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photomultipliers, a new anti-coincidence detector systemwith plastic scintillator and an improved
calibration system. After 319 days of data taking the secondscience run ended in May 2011.
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1 Introduction

The ZEPLIN-III experiment searching for Weakly Interacting Massive Particles (WIMPs) oper-
ated in the Palmer Laboratory 1070 m underground (2850 m water equivalent) at the Boulby mine
(North East of England) between 2006 and 2011. After 3 kg single phase ZEPLIN-I [1] and 31 kg
double phase ZEPLIN-II [2] running between 2001 and 2006, ZEPLIN-III was the third generation
of liquid xenon experiments deployed at Boulby. This two-phase xenon detector filled with 12 kg
of liquid xenon (LXe) detects both scintillation light and ionisation released from particle interac-
tions. The ionisation charge is drifted upward by an appliedelectric field and is emitted into a few
mm thick xenon gas layer where it is accelerated creating electroluminescence light. Both light
signals, S1 and S2, are detected by an array of 31, upward-facing, 2-inch photomultipliers located
underneath the liquid xenon target. An example of a typical event from an electron (top) and a
neutron (bottom) scattering interaction in the liquid withthe same size of S1=10 keVee signal is
shown in figure1.

Due to a different stopping power topologies an electron anda nuclear recoil of the same
energy exhibit a diffrent light and charge yields. Under a high electric field, the nuclear recoil
yields smaller number of ionisation charge and a much largerlight signal compared to the electron
recoil. Therefore the S2/S1 ratio is used to discriminate electron recoils, caused by radioactive
background, from nuclear recoils caused by WIMP interactions. A detailed description of the
detector design can be found in [3].

2 Detector performance

After the first science run (FSR) of 83 days [4]–[6], the ZEPLIN-III detector was upgraded; this
involved the replacement of the photomultipliers, inclusion of a new anti-coincidence detector and
a new automated calibration source delivery system, as wellas several other calibration-related
improvements. The second science run (SSR) started on the 24th June 2010 and ended on the 7th

May 2011, delivering a raw fiducial exposure of 1343.8 kg·days.
For the SSR new, custom-built low background photmultipliers, model D766Q from ET

Enterprises Limited [7], were used. The rate of low energy electron recoils was 0.754±0.05

– 1 –
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Figure 1. Segments of the summed waveforms from an electron and a neutron scattering with the same size
of S1=10 keVee. A small S1 pulse from liquid is followed by a large S2 pulse created in the gas layer.

events/kg/day/keV which comparing to the rate observed in the FSR showed a reduction of the
overall background gamma radiation in ZEPLIN-III by a factor of 18 [8]. Regrettably their optical
performance compared to the previous set of PMTs used in the FSR was poor. Their average quan-
tum efficiency at 175 nm was 26.2% instead of 30% and the gain variation between PMTs was a
factor of 100 (max/min), almost 17 times greater than in the FSR. This resulted in an energy reso-
lution of 12% at 122 keV and discrimination power of 280:1 (calculated in the signal energy range
2-12 keVee as ratio between the number of events above and below the nuclear recoil median),
compared to 8.1% and 7800:1, respectively, in the FSR.

The anti-coincidence system consisted of 32 barrel and 20 roof plastic scintillator slabs cou-
pled to a gadolinium-loaded passive polypropylene shield [9]. As shown in figure2, the veto de-
tector was placed between the ZEPLIN-III detector and the lead gamma shield, providing greater
than 3π sr coverage. Neutrons entering the hydrogen-rich polypropylene moderate down to thermal
energies and are captured by the157Gd. The neutron cooling and capture process takes an average
10.7µs and ends with the emission of 3-4γ-rays which, with an average total energy of 8 MeV, are
detected by the plastic scintillator.

The signal from each scintillator bar was detected by a 3-inch photomultiplier and then digi-
tized with 100 ns sampling rate by a CAEN-1724 ADCs. Waveforms of 320µs were read out in
order to provide information about prompt (PTAG) and delayed (DTAG) coincidences. Calibration
with neutron sources demonstrated a 60% efficiency of the neutron tagging. The veto system also
provided the rejection of 28% forγ-ray background for prompt coincidences [10].

