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ABSTRACT. ZEPLIN-IIl is a two-phase xenon direct dark matter expenimnlocated at the Boulby
Mine (U.K.). After its first science run in 2008 it was upgrddeith: an array of low background
photomultipliers, a new anti-coincidence detector sysiéth plastic scintillator and an improved
calibration system. After 319 days of data taking the secsridnce run ended in May 2011.
In this paper we describe the instrument performance withhasis on the position and energy
reconstruction algorithm and summarise the final sciensaltse
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1 Introduction

The ZEPLIN-III experiment searching for Weakly InteractiMassive Particles (WIMPSs) oper-
ated in the Palmer Laboratory 1070 m underground (2850 mrweatgvalent) at the Boulby mine
(North East of England) between 2006 and 2011. After 3 kglsipgase ZEPLIN-1]] and 31 kg
double phase ZEPLIN-I] running between 2001 and 2006, ZEPLIN-IIl was the thirdeyation

of liquid xenon experiments deployed at Boulby. This twagd xenon detector filled with 12 kg
of liquid xenon (LXe) detects both scintillation light anshisation released from particle interac-
tions. The ionisation charge is drifted upward by an appdildtric field and is emitted into a few
mm thick xenon gas layer where it is accelerated creatingtreleminescence light. Both light
signals, S1 and S2, are detected by an array of 31, upwairtzfazinch photomultipliers located
underneath the liquid xenon target. An example of a typigehefrom an electron (top) and a
neutron (bottom) scattering interaction in the liquid witie same size of S1=10 keVee signal is
shown in figurel.

Due to a different stopping power topologies an electron anmdliclear recoil of the same
energy exhibit a diffrent light and charge yields. Under ghhelectric field, the nuclear recoil
yields smaller number of ionisation charge and a much ldiglet signal compared to the electron
recoil. Therefore the S2/S1 ratio is used to discriminagztebn recoils, caused by radioactive
background, from nuclear recoils caused by WIMP interastio A detailed description of the
detector design can be found 81 [

2 Detector performance

After the first science run (FSR) of 83 day§-{[6], the ZEPLIN-III detector was upgraded; this
involved the replacement of the photomultipliers, inatunsof a new anti-coincidence detector and
a new automated calibration source delivery system, as agefleveral other calibration-related
improvements. The second science run (SSR) started on théu# 2010 and ended on tHé 7
May 2011, delivering a raw fiducial exposure of 1343.8days.

For the SSR new, custom-built low background photmultipliemodel D766Q from ET
Enterprises Limited {], were used. The rate of low energy electron recoils was4:0505
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Figure 1. Segments of the summed waveforms from an electron and eonesdattering with the same size
of S1=10 keVee. A small S1 pulse from liquid is followed by g S2 pulse created in the gas layer.

events/kg/day/keV which comparing to the rate observedthénRSR showed a reduction of the
overall background gamma radiation in ZEPLIN-III by a facté 18 [8]. Regrettably their optical
performance compared to the previous set of PMTs used inSReviias poor. Their average quan-
tum efficiency at 175 nm was 26.2% instead of 30% and the gaiaticm between PMTs was a
factor of 100 (max/min), almost 17 times greater than in tB®FThis resulted in an energy reso-
lution of 12% at 122 keV and discrimination power of 280:li¢oéated in the signal energy range
2-12 keVee as ratio between the number of events above aod lieé nuclear recoil median),
compared to 8.1% and 7800:1, respectively, in the FSR.

The anti-coincidence system consisted of 32 barrel and @0plastic scintillator slabs cou-
pled to a gadolinium-loaded passive polypropylene shigldAs shown in figure2, the veto de-
tector was placed between the ZEPLIN-III detector and thd gamma shield, providing greater
than 3tsr coverage. Neutrons entering the hydrogen-rich polypeoig moderate down to thermal
energies and are captured by #3éGd. The neutron cooling and capture process takes an average
10.7us and ends with the emission of 3#ays which, with an average total energy of 8 MeV, are
detected by the plastic scintillator.

