells (Yamamoto et al., 1997). However, other studies 
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indicated NK cells are essential for the antitumour effects induced by HSV-tk /GCV 

system (Hall et al., 1998).  

As described so far, an immune bystander effect play an important role in enhancing 

regression of localized and metastatic tumours treated by HSV-tk /GCV or CD/5-FC 

in many experimental system, however few studies have addressed the ability of 

NR/CB1954 system to mediate an antitumour immune responses in preclinical 

studies.  

Green et al. demonstrate that AB22 murine mesothelioma tumours stably expressing 

NR failed to grow in 3/6 immunocompetent mice after treatment with CB1954, and  

the surviving animals were protected from a subsequent rechallenge with 

unmodified AB22 cells and remained free for the duration of the experiment (120 

days) However this study was conducted with a small number of mice. Also, 

combining GM-CSF with NR/CB1954 was shown to delay tumour outgrowth and 

enhance survival of mice bearing colorectal or prostate tumours indicating that the 

therapeutic benefits of NR/CB1954 could be enhanced by stimulation of the 

immune system using cytokine gene therapy (Green et al., 2003; Young et al., 

2008). However, animals that were tumour-free following treatment with 

NR/CB1954 plus GMCSF failed to reject tumour cells upon rechallenge with a 

tumourigenic dose of parental prostate tumour cells. Other studies also 

demonstrated that mice immunized with a low and a high dose of NR expressing 

tumour cell implant and treated with CB1954, remained tumour-free; but only mice 

implanted with initial high dose of tumour cells were able to resist tumour 

formation following a second tumour rechallenge. Improved tumour protection and 

long-term antitumour immunity was achieved by combining NR/CB1954 with GM-

CSF or high-level expression of heat shock protein 70 (Djeha et al., 2005). 
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1.9 Aims of the thesis 

The development of a specific, tumour specific antitumour immunity following 

treatment of cancer with NR/CB1954 would enhance tumour regression and ideally 

promote eradication of metastatic tumours and prevent tumour recurrence in cancer 

patients.  However, little evidence has been reported to support generation of an 

immune bystander effect to NR/CB1954 system. To clearly investigate the effect of 

NR/CB1954 therapy on the immune response, the present study was designed to 

examine tumour-specific CD8
+
 T cell responses to this enzyme/prodrug activation 

therapy, since CD8
+
 T cells have been shown to play a critical role in tumour 

immunity. It also aims to explore CD8
+
 T cell response to combined therapies of 

NR/CB1954 with immunostimulatory gene therapy involving 4-1BBL and GM-

CSF. 

To achieve these aims, the research worked with the following specific objectives:  

 

 Establish an in vivo model tumour system to study NR/CB1954 mediated 

immune responses by modification of transgenic adenocarcinoma murine 

prostate cell line (Tramp-C1) to stably express the therapeutic NR gene 

together with ovalbumin (OVA) as a model tumour antigen.  

 Study the capacity of NR/CB1954-mediated cytotoxicity to activate 

antitumour CD8
+
 T cell responses using OT-I T cell adoptive transfer 

experiments in immunodeficient and immunocompetent mice or relying on 

the endogenous OVA-specific CD8
+
 T cell responses in immunocompetent 

mice. 
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 Explore the possibility of augmenting NR/CB1954-mediated tumour-

specific CD8
+
 T cell responses by using the immunomodulatory genes 4-

1BBL or GM-CSF.   

 Establish CD8
+
 T cell anergy in OT-I transgenic mice and further investigate 

the capacity of a combined tumour gene therapy of NR/CB1954 and 4-1BBL 

to reactivate adoptively transferred anergic OT-I T cells. 

 

 



2 Materials and Methods 
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2.1 Suppliers of the materials 

Unless otherwise stated all materials were supplied by Sigma-Aldrich (Poole, UK). 

Deionised water (ddH20) was obtained from a Maxima Ultrapure Water (ELGA, 

HighWycombe, UK). 

2.2 Molecular biology 

2.2.1 PCR amplification for molecular cloning 

Polymerase chain reaction (PCR) was used for the amplification of DNA for 

cloning purposes, and diagnostic determination of E. coli transformants. Optimal 

primers and annealing temperatures were worked out and a PCR reaction containing 

1μl of forward and reverse primer (50pmol/μl) (synthesised by Alta Biosciences, 

University of Birmingham, UK), 50ng DNA template, 1μl of 40 mM dNTP 5μl 10x 

expand high fidelity buffer (Roche), and double deionized water (ddH2O) to adjust 

the total volume to 49μl, was heated to 93ºC. Pfu Taq enzyme (2.5U/μl) (Roche) 

was then added to the reaction as a hot start reaction. Reactions were allowed to 

cycle in a Whatman thermal cycler (Biometra, Whatman) under the conditions 

described in Table 2.1. For cloning purposes PCR products were purified by agarose 

gel electrophoresis and recovered DNA content was determined. 
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Primer 

description 

Oligonucleotide sequence (5‟-3‟) PCR cycle 

OVA-F1 GTA GCC ACC ATG GCT GCA 

GAT CAA GCC AGA GAG 

94ºC for 5 min; 

(94ºC for 45 sec, 

54ºC for 30 sec, 

72ºC for 90 sec) x 

25; 72ºC, 5 min 

OVA-R1 GTC TGG ATG CAG CAG AGA AC 

OVA-F2 GAC TGA ATG GAC CAG TTC 

TAA TG 

Sequencing PCR 

cycles 

OVA-R2 CCT CCA TCT TCA TGC GAG G 

OVA-R3 GGA TGA AGA CAC ACA AGC 

AAT 

94ºC for 5 min; 

(94ºC for 45 sec, 

58ºC for 30 sec, 

72ºC for 90 sec) x 

25; 72ºC, 5 min 

OVA-F3 TCT CTG CCT GCT TCA TTG ATT 

T 

SV40-F1 

 

TCA ACC TGA CTT TGG AGG C 

 

94ºC for 5 min; 

(94ºC for 45 sec, 

55ºC for 30 sec, 

72ºC for 90 sec) x 

25; 72ºC, 5 min 

SV40-R1 TTC CTC TGC TTC TTC TGG 

 

mGM-CSF-F1 CTT TTC CTG GGC ATT GTG G Sequencing PCR 

cycles mGM-CSF-R1 ATG CGG ATA GGT AAC 

 

Table 2-1: Oligonucleotide sequences used in molecular cloning 

 

2.2.2 Restriction endonuclease digestion of DNA 

For cloning and diagnostic DNA digestions, DNA restriction enzymes (Boehringer 

Mannheim or New England Biolabs) were used in accordance with the reaction 

conditions described in the manufacturer‟s instructions using the appropriate colour 

coded enzyme buffers. An analytical scale restriction enzyme digest was usually 

performed in a volume of 20μl on 0.5μg of substrate DNA with 2 l of appropriate 

10x enzyme buffer and 1 unit (U) of restriction endonuclease. This was incubated at 

37C (or other recommended temperature) for a minimum of one hour. In situations 

where the use of multiple enzymes was required, an appropriate buffer was selected 

according to the manufacturer‟s instructions (New England Biolabs catalogue) 



 68 

which allowed for high levels of activity for all enzymes being used. For digestion 

of larger quantities of DNA (e.g. for fragment purification), the restriction 

endonuclease digestion was scaled up and carried out in a similar way except for the 

use of 1.5 U of enzyme per μg DNA in a total reaction volume of 100-200 μl. 

2.2.3 Agarose gel electrophoresis 

Agarose powder (Invitrogen) was mixed with TAE buffer (40 mM Tris, 20 mM 

acetate, 2mM EDTA) to prepare 0.7% gel mixture and dissolved by heating in a 

microwave, then poured into a casting tray containing a sample comb and allowed 

to solidify at room temperature. The casting tray was inserted horizontally into the 

electrophoresis chamber filled with TAE buffer and DNA samples (2-10 μl) were 

mixed with 6x Ficoll loading buffer (0.25% bromophenol blue, 0.25% xylene 

cyanol FF, 15% Ficoll Type 400) then loaded onto the gel. Gels were then run at 80 

V, generally until the bromophenol blue had migrate ≈80% the length of the gel. 

DNA fragments were visualised on a U.V. trans-illuminator (Spectroline TVC-

312A) after staining the DNA with 0.5μg/ml ethidium bromide (EtBr) in TAE 

buffer and images were captured using a Kodak EDAS290 digital camera. 

2.2.4 Purification of DNA from agarose 

DNA fragments obtained from restriction enzyme digest were resolved on a low 

melting point 1 % agarose gel (SeaKem GTG, Cambrex Bio Science Wokingham, 

Ltd.). Samples were prepared by mixing the DNA digests with 6x Ficoll loading 

buffer (1:6 v/v) and 1/10,000 dilution of stock SYBR
®
 Gold nucleic acid gel stain 

(Molecular Probes, Eugene, Oregon USA) before loading onto the gel. After 

running the gel, DNA bands were visualized under blue light (in order to avoid UV 

damage to the DNA that would occur with EtBr visualisation) with a Dark Reader™ 
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(Clare Chemical Research), and the required bands were excised. The DNA was 

subsequently recovered from the gel slice using a QIAquick Gel Extraction kit 

(Qiagen) following the manufacturer‟s protocol. 

2.2.5 DNA extraction using phenol/chloroform 

Phenol/chloroform extraction was routinely performed to remove enzymes and 

other contaminating proteins from DNA samples. An equal volume of aqueous 

phenol was added to DNA samples prepared in 0.2-3 ml 10 mM Tris 1 mM EDTA 

(T10E1) buffer. The tube was vortexed for 15 seconds and then the phases were 

separated by centrifugation in a microfuge for one minute at 13,000 rpm. The lower 

organic phase was discarded and an equal volume of a 1:1 mixture of phenol and 

chloroform was added to the remaining supernatant. This process was repeated 

twice, and then chloroform was added to the aqueous phase followed by vortexing 

and centrifugation. The upper aqueous phase was carefully removed and transferred 

to a clean tube. 

2.2.6 DNA precipitation 

To concentrate and further purify DNA preparations, DNA was precipitated by the 

addition of either 0.1 volumes of 3 M sodium acetate, or 1/50 volume of 5 M NaCl 

followed by the addition of 2 volumes of absolute ethanol or 1 volume of propan-2-

ol. If small amounts of DNA were to be precipitated 10-20μg linear polyacrylamide 

(LPA) from 10mg/ml stock was also added as a carrier. The solution was then 

mixed and incubated at -20C for 30 minutes followed by centrifugation in a 

microfuge at 16000g for 15 minutes. The supernatant was aspirated and the pellet 

was then air dried before dissolving in an appropriate volume of T10E1 buffer.  
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2.2.7 Quantitation of DNA 

DNA was quantified using the DNA binding reagent PicoGreen (Molecular Probes). 

DNA standards ranging from 0-100ng were made in duplicate from a serial two fold 

dilutions of a known standard DNA stock solution (New England Biolabs). DNA 

samples (100 μl) were loaded in triplicate on a 96 well plate. Stock solution of 

PicoGreen reagent was diluted 1 to 200 in T10E1 and 100 μl was added to each well. 

Samples were mixed by pipetting and incubated in the dark for 2 minutes. 

Fluorescence was determined using an absorption wavelength of 485 nm and 

emission wavelength of 535nm using a Victor plate reader (PerkinElmer, Monza, 

Italy; Formerly Wallac). DNA concentration of the unknown samples was 

determined by interpolation from the standard curve.  

2.2.8 Ligation of DNA fragments 

The required vector and insert DNA fragments from restriction digests were purified 

from the gel using a QIAquick gel extraction kit (Qiagen) according to the 

manufacturer‟s instructions. The 5' ends of the cut vectors were dephosphorylated 

using calf intestinal alkaline phosphatase (CIAP; Roche Diagnostics) and incubated 

at 37ºC for 1 hr. The enzyme was then heat inactivated at 75ºC for 10 minutes 

before recovering the DNA via phenol/chloroform extraction and ethanol 

precipitation. Ligations were performed by mixing 0.2 pmoles of the insert DNA to 

100 ng, 200 ng or 300 ng of the required vector fragment in the presence of 1U T4 

DNA ligase (Roche Diagnostics) in a 20 l ligation volume for 16 hr at 14ºC. After 

ligation, a potion of the DNA ligated product was examined by agarose gel 

electrophoresis and the remainder was further cleaned up by phenol/chloroform 

extraction and ethanol precipitation.  
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2.2.9 Bacterial cell transformation and amplification 

Chemically competent E. coli XL-2 Blue (XL-2) was prepared according to 

Molecular cloning manual (Sambrook and Russell, 2001). Ligated DNA was 

transformed mixing 5 to 10 ng of recombinant plasmid DNA or ligation mixture 

with 100 μl competent XL-2 bacteria. After incubation on ice for 30 minutes, the 

bacterial mixture was subjected to a 90  second heat shock in 42°C water bath and 

was then transferred to 900μl of room temperature sterile SOB media [8.4g SOB 

mixture (Difco) in 300ml ddH2O)] supplemented with 20mM filter sterilised 

glucose. The culture was incubated at 37ºC for one hour before spreading on sterile 

SOB agar [15 gram of bacto-agar (Difco) in 1 litre SOB medium] plates containing 

100 g/ml ampicillin or other appropriate antibiotic, and incubated overnight at 

37C. Individual colonies were selected and grown in 3 ml sterile LB-Broth [6g LB 

broth base (Invitrogen) in 300 ml ddH20] containing the appropriate antibiotic and 

incubated overnight at 37C in a shaking incubator.  

2.2.10 Small scale plasmid DNA preparation from bacteria (Mini-prep) 

Bacterial culture was pelleted by centrifugation for 5 minutes at 5000 rpm in a 

Sorvall SM-24 rotor. The supernatant was discarded and the sample was maintained 

on ice throughout the procedure. The pellet was resuspended in 100 l of ice-cold 

solution I (50 mM glucose, 10 mM EDTA pH 7.5, 25 mM Tris.Cl pH 8.0) and 

vortexed for a few seconds. Then, 50 l of freshly prepared lysozyme solution (10 

mg/ml in solution I) was added with vortexing to lyse bacterial cell wall. After 

incubation for 10 minutes on ice, 300 l of solution II (0.2 M NaOH, 1% w/v SDS) 

was added with vortexing to denature proteins and chromosomal DNA and the 

mixture was kept on ice for 10 minutes. This was followed by addition of 225 l of 



 72 

ice-cold solution III (5 M acetate and 3 M potassium, pH 4.8-5.0) to precipitate the 

protein and single stranded DNA. The tube was mixed by inversion before leaving 

on ice for 10 minutes. Samples were centrifuged at 9000 rpm for 10 minutes and 

clear supernatants were transferred to a clean tube before precipitation with 675 µl 

isopropanol for 20 – 30 minutes at 4ºC. DNA was pelleted and redissolved in 200 µl 

of T100E5N100 (100 mM Tris.Cl, 10 mM EDTA, 100 mM NaCl,  pH8) containing 

10 µg/ml RNAase A, heat-treated to inactivate contaminating DNAase. After 1 hr at 

37ºC, DNA was purified via phenol/chloroform extraction and ethanol precipitation 

before DNA pellets were resuspended in 50 l T10E1. The correct DNA plasmid 

constructs was checked by digestion of approximately 5 l of the DNA with an 

appropriate restriction enzyme, before analysis by agarose gel electrophoresis. If 

restriction digests confirmed the desired clone, large scale production of the plasmid 

DNA was carried out. 

2.2.11 Large scale plasmid DNA preparation from bacteria (Bulk-prep) 

The desired bacterial colonies were used to inoculate 200 ml of sterile LB-Broth 

medium supplemented with an appropriate antibiotic and grown overnight at 37C 

in a shaking incubator. The bacterial cultures were pelleted in a centrifuge pot by 

centrifugation for 5 minutes at 5000 rpm in a Sorvall GSA rotor at 4C. The 

supernatant was discarded and the bacterial pellet was maintained on ice throughout 

the procedure. The pellet was thoroughly resuspended in 4 ml ice-cold solution I 

followed by the addition of 1ml of freshly prepared 10 mg/ml lysozyme (in solution 

I) where the suspension was left on ice for 10 minutes. Then, 10ml of solution II 

was added and the pot was gently inverted a few times to ensure complete mixing 

before being left on ice for a further 10 minutes. This was followed by addition of 
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7.5 ml of solution III and vortexing for a few seconds to ensure complete mixing. 

After storage on ice for a further 10 minutes, bacterial debris was pelleted by 

centrifugation at 8000 rpm for 15 minutes at 4C in a Sorvall GSA rotor. The 

supernatant was carefully transferred to a clean 250 ml centrifuge bottle and all 

nucleic acids were precipitated by the addition of 22.5 ml of propan-2-ol for 30 

minutes at -20C. The suspension was centrifuged at 8000 rpm for 20 minutes at 4 

C and plasmid DNA pellets were air dried for 1-3 hr before dissolving in 2.5 ml of 

T50E10 (50 mM Tris.Cl, 10 mM EDTA) overnight at room temperature.  

2.2.12 Purification of plasmid DNA by caesium chloride density gradient 

centrifugation  

Crude plasmid DNA from bulk prep was purified by caesium chloride (CsCl; 

Invitrogen) density gradient centrifugation. In a 15 ml tube, 3.03 g of Ultrapure 

caesium chloride was weighed before adding crude plasmid solutions. The liquid 

weight of the plasmid solution was then made up to 2.75 ml by the addition of 

T50E10 on followed by addition of 275 μl EtBr (10 mg/ml) and incubation on ice for 

10 minutes.  The solution was centrifuged 10000 rpm for 10 minutes in a Sorvall 

SM24 rotor to precipitate contaminating RNA. The supernatant was then transferred 

into 3.9 ml Beckman Quick-Seal™ centrifuge tubes, and any gap between the liquid 

and neck of tube was filled with isopycnic CsCl solution (1 g CsCl:1ml T50E10). 

Tubes were heat sealed and ultra centrifuged at 100000 rpm for 4 hours followed by 

95000 rpm for 4 hours, followed by a 65000 rpm gradient relaxation step for 30 

minutes in a Beckman Optima™ TLX bench top ultracentrifuge using a TLN-100 

near vertical tube rotor. The lower DNA plasmid lower band was carefully removed 

by piercing the side of the tubes with a 21 gauge needle and 2 ml syringe and 
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diluted with 3 volumes of T10E1N100 (solution in a 15 ml tube. The DNA was 

extracted twice with phenol/chloroform to remove ethidium bromide followed by 

DNA precipitation with one volume of propan-2-ol for 30 minutes at -20ºC. DNA 

was pelleted by centrifugation at 10000 x rpm for 10 minutes in a Sorvall SM24 

rotor at 4 C. The pellet was resuspended in 400 l of T10E1N100 (10 mM Tris.Cl, 1 

mM EDTA, 100 mM NaCl, pH 8) and transferred to a clean Eppendorf tube before 

precipitation with 2 volumes of absolute ethanol for 30 minutes at -20ºC. Finally, 

the pellet was then resuspended in 200 l of T10E1 solution. 

2.2.13 DNA sequencing 

PCR based sequencing reactions were performed with an appropriate primer in a 20 

l reaction volume using the ABI Prism Big Dye Terminator cycle sequencing 

ready reaction kits (PE Biosystems), according to the manufacturer‟s protocol. 

Briefly, sequencing reactions were set up using 5-20 ng of the DNA of interest, 4 l 

of the supplied 2.5x buffer, 4 pmol sequencing primer, 4 l terminator mix, and the 

appropriate volume of water in 0.2 ml PCR tubes. The reactions were run in a 

thermocycler (GeneAmp 9700) for 25 cycles of: 96°C for 30 seconds, 50°C for 15 

seconds, 60°C for 4 minutes. The products were transferred to Eppendorf tubes and 

precipitated by addition of 10 % (v/v) 3 M sodium acetate (pH 4.6) and 3 volumes 

of cold 100% ethanol. The mixtures were well mixed, left at room temperature for 

15 minutes and pelleted in a microfuge at 13000 rpm for 20 minutes. The pellet was 

washed with 250 l 70% ethanol, followed by centrifugation at 13000 rpm for 5 

minutes. The final DNA pellets were air-dried for 15 minutes and stored at -20°C 

for subsequent sequencing. 

Prior to loading to the sequencer, the pellets were resuspended in 5 l of loading 
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dye (5:1 mixture of deionised formazide and 50 mg/ml dextran blue in 25 mM 

EDTA, pH 8), vortexed and briefly spun down. The samples were denaturated at 

90°C for 2 minutes in a heat block and then kept on ice. A volume of 5 l from each 

sample was loaded onto a 96 well plate and run on an ABI PRISM® 377 DNA 

sequencer, and analyzed using Sequencher 4.5 software (Gene codes Corporation, 

Ann Arbor, Michigan, USA). 
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2.3 Cell culture 

2.3.1 Cell lines 

Cell line Origin Reference 

Tramp-C1 

cells 

 

Transgenic adenocarcinoma murine prostate 

tumour cell line (Tramp) derived from 

TRAMP C57BL/6 male mice that develop 

histological prostatic intraepithelial neoplasia 

which progress to adenocarcinoma with 

distant metastases by 24-30 weeks of age 

(ATCC) 

 

(Foster et al., 

1997) 

 

 

FLYA13 cells 

 

Human fibrosarcoma cell line-based 

amphotropic packaging cell line (ATCC). 

 

(Cosset et al., 

1995) 

Phoenix-A 

cells 

 

Human embryonic kidney HEK 293-based 

cell amphotropic packaging cell line (Dr. 

Steve Lee, University of Birmingham, UK) 

 

(Swift et al., 

2001) 

B16 cells 

B16OVA cells 

 

Mouse melanoma B16 cell line and its 

counterpart expressing (B16OVA) full length 

secreted ovalbumin (Dr. Richard Vile, Mayo 

Clinic, USA) 

        

(Hu and Lesney, 

1964) 

B3Z T cell 

hybridoma 

Murine T-cell hybridoma specific for the 

OVA/MHC class I complex. It induces 

intracellular accumulation of lacZ protein 

upon TCR activation (Dr. Neil Blake, 

University of Liverpool, UK) 

(Karttunen et al., 

1992) 

 

Table 2-2: Different cell lines used in the present study 

 

2.3.2 Maintenance of mammalian cell lines 

Murine Tramp-C1 prostate adenocarcinoma  cells and their transduced counterparts 

were maintained in Dulbecco‟s Modified Eagles Medium (D-MEM) with 20mM 

HEPES supplemented with 2mM glutamine, 10% foetal calf serum (FCS) (Sigma-

Aldrich), 2mM L-glutamine, 1mM pyruvate, 100 U/ml penicillin, 100μg/ml 

streptomycin, 5g/ml insulin and 1nM/ml Dihydrotestosterone (DHT). 
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FLYA13 packaging cells, B16 and B16OVA melanoma cells were maintained in 

Dulbecco‟s Modified Eagles Medium (D-MEM) with 20mM HEPES supplemented 

with 2mM glutamine, 10% foetal calf serum (FCS) (Sigma-Aldrich), 2mM L-

glutamine, 1mM pyruvate, 100 U/ml penicillin and 100μg/ml streptomycin.  

Phoenix packaging cells were maintained in Dulbecco‟s Modified Eagles Medium-

high glucose (4500 mg/L) supplemented with 2mM glutamine, 10% foetal calf 

serum and 1mM pyruvate, 100 U/ml penicillin and 100μg/ml streptomycin. 

B3Z T cell hybridoma cells were maintained in RPMI 1640 medium (Sigma-

Aldrich) supplemented with 10% foetal calf serum, 50μM 2-Mercaptoethanol, 2mM 

L-glutamine, 1mM pyruvate, 100 U/ml penicillin and 100μg/ml streptomycin. 

Cell were cultured in vented 25-75cm
2
 flasks (Iwaki) at 37ºC in a humidified 

atmosphere containing 5% CO2, and routinely passaged when 90% confluent. The 

media was removed, cells washed once with Phosphate Buffered Saline (PBS) and 

diluted trypsin-EDTA (0.05% w/v trypsin, 0.02% w/v EDTA) added to cover the 

cells. Cells were collected in 10 ml medium to inhibit trypsin, counted, and pelleted 

by centrifugation at 1200 rpm for 5 minutes. The pellet was resuspended in fresh 

complete media and plated at appropriate dilutions into 75cm
2
 flasks. 

2.3.3 Cell number quantitation 

The number of viable cells in cell suspension was determined by diluting 1:1 with 

0.4% Trypan blue. One drop of the dilute solution was applied on a 

haemocytometer (Improved Neubauer) and unstained viable cells were counted 

manually under microscope. The number of cells per ml was calculated using the 

formula: number of cells per ml = [(number of cells in 5 grids (4x4 squares) x 

10
4
)/5]/2 (dilution factor) 
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2.3.4 Cryopreservation of cell lines 

For long-term storage of cells, cells were grown to approximately 75% confluence, 

trypsinised as usual, and re suspended in 10 ml medium. Cells were transferred to a 

15 ml Falcon tube and centrifuged at 1000 x rpm for 5 minutes (Beckman GS-6R 

bench top centrifuge). The supernatant was decanted, and the pellet resuspended in 

1 ml ice cold FCS containing 10% (v/v) DMSO. Cells were transferred into 

cryovials (Nunc), and frozen to -80ºC overnight prior to long-term storage in a -

180ºC liquid nitrogen freezer. 

For culturing of cryopreserved cells, cryovials were quickly defrosted in a 37ºC 

water bath, followed by a drop wise addition of 10 ml pre-warmed medium. Cells 

were then centrifuged at 1000 rpm for 5 minutes before resuspension of the cell 

pellet in fresh medium and plating in tissue culture flasks. 

2.3.5 Microscopy 

A Zeiss Axiovert 25 inverted microscope was used for all phase-contrast and 

fluorescence microscopy using 5, 10, 20 and 40x objectives. 

2.3.6 Stable transfection of virus packaging cells 

2.3.6.1 Transfection of cell with plasmid DNA using calcium phosphate co-

precipitation 

One day prior transfection, FLYA13 virus packaging cells were seeded at a density 

of approximately 5 x 10
5
 per 60 mm dish or 25 cm

2
 flask. The appropriate quantities 

of the required plasmids were ethanol precipitated in Eppendorf tubes with 0.1 M 

NaCl and 2.5 volumes of absolute ethanol. The DNA was pelleted at 13000 x rpm 

in a microfuge and the supernatant removed in a sterile laminar airflow cabinet 
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using a sterile syringe and fine needle. DNA pellet was redissolved in 175 l 10 

mM Tris.HCl pH 7.5 and approximately 5-20 g DNA was added to 25 l 2 M 

CaCl2 and mixed and then 200 l of 2x HEBS (50 mM HEPES NaOH pH 7.05, 0.25 

M NaCl, 1.5 mM NaH2PO4; adjusted to pH 7.05 with NaOH, then brought up to 

200 ml and filter sterilised) was placed in a plastic bijou, and the DNA/CaCl2 

solution added drop wise to the HEBS, whilst mixing gently on a vortex mixer. This 

mixture was left to stand for 20 to 30 minutes, during which time a faint, milky 

precipitate formed. During the DNA incubating period, the medium was removed 

from the cells and sterile fresh medium was added followed by addition of 

chloroquine to a final concentration of 100 M (i.e. 1/100 volume of 10 mM stock). 

The DNA/calcium phosphate coprecipitate was added to the medium over the cells, 

mixed gently, and returned to the incubator for 4 to 5 hours. The medium was then 

removed from the culture plates and 2 ml of 20% glycerol in serum free medium 

was added for 90 sec. After the glycerol shock the medium was removed and fresh 

complete culture medium was added and incubated in a humidified atmosphere 

containing 5% CO2 at 37ºC. After two days, transduced FLYA13 cells were 

cultured in Puromycin (5g/ml) for 2 weeks. When most untransduced cells had 

died, the remaining antibiotic resistant cells were passaged and grown to produce a 

stock of retroviral producer cells. 

2.3.6.2 Transfection of cells with plasmid DNA using Fugene®6 

FLYA13 or Phoenix cells were transfected using Fugene
®
6 according to the 

manufacturer‟s instructions. Briefly, 3l Fugene
®
6 was carefully added to 97 l 

serum free medium in an Eppendorf tube and incubated for 5 minutes at room 

temperature. The appropriate volume of plasmid DNA (1-2g) was added to the 
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transfection mixture, vortexed for few seconds and incubated for 15 minutes at 

room temperature. The transfection reagent-DNA complex was added to FLYA13 

cells in a drop-wise manner and the solution was swirled over the cells to ensure 

even distribution over the entire plate/flask surface. After two days, transduced 

FLYA13 cells were cultured in G418 selection (500 g/ml) for 2 weeks. When most 

untransduced cells had died, the remaining antibiotic resistant cells were passaged 

and grown to produce a stock of retroviral producer cells. 

For Phoenix cell transfection, the culture supernatant containing viral particles were 

harvested 48 hr later, filtered through 0.45-µm pore-sized membranes, prior to 

usage for transduction of tumour cells. 

2.3.7 Stable transduction of tumour cell lines with retroviral supernatant 

Tramp-C1 cells were plated at a density of 1 x 10
6 

in 60 mm plate and allowed to 

adhere overnight. Up to 5 ml of 0.45 μm filtered supernatant from transduced 

FLYA13 cells or Phoenix cells was added to the Tramp-C1 cells in the presence of 

8 µg/ml polybrene (Sigma). This was done twice daily for a period of one week, 

before cells were subjected to G418 selection (500 g/ml). When most 

untransduced cells had died, the remaining G418 resistant cells were plated in 96 

well plates at a limiting dilution to produce clonal transduced cell lines. These were 

then bulked up before characterisation. 

To increase the efficiency of Nitroreductase retroviral transduction of Tramp-C1 

cells, Combimag transfection reagent (OZ Biosciences) was used according to the 

manufacturer‟s protocol. Cells were plated at a density of 2 x 10
5
/well

 
in a 6 well 

plate and allowed to adhere overnight. A volume of 4 l/well of Combimag solution 

was mixed by pipetting in with cell culture medium prior to placing on top of the 
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magnetic plate for 20 minutes. The magnetic plate was removed and culture plates 

were incubated in a humidified atmosphere containing 5% CO2 at 37ºC. After 48hr, 

cells were subjected to G418 selection (500 g/ml) as described earlier. 

2.3.8 Generation of single-cell clones from transduced Tramp-C1 using 

limiting dilution 

Transduced Tramp-C1 tumour cells were trypsinized, washed with PBS and then 

and resuspensed at 1x10
4
 cells/ml complete D-MEM culture medium. The cell 

suspension was filtered through a 40 μm cell strainer to eliminate clumps and to 

obtain a single cell suspension. The cells were then diluted 100x by transferring 

precisely 200 μl of cell suspension to 20 ml of medium, the suspension was mixed 

well by inverting twice, followed by further 10x and 50x dilution to achieve cell 

densities of 10 cells/ml and 2 cells/ml, respectively. For inoculation, the cell 

suspension was then inverted several times and transferred to a conical medium 

reservoir. Using an 8-channel multi-pipette (Gilson), 100 μl was transferred to the 

wells of sterile 96-well plates.  The plates were then covered with aluminium foil or 

and placed at 37ºC in a humidified atmosphere containing 5% CO2. After 24 hr, the 

plates were checked for wells containing 1 cell and were marked for further 

observation. Cell clones arising from single-cells were passaged as they grew, in 

sequence from the 96-well plate into a 48-well, 24-well, 12-well, and 6-well plates 

and finally in tissue culture flasks. Single-cell clones were then bulked up and 

cryopreserved before characterisation. 
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2.4 Cellular assays 

2.4.1 Preparation of protein extracts from mammalian cells 

To extract protein from mammalian cells, cells were washed three times with ice 

cold PBS. The supernatant was discarded and cell pellets were lysed with a suitable 

volume of NP-40 lysis buffer (150mM NaCl, 1% NP-40, 50mM Tris.HCL pH 8) 

(e.g. 300 μl buffer for 25 cm
2
 flask). Crude cell lysates were transferred into a clean 

prechilled Eppendorf and left on ice for at least 20 minutes until complete lysis. 

Lysates were clarified by centrifugation at 13,000 rpm for 5 minutes at 4ºC and 

stored at –70°C. 

2.4.2 Determination of protein concentration 

Protein concentration was determined using the Bio-Rad protein assay kit (BioRad 

Laboratories) according to the manufacturer‟s micro-titre assay protocol. The dye 

reagent was prepared by diluting 1 part dye reagent concentrate with 4 part ddH2O 

followed by filtration to remove particulates. Mammalian cell lysates were diluted 

in PBS and 1 μl diluted lysates were added to 200 μl diluted dye reagent in wells of 

a 96-well plate. The protein concentration was determined from a standard 

calibration curve constructed by a two-fold dilution of 100μg/ml bovine serum 

albumin (BSA).  Absorbance was measured at 450 nm using a Victor2 1420 

Multilabel Counter (PerkinElmer, Monza, Italy; Formally Wallac). 
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2.4.3 Western blot analysis of proteins separated by SDS-PAGE 

electrophoresis 

2.4.3.1 Denaturating SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

electrophoresis 

SDS-PAGE was performed using a Mini-Protean III tank (BioRad) by the method 

of Laemmli (Laemmli, 1970). Glass plates were cleaned with ethanol and the 

apparatus assembled according to the manufacturer‟s instructions. A volume of 10 

ml resolving gel (375mM Tris.HCl (pH 8.8), 0.1% SDS, 0.1% ammonium 

persulfate, 30% (w/v) acrylamide/0.8% (w/v) bis mix (National Diagnostics, 

Geneflow Ltd) and TEMED depending on the desired percentage of gel) was 

poured. Water saturated butanol was layered on top of the resolving gel to remove 

air bubbles and gels were allowed to set at room temperature until solidified. 