During the SSR ZEPLIN-III was equipped with a new automatedγ-ray calibration source
delivery system. It consisted of a motorised cable pulley system to which a radioactive source was
attached, traveling down the pipe connected to the ZEPLIN-III dome as shown in figure3.

– 2 –
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Figure 2. Schematic view of the ZEPLIN-III experiment. Copper partsof the ZEPLIN-III detector located
in the centre are surrounded by: the polypropylene structure with no Gd (B), gadolinium-loaded plastic (D),
52 plastic scintillator slabs (C) and lead gamma shield (A).

Figure 3. Left: ZEPLIN-III partially surrounded by the polypropylene slabs of the veto system. Two pipes
of the source delivery system are attached to the vacuum dome. The detector leveling system with pulley
wheels and cables can be seen at the bottom of the detector. Right: ZEPLIN-III viewed from the top. The
gamma source was delivered through the pipe above the centerof the detector, while the neutron source was
placed on the top 5 centimeters off-centre.
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Figure 4. Left: history of one month’s worth temperature at the end ofthe liquid nitrogen delivery line
showing an excellent reproducibility achieved thanks to the automation of the detector servicing process.
Right: distribution of the vapour pressure above the liquidxenon target with RMS below 1% of the mean.

The pipe with a smaller aperture served to guide a57Co source for dailyγ-calibration, whereas
the wider one guided the manually inserted Am-Be source, forthe occasional neutron calibrations.
The system was driven by the slow-control PC, which was programmed to perform daily calibra-
tion. The system was completely reliable.

In addition to the new calibration system a 5.1 mm thick copper ‘phantom’ grid with 3 cm×

3 cm rectangular voids was placed on top of the anode plate. The 122 keV photons from the57Co
calibration source, located centrally above the LXe target, were attenuated by the phantom grid,
creating a shadow image on the liquid surface. This was used to test the position reconstruction
algorithm and to measure the spatial resolution of the PMT readout.

Daily detector operations — including detector calibration, liquid nitrogen (LN2) refill and the
data transfer — interrupted the science run for only one hour, thus achieving routinely a 96% duty
cycle. An example of the excellent stability and reproducibility is shown in figure4, plotting one
month’s worth of daily LN2 refills which occured every day exactly at the same time. Pressure of
the xenon vapour above the target was kept at 1.6 bar, with a rms variability at the level of 1%.

Slow movement of the rock underneath the detector, causing atilt, was monitored using the
width of the S2 signal from the calibration data. The historyof the correction factor due to detector
tilt is shown in figure5. The tilt was rectified weekly to first order using the pulley system visible in
figure3. Long exposureγ and neutron calibration runs were carried out at the beginning and at the
end of the data taking run. To control PMT performance, weekly calibrations were performed with
an LED gun coupled to a quartz optical fibre which delivered light directly into the xenon target.

2.1 Data acquisition and processing

Since the PMT array was powered by a single high voltage supply all signal outputs were equalized
with a set of Phillips Scientific 804 attenuators. Subsequently, the signals were split into two
channels and digitized with 2 ns sampling using ACQIRIS DC256 8-bit flash ADCs. In one of the
channels signals were amplified× 10 by fast Phillips Scientific 770 amplifiers to achieve a higher

– 4 –
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Figure 5. Left: distribution of correction factors for S2 pulse areadue to geology-induced detector tilt in
the second run. The tilt is mitigated to first order with the pulley system visible in figure 2 and the residual
variation is corrected in software. This parameter is calculated from the variation of S2 pulse width across
the vapour phase in the calibration data and then applied to thex,y position of each event. Right: evolution
of the free electron lifetime in the second run.

dynamic range. Additionally all signals were summed with a Hoshin N005 sum amplifier with the
output signal used to trigger the DAQ system.

