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Abstract

Fixation patterns are thought to reflect cognitive processing and, thus, index the most informative stimulus features for task
performance. During face recognition, initial fixations to the center of the nose have been taken to indicate this location is
optimal for information extraction. However, the use of fixations as a marker for information use rests on the assumption
that fixation patterns are predominantly determined by stimulus and task, despite the fact that fixations are also influenced
by visuo-motor factors. Here, we tested the effect of starting position on fixation patterns during a face recognition task
with upright and inverted faces. While we observed differences in fixations between upright and inverted faces, likely
reflecting differences in cognitive processing, there was also a strong effect of start position. Over the first five saccades,
fixation patterns across start positions were only coarsely similar, with most fixations around the eyes. Importantly, however,
the precise fixation pattern was highly dependent on start position with a strong tendency toward facial features furthest
from the start position. For example, the often-reported tendency toward the left over right eye was reversed for the left
starting position. Further, delayed initial saccades for central versus peripheral start positions suggest greater information
processing prior to the initial saccade, highlighting the experimental bias introduced by the commonly used center start
position. Finally, the precise effect of face inversion on fixation patterns was also dependent on start position. These results
demonstrate the importance of a non-stimulus, non-task factor in determining fixation patterns. The patterns observed
likely reflect a complex combination of visuo-motor effects and simple sampling strategies as well as cognitive factors.
These different factors are very difficult to tease apart and therefore great caution must be applied when interpreting
absolute fixation locations as indicative of information use, particularly at a fine spatial scale.
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Introduction

The location of visual fixations are often assumed to directly

reflect the allocation of visual attention [1]. Thus, their spatial and

temporal pattern may indicate the regions of a stimulus being

processed for use in a particular task and give direct insight into

cognitive processes [2,3,4,5]. Consider the following two examples.

First, based on fixation locations during face recognition, Hsiao

and Cottrell concluded that fixations near the center of the nose

were optimal for recognition [6]. Second, Blais and colleagues [7]

noted a difference in fixation patterns during face viewing between

Asian and Caucasian observers and concluded that this difference

reflected the impact of culture on high-level face processing

strategies. However, the use of fixations to infer stimulus- and task-

dependent visual processing assumes that the specific stimuli and

the task are the primary determinants of the fixation pattern rather

than, for example, visuomotor factors. Here we tested this

assumption in a study of face processing by varying the initial

starting position of the eyes relative to the face, a factor which

varies both within and across previous studies. If the pattern of

fixations is largely determined by the stimulus and the task, this

manipulation should have minimal impact on the overall pattern

of fixations.

Analyses of fixation patterns have been used extensively in

studies of face processing. While much information can be

extracted from single fixations to rapidly presented faces, eye

movements appear to be functionally useful, with impaired

recognition when fixation location is fixed compared to when

participants are free to move their eyes [8,9]. Most eye tracking

studies of face perception report the same basic pattern, with the

vast majority of fixations falling on internal facial features and a

tendency toward the upper part of the face, and in particular the

eyes [7,10,11,12,13,14]. Further, the specific pattern of fixations

observed is modulated by task [15,16,17] and face familiarity

[10,11,14,18,19]. Variations in the basic pattern of fixations

have been used as evidence for differences in visual processing

between identity and expression tasks [15], upright and inverted

faces [10] (but see [20]), Asian and Caucasian observers [7,21],

5- and 7- week old infants [22], own- and other-race faces [23],

patient groups and controls (e.g. Autism Spectrum Disorders:

[24,25,26]) and between conspecific and non-conspecific faces

[27]. However, the extent to which measured fixations during
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facial processing reflect factors other than stimulus and task is

unclear.

We were interested in the impact of starting fixation position on

the pattern of visual fixations. Most studies of fixation patterns

during face perception consist of a series of trials on which

individual faces are presented one at a time with sudden onset.

The location of fixation at the onset of the faces is typically

controlled (e.g. [6,7,10,28]) although in some cases it is relatively

unconstrained [26,27]. In those studies that do fix the start

position, the center of the screen, typically corresponding to the

center of the upcoming stimulus is commonly used [11,14,23],

although exactly which part of the face this corresponds to is

highly variable and often unclear). However, increasingly, single

[19,20] or multiple off-face starting positions are employed

[6,7,21,28]. In studies in which fixation is unconstrained, observers

may spontaneously orient to the center of the screen (i.e. the center

of the expected face). Whether start position is constrained or not,

all of these studies make the implicit assumption that differences in

start position have negligible impact on the overall pattern of

fixations.

However, there are several ways in which start position may

impose significant biases on the pattern of fixations. In particular,

the position of the observer’s eye relative to the upcoming face

defines the initial sampling of that face, which can affect the

pattern of fixations throughout a trial. For start positions on the

face (e.g. center), initial saccades must of necessity be directed

away from the start position, constraining the first observer-

generated fixation location. Further, information is sampled at the

start position, perhaps making it less likely the participants will

return to that position on later fixations. These considerations

have led many to adopt initial fixation locations away from the

face (e.g. [6]). However, moving the start position off the face

doesn’t eliminate potential effects of the initial fixation location.

For example, participants may be more likely to saccade initially to

the nearest high contrast part of the face, or to saccade to the

center of gravity of the face stimulus [28,29,30]. Even if the first

saccade is aimed at the center of the face, the tendency for

saccades to undershoot or overshoot [31,32] may mean that the

actual location of the first fixation differs for different start

positions, and the location of this initial fixation may influence

subsequent fixations [30]. Finally, face processing has been shown

to differ with retinotopic position in the periphery [33] and high-

level face-selective cortex has been shown to have position

information about presented faces [34]. Given all these consider-

ations, it is important to determine the extent to which eye

movements are affected by changes in start position if fixations are

to be considered a measure of information use.

Here we systematically tested the effect of start position during a

face recognition task on both upright and inverted faces. We chose

to manipulate face orientation since inversion produces a

reduction in face recognition performance [35], reflecting

differences in cognitive processing [36,37], and has also been

reported to have a significant effect on fixation patterns [10] (but

see [20,38]). Thus, we can determine the joint impact of both start

position and cognitive factors on fixation patterns during face

processing. In our study, participants viewed a series of 40 faces

during a study phase before being tested on recognition during a

later test phase. We found that the pattern of fixations during both

the study and test phase was strongly influenced by start position

for both upright and inverted faces. There was also a general effect

of inversion, with a greater proportion of fixations on the lower

part of inverted compared with upright faces. However, the

precise effect of inversion also varied as a function of start position.

These findings suggest that eye movements to faces are not wholly

predicted by stimuli and task, but may also reflect visuo-motor

factors or simple sampling strategies. We conclude that caution is

needed in interpreting eye movement patterns solely in terms of

information use and high-level visual processing strategies.

Methods

Ethics Statement
All participants gave written informed consent and were

compensated for their participation. The study was approved by

the Institutional Review Board of the National Institutes of Health,

Bethesda.

Participants
20 Caucasian participants (12 male), age 20 to 39. Due to time

constraints, one participant only completed the study phase of the

experiment and therefore 19/20 participants contributed behav-

ioral and test phase data.

Eye-tracking
We used an EyeLink II headmounted eye-tracker (SR Research,

Mississauga, ON, Canada), and sampled pupil centroid at 500 Hz.