The signal from each scintillator bar was detected by a B-ptwotomultiplier and then digi-
tized with 100 ns sampling rate by a CAEN-1724 ADCs. Wavetoh320us were read out in
order to provide information about prompt (PTAG) and deth{leTAG) coincidences. Calibration
with neutron sources demonstrated a 60% efficiency of thearetagging. The veto system also
provided the rejection of 28% farray background for prompt coincidencdd].

During the SSR ZEPLIN-IIl was equipped with a new automayechy calibration source
delivery system. It consisted of a motorised cable pullesteay to which a radioactive source was
attached, traveling down the pipe connected to the ZEPLINeime as shown in figura.
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Figure 2. Schematic view of the ZEPLIN-IIl experiment. Copper parfisthe ZEPLIN-III detector located
in the centre are surrounded by: the polypropylene straatith no Gd (B), gadolinium-loaded plastic (D),
52 plastic scintillator slabs (C) and lead gamma shield (A).

Figure 3. Left: ZEPLIN-III partially surrounded by the polypropyle slabs of the veto system. Two pipes
of the source delivery system are attached to the vacuum ddime detector leveling system with pulley
wheels and cables can be seen at the bottom of the detectt: REPLIN-III viewed from the top. The
gamma source was delivered through the pipe above the adriber detector, while the neutron source was
placed on the top 5 centimeters off-centre.
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Figure 4. Left: history of one month’s worth temperature at the endhef liquid nitrogen delivery line
showing an excellent reproducibility achieved thanks ® dlatomation of the detector servicing process.
Right: distribution of the vapour pressure above the liqigdon target with RMS below 1% of the mean.

The pipe with a smaller aperture served to guidéCo source for daily-calibration, whereas
the wider one guided the manually inserted Am-Be sourcehtoccasional neutron calibrations.
The system was driven by the slow-control PC, which was piogned to perform daily calibra-
tion. The system was completely reliable.

In addition to the new calibration system a 5.1 mm thick coppleantom’ grid with 3 cmx
3 cm rectangular voids was placed on top of the anode plate 128 keV photons from th&Co
calibration source, located centrally above the LXe targetre attenuated by the phantom grid,
creating a shadow image on the liquid surface. This was uségst the position reconstruction
algorithm and to measure the spatial resolution of the PNi@ioat.

Daily detector operations — including detector calibmatiliquid nitrogen (LN) refill and the
data transfer — interrupted the science run for only one,hbus achieving routinely a 96% duty
cycle. An example of the excellent stability and reprodilitjbis shown in figure4, plotting one
month’s worth of daily LN refills which occured every day exactly at the same time. deiresof
the xenon vapour above the target was kept at 1.6 bar, wittsaanmbility at the level of 1%.

Slow movement of the rock underneath the detector, caustiiy was monitored using the
width of the S2 signal from the calibration data. The histofthe correction factor due to detector
tilt is shown in figureb. The tilt was rectified weekly to first order using the pullggtem visible in
figure 3. Long exposure/ and neutron calibration runs were carried out at the begipand at the
end of the data taking run. To control PMT performance, weedlibrations were performed with
an LED gun coupled to a quartz optical fibre which delivergtitlidirectly into the xenon target.

2.1 Dataacquisition and processing

Since the PMT array was powered by a single high voltage guldignal outputs were equalized
with a set of Phillips Scientific 804 attenuators. Subsetiuethe signals were split into two
channels and digitized with 2 ns sampling using ACQIRIS D&8%hit flash ADCs. In one of the
channels signals were amplified10 by fast Phillips Scientific 770 amplifiers to achieve a kigh
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Figure 5. Left: distribution of correction factors for S2 pulse ahee to geology-induced detector tilt in
the second run. The tilt is mitigated to first order with thdl@usystem visible in figure 2 and the residual
variation is corrected in software. This parameter is dated from the variation of S2 pulse width across
the vapour phase in the calibration data and then applidteta ¥ position of each event. Right: evolution
of the free electron lifetime in the second run.

dynamic range. Additionally all signals were summed withashin NOO5 sum amplifier with the
output signal used to trigger the DAQ system.