Saturated butanol was thoroughly washed out with distilled H2O followed by 

addition of 4ml stacking gel (125mM Tris.HCl (pH 6.8), 0.1% SDS, 0.1% 

ammonium persulfate, 0.01% TEMED and 0.67ml 30% (w/v) acrylamide/0.8% 

(w/v) bis mix) on top of the set resolving gel. A comb was inserted in the stacking 

gel before it was allowed to set at room temperature. Prior to gel loading, the comb 

was removed and the wells were washed extensively with x1 SDS-PAGE running 

buffer (10x stock solution; 0.25M Tris.HCl pH 8.3, 1.92M glycine and 1% (w/v) 

SDS). Samples containing 15-100μg of total protein were denatured by boiling with 

3x concentrated gel sample buffer (GSB; 187.5mM Tris.HCl pH 6.8, 6% w/v SDS, 

30% glycerol, 0.03% w/v bromophenol blue, 150mM DTT) for 5 minutes. 

Denatured samples were cooled on ice, pulse centrifuged to remove condensation 

and loaded onto the assembled gel. Gels were electrophoresed at 120-150V 

(constant voltage) for 90-120 minutes. 



 84 

2.4.3.2 Immunoblotting/western blotting 

Following SDS electrophoresis, proteins were transferred onto methanol soaked 

0.45μM PVDF membranes (Millipore, Watford, UK) using the BioRad Mini Trans-

Blot tank. Tanks containing transfer buffer (50 mM Tris.HCl, 190 mM glycine, 20% 

(v/v) methanol) and assembled mini gel holder cassettes were placed on a magnetic 

stirrer to prevent the build up of heat and electrophoresed for 1 hour at 100V. 

Membranes were washed in TBS-T buffer (1x TBS; 20 mM Tris.HCl pH 7.6, 136 

mM NaCl, supplemented with 0.1% Tween-20) for 5 minutes and blocked in TBS-T 

containing 10% low-fat milk or 10% of BSA for 1 hour at room temperature. 

Blocked membranes were then washed three times for 5 minutes in TBS-T and 

incubated overnight at 4ºC with the relevant primary antibody (Table 2-3). 

Membranes were washed three times for 5 minutes each in TBS-T, incubated for 1 

hour at RT with the relevant peroxidase conjugated secondary antibody (Table 2-3) 

diluted in TBS-T, and then washed a further 3 times for 5 minutes each in TBS-T. 

Proteins were visualised by exposure to film following detection using enhanced 

chemiluminescence reagent (ECL; Amersham). The films were developed with 

Kodak GPX developer and fixer (Kodak, Hemel Hempstead, UK) 
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Antibody Dilution Supplier 

Polyclonal rabbit anti-chicken ovalbumin 

Polyclonal sheep anti-NTR  

Monoclonal mouse anti-β-tubulin 

Anti-rabbit secondary antibody 

Anti-sheep secondary antibody 

1/4000 

1/8000 

1/10,000 

1/10,000 

1/10,000 

AbD Serotec 

Dr. Peter Searle 

Sigma-Aldrich, UK 

Sigma-Aldrich, UK 

Sigma-Aldrich, UK 

 

Table 2-3: List of primary and secondary antibodies used in western blotting 

 

2.4.4 ß-galactosidase assay for activation of B3Z hybridoma 

B3Z is a T-cell hybridoma which recognizes the SIINFEKL peptide in the context 

of H-2K
b
 and expresses -galactosidase ( -Gal) upon activation. B3Z T cells (1x 

10
5
/well) were cocultured with control or OVA-expressing cells (1x10

4
) in wells of 

a 96-well plate. After an overnight incubation, ß-galactosidase activity of the B3Z T 

cells was determined using Luminescent β-galactosidase Detection Kit II (Clontec) 

following the manufacturers‟ instructions. Briefly, plates were centrifuged at 1800 

rpm for 5 minutes and then washed twice with 200 μl/well PBS. Cells were lysed by 

adding 50 μl/well ice cold lysis buffer and then freezed and thawed for three cycles. 

The plates were centrifuged down at 1800 rpm for 5 minutes at and the supernatant 

(25-40 μl) were transferred to new wells of a white background 96 well plate 

(PerkinElmer). Reaction buffer mixture (160-175 μl/well) was added to cell lysates 

and incubated in the dark for 1 hr. Relative light emission was recorded using a 

benchtop microplate luminescence counter (Topcount.NXT, Packard). 
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2.4.5 Chromium release cytotoxicity assay 

Tramp-C1 cells or splenocytes from C57BL/6 mice (target cells) were prepared in 

suspension at 1x10
6
/ ml cell. Cells were pelleted by centrifugation at 1000 rpm for 5 

minutes at 4ºC. The media was removed with a transfer pipette and the pellet was 

resuspended in 500 μl medium before pulsing with 5 μg/m SIINFEKL peptide 

(Innovogen, Sweden). After incubation for 1 hr, cells were washed twice with PBS 

and pelleted with centrifugation. The pellet was then resuspended in 0.25 mCi 
51

Cr 

(Sodium Chromate) (Amersham) and incubated at 37ºC for 1 hr.  Target cells were 

washed twice with complete RPMI medium and then resuspended at 5x10
4
/ml in 

complete RPMI before addition of 100 μl target cell suspension in triplicates to 

appropriate wells of a 96 well V bottom plate (Nunc). Effector cells were also 

counted, resuspended and added to targets to give Effector:Target ratios (E:T) of 

33:1, 10:1, 3:1 and 1:1 or 0.3:1. Targets were plated out with the addition of media 

only (to determine spontaneous release) and with RPMI+0.1% SDS (to give 

maximal release). The plates were then centrifuged at 1000 rpm for 5 minutes then 

incubated at 37ºC for 5 hr.  

A volume of 100μl of the cell supernatant was then removed from each well and 

placed into individual LP2 tubes. These were then loaded onto a Packard Cobra II 

D5010 Ten Detector Scintillation Gamma Counter. Results are expressed as 

percentage specific lysis which was calculated using the following formula:  

% Specific lysis= [(Sample release-Spontaneous release)/(Maximum release- 

Spontaneous release)] x 100 
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2.4.6 In vitro cytotoxicity assay: MTT test 

The sensitivity of transduced tumour cell lines to prodrug was assayed by measuring 

of mitochondrial metabolic activity using MTT (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-

diphenyltetrazoliumbromide) which indirectly reflects viable cell numbers. Cells 

were seeded on day one at 1 x 10
4
 cells/ per 150 µl medium in wells of a 96 well flat 

bottom plate and allowed to adhere overnight.  On day one, medium was aspirated 

from wells using a Vacusafe Comfort (INTEGRA Biosciences AG, Chur, 

Switzerland) and the prodrug CB1954 was added at a range of concentrations in 180 

µl medium to quadruplicate well for 4 or 24 hr at 37ºC. Following the incubation 

period, prodrug was removed and 180 µl/well fresh medium was added. After 48 hr, 

medium was removed and replaced with 150 µl fresh culture medium containing 0.5 

mg/ml MTT, diluted fresh from a 5 mg/ml stock solution. Plates were incubated for 

4hr at 37 °C before the MTT solution was aspirated from the wells. Plates were 

dried for 30 minutes at room temperature before the addition of 150 µl/well DMSO. 

Absorbance was measured at 490 nm using a Victor2 1420 Multilabel Counter.  

2.4.7 Granulocyte-macrophage colony-stimulating factor enzyme-linked 

immunosorbent assay (ELISA) 

Murine granulocyte-macrophage colony-stimulating factor (mGM-CSF) was 

determined in the supernatant of mGM-CSF-expressing Tramp-C1 cells using 

Mouse GM-CSF ELISA Ready-SET-Go (ebiociences) following the manufacturers‟ 

guidelines. Briefly, cells were resuspended at 5x10
5
/5 ml 2% FBS culture medium 

and then cultured in 6 cm culture dishes (Nunc). After 48 hr, supernatant was 

transferred into 15 ml centrifuge tubes (Falcon) and then centrifuged at 3000 rpm 

for 5 minutes at 4ºC. One day before collecting the supernatant, capture mGM-CSF 
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antibody was diluted in coating buffer and 100 µl/well was added to 96-well 

immunoplates plates overnight at 4ºC.  The plate was then washed three times with 

wash solution (PBS + 0.05 % Tween-20) and then the test supernatants and 

standards were added to the wells for 2 hr at 37ºC. The plate was washed 5x with 

wash solution and Horse-radish peroxidase (HRP)-conjugated detection reagent was 

added to the plate (100 µl/well) for 60 minutes.  The plate was again washed 5x and 

then 100 µl of Avidin-HRP substrate was added and incubated in the dark at room 

temperature for 15-20 minutes. The reaction was terminated using 50 µl/well 1M 

hydrochloric acid and the absorbance was measured at 450nm by a Wallac Victor2 

1420 plate reader.  Colour change was proportional to m-GM-CSF concentration 

and unknowns were determined using standard calibration curves of known 

concentration. 
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2.5 In vivo experiments 

2.5.1 Mice 

All animal experiments were conducted in accordance with the updated guidelines 

issued by the UK Coordinating Committee on Cancer Research (1998; Workman et 

al., 2010); and covered by Home Office Project and Personal licenses under the 

Animals (Scientific Procedures) Act 1986. Animals were maintained under specific 

pathogen-free
 
conditions according to Home Office regulations at the Biomedical 

Services Unit of the University of Birmingham. Animals used in this study were 

either bred at the BMSU or obtained from Harlan UK (Dodgeford Lane, 

Loughborough, Leicestershire, LE12 9TE). Breeding pairs of OT-I BoyJ mice were 

a kind gift from Dr. Caetano Reis e Sousa, Immunobiology Laboratory, London 

Research Institute, Cancer Research UK. 

Different strains of only male mice were used during the course of this study 

including: 

 Athymic nude (nu/nu) C57BL/6 mice (B6)  

Nude mice carry a loss of function mutation in the Foxn1 gene (forkhead box N1) 

resulting in the characteristic hairless phenotype and abnormal development of the 

thymus (Balciunaite et al., 2002; Wortis et al., 1971). Consequently, they have 

severely reduced numbers of immature and mature T-cells and are therefore 

profoundly deficient in mediating T cell dependent immune responses including:  

antibody formation (Kaushik et al., 1995) that requires CD4
+
 helper T cells, and 

cell-mediated immune responses, which require CD4
+
 and/or CD8

+
 T cells. Nude 

mice however do have a minimal amount of extra-thymic T-cell maturation 

occurring in spleen (Palacios and Samaridis, 1991), partial defects in B cell 

http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/T/Th1_Th2.html
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/C/CMI.html
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development (Szabo et al., 1998), normal number of macrophages and NK cells, 

normal APC function, and normal complement activity.  

 

 Wild-type (wt) C57BL/6 mice (B6). 

Both wild-type and nude B6 mice naturally express the CD45.2 allele of the 

CD45 leukocyte common antigen on all leukocytes. 

 OT-I CD45.1
+
 TCR-transgenic C57BL/6 mice have transgenic Vα2Vβ5 

TCRs specific for recognition of ovalbumin derived epitope OVA257–264 

(SIINFEKL) in the context of H2-K
b 

(Clarke et al., 2000) and carry the 

allelic variant, CD45.1. 

 In adoptive transfer experiments C57BL/6 mice with the CD45.2 alloantigen 

served as recipients for donor OT-I lymphocytes carrying the alternate 

CD45.1 allele; using this system we were able to monitor tumour specific-

immune responses in terms of their frequency and effector functions in 

different lymphoid tissues. 

2.5.2 Harvesting lymph nodes and spleen 

Mice were culled by cervical dislocation, laid on their backs and sprayed with 70% 

alcohol. The four limbs were stretched and fixed to the dissection board using pins. 

The skin in the lower groin was then lifted up to make a small incision where the 

scissor was inserted longitudinally to detach the skin form the abdominal wall. This 

was followed by a medial midline skin incision starting from the lower groin region 

up to the neck. Again the intervening connective tissues between the skin and the 

muscle in the hind limbs and forelimbs area were loosened where vertical incision 

along each limb was made. The skin was pulled back to the sides and secured with 

pins to expose all peripheral lymph nodes. Then, the inguinal, axillary and brachial 
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lymph nodes (LNs) from both sides of the animal were removed from the 

surrounding tissues using curved forceps. The LNs were separated into draining 

LNs (DLNs) and non draining LNs (N-DLNs) based on their relative distance from 

the tumour implantation site. After cutting open the abdominal wall, the mesenteric 

lymph node was exposed by unfolding the small intestine to allow for its separation; 

while the spleen was easily dissected by pushing the stomach and liver on the left 

side. The lymphoid tissues were transferred to 6 or 12 well plate containing 2 ml 

sterile culture medium.   

2.5.3 Preparation of single-cell suspension from lymph nodes, spleen or blood  

Freshly removed lymph nodes and spleen were homogenized using the back of a 3 

ml syringe plunger until mostly fibrous tissue remains. The clumps were further 

dispersed in the suspension by pipetting several times. Cell suspension was filtered 

through 250 μm mesh nylon screen (Cadish Precision Meshes, UK) placed on top of 

a 5 or 50 ml tube. An additional 1 ml medium was used to wash the culture plate 

and the filter. The suspension was centrifuged at 1000 rpm for 5 minutes at 4ºC then 

the supernatant was discarded. The pellet was resuspended in 2 ml red cell lysis 

buffer ( 150 mM NH4Cl, 10mM KHCO3, 0.1 mM EDTA pH8) then incubated at 

37ºC for 5 minutes with occasional shaking (blood requires longer incubation for 15 

minutes). Lysis buffer was diluted by filling the tube with medium, and then 

lymphocyte cell suspension was filtered again and centrifuged at 1000 rpm for 5 

minutes at 4ºC. The supernatant was discarded and the pellet was washed once then 

resuspended in lymphocyte culture medium. The cells were counted, and the 

viability was then determined using the trypan blue dye to exclude dead cells.  

Blood samples were collected either via tail bleeds or terminal heart puncture into 

0.5 ml Eppendorf tubes containing 100-200 µl 0.1% EDTA. The samples were then 
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transferred into   5 ml tubes filled with 3 ml red cell lysis buffer and processed 

similar to lymph nodes and spleen. 

2.5.4 Ex-vivo OT-I T cell expansion for in vivo administration 

OT-I lymphocyte were cultured at a density of 5x10
6 

per wells of a 6-well plate in 

complete RPMI medium. Cells were stimulated with 5μg/ml SIINFEKL peptide in 

the presence of 100U/ml IL2 for 5 days. Cells were harvested and surface stained as 

will be discussed in section 2.4.8 for the percentage of CD3
+
CD8

+
 T cells and CD69 

activation marker prior to adoptive transfer. 

2.5.5 Adoptive transfer of transgenic OT-I T cells 

Single-cell suspensions from spleen and lymph nodes from OT-I BoyJ mice (6-8 

weeks of age) were prepared as described in section 2.4.3. Lymphocytes containing 

the indicated number of transgenic OT-I T cells were injected intravenously (i.v.) in 

200μl PBS at the appropriate time in the experimental design. 

2.5.6 CB1954 prodrug administration in vivo  

CB1954 used in vivo was of a clinical grade, sourced from OSI Pharmaceuticals, 

Inc. Aston Molecules Ltd. (10 Holt Court South, Aston Science Park, Birmingham, 

B7 4EJ). CB1954 was diluted in PBS and administered intraperitoneally (i.p.) using 

1ml insulin syringes to mice at 20 μg/10 μl/g body weight (20mg/kg).   

2.5.7 Subcutaneous tumour inoculation in mice 

Tumour cells were grown until approximately 90% confluence was reached in 150 

cm
2
 flasks. Cells were then trypsinized, harvested in fresh culture medium and 

pelleted by centrifugation for 5 minutes at 1200 rpm. The cell pellet was washed 

twice with PBS and resuspended at 5x10
6
 cells/100 l PBS. For matrigel-tumour 
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cell mixture, tumour cells were resuspended at 5x10
6
 cells/150 l serum free 

medium and mixed before injection with 150 l of ice-cold matrigel matrix (Becton 

Dickinson). For subcutaneous injection of tumour cells, a 1 ml insulin syringe was 

normally used to inoculate tumour cells in the right flank of the shaved skin of 6-8 

week-old male C57BL/6 mice. Alternatively, a 3 ml syringe was used to inoculate 

matrigel-tumour cell preparations. Once tumours become palpable the greatest 

longitudinal diameter (length) and the greatest transverse diameter (width) were 

measured using a digital calliper twice a week. Tumour volume was calculated 

using the modified ellipsoidal formula (Tomayko and Reynolds, 1989):  

Tumour volume = (length × width
2
)/2 

2.5.8 Isolation of tumour cells from subcutaneous tumours in mice  

Subcutaneous tumours were excised and placed in DMEM medium containing 100 

U/ml penicillin and 100μg/ml streptomycin, minced using a scalpel into small 

pieces and then centrifuged at 1,800 rpm for 5 minutes. The supernatant was 

discarded and the pellet was incubated in a digestion solution (5 ml/tumour) 

containing 1 mg/ml trypsin, 1 mg/ml collagenase D (Boehringer Mannheim), and 

0.25 mg/ml DNase I (Boehringer Mannheim) in Hank‟s balanced salt solution and 

incubated at 37°C for 1 hr with occasional shaking every 15 minutes. Tumour cell 

suspension was filtered through a 250 μm mesh nylon screen to remove tissue 

aggregates and then centrifuged at 1,800 rpm for 5 minutes. The pellet was then 

washed with PBS, resuspended in complete culture medium and cultured in wells of 

a 6-well plate.  
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2.5.9 Irradiation of mice 

On the day of s.c implantation of tumour cell, mice were exposed to a single dose of 

1, 2.5, or 5 gray (Gy) total body irradiation delivered from 
60

Cobalt γ-radiation 

source (Gammatron, Siemens, Germany) in a specially designed well-ventilated 

metallic canisters. The dose rate (Gy/minute) from the source was calculated taking 

in consideration source decay rates.  

2.5.10 Flow cytometric analysis 

2.5.10.1 Surface cell staining  

Single-cell suspensions from tumour cell lines or lymphoid tissues were 

phenotypically analyzed by a single step labelling procedure. Briefly, cells 

(1x10
6
/100 μl) were washed twice in 1% FCS in PBS (1% FCS/PBS) and labelled 

with the appropriate fluorochrome-conjugated anti-mouse monoclonal antibodies 

(Table 2-4) for 30 minutes at 4ºC. Thereafter, cells were washed twice and 

resuspended in 500 μl 1% FCS/PBS or fixed in 1% paraformaldehyde for later 

analysis. 
 
The samples were run on

 
a four-colour Beckman Coulter XL flow 

cytometer or a 16 colour Beckman Coulter LSR II and 1x10
4 

or 5x10
5 

events were 

collected.  Isotype-matched antibodies were used to define marker settings and live 

cell gating was analyzed by 5 µg/ml propidium iodide staining of cells.
 
Flow 

cytometry data was analysed using FlowJo software (Version 7.5.5; Tree Star Inc.). 
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Antibody Concentration/100μl 

staining buffer 

Supplier 

Anti-mouse CD3 PE-Cy5  

Anti-mouse CD3 Pacific Blue 

Anti-mouse CD8 APC  

Anti-mouse CD8 Alexa Fluor 700 

Anti-mouse Vα2 TCR FITC  

Anti-mouse CD4 APC  

Anti-mouse CD45.1 APC 

Anti-mouse B220 PE 

Anti-mouse IFN-γ Pacific Blue 

Anti-mouse CD69 PE-Cy7  

Anti-mouse CD44 PE 

Anti-mouse CD62-L PE 

Anti-mouse CD107a PE 

Anti-mouse IL-2 FILTC 

Anti-mouse 4-1BBL PE 

Anti-mouse H-2Kb APC 

Anti-mouse H-2Kb/OVA (SIINFEKL) 

Pro5® MHC Pentamer 

Rat IgG2b,κ Isotype control PE-Cy5 

Rat IgG2b,κ Isotype control Pacific Blue 

Rat IgG2a,κ Isotype control Alexa Fluor 

Rat IgG2a,κ Isotype control APC 

Rat IgG2a Isotype control FITC 

Rat IgG2a,κ Isotype control PE 

Rat IgG2b Isotype control PE 

1 µl 

1.25µl 

0.5µl 

0.5 µl 

0.5 µl 

1µl 

1µl 

1 µl 

2 µl 

1 µl 

0.65 µl 

0.65 µl 

2.5 µl 

2.5 µl 

0.5 µl 

0.65µl 

2.5 µl 

 

BD Biosciences 

eBiosciences 

BD Biosciences 

eBiosciences 

eBiosciences 

BD Biosciences 

eBiosciences 

eBiosciences 

eBiosciences 

BD Biosciences 

eBiosciences 

eBiosciences 

eBiosciences 

eBiosciences 

eBiosciences 

eBiosciences 

ProImmune 

 

eBiosciences 

eBiosciences 

eBiosciences 

eBiosciences 

eBiosciences 

eBiosciences 

eBiosciences 

 

Table 2-4: List of antibodies used in flow cytometric analysis 

Isotype control concentration was used at the same concentrations of the specific 

antibodies of interest. 

 

2.5.10.2 Pentamer staining 

Freshly prepared single-cell suspensions were incubated with appropriate PE-

labelled MHC pentamer reagent at 37ºC for 20 minutes. After washing with cold 

buffer, cells were resuspended and incubated with the appropriate fluorochrome-

conjugated anti-mouse monoclonal antibodies for 20 minutes at 4ºC. The stained 

cells were washed twice with cold 1% FCS/PBS buffer and re-suspended in 300 μl 

of buffer for analysis by flow cytometry. 
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2.5.10.3 Intracellular cytokine cell staining  

To detect cytokine-producing cells, intracellular staining was performed using BD 

Cytofix/Cytoperm Golgi stop Kit following the manufacturers‟ instructions. Briefly 

cells were stimulated with 5μg/ml SIINFEKL peptide overnight or for 4 hr in a 

humidified incubator with 5% CO2 at 37ºC. Golgi stop was added 4 hr before cells 

were washed with cold 1% FCS/PBS and stained with surface antibodies as 

described in 2.4.8. The cells were then fixed with Cytofix/Cytoperm solution for 20 

minutes at 4ºC and washed with 1% FCS/PBS. Following fixing, cells were washed 

and permeabilised with Perm/Wash Solution for 15 minutes at 4ºC. The cells were 

then pelleted and stained with the appropriate fluorochrome-conjugated anti-mouse 

monoclonal antibodies in 100μl for 20 minutes at 4ºC. The stained cells were 

washed twice with cold 1% FCS/PBS buffer and re-suspended in 300μl of buffer for 

analysis by flow cytometry. 

2.5.10.4 CD107a staining 

Lymphocyte cell suspension were stimulated with 5μg/ml SIINFEKL peptide in the 

presence of Golgi stop and 2.5 μg/100 μl anti-CD107-PE antibody in wells of a 

round bottom 96-well plates for 5 hr in a humidified incubator with 5% CO2 at 

37°C. The cells were washed twice with 1% FCS/PBS and labelled with the 

appropriate fluorochrome-conjugated anti-mouse monoclonal antibodies (Table 2-3) 

for 30 minutes at 4ºC.  The stained cells were washed twice with cold 1% FCS/PBS 

buffer and re-suspended in 300 μl of buffer for analysis by flow cytometry. 

2.5.11 In vivo cytotoxicity assay 

Stock carboxy fluorescein diacetate, succinimidyl ester (CFSE) (Molecular Probes) 

in DMSO was diluted to 5 or 2 μM in PBS. Target cell populations were prepared 
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from naive C57BL/6 male mice using RBC-lysed splenocytes. The residual white 

cells (2x10
7
 cells/ml PBS) were divided into two populations and equal volume 

from high (5 μM) or low (2 μM) diluted CFSE solutions were added to the cells at a 

ratio of 1:1 (vol:vol) and incubated for 10 minutes at 37°C with frequent shaking. 

The reaction was stopped by adding equal volume of cold complete RPMI medium 

for 1 minute. CFSE labelled cells were washed twice with complete RPMI medium 

and PBS as another final wash. Cells labelled with 5 µM CFSE (CFSE
Hi

) left 

unpulsed and those labelled with 2 µM CFSE (CFSE
Lo

) were pulsed with 5 µg/ml 

OVA257-264 (SIINFEKL) peptide for 1 hr at 37ºC with periodic agitation. Cells were 

then washed twice with PBS and pellets were resuspended in 5x10
7
 cells/ml PBS. 

Labelled splenocytes were mixed together in a 1:1 ratio for i.v. injections, where 

each mouse received 5 x 10
6
 CFSE

Lo
 pulsed and 5 x 10

6
 CFSE

Hi
 cells in 200μl PBS. 

After 16 hr, lymphoid tissues were removed and single-cell suspensions were 

generated as described in section 2.4.3 before acquisition of data on the flow 

cytometer. CFSE donor target splenocytes were differentiated from host cells and 

the percentage of target cell killing was determined as:  

100 – [(percentage of peptide-pulsed targets in treated recipients/percentage of 

unpulsed targets in treated recipients)/(percentage of peptide-pulsed targets in naive 

recipients/unpulsed targets in naive recipients) x 100].  

2.5.12 Analysis of cell proliferation  

2.5.12.1 Analysis of cell proliferation using CFSE dilution 

CFSE is a fluorescein related dye consisting of a fluorescent molecule containing a 

succinimydyl ester functional group and two acetate moieties. CFSE diffuses freely 

into cells where intracellular esterases cleave the acetate groups converting it to a 
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fluorescent, membrane impermeable dye which binds to intracellular proteins. As 

cells divide the dye is partitioned equally between mother and daughter cells, the 

number of cell divisions can therefore be determined according to the number of 

equally spaced peaks of CFSE fluorescence, typically up to six divisions can be 

discerned from CFSE dilution. The area under each peak was determined to 

calculate the percentages of dividing lymphocytes in each round of cell division or 

simply as a measure of dividing and undivided populations. 

RBC-lysed splenocytes were washed three times with PBS, centrifuged at 1200 rpm 

for 10 minutes and resuspended at 2×10
7
cells/ml in PBS. Stock CFSE in DMSO 

was diluted with PBS to 5 μM prior to addition to the cells at a ratio of 1:1 (vol:vol). 

After incubation at 37ºC for 10 minutes with frequent shaking, the reaction was 

stopped by adding equal volume of cold complete RPMI medium for 1 minute. 

CFSE labelled cells were washed twice with complete RPMI medium and PBS as 

another final wash before resuspension at the appropriate cell number in PBS or 

medium for adoptive transfer in mice or in vitro cell culture.  

2.5.12.2 Analysis of OT-I T cell proliferation in response to target cells using 

thymidine incorporation 

Transgenic OVA-specific CD8
+
 T cells (OT-I) were obtained from spleen and 

lymph nodes of 8-10 week old OT-I BoyJ transgenic mice. A single-cell suspension 

from RBC-lysed lymphocytes was counted and then surface stained with anti-CD3 

and -CD8 to determine the percentage of CD3
+
CD8

+
 T cell population in each 

sample. Lymphocytes were adjusted to 1 x 10
6
 CD8

+
 T cells/ml in complete RPMI 

medium. Target Tramp-C1, TrampOVA, TrampOVA-4-1BBL cells were exposed to 

120 gray (Gy) from cobalt γ-radiation source then washed in PBS and resuspended 

at 1 x 10
5
 cells/ml in complete lymphocytes medium. CD8

+
 T cells at a ratio of 10:1 
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or 15:1 were cocultured with a constant number of 1 x 10
4
 irradiated target 

cells/100μl in wells of a 96-well U-shaped tissue culture plates at 37ºC in a 

humidified incubator with 5% CO2. After 72 hr, cells were pulsed with 1 μCi/20μl 

3
H thymidine (Amersham) followed by an overnight incubation. The plate was then 

washed 3 times and cells were harvested by vacuum filtration (Filtermate Harvester, 

Packard) onto a glass fibre filters (Packard). The air-dried filter was flitted onto a 

96-well Omnifilter template (PerkinElmer) and 50 μl of Microscint20 scintillation 

fluid (Packard) was added per well. The level of thymidine (count per minute; 

c.p.m) per well was detected using a benchtop scintillation counter (Topcount.NXT, 

Packard). 

2.6 Graph plotting and statistical analysis 

All graphs were plotted and statistical analysis performed using Graphpad Prism 

version 4 software (Graphpad software Inc., La Jolla, CA, USA).  

Dose response curves for MTT assay were analysed using sigmoidal dose response 

non linear regression (curve fit). Where appropriate, limits were set for the top and 

bottom of the curve, and 95% confidence intervals were determined.



3 Results: Generation and characterization of TrampOVA and TrampOVA-

NR cells 
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3.1 Introduction 

The experimental design to study the immune responses to NR/CB1954-mediated 

cytotoxicity is based on modifying Tramp-C1 tumour cells to stably express the 

model tumour antigen ovalbumin (OVA) together with the therapeutic NR gene. 

These modified tumour cells will serve in establishing a model system to study the 

immunological response to treatment of subcutaneous tumours in syngeneic mice. 

Upon treatment with the prodrug CB1954, dying tumour cells are likely to increase 

the availability of tumour antigens to antigen processing cells. Therefore, immune 

response to NR/CB1954-cell death and the consequent release of OVA tumour-

antigen can be monitored by evaluating OVA-specific T cell responses in vivo.  

Ovalbumin was chosen as model antigen, since it is a well-defined protein and has 

been used as a model antigen in several immune-based studies. It contains two well 

defined epitopes OVA257–264 (SIINFEKL) and OVA323–339 

(ISQAVHAAHAEINEAGR) that are presented in the context of MHC class I and 

class II, respectively (Davies et al., 2009). These peptides are recognized by OT-I 

CD8
+ 

and OT-II CD4
+
 T cells derived from transgenic mice expressing the TCR 

specific for OVA257–264 and OVA323–339 in the context of H-2K
b 

and H-2A
b
 

molecules, respectively (Barnden et al., 1998; Clarke et al., 2000).   

OVA is a 45 kDa secreted protein and its full length coding sequence encodes a 

signal sequence (1-45 a.a) that directs the protein to the endoplasmic reticulum, and 

from there it progresses through the secretory pathway to the outside of cell 

membrane (Meek et al., 1982). Secreted proteins are normally endocytosed, 

processed and presented on MHC class II molecules by APCs. However, they can 

also enter the MHC class I presentation pathway of APCs via a process termed 

cross-presentation (Shakushiro et al., 2004). Therefore, deletion of the signal 
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sequence of OVA protein will limit protein expression to the cytosol and to the 

MHC class I antigen presentation pathway, thus mimicking the expression of 

tumour associated antigens. Also, this modification was expected to prevent 

significant levels of antigen presentation except upon death of the tumour cells.  

This chapter describes, cloning of cytoplasmic OVA and generation of TrampOVA 

and TrampOVA-NR single cell clones. After characterization and selection of 

promising single cell-derived clones, the tumourigenicity of TrampOVA and 

TrampOVA-NR cells was further characterised following subcutaneous injection in 

mice. Ultimately, the growth characteristics of TrampOVA tumours were examined 

together with the OT-I CD8
+
 T cell response to the tumour. 

 

Figure 3-1: Full length chicken ovalbumin cDNA 

Schematic diagram showing the ovalbumin coding region (solid blue) and non-

coding region (stipple pattern) within the ovalbumin full length cDNA. The position 

of the OVA257–264 (SIINFEKL) and OVA323–339 (ISQAVHAAHAEINEAGR) 

epitopes that are presented in the context of MHC class I and class II, respectively. 

 

 

3.2 Generation of TrampOVA clones 

3.2.1 Construction of p-BABE-OVA-puro retroviral vector 

For construction of the pBABE-OVA-puro vector, the cytoplasmic cDNA of OVA 

was generated by amplifying the DNA fragment encoding 138 to 386 a.a from pBS-

OVA plasmid (Shastri and Gonzalez, 1993) using the following specific primers 
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OVA-F1 forward: 5‟ –GTA GCC ACC ATG GCT GCA GAT CAA GCC AGA 

GAG-3‟ and OVA-R1 reverse: 5‟-GTC TGG ATG CAG CAG AGA AC-3‟ (Fig 3-

2). A Kozak (underlined) sequence preceding a newly introduced initiation codon of 

OVA gene was integrated to increase the efficiency of protein translation. The PCR 

product (≈ 800 bp) was gel purified, then ligated into alkaline phosphatase treated 

and SnaBI linearized pBABE-puro vector. The ligated product was used to 

transform competent E. coli XL2 bacteria. Purified plasmids recovered from 

different colonies were designated as pAS09B1 to pAS09B10 and were analyzed by 

restriction enzyme mapping for the presence of the insert and the correct insert 

orientation using NcoI, PstI, and XbaI enzymes. Plasmid digestion was expected to 

generate two fragments of 4642 and 1112 bp with NcoI enzyme, four fragments of 

4197, 872, 339, and 176 bp with PstI digest, and two fragments of 3424 and 2605 

bp with XbaI digestion. Gel electrophoresis analysis of the products of three 

plasmid digestion (pAS09B3, pAS09B4 and pAS09B10) showed the exact number 

of DNA bands that corresponded with the expected sizes. This indicates that a 

single copy of the insert was present and in the right orientation (Fig 3-3A). 

DNA sequencing of the full length of ovalbumin were also performed using OVA-

F2 forward: 5‟-GAC TGA ATG GAC CAG TTC TAA TG-3‟ and OVA-R2 reverse: 

5‟ –CCT CCA TCT TCA TGC GAG G-3‟ primers to ensure correct coding region. 

When comparing the OVA DNA sequence results for pAS09B3, pAS09B4 and 

pAS09B10 with that obtained from the GenBank, analysis revealed that a single 

adenine nucleotide in the GenBank OVA sequence located at amino acid (a.a) 

position 188 (OVA188) was changed into a guanine nucleotide in p-Babe-OVA-puro 

(Fig 3-3B). This change resulted in replacement of a threonine codon with an 

adenine codon, however this point mutation has no effect on the main two MHC 
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class I and II restricted epitopes recognized by OT-I CD8
+
 T cells and OT-II CD4

+
 

T cells, respectively. 