The default nine point calibration and validation sequences were

repeated throughout the experiment. Both eyes were calibrated

and validated, but only the eye with the lowest maximum error

was recorded for the trials following a particular calibration.

Calibration was repeated when maximum error at validation was

more than 1u. Before each trial, a drift correction was performed.

Default criteria for fixations, blinks, and saccades implemented in

the Eyelink system were used.

Stimuli
We used 80 grayscale neutral expression face images (40 male) of

Caucasians between the ages of 18 and 29 from the Productive Aging

Lab Face Database at the University of Texas at Dallas (http://

vitallongevity.utdallas.edu/stimuli/facedb/categories/neutral-faces.

html) [39]. As stated on the website for the database: ‘‘This

[database] contains a range of face of all ages which are suitable

for use as stimuli in face processing studies. Releases have been

signed by the participants we photographed and the faces may be

included in publications or in media events.’’ Each face was

scaled to have a 10 degree forehead width at presentation and

was rotated to correct any tilt of the head. Images were cropped

to remove most of the white background, but not the hair or

other external features, and all images were equated for overall

luminance (Figure 1a). At presentation, images were centered on

a black background. To eliminate any possible stimulus bias as

the source of any laterality effects, half of the upright faces were

randomly left-right flipped for each participant. Inverted faces

were created by simply reflecting each image around the

horizontal axis.

Areas of Interest (AOIs)
For the purposes of analysis and for aspects of our experimental

design, rectangular areas-of-interest (AOIs) were drawn for each

face around the right and left eyes, bridge of nose (i.e. middle of eye

region), right and left half of nose, and right and left half of mouth

(Figure 1b, for example) using EyeLink Data Viewer software. AOIs

were never visible to participants during the experiment.

Design
We varied face orientation (upright or inverted) and pre-

stimulus fixation location (‘‘start position’’) across the trials of an

Start Position Influences Fixations on Faces
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experiment comprised of two phases: study and test. During study,

participants observed 40 faces (20 male) in a self-paced manner. At

test, participants observed 80 faces (the 40 study phase faces plus

40 new faces) for a limited duration and indicated whether or not

they recognized each face as one observed during study (old/new

task) (Figure 1c). For each participant, a random half of the faces

were inverted in each phase, with the orientation of a given face

identical in both phases. The experiment was programmed in

Python and interfaced with the eye-tracker.

During study, participants were instructed to study the faces for

later recognition and viewed each face for as long as desired up to

10 seconds, self-terminating trials with a button press. The test

phase began immediately after the study phase. During test, each

face was presented for only one second and then disappeared.

Participants indicated by button press whether they recognized the

face or not. Participants were instructed to respond within two

seconds following stimulus onset, as soon as they thought they

knew the answer (Figure 1c).

Start positions were either above, below, right of, left of, or in

the center of the internal features of the upcoming face stimulus

(e.g. Figure 1b). Coordinates for a start position were calculated

uniquely for each face stimulus to be equidistant from all of the

nearest internal facial features. For right and left start positions, the

unique coordinate that was equidistant from the centers of the

nearest eye, nearest half-nose, and nearest half-mouth AOI was

calculated numerically for each face. Upper start positions were

equidistant from the center of the two eye AOIs, and the lower

start positions were equidistant from the two half-mouth AOIs.

Distances from the upper and lower start positions to their

respective AOI centers were constrained to be the mean of the of

the right and left start position distances from their respective AOI

centers. The center start position was at the midpoint between the

two half-nose AOI centers (Figure 1b).

Before stimulus onset, participants fixated at the start position,

indicated by a standard Eyelink II calibration target (0.17u
diameter black circle overlaid on a 0.75u diameter white circle) on

the black screen. Participants initiated the trial by pressing a

button while looking at the fixation target. In this period, a drift

correction was performed. A colored dot (0.5u diameter) remained

after drift correction, and the stimulus appeared only after a

participant had fixated at the dot for an accumulated total of

1500 ms. This ensured that drift correction and fixation were

stable prior to stimulus onset. If more than 1500 ms of fixation

away from the start position accumulated before the trial could be

initiated, drift correction was repeated. A fixation was considered

off the start position if it landed more than 0.5u from the center of

the dot. Dot color changed successively from red to yellow to green

in order to signal to the participant that a maintained fixation was

successfully detected at the start position.

In both the study and test phases, there were equal proportions

of trials of each combination of levels of the factors of face

orientation, face gender, and start position. The particular subset

of faces that were in the study phase and also that were inverted

was randomized across participants. For a given face, orientation

Figure 1. Study design. (a) Four example stimuli. Note that all faces were aligned to one another and scaled to be the same size. (b) Calculation of
start positions. Start positions were determined separately for each face and were defined relative to the face. Left and right start positions were
equidistant from centers of the nearest eye, nose and mouth AOIs. Upper and lower start positions were equidistant from the centers of the two eye
or two mouth AOIs, respectively. (c) Trial sequences in study and test phases. A face was only presented if the participant successfully maintained
fixation for a total of 1.5 seconds. After face onset in the study phase, participants were free to study the face for up to 10 seconds and pressed a
button to begin the next trial. In the test phase, faces were presented for one second only and participants responded with button presses to indicate
whether the face was ‘old’ or ‘new’.
doi:10.1371/journal.pone.0031106.g001
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was identical during the study and test phases, but start position

varied. Half the faces were presented with the same start position

at study and test and for the other half, the start position on the

other side of the face was used (e.g. left to right start position

between study and test; upper to lower between study and test).

Analyses
Software. Fixation and AOI data were obtained through

EyeLink Data Viewer software by SR Research. Subsequent

analyses on these data and behavioral data from the test phase

were performed with Matlab (The MathWorks, Inc., Natick, MA,

USA). ANOVAs were performed in SPSS (IBM, Somers, NY).

Behavior. We assessed participants’ discrimination perfor-

mance and reaction time on the old/new recognition task in the

test phase. d9 was computed for discrimination performance for each

participant, broken down by face orientation and start position.

Reaction times for correct trials, broken down by face orientation

and start position, were averaged across trials for each participant,

and analyses were performed using these values.

AOI Analyses. We assessed the relative frequencies of fixations

across the AOIs as a function of our experimental manipulations.

Given the variable numbers of fixations across trials and across

participants, only the first five fixations of each trial were included in

the analyses. Relative frequency was calculated for each AOI as the

number of actual fixations divided by the total number of possible

fixations. ANOVAs on relative frequencies excluded the relative

frequency value for the region outside of the AOIs.

Spatial Density Analyses. We mapped the spatial density of

fixations as a function of our experimental manipulations. Each

fixation was plotted with equal density and spatial extent, and so

fixations were not weighted by the fixation duration. Fixations

beyond the fifth fixation were excluded from the analysis to

ensure equal data size across trials. To ensure that summation of

fixation maps across different face trials produced spatially

meaningful density maps, fixation maps for individual faces

were first aligned to a common reference frame using simple

translations only. This reference frame was defined by the

internal facial features. Specifically, the alignment minimized the

sum of the squared differences between the center of the AOIs for

each face and the average centers of the AOIs across all 80 faces.

