
Earth Syst. Sci. Data, 9, 721–738, 2017
https://doi.org/10.5194/essd-9-721-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

SPREAD: a high-resolution daily gridded precipitation
dataset for Spain – an extreme events frequency and

intensity overview

Roberto Serrano-Notivoli1,2,3, Santiago Beguería3, Miguel Ángel Saz1,2, Luis Alberto Longares1,2, and
Martín de Luis1,2

1Department of Geography and Regional Planning, University of Zaragoza, Zaragoza, 50009, Spain
2Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, 50009, Spain

3Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC),
Zaragoza, 50059, Spain

Correspondence to: Roberto Serrano-Notivoli (rs@unizar.es)

Received: 5 May 2017 – Discussion started: 7 June 2017
Revised: 17 August 2017 – Accepted: 18 August 2017 – Published: 14 September 2017

Abstract. A high-resolution daily gridded precipitation dataset was built from raw data of 12 858 observato-
ries covering a period from 1950 to 2012 in peninsular Spain and 1971 to 2012 in Balearic and Canary islands.
The original data were quality-controlled and gaps were filled on each day and location independently. Using
the serially complete dataset, a grid with a 5× 5 km spatial resolution was constructed by estimating daily pre-
cipitation amounts and their corresponding uncertainty at each grid node. Daily precipitation estimations were
compared to original observations to assess the quality of the gridded dataset. Four daily precipitation indices
were computed to characterise the spatial distribution of daily precipitation and nine extreme precipitation in-
dices were used to describe the frequency and intensity of extreme precipitation events. The Mediterranean coast
and the Central Range showed the highest frequency and intensity of extreme events, while the number of wet
days and dry and wet spells followed a north-west to south-east gradient in peninsular Spain, from high to low
values in the number of wet days and wet spells and reverse in dry spells. The use of the total available data in
Spain, the independent estimation of precipitation for each day and the high spatial resolution of the grid allowed
for a precise spatial and temporal assessment of daily precipitation that is difficult to achieve when using other
methods, pre-selected long-term stations or global gridded datasets. SPREAD dataset is publicly available at
https://doi.org/10.20350/digitalCSIC/7393.

1 Introduction

Daily precipitation is a key variable to understanding the be-
haviour of extreme weather events and the severe impacts
they cause on hydrological systems, in natural systems and
on human societies. These impacts can be considered in re-
gional and local plans which can help to mitigate major dis-
asters if the correct environmental data are available. Unfor-
tunately, the raw climatic information is usually highly frag-
mented in time and discontinuous in space. Quality control
and reconstruction processes are therefore in high demand,
as well as final products such as serially continuous observa-

tional series or gridded datasets. High-resolution spatiotem-
poral precipitation datasets are useful tools for land manage-
ment, and their availability over a complete region can be
useful to many other fields due to the relevance of precipi-
tation in many disciplines as hydrology (for instance in wa-
ter resources management at catchment scale) (e.g. Werner
and Cannon, 2016; Kay et al., 2015; Lorenz et al., 2014;
Maurer et al., 2002), environmental risks such as droughts
(e.g. Touchan et al., 2011; Vicente-Serrano et al., 2010a;
Bordi et al., 2009; Andreadis et al., 2005), floods (e.g. Hart-
mann and Andresky, 2013; Rojas et al., 2011) or wildfires
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(Westerling et al., 2003), groundwater recharge (e.g. Döll and
Fiedler, 2008) or agricultural applications (e.g. Mishra and
Cherkauer, 2010; Lo et al., 2007). Upon the development of
these kinds of datasets, the researchers cannot only improve
their studies in analytic climatology but also in environmen-
tal studies, habitat modelling, climate change model valida-
tions, relations of climate and vector diseases, crop forecast-
ing, agroclimatic selection of plant landraces, palaeoclimatic
analysis supported on the observational period, etc. Gridded
datasets provide valuable products that can be used for both
scientific and decision-making policy purposes.

The number and density of climate observatories are finite.
Therefore, there have been many contributions over the last
decade to solve this problem by creating high-resolution and
world-based gridded datasets based on the (geo)statistical re-
lations of the observatories (New et al., 2002; Hijmans et al.,
2005; Di Luzio et al., 2008; Harris et al., 2014; Schamm
et al., 2014). However, these global datasets are often not
optimum for regional analysis, where a higher resolution
both in space and time is required (Herrera et al., 2012).
Increasing temporal resolution from monthly or annual to
daily scale allows analysis of other relevant components of
the climate, such as the extreme precipitation events or the
length and intensity of dry spells that precede most of the
annual hydrological processes. In this respect, daily precipi-
tation grids of different spatial resolutions have been devel-
oped at the global (Piper and Stewart, 1996; Menne et al.,
2012) or regional scale (Frei and Schär, 1998; Eischeid et al.,
2000; Kyriakidis et al., 2001; Rubel and Hantel, 2001; Klein-
Tank et al., 2002; Hewitson and Crane, 2005; Liebmann and
Allured, 2005; Haylock et al., 2008; Klok and Klein-Tank,
2009; Mekis and Vincent, 2011; Hwang et al., 2012; Yatagai
et al., 2012; Jones et al., 2013; Chaney et al., 2014; Isotta et
al., 2014; Hernández et al., 2016).