 

Figure 3-2: p-BABE-OVA-puro (pAS09) retroviral plasmid map 

The diagram shows the positions of primers and restriction enzyme sites used in the 

cloning process. Also shown are the two retroviral LTRs, the OVA gene under the 

transcriptional control of the 5‟ LTR, the puromycin resistance gene (Puro) driven 

by the SV40 promoter, and the plasmid vector replication origin and ampicillin 

resistance gene. 

 

  

A. 
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GenBank OVA sequence          GAG   AAA   ACA   TTT   AAG 

                                                     E         K          T         F        A 

p-Babe-OVA-puro                     GAG   AAA   GCA   TTT   AAG 

                                                     E         K          A         F        A 

 

Figure 3-3: Characterization of pBABE-OVA-puro (pAS09) retroviral vector 

A, gel electrophoresis analysis of pAS09B3 (lane 1, 4, 7), pAS09B4 (lane 2, 5, 8) 

and pAS09B10 (lane 3, 6, 9) plasmid digests. M: size marker (1kb DNA ladder); 

lanes (1-3): NcoI digests; lanes (4-6): PstI digests; lanes (7-9): XbaI digests of 

pAS09B3, 4 and 10 plasmids. B, comparison of OVA DNA and encoded amino 

acid sequences in the GenBank and p-BABE-OVA-puro. The threonine amino acid 

in pBS-OVA was replaced by alanine in p-BABE-OVA-puro. The difference 

between the two sequences is highlighted in red. 

 

3.2.2 Generation of single cell-derived TrampOVA clones  

Initially, FLYA13 retrovirus packaging cells were transfected with pAS09B3 or 

pBabe-puro plasmids using Fugene 6 (Roche) following the manufacturer‟s 

instructions, to allow entry of plasmid DNA into the cells. After 48 hr, the cells 

were selected in 5µg/ml puromycin for 2 weeks until colonies of antibiotic resistant 

cells were clearly visible. The transfected pool of FLYA13OVA was propagated 

further into large cultures and the supernatant containing retrovirus particles was 

M   1    2    3    4   5    6   7    8    9 

5kb 

3kb 

1kb 

500bp 

B. 
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collected and kept at -20ºC. To generate TrampOVA clones, Tramp-C1 cells were 

transduced with supernatant from FLYA13OVA packaging cells supplemented with 6 

μg/ml polybrene every 12 hr for 2 days. The cultures were then selected in 

puromycin for 2-3 weeks. To select single cell clones, puromycin resistant colonies 

were plated using the limiting dilution method in 96 well plates and left for 3-4 

weeks until individual colonies were apparent. Transduced colonies that originated 

from the lowest plated cell densities and were likely to originate from single cells 

were picked from the plates and expanded further under puromycin selection. To 

screen for the integration of the OVA gene into the genome of TrampOVA clones, 

genomic DNA was extracted from each clone and used as a template for PCR using 

OVA-F3 forward: 5‟-GGA TGA AGA CAC ACA AGC AAT-3‟ and OVA-R3 

reverse: 5‟-TCT CTG CCT GCT TCA TTG ATT T-3‟ (reverse) PCR primers. 

Integration of OVA gene into the genomic DNA of TrampOVA single cell clones 

should be indicated by amplification of a ~450 bp product (Fig. 3-4). Among the 

different single cell clones screened, six are shown demonstrating a clear PCR 

product at the expected size compared to the PCR product from the original pBabe-

OVA-puro plasmid in lane 2. 

   

 

Figure 3-4: Gel electrophoresis analysis of PCR products from single cell 

derived TrampOVA clones 

PCR reactions in lanes 1-8 used the following as templates: lane 1: water; lane 2: 

plasmid AS09B3; lane 3: DNA from parental Tramp-C1; lane 4: clone 1; lane 5: 

clone 3; lane 6: clone 5; lane 7: clone 6; lane 8: clone 8. Lane M: size marker. 

 

 

M    1    2     3    4     5    6    7    8      

1 Kbp 

500 bp 

http://jvi.asm.org/cgi/content/full/75/2/903#F1
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3.2.3 Detailed characterization of TrampOVA clones 

3.2.3.1 Detection of ovalbumin protein expression 

To confirm OVA protein expression in TrampOVA cells, lysates from parental 

Tramp-C1 and TrampOVA polyclonal cells, as well as the previously –described 

OVA expressing melanoma cell line (B16OVA) (Gough et al., 2005), were analyzed 

by western blotting using anti-OVA antibody. In this analysis parental Tramp-C1 

and B16 cells served as negative controls, whereas 10-50 ng of crude ovalbumin 

and B16OVA melanoma cells were used as reference and positive control, 

respectively. Figure 3-5 shows that crude OVA protein displayed two clear bands at 

the predicted molecular weight of 45 KDa and that the level of OVA protein could 

be detected down to 10 ng. However, OVA expression in 50 µg cell lysates from 

both B16OVA cells, expressing full length OVA (45 KDa), and TrampOVA cells, 

expressing truncated OVA (27 KDa) was below the 10 ng detection level (Fig 3-5). 

Therefore, it was difficult to verify OVA expression in TrampOVA cells by western 

blot analysis. 
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Figure 3-5: Western blot analysis for ovalbumin protein in polyclonal 

TrampOVA cells  

B16 melanoma, B16OVA, Tramp-C1 and TrampOVA cells were harvested for protein 

lysate preparation. An amount of 30 μg of total protein lysate and 10-50 ng purified 

OVA protein as a reference standard was examined for OVA expression by western 

blot analysis using specific antibodies (A). β-tubulin was used as an internal loading 

control (B). The samples were as follow: purified OVA protein as indicated (lanes 

1, 2, 3); B16 melanoma cells (lane 4); B16OVA cells (lane 5); Tramp-C1 cell (lane 

6); and TrampOVA polyclonal population (lane 7). 

 

3.2.3.2 Activation of OVA-specific (B3Z) CD8
+
 T cell hybridoma by 

TrampOVA clones 

As an alternative approach to confirm and compare the level of OVA expression 

between different TrampOVA clones, we examined whether sufficient OVA antigen 

is processed and displayed in the context of MHC molecules to permit recognition 

and activation of B3Z T cells.  

The B3Z mouse cell line is a CD8
+
 T cell hybridoma expressing a TCR that 

specifically recognizes OVA257–264 peptide (SIINFEKL) in the context of MHC 

class I (H-2K
b
). It contains an Escherichia coli lacZ reporter gene (encoding β-

galactosidase enzyme) under the transcriptional control of the nuclear factor of 

45  

34  

27  

17  

KDa 

A. 

  1     2       3      4    5              6      7 

B. 
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activated T cells (NFAT) responsive element of IL-2 promoter. Selective 

recognition of SIINFEKL/MHC I complex by the TCR of B3Z T cells correlates 

with the level of expression of β-galactosidase enzyme, which can then be evaluated 

using a variety of chromogenic and fluorogenic substrates (Karttunen et al., 1992). 

To assess the ability of TrampOVA clones to activate B3Z hybridoma T cells, cells 

were cultured in complete media supplemented with (IFN-) overnight, to induce 

MHC class I expression, followed by coculturing with B3Z T cells for 16 hr. In this 

assay, parental Tramp-C1 cells were used as a negative control while Tramp-C1 

pulsed with SIINFEKL peptide provided a positive control. Figure 3-6 shows the 

different levels of β-galactosidase enzyme activation in response to TrampOVA 

clones, likely reflecting the variation in the levels of SIINFEKL peptide presented 

by the different clones. Clone 6 stimulated B3Z T cells by 1.4 times the level seen 

in peptide pulsed cells, while clones 3 and 5 were 70% as effective as the peptide-

pulsed cells. The highest level of B3Z T cell activation was induced by clone 8; 

however this clone showed abnormal cellular morphology and delayed growth rate 

compared to other clones and thus was excluded from further analysis. Likewise 

clone 1 was also excluded due to minimal B3Z T cell activation. In conclusion, the 

efficient activation of B3Z hybridoma T cells by clones 3, 5 and 6 indicated 

competent presentation of the SIINFEKL peptide, and therefore these clones were 

selected for further analysis. 
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Figure 3-6: B3Z T cell activation by TrampOVA clones 

Cells were treated with 100U/ml IFN- overnight, then 1x10
4
 Tramp-C1, Tramp-C1 

loaded with peptide (1μg/ml) or TrampOVA clones were cocultured in wells of a 96 

well plate with 1x10
5
 B3Z T cell hybridoma cells for 16 hr. β-galactosidase activity 

in B3Z T cells was assayed in total culture lysates after incubation with β-

galactosidase luminescent substrate for 1 hr at 37ºC. Data are presented as the mean 

relative luminescence unit of triplicate wells (±SEM) on a log scale. 

 

3.2.3.3 Lysis of TrampOVA clones by effector OT-I T cells 

To further study the characteristics of the selected TrampOVA clones, their ability to 

stimulate cytotoxicity of OVA-specific effector CD8
+
 cells (OT-I T cells) was 

assessed. The cytotoxicity was examined using a chromium release assay. Briefly, a 

single cell suspension of spleen and lymph nodes from male OT-I mice was 

prepared and activated in vitro with 1µg/ ml SIINFEKL peptide for 5 days to 

differentiate into effector cells. These ex vivo stimulated cells were then incubated 

with chromium labelled TrampOVA clones at the indicated ratios for 5 hr at 37ºC. As 

shown in Figure 3-7, there was negligible lysis of the parental Tramp-C1 cells, 

while maximal cytotoxicity was evident at all ratios with Tramp-C1 cells loaded 

with the SIINFEKL peptide. Sensitivity to OVA-specific lysis of the TrampOVA 
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clones was most prominent at effector/target (E/T) ratio of 33:1, where the highest 

specific lysis (65%) was observed with clone c6 while c3 and c5 were less sensitive 

and induced 36% and 13% specific lysis, respectively. However, at lower E/T 

ratios, cytotoxicity levels were reduced to below 21% with marginal differences 

between clones at each ratio. 
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Figure 3-7: In vitro CTL assay to compare OVA-specific cytolytic sensitivity of 

TrampOVA clones 

Effector OT-I T cells were prepared from single cell suspension from spleen and 

lymph node from OT-I mice and stimulated with 1 µg/ml SIINFEKL peptide in 

complete media with 100U/ml IL-2 for 5 days. effector OT-I T cells (E) were 

cocultured with 
51

Cr-labeled Tramp-C1, Tramp-C1 loaded with peptide or 

TrampOVA clone as target cells (T) at the indicated ratios for 5 hr. Each point 

represents the mean of triplicate cultures (±SEM). 

 

 

3.2.3.4 MHC class I surface expression by TrampOVA clones 

The level of MHC class I expression is a key determinant of the immunogenicity of 

tumour cells and rejection of tumour cells in vivo (Nanni et al., 1996). Previous 

studies reported that early passages of Tramp-C1 cells express low level of surface 

MHC class I molecules that decline on in vitro culturing (Grossmann et al., 2001). 

Therefore, it was of interest to evaluate MHC class I expression by TrampOVA 

clones and whether treatment with IFN-γ would affect the level of expression. To 
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study MHC class I expression, parental Tramp-C1 and TrampOVA clones either 

untreated or treated with interferon- γ (IFN-γ) were stained using anti-MHC class I 

antibody and analyzed by flow cytometry. The results in Figure 3-8A revealed that 

parental Tramp-C1 cells expressed low levels of MHC I molecules and even lower 

levels were observed in clones c6 and c5, however clone 3 showed higher levels of 

MHC class I expression than parental Tramp-C1 cells. On treatment of cells with 

IFN-γ, MHC class I expression was vastly induced in parental Tramp-C1 and 

TrampOVA clones (Figure 3-8B). Interestingly, the order of MHC class I expression 

among IFN-γ treated clones and parental cells was the same as that observed in 

untreated cells with clone 3 expressing higher levels than IFN--stimulated parental 

Tramp-C1 cells. 
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Figure 3-8: Expression of MHC class I molecule by different TrampOVA clones 

Tramp-C1 cells and TrampOVA clones were cultured: A without or B with 100U/ml 

IFN-γ overnight. 1x10
5
 cells/100 μl were stained with MHC class I-PE or isotype 

control antibodies for 20 min at 2-8ºC before analysis by flow cytometry. The 

different cell lines are indicated to the left of each horizontal series of the 

histograms and the numbers represent the mean fluorescence intensity (MFI) of 

MHC class I expression. 

 

 

 

 

 

 

 

A. 

TrampOVA c6, MFI=20998 

B. 

TrampOVA c6, MFI=325.8 

 

TrampOVA c5, MFI=359.5 

 

TrampOVA c3, MFI=1117.5 

 

Tramp-C1 MFI=801.8 

 
Isotype, MFI=238 

 

Isotype, MFI=238 

 

Tramp-C1 MFI=23830 

 

TrampOVA c3, MFI=36252 

 

TrampOVA c5, MFI=23470 

 

PE 

PE 



 114 

3.2.4 Choice of TrampOVA clone 3 for establishment of the model tumour cell 

line  

Section 3.2.3 has described the characterisation of clones transduced with pBABE-

OVA-puro in order to identify a clone suitable in which OVA would serve as a 

model tumour antigen. This clone would ideally express low level of OVA-antigen 

but sufficient for recognition by tumour-specific T cells.  

As indicated above, during the screening process, some of the clones with slow 

growth rate in vitro or inefficient OVA presentation were excluded. Thus, only 3 

promising clones (c3, c5 and c6) were identified. The c6 clone was rejected from 

the selection as it is more immunogenic than the c3 and c5 clones to B3Z and OT-I 

cells (Fig 3-6 and 3-7). Then, c3 clone was chosen as it showed inducible MHC 

class I expression (Fig 3-8) and reasonable level of OVA-antigen presentation as 

demonstrated by its ability to induce OVA-specific OT-I cell responses that should 

allow proper tracking of the immune response.  

3.3 Generation of TrampOVA clones expressing nitroreducatase enzyme 

To introduce NR gene to TrampOVA, viral supernatant from FLYA13-NR retrovirus 

producer cells previously generated in our laboratory (Jaberipour et al., 2010) were 

used to transduce TrampOVA cells (clone 3). However, initial attempts failed to 

generate any G-418 resistant transduced cells, suggesting that the virus titre in the 

FLYA13-NR cells was too low. Combimag beads were therefore used in addition to 

6 µg/ml polybrene to improve the efficiency of virus delivery. Transduced cells 

were selected using puromycin and G-418 antibiotics. After 2-3 weeks, antibiotic 

resistant colonies were pooled and tested for CB1954 prodrug sensitivity and by 

western blot analysis to confirm NR expression. Clonal cell lines of TrampOVA-NR 
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cells were then generated by limiting dilution of the cell pool, and a number of 

TrampOVA-NR single cell-derived clones were expanded in large cultures for further 

screening. 

3.3.1 Nitroreductase expression in TrampOVA-NR clones 

To confirm that TrampOVA-NR clones express NR protein, cell lysates from Tramp-

C1, as a negative control, TrampOVA-NR polyclonal cells and single cell clones were 

immunoblotted for NR and β-tubulin proteins.  

Figure 3-9 shows that, unlike Tramp-C1 cells, the TrampOVA-NR polyclonal line 

and single cell clones successfully expressed NR protein. However, TrampOVA-NR 

polyclonal cells and c2, c4, c6 and c15 clones demonstrated relatively lower levels 

of NR protein expression compared to other clones. 

 

Figure 3-9: Nitroreductase expression in TrampOVA-NR cells 

TrampOVA cells, TrampOVA-NR pool of cells or single cell clones were harvested for 

protein lysate preparation. An amount of 5 μg of total protein lysate preparation was 

examined for nitroreducatase enzyme expression and β-tubulin as a loading control 

by western blot analysis using specific antibodies.  

 

3.3.2 TrampOVA-NR clones sensitivity to CB1954 prodrug 

In order to choose a single cell-derived clone with suitable prodrug sensitivity for 

further use in vivo experiments, the sensitivity of single cell clones to CB1954 was 

β-tubulin 

Nitroreductase 
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determined in vitro using the MTT cytotoxicity assay. The CB1954 prodrug 

concentration showing 50% reduction in viability (IC50) was obtained from dose 

response curves and was used to compare between various clones. Figure 3-10 

shows the sensitivity of different clones to CB1954 plotted as dose response curves 

where the IC50 values varied markedly between clones ranging from 7.5 to 133 µM 

CB1954 (Table 3-1). Five (c4, c6, c11, c13 and c15) clones showed IC50 values 

below that of the original pool of cells (29 µM) for which the IC50 were determined 

as 24.6, 8.5, 7.4, 8.4, 20.8 µM CB1954, respectively.  

On the second attempt for determining the IC50 values of the different clones that 

involved sub-culturing of cells for 3 passages which is equal to ≈15 population 

doublings, the IC50 values were increased to more than two fold in some of the 

clones (c5, c6, c9, c13 and c14) (Table 3-1). This suggested that the clones may 

have not originated from a single cell, or that the level of NR expression was 

reduced during continued in vitro growth of the cells. Thus, we choose to select 

clone 11 which shows the best stability for NR expression.  
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Figure 3-10: Sensitization of TrampOVA-NR single cell-derived clones to 

CB1954 

Tramp, TrampOVA-NR pool, or TrampOVA-NR single cell-derived clone (1x10
4 

cell/180 μl) were treated with prodrug at the indicated concentrations for 4 hr. Cell 

viability was determined 48 hr after prodrug addition. Data points show mean (±SD) 

of quadruplicate wells, and are normalised to 100% survival in absence of prodrug. 
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Clone 

I.C50 value 

µM CB1954 

First round 

I.C50 value 

µM CB1954 

Second round 

Tramp-C1 > 300     n.d 

Pool 29.2 n.d 

c1 36  37.8  

c2 93  126.6 

c4 24.6  47.7 

c5 38.1  86.84 

c6 8.5  23.8 

c7 52.2  60.5 

c8 43.2  46.2 

c9 35.8  188.2 

c11 7.5  8.8 

c13 8.4  37.7 

c14 133.2  300 

c15 20.8  33.7  

c16 29.52  51.7 

 

Table 3-1: TrampOVA-NR single cell-derived clones IC50 range of CB1954 

The IC50 ranges were graphically determined from the dose response curves (as 

shown on Fig. 3-11) plotted from two different experiments. Clones with the lowest 

IC50 values were marked in red colour.  

n.d (not determined) 

 

 

3.3.3 Presentation of ovalbumin epitope by TrampOVA-NR clone 11 

To confirm that TrampOVA-NR clone 11 has not lost the OVA transgene its ability to 

stimulate B3Z T-hybridoma cells was assessed as described previously (section 

3.2.3.2. and Fig 3-6). Overnight incubation of B3Z hybridoma-T cells with parental 

Tramp-C1 cells induce similar background levels of β-galactosidase enzyme to that 

observed with B3Z hybridomas alone (Fig. 3-11). In contrast, both TrampOVA and 
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TrampOVA-NR activated B3Z T cells and induced accumulation of β-galactosidase 

enzyme; however TrampOVA cells showed ≈6 fold higher levels of β-galactosidase 

expression compared to TrampOVA-NR cells. This indicated that Tramp-OVA-NR 

cells possess reduced ability to present OVA-epitope relative to their parental 

TrampOVA cells. 

10 4 10 5 10 6 10 7 10 8

-NROVATramp

OVATramp

Tramp-C1

B3Z

Log RLU
 

Figure 3-11: B3Z T cell activation by TrampOVA-NR cells 

B3Z T-hybridoma cells (1x10
5
) were left alone or cocultured in a 96 well plate with 

1x10
4
/well Tramp-C1, TrampOVA, or TrampOVA-NR cells for 16 hr. β-galactosidase 

activity in B3Z T cells was assayed in total culture lysates after incubation with β-

galactosidase luminescent substrate for 1 hr at 37ºC. Data are presented as the mean 

relative luminescence (RLU) of quadruplicate wells (±SEM) on a log scale. 

 

 

 

3.3.4 Bulk growth of TrampOVA and TrampOVA-NR cells in preparation for in 

vivo experiments 

Since the IC50 values of TrampOVA-NR single cell-derived clones were increasing 

on sub-culture of cells, it was decided to generate a single large batch of TrampOVA-

NR clone 11 and to freeze it down into multiple cryotubes as a uniform seed stock 

for in vivo experiments. This should minimize potential variability by ensuring 

equal OVA or NR expression in tumour cell implants between in vivo experiments.  
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The schematic diagram on figure 3-12A shows the strategy. TrampOVA clone 3 or 

TrampOVA-NR clone 11 cells were expanded in large 150 cm
2
 flasks and the IC50 for 

CB1954 was determined after passage 1 (P1) and passage 2 (P2). Then, the cells 

were frozen down in multiple aliquots of seed stock when the P2 cultures were 

100% confluent. Before each in vivo experiment, one cryotube of the seed stock was 

thawed and cultured in preparation for subcutaneous injection of 10 mice with 

5x10
6
 cells/animal. Also, in most experiments, the IC50 of cell surplus to inoculation 

requirements designated as passage 4 (P4) was determined on the day of seeding the 

mice. As shown in Figure 3-12B and C, the IC50 value of TrampOVA-NR cells at P1 

increased considerably from 21.5 to 244 µM at P4 when the cells were exposed to 

CB1954 for 4 hr, whereas the difference in the IC50 values between P1 and P4 was 

less pronounced (from 2.6 to 12.3 µM) when extending CB1954 exposure to 24 hr.  
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3 cryotubes thawed and grown in 6 large flasks 

Split into 18 large flasks (Passage 1; P1) 

 

Split into 36 large flasks (Passage 2; P2) 
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1cryotube of seed stock thawed and cultured in 5 large flasks 

 

Split into 15 large flasks (Passage 3; P3) 
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 Figure 3-12: Sensitization of TrampOVA-NR clone 11 to CB1954 over different 

cell passages 

A, schematic representation of bulk growth of TrampOVA-NR cells. B and C, 1x10
4
 

TrampOVA or TrampOVA-NR clone11 from different passages were treated with 

prodrug at the indicated concentrations for 4 hr or 24 hr, respectively. Cell viability 

was determined 48 hr after prodrug addition. Data points show mean (±SD) of 

quadruplicate wells, and are normalised to 100% survival in absence of prodrug. 

The IC50‟s determined from the data are indicated to the right of graph. 

B. 

C. 

A. 
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3.4 Tumourigenicity of TrampOVA and TrampOVA-NR cells in nude 

C57BL/6 mice 

To examine the growth of TrampOVA and TrampOVA-NR cells in vivo, a previously 

established tumourigenic dose of 5x10
6
 Tramp cells was chosen (Kwon et al., 

1999). Parental Tramp-C1 or TrampOVA-NR cells were s.c seeded on the right flank 

of C57BL/6 nude male mice and tumour volumes were assessed over the following 

weeks. In group of mice seeded with parental Tramp-C1 cells, palpable tumours of 

45.2 mm
3
 mean volume were detected by day 14 in 3/3 mice (Fig 3-13A). These 

tumours progressively developed to a mean volume of 476 mm
3
 on day 33. In 

contrast, mice inoculated with TrampOVA-NR cells showed relatively smaller 

tumour volumes compared to Tramp-C1 group at all time points and achieved a 74 

mm
3 
tumour volume after 26 days (Fig 3-13B). 

In a similar experiment, seeding of TrampOVA cells s.c. in nude mice resulted in the 

appearance of visible tumours between 14 to 17 days that developed into 58.6 mm
3
 

mean volume by 24 days (Fig. 3-13C). 

These results show that s.c injection of 5x10
6
 TrampOVA or TrampOVA-NR cells is 

tumorigenic in C57BL/6 nude male mice and that both TrampOVA and TrampOVA-

NR tumours exhibit almost similar growth rates. However, the growth rate of 

TrampOVA and TrampOVA-NR was slower compared to parental Tramp-C1 tumours 

(Fig 3-13D).  
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 Figure 3-13: Growth characteristics of subcutaneous tumours initiated by 

parental Tramp-C1 and the subclones TrampOVA and TrampOVA-NR cells 

Male nude C57BL/6 mice, 16-20 weeks old, were injected s.c. in the right flank 

with 5x10
6
 of the indicated tumour cells. Tumour volume was measured manually 

with a calliper three times a week. A, B and C show tumour growth of individual 

mice in the indicated group. D, shows an overlay of mean tumour growth curves for 

each group are shown. 

n=the initial number of mice per group. 

^ One mouse was lost due to eye abscess on day 15. 

^^ Two mice were lost due to eye abscesses on day 7 and 20 
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3.5 Dose titration of OT- I T cells in nude C57BL/6 mice with established 

TrampOVA tumours 

Adoptive transfer of OVA-specific OT-I CD8
+
 T cells may affect the growth of 

OVA expressing tumours in mice and this effect is expected to be dose dependent. 

Therefore, OT-I T cell dose titration was adopted to determine a sub-therapeutic 

dose of OT-I T cells for in vivo studies. The ideal dose would have minimal effect 

on OVA expressing tumour growth in the absence of additional stimulation, and 

thus would permit monitoring of CD8
+
 T cell activation in response to NR/CB1954-

mediated tumour cell killing in vivo. 

 

3.5.1 Effect of 10 million naïve OT-I T cells 

In a pilot study, two groups of nude C57BL/6 mice were seeded on the right flank 

of the back of the mice by s.c. injection of 5x10
6
 TrampOVA cells, while the third 

group received 5x10
6
 Tramp-C1 cells s.c. At day 0, defined when mean tumour 

diameter reached 5 mm, to provide a negative and a positive control respectively, 

one group of mice bearing parental Tramp-C1 tumours and another one bearing 

TrampOVA tumours received 10x10
6
 effector OT-I lymphocytes (≈ 9 x10

6
 CD8

+
 T 

cells) to provide a negative and a positive control, respectively. The third group of 

mice with TrampOVA tumours received 10x10
6
 naïve OT-I lymphocytes (≈ 4 x10

6
 

CD8
+
 T cells) served as test group. As described in the scheme in Figure 3-14A 

tumour diameter was followed over the experimental time and 2 mice from each 

group were culled at day 5 and 10 for analysis of CD8
+
 T cells in blood, spleen and 

lymph nodes pool (axillary, brachial, inguinal and mesenteric).  

In control group, mice inoculated with Tramp-C1 cells that received effector OT-I 

cells, the mean tumour volume slightly increased overtime and none of the mice 
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were tumour-free. Conversely, groups of mice seeded with TrampOVA tumours and 

receiving either naïve or effector OT-I T cells showed complete tumour regression 

in 2/4 and 2/5 of the mice, respectively, by day 10 (Fig 3-14 B and C). This 

indicates that adoptive transfer of 10x10
6 

naive or effector OT-I T cells can result in 

inhibition of TrampOVA tumour growth. 

 

 

Figure 3-14: Effect of 10x10
6
 naïve or effector OT-I T cells on subcutaneous 

tumour growth of TrampOVA cells in syngeneic nude C57BL/6 mice. 

A, schematic representation of the experimental design. Male nude C57BL/6 mice, 

16-20 weeks old, were injected s.c. in the right flank with 5x10
6
 Tramp-C1 or 

TrampOVA cells. At day 0 (defined when tumour diameter reaches 5 mm), mice 

received either 10x10
6
 naïve or effector OT-I T cells i.v. as indicated in each 

treatment group. Effector OT-I T cells were prepared from single cell suspension 

from spleen and lymph node from OT-I mice and stimulated with 1 µg/ml 

SIINFEKL peptide in complete media with 100U/ml IL-2 for 5 days. Tumour 

diameter was measured manually using a calliper three times a week. Blood 

samples were collected via tail vein on day 3, 5 and 10 and the red blood cells were 

lysed to facilitate lymphocytes analysis by flow cytometry. At day 5 and 10, two 

mice were culled from each group for isolation of spleen and lymph nodes.  
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Figure 3-14 ...cont. B, C and D show data points of tumour diameter for individual 

mice following adoptive transfer in the indicated groups.  

     Small red arrows indicate animals culled on day 5 for immunological analysis. 

 

To further follow the OT-I CD8
+
 T cell responses to Tramp-C1 and TrampOVA 

tumours, the percentages and phenotype of adoptively transferred cells were 

examined in blood, spleen and lymph nodes in different groups. Activation of CD8
+
 

T cells due to OVA-tumour antigen recognition was monitored using the CD69 

early activation marker, since it is only up-regulated by T cells following antigen-

induced activation and not due to homeostatic proliferation in immunodeficient 

mice (Marleau and Sarvetnick, 2005). 

D. 

B. C. 
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In blood, the percentage of CD8
+
 T cells in groups of mice bearing Tramp-C1 or 

TrampOVA tumours and received effector CD8
+
 T cells were nearly comparable (≈ 

4%) by day 3 (Fig. 3-15A). However it was reduced to ≈ 2% on day 5 and was 

maintained at the same level till day 10. In contrast, the percentage of CD8
+
 T cells 

in mice bearing TrampOVA tumours and receiving naive cells was very low (0.22%) 

by day 3 and markedly increased (10 folds) by day 10, indicating antigen-driven 

proliferation.  

In spleen, as in LNs, the percentage of CD8
+
 T cells in mice that received effector T 

cells and Tramp-C1 tumours was almost the same on day 5 and 10, while those 

inoculated with TrampOVA cells dropped by approximately 60% by day10. 

Conversely, mice receiving naive T cells and seeded with TrampOVA tumours 

demonstrated a 2.6 fold increase in the percentage of CD8
+
 T cells (Fig. 3-15B and 

C). 

Analysis of CD69 expression by adoptively transferred CD8
+
 T cells revealed that 

the level of CD69 was markedly increased in blood and lymphoid tissues from mice 

that received naive T cells relative to groups of mice receiving effector T cells that 

expressed negligible levels on day 5 (Fig. 3-15D, E and F). Interestingly, groups 

receiving naive or effector T cells and bearing TrampOVA tumour cells expressed 

similar levels of CD69 in blood and spleen but not in LNs by day 10. Intriguingly, 

CD69 was notably upregulated in mice seeded with Tramp-C1 tumours and 

receiving effector cells only in blood (Fig. 3-15D).  

Collectively, these results demonstrated that a T cell dose of 10x10
6 

OT-I 

lymphocytes can affect progression of TrampOVA tumours and would therefore 

interfere in analyzing the effect of NR/CB1954 therapy on tumour growth. Also, 
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this shows the capacity of TrampOVA tumours to inherently activate naive OT-I T 

cells into effector CD8
+
 T cells capable of mediating tumour regression in vivo. 
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Figure 3-15: Donor CD8
+
 T cell proliferation and activation in nude C57BL/6 

mice bearing Tramp-C1 or TrampOVA tumours 

Single cell suspension from blood, LNs and spleen were stained with anti-CD45.1, -

CD3, -CD8 and -CD69 before analysis by flow cytometry. A, B and C, percentage 

of donor CD8
+
 T cells in blood, spleen and LNs from the indicated groups of mice, 

respectively. Graphs represent mean values (±SEM) for each group. donor CD8
+
 T 

cells were  analyzed by flow cytometry using triple staining for CD45.1, CD3 and 

CD8 antibodies in blood, spleen and lymph nodes at the indicated times. 
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Figure 3-15 …cont. D, E and F, CD69 expression by OT-I CD8
+
 T cells in blood, 

spleen and LNs from the indicated groups of mice, respectively. Graphs represent 

mean fluorescent intensities (MFI) (±SEM) of each group as calculated using 

FlowJo software.  
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3.5.2 Effect of 2.5 million OT-I T cells 

A lower dose of 2.5x 10
6 

naïve
 
OT-I lymphocytes (≈ 1.6 x10

6
 CD8

+
 T cells) was 

chosen to examine its effect on TrampOVA tumour growth in nude C57BL/6 mice. 

As can be seen in Fig 3-16, there was no significant difference between tumour 

growth of the control group that received PBS and those receiving OT-I 

lymphocytes i.v. In addition, no signs of tumour regression were observed and the 

tumour growth rates of both groups were indistinguishable. This experiment 

suggested that adoptive transfer of 2.5x 10
6 

naïve
 
OT-I lymphocytes has minimal 

influence on tumour growth and therefore would provide a suitable window in 

which the effect of immunostimulation arising from NR/CB1954 gene therapy 

could be investigated.  
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Figure 3-16: Effect of 2.5x10
6
 naïve OT-I T cells on subcutaneous tumour 

growth of TrampOVA cells in syngeneic nude C57BL/6 mice 

Male nude C57BL/6 mice, 16-20 weeks old, were injected s.c. in the right flank 

with 5x10
6
 TrampOVA cells. At day 0 (defined when tumour diameter reaches 5 

mm); mice receive either PBS or 2.5x10
6
 naïve OT-I T cells i.v. as indicated in each 

treatment group. Tumour diameter was measured manually using a calliper three 

times a week. A, data points show the mean (±SEM) of tumour size from individual 

mice in each group. B and C show tumour growth of individual mice in the 

indicated group.  

n=the initial number of mice per group 
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3.6 Discussion 

Model antigens have been proven to be useful tools in understanding the immune 

response to a variety of pathological conditions, and also in the development of 

immunotherapeutic strategies. These model antigens contain epitopes critical for 

eliciting T cell responses and for which TCR specificity for these immunodominant 

epitopes was identified. This facilitated the generation of antigen-specific TCR 

transgenic T cells and other genetic tools to monitor immune response to infectious 

agents or tumour cells expressing model antigens. Normally, the nature of the model 

antigen dictates the location of the expressed protein and subsequently the 

development of either humoral or cellular immune responses.  