Within this common reference frame, fixations were then plotted

as Gaussian densities with a mean of 0 and a standard deviation

of 0.3u of visual angle in both the x and y dimensions. These

density plots were then averaged across trials and across

participants. A small proportion of analyzed fixations (,1.6%

during study, ,0.25% during test) fell outside of the bounds of

the stimulus image region (i.e. onto the black background). To

ensure equal numbers of fixations in the analyses these fixations

were translated to the image edge nearest to the veridical fixation

position. The resulting maps show the spatial fixation densities,

using a color scale from zero to the maximum density value

observed, with zero being transparent. All maps within a single

figure contain the same total number of fixations and so are

scaled the same to allow for direct comparison. For the same

reason, equivalent plots for upright and inverted faces are scaled

the same.

Spatial Density Contrasts. 1) Difference Maps. In order to

view differences in the spatial fixation density between two

conditions, a pixel-wise subtraction between two spatial density

maps was performed for each participant and then averaged

across participants. For contrasts between upright and inverted

faces, the spatial density map for inverted faces was flipped and

aligned with the spatial density map for upright faces before the

subtraction.

2) Statistical Maps. In order to produce maps of statistically

significant differences in the spatial density map contrasts, a Monte

Carlo permutation test was performed on fixation locations

between the contrasted conditions. A Monte Carlo permutation

test (also called an approximate permutation test or a random

permutation test) is a standard, accurate and robust method of

performing a significance test on data that is not known to have a

parametric (e.g. normal) distribution of values, such as our data.

Our statistical analysis is based on methods applied to the analysis

of functional brain imaging data [40] and similar to that used in a

prior study of eye tracking [41].

The null hypothesis in the Monte Carlo permutation tests was

that the distributions of fixation locations of each ordinal fixation

(i.e. fixation 1, fixation 2 etc.) were the same between the

contrasted conditions (e.g. fixation 1 in upright versus inverted

trials, or fixation 3 in right start position versus left). Thus,

exchangeability of fixation locations between the given contrasted

conditions was assumed only for fixations of the same ordinal

value in the sequence of five fixations per trial. 10,400 resampling

iterations were performed for each statistical map. For each

iteration, locations of fixations were resampled for each individual

participant according to the assumed exchangeability, then a new

resampled spatial density contrast was produced. These resampled

maps were then averaged across participants to produce 10400

group difference maps, the distribution of which was used to

determine significance. Maps of p-values were computed pixel-

wise based on the number of corresponding pixels in the

resampling iterations that were greater than a given positively

valued pixel (i.e. where condition 1 had a greater density) in the

true spatial density contrast and that were less than a given

negatively valued pixel (i.e. condition 2 greater) in the true spatial

density contrast. The maps were thresholded at a pixel significance

of p,0.01.

For eye-tracking data, our statistical analysis has advantages

over other methods of performing significance tests on contrasted

fixation maps. A pixel-wise t-test is inappropriate because fixation

density data across participants does not approximate a normal

distribution at each pixel of a heatmap. Pixel-wise non-parametric

tests could create a large multiple comparisons problem, which

grows as the pixel resolution of heatmaps grow. In our analysis,

fixation locations are exchanged rather than pixels; therefore,

increasing the resolution at which heatmaps are displayed does not

exacerbate the multiple comparisons problem. Our analysis is an

alternative to a Random Field Theory approach, which has been

implemented recently by Caldara and colleagues in a free Matlab

toolbox called iMap [42].

3) Cluster Corrections for Multiple Comparisons on Statistical

Maps. In order to reduce the chance of false positives in our

statistical maps due to multiple comparisons, we implemented a

nonparametric cluster correction. This correction is based on

principles that have been applied to the analysis of functional brain

imaging data [40], but, to our knowledge, is novel in the eye-

tracking literature. For each analysis, statistical maps were

produced for 2600 of the 10400 resampled maps that had resulted

from the permutation test. For each of the resulting statistical

maps, the size (in pixels) of the largest cluster of p,0.01signifi-

cance was recorded. Thus a distribution of the maximum cluster

size across the iterations of the permutation test was obtained. The

size of each cluster in the statistical map of the true data was then

compared to the maximum cluster size distribution just obtained.

The cluster threshold was set to be p,0.05; therefore, any

significant clusters of the true data smaller than the top 5% of the

maximum cluster size distribution were eliminated from the

statistical map.

Start Position Influences Fixations on Faces
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Results

Discrimination
Consistent with prior reports we observed a face inversion effect

on discrimination scores (d9). A two-way ANOVA, with Orien-

tation (upright, inverted) and Start Position (left, right, center, up,

down) as within-subject factors revealed a significant main effect of

Orientation with better discrimination for upright than inverted

faces (F(1,18) = 29.42, p,0.001). However, there were no main

effects or interactions involving Start Position (p.0.15, Figure 2a).

An identical two-way ANOVA on reaction time data also revealed

a significant main effect of Orientation (F(1,18) = 8.45, p,0.01;

Figure 2b) and no main effects or interactions involving Start

Position (p.0.14). Further, during study, participants viewed

inverted faces longer than upright faces (mean viewing time:

upright, 6300 ms, inverted, 6636 ms, t = 3.69, p,0.002).

Fixation Patterns: Upright Faces
We focus first on eye tracking data for upright faces during the

study phase before considering the impact of inversion on the

pattern of fixations, and the effect of experiment phase (study

versus test).

Average Fixations Collapsed Across Start Position Show a

Tendency Toward the Left Eye. In order to establish that our

data agreed with prior studies (e.g. [6,7,12]) in which the effect of

start position was not considered, we first analyzed the eye tracking

data by pooling across start positions. In both AOI and spatial

density analyses we observed the expected tendency toward the

upper part of the face (Figure 3). A one-way ANOVA on the

relative frequency of fixations (Figure 3b) revealed a significant

effect of AOI (F(6,114) = 10.82, p,0.001). Post-hoc t-tests revealed

significantly higher relative frequency of fixations for each of the

three eye-region AOIs than either of the mouth AOIs (all

Bonferroni corrected p,0.015). This is also clear in the spatial

density maps where the peak fixation density is just below the eyes

and falls off rapidly toward the lower part of the face (Figure 3c).

Further, consistent with prior reports (e.g. [6,43]), there appears to

be a tendency toward the left side of the face with a higher relative

frequency of fixations for the left than right eye and for the left

than right nose. In terms of the spatial density of fixations, the peak

of the distribution across participants was shifted to the left of the

midline of the face.

While these analyses reveal a similar pattern of fixations to prior

studies, we observed a significant effect of start position. In the

following section, we break down the results by start position.