The acquired 36µs long waveforms were reduced with ZE3RA [11] software, producing an
array of parameters for the 10 largest pulses. Afterwards anevent filtering tool was used to retain
events containing only one pair of pulses coming from the liquid scintillation (S1) and the gas
electroluminescence (S2). The energy and position reconstruction, from the S1 and S2 signals,
for each event was performed with the bespoke software Mercury [12] using pulse areas and thez
coordinate calculated from S2-S1 timing information.

In addition to the data processing the following corrections have been applied to each selected
single scatter event: electronics gain drift, detector tilt, vapour pressure variation and electron life-
time in the liquid which, as shown in figure5, with an initial value of 14µs at the beginning of
the run gradually increasing to 45µs by the end of the run. Although there is no gas recircula-
tion/purification once the detector is in operation, this parameter improved steadily during the run.
This is mainly due to the sweeping of electronegative ions away from the LXe bulk by the electric
field and, to a smaller extent, due to gettering of electronegative impurities by the detector compo-
nents. Periods of sharp lifetime degradation correspond topower failures at the underground lab.
Finally, all events were checked for veto tagging of any kind. A total of 28% of allγ-ray events
were flagged as PTAG as expected for theγ-ray background.

2.2 Event energy and position reconstruction

Event reconstruction consists of estimating the energy andthe position of an event given a set of
the corresponding PMT pulse areas. For an event at positionr producingN photons, the probability
of the i-th PMT detectingn photons is well approximated by the Poisson distribution:

Pi(n) =
µn

i e−µi

n!
, (2.1)

– 5 –
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whereµi=Nηi(r) is the expected number of photons fromN initial photons detected by the i-th PMT
with theηi(r) being the Light Response Function (LRF) — the fraction of the photons emitted by
the source that produce a detectable signal in the i-th PMT.

In this case the interaction location (r) and the total number of emitted photons (N) can be
found by the Maximum Likelihood (ML) method as was first proposed by Gray and Makovsky [13].
Given the numberni of photons detected by each PMT, the logarithm of the likelihood function can
be expressed as [14]:

lnL(r,N) = ∑
i

(ni ln(Nηi(r))−Nηi(r))+C, (2.2)

whereC depends only on the ni .
Different statistical approaches have been applied to reconstruct the S1 and S2 signals. Since

the total collected charge in the S1 signal equals only 1.2 phe/keV the statistical variation of the
number of photoelectron in each PMT is Poissonian; in this case the event is reconstructed by
maximizing the above function. On the other hand, the size ofthe S2 pulse is boosted by the
electroluminescence in the gas (a single electron extracted to the gas phase produces an average
of 12 photoelectrons in the SSR configuration [15]); this is typically two orders of magnitude
larger than S1. In this instance the reconstruction is performed with a weighted least square (WLS)
method. In this case the parameters were obtained through the following minimisation:

χ2 = ∑
i

wi(Aei−Ai)
2;Aei = Nηi(r)qsi , (2.3)

whereAi andAei are the measured and the expected output signals of the i-th PMT, respectively;qsi

is the mean of the single photoelectron probability densityfunction (PDF) andwi is the weighting
factor related to the variance of(Aei−Ai).

Both the ML and WLS methods can be used only if the LRF is well known. In principle,
it should be either measured or calculated beforehand. In the case of ZEPLIN-III, however, the
direct measurement poses great technical difficulty and calculation could not provide the necessary
precision. For this reason, a novel method was developed forin-situ reconstruction of the PMT light
response functions (LRF). These were obtained from the calibration data acquired by irradiating
the detector with an uncollimatedγ-ray source. The method takes advantage of the fact that, for
the ZEPLIN-III geometry, the LRFs are functions of the distance from the PMT axis only. These
LRFs were reconstructed iteratively from a set of 122 keV events from the57Co calibration.