A truncated cytoplasmic version of OVA protein served in this study as a model 

tumour antigen, thereby mimicking the cellular localization of tumour antigens and 

ensuring similar route of antigen processing and presentation. Gene transfer of 

cytoplasmic OVA to Tramp-C1 tumour cells resulted in generation of polyclonal 

TrampOVA cells. The level of OVA expression in 50 μg cell lysate was below that of 

10 ng crude OVA protein as shown by western blot analysis (Fig 3-5). Therefore, 

we opted for an indirect quantification of protein expression via assessing OVA-

epitope/MHC I complex presentation using the B3Z hybridoma T cells that can 

detect OVA-epitope on a single cell level. Polyclonal and single cell TrampOVA cells 

stimulated varying levels of inducible β-galactosidase in B3Z hybridoma T cell 

following activation, demonstrating OVA-epitope presentation and also confirming 

that OVA is expressed by TrampOVA clones (Fig 3-6). This allowed further 

screening of different clones and selection of TrampOVA single cell clone 3 

expressing low levels of OVA. Thereafter, TrampOVA-NR cells were generated 

through transduction of TrampOVA cells with NR retroviral particles. As seen for 
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OVA expression, TrampOVA-NR cells derived from single cell clones expressed 

different levels of NR protein (Fig 3-9 and 10). The difference in protein expression 

between individual transformants could be due to several factors, mainly: the site of 

integration of transgenes relative to cellular transcription signals, the number of 

transgene copies integrated within the genomic DNA, and other epigenetic related 

effects (Pannell and Ellis, 2001; Yao et al., 2004). TrampOVA-NR clone 11 was 

selected for further studies use due to its high level of NR expression and sensitivity 

to the prodrug CB1954; however reduced TrampOVA-NR sensitivity to CB1954 was 

observed following sub-culturing of these cells (Fig 3-12). Reduced level or 

complete loss of transgene expression was also reported in a number of tissues 

transduced with retroviral vectors (Challita and Kohn, 1994; Challita et al., 1995; 

Skarpidi et al., 1998). It was found that transcription from the retroviral LTR is 

altered by DNA methylation which affects sustained expression of retrovirally 

transduced genes. In addition, CpG-hypermethylation in the transgene promoter is 

associated with altered chromatin structure contributing to loss of transgenes 

expression or gene silencing (He et al., 2005). 

Preclinical animal tumour models, using subcutaneous implants, represent a simple 

and preliminary approach to acquiring clinically relevant data on the therapeutic 

efficacy of cytotoxic agents. It can also provide insight into the cellular and 

molecular mechanism of action of cancer therapies on different types of tumours. 

Antitumour immune responses to cancer therapies, in particular, are more 

favourably studied in syngeneic mouse system to minimize non-therapeutic immune 

responses and rejection of tumour growth. In the present study, genetically modified 

syngeneic TrampOVA and TrampOVA-NR cells were tumourigenic in athymic 

C57BL/6 mice at a cell dose of 5x10
6 

cell/mouse; however they exhibited slower 



 135 

tumour growth rate compared to parental Tramp-C1 (Fig 3-13). A similar 

observation was reported by McNeish et al. (1998) showing that NR expressing 

ovarian SKOV3 tumours derived from single cell clones, showed slower growth 

kinetics than parental cells in nude Balb-c mice. The apparent difference in tumour 

growth suggested that gene transfer of OVA, NR or the antibiotic resistant 

transgenes into the tumour cells have affected the tumour initiating potential of 

TrampOVA and TrampOVA-NR cells. Antigens encoded by these transgenes might 

have been released from dying cells probably present in the initial tumour cell 

inoculum or due to spontaneous tumour cell death thereby stimulating an immune 

response.  Given that athymic mice have significant B cell function and normal 

phagocytic and NK activity, potentially humoral and NK-mediated immune 

response against these transgenes products could possibly interfere in the 

progression of TrampOVA and TrampOVA-NR cells (Hanna, 1980; Orengo et al., 

2003; Zhou et al., 2004).   

The use of immunodeficient mice in conjunction with adoptive transfer of single-

avidity TCR transgenic T cells facilitates easy, reliable and reproducible monitoring 

of specific-immune responses to therapeutic agents. However, the T cell dose in 

different models varies according to the experimental questions and the model 

design. In the present study, dose titration of OT-I lymphocytes against OVA 

expressing tumours demonstrated that tumour growth was markedly affected by 

adoptive transfer of high numbers of activated or naïve OT-I lymphocytes (10x10
6
) 

leading to complete regression in some of the mice (3-14). Furthermore, up-

regulation of CD69 marker by CD8
+
 T cells in groups of mice bearing TrampOVA 

tumours and receiving naïve OT-I T cells indicates priming and activation of  OT-I 

CD8
+
 T cells by the OVA-expressing tumour cells  suggesting that proliferation was 
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mainly antigen-driven and not due to homeostatic reconstitution in lymphopenic 

hosts (Fig 3-15). By reducing the T cell dose to 2.5x10
6 

OT-I lymphocytes, the fine 

balance between tumour growth and the presence of OT-I T cells could be achieved, 

and thus providing a window for studying OVA-specific
 
T cell responses (3-16).  

These results describe establishment of an adoptive transfer tumour model system 

designed for examination of CD8
+
 T cell responses to NR/CB1954 gene therapy. 



4 Results: CD8
+
 T cell responses stimulated by NR/CB1954-mediated 

tumour cell killing in vivo 
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4.1 Introduction  

The antitumour effect of NR/CB1954 targeted gene therapy is well established in 

vitro and in vivo. Its capacity to kill not only transduced cells but also neighbouring 

untransduced cells is known as the local bystander effect. Additionally, an immune 

related bystander effect was shown to be involved in tumour rejection and 

generation of antitumour immunity in response to other enzyme/prodrug systems: 

HSV-tk/GCV and CD/5-FC. However, the ability of NR/CB1954-mediated tumour 

cell killing to generate cellular immune response that could protect the animals from 

rechallenge needs further investigation.  

The aim of this chapter is to study the efficiency of NR/CB1954 system in 

controlling tumour growth using the tumour model system (described in chapter 3), 

and to monitor whether tumour cell killing results in activation of OVA-specific T 

cells and generation of effector CTL. This chapter will also describe experiments 

that investigate variant model systems with the aim of improving the 

characterization CD8
+
 T cell responses in immunodeficient and immunocompetent 

hosts. 

4.2 Donor CD8
+
 T cell responses to NR/CB1954-mediated cytotoxicity in 

immunodeficient mice 

4.2.1 Sensitivity of established TrampOVA-NR tumours in nude C57BL/6 mice 

receiving sub-therapeutic OT-I cell dose  

To investigate the sensitivity of TrampOVA-NR tumours to CB1954, TrampOVA-NR 

cells were seeded s.c in nude C57BL/6 mice. When mean tumour volume reached 

30 mm
3
 (day 0), all mice received 2.5 million naïve OT-I T cells, followed 1 day 

later by daily doses of 20 mg/kg CB1954 or vehicle for 3 consecutive days. Tumour 
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volume was recorded over time and as shown in Figure (4-1A and B), CB1954 

treatment resulted in a significant reduction in mean tumour volume (p=0.0039) by 

day 14 compared to the vehicle treated group. CB1954 treated tumours continued to 

regress and all four animals were tumour-free by day 23. In addition, median 

survival was prolonged from 28 days in the vehicle group to more than 40 days with 

CB1954 group (Fig 4-1D).  All the mice in the CB1954-treated group remained 

tumour-free for 40 days, after which they were killed in order to examine the 

differentiation of OT-I T cells into effector memory T cells (see section 4.1.3). 
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Figure 4-1: TrampOVA-NR tumour growth in nude C57BL/6 mice treated with 

CB1954 
Male C57BL/6 mice bearing established TrampOVA-NR tumours of 30 mm

3
 volume 

received 2.5x10
6 

OT-I T cells followed one day later by treatment with 20 mg/kg 

CB1954 or vehicle once a day for 3 consecutive days.
 
Tumour volume was 

measured manually with a caliper three times a week. A and B, tumour growth of 

TrampOVA-NR of individual mice in vehicle and CB1954 group, respectively; C, 

Mean (±SEM) volume of TrampOVA-NR tumours in CB1954 and vehicle treated 

groups; D, Kaplan-Meier survival analysis of time between treatment and reaching 

1000 mm
3
.  

 

4.2.2 Testing for generation of CD8
+
 T cell immunity following NR/CB1954 

gene therapy 

The capacity of CB1954 treatment to induce complete tumour regression of 

TrampOVA-NR tumours in nude C57BL/6 mice receiving a sub-therapeutic OT-I cell 

dose was confirmed. The next question was to examine whether NR/CB1954-

mediated tumour cell death can stimulate antitumour CTL response. For this 

experiment, mice from the same treatment groups described in the previous section 

D. C. 

A. B. 
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(4.1.2) showing complete tumour regression for 3 weeks (Fig 4-2A) were 

simultaneously challenged with two populations of splenocytes. One population was 

loaded with OVA257-264 (SIINFEKL) peptide and labelled with a high concentration 

of CFSE (CFSE
Hi

); the other was untreated and labelled with a low concentration of 

CFSE (CFSE
Lo

). The latter served as a negative internal control to monitor in vivo 

OVA-specific cytotoxicity (Fig 4-2B). After 16 hr, animals were killed and single 

cell suspensions from LNs and spleen were analysed by flow cytometry, the 

frequency of CFSE
Hi

 and CFSE
Lo

 target cells was monitored to determine the 

percentage of OVA-specific lysis. The ratio of CFSE
Hi

 to CFSE
Lo

 target cells 

representing non-specific lysis in the in vivo cytotoxicity assay was determined in 

naïve control mice that did not receive any prior treatment.  

As shown in Fig 4-2C, control mice showed negligible background levels of OVA-

specific lysis in both spleen and lymph nodes. However a surprisingly high OVA-

specific lysis of ≈94% was observed in lymph nodes from vehicle-treated mice, 

indicating that the presence of TrampOVA-NR tumours alone promoted 

differentiation of OT-I T cells to functional effector CTLs. However, these CTLs 

were clearly unable to prevent tumour growth in these animals. The lysis of 

SIINFEKL-loaded cells in mice receiving only a sub-therapeutic OT-I cell was not 

determined in the present experiment due to limitations in the numbers of the mice. 

Nevertheless, CB1954 treatment of TrampOVA-NR tumours bearing mice induced a 

slight, but statistically significant increase (4%) in target cell killing. Unlike LNs, 

the difference in OVA-specific lysis in spleen from vehicle and CB1954 treated 

groups was insignificant, however high levels (> 94%) of cytotoxicity was observed 

in both groups supporting the hypothesis of TrampOVA-NR cells-induced T cell 

activation.  
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These data imply that NR/CB1954 treatment may slightly enhance the generation of 

antitumour CD8+ T cell response.  However the magnitude of OVA-specific T cell 

activation could possibly be affected by treatment-unrelated expansion of OT-I T 

cells driven by homeostatic proliferation and OVA antigen presentation in our 

model. Other experimental factors that may have also reduced the difference 

between treatments includes: a) pooling of tumour-draining and non draining lymph 

nodes together with the mesenteric lymph node for analysis, and b) the ratio of 

effector/target cells. 

  
A. 
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Figure 4-2: OVA-specific CTL response following long-term tumour regression 

of CB1954 treated TrampOVA-NR tumours in nude C57BL/6 mice 

A, Groups of TrampOVA-NR bearing mice that were previously treated with either 

CB1954 or vehicle mice and showed tumour rejection or progression, respectively, 

were examined in this experiment. B, In vivo cytotoxicity assay. Splenocytes from 

wt C57BL/6 mice were labelled with 1 µM CFSE (CFSE
Lo

) as an internal control 

population or peptide pulsed with 2.5 µg/ml SIINFEKL and labelled with 2.5 µM 

CFSE (CFSE
Hi

) to serve as the target population. A mixture of 5x10
6
 cells from 

each population (1x10
7
 total cells) was transferred i.v into all groups of mice. After, 

16 hr, spleen and LNs (axillary, brachial, inguinal and mesenteric) were harvested 

and single-cell suspensions were prepared for flow cytometric analysis. 
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Figure 4-2 …cont. C, histograms from pooled cytometric data showing the 

frequency of SIINFEKL-pulsed and CFSE
Hi

 labelled splenocytes (right gate) and 

peptide-unpulsed and CFSE
Lo

 labelled splenocytes (left gate) in LNs from the 

indicated groups. D, in vivo OVA-specific CTL response. Target cells labelled with 

CFSE
Hi

 and CFSE
Lo

 were analyzed by flow cytometry and the percentage of target 

cell killing was determined. Data points represent the percentage of lysed target 

cells in different animals and the horizontal line represents the mean of lysed target 

cells. 

The P value indicates the statistical significance as analyzed by Student‟s t-test 

 

D. 

C. 
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4.2.3 Examining the capacity of lymphocytes from CB1954/vehicle treated 

TrampOVA-NR tumour bearing mice to provide protective antitumour 

immunity in secondary nude C57BL/6 hosts 

To examine the potential significance of the generated tumour-specific CTLs in 

response to CB1954 treatment, the capacity of these effector cells to provide 

protection against parental tumour cells was further investigated. This was 

addressed by establishment of 30 mm
3
 TrampOVA-NR tumours in nude C57BL/6 

mice followed by adoptive transfer of 2.5x10
6
 Naïve OT-I lymphocytes i.v and 

vehicle/CB1954 treatments as previously described in Figure 4-2A. After 3 weeks, 

mice were culled and lymphocytes from individual mice in each group were pooled 

and examined by flow cytometry. The percentage of OVA-specific T cells was 

estimated as 1.4% and 1.025% in vehicle and CB1954 treated mice, respectively 

(this was an approximate estimate of the percentage of CD8
+
 T cells due to a 

technical problem on the day of the analysis). 

Subsequently, lymphocytes pool containing ≈ 1x 10
5 

OVA-specific T cells from 

vehicle or CB1954 treated tumour bearing mice (referred to as vehicle or CB1954 

primed T cell group, respectively from here on) were adoptively transferred to new 

groups of mice prior to inoculation with a tumourigenic dose of TrampOVA cells 

(Figure 4-3A).  

Figure 4-3B and C shows that palpable tumours were evident by day 35 post-

adoptive transfer in recipients of CB1954-primed T cells. The appearance of initial 

tumour growth was observed somewhat later in recipients of vehicle-primed T cells 

(day 44). Although tumours of vehicle-primed T cell recipients grew more rapidly 

and were nearly double the volume of those in CB1954-primed T cell recipients by 
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day 52, due to the small group size this did not reach statistical significance (Fig 4-

3D).  

Comparing the mean tumour volumes of the two treatment groups (Fig4-3E), it 

appears that the growth rate of tumours in recipients of CB1954-primed T cells is 

slower than those of vehicle-primed T cells recipients, possibly consistent with 

greater immune protection; although the shorter lag period to tumour development 

in this group could argue against this. 

(Note that mouse 3 and 4 in vehicle-primed T cell recipients were culled earlier in 

the course of the experiment due to gastrointestinal infection)  
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Figure 4-3: Prophylactic efficacy of lymphocytes from CB1954/vehicle treated 

TrampOVA-NR tumour bearing mice against TrampOVA tumour growth in 

secondary nude C57BL/6 mice 

Single cell suspensions from the lymph nodes and spleen of tumour-free mice 

(culled ≈ 3 weeks after complete tumour regression) and tumour bearing mice 

(culled 30 days post adoptive transfer) were prepared and surface stained with anti-

vα-2
 
and

 
-CD8 for flow cytometric analysis. A dose of 1x10

5
 OVA-specific T cells 

from the lymphocytes pools of the previous groups designated vehicle and CB1954-

primed T cells were transferred to secondary nude groups of mice followed by s.c 

seeding of 5x10
6
 TrampOVA cells on the same day. Tumour volume was measured 

manually using a calliper three times a week. A, schematic representation of the 

experimental design. B and C, growth curves of TrampOVA tumours in individual 

mice receiving vehicle or CB1954 primed T cell, respectively.  

Mouse 3 and 4 in vehicle-primed T cell recipients were culled earlier in the course 

of the experiment due to gastrointestinal infection. 
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Figure4-3 …cont. D, mean tumour volume of vehicle or CB1954 primed T cell 

recipients at 52 and 59 days; E; An overlay of the growth curves of the mean 

volume of TrampOVA tumours post adoptive transfer of vehicle or CB1954-primed T 

cell.   

 

4.2.4 Characterization of tumour cells derived from TrampOVA tumour 

bearing mice after secondary adoptive transfer of vehicle or CB1954 primed T 

cell 

Previous studies using OVA as a model tumour antigen and OT-I T cells in a 

therapeutic setting found that tumour out growth was due to selection of tumour 

variants that produce insufficient amount of the tumour antigen. (Bathe et al., 2003; 

Dalyot-Herman et al., 2000)  It was therefore of interest to examine whether tumour 

D. 

E. 
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cells retrieved from recipients of vehicle- or CB1954-primed T cells retained their 

ability to express OVA antigen. In addition, simian virus 40 large tumour antigen 

(SV40 Tag) gene was also detected to verify that tumours excised from mice 

originated from TrampOVA tumour cells and not from any other epithelial origin.  

SV40 gene was chosen since the Tramp-C1 cell line was derived from mouse 

prostate cancer developed in SV40 tag-induced transgenic mouse models (Foster et 

al., 1997). To accomplish this, tumours from groups of mice described in Figure 4-

3E were excised and dissociated to single cell suspensions using an enzyme cocktail 

of collagenase, DNase and trypsin, followed by culturing in complete media for a 

few weeks.  

4.2.4.1 Detection of SV40 Tag and OVA genes in TrampOVA tumour 

Genomic DNA from parental Tramp-C1, TrampOVA cells or tumour cells derived 

from the mice was isolated and analysed by PCR using specific primers to amplify 

fragments from SV40 Tag and OVA genes. For SV40 Tag, the following primers 

were used SV40- F1 forward: 5‟-TCA ACC TGA CTT TGG AGG C-3‟ and SV40-

R1 reverse: 5‟- TTC CTC TGC TTC TTC TGG-3‟ (reverse). For OVA gene the two 

primers were OVA-F3 forward: 5‟-GGA TGA AGA CAC ACA AGC AAT-3‟ and 

OVA-R3 reverse: 5‟-TCT CTG CCT GCT TCA TTG ATT T-3‟. The resulting PCR 

products were compared by agarose gel electrophoresis. Figure 4-4A shows a clear 

single band consistent with the expected size (546 bp) of SV40 Tag amplified 

fragment, which was equally positive in parental Tramp-C1, TrampOVA cells and 

tumour derived cells. As expected a fragment of ≈450 bp from the OVA gene was 

amplified only from parental TrampOVA and tumour rederived cells (Figure 4-4B). 

This confirmed that the cells that grew out of the explanted tumour cells were 

indeed derived from the original TrampOVA cells. 
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Figure 4-4: Gel electrophoresis of PCR product of OVA and SV40 genes in 

genomic DNA extracted from tumour cells. 

A and B, PCR products of SV40 and OVA transgenes, respectively. The amplified 

PCR products were separated by 0.7% agarose gel and photographed under UV 

after staining with ethidium bromide. The size of the PCR products was checked 

against a 1kb DNA ladder (M). PCR reactions in Lane 1-5 used the following as 

templates: lane1, water; lane2, Tramp-C1; lane 3, TrampOVA cells; lane 4: tumour 

cells from vehicle-primed T cells recipients; lane 5: tumour cells from CB1954-

primed T cells recipients. 

 

4.2.4.2 Activation of ovalbumin-specific B3Z T cell hybridoma by tumour 

rederived cells 

To determine whether these tumour-derived cells retained the ability to present 

OVA257-264 peptide (SIINFEKL) to T cells, their ability to activate B3Z T cells was 

tested. Tumour cells were pretreated with IFN-γ (to upregulate MHC class I) for 16 

hr or left untreated; followed by an overnight incubation with B3Z T cell 

hybridoma.    As shown in Figure 4-5, parental Tramp-C1 stimulated negligible 

B3Z cells activation whereas control in vitro-cultured TrampOVA cells clearly 

activated B3Z hybridoma cells and the level of activation was increased by IFN-γ 

pretreatment of tumour cells. In contrast, TrampOVA cells recovered from tumours 

failed to activate the B3Z cells with or without IFN-γ pretreatment.  Since PCR 

analysis showed that OVA gene was still present, these tumour cells might have 

been selected variants of TrampOVA cells that had down-regulated OVA expression 
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perhaps due to epigenetic gene silencing. Another possibility could be that these 

tumour cells do express OVA but have down-regulated expression of one of the   

component of the antigen processing machinery such as TAP proteins or MHC class 

I molecules. 
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Figure 4-5: OVA antigen presentation by TrampOVA tumour cells derived from 

vehicle- or CB1954-primed T cell recipients 

Parental Tramp-C1, TrampOVA and TrampOVA tumour cells derived from vehicle or 

CB1954-primed T cell recipients were innoculated with or without 100U/ml 

interferon. After 16 hr, 1x10
4
 tumour cells were cocultured with 1x10

5
 B3Z T cell 

hybridoma in wells of a 96 well plate overnight. β-galactosidase activity in B3Z T 

cells was assayed in total culture lysates after incubation with β-galactosidase 

luminescent substrate for 1 hr at 37ºC.  Data are presented as relative luminescence 

unit (RLU) from quadruplicate wells (±SEM) on a log scale. 

4.2.5 Donor CD8
+
 T cell responses to NR/CB1954-mediated cytotoxicity in a 

modified model 

In an effort to reduce the experimental time scale and to minimize loss of animals 

due to intrinsic health issues prior to analysis, the experimental design was modified 
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by starting the adoptive transfer of OT-I T cells one day after seeding of tumour 

cells, one day prior to CB1954/vehicle treatment, rather than waiting for tumours to 

grow in mice and then OVA-specific cytotoxicity was examined in vivo, 4 weeks 

after the last injection of vehicle/CB1954 (Fig 4-6A). In addition some experimental 

factors that were thought to influence CD8
+
 T cell response was adjusted; mainly by 

analysis of draining lymph nodes (DLN) separately from non-draining lymph nodes 

(N-DLN) and increasing the number of target cells in in vivo cytotoxicity assay to 

6x10
6
 splenocytes.  

As shown in Figure 4-6B, vehicle treated group showed high level of OVA-specific 

lysis ranging from 67 to 81% in lymphoid tissues and blood similar to that seen in 

previous experiment (Fig 4-2B), whereas administration of CB1954 resulted in 

negligible increase in cytotoxicity (range, 71- 85%) in different lymphoid tissues 

and blood compared to vehicle treated group. 

In the same experiments the frequencies of OVA-specific CD8
+
 T cells were 

analysed by flow cytometry using CD45.1, CD3, and CD8 antibodies to 

differentiate between adoptively transferred donor OVA-specific CD8
+
 T cells 

(CD45.1
+
) and recipient cells (CD45.1

-
). Interestingly, CB1954 treatment increased 

the mean frequencies of CD8
+
 T cells by 1.5 fold in DLN, 1.4 fold in N-DLN and 

1.7 fold in blood while there was negligible difference between CB1954 and vehicle 

treated groups in the spleen (Fig 4-6C).  

These results and that observed in figure 4-2D indicate that the high CTL response 

is probably due to CD8
+
 T cell activation due to the presence of TrampOVA-NR cells 

rather than the treatment with vehicle or CB1954, however CB1954 treatment may 

improve tumour-specific CD8
+
 T cells expansion as suggested by the increased 

frequencies  
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of memory CD8
+
 T cells. Nevertheless, minimal if any increase in OVA-specific 

lytic activity could be achieved by CB1954 treatment. 

 

 

Figure 4-6: Donor CD8
+
 T cell responses to NR/CB1954-mediated cytotoxicity 

in nude C57BL/6 mice 

A, Modified experimental design. Male nude C57BL/6 mice, 16-20 weeks old, were 

injected s.c in the right flank with 5x10
6
 TrampOVA-NR cells. One day later, mice 

received 2.5x10
6 

OT-I lymphocytes i.v followed by 3 consecutive doses of 20 

mg/kg CB1954 or vehicle for 3 days. After 4 weeks, a mixture of 5x10
6
 control 

splenocytes labelled with 2.5 µM CFSE (CFSE
Hi

) and 6x10
6 

target splenocytes 

labelled with 1 µM CFSE (CFSE
Lo

)
 
and pulsed

 
with 5 µg/ml SIINFEKL (total 1x10

7
 

cells)  was administered i.v into all groups of mice. After 16 hr, spleen, draining and 

non-draining axillary, brachial and inguinal LN from vehicle or CB1954 group were 

harvested and single-cell suspensions were prepared for flow cytometric analysis.  
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Figure 4-6 …cont. B, in vivo OVA-specific CTL response. Target cells labelled 

with CFSE
Hi

 and CFSE
Lo

 were analyzed by flow cytometry and the percentage of 

target cell killing was determined. Data points represent the percentage of lysed 

target cells in different animals and the horizontal line represents the mean of lysed 

target cells. C, the percentage of OVA-specific T cells relative to total donor 

CD45.1
+
 lymphocytes. Single-cell suspensions form DLN, N-DLN, spleen and 

blood were stained with anti-CD45.1, -CD3 and -CD8 before analysis by flow 

cytometry. Data points represent the numbers of live CD45.1
+
CD8

+
CD3

+
 cells 

relative to total donor CD45.1
+
 cells in different animals and the horizontal line 

represents the mean.  
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4.3 Donor CD8
+
 T cell responses to NR/CB1954-mediated cytotoxicity in 

immunocompetent mice 

4.3.1 Introduction 

It was clear from the previous results that the CTL activity of adoptively transferred 

OT-I T cells in nude C57BL/6 mice was quite high irrespective of whether OT-I T 

cells were adoptively transferred after tumour establishment or just one day 

following tumour cell implantation, and was shown to be at least largely unrelated 

to treatment with vehicle or CB1954. Also, increasing the number of target cells did 

not show detectable improvement in the sensitivity of the in vivo CTL assay. This 

suggested that other experimental factors were responsible for such high response; 

one possible explanation is the inherent capacity of cytoplasmic OVA-tumour 

antigen in the present model tumour cells to specifically activate OT-I T cells and 

upregulate CD69 activation marker following 3 days of adoptive transfer as seen in 

Fig 3-14. Also, it could be related to the space filling phenomenon “homeostatic 

expansion” observed following adoptive transfer of T cells in lymphopenic hosts; 

thus increasing the numbers of OVA-specific T cells and consequently increasing 

the numbers of effector cells and lowering the detection threshold of the assay to 

detect slight differences especially when using small group numbers. Together these 

factors may have contributed to the high cytolytic activity in all treatment groups 

and therefore it was of interest to monitor antitumour CD8
+
 T cell responses through 

the adoptive transfer of OT-I T cells into immunocompetent wt C57BL/6 to limit 

effects due to homeostatic expansion. This system will additionally provide CD4
+
 T 

cell helper responses required for optimal CTL-mediated antitumour immunity 

(Marzo et al., 2000). Also, the use of wt C57BL/6 would allow evaluation of both 

short- and long-term CD8
+
 T cell responses post NR/CB1954 therapy, and to avoid 
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the intrinsic health issues and availability problems encountered with nude C57BL/6 

mice.   

4.3.2 Tumourigenicity of TrampOVA cells in wild-type C57BL/6 mice 

To investigate the ability of TrampOVA cells to establish tumours in 

immunocompetent mice, the same tumourigenic dose of TrampOVA cells (5x10
6
) 

used with nude mice was chosen for initiation of s.c tumour growth in wt C57BL/6 

mice. However, only 1/15 mice showed tumour growth after 76 days with mean 

tumour volume of 732 mm
3
 in a 3 month follow-up period indicating that this dose 

is immunogenic in wt C57BL/6 mice. In an attempt to attain the tumourigenic 

threshold of TrampOVA, another dose of 10 x10
6
 cells were used to inoculate s.c 

tumours in mice. The lag phase before the appearance of tumour growth was 

slightly shortened to 45-67 days in 4/5 mice; and then the tumours rapidly 

progressed into invasive tumours  which made external measurements with callipers 

less reliable as indicator of tumour size, nevertheless one mouse still remained 

tumour-free at 90 days (Fig 4-7).  
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Figure 4-7: Growth characteristics of subcutaneous TrampOVA tumours in 

wild-type C57BL/6 mice using 10x10
6
 cell inoculum 

Male C57BL/6 mice, 6-8 weeks old, were injected s.c in the right flank with 10x10
6
 

TrampOVA cells. Tumour volume was measured manually using a calliper three 

times a week. Each line represents tumour growth in an individual mouse. n=5 
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4.3.3 Tumourigenicity of TrampOVA tumours using matrigel in wild-type 

C57BL/6 mice 

In an attempt to reduce the time required by injected TrampOVA tumour cells to 

develop into visible tumours, a solubilized basement membrane preparation rich in 

extracellular matrix proteins (Matrigel) was used to promote tumour growth in vivo. 

As shown in Figure 4-8, a cell suspension of 5x10
6
 TrampOVA cells admixed with 

Matrigel resulted in initial palpable mean tumour volume of 130 mm
3
 in 3/3 mice 

for nearly 2 weeks; however tumour volumes were unstable and showed phases of 

growth  and shrinkage, before finally all tumours showed complete regression by 82 

days.  
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Figure 4-8: Growth characteristics of subcutaneous TrampOVA tumours in 

wild-type C57BL/6 mice in the presence of matrigel 

Male C57BL/6 mice, 6-8 weeks old, were injected s.c in the right flank with a 

mixture of 5x10
6
 TrampOVA cells/150 l serum free medium and ice-cold matrigel 

matrix at 1:1 volume ratio. Tumour volume was measured manually using a calliper 

three times a week. Each line represents tumour growth of an individual mouse. n=3 
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4.3.4 Tumourogenicity of TrampOVA and TrampOVA-NR tumours in 

irradiated wild-type mice C57BL/6 mice 

The alternation of tumour growth and regression seen with TrampOVA-matrigel 

implants suggested that an immune mediated response might be involved in tumour 

rejection in wt C57BL/6 mice. To examine this hypothesis, C57BL/6 mice were 

irradiated with different doses of gamma-irradiation followed by seeding TrampOVA 

tumour cells s.c. At a dose of 1.5 Gy total body irradiation, the mice remained 

tumour-free for 45 days (Fig 4-11A), while with 2.5 Gy an initial tumour growth 

was evident in 2/4 mice which decreased in size after 2 weeks and remained 

stationary with tumour size below 25 mm
3
 tumour in 2/4 for 3 weeks, however 1/4 

mice remained tumour-free for 45 days (Fig 4-11B). A similar tumour growth 

pattern was initially observed with 5 Gy; however the stationary tumour phase was 

shortened to 10 days followed by evident increase in tumour growth in 4/4 mice 

(Fig 4-11C). These results implied that lymphodepletion using irradiation facilitated 

tumour establishment and that 5 Gy would be the minimal dose to permit 

appreciable tumour growth within 3-4 weeks time. 

It was therefore reasonable to examine the tumourigenic capacity of TrampOVA-NR 

tumour cells in 5 Gy total body irradiated wt C57BL/6 mice. As shown in Figure 4-

9, TrampOVA-NR tumour cells achieved a transient tumour growth in 3/4 mice, 

however these gradually regressed by 35 days and 3/4 mice remained tumour-free at 

75 days. Only one mouse showed progressive tumour growth after a 24 day tumour-

free period, thus demonstrating the inability of TrampOVA-NR to routinely establish 

stable tumours in 5 Gy irradiated animals.  
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Figure 4-9: Growth characteristics of subcutaneous TrampOVA  and TrampOVA-

NR tumours in irradiated wild-type C57BL/6 mice 

Male C57BL/6 mice, 6-8 weeks old, were irradiated using a 
60

Cobalt γ-radiation 

source followed by s.c injection of 5x10
6
 TrampOVA cells in the right flank on the 

same day. Tumour volume was measured manually using a calliper three times a 

week. A, B and C TrampOVA tumour in C57BL/6 mice irradiated at 1.5, 2.5 and 5 

Gy, respectively. D, TrampOVA-NR tumour growth in C57BL/6 mice irradiated at 5 

Gy. Each line represents tumour growth of an individual mouse.  

^ represents two separate experiments. 

4.3.5 Donor CD8
+
 T cell responses to NR/CB1954-mediated cytotoxicity in a 

short-term model 

Having tried several methods to establish TrampOVA-NR tumours in wt mice that 

proved unsatisfactory, we chose to study immune responses to the NR/CB1954 gene 

therapy in wt mice using fresh s.c implants of tumour cells rather than in established 

tumours. Although this model would not ideally mimic the complex 

D. C. 

A. B. 
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immunosuppressive cellular and non-cellular components of the solid tumour 

microenvironment, nonetheless it could provide preliminary insight into the 

immunogenic potential of NR/CB1954-mediated cell death to induce CD8
+
 T cell 

responses in vivo.  

4.3.5.1 OVA-specific CD8
+
 T cell proliferation 

To determine whether NR/C1954-mediated tumour cell death would result in OVA-

tumour antigen presentation and greater activation of donor OT-I T cells, wt 

C57BL/6 mice were seeded with the tumour cells followed by adoptive transfer of 

CFSE labelled OT-I T cells before vehicle/CB1954 treatment (Fig 4-11A).  

After 4 days from the last dose of vehicle/CB1954, the percentage of donor CD8
+
 T 

cells relative to total CD8
+
 T cells were analysed in different lymphoid tissues. The 

data in Fig 4-10C shows that the percentage of OVA-specific CD8
+
 T cells are 

approximately equal to 1% in different lymphoid tissues of control group indicating 

that this is the proportion at which OT-I cells can reside in the examined lymphoid 

compartment in the absence of OVA-antigenic stimulation. This percentage was 

increased by an average of 2.8 fold in DLN of mice bearing TrampOVA-NR implants 

and treated with vehicle, and by slightly greater average of 3.6 fold in DLN of 

CB1954 treated mice, although not reaching statistical significance. In addition, 

there were negligible differences in the percentage of OT-I CD8
+
 T cells from N-

DLN or spleen between vehicle and CB1954 treated groups.  