Fixation Patterns Are Dependent on Start Position. Both

AOI and spatial density analyses revealed striking differences in

fixation patterns as a function of start position (Figure 4). At a

coarse level, data from each of the five start positions showed some

similarities, with a general tendency for fixations to fall toward the

eye region over other parts of the face. However, the specific

distribution of fixations across the eyes and other internal features

varied substantially. A two-way repeated-measures ANOVA on

the relative frequency of fixations with Start Position and AOI (R

Eye, M Eye, L Eye, R Nose, L Nose, R Mouth, L Mouth) as

factors revealed a significant interaction between start position and

AOI (F(24,456) = 5.29, p,0.001). This effect persisted across the

first few fixations. A sequence of two-way ANOVAs for each

ordinal fixation out to the fifth, with AOI and Start Position as

within-subject factors, revealed significant interactions between

Start Position and AOI for each of the first three ordinal fixations,

and a trend for the fifth (First Fixation: F(24,456) = 5.11, p,0.001;

Second Fixation: F(24,456) = 4.34, p,0.001; Third Fixation:

F(24,456) = 2.499, p,0.013; Fourth Fixation: F(24,456) = 1.46,

p.0.17; Fifth Fixation: F(24,456) = 1.725, p,0.083). Thus, the

effect of start position persists beyond the initial fixation.

However, it is clear from the spatial density maps (Figure 3) that

the peak fixation density does not often correspond to a unique

AOI. Thus, the differences revealed in this analysis are subject to

our AOI definitions, which may not be ideal. In later sections, we

will consider direct contrasts of the fixations patterns in spatial

density maps. However, this initial analysis suffices to establish that

start position has a significant impact on the pattern of eye

movements observed. Before characterizing the precise impact of

start position on the spatial distribution of fixations, we consider

the temporal properties of the eye movements and fixations.

Eye Movements for Center Start Position are

Qualitatively Different From Other Start Positions. As

noted earlier, one of the concerns about the commonly used center

start position is that observers could be sampling information

Figure 2. Effects of face inversion on recognition. (a) Face recognition, measured by d9, was significantly greater for upright than inverted
faces. (b) Reaction time also showed an effect of inversion, with longer reaction times for inverted compared to upright faces. Error bars indicate the
between-subjects standard error.
doi:10.1371/journal.pone.0031106.g002
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about the face even before making any eye movements. To

investigate the possibility that information is sampled at center

start position even before a saccade is made, we analyzed the

latency to the first saccade i.e. the time between the onset of the

face and the first saccade (Figure 5a). A one-way repeated

measures ANOVA revealed a highly significant effect of Start

Position (F(4,76) = 18.95, p,0.001). Paired comparisons

(Bonferroni corrected) revealed that latencies did not vary across

the four peripheral start locations (all p.0.38), but the latency to

first saccade for the center start location was significantly longer

than every one of the other start positions (all t.5.33, p,0.001).

The increased time to make an eye movement away from the

initial fixation position strongly suggests that there is some

increased face processing at the center start position even before

any eye movements have occurred.

Given this difference in saccade latency between center and

peripheral start locations we further examined the duration of the

first fixation following this initial saccade (Figure 5b). Two

participants evidenced average durations less than 2.5 standard

deviations from the group mean, and were excluded from this

analysis. However, the overall results do not change with the

inclusion of these participants. We observed the same pattern as

for the initial saccade with longer fixation duration for the center

start position compared with the others. A one-way repeated

measures ANOVA revealed a significant effect of Start Position

(F(4,68) = 3.07, p,0.05).

Taken together, these results suggest that, for the center start

position, the experimenter and not the participant determine the

initial information sampled. More generally, given the qualitative

differences in the timing of eye movements between central and

peripheral start positions, central and peripheral starting positions

cannot be directly compared, and we focus in the rest of our

analyses on the four peripheral start positions only.

First Fixation is Qualitatively Different From Later

Fixations. We found that first fixation was shorter than

subsequent fixations for all peripheral start positions (Figure 6a).

Two-way ANOVA on fixation duration with peripheral Start

Position (Left, Right, Upper, Lower) and Fixation Number (1–5) as

factors revealed a significant main effect of Fixation Number

(F(4,68) = 20.57, p,0.001), and a main effect of Start Position

(F(3,51) = 2.96, p,0.048) arising from slightly longer average

fixation durations for the lower and left start positions. Paired

comparisons (Bonferroni corrected) between durations for each

Fixation Number collapsed across Start Position revealed that the

first fixation was shorter in duration than the other fixations (all

t.5.50, p,0.001) and that the other fixations did not differ from

each other in duration (all p.0.1).

To investigate the evolution of the fixation patterns with the

center start position excluded, we plotted for each combination of

peripheral start position and ordinal fixation number the average

fixation location for each individual participant (Figure 6b). To

evaluate the effect of start position we considered the group

average location of each fixation in the horizontal and vertical

dimensions (Figure 6c). On the first fixation there was a clear effect

of start position. The first fixations landed near the center of the

face, regardless of peripheral start position, with a slight tendency

toward the start position itself. In particular, the first fixations for

the right start position were significantly to the right of the first

fixations for the left start position (t = 4.10, p,0.001) but these

fixations did not vary in vertical position (t = 0.53, p.0.1)

(Figure 6b, 6c). The opposite was true for the upper and lower

start positions, for which the first fixations for the upper start

position were significantly higher than the first fixations for the

lower start position (t = 5.28, p,0.001) but did not vary in

horizontal position (t = 1.70, p.0.1). On subsequent fixations,

there was also a clear effect of start position, but with a tendency

toward the side of face opposite the start position. Thus, the

second fixations for the right start position were significantly to the

left of the second fixations for the left start position (t = 7.76,

p,0.001), but again there was no difference in vertical position

(t = 0.99, p.0.1). Similarly the second fixations for the upper start

position were significantly lower than the second fixations for the

Figure 3. Distribution of fixations for upright faces averaged across start positions. (a) Example of AOIs for one face. AOIs could be
divided into three separate feature regions: eye (red), nose (yellow), and mouth (green). ‘L’, ‘M’ (eye region only), and ‘R’ refer to the left, middle, and
right, respectively, of the facial feature regions. (b) Relative frequencies of fixations across AOIs for the first five fixations revealed more fixations to
the eye region compared with the nose and mouth regions. Error bars indicate the between-subjects standard error. (c) Spatial density and profile
plots for the first five fixations showing more fixations to the eye region with a tendency toward the left side of the face. The face plotted beneath the
spatial density plot is the average of all faces after alignment. Fixations are plotted as Gaussian densities summed across trials and participants.
Fixation density is indicated using a colorscale from zero to the maximum density value observed, with zero being transparent. Profile plots to the
right and below the spatial density map are summations of the spatial densities across each dimension. The vertical dotted line indicates the midline
of the average face. The horizontal dotted line indicates the vertical position of the center of the eyes.
doi:10.1371/journal.pone.0031106.g003
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Figure 4. Impact of start position on distribution of fixations for upright faces. AOI, spatial density, and profile plots reveal a strong effect
of start position on the distribution of fixations. For example, the overall tendency to one side of the face varies across start positions and switches
from the left side of the face for the right start position to the right side of the face for the left start position. Fixation density in the heatmaps is
indicated using a colorscale from zero to the maximum density value observed across the five heatmaps, with zero being transparent. Error bars
indicate the between-subjects standard error.
doi:10.1371/journal.pone.0031106.g004

Start Position Influences Fixations on Faces

PLoS ONE | www.plosone.org 7 February 2012 | Volume 7 | Issue 2 | e31106



lower start position (t = 3.87, p,0.001) with no difference in

horizontal position (t = 0.45, p.0.1). This tendency toward parts

of the face opposite the start position was maintained throughout

fixations 2–5 for the left/right start positions (all t.4.74,

p,0.001), but was slightly weaker for the upper/lower start

positions and was significant on fixations 2–4 only (all t.2.43,

p,0.05). Importantly, the general spatial patterns observed on

average across the first five fixations (Figure 4) only emerged on

the second fixation. Combined with the finding that the first

fixation is relatively short, this result suggests that the location of

the first fixation is very heavily constrained by start position and

may reflect a generic scanning strategy rather than any face

specific processing. In light of this, we excluded the first fixation

from the remainder of our fixation analyses for upright faces.