A few daily datasets have also been made for Spain or
some of its regions (Vicente-Serrano et al., 2010b; Herrera
et al., 2012). These datasets are useful to analyse global pre-
cipitation, which in Spain have a wide range of different spa-
tial and temporal distributions (Esteban-Parra et al., 1998;
Rodríguez-Puebla et al., 1998; Belo-Pereira et al., 2011; De
Luis et al., 2011; González-Hidalgo et al., 2011; Cortesi et
al., 2014). But they are also suitable to analyse spatial pat-
terns in daily characteristics of precipitation through extreme
indices that allow comparisons between regions. In Spain,
these indices have been applied to mainland Spain (Martín-
Vide, 2004; Herrera et al., 2012; Merino et al., 2015) and
to specific regions (Casas et al., 2007; Martínez et al., 2007;
Rodrigo and Trigo, 2007; Lopez-Moreno et al., 2010). All of
these datasets used the precipitation estimations to compute
climatic indices. However, unlike temperature, uncertainty in
precipitation estimation is considerably higher. Firstly, rain-
gauge measurements can be notoriously uncertain, especially
in certain circumstances such as windy conditions (Rodda
and Dixon, 2012) that can lead to significant undercatches in
highly exposed areas (Rodda and Smith, 1986). Secondly,

spatial variability of daily precipitation can be extremely
high under certain atmospheric conditions such as convective
processes that can occur at a very local scale. Whereas the
sum of these uncertainties is very difficult to estimate in prac-
tice, the uncertainties of these estimations are expected to
decrease as the density of observations used to compute the
models increases (Tveito et al., 2008; Hofstra et al., 2010).
This issue has important implications in subsequent climatic
analyses, and this is one consideration that needs to be taken
into account (Beguería et al., 2015).

In this paper, we present SPREAD (Spanish PREcipita-
tion At Daily scale), a new high-resolution daily gridded
precipitation dataset for Spain. Thirteen daily and extreme
precipitation indices were calculated as an example of ap-
plicability, characterising daily precipitation distribution (4
indices to characterise the spatial distribution of daily pre-
cipitation and 9 for extreme precipitation). The grid was
computed for 1950–2012 period covering peninsular Spain
and 1971–2012 for Balearic and Canary islands. It was built
from 12 858 original stations by creating reference values
(RVs) using generalised linear models (GLMs) based on the
10 nearest observations using altitude, longitude and latitude
as covariates. All the calculations were developed with red-
dPrec (https://cran.r-project.org/web/packages/reddPrec), an
R package containing the required functions to reconstruct
original daily precipitation series and create grids (Serrano-
Notivoli et al., 2017a).

This paper is organised as follows. Section 2 describes the
original dataset. Section 3 shows the methods applied for
the reconstruction and the gridding process considering un-
certainties of estimates. Also, the statistical procedures are
explained here. Section 4 shows the results of the recon-
struction, gridding procedure and spatial distribution of daily
and extreme precipitation characteristics in Spain. Section 5
specifies the availability of the dataset. The results are dis-
cussed in Sect. 6, with some final remarks in Sect. 7.

2 Input data

A total of 12 858 observatories covering Spain were used.
The grid was divided in three areas: (1) peninsular Spain
(492 175 km2), with 11 513 stations covering the period
1950–2012; (2) the Balearic Islands (4992 km2), with 425
stations covering 1971–2012; and (3) the Canary Islands
(7493 km2) covering 1971–2012, using 920 stations (Fig. 1
down).

Most of the data were provided by the Spanish Meteoro-
logical Agency (AEMET), but we also used data from re-
gional hydrological and meteorological services, and from
the national agronomic network (Table 1). The greatest part
of the information comes from manual stations; the auto-
mated ones entered service in mid-1990s, making up 23 % of
the total in AEMET network in 2012. The mean length of the
original series was 18.8 years, and only 17 of the 12 858 orig-
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Figure 1. Location of the precipitation stations used (a), location of Spain in Europe context (b) and geographical references used in the
text (c). Number of daily available observatories (grey lines), and its moving average of 365 days (black lines) in the Canary Islands (d),
Balearic Islands (e) and peninsular Spain (f).

inal observatories had covered the period 1950–2012. How-
ever, the spatial distribution of the observatories showed a re-
markable density (Fig. 1 main map), which is useful to make
proper reconstructions. Although the recovered information
from raw databases of the meteorological offices was precip-
itation, in some cases this can include both rainfall and the
water equivalent of snow if the source did not make the dis-
tinction.

3 Methods

3.1 The reference values (RVs) as a general tool for
quality control and reconstruction

The key process for climate reconstruction is based on the
calculation of individual RVs for each day and location, ac-
cording to the information available from the closest neigh-
bouring stations. GLMs are used to compute the RVs using
the precipitation data (occurrence and magnitude) of the 10
nearest neighbours as the dependent variable and the geo-
graphic information of each station (latitude, longitude and
altitude) as the independent variables. The average distances
to the 10 nearest stations were 24.67, 8.99 and 26.78 km for
the Iberian Peninsula, Balearic and Canary islands, respec-
tively, with average standard deviations of 8.46, 3.69 and
17.32 km, and average minimum distances of 10.04, 3.01 and
5.51 respectively.

Table 1. Number of observatories, by source (AEMET: Spanish
meteorological agency; MAGRAMA: Ministry of Agriculture and
Environment; AHIS: Automatic Hydrological Information System).

Source Number of observatories

AEMET 10 683 (83.1 %)
MAGRAMA 541 (4.2 %)
Meteorological Service of Catalonia 173 (1.3 %)
Navarra government 38 (0.3 %)
AHIS of Cantábrico Basin 36 (0.3 %)
AHIS of Duero Basin 216 (1.7 %)
AHIS of Ebro Basin 333 (2.6 %)
AHIS of Guadalquivir Basin 212 (1.7 %)
AHIS of Hidrosur Basin 102 (0.8 %)
AHIS of Júcar Basin 182 (1.4 %)
AHIS of Miño-Sil Basin 89 (0.7 %)
AHIS of Segura Basin 66 (0.5 %)
AHIS of Tajo Basin 187 (1.4 %)

TOTAL 12 858 (100 %)

The geographic information of each station (latitude, lon-
gitude and altitude) is used as the independent variable for
modelling. As the data availability varies from day to day, se-
lected neighbour stations also vary. Since independent mod-
els are constructed for each location and day, the estimated
parameters of the models (reflecting the influence of the in-
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Figure 2. Removed data by criteria (suspect data, suspect zero, suspect outlier, suspect dry day and suspect wet day): (a) peninsular Spain;
(b) Balearic Islands and (c) Canary Islands.

dependent variables and their probability to influence the oc-
currence and magnitude of precipitation) may also vary with
measurement day and location.