 

To explore whether this modest increase in the percentage of OT-I T cells within the 

DLN in CB1954 group could be verified using an alternative approach, proliferation 

of donor OVA-specific CD8
+
 T cells was analysed by tracking CFSE dilution in 

dividing cells. In the control group, non-specific proliferation of adoptively 
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transferred OT-I T cells was minimal in wt C57BL/6 mice, while TrampOVA-NR 

cells in the vehicle treated group stimulated proliferation with 48% of OT-I T cells 

detected having undergone at least one, and some more than 5 rounds of division 

indicating that OVA expression by the model tumour cells can result in priming of 

OVA-specific cells in vivo. As expected, CB1954 treatment of mice with 

TrampOVA-NR tumour cells induced greater activation of the OT-I T cells, with 

approximately 70% of OT-I T cells divided once or more rounds of division with 

increased numbers of accumulated cells in each round of division compared to 

vehicle treatment. This suggested that indeed NR/CB1954-induced cell death 

slightly increased OVA-tumour antigen release in the tumour microenvironment 

and increased activation of tumour antigen-specific CD8
+ 

T cells.  
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Figure 4-10: Donor OVA-specific T cell expansion in response to NR/CB1954-

mediated cytotoxicity 

Male C57BL/6 mice, 8-12 weeks old, were injected s.c in the right flank with 5x10
6
 

TrampOVA-NR cells. One day later, mice received 2.5x10
6 

CFSE labelled OT-I 

lymphocytes i.v followed by 3 consecutive doses of 20 mg/kg CB1954 or vehicle 

for 3 days. At day 7, spleen, DLN and N-DLN were harvested and single-cell 

suspensions were prepared for flow cytometric analysis. A, schematic representation 

of the experimental design; B, experimental groups; C, The percentage of donor 

CD45.1
+
 CD3

+
 CD8

+
 T relative to total CD3

+
 CD8

+
 T cells, data points represent 

the percentages in different animals and the horizontal line represents the mean.  
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                      Control                                   Vehicle                                  CB1954 

 

Figure 4-10…cont. Lymphocyte cell suspension from DLN of different treatment 

groups were stained with anti-CD45.1, -CD3 and -CD8 before analysis by flow 

cytometry. D, histograms for CFSE dilution of viable CD45.1
+
 CD3

+
CD8

+
 cells 

from pooled flow cytometric data from DLN recovered from different groups of 

mice as indicated.  

 

4.3.5.2 OVA-specific CTL effector function 

To study whether activation and proliferation of donor CD8
+
 T cells in DLN of 

NR/CB1954 treated mice is accompanied by acquisition of effector function, groups 

of mice were treated according to the experimental design and their treatment group 

illustrated in Fig 4-11A and B, respectively. After 1 week from the last dose of 

vehicle/CB1954, groups of mice were challenged with CFSE labelled and OVA-

peptide loaded splenocytes in an in vivo cytotoxicity assay.  

Although noticeable OVA-specific CTL responses (45%) were detected in different 

lymphoid tissues of mice treated with vehicle and seeded with TrampOVA-NR cells, 

administration of CB1954 increased the average level of cytotoxicity by 8%, 12% 

and 22% in DLN, N-DLN and spleen, respectively, although the small group size 

(n=2) of this pilot-scale experiment precludes attainment of statistical significance.  

CFSE 

D. 
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These results suggested that NR/CB1954-mediated tumour cell death can slightly 

increase the activation and cytolytic activity of donor tumour-specific CD8
+
 T cells 

in this short-term adoptive transfer model.  

 

 

 
 

Group Tumour cells OT-I T cells Treatment 

Control -- -- -- 

Vehicle 5x 10
6
 TrampOVA -NR 2.5x10

6 
cells Vehicle 

CB1954 5x 10
6
 TrampOVA -NR 2.5x10

6 
cells CB1954 

Figure 4-11: OVA-specific CTL response to NR/CB1954-mediated cytotoxicity 

Male C57BL/6 mice, 8-12 weeks old, were injected s.c in the right flank with 5x10
6
 

Tramp-C1 or TrampOVA-NR cells. One day later, mice received 2.5x10
6 

OT-I 

lymphocytes i.v followed by 3 consecutive doses of 20 mg/kg CB1954 or vehicle 

for 3 days. At day 10, a mixture of 5x10
6
 control splenocytes labelled with 2.5 µM 

CFSE (CFSE
Hi

) and 5x10
6 

target splenocytes labelled with 1 µM CFSE (CFSE
Lo

)
 

and pulsed
 
with 5 µg/ml SIINFEKL was administered i.v. into all groups of mice. 

After 16 hr, lymphoid tissues were harvested and single-cell suspensions were 

prepared for flow cytometric analysis. A, schematic representation of the 

experimental design; B, experimental groups. 
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Figure 4-11 …cont. C, in vivo OVA-specific CTL response. Target cells labelled 

with CFSE
Hi

 and CFSE
Lo

 were analyzed by flow cytometry and the percentage of 

target cell killing was determined. Data points represent the percentage of lysed target 

cells in different animals and the horizontal line represents the mean of lysed target 

cells. 

 

 

4.4 Endogenous antitumour CD8
+
 T cell responses to NR/CB1954-mediated 

cytotoxicity in wild-type C57BL/6 mice 

Although adoptive transfer of TCR transgenic T cells allows for detection of low 

levels of antigen-specific T cell response occurring early after immune stimulation, 

this experimental approach usually uses high input of single-avidity clonal TCR 

transgenic T cells that does not reflect the natural numbers and TCR affinity of 

endogenous CD8 T cell pool. Therefore, it was next sought to investigate the 

normal physiological endogenous antitumour CD8
+
 T cell immune responses to 

NR/CB1954 treatment in wt C57BL/6 mice.  

4.4.1 Expansion of endogenous OVA-specific CD8
+
 T cell in response to 

NR/CB1954-mediated cytotoxicity in wild-type C57BL/6 mice  

The frequency of endogenous antitumour CD8
+
 T cell against the dominant 

ovalbumin epitope-SIINFEKL was monitored using OVA/MHC Class I pentamer 

C. 
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one week or four weeks after the last dose of vehicle or CB1954 to reflect the 

normal physiological immune responses during the activation/expansion and 

contraction/memory phase of the T cell response, respectively.  

To analyze the frequency of OVA-specific CD8
+
 T cells, groups of mice were 

treated according to the experimental design and their treatment group illustrated in 

Fig 4-12A and B. After one or four weeks from the last dose of CB1954/vehicle, 

mice were culled and lymphoid tissues were isolated to enumerate pentamer H-2K
b
-

SIINFEKL positive cells in different treatment groups of mice. 

The frequency of OVA-specific CD8
+
 T cells in DLN and N-DLN from vehicle 

treated group was nearly similar to background levels in control mice one week 

from the last dose of vehicle, while there was a 3 fold increase in the spleen of 

vehicle treated mice compared to that of control animals (Fig 4-12C). In contrast 

CB1954 treatment induced significant expansion of OVA-specific CD8
+
 T cells by 

3, 2.2 and 3.9 fold in DLN, N-DLN and spleen respectively relative to the vehicle 

treated group, demonstrating that NR/CB1954-mediated tumour cell death and the 

consequent release of greater tumour antigen could significantly stimulate priming 

and activation of CD8
+
 T cells.  

After 4 weeks from vehicle/CB1954 treatment, a slight difference in OVA-specific 

CD8
+
 T cells could be observed in lymphoid tissues between control and vehicle 

treated group.  Whereas the CB1954 treatment group exhibited a modest increase in 

the average numbers of OVA-specific CD8
+
 T cells by 1.5 fold in DLN and 1.86 

fold in N-DLN compared to vehicle treated mice (Figure 4-12D), however this 

difference did not reach statistical significance.  

These results indicated that NR/CB1954-mediated release of OVA-tumour antigen 

promoted expansion of OVA-specific CD8
+
 T cells that was evident after 7 days 



 168 

from CB1954 treatment, however the reduced frequency of these cells after 4 weeks 

suggested that these cells are in the contraction phase.   
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Figure 4-12: Generation of endogenous OVA-specific CD8
+
 T cell following 

NR/CB1954 treatment 
Male C57BL/6 mice, 8-12 weeks old, were injected s.c in the right flank with 5x10

6
 

of the indicated tumour cells. One day later, mice received 3 consecutive doses of 

20 mg/kg CB1954 or vehicle for 3 days. After 1 or 4 weeks, spleen, draining and 

non-draining LN were harvested and single-cell suspensions were prepared for flow 

cytometric analysis. A, experimental design to study endogenous OVA-specific 

CD8
+
 T cell response, B, different experimental groups of mice. C, flow cytometric 

analysis of live H-2K
b
/SIINFEKL pentamer

+
 CD3

+
 CD8

+
 cells in spleen, DLN and 

non-DLN harvested 1 week post CB1954/vehicle treatment. Data represents the 

individual percentages and group mean of pentamer-positive cells relative to total 

CD8
+
 cells.  

The P value indicates the statistical significance as analyzed by one-way ANOVA 

and post-hoc Bonferroni test. 

 

Day 

Isolation of spleen and 

lymph nodes 

-3 

5x10
6 

Tumour cells s.c. 

 - 2   -1 

CB1954/Vehicle i.p. 

1 week 

(Short term)  

      0 
4 weeks 

(Short term)  

C. 

A. 

B. 



 170 

 

DLN N-DLN Spleen
0

20

40

60
80

100

P
e
n

ta
m

e
r

+
 C

D
8

+
 c

e
ll

s
/

1
0

4
C

D
8

+
c
e
ll

s

        

Figure 4-12 …cont. D, flow cytometric analysis of live H-2K
b
/SIINFEKL 

pentamer
+
 CD3

+
 CD8

+
 cells in spleen, DLN and non-DLN harvested 4 weeks post 

CB1954/vehicle treatment. Data represents the individual percentages and group 

mean of pentamer-positive cells relative to total CD8
+
 cells.  

 

4.4.2 Generation of OVA-specific CTLs following NR/CB1954-mediated 

cytotoxicity in wild-type C57BL/6 mice 

To explore whether NR/CB1954-mediated expansion of tumour-specific CD8
+
 T 

cells was also associated with differentiation of endogenous OVA-specific CD8
+
 T 

cells into effector CTLs, the same experimental design and similar experimental 

groups shown in Fig 4-12A and B was used. After one or four weeks from the last 

dose of vehicle/CB1954 mice were challenged with CFSE labelled and OVA-

peptide loaded target splenocytes in an in vivo cytotoxicity assay16 hr before the 

experimental endpoint.  

After one week from vehicle/CB1954 treatment, negligible OVA-specific lysis was 

observed in different lymphoid tissues in control group, surprisingly very high 

OVA-specific lysis of 94%, 92% and 93% was seen in DLN, N-DLN and spleen of 

vehicle treated group, respectively. However, CB1954 treatment of mice inoculated 

D. 
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with TrampOVA-NR implants further increased the lysis of SIINFEKL loaded target 

cells by a range of 1.8-4.2% in lymphoid tissues (Fig 4-13A).  

Assessment of OVA-specific lysis 4 weeks post treatment revealed that the average 

cytolytic activity was much reduced to a range of 6 to 14% in lymphoid tissues, and 

with virtually identical cytotoxicity levels in both vehicle and CB1954 treated 

groups at each of the tested sites.  

These results shows that, in the short-term model (one week), despite the 

significantly  increased expansion of OVA-specific CD8
+
 T cells in CB1954 treated 

mice, this was translated into a marginal increase in ova-specific lysis, similar to the 

level of cytolytic activity seen in the adoptive transfer experiments. Whereas, four 

weeks post treatment, CB1954 treatment of TrampOVA-NR inoculated mice did not 

show any superior antitumour CTL response relative to the vehicle group.  

Overall, these experiments indicated that mere inoculation of TrampOVA-NR cells 

induces high CTL activity and reduces the sensitivity of the assay in the short-term 

but not the long-term analysis. CB1954 treatment however stimulated a marginal 

increase in antitumour CTL response only one week post therapy.  
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Figure 4-13: Endogenous OVA-specific CTL response to NR/CB1954-mediated 

cytotoxicity 

A and B, in vivo OVA-specific CTL response after 1 or 4 week from 

CB1954/vehicle treatment, respectively. Target cells labelled with CFSE
Hi

 and 

CFSE
Lo

 were analyzed by flow cytometry and the percentage of target cell killing 

was determined. Data points represent the percentage of lysed target cells in 

different animals and the horizontal line represents the mean of lysed target cells. 
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4.5 Discussion 

The mode by which tumour cells die in response to cytotoxic agent is the major 

determinant of the shape of the host immune response against tumour and 

consequently the efficiency of the chemotherapeutic agent. Indeed, an immunogenic 

cell death can enhance antitumour immunity and inhibit tumour growth. The 

strength of the antitumour immune response following cell death is dependent on 

the interaction between various cell death-associated stimuli and antigen presenting 

cells, and its capacity to cross-prime antitumour CD4
+
 and CD8

+
 T cells (Haynes et 

al., 2008).  

Apoptotic cell death has long being considered nonimmunogenic or even 

tolerogenic; whereas necrosis has been deemed to be pro-inflammatory however 

recent studies have shown that a combination of signals arising from pre-apoptotic 

and late apoptotic dying cells stimulates efficient antigen presentation and cytotoxic 

T-cell activation (Tesniere et al., 2008). Thus, the immunogenicity of tumour cell 

death has shifted from the old morphological distinction of cell death to the new 

paradigm of whether it is immunogenic or tolerogenic death.  

NR/CB1954 gene therapy was reported to induce apoptotic tumour cell death rather 

than necrosis (Palmer et al., 2003), nevertheless the impact of NR/CB1954-

mediated tumour cell killing on the host immune response is still lacking. To 

elucidate the cellular immune response to NR/CB1954-mediated cytotoxicity, a 

model system of tumour cells expressing OVA as a tumour antigen and the 

therapeutic NR gene, complemented with adoptive transfer of a sub-therapeutic 

dose of transgenic OVA-specific T cells was established. Using this model system, 

the ability of NR/CB1954 to induce complete tumour regression and increase 

survival of NR expressing tumour bearing mice was demonstrated as a proof of 
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principle (Fig 4-1C and D). Similar results were reported using different tumour 

models either stably expressing NR cell clones or through viral transfer of NR to 

established tumours in both immunocompetent and immunodeficient mice 

(Benouchan et al., 2006; McNeish et al., 1998). 

Examining the generation of memory antitumour CTL response following 

NR/CB1954 treatment revealed a slight increase in OVA-specific cytotoxicity (Fig 

4-2C). However, the presence of OVA-expressing cells alone was capable of 

inducing high CTL response which may reduce the threshold of the assay to show 

clear differences in immune response between groups. In addition, the probable 

homeostatic expansion of OT I T cells in immunodeficient host may increase the 

numbers of OVA-specific effector cells resulting in high treatment unrelated CTL 

response.    

In a secondary adoptive transfer experiment, the capacity of memory CB1954-

primed OT-I cells to protect against TrampOVA tumour growth was marginal and 

thus providing little evidence for the development of antitumour immunity (Fig 4-

3D and E). This can be explained, in part, by the high ratio of tumour load (50 

TrampOVA cells) to low number CTL (one OT-I primed T cells) allowing for tumour 

outgrowth. Also, the loss of expression of the model OVA tumour antigen in the 

growing tumours might have contributed to this marginal prophylactic activity (Fig 

4-5).  

The present results showed that it was difficult to evaluate the magnitude of 

memory OVA-specific CD8
+
 T cells in response to CB1954 in light of the 

treatment-unrelated high activation of OT-I T cells and the small numbers of 

animals in the group. However, when changing the design of the CTL assay, 

increasing the numbers of targets and separate analysis of DLN from N-DLN, the 
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same marginal increase in the frequency of memory OVA-specific OT-I T cells and 

CTL response was again observed (Fig 4-B and C). Thus, suggesting inefficient 

generation of long-term antitumour immunity following NR/CB1954 treatment. In 

contrast, a study by Green et al. (2003) demonstrated that mice bearing NR tumours 

and cured with CB1954 were able to reject a rechallenge with unmodified tumour 

cells indicating generation of immunological memory and that NR/CB1954 can 

stimulate an immune bystander effect (Green et al., 2003). The main apparent 

difference between our model and Green‟s model was the immune status of the 

model host. In Green‟s model, immunocompetent Balb/c mice were used which 

during the initial tumour rejection process have acquired antitumour immunity 

against undefined, probably multiple tumour associated antigens. Whereas in our 

adoptive transfer model system, the main focus was monitoring antitumour 

immunity to a single tumour antigen in immunodeficient hosts. Hence, it is more 

likely that generation of antitumour immunity against several tumour antigens in 

Green‟s model would be more superior to those generated against a single epitope 

in the present study. This is consistent with the notion that immunization using 

defined peptides has a limited therapeutic scope compared to vaccination with 

tumour cell lysates that can stimulate tumour specific-immune responses against 

both immunodominant and subdominant epitopes from tumour antigens 

(Chakraborty et al., 1998; Ovali et al., 2007; Soleimani et al., 2009). 

Another difference between the two models is the importance of CD4
+ 

T cells
 
in 

providing pre- and post-priming help to CD8
+
 T cells to enhance recruitment and 

cytolytic function of tumour-specific CD8
+
 T cells and also the generation of 

memory antitumour immunity (Bos and Sherman, 2010; Huang et al., 2007). It is 

anticipated, even with the leakiness of the immune system of the immunodeficient 
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nude C57BL/6 mice in our model, that CD4
+
 T cell help to OVA-specific OT-I T 

cells will be minimal and would probably reduce the longevity and the efficiency of 

the antitumour CD8
+
 T cells at later time points or in the secondary adoptive 

challenge against TrampOVA cells.   

As an alternative to lymphopenic hosts, immunocompetent mice were used to 

constrain homeostatic expansion of adoptively transferred T cells and to provide 

CD4
+
 T cell help for OT-I T cells. However, in the attempt of establishing of 

tumour growth in wt C57BL/6 mice, the tumourigenic dose of implanted TrampOVA 

cells was increased to 10 million cells and tumours required approximately 8 weeks 

to grow which makes it difficult for application as a model. Also, the use of 

Matrigel, tumour growth promoter, failed to enhance the tumourigenicity of 

TrampOVA cells. These results together with an earlier observation demonstrating 

that 5 million TrampOVA tumour cells can grow in immunodeficient hosts led us to 

conclude that these cells are highly immunogenic and that tumour growth might be 

established by short-term depletion of immune cells. The duration of 

lymphodepletion induced by irradiation is dose dependent and can reach up to 3 

weeks following total body irradiation with a sublethal dose of 5 Gy (Jo, 1992). 

Previously in chapter 3 TrampOVA and TrampOVA-NR tumour cells grew to a 

suitable tumour size within 2-3 weeks, therefore the duration after total body 

irradiation of wt mice is expected to allow for the growth of tumours to a suitable 

tumour size before restoration of the immune system. However, total body 

irradiation of wt mice with 1 Gy did not promote tumour growth (Fig 4-9A), while 

2.5 Gy allowed an initial tumour growth in 2/4 of the mice, then remained stationary 

for 3 weeks (Fig 4-9B).  Increasing the dose of irradiation up to 5 Gy permitted 

tumour growth in 4/4 of the mice and promoted tumour progression following a 
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short stationary phase (2 weeks).  This suggested that recovery from 

lymphodepletion with 2.5 Gy occurred while the tumour is in its early stages of 

development resulting in the immune system being able to impede tumour 

formation which is reflected in a long stationary phase. In this phase equilibrium 

occur between the selective pressure exerted by the immune system on tumour cells 

and tumour progression. Conversely, 5 Gy irradiation induced a longer duration of 

lymphodepletion, allowing for tumour development and escape from immune 

recognition leading to progressive growth of TrampOVA tumours (Fig 4-9C). 

Surprisingly, TrampOVA-NR tumour cells failed to grow in 5 Gy irradiated mice (Fig 

4-9D) indicating either increased immunogenicity or loss of tumourigenicity of 

these cells. The apparent loss of tumourigenicity by TrampOVA-NR could be partly 

explained by the fact that these cells were generated from a single cell-derived clone 

requiring large scale in vitro amplification which may predispose the cells to 

increased genetic instability, transformation, and diminished proliferation (Schiller 

and Bittner, 1995; Vukicevic et al., 2010). Furthermore, generation of humoral or 

cellular immune response against the non-mammalian NR enzyme itself may also 

contribute towards increasing the immunogenicity of TrampOVA-NR cells and 

consequently tumour rejection.  

The problems encountered during establishment of TrampOVA-NR tumour growth in 

immunocompetent mice led us to rely on fresh tumour cell implants as an 

alternative to established solid tumours as a preliminary model to study the immune 

response. In a short-term adoptive transfer setting, NR/CB1954-mediated tumour 

death stimulated a slight increase in the frequency and proliferation of OVA-

specific CD8
+ 

T cells in the DLN (Fig 4-10C and D) that was associated with 

marginal increase in CTL response (Fig 4-11C). It is therefore suggested that 
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NR/CB1954 treatment can only stimulate regional priming and activation of 

adoptively transferred CD8
+
 T cells.  

Adoptive transfer experiments have been valuable tools in examining the immune 

response in a variety of normal and pathologic situations using mainly large input 

numbers (> 10
6
) of transgenic TCR-T cells. However, recent studies demonstrated 

that that the number of transferred transgenic TCR-T cells affects critical aspects of 

an immune response like proliferation, kinetics, phenotype and memory generation 

(Badovinac et al., 2007; Obar et al., 2008). The altered immune response is likely 

due to competition of T cells for APCs, where higher numbers of T cells will 

compete for antigen/MHC complex, cytokines and costimulatory signals that will 

probably result in uneven stimulation of proliferating T cells and the generation of 

both terminally differentiated cells as well as intermediates (Kedl et al., 2002; 

Lanzavecchia, 2002). Importantly, seeding high numbers of transgenic OT-I T cells 

limits the expansion of effector T cells; alters the magnitude and the timing of the 

peak response, and also reduces Granzyme B release by effector cells suggesting 

that the precise numbers of TCR transgenic T cells that can mimic the endogenous 

response must be empirically determined for each model (Badovinac et al., 2007). 

Exploring the endogenous immune response to NR/CB1954 treatment was therefore 

of a considerable interest to verify the results obtained using adoptive transfer 

experiments.  

By tracking endogenous CD8
+
 T cell responses during the expansion phase (1 week 

post therapy), NR/CB1954 treatment induced significant expansion of CD8
+
 T cells 

not only in the DLN but also in N-DLN and spleen indicating a systemic immune 

response (Fig 4-12A). This result is consistent with earlier data in the present study 

showing the NR/CB1954 treatment enhances proliferation of donor OT-I T cells 4 
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days post therapy (Fig 4-10C and D). Surprisingly, high OVA-specific CTL 

response was observed due to inoculation of OVA-expressing tumour alone (4-

13A). Thus, again interfering in assessment of the CTL activity and making 

accurate interpretation of the results difficult. However, NR/CB1954 treatment 

promoted marginal increase in OVA-specific CTL response. On the other hand, a 

trend like increase in the frequency of OVA-specific CD8
+
 T cells in the secondary 

lymphoid tissues was observed 4 weeks post NR/CB1954 suggesting that they are in 

the early contraction phase (4-12B). The negligible OVA-specific CTL response 

however indicated inefficient generation of tumour-specific CD8
+
 T cell-mediated 

immunity (4-13B).  

Collectively, these results indicated that NR/CB1954-mediated tumour killing is a 

weakly immunogenic process that facilitates development of short-lived antitumour 

immune response but minimal memory tumour-specific immunity.  

 

 



5 Results: CD8
+
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5.1 Introduction 

Earlier data in this study indicated that NR/CB1954-mediated tumour cell killing is 

an immunogenic process that facilitates development of short-term antitumour 

responses; nevertheless long-lasting CD8
+
 T cell dependent immunity was 

apparently insignificant. Aiming to improve the quantity and quality of activated 

immune effector cells, we investigated incorporation of immunomodulatory genes 

to increase the immunogenicity of tumour cells dying in response to NR/CB1954 

gene therapy and to enhance the generation of memory antitumour immune 

response.  

The first approach used in the present study was to deliver 4-1BB costimulatory 

ligand (4-1BBL) to tumour cells aiming to induce tumour-selective presentation of 

4-1BBL to tumour-reactive T cells. 4-1BBL was chosen as it can provide „signal 2‟ 

for the activation of naive T cells and can function as natural T cell adjuvant in 

promoting T cell division, survival, and effector function such as cytokine secretion 

and cytotoxicity (Du et al., 2007). In addition, enhanced 4-1BB/4-1BBL cross 

linking was shown to strengthen T cell-mediated antitumour immunity (Melero et 

al., 1998).  

Another approach was to introduce the GM-CSF gene into the tumour cells to 

produce high local amounts of the protein and to avoid the usual systemic side 

effects of the cytokine. Production of GM-CSF cytokine within the tumour 

microenvironment would result in recruitment of APCs and creates a favorable 

environment for tumour antigen presentation and priming of naïve T cells. 

To elucidate the potential use of either 4-1BBL or mGM-CSF immunomodulatory 

genes in combination with NR/CB1954 gene therapy to stimulate long-term tumour-

specific CD8
+
 T cell responses; 4-1BB ligand and mGM-CSF were introduced to 
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TrampOVA cells to generate TrampOVA-4-1BBL and TrampOVA-GMCSF subclones. 

This chapter describes the use of each of these modified cell lines together with 

TrampOVA-NR as implants in wt C57Bl/6 mice to study the impact of either 4-1BBL 

or m-GMCSF on memory CD8
+
 T cell responses induced by NR/CB1954 therapy.  

5.2 CD8
+
 T cell responses stimulated by combined therapy of NR/CB1954 

and 4-1BB costimulatory ligand 

5.2.1 Generation of single cell-derived TrampOVA-4-1BBL clones  

The pxLNC-m4-1BBL retroviral plasmid (Fig 5-1) was previously generated in the 

Gene Therapy Group (University of Birmingham) by cloning of cDNA sequence 

encoding murine 4-1BBL into a retroviral vector downstream of CMV immediate–

early promoter to produce high levels of gene expression. pxLNC-m4-1BBL was 

used to transfect the virus packaging FLYA13 cells and to generate pools of stably 

expressing FLYA13-4-1BBL cells upon selection with 500 µg/ml G-418. 

Retrovirus-containing supernatant along with polybrene (8 μg/ml) were used to 

transduce TrampOVA cells followed by culturing in G-418 selective media. After 

verification of 4-1BB ligand expression in TrampOVA-4-1BBL pool of cells by flow 

cytometry, established cells underwent single cell cloning by limited dilution. 
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Figure 5-1: Generation of TrampOVA-4-1BBL cells. 

A, pxLNC-m4-1BBL retroviral plasmid map showing the position of the 4-1BBL 

gene inserted downstream of the CMV promoter and the neomycin resistance gene 

driven by the 5‟ LTR. B, The level of 4-1BBL surface expression in the TrampOVA-

4-1BBL pool of cells. TrampOVA and TrampOVA-4-1BBL cells (1x10
5
 cells/100μl) 

were stained with 4-1BBL-PE or isotype control antibodies as indicated in the key, 

before analysis by flow cytometry.  
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5.2.2 Characterization of TrampOVA-4-1BBL cells 

5.2.2.1 4-1BB costimulatory ligand expression by TrampOVA-4-1BBL clones 

To identify clones with high levels of 4-1BBL expression, surface staining of 4-

1BB ligand in single cell-derived TrampOVA-4-1BBL clones was evaluated by flow 

cytometry. Levels of 4-1BB ligand expression were classified into: negligible, low, 

moderate and high levels based on MFI. Among the 18 clones screened, most 

showed moderate (Fig 5-2C) or high (Fig 5-2D and E) level of 4-1BBL, and only 4 

had low (Fig 5-2B) to negligible (Fig 5-2A) levels of expression.  

Although clone 9 showed the highest level of 4-1BBL expression, it showed 

abnormal spindle-like cell shape compared to the homogenous polygonal 

morphology of normal cells as well as slow proliferative capacity, thus this clone 

was excluded. 

Clone 21, being one of the highly expressing clones, was selected for further usage 

in in vivo experiments. For this purpose, large scale cultures of TrampOVA-4-1BBL 

c21 were prepared and stored as explained in section 3.4.2 while monitoring the 

expression 4-1BBL at each passage. 

As shown in Figure 5-2F, 4-1BBL expression was more or less similar among 

different passages (P1-4) confirming uniform stable expression of the protein over 

time. 
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Figure 5-2: Surface expression of 4-1BB ligand by TrampOVA-4-1BBL clones.  

TrampOVA cells and TrampOVA-4-1BBL clones (1x10
5
 cells/100μl) were stained 

with 4-1BBL-PE or isotype control antibodies for 20 min at 2-8ºC before analysis 

by flow cytometry. Histograms of TrampOVA-4-1BBL clones were grouped 

according to the level of 4-1BBL expression into: A, negligible; B, low; C, 

moderate; and E, high. F, stable expression of 4-1BBL by clone 21 over different 

passages (P1 to P4). Each histogram represents as indicated to the right of each plot 
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5.2.2.2 Presentation of OVA-epitope by TrampOVA-4-1BBL clone 21 

To compare OVA epitope presentation between TrampOVA-4-1BBL c21 and 

parental TrampOVA cells, B3Z T cells activation was used as readout. As can be seen 

in Figure 5-3, B3Z T cell activation was similar to background levels with control 

Tramp-C1 cells. Interestingly, TrampOVA-4-1BBL cells showed 5.3 fold reduced 

capacity to prime B3Z hybridoma compared to TrampOVA suggesting lower levels 

of H-2K
b
-OVA (257–264) complexes presentation by TrampOVA-4-1-BBL. 

Nevertheless, this shows that the TrampOVA-4-1BBL cells can still present OVA 

antigen to activate cognate T cells. 
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Figure 5-3: B3Z T cell activation by TrampOVA-4-1BBL cells. 

TrampOVA-4-1BBL or TrampOVA cells were cocultured at 1x10
4
/well in a 96 well 

plate with 1x10
5
 B3Z T cell hybridoma cells for 16 hr. β-galactosidase activity in 

B3Z T cells was assayed in total culture lysates after incubation with β-

galactosidase luminescent substrate for 1 hr at 37ºC. Data are presented as the mean 

relative luminescence (RLU) of quadruplicate wells (±SEM) on a log scale. 
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5.2.2.3 Activation of naïve OT-I CD8
+
 T cells by TrampOVA-4-1BBL cells 

To examine the effect of 4-1BBL expression on expansion of OT-I T cells, CFSE 

labelled naïve OT-I T cells were cocultured with irradiated Tramp-C1, Tramp-OVA 

or TrampOVA-4-1BBL cells. After 4 days, CFSE dilution was monitored by flow 

cytometry.  Data in Figure 5-4 shows that naïve OT-I T cells stimulated with 

Tramp-C1 cells did not proliferate whereas those stimulated with TrampOVA cells 

has shifted further to the left of the CFSE plot indicating that the all OT-I T cells 

underwent more than 2 rounds of division. Despite TrampOVA cells higher 

expression of OVA epitope, TrampOVA-4-1BBL cells stimulated OT-I T cells 

sufficiently to go through more than 2 rounds of divisions where some of the 

activated cells underwent 7 successive divisions. These results suggest that 4-1BBL 

expression can enhance expansion of OT-I T cells 

 

 

Figure 5-4: Proliferation of OT-I CD8
+
 T cells stimulated by TrampOVA-4-

1BBL cells. 

Naïve OT-I T cells were labelled with 2.5 µM CFSE and then 5x10
6 

OT-I T cells 

were cocultured with 5x10
5
 irradiated Tramp-C1, Tramp-OVA or TrampOVA-4-1BBL 

cells in wells of a 6 well plate. After 4 days, OT-I lymphocytes were harvested and 

stained with anti-CD3 and CD8 antibodies before analysis by flow cytometry. 

Histograms for CFSE dilution of viable CD3
+
CD8

+
 cells stimulated with irradiate 

Tramp-C1, TrampOVA or TrampOVA-4-1BBl cells for 4 days. Representative results 

are shown from 3 cultures. 
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5.2.2.4 Stimulation of effector OT-I CD8
+
 T cell responses by TrampOVA-4-

1BBL cell  

To test the efficacy of TrampOVA-41BBL versus TrampOVA cells in improving CD8
+
 

T cell effector functions, OT-I T cells were stimulated ex-vivo with either 

TrampOVA-41BBL or TrampOVA irradiated cells. After 4 days, OT-I T cells were 

harvested and used as effectors in a 4 hour chromium release assay against 

SIINFEKL peptide pulsed target Tramp-C1 cells. The 4-1BBL stimulated OT-I T 

cells exhibited approximately a two fold increase in cytotoxicity against SIINFEKL 

loaded target cells compared to TrampOVA stimulated OT-I cells at different E/T 

ratios (Fig 5-5). 
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Figure 5-5: Activation of OVA-specific CTL responses following different 

priming conditions. 

Naïve OT-I T cells (5x10
6
)
 
were cocultured with 5x10

5
 irradiated Tramp-C1, 

Tramp-OVA or TrampOVA-4-1BBL cells in wells of a 6 well plate. After 4 days, OT-I 

lymphocytes were harvested and washed twice to serve as effectors (E), then 

incubated with 5 μg SIINFEKL peptide pulsed and 
51

Cr-labeled target Tramp-C1 

cells (T) at the indicated ratios for 5 hr at 37ºC. Each point represents triplicate 

chromium release determinations (±SEM). 
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5.2.2.5 Immunogenicity of TrampOVA-4-1BBL cells in C57BL/6 mice 

In our earlier experiments, TrampOVA tumour cells were found to be immunogenic at 

a dose of 5 million cell s.c. inoculum in wt mice. Therefore, to increase the chance 

of tumour development a tumour cell dose of 10 million cells was chosen to study 

establishment of TrampOVA-4-1BBL tumours in different conditions. 