Direct contrasts of fixation patterns between start

positions. To characterize the effect of start position more

precisely we conducted direct comparisons of the fixation patterns

observed for the peripheral start positions. We conducted

subtractions of the spatial density maps and computed statistical

significance using Monte Carlo permutation tests (see Methods). For

these analyses we used only fixations 2–5. Here, we focus on the

comparison of left and right start positions (Figure 7a) and upper

and lower start positions (Figure 7b). Note that in the spatial density

maps for each start position in Figure 7 (with the first fixation

removed), the profiles are more distinct than those shown earlier in

Figure 4 with a weaker spatial density toward the center of the face.

Contrasting right versus left start position reveals a general

advantage for the opposite side of the face (Figure 7a). The direct

subtraction of these results reveals a symmetrical pattern with each

start position showing a relative advantage for the opposite side of

the face, primarily around the eyes but extending onto lower parts

of the face as well. Thus, the right start position showed a relative

advantage for the left eye while the left start position showed a

relative advantage for the right eye.

A similar relative advantage for the opposite side of the face is

also clear in the direct comparison of upper and lower start

positions (Figure 7b). The upper start position showed a relative

advantage for the mouth and nose while the lower start position

showed a relative advantage for the upper part of the eye region

bilaterally. Note that even though the eye region was fixated

substantially with both upper and lower start positions, the precise

locations of those fixations differed, with fixations for the upper

start location predominantly below the eyes and fixations for the

lower start position predominantly above the eyes.

In summary, fixation patterns for upright faces were highly

influenced by start position. Most strikingly the often-reported

advantage for the left side of the face was abolished for the left start

position, which evidenced a right side advantage. This effect of

start position was present even on the fifth fixation. The central

start position, commonly used in prior studies [11,14,23],

evidenced a longer latency to first saccade and first fixation

duration than peripheral start positions suggesting that informa-

tion is being sampled substantially even before the first saccade

and highlights the strong potential biases likely introduced by the

use of this start position. Regardless of start position, the first

fixation was significantly shorter than the subsequent fixations and

heavily impacted by start position. Finally, in general, fixations

tended to fall on the opposite side of the face to the start position.

Fixation Patterns: Inverted Faces
We conducted the same series of analyses on inverted faces as we

did for upright faces, finding very similar effects of start position and

ordinal fixation number. As with upright faces, latency to first saccade

(Figure 8a) was dependent on start position (F(4,76) = 23.903,

p,0.001). Paired comparisons (Bonferroni corrected) revealed that

the latency to first saccade for the center start position was

significantly longer than any of the other start positions (all t.4.77,

p,0.001), and there were no significant differences between latencies

for the non-center start positions (all p.0.05). Further, as for upright

faces, the duration of the first fixation was similarly dependent on start

position (Figure 8b) (F(4,68) = 4.53, p,0.01) with longer first fixation

durations for the center compared with peripheral start positions.

To directly test the effect of inversion on the temporal properties

of the eye movements we ran a series of ANOVAs including

Orientation as a factor. For latency to first saccade, as expected,

there was a main effect of Start Position (F(4,76) = 34.98,

p,0.001). In addition there was a main effect of Orientation

(F(1,19) = 4.73, p = .042), arising from slightly longer latencies for

inverted than upright faces, but there were no interactions

involving Orientation (p.0.1). Thus, inversion had little impact

on the overall effect of start position. An identical ANOVA on the

duration of the first fixation (Figure 8b) revealed a main effect of

Start Position only (F(4,68) = 7.83, p,0.001), reflecting the longer

duration of the first fixation for the center start position, and no

effects involving Orientation (p.0.1).

Focusing on the peripheral start positions only, an ANOVA on

the fixation durations for inverted faces (Figure 9a) with Fixation

Number and Start Position revealed a main effect of Fixation

Figure 5. Impact of start position on timing of initial saccades and fixations for upright faces. (a) Average latency to first saccade by start
position. Note the longer delay between face onset and the first saccade for the center compared to peripheral start positions. (b) Average duration
of first fixation by start position. Note the longer fixation duration for the center compared to peripheral start positions. All error bars indicate the
between-subjects standard error.
doi:10.1371/journal.pone.0031106.g005
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Number only (F(3,51) = 29.90, p,0.001). As with upright faces, the

duration of the first fixation was shorter than fixations 2–5 (all

t.5.18, p,0.001). However, unlike upright faces, the duration of

the second fixation was also shorter than fixations 3–5 (all t.3.46,

p,0.01). To directly compare upright and inverted faces, fixation

durations were entered into an ANOVA with Fixation Number and

Figure 6. Evolution of fixations over ordinal number for upright faces. (a) Average duration of each ordinal fixation. Note the much shorter
duration of the first than subsequent fixations. (b) Distribution of individual participants’ fixation locations broken down by start position for each
ordinal fixation (F1–F5). Fixation locations for the first fixation were generally toward the center of the face, but with a relative tendency to fall closer
to the start position. Fixation locations for subsequent fixations tended to fall on the side of the face opposite the start position. For example, on the
first fixation, fixations for the left start position show a tendency to the left side of the face while those for the right start position show a tendency to
the right side of the face. On subsequent fixations, these tendencies reverse with the right start position showing a tendency to the left side of the
face and the left start position to the right side of the face. A similar effect can be observed for the upper and lower start positions. (c) Average
locations from (b). The two left plots give the average horizontal position of fixations in degrees of visual angle relative to the midline of the face
(dotted line). The two right plots give the average vertical position relative to the vertical position of the eyes (Figure 3b). Note the strong effect of
the left and right start positions on horizontal but not vertical position (top panels) and the opposite effect for the upper and lower start positions
(bottom panels). Error bars indicate the between-subjects standard error.
doi:10.1371/journal.pone.0031106.g006
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Orientation as factors, revealing a main effect Fixation Number

only (F(4,68) = 25.41, p,0.001) and no main effects or interactions

involving Orientation (p,0.05). Thus, inversion had minimal

impact on the different fixation durations for the first five fixations.