Including three factors in the model allows for increased
sensitivity of the model to be able to reflect the local changes
in precipitation patterns. Because this method is based on lo-
cal and independent data points across time, there are no re-
strictions imposed due to the length or structural characteris-
tics of the series, allowing efficient use of all of the available
information.

The computation of each individual RV is based on two
predicted values: (i) a binomial prediction (BP) of the prob-
ability of occurrence of a wet day and (ii) a magnitude pre-
diction of precipitation (MP), in the case where a wet day is
predicted. The combination of these two values (RV=MP if
BP > 0.5, else RV= 0) produce the estimated (RV) and its
corresponding standard error for each day and location. Fur-
ther details on the statistical procedures are described and
discussed in Serrano-Notivoli et al. (2017a, b).

The obtained RVs were first used to develop a quality con-
trol (QC) test in order to detect anomalous data in the original
dataset, and then to estimate precipitation at all missing lo-
cations and days for the whole dataset. Finally, a 5× 5 km
grid was built for all the whole of Spain and the entire pe-
riod of reconstructed stations. The reconstruction and grid-
ding processes were applied using the R package reddPrec
following the methodology described in Serrano-Notivoli et
al. (2017a).

The QC process detected and removed suspect data by
comparing daily values registered at each station with pre-

dicted values calculated from its surrounding observations.
Five criteria were used to flag and remove suspect data from
the original dataset – (1) suspect data: observed value was
over zero and all their 10 nearest observations were zero;
(2) suspect zero: observed value was zero and all its 10 near-
est observations were over zero; (3) suspect outlier: the mag-
nitude of the observed value was 10 times higher or lower
than that predicted by its 10 nearest observations; (4) suspect
dry day: observed value was zero, wet probability was over
99 %, and predicted magnitude was over 5 mm; and (5) sus-
pect wet day: observed value was over 5 mm, dry probability
was over 99 %, and predicted magnitude was under 0.1 mm.

Once the QC was completed, a new set of RVs were calcu-
lated using the curated dataset. Since the RVs were calculated
for all days and locations, including those for which an ob-
servation exists but without using that observation, the com-
parison between RVs and the corresponding observed val-
ues constitutes a leave-one-out cross-validation (LOO-CV)
process. A number of goodness of fit statistics were there-
fore used for assessing the quality of the estimated values
(RVs): the mean absolute error (MAE), as a measure of
the error magnitude; the mean error (ME) and the ratio of
means (RM=mean of estimations / mean of observations),
as a measure of bias; and the ratio of the standard deviations
(RSD=SD of estimations / SD of observations), as a mea-
sure of bias in the variance. These statistics were computed
for monthly aggregates and for 13 daily and extreme precip-
itation indices (described on Sect. 3.3).

Additionally, scatterplots were made between observa-
tions and estimations of daily precipitation at the station loca-
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Table 2. Computed indices over daily gridded dataset.

Identifier Description Units

Daily precipitation indices

PMED Daily mean precipitation intensity
(median of daily precipitation in wet
days)

mm

NWD Number of wet days in a year days
CDDm Mean length of dry spell

(mean number of consecutive dry days)
days

CWDm Mean length of wet spell
(mean number of consecutive wet days)

days

Daily extreme precipitation indices

SDII Daily precipitation intensity
(annual precipitation/number of wet
days)

mm

RX1 Maximum 1-day precipitation mm
RX5 Maximum 5-day precipitation mm
R10mm Number of days with precipitation over

10 mm in a year
days

R20mm Number of days with precipitation over
20 mm in a year

days

CDD Maximum length of dry spell
(maximum number of consecutive dry
days)

days

CWD Maximum length of wet spell
(maximum number of consecutive wet
days)

days

R95 95th percentile of daily precipitation in
whole series

mm

R95rel Annual contribution of precipitation over
95th percentile

%

tions using the number of zero precipitation days (dry days),
daily means (considering all days), medians of the wet days
and the 95th percentile of wet days, and the Pearson’s corre-
lation statistic was computed in each case.

Finally, the missing values in the original data series were
filled with the reference values (RV). From 12 858 original
observatories, we reconstructed those that had more than
10 years of original data (7604 stations). This guaranteed
a reliable reconstructed series with enough observations to
compute the grid.

3.2 Gridding and uncertainty

The same procedure based on the calculation of RV was used
to build a 5× 5 km spatial resolution grid. For each point of
the grid (x, y and z) and each day of the total period, RV was
computed based on the data of the 10 closest reconstructed
stations.

As a measure of uncertainty, we computed the standard er-
ror (in mm) for each RV. Using the ratio between this error
and the RV we obtained the relative error (expressed in per-

Table 3. Accuracy of the wet/dry day estimates: percent observed
dry (P = 0) and wet (P > 0) days, and percent predicted dry
(RV= 0) and wet (RV > 0) days on observed dry and wet days.

Peninsular Spain Balearic Islands Canary Islands

P = 0 P > 0 P = 0 P > 0 P = 0 P > 0

Observed 79.26 20.74 81.59 18.41 89.96 10.04
RV= 0 94.84 20.47 96.35 18.11 96.76 29.46
RV > 0 5.16 79.53 3.65 81.89 3.24 70.54

centage) in each index and aggregation (monthly, annual and
seasonal).

3.3 Applications: daily mean and extreme
precipitation indices

As examples of possible applications of the gridded dataset,
four indices using daily precipitation were calculated to char-
acterise the spatial distribution of daily precipitation and its
extremes (nine more indices) (Table 2). Most of these indices
are included in the suite of extreme precipitation and temper-
ature indices (Zhang et al., 2011) developed by WMO Expert
Team on Climate Change Detection and Indices (ETCCDI).
They have been applied in previous works to assess the dis-
tribution of extreme events in many areas (e.g. Donat et al.,
2013, 2014; Keggenhof et al., 2014; Asadieh and Krakauer,
2015; Sanogo et al., 2015; Yin et al., 2015; Sigdel and Ma,
2016). All the indices were computed at the annual scale and
the average annual values were calculated.