In wt C57Bl/6 mice, initial tumour volumes ranging from 109 mm
3
 to 278 mm

3
 

were evident one week following tumour injection, however these regressed 

completely by day 18. Mice remained tumour free for the 110 days follow-up period 

(Fig 5-6A). As establishment of TrampOVA tumour growth seen in section 4.2.2 was 

done in parallel to the present experiment, it was legitimate to compare survival 

probabilities for TrampOVA and TrampOVA-4-1BBL tumour bearing mice. As shown 

in Figure 5-6B, mice bearing TrampOVA-4-1BBL tumour cells showed a significant 

survival advantage compared with mice bearing TrampOVA tumours. The median 

survival of mice bearing TrampOVA tumours was 85 days (range 78–107 d) 

compared with > 124 days for TrampOVA-4-1BBL tumours (mice were culled at 

d124 for further examinations).  

In an attempt to enhance tumour growth in wt mice, matrigel was admixed with 

tumour cell suspension for s.c. injections. However, tumour growth was erratic and 

showed cycles of extended phases of tumour growth followed by short periods of 

regression. After 82 days, the experiment was terminated and mice showing tumour 

growth were dissected to isolate tumour cells for further analysis (Figure 5-6C).   

Ultimately, 5 Gy irradiated wt mice were used to establish tumour growth. Figure 5-

6D shows similar initial tumour growth to TrampOVA cells for almost 2-3 weeks. 

This was followed by extended complete tumour regression in 2/3 mice for 75 days.  

These results indicated that TrampOVA-4-1BBL cells are highly immunogenic and 
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that expression of 4-1BBL in the tumour microenvironment significantly protected 

against tumour growth and can prolong survival. 
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Figure 5-6: Comparison of different conditions for subcutaneous growth of 10 

million TrampOVA-4-1BBL cells in C57BL/6 mice 

Male C57BL/6 mice, 6-8 weeks old, were injected s.c. in the right flank with 10x10
6
 

TrampOVA cells. Tumour volume was measured manually using a calliper three 

times a week. Each line represents tumour growth in an individual mouse. A, 

tumour growth in wt mice; B, Kaplan-Meier survival analysis of time between 

inoculation of TrampOVA and TrampOVA-4-1BBL tumour cells and reaching 1000 

mm
3
 volume; C, tumour establishment using a mixture of 10 x10

6
 TrampOVA-4-

1BBL cells and matrigel in 1:1 volume ratio for s.c. injections; D, tumour growth in 

5 Gy irradiated mice. N represents the number of mice in the experiment. 

The P value indicates the statistical significance as analyzed by Wilcoxon test. 
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5.2.2.6 Characteristics of tumour cells from matrigel grown TrampOVA-4-

1BBL tumours in C57BL/6 mice 

The abnormal tumour growth pattern seen in TrampOVA-4-1BBL/matrigel grown 

tumours was intriguing. We wanted to confirm the absence of tumour cell implants 

underneath the skin in those mice showing regressing tumour, and to examine the 

cellular phenotype of the tumours in mice with evident growth. To achieve this, 

mice were culled and any residual tumour cells were excised.  Tumour free mice 

showed clear s.c. surface without any signs of inflammation or evident tumour cell 

clusters; however the internal surface of the skin was scraped and washed to collect 

all adherent cells. On culturing of these cells for more than 2 weeks no evident 

growth was seen confirming absence of any residual tumour cells.  

The tumour excised from the only mouse showing tumour growth in matrigel-

grown tumours was small, soft in texture, and easily separated into single cells for 

culturing. After 2 weeks in culture, few clusters of cells could be detected however 

they were flattened with a small nucleus and large cytoplasm volume compared to 

tumour cells isolated earlier in section 4.2.2.5 that were relatively small with large 

and irregular nucleus containing several nucleoli and scanty cytoplasm (Fig5-7). In 

addition matrigel-retrieved tumour cells demonstrated slow growth rate and on 

subculturing the cells did not adhere to the surface of the culture vessel and died. 

This may suggest that the observed residual growth was mainly a scar tissue at the 

site of tumour cell injection and that the retrieved cells were fibroblast-like 

(mesenchymal) cells that might be involved in scar formation. Also, these cells are 

expected to be primary in nature and might have required different culture condition 

from those intended for Tramp-OVA-4-1BBL cells for their survival and 

proliferation. 
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Figure 5-7: Light micrograph of tumour cells derived from TrampOVA-4-1BBL 

matrigel grown tumours in C57BL/6 mice 

Tumours were excised from mice, dissociated by enzyme digestion and cultured in 

wells of 6 well plates for 2 weeks. A and C, Phase contrast images of tumour cells 

from mice bearing TrampOVA and TrampOVA-4-1BBL tumours, respectively viewed 

at 5x magnification. B and D 40x magnified view of the respective tumour cells. 

 

 

5.2.3 Endogenous memory OVA-specific CD8
+
 T cell responses in TrampOVA-

4-1BBL immunized C57BL/6 mice   

As 4-1BBL can directly enhance the immunogenicity of tumours we therefore were 

interested in testing whether tumour regression correlated with production of long-

term antitumour CD8
+
 T cell responses. To address this, we first examined the 

generation of OVA-specific CD8
+
 T cells in tumour free mice inoculated with 
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TrampOVA-4-1BBL tumour cells and TrampOVA tumour bearing mice after ≈3 month 

from the initial tumour seed (shown in Fig 5-6B). In this experiment naïve mice that 

did not receive any treatment served as a control group.  

OVA-specific CD8
+
 T cells in DLN, N-DLN and spleen were identified by OVA257–

264/H-2K
b
 pentamer staining and flow cytometric analysis. As shown in Fig 5-8B 

the numbers of OVA-specific CD8
+
 T cells in the DLN from mice with TrampOVA 

tumours were indistinguishable from background levels seen with control mice 

receiving no tumour inoculum, however the mean frequencies were slightly 

increased in the N-DLN and spleen of mice bearing TrampOVA tumour cells 

compared to control group but did not reach statistical significance. In mice that had 

been inoculated with TrampOVA-4-1BBL cells, the number of OVA-specific CD8
+
 T 

cells was significantly increased in DLN and spleen, however the increase in N-

DLN  did not reach significance relevant to those receiving TrampOVA cells. 

We proceeded to ask whether the OVA-specific memory CD8
+
 T cells generated in 

vivo could display effector functions in response to OVA-tumour antigen challenge.  

Initially, we performed in vivo cytotoxicity assays on TrampOVA and TrampOVA-4-

1BBL mice nearly 3 months after initial tumour challenge. In groups of mice with 

TrampOVA tumours, the average percentage of OVA-specific target lysis was ≈ 10% 

in different lymphoid tissues; whereas mice implanted with TrampOVA-4-1BBL cells 

significantly increased OVA-specific cytotoxicity by 3 fold in DLN. A 2.5 fold 

increase was observed in N-DLN but this failed to reach statistical significance. 

Negligible increase in OVA-specific target cell killing was observed in the spleen 

compared to mice receiving TrampOVA cells (Fig 5-8C). 

Production of IFN-γ and IL-2 cytokines in response to OVA-tumour antigen was 

also investigated as part of evaluating OVA-specific CD8
+
 T cells effector 
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functions. Lymphocytes from spleen and lymph nodes from mice receiving no 

tumours, TrampOVA or TrampOVA-4-1BBL cells were harvested and restimulated ex-

vivo with OVA257-264 peptide to determine cytokine production by intracellular 

staining. The proportion of IFN-γ
+
CD8

+
 T cells was similar among T cells from 

DLN of both control and TrampOVA bearing mice, while it was slightly increased in 

N-DLN and spleen from TrampOVA group compared to control mice. In contrast a 

significant population of IFN-γ
+
CD8

+
 T cells was observed in DLN and N-DLN of 

TrampOVA-4-1BBL inoculated mice compared to those seeded with TrampOVA cells; 

however the response of CD8
+
 T cells in spleen was very similar in all groups (Fig 

5-8D). 

Fig 5-8E shows that IL-2 production was negligible in different lymphoid tissues in 

TrampOVA group compared to control mice. Likewise IFN-γ, IL-2
+
 producing CD8

+
 

T cells in TrampOVA-4-1BBL inoculated mice were significantly increased in DLN 

and to lesser extent in N-DLN of TrampOVA-4-1BBL treated mice compared to 

those having TrampOVA cells. 

These data indicate that OVA-specific CD8
+
 T cells generated in response to 

TrampOVA-4-1BBL tumour cells consistently showed increased in vivo OVA-

specific CTL responses, IFN-γ and IL-2 cytokine production both in the DLN and 

N-DLN but not in spleen, compared to animals seeded with TrampOVA tumours. 

Therefore, the increased number of tumour-specific T cells, and their increased 

effector functions in LNs imply that 4-1BBL expression on tumour cells 

significantly enhances long-term antitumour immune responses. 
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Figure 5-8: Memory OVA-specific CD8
+
 T cell response in C57BL/6 mice 

immunized with TrampOVA-4-1BBL tumour cells 

A, tumour free mice inoculated with TrampOVA-4-1BBL tumour cells and TrampOVA 

tumour bearing mice discussed in section 5.2.2.5 served as the experimental groups 

and naïve mice as a control group. After ≈3 month from tumour inoculation,  a 

mixture of 5x10
6
 control splenocytes labelled with 2.5 µM CFSE (CFSE

Hi
) and 

5x10
6 

target splenocytes labelled with 1 µM CFSE (CFSE
Lo

)
 
and pulsed

 
with 5 

µg/ml SIINFEKL (total 1x10
7
 cells) was administered i.v. into all groups of mice to 

assess in vivo cytotoxicity. After 16 hr, lymphoid tissues were harvested and single-

cell suspensions were prepared for flow cytometric analysis. B, frequency of OVA-

specific CD8
+
 T cells. Lymphocyte cell suspension from DLN, N-DLN and spleen 

isolated from different treatment groups was stained with H-2K
b
/SIINFEKL 

pentamer and anti-CD3 and -CD8 antibody before analysis by flow cytometry. Data 

points represent the numbers of live pentamer
+
CD8

+
CD3

+
 cells relative to total 

CD8
+
 cells in individual animals. 
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Figure 5-8 …cont. C, in vivo OVA-specific CTL response. Target cells labelled 

with CFSE
Hi

 and CFSE
Lo

 were analyzed by flow cytometry and the percentage of 

target cell killing was determined. Data points represent the percentage of lysed 

target cells in different animals. D and E, frequency of IFN-γ and IL-2 cytokine 

positive cells in CD8
+
 T cells after ex vivo stimulation, respectively. 1x10

6
 

lymphocytes were cultured in wells of a 96 well plate and stimulated with 1 μg/ ml 

SIINFEKL peptide overnight. Cells were surface stained with anti-CD3 and -CD8 

antibodies followed by intracellular staining with anti-IFN-γ or -IL-2 antibodies 

before analysis by flow cytometry. Data points represent the numbers of 

cytokine
+
CD8

+
CD3

+
 cells relative to total CD8

+
 cells in different animals. 

The horizontal line represents the group mean. 

The P value indicates the statistical significance as analyzed by two-way ANOVA 

and post-hoc Bonferroni test. 

D. 
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5.2.4 Donor CD8
+
 T cell response induced by combined NR/CB1954 and 4-

1BBL treatment in a long-term in vivo model 

Initially, we were interested in gaining insight into the kinetics of CD8
+
 T cell 

expansion in response to NR/CB1954 and 4-1BBL combined therapy. To achieve 

this, a mixture of the indicated tumour cells (Fig 5-9B) were inoculated in wt 

C57Bl/6 mice. As the level of OVA-epitope presentation in TrampOVA-4-1BBL 

cells was nearly 1/5 that of TrampOVA cells, 1x10
6
 TrampOVA cells was used  in 

tumour inoculation to ensure equal levels of OVA expression in tumour cells among 

different groups. After seeding tumour cells, OT-I T cells were adoptively 

transferred prior to vehicle/CB1954 treatment.  Using this adoptive transfer 

experimental system, the frequency of OT-I CD8
+
 T cells can be easily monitored in 

the peripheral blood via tail bleeds on a weekly basis for 5 weeks (Fig 5-9B). In 

addition, the frequency of OT-I CD8
+
 T cells and antitumour CTL response were 

also assessed at the end of the experimental period.  

As shown in Fig 5-9C, the percentage of OT-I CD8
+
 T cells was 0.85% in control 

mice receiving Tramp-C1 tumours, this percentage was increased by 2.1 and 1.5 

fold in response to CB1954 and 4-1BBL treatments, respectively. Combined 

treatment with CB1954 and 4-1BBL resulted in further expansion of OT-I CD8
+
 T 

cells by 1.6 fold compared to mice receiving CB1954. These relative frequencies of 

OT-I T cells were maintained for the first 2 weeks. After 3weeks, the numbers of 

OT-I CD8
+
 T cell started to decline in different groups and nearly reached the level 

of control group by week 5.  

After 5 weeks, mice were culled and lymphoid tissues were isolated for assessing 

the frequency of OT-I T cells and OVA-specific lytic activity. Like control mice, 

the average percentage of OT-I CD8
+
 T was ≈ 0.5% of total CD8

+
 T cells in 
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lymphoid tissues from CB1954 treated groups. In the 4-1BBL treated group, a 

marginal increase (0.69%) was observed only in the DLN, whereas in the group of 

mice receiving combined CB1954 and 4-1BBL treatment the percentage of OT-I T 

cells was ≈ 0.72% in DLN and N-DLN  and 0.56% in spleen (Fig. 5-9D and E).  

As can be seen in (Fig. 5-9F and G), the mean OVA-specific cytotoxicity was ≈ 

10% in lymphoid tissues and blood from control mice receiving only OT-I T cells, 

while there was a wide scatter in responses in each treatment group. However, the 

mean OVA-specific cytotoxicity was marginally increased in CB1954-treated mice 

compared to the 4-1BBL group suggesting a qualitative difference in the CD8
+
 T 

cell response, perhaps reflecting different priming conditions. Combined treatment 

with CB1954 and 4-1BBL further enhanced OVA-specific CTL response in 

different lymphoid tissues and blood compared to CB1954 and 4-1BBL groups, 

respectively.  

These results suggested that OT-I underwent initial expansion in response to the 

different treatments in the blood circulation, and that CB1954 and 4-1BBL 

combined treatment was more potent in stimulating CD8
+
 T cell proliferation than 

CB1954 and 4-1BBL single treatments. This initial phase of CD8
+
 T cell expansion 

was followed by a contraction phase that was clearly evident in the blood by week 4 

post therapy.  However, results for the percentages of OT-I T cells and CTL 

response in the lymphoid tissues from different treatment were difficult to interpret 

due to the high variability in responses within each treatment and the small group 

number. 
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Group Tumour cells  OT-I  T cells Treatment 

Control 10x 10
6
 Tramp-C1 2.5x10

6 
cells CB1954 

CB1954 5x 10
6
 TrampOVA-NR+ 

1x 10
6
 TrampOVA  

2.5x10
6 

cells CB1954 

4-1BBL 5x 10
6
 TrampOVA-NR+ 

5x 10
6
 TrampOVA-4-1BBL 

2.5x10
6 

cells Vehicle 

CB1954+4-1BBL 5x 10
6
 TrampOVA-NR+ 

5x 10
6
 TrampOVA-4-1BBL 

2.5x10
6 

cells CB1954 

Figure 5-9: Donor OT-I CD8
+
 T cell responses to NR/CB1954 combined 

therapy in wild-type C57BL/6 mice 

Male C57BL/6 mice, 6-8 weeks old, were injected s.c. in the right flank with 

mixtures of the indicated tumour cells. One day later, mice received 2.5x10
6 

CFSE 

labelled OT-I lymphocytes i.v. followed by 3 consecutive doses of 20 mg/kg 

CB1954 or vehicle for 3 days. After 5 weeks,  a mixture of 5x10
6
 control 

splenocytes labelled with 2.5 µM CFSE (CFSE
Hi

) and 5x10
6 

target splenocytes 

labelled with 1 µM CFSE (CFSE
Lo

)
 
and pulsed

 
with 5 µg/ml SIINFEKL (total 1x10

7
 

cells)  was administered i.v. into all groups of mice in an in vivo cytotoxicity assay. 

After 16 hr, lymphoid tissues were harvested and single-cell suspensions were 

prepared for flow cytometric analysis. A and B, schematic representation of the 

experimental design and the experimental groups, respectively. 
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Figure 5-9 …cont. C, kinetics of OVA-specific CD8
+
 T cells expansion in 

peripheral blood. Blood samples were collected via tail bleeds or terminal heart 

puncture and processed to remove RBCs. Lymphocytes were stained with anti-

CD45.1, -CD3 and -CD8 antibodies before analysis by flow cytometry. Data points 

represent the percentages (±SEM) of live CD45.1
+
CD8

+
CD3

+
 cells relative to total 

CD8
+
 T cells.D and E, the frequency of OVA-specific CD8

+
 T cells in different 

lymphoid tissues 5 weeks post treatment. Lymphocyte cell suspensions were stained 

with anti-CD45.1, -CD3 and -CD8 antibodies before analysis by flow cytometry. 

Data points represent percentages of live CD45.1
+
CD8

+
CD3

+
 cells relative to total 

CD8
+
 cells in different animals. n=3-4 

The horizontal line represents the group mean. 
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Figure 5-9 …cont. F and G, in vivo OVA-specific CTL response in different 

lymphoid tissues 5 weeks post treatment. Target cells labelled with CFSE
Hi

 and 

CFSE
Lo

 were analyzed by flow cytometry and the percentage of target cell killing 

was determined. Data points represent the percentage of lysed target cells in 

different animals. n=3-4 

The horizontal line represents the group mean. 

 

 

5.2.5 Endogenous CD8
+
 T cell responses simulated by combined NR/CB1954 

and 4-1BBL treatment in a long-term in vivo model 

As the number of transgenic OT-I T cells used in the preceding adoptive transfer 

experiment does not reflect the low numbers of endogenous naïve T cell precursors 

specific for a single epitope found in a normal mouse, we were interested in 

evaluating the endogenous antitumour CD8
+
 T cell responses to NR/CB1954 and 4-

1BBL combined therapy in wt C57BL/6 mice after 4 weeks.   

To test this, mixtures of tumour cell lines as indicated in Figure 5-10B were 

inoculated in C57BL/6 mice, followed by vehicle/CB1954 treatment as illustrated in 

Fig 5-10A. After 4 weeks, antitumour CD8
+
 T cell responses were analysed in 

different lymphoid tissues by monitoring the frequency and CTL activity of OVA-

specific CD8
+
 T cells. 

Analysis of OVA/K
b
 pentamer

+
 CD8

+
 CD3

+
 T cells in the different experimental 

groups revealed that few OVA-specific CD8
+
 T cells could be detected in lymphoid 

F. G. 
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organs of NR/CB1954 treated mice, comparable to the control group; while in 4-

1BBL group these numbers were increased by 2 fold in DLN and to a lesser extent 

in N-DLN, but not in spleen. The combination of NR/CB1954 and 4-1BBL therapy 

clearly increased the frequency of OVA-specific CD8
+
 T cells not only in DLN but 

also in spleen and N-DLN (although the latter did not achieve statistical 

significance) compared to NR/CB1954 treated group (Fig 5-10C).  

Since CTL responses to tumour antigen are critical for the efficacy of CD8
+
 T cell-

dependent antitumour immunity, OVA-specific cytolytic activity was assessed in 

the different groups in an in vivo cytotoxicity assay. As shown in Fig 5-10D, 

NR/CB1954 treatment resulted in an average OVA-specific CTL-mediated 

cytotoxicity of 11.6% in different lymphoid organs, whereas 4-1BBL group showed 

increased levels of cytotoxicity in DLN (28%) and N-DLN (19%) and similar levels 

in spleen. Combining 4-1BBL with NR/CB1954 therapy increase OVA-specific 

cytotoxicity by 3.4 fold in DLN and 2.2 in both N-DLN and spleen compared to 

NR/CB1954 treatment. These results show that combining CB1954 with 4-1BBL 

treatment promotes expansion of OVA-specific CD8
+
 T cells and tumour-specific 

CTL response compared to monotherapies. 
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Group Tumour cells Treatment 
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6
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6
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6
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Figure 5-10: Endogenous OVA-specific CD8+ T cell responses to NR/CB1954 

and 4-1BBL combined therapy in wild-type C57BL/6 mice 

Male C57BL/6 mice, 6-8 weeks old, were injected s.c. in the right flank with 

mixtures of the indicated tumour cells. One day later, mice received 3 consecutive 

doses of 20 mg/kg CB1954 or vehicle for 3 days. After 4 weeks,  a mixture of 5x10
6
 

control splenocytes labelled with 2.5 µM CFSE (CFSE
Hi

) and 5x10
6 

target 

splenocytes labelled with 1 µM CFSE (CFSE
Lo

)
 
and pulsed

 
with 5 µg/ml SIINFEKL 

(total 1x10
7
 cells) was administered i.v. into all groups of mice in an in vivo 

cytotoxicity assay. After 16 hr, lymphoid tissues were harvested and single-cell 

suspensions were prepared for flow cytometric analysis. A and B, schematic 

representation of the experimental design and experimental groups, respectively. 
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Figure 5-10 …cont. Single cell suspension from DLN, N-DLN and spleen isolated 

from different treatment groups was prepared. C, the frequency of OVA-specific 

CD8
+
 T cells after 4 weeks from treatment. Lymphocyte cell suspension was stained 

for H-2K
b
/SIINFEKL pentamer, CD3 and CD8 before analysis by flow cytometry. 

Data points represents the numbers of live pentamer
+
CD8

+
CD3

+
 cells relative to 

total CD8
+
 cells in different animals and the horizontal line represents the group 

mean. D, in vivo OVA-specific CTL response after 4 weeks from treatment. Target 

cells labelled with CFSE
Hi

 and CFSE
Lo

 were analyzed by flow cytometry and the 

percentage of target cell killing was determined. Data points represent the 

percentage of lysed target cells in different animals. 

The horizontal line represents the group mean.  

The P value indicates the statistical significance as analyzed by two-way ANOVA 

and post-hoc Bonferroni test. 
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5.3 CD8
+
 T cell responses to combined therapy of NR/CB1954 and 

granulocyte macrophage-colony stimulating factor (GM-CSF) 

5.3.1 Generation of pxLNI-murine GM-CSF retroviral vector 

For construction of pxLNI-mGM-CSF plasmid, murine GM-CSF (mGM-CSF) 

cDNA was obtained from Ad.left.NR-mGM-CSF adenoviral vector by BamHI 

enzyme digestion. The purified DNA fragment (1235bp) was inserted into BamHI 

linearized pxLNIX retroviral vector downstream the LTR region. After ligation, the 

plasmid was transformed in competent E. coli XL2 bacteria to generate several 

plasmid preparations designated as pAS154A1 to pAS154A19. The correct plasmid 

constructs was verified by XbaI, and ScaI restriction enzyme digestion. Gel 

electrophoresis analysis of the plasmid digests showed 4 plasmid preparations gave 

the expected numbers and the approximate band sizes; two fragments of 5460, 1580 

bp with XbaI enzyme and two fragments of 3637 and 3403 bp ScaI digest indicating 

the right orientation of the insert. DNA sequence analysis of pAS154 plasmids 

using m-GM-CSF-F1 forward: 5‟- CTT TTC CTG GGC ATT GTG G-3‟ and m-

GM-CSF-R1 reverse: 5‟- ATG CGG ATA GGT AAC-3‟ primers also confirmed 

the correct coding sequence. 
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Figure 5-11: Map and restriction enzyme digests of the mGM-CSF expression 

vector pAS154 

A, pAS154 (pxLNI-mGM-CSF) retroviral plasmid map showing the position of the 

neomycin resistance gene, followed by the poliovirus internal ribosome entry site 

(IRES) and mGM-CSF gene; expression of both genes is controlled by the 5‟ LTR 

region. The map also shows the location of restriction enzyme sites used in the 

cloning or characterization process. B, agarose gel electrophoresis of pAS154A2 

(lane 1, 2, 3); pAS154A4 (lane 4, 5, 6); pAS154A9 (lane 7, 8, 9); pAS154A11 (lane 

10, 11, 12) plasmid digests. M: size marker (1kb DNA ladder); lanes 1, 4, 7 and 10: 

uncut plasmids; lanes 2, 5, 8 and 11: ScaI digests; lanes 3, 6, 9 and 12: XbaI digests. 
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5.3.2 Generation of TrampOVA-GM-CSF cells  

pAS154 was used to transduce TrampOVA cells in a similar fashion to that used 

earlier with other gene constructs. The generated TrampOVA-GM-CSF cells were 

expanded as explained in section 3.4.4 to prepare cell surplus required to inoculate 

tumour cells in mice.  

5.3.3 Characterization of TrampOVA-GM-CSF cells 

5.3.3.1 Murine-GM-CSF production by TrampOVA-GM-CSF cells 

To validate mGM-CSF production by TrampOVA-GM-CSF cells, the level of 

cytokine was analyzed in the supernatant of TrampOVA-GM-CSF cultures using 

ELISA. As shown in Figure 5-12, control TrampOVA cells do not constitutively 

secrete m-GM-CSF cytokine; whereas the initial seed stock of TrampOVA-GM-CSF 

cells (passage1; P1) produced 520 pg/ml per 0.5 x10
6
 cells per 48 hr, this dropped to 

336 pg/ml in passage 4 (P4) that was usually used to seed tumour cells in mice. 

0 200 400 600

-GM-CSF (P4)OVATramp

-GM-CSF (P1)OVATramp

OVATramp

pg/ml m-GM-CSF

 

Figure 5-12: Murine GM-CSF cytokine production by TrampOVA-GM-CSF 

cells 

A total of 0.5 x10
6
 TrampOVA or TrampOVA-GM-CSF cells were cultured in 6 cm 

plates for 48 hr. Supernatants were diluted and concentrations of mGM-CSF were 

determined by ELISA. Values shown represent the mean of quadruplicate cultures 

(±SEM). 
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5.3.3.2 Presentation of OVA-epitope by TrampOVA-GM-CSF cells 

The ability of TrampOVA-GM-CSF cells to present the SIINFEKL epitope was 

examined using B3Z T cell activation assay. As shown in figure 5-13, control 

Tramp-C1 cells showed background enzyme activation; whereas TrampOVA cells 

activated B3Z T cells by 3.2 fold compared to that of TrampOVA-GM-CSF cells 

indicating reduced levels of OVA epitope presentation in TrampOVA-GM-CSF. 
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Figure 5-13: B3Z T cell activation by TrampOVA-GM-CSF cells 

TrampOVA-GM-CSF or TrampOVA cells were cocultured at 1x10
4
/well in a 96 well 

plate with 1x10
5
 B3Z T cell hybridomas for 16 hr. β-galactosidase activity in B3Z T 

cells was assayed in total culture lysates after incubation with β-galactosidase 

luminescent substrate for 1 hr at 37ºC. Data are presented as the mean relative 

luminescence (RLU) of quadruplicate wells (±SEM) on a log scale. 
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5.3.4 Endogenous CD8
+
 T cell responses stimulated by combined NR/CB1954 

and GM-CSF treatment in a long-term in vivo model 

In the present experiment we investigated the effectiveness of combining GM-CSF 

with NR/CB1954 gene therapies in priming and activation of endogenous naïve T 

cells to boost the generation of long-term antitumour CD8
+
 T cell responses in wt 

C57Bl/6 mice.  

Similar experimental design and groups used in NR/CB1954 and 4-1BBL combined 

therapy were also used in the present experiment except for that the tumour cells 

produced GM-CSF instead of expressing 4-1BB Ligand.   

Analysis of OVA/K
b
 pentamer positive CD8

+
 T cells by flow cytometry showed a 

preferential increase in the numbers of OVA-specific CD8
+
 T cells in response to 

different treatments in DLN but not in the N-DLN and spleen. In CB1954 group, the 

numbers of OVA-specific CD8 T cells was marginally increased compared to 

control mice, whereas greater numbers were observed in GM-CSF group relative to 

both CB1954 treated and control mice. Interestingly, combined treatment of 

CB1954 and GM-CSF secreting cells induced a significant increase in OVA-

specific CD8
+
 T cells compared to mice receiving either CB1954 or GM-CSF 

secreting cells alone (Fig 5-14A). 

The effector function of OVA-specific CD8
+
 T cells induced by different treatment 

was assessed in an in vivo cytotoxicity assay.  Although, the numbers of OVA-

specific CD8
+
 T cells was predominantly evident in the DLN compared to N-DLN 

and spleen from different treatment groups; this was not translated into a 

preferential increase in OVA-specific cytotoxic activity in the DLN where relatively 

equal levels of cytotoxicity was observed across the lymphoid tissues of each group.  

As shown in Figure 5-14B, mice receiving CB1954 treatment showed an average 
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level of 23.5% OVA-specific lysis, while those receiving GM-CSF secreting cells 

induced higher CTL response (31.8%). As expected the combination of CB1954 

and GM-CSF enhanced OVA-specific cytotoxicity by 1.4 fold and 2 fold relative to 

GM-CSF and CB1954 treatment alone, respectively. These results indicate that 

combined therapy of CB1954 and GM-CSF enhances the frequency and effector 

function of memory tumour-specific CD8
+
 T cell response relevant to NR/CB1954 

or GM-CSF single treatment. 

 

 

Group Tumour cells Treatment 

Control 10x 10
6
 Tramp-C1 CB1954 

CB1954 5x 10
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5x 10
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 TrampOVA-GMCSF 

Vehicle 

CB1954+GM-CSF 5x 10
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5x 10
6
 TrampOVA- GMCSF 

CB1954 

Figure 5-14: Endogenous OVA-specific CD8
+
 T cell responses to NR/CB1954 

and GM-CSF combined therapy in wild-type C57BL/6 mice 

Male C57BL/6 mice, 6-8 weeks old, were injected s.c. in the right flank with 

mixtures of the indicated tumour cells. One day later, mice received 3 consecutive 

doses of 20 mg/kg CB1954 or vehicle for 3 days. After 4 weeks,  a mixture of 5x10
6
 

control splenocytes labelled with 2.5 µM CFSE (CFSE
Hi

) and 5x10
6 

target 

splenocytes labelled with 1 µM CFSE (CFSE
Lo

)
 
and pulsed

 
with 5 µg/ml SIINFEKL 

(total 1x10
7
 cells)  was administered i.v. into all groups of mice in an in vivo 

cytotoxicity assay. After 16 hr, lymphoid tissues were harvested and single-cell 

suspensions were prepared for flow cytometric analysis. A and B, schematic 

representation of the experimental design and experimental groups, respectively. A 

and B, schematic representation of the experimental design and experimental 

groups, respectively. 
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Figure 5-14 …cont. Single cell suspension from isolated DLN, N-DLN and spleen 

from different treatment groups was prepared. C, The frequency of OVA-specific 

CD8
+
 T cells after 4 weeks from treatment. Lymphocyte cell suspension was stained 

for H-2K
b
/SIINFEKL pentamer, CD3 and CD8 before analysis by flow cytometry. 

Data points represent the numbers (±SEM) of live pentamer
+
CD8

+
CD3

+
 cells 

relative to total CD8
+
 cells in individual animals. D, in vivo OVA-specific CTL 

response after 4 weeks from treatment. Target cells labelled with CFSE
Hi

 and 

CFSE
Lo

 were analyzed by flow cytometry and the percentage of target cell killing 

was determined. Data points represent the percentage of lysed target cells in 

individual animals. 

The horizontal line represents the group mean.  

The P value indicates the statistical significance as analyzed by two-way ANOVA 

and post-hoc Bonferroni test. 

C. 

D. 
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5.4 Discussion 

Elimination of tumour cells using NR/CB1954 is likely to increase the amount of 

tumour antigens available for presentation to CD8
+
 T cells and to modulate the 

immunological tumour microenvironment via the release of immunostimulatory 

molecules, hence favouring generation of antitumour immune responses. However, 

the initial immuno-adjuvant effect of NR/CB1954 was followed by minimal 

memory CTL response implying that long-term antitumour immunity and clinical 

benefit is expected to be limited. This suboptimal immune response could be further 

improved and amplified using immunotherapy to boost newly primed CD8
+
 T cell 

responses and to promote differentiation of activated cells into memory CD8
+
 T 

cells. Long-term antitumour immunity is essential for protection against tumour 

recurrence and metastasis. 

Laderach et al. (2002) demonstrated that co-stimulation using 4-1BBL or agonistic 

anti-4-1BB antibodies is an effective adjuvant capable of enhancing the numbers, 

effector function and survival of primed CD8
+
 T cells and suggested its potential 

use in tumour immunotherapy. Indeed, gene transfer of 4-1BBL molecule into the 

tumour cells increased the immunogenicity of tumour cells and stimulated tumour 

immunity (reviewed in(Cheuk et al., 2004). In this context, TrampOVA tumour cells 

were modified to express 4-1BBL in an attempt to provide a costimulatory signal 

for efficient priming of naïve T cells, and also to deliver a second costimulatory 

signal to promote effector functions and survival of T cells activated by APCs.  

TrampOVA-4-1BBL tumour cells expressing high levels of 4-1BBL were highly 

immunogenic and inhibited tumour growth in wt C57BL/6 mice compared to 

parental TrampOVA cells. Tumour rejection was associated with long-term survival 

that suggested generation of memory antitumour immunity (Fig 5-5B). This result 
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was consistent with Guinns‟ report that mice inoculated with tumour variants 

expressing moderate to high levels of 4-1BBL resisted tumour formation and 

showed increased survival rates. However, only those receiving high 4-1BBL 

expressing variants demonstrated long-term systemic antitumour immunity against 

parental challenge (Guinn et al., 2001). Also, other studies have reported that 

transduction of tumour cells from different origins with 4-1BBL resulted in reduced 

tumourigenicity and generation of systemic T cell-mediated antitumour immunity in 

syngeneic mice. Melero et al. and others using depletion experiments and cytokine 

analysis pointed that tumour rejection by 4-1BBL transduction was mainly CD8
+
 T 

cell but not CD4
+
 T cell dependent (Li et al., 2008; Martinet et al., 2000; Melero et 

al., 1998; Mogi et al., 2000; Xiang, 1999) 

Our results demonstrated that 4-1BBL expression by tumour cells promoted the 

frequency of tumour-specific CD8
+
 T cells that showed efficient CTL response (Fig. 