Plotting the average fixation location for each combination of

peripheral start position and fixation number in each individual

participant revealed very similar effects to those observed for

upright faces. First fixations landed near the center of the face with

Figure 7. Direct comparison of spatial distributions of fixations for different start positions on upright faces. (a) Right vs. left start
position. The first two panels are the raw spatial density maps for fixations 2–5. The third panel shows the subtraction of these spatial density maps.
The fourth panel plots those locations where that difference was significant (p,0.01) according to a Monte Carlo permutation test, which assumed
exchangeability of fixations across contrasted start positions for each ordinal fixation. The map was cluster corrected (cluster threshold p,0.05, see
methods). Note the significant advantage for the side of the face opposite the start position. (b) Same as (a) but for the upper and lower start
positions. Note again the strong and significant advantage for the side of the face opposite the start position. Fixation density in the raw heatmaps is
indicated using a colorscale from zero to the maximum density value observed across the heatmaps for start position, with zero being transparent.
The difference in fixation density in contrast heatmaps is indicated using a colorscale from plus to minus the largest absolute difference observed
across start position contrast maps.
doi:10.1371/journal.pone.0031106.g007

Figure 8. Impact of start position on timing of initial saccades and fixations for inverted faces. (a) Latency to first saccade. Note that the
effect of start position was similar to that observed for upright faces with a longer latency for center compared to peripheral start positions
(Figure 5a). (b) Duration of the first fixation. Again that the effect of start position was similar to that observed for upright faces with a longer fixation
duration for center compared to peripheral start positions. All error bars indicate the between-subjects standard error.
doi:10.1371/journal.pone.0031106.g008
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a tendency toward the start position (Figure 9b). Thus, first

fixations for the left start position were significantly to the left of

those for the right start position (t = 3.09, p,0.01), and first

fixations for the lower start position were significantly lower than

first fixations for the upper start position (t = 4.98, p,0.001). As

with upright faces, the central tendencies for each start position

switched to the side of the face opposite the start position on the

second and subsequent fixations. The horizontal difference in

fixation location between the left and right start positions was

significant for fixations 2–5 (all t.3.46, p,0.01), and the vertical

difference between the upper and lower start positions was

significant on fixations 2–4 (all t.3.60, p,0.002) (Figure 9c).

Direct comparison of the spatial density maps for the right and

left start positions across fixations 2–5 revealed a similar pattern to

Figure 9. Evolution of fixations over ordinal number for inverted faces. (a) Average duration of each ordinal fixation. Note the much shorter
duration of the first than subsequent fixations as was observed for upright faces. (b) Distribution of fixation locations across individual participants
broken down by start position for each ordinal fixation (F1–F5). As for upright faces, fixation locations for the first fixation were generally toward the
center of the face, but with a relative tendency to fall closer to the start position. Subsequent fixations locations tended to fall on the side of the face
opposite the start position just as for upright faces. Note that all start positions are defined relative to the face. (c) Average locations from (b). Note
the similar effects to those shown in Figure 6c. Error bars indicate the between-subjects standard error.
doi:10.1371/journal.pone.0031106.g009
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that observed for upright faces, with each start position showing a

relative advantage toward the opposite side of the face (Figure 10a).

Similarly, comparison between upper and lower start positions

revealed a relative advantage for the right side of the mouth and

nose regions for the upper start position and toward the upper

central part of the eye region for the lower start position

(Figure 10b).

Overall, with inverted faces, we saw very similar effects of start

position to those observed with upright faces. There was an

increased latency to first saccade for the center compared with

non-center start positions, a shorter first fixation, a general

advantage for the upper parts of the face and a strong effect of start

position with a relative advantage for the opposite side of the face

for the non-center start positions.

Spatial density of fixations: upright versus inverted

faces. So far we have demonstrated similar effects of start

position on upright and inverted faces, but have not directly

compared the spatial density of fixations for upright versus inverted

faces. A prior study [10] reported that for upright faces people make

relatively more fixations to the eyes and relatively fewer fixations to

the mouth region compared with inverted faces (but see [20,38]).

Comparison of Figures 7 and 10 shows that the overall spatial

envelope of fixations is quite similar between upright and inverted

faces. However, the relative advantage for the eye regions over the

mouth regions is weaker for inverted compared with upright faces.

To directly compare the pattern of eye movements for upright and

inverted faces, we first contrasted the patterns of fixations averaged

across start position, but excluding the first fixation and the central

start position (Figure 11). While this difference reveals more

fixations to the eye region for upright faces and more fixations to

the mouth region for inverted faces it is important to note that there

are some parts of the eye region that show a relative advantage for

inverted faces. In particular, there are relatively more fixations to

the upper part of the right eye for inverted faces compared with

upright faces.

However, as we have shown above, there is a large effect of start

position even for inverted faces. This effect of start position on

both upright and inverted faces must inevitably affect the contrast

of upright and inverted faces. Breaking down the contrast by start

position, we find that while upright faces do seem to have relatively

more fixations to the eyes and inverted faces relatively more

fixations to the mouth region, the precise differences between

upright and inverted are dependent on start position (Figure 12).

For example, for both the upper and lower start positions, inverted

faces have relatively more fixations above the right eye. This is not

observed for the center and left start positions. Similarly, while the

lower start position shows a relative advantage for inverted faces in

the center of the mouth, for other start positions the advantage for

inverted faces is on the chin or closer to the nose. These findings

suggest that while the coarse difference between upright and

inverted faces is similar across start positions (more fixations to the

eye region for upright, more fixations to the mouth region for

inverted), the specific locations of the difference in fixation pattern

between upright and inverted faces vary as a function of start

position.

Thus, fixation patterns for upright and inverted faces both show

a relative advantage for the upper over the lower part of the face.

At a coarse level, upright faces show relatively more fixations to

the eye region and inverted faces to the mouth region consistent

with at least one prior report [10]. However, the fine-scale

differences in fixations between upright and inverted faces are

dependent on start position.

Figure 10. Direct comparison of spatial distributions of fixations for different start positions on inverted faces. (a) Contrast between
right and left start positions. All conventions are the same as in Figure 7. Note the symmetrical advantage for the side of face opposite the start
position as with upright faces. (b) Contrast between upper and lower start positions. Note, again, the advantage for the side of the face opposite the
start position.
doi:10.1371/journal.pone.0031106.g010
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Fixation Patterns: Study Versus Test
So far we have only considered data from the study phase of the

experiment, when viewing of the faces was relatively uncon-

strained. In the test phase of the experiment, faces were only

presented for 1 second each and participants had to judge

immediately whether they recognized the face or not. Participants

Figure 11. Direct comparison of spatial distributions of fixations for upright and inverted faces. The first two panels show the spatial
density of fixations averaged across the peripheral start positions for upright and inverted faces, respectively. Note that there is greater variability in
the location of fixations across the internal features for inverted than upright faces, but that the same general pattern holds. The third panel shows
the subtraction of the first two panels and the fourth panel shows statistically significant differences. Overall, there are relatively more fixations to the
eye region for upright compared to inverted faces and relatively fewer fixations to the mouth region. Fixation density in the raw heatmaps is
indicated using a colorscale from zero to the maximum density value observed across the heatmaps pooling the peripheral start positions, with zero
being transparent. The difference in fixation density in contrast heatmaps is indicated using a colorscale from plus to minus the largest absolute
difference observed in the contrast map.
doi:10.1371/journal.pone.0031106.g011

Figure 12. Impact of start position on the comparison of upright and inverted faces. Statistically thresholded maps for the contrast
between upright and inverted faces by start position. Regions with p,0.01 significance for upright faces are shown in red and those for inverted
faces are shown in blue. At a coarse scale, the difference is consistent with more fixations to the eyes in upright and toward the lower part of the face
in inverted. However, the precise location and extent, particularly of which part of the lower face accrues more fixations in inverted and which part of
the eye region accrues more fixations in upright varies with start position.
doi:10.1371/journal.pone.0031106.g012
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made fewer fixations during face presentation in the test phase, but

the basic patterns of fixations and effects of start position were very

similar to the study phase.