4 Results

4.1 Reconstruction of the observational dataset
and grids

The quality control process flagged and removed an annual
average of 2.4 % of data in peninsular Spain, 1.7 % in the
Balearic Islands and 1.8 % in the Canary Islands. There were
no major differences in the number of removed data by years.
A brief increase was observed in the first 20 years in penin-
sular Spain data (Fig. 2a), while from 1971 to the end of the
period the number of removed data barely changed.

In the Balearic Islands the number of removed data was
more variable (Fig. 2b). Suspect data and zeros were usually
detected because they represented low precipitation values
with estimates from 0 to 1 or 2 mm, so they were included in
one of these two criteria. The low detected values of outliers,
suspect dry and wet data were probably due to the configura-
tion of the islands, small with a high density of observatories
even at high elevations. In the Canary Islands, although the
dataset contained more data series than in the Balearic Is-
lands, and the number of available daily stations was very
variable, the quality control process removed a similar num-
ber of data over the collection period (Fig. 2c). This was also
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Figure 3. Scatterplots and Pearson correlation coefficients between observations and estimations of daily precipitation in peninsular Spain
(upper line; a, b c), Balearic Islands (midline: d, e, f) and Canary Islands (bottom line: g, h, i). Dots represent the stations and colours
indicate the density. Daily precipitation mean (left column: a, d, g), daily precipitation medians in wet days (central column: b, e, h) and
daily precipitation over 95th percentile (right column: c, f, i) are shown.

the area with the least number of suspect zeros of the three
localities.

A complete 5×5 km spatial resolution grid was calculated
based on the reconstructed station series. Daily precipitation
was estimated from 1950 to 2012 in peninsular Spain and
from 1971 to 2012 in Balearic and Canary Islands. The stan-
dard error of the model used to compute the estimations was
calculated as a measure of uncertainty for each day and grid
point.

4.2 Observations – estimation comparison

Daily precipitation values were estimated at the same loca-
tions and days as the observed dataset for comparison pur-
poses. This section shows the results of this comparison.

4.2.1 Wet/dry estimation

The number of observed zero precipitation days (dry days)
in the entire study area was 57 761 815 and the number of
estimated ones (only for corresponding days with observa-
tions) was 57 773 250 (a ratio of 0.9998), so it can be con-
cluded that this method is not biased in the prediction of
wet/dry days. The comparison between the original dataset
and the corresponding estimates showed a high correlation

in peninsular Spain, the Balearic Islands and the Canary Is-
lands (Pearson correlation coefficients of 0.83, 0.85 and 0.73,
respectively), with similar frequency distribution by station
(see Fig. S1 in the Supplement). Terming the wet days as
positive (observed P > 1) and the dry days as negative (ob-
served P = 0), the true negative rate p (RV= 0 |P = 0) was
over 94 % in all cases (Table 3), and the true positive rate
or precision p (RV > 0 |P > 0) was over 79 % except in the
Canary Islands, where it decreased to 70 %. To a large extent,
the false negatives p (RV= 0 |P > 0) and false positives p

(RV > 0 |P = 0) were due to the prediction of precipitation
in days with low amounts. In events with very low precipi-
tation amounts, the estimate of the probability of occurrence
was likely to be dry, despite the fact that the station could reg-
ister a minimum quantity of rain (usually under 1 or 2 mm).
This causes a brief difference in amounts, becoming more
distinct in the dry/wet accuracy assessment.

4.2.2 Magnitude estimation

The comparison between amounts of observed and estimated
precipitation showed a high correlation both in daily means
(daily mean precipitation by stations, considering the whole
series), daily medians in wet days (only considering days
with P > 0 in observations and estimations) and in the 95th
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Figure 4. Histograms of observed and predicted daily precipitation frequency in (a) peninsular Spain, (b) the Balearic Islands and (c) the
Canary Islands.

percentile of wet days (Fig. 3). Daily precipitation means
(considering dry and wet days) reached the maximum cor-
relation between observations and estimations (Fig. 3a, d,
g), decreasing in daily precipitation medians on wet days
(P > 0) (Fig. 3b, e, h) and considering only the daily precip-
itation over the 95th percentile on wet days (Fig. 3c, f and i).
However, in all cases the values of the Pearson correlation co-
efficient were over 0.93. In the Canary Islands the goodness
of fit was lower than in the other areas. The Canary Islands
experience high orographic rainfall and climatic variability,
which is thought to have contributed to the lower availability
of data. Most of these islands have their own climate, with
high differences between both sides (north–south in eastern
islands and east–west in western islands). As the number of
observatories on the Canary Islands was limited and the es-
timates were from a low density of stations, a greater radius
was used to get the minimum number of stations required to
run the model (maximum 100 km). This can lead to a more
inaccurate estimation, although the aggregation by days in-

stead of stations showed a better agreement, with correlations
over 0.96 in most of the cases (see Fig. S2).

The histograms of estimated and observed precipitation
(Fig. 4) showed a good general agreement. There was a slight
overestimation of the values below 1 mm, and a slightly flat-
ter distribution around the mean. The agreement between the
histograms was high above 10 to 20 mm. The differences
found in the lowest values (under 0.1 mm) were due in large
part to the fact that estimates below 0.1 mm were allowed.
This value was the minimum measurement in the observed
dataset. These results were similar in peninsular Spain, the
Balearic Islands and the Canary Islands datasets.