5-7B and C). The cytokine signature of OVA-specific CD8
+
 T cells indicated that 

they are of type I (Tc1 effector) phenotype as they can secret IL-2 and IFN-γ 

cytokine upon stimulation (Fig. 5-7D and E). Tc1 cells were reported to exhibit 

superior therapeutic antitumour effect than their counterparts Tc2 cells, which secret 

IL-4 and IL-5 cytokines due to their efficient perforin-mediated cytotoxicity to 

tumour cells and prolonged capacity for in vivo survival (Ye et al., 2007).  Also, 

probably due to its increased capacity to localize in tumours (Huang et al., 2005) 

and to migrate and reside in inflamed tissues (Cerwenka et al., 1999). 

Using adoptive transfer experimental system, NR/CB1954 treatment combined with 

tumoural 4-1BBL expression stimulated further expansion of circulating OT-I CD8
+
 

T cells for 2 weeks compared to either NR/CB1954 or 4-1BBL single treatments 

following vehicle/CB1954 treatment (Fig 5-9C). After 4 weeks, the frequency of 
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OT-I CD8
+
 T cells was reduced in the blood of different treatment groups 

suggesting that the cells are migrating to non lymphoid tissues (Masopust et al., 

2001) or undergoing AICD within the contraction phase. The proportion of OT-I 

CD8
+
 T cells in the blood remained marginally elevated in the combined therapy 

relative to monotherapies by week 4; however the difference was negligible 

between different groups by week 5. Although, adoptive transfer of OT-I T cells 

readily allowed us to follow the kinetics of T cell responses to different treatments 

in the blood; however analysis of OT-I CD8
+
 T cell accumulation and OVA-specific 

CTL response within secondary lymphoid tissues were inconclusive due to the 

small group number and variation in responses within each group.  

On the other hand, endogenous CD8
+
 T cell responses of mice receiving combined 

therapy of tumoural 4-1BBL and NR/CB1954 showed accumulation of OVA-

specific CD8
+
 T cells in DLN and spleen, however OVA-specific CTL response 

was significant only in DLN compared to monotherapies alone (5-10C and D). 

From these data we were able to conclude that tumoural 4-1BBL expression can 

promote memory immune responses generated by NR/CB1954-mediated tumour 

cell killing.  

Cytokines secreted within the tumour microenvironment dictates the quality and the 

strength of the interaction between tumour cells and the host immune response. 

GM-CSF, in particular, is an essential cytokine for stimulating cross-presentation of 

tumour antigens and activation of antitumour immunity. Although many cytokine 

(IL-1, IL-2, IL-4, IL-5, IL-6, INFγ and TNFα) was used to transduce tumour cells, 

GM-CSF was proven to be the most potent inducer of specific and long-term 

tumour immunity in a preclinical model (Dranoff et al., 1993). This prompted the 
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use of GM-CSF secreting tumour cells in this study to enhance the suboptimal 

antitumour immune response of NR/CB1954 treatment. 

The amount of GM-CSF secreted by TrampOVA-GM-CSF cells was 672 pg/ml (Fig 

5-12), this level was comparably lower than the levels observed from other tumour 

vaccine models (13–200 ng/ml) (Dranoff et al., 1993; Dunussi-Joannopoulos et al., 

1998). The reduced cytokine production by TrampOVA-GM-CSF seems to be due to 

the expression of GM-CSF as an internal ribosome entry site-dependent second 

gene under LTR retroviral promoter. Also, the producer cells are a pool of cells that 

produce different levels varying form negligible to high expression at a single cell 

levels, thus raising the possibility of reducing the total level of GM-CSF.   

Combining local secretion of GM-CSF at the tumour site with NR/CB1954 

treatment stimulated regional expansion of memory tumour-specific CD8
+
 T cells 

only in the DLN (Fig 5-14C). A regional but not a systemic effect is likely due to 

reduced cytokine levels reaching the circulation thereby only recruiting APCs to the 

tumour site to process tumour antigens that subsequently migrate primarily to the 

draining lymph nodes for priming of tumour-specific T lymphocytes. 

Although regional accumulation of tumour-specific CD8
+
 T cells was induced by 

combined therapy of GM-CSF and NR/CB1954 treatment, a trend towards 

increased OVA-specific cytotoxicity was observed in different lymphoid tissues 

relative to either GM-CSF or NR/CB1954 treatment alone (Fig 5-14D). This 

systemic CTL response could be explained by the fact that the long 16 hr period 

following infusion of target cells in the in vivo cytotoxicity assay will allow 

circulation of target cells within the lymphatic system resulting in inaccurate 

correlation between the numbers of antigen-specific CD8
+
 T cells and the CTL 

response within each lymphoid tissue. In support of this hypothesis, Regoes et al. 
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(2007) showed that target cell killing is detectable within the first hr following 

adoptive transfer of the target cells and reaches maximal target lysis within ≈ 4 hr 

(Regoes et al., 2007). Furthermore, this short in vivo cytotoxicity assay was shown 

to be relatively sensitive for detection of the CTL response of central memory (TCM) 

cells that was shown to induce minimal CTL response compared to effector memory 

(TEM) cells in a traditional 
51

Cr release assay (Barber et al., 2003). Therefore a 4 hr 

in vivo cytotoxicity assay would permit ideal analysis of the functionality of T cells 

accumulated within tissues.  

These studies showed that endogenous memory CD8
+
 T cell responses to either 4-

1BBL or GM-CSF treatment alone were comparably higher than NR/CB1954 

treatment but this did not reach significance, thus suggesting that immunotherapy 

using 4-1BBL or GM-CSF  alone are superior to NR/CB1954 treatment. 

Furthermore, tumoural expression of either 4-1BBL or GM-CSF further enhanced 

the generation of functional memory antitumour CD8
+
 T cell responses following 

NR/CB1954 treatment.  
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6 Results: Effect of combined therapy of NR/CB1954 and 4-1BBL on 

anergic CD8
+
 T cell responses in vivo 
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6.1 Introduction 

The inability of the immune system to naturally control tumour is likely to be due to 

immune escape mechanisms employed by the tumours to suppress antitumour 

immune response. Tumour cells may evade detection by tumour intrinsic mechanisms 

including down-regulation of MHC class I and peptide transporter genes (TAP-1) and 

reduced expression of tumour associated-antigens at early phases of tumour growth 

(Khanna, 1998; Steer et al., 2010). Other tumour extrinsic factors contributing 

towards immune escape involve T-cell tolerance, production of immunosuppressive 

cytokines ( e.g. TGF-β and IL-10) and immunosuppressive myeloid or regulatory T 

cells (Mapara and Sykes, 2004). The mechanisms underlying T cell tolerance mainly 

includes antigen-specific non-responsiveness (anergy), deletion of T cells by 

apoptosis, and non specific suppression of T cell functions (Lechler et al., 2001). 

Several studies have shown that anergic CD8
+
 T cells arise when encountering 

antigen in the context of minimal costimulation and cytokine help thereby favouring T 

cells non-responsiveness to subsequent stimulation (Aichele et al., 1995; Boussiotis et 

al., 1994; Jenkins, 1994). This state of T cell anergy however has been reported to 

develop early during the course of tumour progression (Staveley-O'Carroll et al., 

1998) and to limit protective CD8
+ 

T cell-based antitumour immunity (Kreuwel et al., 

2002). 

In this context, an envisaged therapeutic approach for cancer treatment would not 

only eradicate tumours but also reactivate anergic tumour-specific memory T cells 

and in addition help to activate naïve T cells. To this end, we aim to examine the 

capacity of NR/CB1954 and 4-1BBL combined therapy to restore the responsiveness 

of anergized T cells to tumour antigens. 
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Previous studies have shown that CD8
+
 T cell anergy can be induced in TCR 

transgenic mice by multiple systemic exposures to cognate antigenic peptide (Dubois 

et al., 1998; Frauwirth et al., 2001; Kyburz et al., 1993), while single-injection 

protocols generate hyper-reactive CD8
+
 T cells (Pihlgren et al., 1996). CD8

+
 T cells 

recovered from anergized TCR transgenic mice display defective TCR signalling, 

increased sensitivity to cell death, impaired proliferative responses to both in vitro and 

in vivo antigenic stimulation, and fail to differentiate into cytotoxic effector cells 

when stimulated in vitro with their cognate peptide. However, exogenously added IL-

2 can restore the cytolytic activity and to a lesser extent the proliferative capacity of 

anergized T cells.  

This chapter describes induction of CD8
+
 T cell anergy in OT-I mice by using the 

protocol developed by Dubois et al., 1998, to provide a highly reliable homogenous 

pool of anergized cells for usage in adoptive transfer experiments. The phenotypic 

and functional characteristics of in vitro and in vivo stimulated anergized OT-I T cell 

were demonstrated and ultimately the effect of NR/CB1954 and 4-1BBL combined 

gene therapy on the state of anergized CD8
+
 T cells was examined. 

6.2 Induction of CD8
+
 T cell anergy in OT-I BoyJ mice using multiple OVA-

peptide injections 

6.2.1 Characterization of anergized OT-I CD8
+
 T cells in vitro 

 

Initially the effect of multiple peptide administrations on the phenotype and the 

proliferative and functional responsiveness of OT-I CD8
+
 T cells were examined in 

comparison to naïve and activated T cells. To achieve this, mice were either non-

immunized (naïve group), given a single dose of the OVA-peptide antigen to induce a 
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functional response in T cells (activated group), or treated with 3 doses of OVA-

peptide antigen to induce a tolerogenic response in T cells (anergized group) (Fig. 6-

1A). Lymph nodes and spleen were harvested and single-cell suspensions were 

prepared for flow cytometric analysis. 

As shown in Figure 6-1B, the average total numbers of OT-I lymphocytes recovered 

from lymphoid tissues of activated and anergized mice (1.305× 10
8
 and 0.83× 10

8
, 

respectively) were significantly reduced to approximately 1/3 of the numbers 

recovered from naive animals (3.172 × 10
8
). This was associated with a marked 

decrease in the proportion of CD3 cells compared to B cells in LNs of both activated 

and anergized mice relative to naïve mice (Fig. 6-1C), however the skewed proportion 

of CD3 in spleen of anergized mice was modest compared to activated and naïve 

animals (Fig. 6-1D).  

 

 

Figure 6-1: Effect of multiple SIINFEKL-peptide administrations on total 

lymphocytes numbers and CD 8
+
 T cell to B cell proportion in lymphoid tissues 

of male OT-I BoyJ mice. 

A, experimental design for inducing T cell activation and anergy. Male OT-I BoyJ 

mice (4-6 week old) were left untreated, or given single 25μM SIINFEKL peptide i.p 

2 days prior analysis, or received 3 doses of 25μM SIINFEKL peptide i.p at 4 days 

interval followed by 7 days resting period. Lymphoid tissues (pool of brachial, 

axillary, inguinal, superficial cervical and mesenteric LNs and spleen) were harvested 

and single-cell suspensions were surface-stained with anti-CD3, -CD8, -B220 for flow 

cytometric analysis. 
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Figure 6-1 …cont. B, total numbers of lymphocytes (±SEM) in lymphoid tissues of 

naïve, activated and anergized mice (3 mice from two independent experiments). C 

and D, the percentages (±SEM) of B and CD3 cells,  respectively, in lymph nodes and 

spleen of naïve, activated and anergized mice (data are derived from two independent 

experiments). The P value indicates the statistical significance as analyzed by one-

way ANOVA and post-hoc Bonferroni test. 

 

Because TCR down-regulation is one of the possible mechanisms underlying 

induction of T cell tolerance, the effect of multiple peptide administration on the 

TCR level was investigated.  Surface expression of the OT-I TCR (Vα2/Vβ5) was 

examined by staining for the α-chain of the OT-I TCR using Vα2-specific 

antibodies.  T cells from naïve and activated mice expressed similar levels of the 

transgenic TCR Vα2-chain in both spleen and LNs. However, the level of Vα2 was 

marginally reduced on the surface of anergized CD8
+ 

T cells from LNs but was 

significantly different in spleen (Fig 6-2A). 

 

C. D. 

B. 



 222 

The level of the late activation markers CD44 and Ly-6 on the surface of T cells 

was also studied. These two markers were selected based on an earlier observation 

that they were the only up-regulated markers on the surface of CD8
+
 T cells 

stimulated in vivo 7 days before analysis with either single or multiple antigenic 

peptide injections (Dubois et al., 1998). Flow cytometric analysis revealed that 

CD44 surface expression was highly up-regulated on CD8
+
 T cells from LNs and 

spleen of activated mice relative to naive mice, while it was expressed at 

intermediary level on CD8
+
 T cells from LNs and spleen of anergized mice (Fig 6-

2B). In contrast, Ly-6 activation marker was markedly up-regulated by anergized T 

cells from LNs and to a lesser extent by activated cells compared to naïve cells. 

However similar levels of Ly-6 expression were observed in CD8
+
 T cells from 

spleen of activated and anergized mice (Fig 6-2C). 

These data demonstrate that multiple peptide administration results in reduction of 

the number of OT-I CD8
+
 T cells and partially affect the level of TCR on CD8

+
 T 

cells. Furthermore the phenotypic characteristics of anergized cells indicated 

antigen encounter and T cell differentiation into memory cells.     
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Figure 6-2: Surface phenotype of OT-I CD8
+
 T cells following single or 

multiple SIINFEKL-peptide stimulations  

Male OT-I BoyJ mice (4-6 week old) were treated as indicated in Figure 6-1A. 

Lymphoid tissues were harvested and single-cell suspensions were surface-stained 

with anti-CD3, -CD8, -Vα2, -CD44 and –Ly-6 antibodies for flow cytometric 

analysis. A, B and C, bar graph representation of the MFI (±SEM) of Vα2, CD44 

and Ly-6 expression, respectively, in viable CD3
+
CD8

+
 cells from LNs and spleen 

of naïve, activated and anergized mice. 
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6.2.2 Functional and proliferative responses of anergized OT-I CD8
+
 T cells 

in vitro 

The main characteristics of anergized cells are: i) being non-responsive to antigenic 

stimulation and ii) having diminished ability to induce effector functions. Therefore 

the functional status of CD8
+ 

T cells recovered from anergized mice was assessed 

by examining, cytokine production (IFNγ), a key Th1 cytokine produced upon 

CD8
+
 T cell activation; and CD107a an activation-induced degranulation marker 

associated with cytolytic function; using intracellular staining and flow cytometry.  

After in vitro stimulation of OT-I cells with their cognate peptide, the percentage of 

IFNγ-secreting CD8
+
 T cells was the highest in lymphocytes from LNs (9.3%) and 

spleen (3.9%) of activated animals while minimal in lymphoid tissues of anergized 

and naïve mice (Fig. 6-3A). Similarly, surface mobilization of CD107a was more 

evident and accounted for > 30% of total CD8
+
 T cells from LNs and spleens of 

activated mice, whereas CD8
+
 T cells from anergized mice showed a marginal 

increase in CD107a expression relative to naïve cells (Fig. 6-3B).  

The proliferative response of anergized OT-I T cells following in vitro antigenic 

stimulation was then examined using thymidine incorporation into DNA of dividing 

cells as a marker for proliferation. Freshly isolated naïve or anergized OT-I T cells 

were cocultured with irradiated parental Tramp-C1 or TrampOVA cells for 3 days. 

Unlike naïve OT-I cells, which proliferated vigorously upon stimulation with 

irradiated TrampOVA cells, anergic OT-I cells showed a modest proliferative 

response in the presence of TrampOVA cells (Fig. 6-3C). As expected parental 

Tramp-C1 cells induced neither naïve nor anergic OT-I to proliferate.  

These results demonstrated that multiple SIINFEKL-peptide administrations 

rendered OT-I CD8
+
 T cells anergic as confirmed by impaired proliferative response 
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and altered effector functions including IFN- production and up-regulation of 

CD107a. 
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Figure 6-3: Functional and proliferative responses of OT-I CD8
+
 T cells 

following single or multiple SIINFEKL-peptide stimulations in vivo. 

Male OT-I BoyJ mice (4-6 week old) were treated as indicated in Figure 6-1A, then 

lymphoid tissues were recovered and single-cell suspensions were prepared. 

Lymphocytes were cultured at 1x10
6
/well in 96-well plates and stimulated with 

1μg/ml SIINFEKL peptide for 5 hr in the presence of 10 μg/ml monensin and CD107a 

antibody. After incubation for 5 hr, cells were surface stained with anti-CD3 and -

CD8, followed by intracellular staining for IFN-γ and flow cytometric analysis. A 

and B, the frequency of IFN-γ
+
 and CD107a

+
 CD8

+
 T cells following antigenic in 

vitro stimulation of OT-I lymphocytes from naïve, activated or anergized cells. 

FACS plots are gated on CD3
+
CD8

+
 cells and numbers indicate the percentage of 

cells within the illustrated gate. Representative results are shown from two 

experiments. 
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Figure 6-3 …cont. C, in vitro proliferation of OT-I lymphocytes from anergized or 

naïve mice following stimulation with Tramp-C1 or TrampOVA cells. The number of 

CD8
+
 T cells in different lymphocyte suspensions from anergized and naïve mice 

was adjusted to 1x10
6
/ml based on flow cytometric analysis of CD3

+
CD8

+
 T cell 

percentage in each sample. Lymphocytes were cocultured with 1x10
4 

120 Gy 

irradiated TrampOVA or Tramp-C1 cells at a 15:1 or 20:1 ratio in wells of a 96-well 

plate. Thymidine was added 16 hr before the plate was harvested following 3 days 

of coculture. Results are expressed as mean (±SEM) counts per minute (c.p.m) of 
3
H-thymidine uptake by duplicate lymphocyte cultures for 2 mice. 

 

6.2.3 Characterization of anergized donor OT-I CD8
+
 T cells in C57BL/6 

mice bearing subcutaneous TrampOVA-NR cells 

We next set up to examine whether anergic OT-I T cells would retain their 

hyporesponsive phenotype upon antigenic stimulation in vivo. To do so naïve, 

activated or anergic OT-I T cells were recovered from lymphoid tissues of mice 

treated as previously discussed in Figure 6-1A, then they were adoptively 

transferred to C57BL/6 mice bearing TrampOVA-NR tumour cells (Fig 6-4A).   

Initially, their ability to accumulate and proliferate upon encountering OVA-tumour 

antigen was determined. The transferred OT-I cells were pre-labelled with the CFSE 

to assess proliferation in recipient mice by CFSE dilution. 

C. 
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The frequency of naïve OT-I T cells recovered from the DLNs were significantly 

increased by ≈ 3 and 4.3 fold relative to activated or anergized cells, respectively 

(Fig. 6-4C). Consistent with this the frequencies of naïve OT-I cells in the spleen 

exceeded that of activated or anergized cells by 2.3 and 6.1 fold, respectively. By 

contrast, no significant difference was observed between naïve, activated and 

anergic OT-I cells in N-DLNs. 

In DLNs, the impaired accumulation of anergic OT-I cells compared to naïve OT-I 

cells is attributable to a defect in cell proliferation in response to OVA antigen 

stimulation (Fig. 6-4D). While most of the naïve and activated OT-I cells have 

accomplished more than 7 rounds of divisions, anergic OT-I cells mainly remained 

non-divided or went through fewer than 4 rounds of divisions. The division profile 

of naïve, activated or anergized cells in both lymph node and spleen appears to be 

comparable suggesting that OT-I T cells were initially activated in the DLNs then 

they were released to the circulation and migrated to the spleen. 

Finally, the ability of anergized OT-I cells to lyse OVA-loaded target cells was 

examined in an in vivo cytotoxicity assay. Because adoptively transferred CFSE 

labelled target cells were CD45.2 donor derived cells, they could be distinguished 

from CD45.1
+
 OT-I T cells. Consistent with the proliferation profile, anergized cells 

showed the least OVA-specific CTL response with an average of 16% specific lysis 

compared to activated (34.8%) and (47%) naïve T cells in different lymphoid 

tissues (Fig. 6-4E). 
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Group Tumour cells  OT-I  T cells 

Naive 5x 10
6
 TrampOVA-NR Naïve 1x10

6 
cells 

Activated 5x 10
6
 TrampOVA-NR Activated 1x10

6 
cells 

Anergized 5x 10
6
 TrampOVA-NR Anergized 1x10

6 
cells 

 

Figure 6-4: Anergized OT-I CD8
+
 T cell responses in C57BL/6 recipient mice 

inoculated with TrampOVA-NR tumour cells 

Male OT-I BoyJ mice (4-6 week old) were treated as indicated in Figure 6-1A. 

Lymphoid tissues were harvested and single-cell suspensions were surface-stained 

with anti-CD3 and -CD8 for flow cytometric analysis. The number of CD8
+
 T cells 

in different lymphocyte suspensions from anergized, activated and naïve mice was 

adjusted to 10x10
6
/ml. A and B, schematic representation of the experimental 

design and experimental groups, respectively. Male wt C57BL/6 mice, 6-8 weeks 

old, were injected s.c in the right flank with 5x10
6
 TrampOVA-NR cells one day prior 

the adoptive transfer of 1x10
6
/200 μl CFSE labelled anergized, activated or naïve 

OT-I CD8
+
 T cells i.v. After 3 days, a mixture of 5x10

6
 control splenocytes labelled 

with 2.5 µM CFSE (CFSE
Hi

) and 5x10
6 

target splenocytes labelled with 1 µM CFSE 

(CFSE
Lo

)
 
and pulsed

 
with 5 µg/ml SIINFEKL (total 1x10

7
 cells) was administered 

i.v. into all groups of mice to assess in vivo cytotoxicity. After 16 hr, lymphoid 

tissues were harvested and single-cell suspensions were prepared for flow 

cytometric analysis. 
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Figure 6-4 …cont. C, The frequency of OVA-specific CD8

+
 T cells in lymphoid 

tissues from different groups. Lymphocyte cell suspensions were stained with anti-

CD45.1, -CD3 and -CD8 antibodies before analysis by flow cytometry. Data points 

represent the numbers of live CD45.1
+
CD8

+
CD3

+
 cells relative to total CD8

+
 cells in 

individual animals. D histograms for CFSE dilution of viable CD45.1
+
 CD3

+
CD8

+
 

cells from pooled flow cytometric data from lymph nodes and spleen, recovered from 

different groups of mice as indicated. E, in vivo OVA-specific CTL response. Target 

cells labelled with CFSE
Hi

 and CFSE
Lo

 were analyzed by flow cytometry and the 

percentage of target cell killing was determined. Data points represent the percentage 

of lysed target cells in individual animals.  

The horizontal line represents the group mean. The P value indicates the statistical 

significance as analyzed by two-way ANOVA and post-hoc Bonferroni test. 
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6.3 Examining reversal of OT-I CD8
+
 T cell hyporesponsiveness by 4-1BBL 

6.3.1 Anergized OT-I CD8
+
 T cells response to TrampOVA-4-1BBL cells in 

vitro  

Given that 4-1BB-ligation has been reported to enhance CD8 T cell proliferation, 

and to selectively rescue activated CD8
+
 T cells from activation induced cell death 

(Hurtado et al., 1997), we asked whether the level of 4-1BBL expression by 

TrampOVA-4-1BBL could provide a sufficient signal to improve the number and 

survival of anergized CD8
+
 T cells.   

Anergized OT-I T cells were recovered from lymphoid tissues of mice treated as 

previously discussed in Figure 6-1A. After the percentage of CD8
+
 T cells was 

determined by flow cytometry, OT-I T cells were CFSE-labelled and co-cultured 

with irradiated either Tramp-C1, TrampOVA or TrampOVA-4-1BBL cells and 

proliferation was assessed on day 3 and day 5 of stimulation. 

After 3 days, anergized OT-I T cells stimulated with Tramp-C1 cells remained 

substantially undivided; whereas OT-I cultured with TrampOVA or TrampOVA-4-

1BBL cells divided rapidly and underwent several rounds of divisions with 

comparable proliferation profiles (Fig. 6-5A). Although anergized cells cultured 

with TrampOVA cells underwent more rounds of division compared to those cultured 

with TrampOVA-4-1BBL cells by day 5, they showed marked reduced numbers of 

viable cells in each round of division relative to anergized cells stimulated with 4-

1BBL. This data suggested that 4-1BBL stimulation can enhance the survival of 

proliferated anergized OT-I T cells.  

To confirm the previous result, the magnitude of anergized OT-I T cell proliferation 

in response to different stimulation was analyzed using 
3
H-thymidine incorporation 

assay. As shown in figure 6-5C, significant proliferation of anergized OT-I T cells 
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was observed when stimulated for 3 days with either TrampOVA or TrampOVA-4-

1BBL, compared to untransduced tumour cells. The difference between TrampOVA 

and TrampOVA-4-1BBL in their ability to induce or/and maintain anergic OT-I T cell 

proliferation was more pronounced at day 5. 

In conclusion, although TrampOVA cells express relatively higher levels of OVA 

than TrampOVA-4-1BBL cells (as shown in Fig 5-3), the main difference in 

proliferation is observed at day 5 but not day 3. This suggests that 4-1BBL 

costimulation provides survival signals that limits the induction of activation 

induced cell death, and consequently prolongs the proliferative response of 

anergized OT-I cells. 
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Figure 6-5: Activation of anergized OT-I CD8

+
 T cells following stimulation 

with TrampOVA-4-1BBL cells in vitro. 

Male OT-I BoyJ mice (4-6 week old) were treated as mentioned in Figure 6-1A, 

then lymphoid tissues were harvested and single-cell suspensions were surface-

stained with anti-CD3, -CD8 for flow cytometric analysis. The number of CD8
+
 T 

cells in different lymphocyte suspensions from anergized mice was adjusted to 

10x10
6
/ml. A and B, histograms of CFSE dilution of viable CD3

+
CD8

+
 cells 

stimulated with irradiated Tramp-C1, TrampOVA or TrampOVA-4-1BBl cells, for 3 

and 5 days respectively. Representative results are shown from 3 cultures. C, 

anergized lymphocytes were cocultured with 1x10
4 

120 Gy irradiate Tramp-C1, 

TrampOVA or TrampOVA-4-1BBl cells at a 15:1 or 20:1 ratio in wells of a 96-well 

plates. Tritiated thymidine was added 16 hr before the plate was harvested 

following 3 days or 5 days of coculture. Results are expressed as mean (±SEM) 

counts per minute (c.p.m) of 
3
H-thymidine uptake by duplicate lymphocyte cultures 

for 2 mice. 
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6.3.2 Anergized OT-I CD8
+
 T cell responses to combined NR/CB1954 and 4-

1BBL therapy in C57BL/6 mice 

As demonstrated in chapter 5, NR/CB1954 and 4-1BBL combined gene therapy 

stimulated the generation of functional memory tumour-specific CD8
+
 T cells. 

Therefore the potential of this combination to restore the proliferative and functional 

response of anergized OT-I CD8
+
 T cell was examined in an adoptive transfer 

setting in vivo.  

C57BL/6 mice were implanted subcutaneously with different combinations of 

tumour cells according to their experimental group (Fig 6-6A and B), followed by 

adoptive transfer of anergized OT-I cells and 3 consecutive doses of CB1954 or 

vehicle. Two days later, in vivo cytotoxicity was assessed. Lymphoid tissues were 

isolated after 16 hr to determine the frequency of OT-I CD8
+
 T cells and their 

distribution in the DLNs, and N-DLNs and spleen.  

As shown in Figure 6-6C, the frequency of anergized OT-I T cells in DLNs of 

control mice implanted with untransduced Tramp-C1 was negligible (Mean=3.5 

OT-I cells in 10
4
 CD8

+
 T cells), while the numbers were increased to 56.4 OT-I 

cells in 10
4
 CD8

+
 T cells in mice bearing TrampOVA-NR cells and receiving vehicle. 

This indicated that OVA expression by tumour cells induced proliferation of 

anergized cells compared to OT-I T cells in untransduced tumour bearing mice. The 

mean proportion of OT-I T cells was further increased by ≈2 fold (104 OT-I cell in 

10
4
 CD8

+
 T cell) in mice treated with CB1954 compared to vehicle treated mice 

signifying that NR/CB1954-mediated cytotoxicity induced the release of OVA-

tumour antigen thereby inducing increased accumulation of OT-I T cells within the 

DLNs. Interestingly, 4-1BBL and OVA expression induced proliferation of 

anergized OT-I T cells by ≈2.4 fold compared to those in vehicle group; whereas 
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combining 4-1BBL with CB1954 showed comparable numbers of OT-I T cells 

(93.5 OT-I cells in 10
4
 CD8

+
 T cells) to that of CB1954 group, however the average 

was reduced relative to the  4-1BBL group (135 OT-I cells in 10
4
 CD8

+
 T cells).  

In N-DLNs, the frequency of OT-I T cells ranged from 6 to 7.7 OT-I cell in 10
4
 

CD8
+
 T cell among controls, vehicle and CB1954 groups, whereas it was increased 

to 32.7 and 34.8 OT-I cell in 10
4
 CD8

+
 T cell in the 4-1BBL and CB1954+4-1BBL 

groups, respectively. This suggests that 4-1BBL transduced tumours, either alone or 

in combination with CB1954 treatment, can stimulate proliferation of anergized 

OT-I T cells in N-DLNs. This observation was also mirrored in the spleen (Fig. 6-

6D),  however mice implanted with 4-1BBL transduced tumours showed marked 

significant increase in the numbers of OT-I T cells (259.2 OT-I cells in 10
4
 CD8

+
 T 

cells) compared to vehicle (31.6 OT-I cells in 10
4
 CD8

+
 T cells) and CB1954 (32 

OT-I cells in 10
4
 CD8

+
 T cells) groups. However marginal increase in the frequency 

of OT-I T cells (1.5 fold) could be seen in the spleen of CB1954+4-1BBL group 

relative to vehicle and CB1954 group. 

To determine whether in addition to proliferation, the anergized OT-I T cells 

exhibited CTL activity in response to different treatments, mice were assessed for 

OVA-specific lysis in an in vivo cytotoxicity assay. In this experiment, there was a 

technical problem in i.v. administration of target splenocytes to vehicle treated 

group; therefore this group was excluded from the present comparison.  

In control mice receiving only anergized OT-I T cells, the background level of 

OVA-specific lysis was ≈ 13% in different lymphoid tissues (Fig. 6-6E). By 

contrast CB1954+4-1BBL group of mice showed 74% OVA-specific CTL activity 

versus 43.6% and 53% in CB1954 and 4-1BBL groups, respectively. Comparable 

results were also observed in N-DLNs; however in spleen the CTL response of 
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CB1954+4-1BBL group was increased by 31% compared to mice receiving 

CB1954 but marginally (5.3%) to 4-1BBL group. This suggests that treatment of 

mice with a combination of NR/CB1954 and 4-1BBL can slightly potentiate the 

cytotoxic function of previously anergized cells compared to single treatment with 

CB1954 but not 4-1BBL treatment.  

Taken together, these data suggests that combined NR/CB1954 and 4-1BBL 

treatment may enhance the functional but not the proliferative responses of 

anergized CD8
+
 T relative to NR/CB1954.  
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Group Tumour cells  OT-I  T cells Treatment 

Control 10x 10
6
 Tramp-C1 1x10

6 
cells CB1954 

Vehicle 5x 10
6
 TrampOVA-NR+ 

1x 10
6
 TrampOVA  

1x10
6 

cells Vehicle 

CB1954 5x 10
6
 TrampOVA-NR+ 

1x 10
6
 TrampOVA  

1x10
6 

cells CB1954 

4-1BBL 5x 10
6
 TrampOVA-NR+ 

5x 10
6
 TrampOVA-4-1BBL 

1x10
6 

cells Vehicle 

CB1954+4-1BBL 5x 10
6
 TrampOVA-NR+ 

5x 10
6
 TrampOVA-4-1BBL 

1x10
6 

cells CB1954 

 

Figure 6-6: Activation of anergized donor OT-I CD8
+
 T cells following 

NR/CB1954 and 4-1BBL combined therapy in C57BL/6 mice 

Male OT-I BoyJ mice (4-6 week old) were treated as indicated in Figure 6-1A, then 

lymphoid tissues were harvested and single-cell suspensions were surface-stained 

with anti-CD3, -CD8 for flow cytometric analysis. The number of CD8
+
 T cells in 

lymphocyte suspensions from anergized mice was adjusted to 10x10
6
/ml. A and B, 

schematic representation of the experimental design and experimental groups, 

respectively. At day 0, male wt C57BL/6 mice, 6-8 weeks old, were injected s.c in 

the right flank with tumour cells as indicated for the different experimental groups. 

One day later, 1x10
6
 CD8

+
 anergic T cells were adoptively transferred in 200 μl 

PBS i.v. At day 2, mice were given 3 consecutive daily doses of 20 mg/kg CB1954 

or vehicle for 3 days. After 2 more days, a mixture of 5x10
6
 control splenocytes 

labelled with 2.5 µM CFSE (CFSE
Hi

) and 5x10
6 

target splenocytes labelled with 1 

µM CFSE (CFSE
Lo

)
 
and pulsed

 
with 5 µg/ml SIINFEKL (total 1x10

7
 cells) was 

administered i.v. into all groups of mice to assess in vivo cytotoxicity. After 16 hr, 

lymphoid tissues were harvested and single-cell suspensions were prepared for flow 

cytometric analysis. 
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Figure 6-6 …cont. C, D and E, the frequency of donor anergized OVA-specific 

CD8
+
 T cells after 3 days from treatment. Single-cell suspensions were stained with 

anti-CD45.1, -CD3 and -CD8 antibodies before analysis by flow cytometry. Data 

points represent the numbers of live CD45.1
+
CD8

+
CD3

+
 cells relative to total CD8

+
 

cells in individual mice. F, in vivo OVA-specific CTL response after 3 days from 

treatment. Target cells labelled with CFSE
Hi

 and CFSE
Lo

 target cells were analyzed 

by flow cytometry and the percentage of target cell killing was determined. Data 

points represent the percentage of lysed target cells in individual animals. 