In particular, the pattern of Start Position timing differences for

the first saccade and subsequent fixations were nearly identical in

study and test for both upright and inverted faces (Figure 13a–b).

An ANOVA on latency to first saccade with Phase (Study, Test),

Start Position, and Orientation as within-subject factors revealed a

main effect of Start Position (F(4,76).55.40, p,0.001), reflecting

the longer latency for the center start position, and a main effect of

Orientation (F(1,19).8.82, p = 0.008), reflecting slightly longer

latencies to the first saccade for inverted than upright faces. There

was also a main effect of Phase (F(1,19).21.12, p,0.001), and an

interaction of Orientation and Start Position (F(4,76).2.70,

p = 0.037). An identical ANOVA on the duration of the first

fixation also revealed a main effect of Start Position

(F(4,60) = 12.79, p,0.001), again reflecting the longer duration

for the center start position, but no other significant effects. Finally,

an ANOVA on fixation duration across the peripheral start

positions (Figure 13c) with Phase, Fixation Number (1,2,3), and

Orientation revealed a main effect of Fixation Number

(F(2,32) = 47.52, p,0.001), reflecting the shorter duration of the

first fixation, and Phase (F(1,16) = 6.47, p,0.05) reflecting longer

fixations during test than study. There was also an interaction

between Orientation and Fixation Number (F(2,32) = 4.21,

p,0.05), reflecting shorter 2nd fixations for inverted than upright

faces. Thus, overall, the temporal characteristics of the eye

movements we observed during study were very similar during

test.

The general pattern of fixations observed in test was also very

similar to that observed in study (Figure 13d). In general, the first

fixation showed a strong tendency toward the side of the face

closest to the start position, while the subsequent fixations showed

a strong tendency toward the other side. Thus, the pattern of

fixations observed in test were very similar to those observed in

study, with the exception of there being fewer of them due to the

restricted viewing time.

Discussion

We investigated the effect of start position on the pattern of

fixations observed when people view upright and inverted faces.

Consistent with at least one previous study [10], we found greater

consistency and more fixations on the eye region and less on the

mouth region for upright compared with inverted faces, possibly

reflecting differences in cognitive processing. However, we also

found that start position, a non-stimulus, non-task factor, has a

large impact on the location of fixations throughout the first five

fixations of face viewing. In addition, we found that i) the center

start position was qualitatively different from other start positions,

with longer initial saccade latencies suggesting significant process-

ing of facial information even prior to the first eye movement, and

ii) for all start positions, the first fixation was qualitatively different

from subsequent fixations with a shorter duration and a different

spatial distribution of fixations. These effects were observed for

both upright and inverted faces and during both study and test

phases, suggesting they reflect basic properties of scanning eye

movements. Taken together, the temporal and spatial effects of

start position demonstrate that the absolute locations of fixations

Figure 13. Analysis of fixations during the test phase. (a) Latency to first saccade by start position for upright and inverted faces. As for the
study phase, there was a longer latency for the center start position compared with the peripheral start positions. (b) Duration of first fixation by start
position for upright and inverted faces. Note the longer duration for the center start position, as observed during the study phase. (c) Duration of the
first three fixations for the peripheral start locations for both upright and inverted faces. As for the study phase, the first fixation was significantly
shorter than the subsequent fixations. All error bars indicate the between-subjects error. (d) Distribution of individual participants’ fixation locations
for upright faces broken down by start position for each fixation number (F1–F3). The same pattern was observed as during the study phase with first
fixation close to the center of the face and subsequent fixations landing on the opposite side of the face to the start position.
doi:10.1371/journal.pone.0031106.g013
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during face processing are strongly influenced by factors beyond

stimuli and task, possibly reflecting influences of visuomotor effects

or simple scanning strategies. Critically, our results suggest that

previously reported fixation patterns based on a single start

position or the average across multiple start positions may not

accurately reflect the information used in face processing.

Considering first the peripheral start positions, each strongly

influenced the pattern of fixations observed. First fixations landed

near the center of face with a slight tendency toward the start

position (see also [44]). On subsequent fixations this tendency

flipped, and a strong tendency for fixations to land on the side of

the face opposite the start position emerged. Combined with the

much shorter duration of the first compared to subsequent

fixations, this suggests that the location of the first fixation is highly

dependent on the start position and may reflect a simple initial

localizing saccade. [44] It has previously been suggested [28] that

the location of the first fixation on faces may reflect the center-of-

gravity effect or the tendency of saccades to land at the center of

objects [29,30]. Note, however, that Bindemann and colleagues

[28] pooled their data across start positions making it unclear to

what extent the effect they observed reflects a center-of-gravity

effect or an artifact of averaging. Arguably, the location of the first

fixations in our data could reflect a center-of-gravity effect

combined with a saccadic undershoot [31,32], causing the

maintained tendency toward the start position. However, this

explanation is insufficient to explain the persistence of the

differences in fixation patterns across the subsequent fixations.

Further, and most importantly, in terms of information use it is the

precise fixation location that is critical, as it is the point of highest

acuity, not the presumptive target of any saccade.

Following the initial fixation, we observed a subsequent strong

bias to the opposite side of the face. Strikingly, the previously

reported tendency to fixate the left over the right side of the face

[6,43,45,46], which has been assumed to reflect a left-side bias and

right hemisphere dominance in face perception [45,47,48], was

reversed in our data for the left start position (but present for other

start positions). This pattern of results is consistent with a naive

sampling strategy in which the observer simply fixates high

contrast facial features as far from those that have already been

sampled as possible, increasing information gain. However, recent

studies suggest that simple information gain alone may not drive

eye movements. For example, in a study of eye movements to

simple geometric contours [44], eye movements were better

characterized as reducing local uncertainty, not maximizing total

information gained. Further, when peripheral background infor-

mation is masked or blurred, eye movements tend to follow intact

information near the fovea, rather then projecting into unseen

regions, counter to the predictions of information gain [49].

Previous studies adopting multiple off-face starting positions

[6,7,21,28] have varied the position of the face, with an initial

fixation at the center of the screen, we used a constant face

position at screen center and varied the location of the initial

fixation. We chose this approach so that any differences in eye

movements could not be ascribed to effects caused by, for

example, the varying location of the edge of the screen with

respect to the face. While the general position of the face was

therefore predictable in our study, in prior studies the position was

unpredictable preventing participants from planning any eye

movements until the face had actually appeared on the screen.

Although, this predictability may have contributed to the effect of

start position we observed, we would still expect an effect of start

position when face position is unpredictable since there is still

variation in the relative location of facial features with respect to

the start position.

Despite the large differences in fixation patterns caused by

varying start position, behavioral performance was very similar

across start positions. Even, for the left start position when

participants showed a preference for the right rather than the left

side of the face, there was no impact on behavioral performance.