The acquired 36us long waveforms were reduced with ZE3RA] software, producing an
array of parameters for the 10 largest pulses. Afterwardsvant filtering tool was used to retain
events containing only one pair of pulses coming from thaidicscintillation (S1) and the gas
electroluminescence (S2). The energy and position reaaristn, from the S1 and S2 signals,
for each event was performed with the bespoke software Mgfd2] using pulse areas and tke
coordinate calculated from S2-S1 timing information.

In addition to the data processing the following correctibave been applied to each selected
single scatter event: electronics gain drift, detector\tdpour pressure variation and electron life-
time in the liquid which, as shown in figufe with an initial value of 14us at the beginning of
the run gradually increasing to 4% by the end of the run. Although there is no gas recircula-
tion/purification once the detector is in operation, thisapaeter improved steadily during the run.
This is mainly due to the sweeping of electronegative ionayafrom the LXe bulk by the electric
field and, to a smaller extent, due to gettering of electratieg impurities by the detector compo-
nents. Periods of sharp lifetime degradation correspormbweer failures at the underground lab.
Finally, all events were checked for veto tagging of any kiadtotal of 28% of ally-ray events
were flagged as PTAG as expected for phay background.

2.2 Event energy and position reconstruction

Event reconstruction consists of estimating the energytlaagbosition of an event given a set of
the corresponding PMT pulse areas. For an event at posiparducingN photons, the probability
of the i-th PMT detectingn photons is well approximated by the Poisson distribution:

B uine*Ui
ol

R(n) , (2.1)



wherep;=Nn;(r) is the expected number of photons frdhinitial photons detected by the i-th PMT
with the nj(r) being the Light Response Function (LRF) — the fraction ef pinotons emitted by
the source that produce a detectable signal in the i-th PMT.

In this case the interaction location) @nd the total number of emitted photori$) (can be
found by the Maximum Likelihood (ML) method as was first prepd by Gray and MakovskyL§].
Given the numben; of photons detected by each PMT, the logarithm of the likedthfunction can
be expressed ad{:

InL(r,N) = Z(ni IN(Nni(r)) —Nni(r))+C, (2.2)

|

whereC depends only on the n

Different statistical approaches have been applied tonstoact the S1 and S2 signals. Since
the total collected charge in the S1 signal equals only 1eZkalV the statistical variation of the
number of photoelectron in each PMT is Poissonian; in th&edhe event is reconstructed by
maximizing the above function. On the other hand, the sizthefS2 pulse is boosted by the
electroluminescence in the gas (a single electron extdot¢he gas phase produces an average
of 12 photoelectrons in the SSR configuratidrb]); this is typically two orders of magnitude
larger than S1. In this instance the reconstruction is perad with a weighted least square (WLS)
method. In this case the parameters were obtained throegioltbwing minimisation:

X?= ZWi(Aei—Ai)z;Aei: Nni(r)asi, (2.3)

whereA; andAg; are the measured and the expected output signals of theMFthriéspectivelygs;
is the mean of the single photoelectron probability derfsibction (PDF) andy; is the weighting
factor related to the variance Ohsi — A)).

Both the ML and WLS methods can be used only if the LRF is wetvin. In principle,
it should be either measured or calculated beforehand. dicdise of ZEPLIN-III, however, the
direct measurement poses great technical difficulty anclitztion could not provide the necessary
precision. For this reason, a novel method was developéd-&itureconstruction of the PMT light
response functions (LRF). These were obtained from théredion data acquired by irradiating
the detector with an uncollimatedray source. The method takes advantage of the fact that, for
the ZEPLIN-III geometry, the LRFs are functions of the dista from the PMT axis only. These
LRFs were reconstructed iteratively from a set of 122 ke\hesvérom the®’Co calibration.