One common problem to most observational datasets is
the uneven distribution of the stations with respect to the
altitude. Overall, the high-elevation areas tend to be under
represented in the datasets due to a lower spatial density of
stations. This could result in biases in any derived datasets.
For instance, in Spain only around 2 % of the stations are
above 1500 m a.s.l., which represents 4 % of the Spanish ter-
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Table 4. The leave-one-out cross-validation (LOO-CV) statistics showing the goodness of fit between observations and estimations of daily
precipitation separated by altitudes (m a.s.l.). IP: Iberian Peninsula; BI: Balearic Islands; CI: Canary Islands; N: number of stations; MAE:
mean absolute error; ME: mean error; %OBS: percentage of observed precipitation; %PRE: percentage of predicted precipitation; RM: ratio
of means; RSD: ratio of standard deviations. Results were constrained to 2 decimal places.

0–100 > 100– > 300– > 500– > 700– > 900– > 1100– > 1300– > 1500– > 2000
300 500 700 900 1100 1300 1500 2000

IP N 918 1054 1077 1210 1271 766 415 128 65 11
%OBS 12.50 14.40 14.20 17.20 17.30 12.70 7.90 2.30 1.30 0.20
%PRE 12.60 14.40 14.20 17.20 17.30 12.70 7.80 2.30 1.40 0.20
RM 1.00 0.99 0.99 0.99 0.99 0.99 0.98 1.01 1.06 1.07
RSD 0.95 0.96 0.96 0.96 0.97 0.96 0.96 1.03 1.10 1.19
ME 0.04 −0.02 −0.02 −0.01 0.01 0.00 −0.03 0.26 0.64 1.47
MAE 4.83 4.55 4.55 4.51 4.3 4.86 5.48 6.32 6.92 9.61

BI N 128 93 20 4 2 1 0 0 0 0
%OBS 43.80 39.20 12.80 2.70 1.10 0.40
%PRE 44.00 39.00 12.90 2.60 1.10 0.40
RM 1.02 0.99 1.03 0.84 1.09 1.43
RSD 1.00 0.96 0.97 0.96 0.99 1.34
ME 0.17 −0.10 0.11 −0.48 0.52 2.65
MAE 3.78 3.82 5.71 7.76 10.11 8.12

CI N 78 96 79 70 40 37 13 9 9 10
%OBS 8.40 15.00 18.70 20.50 13.40 11.00 5.20 4.30 2.20 1.30
%PRE 8.80 15.20 18.40 20.40 13.20 10.90 5.20 4.20 2.30 1.40
RM 1.02 1.02 0.97 1.00 1.02 0.99 0.98 1.02 1.01 0.92
RSD 1.02 1.02 0.98 0.99 0.98 0.99 1.05 0.96 1.03 0.93
ME 0.39 0.17 −0.15 0.00 −0.13 −0.15 −0.02 −0.16 0.48 1.85
MAE 4.49 4.18 5.28 5.91 5.94 5.95 6.26 5.09 5.48 14.28

ritory. For this reason, it is relevant to evaluate the goodness
of fit of the estimated values by altitudinal ranges (Table 4).
The RM showed that there were no substantial biases (values
close to 1) until 1500 m a.s.l., and only a slight overestima-
tion of 6–7 % above this altitude in peninsular Spain. In the
Balearic Islands there were under- and overestimations above
500 m a.s.l., but the number of stations is too low to consider
these values representative. In the Canary Islands precipita-
tion was slightly underestimated (−8 %) at higher altitudes
(> 2000 m a.s.l.).

Assessing the monthly aggregates of daily precipitation
(Table 5), we found the results were very similar to the ra-
tio of means (RM), indicating the absence of systematic bi-
ases, with the exception of November and December which
showed a slight underestimation. The ratio of the standard
deviations (RSD) was also very close to one in peninsular
Spain and the Balearic Islands, indicating no biases in the
variance estimation, although there was a small underestima-
tion in November and December. The RSD was more vari-
able in the Canary Islands, with an overestimation between
10 and 20 % in the summer (June to August), and underes-
timation of around 10 % in November and December. Very
low values of MAE were also found (average of 9.89, 8.98
and 5.99 in peninsular Spain, the Balearic and Canary is-
lands, respectively), as well as ME (average of−0.41,−0.29

and −0.73). Summer months usually receive low precipita-
tion (most of them zero) and the events are typically of small
spatial extent, leading to higher uncertainty of the estima-
tions, thus producing low values of fit between observed and
estimated precipitation. However, the RM was near to 1 in
all cases, indicating the absence of bias in the estimations
despite the variable uncertainty.

The development of a spatially and temporally complete
gridded dataset allowed the assessment of the characteris-
tics of daily precipitation over Spain. For that, 13 daily and
extreme precipitation indices were computed. The compar-
ison between the observed and the estimated values of the
indices showed values of RM and RSD near to 1 in all the
considered spatial units and indices (Table 6), indicating no
substantial biases in the mean and variance of the estimated
indices. However, RX1 showed a slight underestimation in
peninsular Spain and the Balearic Islands, as did R20mm in
peninsular Spain and SDII in the Canary Islands, where the
number of wet days (NWD) was overestimated. Overall, all
the indices were similar at observed stations and their corre-
sponding estimates in the Canary Islands showed the largest
differences, as shown at the monthly scale (Table 5).
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Table 5. The leave-one-out, cross-validation (LOO-CV) statistics, showing the goodness of fit between observations and estimates of monthly
aggregates. IP: Iberian Peninsula; BI: Balearic Islands; CI: Canary Islands; MAE: mean absolute error; ME: mean error; RM: ratio of means;
RSD: ratio of standard deviations. Results were constrained to 2 decimal places.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

IP MAE 10.18 9.66 9.28 10.88 11.05 8.39 4.49 6.00 9.68 12.10 13.47 13.59
ME 0.45 0.40 0.44 0.60 0.53 0.13 −0.07 −0.01 0.32 0.66 −4.04 −4.30
RM 1.01 1.01 1.01 1.01 1.01 1.00 0.99 1.00 1.01 1.01 0.94 0.93
RSD 1.02 1.02 1.03 1.03 1.03 1.03 1.02 1.03 1.03 1.02 0.94 0.94