In the first step, thex,y vertex positions were estimated by means of a simple centroid algo-
rithm. For each PMT the area of S2 pulses was plotted versus reconstructed distance and fitted by
a smooth non-increasing function; this then became the firstapproximation for the corresponding
LRF. Using this first approximation, the event positions were re-estimated by the WLS method and
the fitting was repeated giving the next (better) approximation for the LRFs. The iteration contin-
ued until the response function converged. A reconstructedimage of the phantom grid after five
iterations is shown in figure6. On the same figure, the profiles of the reconstructed event density
are shown for thex andy directions. From these profiles, a spatial resolution of 1.1mm (FWHM)
was calculated for S2 signals. The spatial resolution for S1was measured as the spread of the S1
position with respect to that of S2 and was estimated to be 13 mm. Note that the sharpness of the
image is dominated by scattering of theγ-rays in the 7-mm thick anode mirror under the copper
grid, rather than by the position resolution.
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Figure 6. Left: 122 keVγ vertex profile from an external source placed above the phantom grid. Right: S2
signal X-Y event reconstruction using WLS method showing a very clear image of the phantom grid.

A linear combination of S1 and S2 signals from57Co source was used to estimate the energy
resolution at 122 keV. In the central region of 50 mm radius the reconstructed energy resolution
for the FSR and the SSR were 8.1% and 12%, respectively. In case of the FSR dataset the line at
136 keV was clearly resolved.

3 WIMP results

The fiducial region of the detector was chosen to be a central cylinder of 140 mm radius and con-
tained 5.1 kg of liquid xenon. Figure7 shows all events in the S2/S1 parameter space from the final
analysis reported in [19]. The acceptance region for the WIMP search was defined between 2 and
12 keV electron-equivalent energy and to contain 2–45% acceptance in the log(S2/S1) parameter.
This is below the mean of the nuclear recoil band derived fromthe neutron calibration [16]. Eight
events were found in the box, none of which had been vetoed. The number of DTAG events in the
dataset was consistent with random coincidences and none were below the nuclear recoil median.
The number of nuclear recoils events predicted for the search region was 0.06±0.01. The number
of electron recoils events leaking into the WIMP search box was estimated in two ways, from a
dedicated137Cs calibration run and using binned skew-Gaussian fits to thegamma band above the
search box, giving 9.3±3.9 and 6.5±3.4 events, respectively.

A binned profile likelihood ratio [17]–[18] statistical analysis yielded a two-sided confidence
interval 0–5.1 signal events at 90% CL as described in detailin [19]. New upper limits on the
WIMP-nucleon scalar cross-sections derived for the FSR, SSR and the combined exposure are
presented in figure6. Detailes of the calculation method are described in [19]. To show the progress
of the entire ZEPLIN programme at Boulby, which produced competitive results for over a decade,
both limit results from ZEPLIN-I and ZEPLIN-II have been also included in figure6. The present
best world limit by XENON100 [20], another two-phase xenon experiment, is also shown.
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Figure 7. Left: S2/S1 distribution as a function of energy of SSR events in the fiducial region. Events
marked with a green color represent PTAG veto coincidences.8 unvetoed points are in the WIMP search
box (blue line). Right: 90% CL limits on WIMP-nucleon scalarcross sections from all ZEPLIN programme
experiments as well as from the leading XENON-100 experiment.

4 Conclusions

ZEPLIN-III was upgraded with new photomultipliers and an anti-coincidence detector was also
installed. The latter served not only as a neutron detectingsystem but also as an excellent diagnostic
tool for theγ-ray background. The prediction of 28% of PTAG events was confirmed showing a
very good understanding of the dominant radiation background. Thanks to the newly automated
daily detector operations includingγ-ray calibrations, LN2 refill and the data transfer a 96% duty
cycle was achieved routinely. An excellent reproducibility, and control of detector parameters such
as: liquid purity, detector tilt, gas gap thickness and the xenon vapor pressure contributed greatly to
the very competitive final results from the SSR. Achieving good vertex and energy reconstruction
with poorly performing photomultipliers was a key challenge in data analysis. The second science
run delivered a 90% CL upper limit on the scalar WIMP cross-section of 4.8×10−8 pb/nucleon
near 50 GeV/c2 mass. The combined result from the FSR and SSR is 3.9×10−8 pb/nucleon.

The instrument performance in 319 days of the second run demonstrated clearly that xenon
emission detectors can possess the required long-term stability and reliability for rare event
searches (even if LN2-cooled).
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