In the first step, the,y vertex positions were estimated by means of a simple cen#igo-
rithm. For each PMT the area of S2 pulses was plotted versosstructed distance and fitted by
a smooth non-increasing function; this then became theafstoximation for the corresponding
LRF. Using this first approximation, the event positions ever-estimated by the WLS method and
the fitting was repeated giving the next (better) approxiomafor the LRFs. The iteration contin-
ued until the response function converged. A reconstruictedje of the phantom grid after five
iterations is shown in figuré. On the same figure, the profiles of the reconstructed eversitgte
are shown for the andy directions. From these profiles, a spatial resolution ofimi (FWHM)
was calculated for S2 signals. The spatial resolution fow84& measured as the spread of the S1
position with respect to that of S2 and was estimated to beh3 Note that the sharpness of the
image is dominated by scattering of thigays in the 7-mm thick anode mirror under the copper
grid, rather than by the position resolution.
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Figure6. Left: 122 keVy vertex profile from an external source placed above the phagtid. Right: S2
signal X-Y event reconstruction using WLS method showinguiy ¢lear image of the phantom grid.

A linear combination of S1 and S2 signals fréfCo source was used to estimate the energy
resolution at 122 keV. In the central region of 50 mm radiwesriconstructed energy resolution
for the FSR and the SSR were 8.1% and 12%, respectively. lafabe FSR dataset the line at
136 keV was clearly resolved.

3 WIMPreaults

The fiducial region of the detector was chosen to be a centliader of 140 mm radius and con-
tained 5.1 kg of liquid xenon. Figuréshows all events in the S2/S1 parameter space from the final
analysis reported inlP]. The acceptance region for the WIMP search was defined eet®end
12 keV electron-equivalent energy and to contain 2—45%pxanee in the log(S2/S1) parameter.
This is below the mean of the nuclear recoil band derived fitoemeutron calibrationlg]. Eight
events were found in the box, none of which had been vetoeglnimber of DTAG events in the
dataset was consistent with random coincidences and nomehgtw the nuclear recoil median.
The number of nuclear recoils events predicted for the saagion was 0.060.01. The number
of electron recoils events leaking into the WIMP search bas wstimated in two ways, from a
dedicated*’Cs calibration run and using binned skew-Gaussian fits tganema band above the
search box, giving 9:83.9 and 6.5:-3.4 events, respectively.

A binned profile likelihood ratio17]—[18] statistical analysis yielded a two-sided confidence
interval 0-5.1 signal events at 90% CL as described in detafll19]. New upper limits on the
WIMP-nucleon scalar cross-sections derived for the FSHR 8&d the combined exposure are
presented in figuré. Detailes of the calculation method are described 8).[To show the progress
of the entire ZEPLIN programme at Boulby, which produced petitive results for over a decade,
both limit results from ZEPLIN-I and ZEPLIN-II have been alscluded in figures. The present
best world limit by XENON210020], another two-phase xenon experiment, is also shown.
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experiments as well as from the leading XENON-100 expertmen

4 Conclusions

ZEPLIN-IIl was upgraded with new photomultipliers and arii-@woincidence detector was also
installed. The latter served not only as a neutron detesiistem but also as an excellent diagnostic
tool for the y-ray background. The prediction of 28% of PTAG events wadiocoed showing a
very good understanding of the dominant radiation backgglourhanks to the newly automated
daily detector operations includingray calibrations, LN refill and the data transfer a 96% duty
cycle was achieved routinely. An excellent reproduciailénd control of detector parameters such
as: liquid purity, detector tilt, gas gap thickness and teon vapor pressure contributed greatly to
the very competitive final results from the SSR. Achievingdj@ertex and energy reconstruction
with poorly performing photomultipliers was a key challeng data analysis. The second science
run delivered a 90% CL upper limit on the scalar WIMP crosstisa of 4.8<10-8 pb/nucleon
near 50 GeV/g¢mass. The combined result from the FSR and SSR is B098 pb/nucleon.

The instrument performance in 319 days of the second run dstnaded clearly that xenon
emission detectors can possess the required long-ternlitgtamd reliability for rare event
searches (even if LNcooled).
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