These results suggest two main possibilities, which are not

mutually exclusive. First, the processing of facial information

may not be tightly restricted to the fovea, and the specific fixation

locations only weakly linked to the information being extracted

[50]. For example, fixation locations near the eyes for the upper

start position tended to land below the eyes, whereas those for the

lower start position tended to land just above the eyes. In both

cases the participants may be extracting similar information from

the eyes. Second, a recent study, in which starting positions were

above and below the face, reported that two fixations only were

sufficient for participants to achieve optimal recognition perfor-

mance [6]. This finding implies that only a very limited subset of

the information foveated during free scanning is necessary for

recognition. Given the large variation in fixation patterns we

observed over the first two fixations across start positions, this

finding implies many different fixation patterns are capable of

supporting face recognition. These considerations highlight how

important it is to directly relate eye movement patterns with

behavioral performance to ascertain their significance (e.g. [6]).

Based on the average fixation locations over the first two

fixations, Hsiao and Cottrell concluded that fixations near the

center of the nose were optimal for recognition [6]. However, it is

important to note that they averaged data from two start positions

roughly corresponding to our upper and lower start positions. A

close look at our data shows that for upright faces while the average

fixation location for both the first and second fixation indeed land

near the center of the nose, there are large differences in fixation

patterns for these two start positions (Figure 14a). First, very few

fixations actually land in the location identified by the averaging and

thus suggestions that either information available at this location or

that fixations to this location are optimal are tenuous. Second, the

locations of fixations for the upper and lower start position reverse

across the first two fixations. On the first fixation, the fixations for

the upper start position are near the bridge of the nose, while those

for the lower start position are near the tip of the nose. However, on

the second fixation, these distributions completely switch. This

striking difference is completely obscured by averaging across start

positions (Figure 14b).

The problem of biases introduced by specific start positions is

perhaps most serious for the frequently used center start position.

In our data, the delayed initial saccade latency and longer initial

fixation both suggest that substantial face processing begins at the

initial presentation of the face. Despite its wide use in the literature

(e.g. [11,14,23]), this start position clearly introduces processing of

facial information which is entirely dependent on the experiment-

er’s choice of the position of the fixation cross on the face rather

than on anything particular to the stimulus and task. Unfortu-

nately, there is no easy solution to this problem as excluding the

fixation prior to the first saccade simultaneously excludes the

processing occurring during that fixation, and including the first

fixation blends the experimental bias into the analysis. The

difference in the temporal dynamics between the center and

peripheral start locations also renders direct comparisons either

within or across studies very difficult. It is impossible to reasonably

equate the first fixation of a center start position trial with one that

used a peripheral start position. This is not to suggest that the

center start position should never be used, rather it can only

provide useful information based on comparisons between

conditions that used only the center start position and if it is used
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any interpretation of fixation data must take into account the

information that is likely extracted prior to the first saccade.

Consistent with differences in cognitive processing for upright

and inverted faces and data from at least one prior eye tracking

study [10], we did observe differences in fixations to upright and

inverted faces. While the distributions of fixations for upright and

inverted faces were both largely confined to the internal facial

features with a similar spatial envelope, for inverted faces there

were relatively fewer fixations on the eye region and relatively more

on the lower part of the face. However, the absolute tendency

toward the upper part of the face was not completely eliminated

under inversion. These differences in fixations between upright

and inverted faces may contribute to the poorer behavioral

performance for inverted faces. Further, while the course effects

were similar, the precise location of the differences between

upright and inverted faces differed by start position.

In contrast to our findings and those of Barton and colleagues

[10], two other studies of fixations to upright and inverted faces

reported little or no effect of orientation [20,38]. There are a

number of possible explanations for this discrepancy. First,

differences in experimental design may be important. For

example, Rodger and colleagues did observe differential fixation

patterns between upright and inverted faces that are qualitatively

similar to those we found (compare our Figure 11 with the data

from Western Caucasian participants in their Figure 5). These

differences did not reach significance in their analyses, but this

may largely be an issue of power as inversion was a between-

subjects factor in their study but within-subjects in ours. Williams

and Henderson [20] did test inversion within-subject, but they

principally used AOI analyses, which are strongly impacted by the

precise definition of the AOI borders (for discussion of this issue

see, for example, [38,42]). Second, and more generally, the strong

effect of start position we observed suggests that other non-

stimulus, non-task factors may have also influenced fixations

during face processing. For example, in comparing our findings

with those of Rodger and colleagues [38] and Williams and

Henderson [20] design differences such as the size of the faces or

the distance of the initial fixation from the faces may also be

having an impact. To the extent that non-stimulus, non-task

factors affect fixation patterns, comparisons between studies and

generalizations of findings are difficult to make.

Implications for Eye tracking Research
Our findings have important implications for the use of fixation

patterns as an index of information processing and for the design

of eye tracking studies. Our study focused on face processing, but

our findings likely extend to use of visual fixations in other stimulus

domains. Most importantly, our results demonstrate that inter-

preting the absolute location of fixations is extremely difficult. This

caveat, particularly as it relates to potential visuomotor effects on

fixation locations, is already well understood in the reading

literature (e.g. [51,52]) but seems to be largely ignored in studies of

eye movements to faces. Eye tracking studies must take into

account even the simple case of variation in start position, as

absolute fixation locations may reflect tendencies introduced by

the start position as much as the stimuli and the task. In particular,

given the processing that likely occurs even prior to the first

saccade, it is preferential to avoid using a center start position.

Given the wide variation in fixation patterns observed between

start positions, multiple start positions should be used and direct

comparisons should be made between these start positions.

Importantly, our findings suggest that simply averaging data

across start positions will tend to artificially regress fixation

locations toward the center of the face. Importantly, we do not

mean to suggest that fixation patterns cannot provide useful

information about visual processing, nor that eye movements are

epiphenomenal. In fact, it has been demonstrated that the ability

to freely make eye movements improves discrimination perfor-

mance for faces [8,9]. Furthermore, prior studies demonstrating

differences in fixation patterns between groups or between

conditions are not incorrect. The problem is in interpreting what

the differences in absolute location actually mean with respect to

the information utilized. Additionally, our study shows that the

non-stimulus, non-task factors imposed in experiments can

drastically influence eye-movement patterns, and so the eye-

movements observed in previous studies may not reflect ecological

eye-movements as closely as has been assumed. Alternative

approaches, such as gaze-contingent paradigms (e.g. [49,50,53])

Figure 14. The problem of averaging across start positions. (a) First fixation locations across participants for the upper (blue) and lower
(yellow) start positions for upright faces are replotted from Figure 6. The average location across these two start positions is plotted for each
individual subject in red. Note that this averaging causes a regression to the center of face and obscures the tendency to fixate the side of face closest
to the start location. Importantly, there is very little overlap in the distributions of fixation locations for the upper and lower start positions. (b)
Average fixation locations, relative to the position of the eyes, in the vertical dimension for the upper and lower start positions for the first two
fixations replotted from Figure 6. The average vertical location between these two start positions is plotted in red. Note that the average completely
obscures the large shift in vertical bias between the first and second fixation. Error bars indicate the between-subjects error.
doi:10.1371/journal.pone.0031106.g014
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in which the information available at each fixation is systematically

controlled, may help overcome some of these difficulties. The

addition of converging evidence from other paradigms assessing

information use, such as Bubbles [54] or reverse correlation

analyses [55,56], would also strengthen any claims. In sum, what

we are suggesting is that the effect of experimental procedure must

be carefully considered and controlled before making direct links

between eye movement patterns and information use.
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