BI MAE 8.82 7.40 7.35 8.10 7.32 4.27 2.72 6.39 13.25 14.32 14.73 13.18
ME 0.42 0.31 0.49 0.38 0.24 0.15 0.04 0.01 0.40 1.07 −3.72 −3.30
RM 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.01 1.01 0.96 0.95
RSD 1.02 1.02 1.01 1.01 1.01 1.02 1.02 1.02 1.01 1.03 0.96 0.96

CI MAE 8.91 8.61 8.33 5.44 2.52 1.07 0.52 0.79 2.89 6.85 12.10 13.95
ME 0.00 0.10 0.01 0.00 −0.08 0.00 0.00 −0.03 −0.10 −0.01 −4.5 −4.18
RM 1.00 1.00 1.00 1.00 0.99 1.00 1.01 0.98 0.99 1.00 0.90 0.93
RSD 1.01 1.02 1.06 1.06 1.08 1.11 1.19 1.10 1.07 1.05 0.93 0.91

Table 6. The leave-one-out, cross-validation (LOO-CV) statistics, showing the goodness of fit between observations and estimates of daily
and extreme precipitation indices. IP: Iberian Peninsula; BI: Balearic Islands; CI: Canary Islands; MAE: mean absolute error; ME: mean
error; RM: ratio of means; RSD: ratio of standard deviations. Results were constrained to 2 decimal places.

PMED NWD CDDm CWDm SDII RX1 RX5 R10mm R20mm CDD CWD P95 R95rel

IP MAE −0.09 −0.02 0.00 0.00 −0.31 −2.42 0.15 −0.01 −0.02 0.02 −0.01 0.02 0.00
ME 1.29 0.38 0.08 0.01 1.27 4.64 2.49 0.05 0.03 0.37 0.07 0.57 0.25
RM 1.09 1.02 1.01 1.00 1.00 0.96 1.01 0.99 0.95 1.02 1.01 1.00 1.00
RSD 1.14 1.01 1.03 1.02 1.04 0.98 1.01 1.00 0.97 1.03 1.01 0.97 1.08

BI MAE −0.12 −0.07 0.01 0.00 −0.22 −2.18 −0.35 −0.01 −0.01 −0.06 −0.01 0.14 0.02
ME 1.33 0.52 0.09 0.01 1.35 5.25 3.89 0.05 0.03 0.47 0.06 0.45 0.2
RM 1.06 1.01 1.02 1.00 1.00 0.97 1.00 1.00 0.99 1.00 1.00 1.01 1.00
RSD 1.09 1.02 1.24 1.01 1.00 0.99 1.01 1.02 1.01 1.02 1.01 1.02 1.03

CI MAE −1.17 −0.05 −0.07 0.00 −1.23 −1.22 0.47 −0.01 0.00 −0.22 −0.01 −0.1 0.10
ME 2.20 0.37 0.27 0.01 2.40 4.80 3.79 0.04 0.02 0.86 0.06 0.48 0.30
RM 0.98 1.13 0.99 0.99 0.95 1.00 1.04 1.01 1.00 0.99 1.01 0.97 1.01
RSD 1.19 1.07 1.16 0.97 1.01 1.01 1.05 1.01 1.02 1.01 0.98 0.99 1.40

4.3 Spatial distribution and uncertainty in
daily precipitation

The daily mean precipitation intensity (PMED) (computed as
the median precipitation in wet days) map (Fig. 5a) showed
three areas with maximum values (Central Range, Pyrenees
and Baetic Range). Overall, PMED was higher (> 8 mm) in
the south-western sector of peninsular Spain, in the north-
west and in the Pyrenees. The rest of the territory reached
values between 4 and 6 mm.

The NWD showed a strong gradient from the northwest
(Fig. 5c), with more than 100 days of precipitation, to the
south-east, where the lowest was fewer than 30 days of pre-
cipitation per year. This value was the most frequent in the
Canary Islands except in the island of La Palma (extreme
west) and in the highest areas of the other islands (over
1500 m a.s.l.), where rainfall occurrence reached almost 90

days per year. The rest of peninsular Spain and the Balearic
Islands showed average values between 50 and 70 days.

The mean length of the dry spells (CDDm) (Fig. 5e)
showed a similar gradient. The northern sector reached val-
ues under 5 days, increasing to the southeast, where the av-
erage length of consecutive dry days was more than 30 days,
like in the largest part of the Canary Islands.

NWD, CDDm and mean consecutive wet days (CWDm)
characterised daily precipitation frequency, showing that in
the southwest of peninsular Spain and the Canary Islands
the average number of rainy days per year is fewer than 30
and, when rain occurs, the mean length of the events was
fewer than 1.5 days. Conversely, the mean number of wet
days in almost the entire Cantabric fringe was over 120 days
per year, and the mean consecutive number of dry days was
under 5 days.
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Figure 5. Daily precipitation indices (a, d, e, g) and their uncertainty (b, d, f, h). PMED: daily mean precipitation intensity; NWD: number
of wet days; CDDm: mean consecutive dry days; CWDm: mean consecutive wet days.

The uncertainty of estimates in daily precipitation indices
was spatially variable, but in all cases it had an increasing
gradient from north-west to south-east in peninsular Spain,
especially in PMED and NWD. This uncertainty, which was
not necessarily similar to the distribution of its corresponding
variable, informed about the reliability of the results of the
indices. The higher values in most of the indices occurred in
the south-west.

4.4 Spatial distribution and uncertainty in daily
extreme precipitation

Mean precipitation in wet days (SDII) (computed as the
mean precipitation in wet days) in Spain ranged between 5
and more than 25 mm (Fig. 6). The lowest values were dis-
tributed in the northern and southern plateaus and at the bot-
tom of the Ebro Valley, unlike the south-east of peninsular
Spain, which had higher values similar to the eastern coast,
where the total rainfall was low but daily precipitation inten-
sity was very high. The normal values in the Pyrenees were
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Figure 6. Daily extreme precipitation indices (a, c, e, g, i) and their uncertainty (b, d, f, h, j). SDII: daily precipitation intensity; RX1:
maximum 1-day precipitation; RX5: maximum 5-day precipitation; R10mm: number of days with precipitation over 10 mm; R20mm: number
of days with precipitation over 20 mm.
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Figure 7. Daily extreme precipitation indices (a, c, e, g) and their uncertainty (b, d, f, h). CDD: maximum consecutive dry days; CWD:
maximum consecutive wet days; R95: 95th percentile of precipitation; R95rel: contribution of precipitation over 95th percentile.

higher than 15 mm for each wet day, especially in the western
half, where the Atlantic influence is strongest. Despite this,
the highest values were in the Central Range, with more than
25 mm per wet day, being the area with most precipitation on
wet days, in the whole country.