The horizontal line represents the group mean. The P value indicates the statistical 

significance as analyzed by two-way ANOVA and post-hoc Bonferroni test. 
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6.4 Discussion 

Tumours typically express two types of antigens tumour-specific antigens (TSA) 

and tumour-associated antigens (TAA). The latter represents the majority of known 

tumour antigens, which are normal self-proteins, but expressed in abnormal 

quantities or locations. During T cell development, T cells specific for TAAs have 

been tolerized either centrally or peripherally resulting in deletion or selection of 

low affinity tumour reactive T cells. This makes self tolerance, although essential 

for preventing autoimmunity, a substantial obstacle to the generation of immune 

responses against tumour antigens (Goodnow et al., 2005; Novellino et al., 2005). 

However, some tumour antigens are encoded by mutant protein or differ in their 

expression level on tumour cells, which may allow selective targeting of tumour 

cells. Nevertheless, the development of tolerized antitumour CTLs following some 

peptide-based vaccines and T cell therapies indicates that T cell tolerance represents 

a significant challenge for efficient tumour immunotherapy (Mapara and Sykes, 

2004; Shafer-Weaver et al., 2009; Toes et al., 1996; Toes et al., 1998). Among the 

promising approaches adopted to bypass tolerance to endogenous tumour antigens is 

the provision of additional T cell costimulation. Recently, the TNFR family member 

4-1BB has been shown to play a key role in the survival effector and memory T 

cells. In addition, 4-1BBL appears capable of overcoming T cell tolerance which 

may contribute to its enhancement of tumour immunity (Mittler et al., 2004; Wilcox 

et al., 2002; Zhang et al., 2003).  

To study reversal of T cell anergy by immuno-gene therapy, OT-I CD8
+
 T cell 

tolerance to OVA-tumour antigen was induced using a well documented protocol 

used with other transgenic TCR mice to induce peripheral T cell anergy (Aichele et 

al., 1995; Frauwirth et al., 2001; Kyburz et al., 1993; Mamalaki et al., 1993).  
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In the present study, multiple peptide administrations resulted in a significant 

decrease within the total frequency of OT-I lymphocyte and 40% reduction in CD8
+
 

T cells in the OT-I mice (Fig 6-1). The remaining CD8
+
 T cells expressed low 

CD44 and high Ly-6c levels, a pattern associated with antigen-experienced memory 

cells suggesting that activated OT-I CD8
+
 T cells underwent activation induced cell 

death (AICD) (Fig 6-2B and C). This is consistent with establishment of T cell 

anergy in TCR transgenic mice in which high doses of peptide led to apoptosis of 

many of the activated CD8
+ 

T cells (deletional tolerance) and induction of 

hyporesponsiveness in many of the remaining antigen-specific T cells (CTL 

tolerance) (Miethke et al., 1994; Ohlen et al., 2002).  

One of the mechanisms proposed to explain establishment of CD8
+ 

T cell anergy in 

the surviving antigen-specific T cells is down-regulation of the TCR (Schonrich et 

al., 1991). However, flow cytometric analysis of the surface levels of TCR Vα2-

chain of OT-I T cells recovered from anergized mice revealed that peptide 

administration has modest effect on the TCR level and that other mechanisms are 

likely to be responsible for CD8
+
 T cell anergy in the present model (Fig 6-2A). 

Also, by staining against the V2-chain of the TCR we ruled out that the anergized 

CD8
+
 T cells resulted from selection of cell populations expressing a rearranged 

second TCR α-chain CD8 as reported in other studies (Heath et al., 1995; Heath and 

Miller, 1993). 

Furthermore, anergic CD8
+
 T cells showed a state of hyporesponsive phenotype 

with suppressed proliferative response, reduced IFN-γ production and reduced 

direct cytolytic activity following in vitro antigenic stimulation. Also the results 

further suggest that there is slight regional difference in the response of cells from 

spleen or lymph nodes. Interestingly, single-peptide injection stimulated rapid 
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AICD within 2 days following immunization with the peptide similar to that seen 

with multiple-peptide injections, nevertheless they showed increased IFN-γ 

production and CTL degranulation compared to naïve and anergized (Fig 6-3). 

The state of anergy observed in the present model is similar to that reported with 

anergic CD4 or CD8 T cells from other TCR transgenic mice receiving either oral 

or systemic soluble antigen that is characterized by impaired proliferative response 

and IL-2 production and inhibition in IL-4 and IFN-γ production (Bercovici et al., 

2000; Burkhart et al., 1999; Mueller et al., 1991). This state was also reported to 

result from a combination of both clonal anergy and cytokine-mediated 

immunosuppression that involve IL-10 and TGF-β production (Miller et al., 1999; 

Sundstedt et al., 1997). 

The protocol that we used to induce tolerance in OT-I T cells in the present study 

was shown to completely abrogate the ex-vivo cytotoxic effector function in F5 

transgenic CD8
+
 T cells (that are specific for a peptide from the influenza 

nucleoprotein in the context of H-2D
b
) (Dubois et al., 1998). Surprisingly, when 

applied to OT-I transgenic CD8
+
 T cells, the same protocol significantly inhibited 

but not completely abolished the CTL response, as measured by CD107a 

degranulation marker. This is likely to be due to the difference in the condition of T 

cell stimulation ex-vivo, F5 TCR cells were stimulated with the peptide for 3 days 

allowing for further functional exhaustion of T cells compared to a 5 hr stimulation 

period of OT-I T cells in the present study. In agreement with this, Koniaras et al., 

(1998) reported the CTL activity of OT-I transgenic T cells activated in vivo by 

single peptide injection was completely lost when cocultured with OVA-expressing 

stimulator cells for 5 days while showing increased cytotoxic activity when 

examined directly without second peptide stimulation (Koniaras et al., 1998). 
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The hyporesponsive phenotype of tolerant OT-I CD8
+
 T cells described in the 

present study is closely similar to one described by Geramin and coworkers as “split 

anergy” in an in vitro model. In this form of tolerance, T cells lose their capacity to 

proliferate and produce IL-2 in response to antigen while maintaining their lytic 

ability. Importantly, anergic CD8
+
 T cells developed using multiple peptide 

administrations or due to split anergy can be reversed by IL-2, provided either 

therapeutically or by activated CD4
+
 T helper cells (Mescher et al., 2007). 

In the different in vitro systems used in the present study, OT-I CD8
+
 T cells were 

stimulated with either soluble peptide or OVA-expressing tumour cells in the 

presence of APCs and in absence of CD4
+
 T helper cells as the OT-I lymphocyte 

suspension used consisted mainly of CD8
+
 T cells and APCs. Therefore it was of 

interest to confirm that the hyporesponsive phenotype of OT-I CD8
+
 T cells to OVA 

antigen can be successfully maintained in an in vivo tumour setting where the CD4
+
 

T cell helper arm is intact. Upon adoptive transfer of CFSE labelled OT-I CD8
+
 T 

cells to mice inoculated with TrampOVA tumour cells it was apparent that anergized 

but not activated or naïve OT-I T cells failed to proliferate or differentiate into 

cytotoxic effectors (Fig 6-4). This suggested that the anergic state of OT-I CD8
+
 T 

cell was not altered in the present short term in vivo transfer model. In addition, OT-

I T cells activated using single-peptide administration were slightly hyporesponsive 

to s.c. TrampOVA tumour cells compared to naïve T cells suggesting that single 

immunization of OT-I mice with OVA-peptide can induce a level of T cell 

tolerance. 

More recently, the role of 4-1BBL costimulation in reversal of the tumour-mediated 

CD8
+
 T cell anergy has attracted the interest of Sharma et al. (2009). Their studies 

demonstrated that the use of peptide-based vaccine containing a novel soluble form 
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of 4-1BB ligand (SA-4-1BBL) restored the killing response of anergic antigen-

specific CD8
+
 T cell developed as a consequence of tumour growth in a TC-1 

tumour model (Sharma et al., 2009). Moreover, results from the same group showed 

SA-4-1BBL could license CD4
+
CD25


 T effector cells (Teff) cells to overcome the 

suppressive effect of CD4
+
CD25

+
FoxP3

+
 T regulatory (Treg) cells (Elpek et al., 

2007). 

In the present study, CFSE-labelling of anergic OT-I CD8
+
 T cells stimulated with 

either TrampOVA or TrampOVA-4-1BBL expressing cells, although the latter express 

lower level of OVA antigen, showed that both can promote equivalent in vitro 

expansion of CD8
+
 T cells by 3 day; while only 4-1BBL expressing cells can 

increase the rate of proliferation over a longer time (Fig 6-5A and B). In parallel, the 

rate of proliferation was examined using [3H] thymidine incorporation assay at 

similar time points confirming that 4-1BBL expressing TrampOVA cells significantly 

increased proliferation of anergized CD8
+
 T cells by day 5 (Fig 6-5C). This suggests 

that 4-1BBL was able to break the unresponsive state of anergized CD8
+
 T cell as 

well as increase the rate of proliferation of these reactivated cells in vitro. Similarly, 

human CD8
+
 T cells that had become non-responsive either to anti-CD3 antibody 

alone or to anti-CD3 antibody combined with CD80/CD86 costimulation, and 

continued to show progressive AICD, were rescued from the anergic state and 

become reactivated evidenced by further proliferation when costimulated with 4-

1BBL in vitro (Habib-Agahi et al., 2007). Using an adoptive transfer system, 

agonistic 4-1BB mAb was also reported to restore the proliferative capacity and 

cytotoxic function of anergized OT-I CD8
+
 T cells that were tolerized in C57BL/6 

mice by administration of a single dose of OVA peptide i.v. (Wilcox et al., 2004).   
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One of the aims of this study was to assess the effects of combined NR/CB1954 and 

4-1BBL gene therapy on anergized CD8
+
 T cells responses. To achieve this OT-I 

CD8
+
 T cells were anergized in vivo, then adoptively transferred into normal 

C57BL/6 groups of mice previously inoculated with tumour cells expressing various 

combination of gene therapy and followed by treatment with CB1954 or vehicle. 

Although combined NR/CB1954 and 4-1BBL treatment did not enhance expansion 

of anergized CD8
+
 T cells, it induced a marginal increase in antitumour CTL 

response compared to NR/CB1954 or 4-1BBL alone (Fig 6-6). Thus, suggesting 

that combined therapy may restore the functional responsiveness of anergized cells. 

However, further functional analysis of anergized cells (e.g. cytokine production 

and CTL CD107a degranulation) is required to preclude interference of endogenous 

immune response to treatment in assessment of OVA-specific lysis in vivo.   

The apparent inability of combined NR/CB1954 and 4-1BBL treatment to restore 

the proliferative response of anergized cells could be for a number of reasons a) 

increased sensitivity of anergized cells compared to naïve cells to the cytotoxic 

metabolites released in the tumour microenvironment, b) Limited benefit of the 

intratumoural 4-1BBL costimulation compared to the generalized effect of agonistic 

4-1BB mAb used in experimental tumour model demonstrating the efficacy of 4-BB 

costimulation in breaking T cell tolerance (Sun et al., 2004). In addition, treatment–

mediated activation of anergized CD8
+
 T cells may have stimulated trafficking of 

effector CD8
+
 T cells to non-lymphoid tissues such as liver, lung, intestine or skin, 

therefore studying enhanced response to combined therapy in our short-term model 

in non lymphoid tissues rather than in LN could be more informative. Therefore, 

further studies are required to investigate the unexpected little benefit of the 
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combined therapy of NR/CB1954 and 4-1BBL in stimulating the proliferation of 

anergized T cells in vivo.  

 



7 Summary, future work and conclusions 



7.1 Summary  

The effectiveness of NR/CB1954 gene therapy to induce tumour regression has 

been demonstrated in a variety of animal tumour models (Portsmouth et al., 2007). 

This system also showed promising results in a phase I studies and preliminary 

biological efficacy in a phase I/II clinical trial in prostate cancer patients (Palmer et 

al., 2004; Patel et al., 2009). Although NR/CB1954 acts directly by selectively 

ablating tumour cells expressing the therapeutic gene, tumour cell death may create 

a favorable condition for stimulation of the host‟s own immune response against the 

tumour. The development of tailored specific-antitumour immune responses may 

potentially eradicate untransduced tumour cells thereby overcoming limitations due 

to inefficient gene delivery of the therapeutic gene to tumour cells, and could also 

help in treatment of metastatic cancers. Ideally, generation of long-term antitumour 

immunity would be beneficial in preventing tumour recurrence and in increasing the 

patient‟s survival. However, the capacity of NR/CB1954-mediated cell death to 

stimulate specific antitumour immune response is still unclear and requires further 

detailed studies. Thus, work presented in this study aimed to demonstrate the effect 

of NR/CB1954-cytotoxicity on activation of tumour-specific CD8
+
 T cell response, 

and to evaluate the capacity of this therapy to induce long-term antitumour 

immunity using an in vivo model tumour system.  

The first part of the study focused on establishing the model system which involved 

the initial generation of a model prostate Tramp-C1 cell line that expresses OVA as 

a neo-tumour antigen. OVA expression was restricted to the cytoplasm using a 

truncated-cytoplasmic form of the gene to mimic expression of tumour associated 

antigen. A single cell-derived TrampOVA clone was chosen based on its capacity to 

activate OVA-specific T cell responses in vitro (section 3.1.2.4). The therapeutic 
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NR enzyme was introduced to the selected TrampOVA clone, generating TrampOVA-

NR clones. Surprisingly, the relative sensitivity of the clones was not directly 

correlated with the level of NR expression detected by western blot (Fig 3-9 and 

10). The TrampOVA-NR clone showing the highest sensitivity to CB1954 was 

further selected for in vivo studies. Nevertheless, it was observed that the sensitivity 

of TrampOVA-NR clones was reduced with continuous cell culture. Thus, to 

minimize variability between experiments due to differences in the level of OVA or 

NR expression, a large cell surplus was established by expansion of early passaged 

cells, so that all in vivo experiments could use cells at the same passage number   

(Fig 3-12). This strategy was also applied to other single cell-derived clones 

expressing therapeutic genes that were further generated in the course of the present 

thesis. 

 Down-regulation of transfected or virally transduced genes upon continued growth 

in culture is a common problem, and could be due to methylation of CpG 

dinucleotides in the introduced DNA and/or epigenetic effects. Possible approaches 

that could be adopted to avoid this problem in future include inserting ubiquitously 

acting chromatin opening elements (UCOEs) upstream of the promoter-driven 

cassettes within the viral vector to prevent transgene silencing and provide high 

levels of protein expression (Zhang et al., 2007). Also, flanking the transgenes with 

chromatin insulators can protect the transgene from repressive position effect (Kuhn 

and Geyer, 2003). 

The next step in establishing the model system was verifying the tumourigenicity of 

the generated TrampOVA and TrampOVA-NR single cell derived clones in the 

presence of a sub-therapeutic dose of OVA-specific OT-I lymphocytes  in athymic 

C57BL6 mice. Although both TrampOVA and TrampOVA-NR cells stimulated 
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reasonable tumour growth in a satisfactory duration post tumour inoculation, the 

size of the tumours was relatively smaller than those achieved by the parental 

tumour growth (Fig 3-13). In adoptive transfer experiments, a high dose of 10x10
6 

naïve
 
OT-I lymphocytes affected tumour growth and resulted in complete tumour 

rejection of established tumours in some of the mice, demonstrating that such a dose 

is highly therapeutic and would obscure the effect of NR/CB1954 on tumour growth 

(Fig 3-14). The use of a reduced number of OT-I lymphocytes (2.5x10
6
) was found 

not to affect tumour progression and thus was more suitable for studying CD8
+
 T 

cell response to therapy (Fig 3-16). 

In the second part of the study, the initial experiments showed that CB1954 induced 

complete tumour regression of established TrampOVA-NR tumours in athymic 

C57BL/6 mice receiving OT-I lymphocytes prior to CB1954 administration (Fig 4-

1). Generation of antitumour OVA-specific CTL response in long-term tumour-free 

survivors was assessed using in vivo cytotoxicity assay. Unexpectedly, mere 

inoculation of the TrampOVA-NR cells in nude mice resulted in activation of 

adoptively transferred OT-I T cells and stimulation of high OVA-specific 

cytotoxicity. Administration of CB1954 however slightly increased the antitumour 

CTL response in lymph nodes but not in the spleen (Fig 4-2). In another 

experimental setting, marginal expansion of OT-I T cells was also observed in 

response to NR/CB1954 treatment (Fig 4-6). 

Furthermore, studies examining the generation of protective immunity to the 

enzyme/prodrug therapy showed that lymphocytes from vehicle-treated or CB1954-

cured mice adoptively transferred into secondary naïve recipients failed to prevent 

tumour outgrowth and there was minimal difference in tumour growth rate between 

the treatment groups (Fig 4-3). However, it was difficult to interpret the results due 
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to: a) loss of some of the mice early in the course; b) high tumour cell load relative 

to the effector T cells (50:1); c) absence of CD4
+
 T cells to provide help during 

priming of CD8
+
 T cells for efficient memory CTL generation; d) loss of OVA 

antigen expression as suggested by loss of the ability to activate B3Z hybridoma 

(Fig 4-5)     

Taken together these results suggested that NR/CB1954 appears to have no obvious 

effect on the generation of antitumour immunity using the present adoptive transfer 

tumour model system. 

Because of the several limitations with using athymic C57BL/6 mice including: a) 

health problems and b) high CTL response of adoptively transferred OT-I T cells to 

TrampOVA-NR cells without further treatment and the possible homeostatic 

expansion of OT-I T cells in the lymphopenic host, it was decided to evaluate 

immunocompetent mice as alternative recipients for the adoptive transfer 

experiments.  

Initial establishment of TrampOVA or TrampOVA-NR tumour growth in wild-type 

C57BL/6 mice was unsuccessful using the same dose of TrampOVA cells that was a 

tumourigenic in athymic animals. However, doubling the cell dose allowed tumour 

growth by 6 weeks (Fig 4-7). Attempting to improve tumour establishment in the wt 

C57BL/6 mice, mixing matrigel with the injected tumour cell inoculum did not 

facilitate tumour development and was associated with a fluctuating phase of 

growth and regression (Fig 4-8). Another approach explored to enhance tumour 

development was prior sublethal irradiation of mice, to transiently suppress the 

immune response; however irregular pattern of tumour growth was evident in 1 and 

2.5 Gy irradiated mice (Fig 4-9A and B). Conversely, tumour formation was 

initiated in a shorter time and progressively developed in 5 Gy irradiated mice (Fig 
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4-9C). However, TrampOVA-NR tumour cells failed to induce tumour growth in 5 

Gy irradiated mice probably due to the additional viral transduction and single cell 

cloning processes (Fig 4-9D). This further manipulation may have contributed to 

increased immunogenicity, possibly due to development of an immune response 

against the transduced therapeutic and antibiotic transgenes or else reduced 

tumourigenicity due to genetic or epigenetic changes in the different cell clones. 

Another possibility to explain the inability of TrampOVA-NR cells relative to 

TrampOVA cells to induce tumour formation could be attributed to differences in the 

proliferation rates between the two single cell clones, however this was not explored 

in vitro.  

Since stable growth of NR expressing tumours was found difficult to accomplish in 

the present study, it was decided to investigate the immune response to NR/CB1954 

treatment of fresh tumour cell implants rather than established solid tumours. In an 

adoptive transfer setting, NR/CB1954-mediated cytotoxicity stimulated a modest 

increase in proliferation and the frequency of donor OT-I T cells only in the DLN 

four days post CB1954 treatment (Fig 4-10C and D). Furthermore, marginal OVA-

specific CTL response was recorded in different lymphoid tissues seven days post 

therapy; however this experiment was done with limited number of animals per 

group and the difference was not statistically significant.  

Although this system was sensitive to detect slight differences between vehicle and 

CB1954 treated group, inoculation of OVA-expressing tumour cells alone 

stimulated an increase in the numbers of OT-I T cells and lysis of OVA-target cells. 

These results together with earlier observations indicated that s.c. injection of 

TrampOVA-NR cells can inherently stimulate a significant immune response. Such a 

response might have been amplified by the presence of high input numbers of high 



 252 

affinity OVA-specific transgenic OT-I T cells in our model system.  In future 

studies, this system may be further improved by downward titration of the numbers 

of transgenic OT-I T cells to attain a cell dose that may better reveal any differences 

in the amount of antigen released from tumours in response to treatment. Selection 

of other TrampOVA clones e.g. TrampOVA clone 1 (Fig 3-6) that express lower level 

of OVA during the initial screening process may also reduce treatment-unrelated 

activation of OT-I T cells and improve the sensitivity of the present in vivo model 

system.  

As an alternative approach, that was adopted here, ex-vivo identification of the 

endogenous antigen-specific CD8 T cells through the use of MHC class I tetramers 

or pentamers could give insight into the normal physiological immune responses 

that may be distorted in adoptive transfer systems.  

Examining the endogenous CD8
+
 T cell responses to NR/CB1954-mediated tumour 

cell death revealed that the frequency of OVA-specific CD8
+
 T cells was 

significantly increased compared to the vehicle-treated group during the expansion 

phase (7 days) (Fig 4-12C). However, high OVA-specific lysis was again observed 

just by inoculation of TrampOVA-NR cells without treatment, yet NR/CB1954 

treatment stimulated further marginal increase in the OVA-specific CTL response 

(4-13C). Four weeks post therapy, the numbers of OVA-specific CD8
+
 T cells in 

NR/CB1954 was relatively higher than vehicle treated group but did not reach 

significance. Nevertheless, similar level of OVA-specific lysis was induced in 

vehicle and CB1954 treated groups. 

These results together with earlier observation using short-term adoptive transfer 

experiments in immunocompetent mice demonstrated that NR/CB1954-mediated 

tumour cell death stimulates short-lived tumour-specific CD8
+
 T cell responses and 
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does not support the generation of long-term CD8
+
 T cell-mediated immunity. Thus, 

the third part of the study focussed on adopting additional approaches to enhance 

generation of possible memory CD8
+
 T cells. 

Other studies have shown that 4-1BB ligation expression on tumour cells can 

promote antitumour immune response in mice, involving both T and NK cells 

(Cheuk et al., 2009; Wilcox et al., 2002). However, no previous studies have 

investigated the combination with NR/CB1954 treatment. Potentially, prodrug 

administration might reduce the immune response induced by intratumoural 4-

1BBL costimulation due to premature ablation of the tumour cells. Nevertheless, the 

combined effect of prodrug-mediated tumour cells death releasing tumour antigens 

with the local costimulation might increase immune responses. To test our 

hypothesis, several stable TrampOVA-4-1BBL single cell clones were generated 

following 4-1BBL retrorviral-mediated delivery to parental TrampOVA cells (Fig 5-

2). A highly 4-1BBL expressing single cell clone was selected for further studies. 

Although the level of OVA expression by these cells was markedly reduced relative 

to that of parental TrampOVA cells (Fig 5-3), the level of 4-1BBL was sufficient to 

provide enhanced proliferative and effector function of OT-I cells in in vitro 

comparative studies with parental TrampOVA cells (Fig 5-4 and 5-5). Furthermore, 

inoculation of 10x10
6
 TrampOVA-4-1BBL cells failed to establish tumours in 

immunocompetent C57BL/6 hosts and enhanced survival of mice compared to mice 

injected with TrampOVA cells (Fig 5-6A). Further investigation of the generation of 

memory antitumour CD8
+
 T cell responses revealed that animals receiving 

TrampOVA-4-1BBL cells showed significant higher numbers of OVA-specific CD8
+
 

T cells and CTL response primarily in the DLN compared to TrampOVA bearing 

mice after ≈ 3 month from tumour inoculation (Fig 5-8B and C). Also, ex vivo 
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stimulation of lymphocytes from different lymphoid tissues of these mice with 

OVA-epitope induced Tc1 cytokines (IFN-γ and IL-2) production in DLN in mice 

inoculated with TrampOVA-4-1BBL but not in those bearing parental TrampOVA 

tumours (Fig 5-8D and E). A Tc1 response is correlated with a more effective 

antitumour immunity in the majority of tumour models (Dobrzanski et al., 2000; 

Kemp and Ronchese, 2001; Sato et al., 2003). These results indicated that 

immunization with TrampOVA-4-1BBL cells can enhance the development of 

antitumour CD8
+
 T cell immunity.  

Combining NR/CB1954 treatment with intratumoural 4-1BBL resulted in increased 

numbers of endogenous OVA-specific CD8
+
 T cells in DLN and spleen that was 

associated with OVA-specific CTL response in the DLN but did not reach statistical 

significance in other lymphoid tissues, when compared to NR/CB1954 or 4-1BBL 

alone (Fig 5-10C and D). Thus, offering intratumoural 4-1BBL costimulation with 

NR/CB1954 treatment can promote the development of possible functional memory 

CD8
+
 T cells. 

The second approach adopted to improve long-term immune response was the use 

of intratumoural GM-CSF, aiming at in situ recruitment and activation of APCs for 

optimal antigen presentation and enhancement of T cell activation. Previous studies 

reported that combining NR/CB1954 treatment with GM-CSF therapy enhance 

tumour regression and stimulate generation of tumour immunity in a vaccination 

model (Djeha et al., 2005; Green et al., 2003). However, there has been no direct 

investigation of cellular component of the immune response. Our results showed 

that, in comparison with single treatments, immunization with TrampOVA-GM-CSF 

cells mixed TrampOVA-NR cells combined with CB1954 treatment induced 

significant expansion of OVA-specific CD8
+
 T cells and high cytolytic activity 
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against OVA-target cells in the DLN (Fig 5-14C and D). These results indicated that 

GM-CSF- secreting tumour cells synergize with NR/CB1954-mediated cytotoxicity 

to boost long-term antitumour CD8
+
 T cell responses. These data also support the 

rationale for a planned phase I clinical trial of adenoviral gene transfer of NR-

GMCSF and CB1954 treatment in prostate cancer patients.  

Phenotypic characterization of memory CD8
+
 T cells observed with combined 

therapies would have been very useful in verifying whether these are central 

memory cells (TCM) or effector memory cells (TEM). TCM express CD62L and 

CCR7 receptors  necessary for homing to lymph nodes and have limited effector 

function whereas TEM down-regulated this markers, home to the periphery and can 

rapidly induce effector functions in response to antigen (Lanzavecchia and Sallusto, 

2005). However, regional localization of OVA-specific CD8
+
 T cells in tumoural 

DLN may suggest that these cells are of TCM phenotype.   

The findings in this part of the study  support our earlier hypothesis that 

costimulation with 4-1BBL or provision of GM-CSF at the site of the tumour 

together with NR/CB1954 treatment enhances and prolongs CD8
+ 

T cell-mediated 

antitumour immunity. 

One of the reasons of failure of antitumour T cells in eradicating naturally occurring 

tumours is the development of T cell anergy following persistent exposure to 

tumour antigens in absence of adequate costimulation. T cell anergy can also occur 

at the peak of the effector T cell phase due to up-regulation of coinhibitory receptors 

or by virtue of the immunosuppressive tumour microenvironment. It was therefore 

of interest to investigate the effects of intratumoural 4-1BB costimulatory ligand 

combined with NR/CB1954 treatment on anergized tumour-specific CD8
+
 T cell 

responses. CD8
+
 T cell anergy was induced in OT-I mice by multiple systemic 
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exposure to OVA-peptide according to a well documented protocol (Dubois et al., 

1998). Since this was the first study to use this protocol in OT-I transgenic mice, 

initial experiments were performed to characterize the non-responsive state of OT-I 

T cells following multiple peptide administrations. In these experiments the anergic 

state of these cells was compared to naïve cells from non-immunized mice and 

activated cells generated in OT I mice following a single dose of OVA-peptide. The 

results showed that administration of either multiple or single dose of OVA-peptide 

to OT-I mice resulted in a marked reduction of the ratio of CD3 cell/B cells in the 

lymphocytes recovered from lymph nodes of activated and anergized mice relative 

to those found in non-immunized mice, however this effect was less pronounced in 

the spleens from different groups. Unlike naïve and activated cells, anergized CD8
+
 

T cells recovered from the lymph nodes showed a subtle reduction in TCR level, yet 

a significant down-regulation of TCR was observed in spleen. These results 

suggested that peptide administration triggered deletional tolerance in activated and 

anergized mice, while multiple doses of the peptide additionally induced modest 

down-regulation of TCR levels in the remaining CD8
+
 T cells. Functional analysis 

of OT-I T cells from naïve, activated or anergized mice, also demonstrated reduced 

ability of anergized CD8
+
 T cells to secret IFN-γ or to induce degranulation and 

cytotoxicity upon ex vivo antigenic stimulation compared to activated CD8
+
 T cells. 

This was also associated with reduced capacity of anergized CD8
+
 T cells to 

proliferate in response to antigen compared to naïve cells. These results 

demonstrated that multiple OVA-peptide administration to OT-I transgenic mice 

induces a state of CD8
+
 T cell hyporesponsiveness. Consistent with in vitro data, 

adoptively transferred anergized CD8
+
 T cells showed reduced proliferative and 

OVA-specific lytic activity in response to s.c TrampOVA tumours compared to naïve 
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and activated CD8
+
 T cells. Thus, confirming the hyporesponsiveness phenotype of 

anergized CD8
+
 T cells in our model tumour system.  

Interestingly, coculturing of anergized CD8
+
 T cells with TrampOVA-4-1BBL cells 

enhanced proliferation of CD8
+
 T cells compared to those cultured with TrampOVA 

alone. Subsequent in vivo experiments examining anergized CD8
+
 T cell responses 

to combined NR/CB1954 and 4-1BBL treatment demonstrated that similar level of 

OVA-specific CD8
+ 

T cell expansion was induced with NR/CB1954 single 

treatment or combined with 4-1BBL. However, the greater level of CTL activity 

observed in combined therapy was inconclusive due to the possibility of 

endogenous OVA-specific CTL being generated in response to treatment that may 

interfere in assessing the CTL response of anergized cells. Therefore, in future 

studies characterization of the anergized OT-I T cells functional response using the 

CD107a or perforin expression as markers of CTL activity would be more 

informative. 

7.2 Future work 

The main focus of the present study was studying CD8
+
 T cell responses to 

NR/CB1954-mediated tumour cell killing however examining the effect of the 

therapy on CD4
+
 T cell and NK cell responses will be also important.  

The present work showed that combined therapy of NR/CB1954 and 4-1BBL or 

GM-CSF can enhance generation of long-term antitumour CD8
+
 T cell responses; 

therefore it would be of a key interest to examine development of protective 

antitumour immunity following combined therapy in tumour rechallenge 

experiments. Furthermore, T cells or NK cells depletion studies will contribute to 

further delineating which cellular components of the immune system are involved in 

mediating antitumour immunity.   
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The main limitation in using the present experimental model system was the 

inherent immunogenicity of the TrampOVA cells resulting in difficulty in 

establishment of tumour growth and assessment of the CTL responses. To overcome 

this problem a system where OVA expression can be tightly regulated in tumour 

cells using a tetracycline-inducible system for conditional expression would likely 

be beneficial (Ryding et al., 2001; Yu et al., 2009). This way, tumours could be 

implanted and established without any possibility of inducing immune response 

against OVA. Transgene expression is then induced only during treatment 

administration thereby allowing analysis of the immune response associated with 

NR/CB1954 treatment. 

Another possible model is the use of B16 melanoma tumour cell line derived from 

C57BL/6. B16 is a poorly immunogenic and aggressive tumour. It expresses very 

low levels of major histocompatability
 
complex (MHC) class I molecules, making it 

difficult for CD8
+ 

T cells to recognize. These cells normally express Tyrosinase-

related protein-2 (TRP-2) and
 
gp100 proteins that contain immunogenic MHC class 

I–presented
 
epitopes (Bloom et al., 1997; Overwijk et al., 1998). Also, TRP-1 is a 

cell surface protein that can be the target
 
of antibodies against B16 (Overwijk et al., 

1999). The availabilities of tetramers for TRP-2 epitopes and TRP 1-specific CD4
+
 

TCR transgenic (Tg) mouse would allow direct analysis of immune responses to 

therapy without having to introduce model tumour antigens (Cho et al., 2011; 

Muranski et al., 2008). Another advantages in using this tumour model system, is 

that the growth of B16 melanoma tumours stimulates expansion of a small 

proportion of short-lived hyporesponsive TRP-2-specific CD8
+
 T cells (McWilliams 

et al., 2006). This endogenous induction of peripheral T cell tolerance during 

tumour development would potentially eliminate the need for prior induction of non 
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physiological anergy of adoptively transferred cells to study reversal of T cell 

anergy.  

7.3 Conclusions 

The present study demonstrated that NR/CB1954-mediated cytotoxicity increased 

the numbers of antitumour-specific CD8
+
 T cell in lymphoid tissues during the 

expansion phase, indicating generation of a systemic antitumour immune response. 

However, the primary CD8
+
 T cell response initiated by the immunogenic 

NR/CB1954-induced cell death did not support the generation of long-term 

antitumour CD8
+
 T cells. Combining intratumoural GM-CSF or 4-1BBL with 

NR/CB1954 significantly improved the regional antitumour CD8
+
 T cell responses 

4 weeks post therapy. Therefore these data support the particular use of GM-CSF or 

4-1BBL in combination with NR/CB1954 therapy as a promising strategy to 

increase the likelihood of a systemic long lasting antitumour response in cancer 

patients. 

The present study also reports establishment of CD8
+
 T cell anergy in OT-I TCR 

transgenic mice, which could be useful for further studies on the ability of 

gene/immunotherapeutic strategies to overcome tumour-specific CD8
+
 T cell 

anergy.  
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