The mean maximum precipitation in one day (RX1)
(Fig. 6) was concentrated mainly in the highest areas, which
create orographic barriers. The Central Range was the only
zone in Spain that reached values higher than 200 mm, de-
creasing with elevation until 40 mm. This pattern was repli-

cated in most of the high-elevation areas of peninsular Spain
and islands, but also in the Mediterranean coast, which is
characterised by a high frequency of extreme events. The dis-
tribution of the maximum precipitation in five days (RX5)
(Fig. 6) was very similar, but with a smoother gradient. As
the variability in the extreme nature of the RX5 was less in-
tense, the spatial distribution was more homogeneous with
milder differences between the regions.

A high number of days per year with more than 10 mm of
precipitation (R10mm, Fig. 6) is relatively frequent in Spain,

Earth Syst. Sci. Data, 9, 721–738, 2017 www.earth-syst-sci-data.net/9/721/2017/



R. Serrano-Notivoli et al.: SPREAD: a high-resolution daily gridded precipitation dataset 733

and especially so in a Mediterranean climate as it corre-
sponds to a large part of peninsular Spain and the Balearic Is-
lands. Overall, the spatial distribution of this index was very
similar to the mean annual precipitation in Spain, with the
highest values in the north-west and in high elevations. Con-
sidering events with precipitation over 20 mm (R20mm), the
spatial pattern mimicked that of the R10mm.

The uncertainty distribution was very similar for SDII,
RX1, and RX5, with higher values along the Mediterranean
coast, where intense precipitation is more frequent and, con-
sequently, the differences between neighbouring observato-
ries were also higher. R10mm had a low and homogeneous
uncertainty all over Spain and R20mm had very low values
over central and southern peninsular Spain, in the Balearic
Islands and in the eastern Canary Islands.

A clear latitudinal gradient over peninsular Spain was ev-
ident for the mean annual maximum consecutive dry days
(CDD) index, with values exceeding 100 days in the south in
contrast with fewer than 20 days in the north (Fig. 7 up). The
maximum consecutive wet days (CWD) extreme (Fig. 7) had
a strong longitudinal gradient, with fewer than 5 days in the
east to more than 16 days in the western. The Balearic Islands
showed a latitudinal gradient in both indices with more CDD
(> 60 days) and less CWD (< 5 days) in the south, coincid-
ing with lower elevations. The Canary Islands had a similar
behaviour in all individual islands with the maximum values
of CDD (> 110 days) and minimum of CWD (< 5 days).

The 95th percentile of precipitation (R95) showed the
maximum values at high-elevation areas and in the east-
ern and southern sides of the Mediterranean coast. This re-
gion is considered the central region of peninsular Spain and
was more homogeneous with lower values, coinciding with
a more continental precipitation regime. The uncertainty val-
ues were very low here, which showed the reliability of the
estimations of this index. The percentage of precipitation
over the 95th percentile contribution to the annual precipita-
tion total (R95rel) showed different patterns, more extreme at
eastern peninsular Spain and western Canary Islands. More
than the 30 % of the precipitation along the Mediterranean
coast corresponds to events with amounts of precipitation
over the 95th percentile. These values are also common in
the Balearic Islands, where all areas had R95rel values over
20 %. This spatial distribution represents the extreme charac-
ter of daily precipitation, especially in Mediterranean areas
and in the Ebro Valley.

5 Discussion

High-resolution gridded datasets are useful for regional anal-
ysis of daily precipitation, but the accuracy of the estimates
depends mainly on the number of available observatories and
on the estimation method. Although the method used to build
this grid makes independent calculations of each grid point

and day, the results showed coherent patterns in spatial dis-
tributions of all indices at regional scales.

Some basic parameters of the reconstruction methodology
have a key influence on the dissimilarity between different
datasets. The selection of one specific method from the many
available gridding interpolation methods that can be applied
to precipitation may change the final result (e.g. Creutin and
Obled, 1982; Hartkamp et al., 1999; Vicente-Serrano et al.,
2003; Dobesch et al., 2007; Hofstra et al., 2008; Hwang et
al., 2012; Brunetti et al., 2014; Militino et al., 2015; Con-
tractor et al., 2015; Herrera et al., 2016). For example, Robe-
son and Ensor (2006) and Ensor and Robeson (2008) argued
that the use of geostatistical interpolators for daily precipita-
tion leads to a higher frequency of low-precipitation values
while greatly reducing the extreme events. In addition, the
high flexibility in the independent variables across the sites
allows for a reasonable estimation of the uncertainty, which
is very important for producing datasets that will feed further
analyses. Local regressions have been used widely to model
daily precipitation with different approaches (Buishand and
Tank, 1996; Rajagopalan and Lall, 1998; Marquínez et al.,
2003; Simolo et al., 2010; Tardivo and Verti, 2014; Partal et
al., 2015), and in this case we used them to compute, from
all reconstructed stations, a high-resolution grid estimating
separately the probability of a wet/dry day occurrence and
the precipitation amount. This two-step procedure avoids an
excessive smoothness of the estimated precipitation fields
(Robeson and Ensor, 2006). Furthermore, this individualised
calculation allows for an easy update of the dataset, since sin-
gle days can be reconstructed individually and added to the
pre-existing dataset. We also added a measure of uncertainty,
which is a big improvement over previous gridded datasets.
Uncertainty (which we express by means of the standard er-
ror) informs in a quantitative way about the reliability of the
estimated data, in a way that can be translated to further cal-
culations such as the daily precipitation indices explored in
this article. Our uncertainty estimation arises from a local in-
terpolation, so it varies spatially and from one day to the next,
reflecting the changes in conditions that affect the estimates.

Although some previous datasets exist that obtain daily
and/or extreme precipitation indices for Spain, the differ-
ent methodologies to compute them are a key influence in
these differences. The use of the longest precipitation se-
ries and the spatial resolution of the final grid produces
very different results. For instance, considering the global
datasets, Sillmann et al. (2013) showed for Spain (eight grid
points covering the whole of peninsular Spain) RX5 val-
ues from 50 and 200 mm using the HadEX2 dataset and
from 40 and 75 mm using CMIP5 dataset. In the present
work, these values ranged between 50 and more than 300
in more than 20 000 grid points. These values were the max-
imums in HadEX2 and CMIP5 for monsoon areas in south-
ern Asia. Similarly, May (2007), using the HIRHAM model,
showed SDII values for Spain between 4.5 and 12.5, while
in the present work we found that this index can reach val-
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ues over 25 mm, especially in the Central Range. Schamm et
al. (2014) used the GPCC (Global Precipitation Climatology
Centre) dataset to show values of daily mean precipitation in-
tensity (PMED) between 0.5 and less than 10 mm, while we
found a wider range between 3 and more than 15 mm.

Some previous works in Spain that used a lower spatial
resolution and a lower number of observatories (Herrera et
al., 2012; Merino et al., 2015) showed overestimated val-
ues in extreme precipitation indices in some areas (espe-
cially in the north-west area of the Iberian Peninsula) but
smoothing in others (e.g. Central Range). López-Moreno et
al. (2010) showed similar values and spatial patterns in north-
east Spain, compared to the ones in the present work for
NWD, SDII, CDD and CWD. Despite the relatively high-
density station dataset (217 stations) used in their study, they
rejected most of the original stations in favour of only the
longest series, resulting in a smoothed spatial distribution of
the indices, probably also due to the interpolation method
(not indicated). Martínez et al. (2007), using 75 stations,
showed for Catalonia (northeast peninsular Spain) the 95th
percentile of precipitation values ranging from 20 to 70 mm,
which are very similar to those from the SPREAD dataset.
All of these works made sub-optimal use of the available
data. The values obtained in all of them were correct con-
sidering a global conception of precipitation distribution, but
daily precipitation requires the highest possible density of
observations in order to obtain a proper characterisation of
its spatial distribution, especially for extreme precipitation.
This work provides a representation of the local variability
of extremes by using all the available information and ap-
plying a local reconstruction method. If the spatial resolution
is amplified for a regional study, based on the use of more
precipitation data, the results are less smoothed as shown in
Pereira et al. (2016), which used 36 stations in Sierra Nevada
(southern peninsular Spain) to compute NWD, R10mm and
R20mm, with similar values to this work specifying a precise
spatial distribution. The use of the complete information of
the precipitation network in Spain provided a more detailed
precipitation distribution over time and space. Although only
a few stations covered the complete period, the use of short
data series helped to estimate the missing precipitation val-
ues in longer ones, which were used to build the whole grid.
A high number of grid points (higher spatial resolution) in
combination with a low-density stations network could lead
to higher uncertainties. This work aimed to set a compromise
between both factors by using a high number of stations and
a medium-high spatial resolution. In addition, the magnitude
of the uncertainty informed about the reliability of each esti-
mate. A higher uncertainty means more differences between
the data used to estimate precipitation and these differences
can be increased with a lower number of stations.

6 Data availability

The SPREAD dataset is freely available in the
web repository of the Spanish National Re-
search Council (CSIC). It can be accessed through
https://doi.org/10.20350/digitalCSIC/7393, and cited as
Serrano-Notivoli et al. (2016). The data are arranged in six
files (daily precipitation estimations and their uncertainties
for peninsular Spain, Balearic Islands and Canary Islands) in
NetCDF format that allows for easy processing in scientific
analysis software (e.g. R, Python) and GIS (list of compatible
software at http://www.unidata.ucar.edu/software).

7 Conclusions

A high-resolution daily precipitation dataset for Spain
(SPREAD) is presented. Based on all the available daily pre-
cipitation information, a 5× 5 km spatial resolution grid was
built using the reddPrec R package (Serrano-Notivoli et al.,
2017a). The original dataset of observations was quality-
controlled and the missing values were fitted using the 10
surrounding stations for each day and location to obtain a
serially complete dataset from 1950 to 2012 in peninsular
Spain and from 1971 to 2012 in the Balearic and Canary is-
lands. From this dataset, individual daily precipitation esti-
mations were computed for each grid point, resulting in a
gridded dataset which was consequently used to compute
four daily precipitation indices and nine extreme precipita-
tion indices.

PMED showed the highest values in the Central Range
and other elevated areas, while NWD, CDDm and CWDm
followed a north-west to south-east gradient in peninsular
Spain, from high to low values in NWD and CWDm and
reverse in CDDm. The south-east of the Iberian Peninsula
and the Canary Islands were the driest areas in Spain, with
fewer than 30 wet days per year and more than 18 days of
the average maximum annual dry spell length. These regions
registered fewer than 2 days of the mean wet event duration.

Extreme precipitation indices showed that the Mediter-
ranean coast is more active in these kinds of events, but also
that the highest values of SDII, RX1, RX5, R10mm, R20mm
and R95 are concentrated in a north–south band of north-
west peninsular Spain and, especially, in the Central Range.
These results have revealed areas with maximum values not
detected in former studies, emphasising the importance of the
use of all available observatories and a sensible methodology
that do not produce excessive smoothing while being able to
capture local and day-to-day variability.

The Supplement related to this article is available online
at https://doi.org/10.5194/essd-9-721-2017-supplement.
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