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SYNOPSIS

[
The finite element method 1s applied to elastic~plastic plate

bending analysis. Square plates are divided into square elements

with corner nodes at which plastic rotations are introduced whenever

the internal principal generalized stress states satisfy a square

yield criterion. The analytical response of plates and slabs to

monotonically increasing applied load is traced in a step-by-step

m;nner by digital computer. A complete history of displacements and

generalized stresses is developed through the elastic phase to collapse.
Results obtained from experiments on plates and slabs are compared

with those produced analytically inorder to assess the validity of

the finite element model,
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- bending and twisting generalized stresses

- principal generalized stresses

- beam bending moment along x axis

- 1limiting yleld value of generalized stresses
= limiting yield value of beam bending moment

~ flexural stiffness ratio, beam/plate
- limiting strength ratio, beam/plate
~ beam stiffness ratio, torsional/bending

- vertical edge reaction on plate
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cosine § tl
q

brackets

denotes matrix when the elements are
displayed

transpose of matrix(ces) in brackets
subscripts for use in summation convention

superscripts for use in summation convention
vertical displacement at node i

slope about y axis at node i

slope about x axis at node i

computer applied load

computer elastic limit load

limit analysis collapse load

finite element method

-dw/ Ox

dw/dy

)%M}x)y

>2M1/éx)y or >2M2/>x>y

orientation angle of principal planes measured
clockwis; positive from x axis

orientation of plastic flow lines measured
oclockwise positive from x axis, resulting from
' and M2 satisfying yield oriterion at node q

modulus of cosine §';



sine tl - modulus of sine § t
q q

Ct - -I cosine @ ¢
q q
St - +Isine @ t '
q q
aj - plastic rotation at node i
axi
ay -~ components of plastic rotation ay along
i
x and y axes
Dn , - matrix of nodal displacements at node n
R; - matrix of plastic rotations resulting from
the principal generalized stresses u® satisfying
+ yleld oriterion at node p
Fm - matrix of nodal forces for node m
M: - matrix of principal generalized stresses Mt
’ at node q
K
mn
8
mp
" & - submatrices of elastic-plastic stiffness
K
qan . matrix
Kts
qr J
II -
K - 2nd column of K matrix
mn mn
KtIII = 3rd column of Kt matrix . e
q1 q1
Chapter 1

- uniformly distributed load

L = long span for slabs
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Appendix T

B>

short span for slabs

aspect ratio

dimensions of element in Figure 3.2 only

matrix of coefficients from equation 3.7

matrix of coefficients from equation‘}.73
"external work

internal work

coefficient of orthotropy for equation 3.27 only

matrices

matrix in equations 3,12, 3.13 and 3.15

matrix in equations Al.3, Al.4 and Al.7,
otherwise the non~dimensional length of an
element

matrix in equations Al.18, otherwise a constant
matrix in equations Al.7 and Al.8, otherwise a
constant

uniformly distributed load



K - curvature matrix in equations Al.7

M - matrix in equation Al.8

w - matrix in equations Al.i?, Al1.18, and Al1.19
L - matrix in equation A1l.18

Appendix ITI

T -~ total moment of inertia of section

To -~ moment of inertla due to concrete

Is = moment of inertia due to reinforcing steel

b - width of slab section



SUVMATION CONVENTION

Example
Expansion of equations 3.60 for principal generalized stress.M1

at node q only.
- summation of repeated subscripts is independent of summation
of repeated superscripts
- values of subscripts and superscripts for rectangular element

?

are: -
m P s
n}1234q}123t}12
t t ts D t ts.8
MY = X X Ol = x"D +K°°R
q qn ap| [gs gnn qp p

¥ = x' p +x'5R®
q " “gn'n gpp

K1D+K1D x +K1D + xRNk %2
q11 g2 L4 QP P QP P

= ( ditto ) + K“R +K“ZR12K R K12n‘°' 1232 1%;;2

For further expansion of the K;1 and K;: etc., matrices

see equations 3.59 and 3.63.
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INTRODUCTION

Most of the existing analytical methnds used in plate or slab
bending problems are restricted in their application to either a purely
elastic response or to a limiting (collapse) behavinur, The fundamental
principles characteristic of elastic analysis have been well established
for more than a century. The principles underlying the limit analyses
oé plates and slabs have been developed since the early 1940's
resulting from the pioneering work of Johansen in Denmark and Prager
in the U.S.A.

Probably the most informative contributions to the collapse analyses
of reinforced concrete slabs have been made by British researchers, in
particular the work of Wood at the Bullding Research Station,

Because of the nature of the two types of analyses existiné aé
present there is a severe gap in nur knowledge of the behavinur between
£he end of the elastic stage and the final or-collapse stage. To bridge
this gap a unified approach must be developed that will include both
types of behaviour and still produce a realistic complete analysis
throughout the elastic-to-collapse response. This type of analysis
is becoming increasingly more important as more slab designs ars made
using limit methods. The importance of being able to estimate deflections,
extent of cracking and the general behaviour of the slab before collapse
is certainly realized by present cnde committees.

Wnod suggested as far back as 1955 and again in 1961 that this
type of elastic~plastic analysis should be attempted. Few attempts
have been made until very recently since the complexity of the problem

required solution by computers which until recently did not have sufficient

—_ -2 2



The purpose of the present study reported in this thesis is to
present an elastic-plastic bending analysis for plates and slabs based
on well established fundamentals nf structural mechanics and on
currently accepted principles of plastic theory for ductile metals.

In view of the complexity nf plate bending problems it is hardly
surprising that numerical methods are being applied to their solution.
One such method that has gained appreciable popularity in recent years
is the finite element method. This method is a more physically obvious
nne th;n previous methods such as finite difference and Fourier series
solutions. The structure, in the present case a plate or slab, is,
divided into a number of small but finite elements. These elements
are connected nnly at their nodal points where displacement continuity
(in the purely elastic case) or discontinuity (by introducing plastic
rotations for the present study), together with equilibrium of nodal
forces is established. The solutinn of the problem follows using
standard structural procedures (such as the displacement method in

the present study).

The method originated from research carried out by aeronautical.-
analysts in the U.S.A. in 1956. Although it has been applied to many
types of problems (not only in the structural field) during the past
decade, few plate bending problems had been attempted until 1964 when
British academics began examining tle method and applying it to slab
problems,

Because of the philosophy of the method and the accuracy obtainable
in elastic plate bending analyses, it was adopted as the analytical
tool in producing the elastic-plastic analyses reported herein. To

the writer's knowledge this methnd has not been applied previnusly to
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elastic-plastic plate bending analysis.

The application of the finite element methnd to the present study
does nnt introduce any new fundamental principles for the method but
does involve the use of existing principles in a way that has nnt been
previnusly reported.

The thesis consists of seven chapters and three appendices.
Chapters 1 and 2 serve as an introductnry backgrnund to the present
study by describing existing types of %nelastio analyses and summarizing
the fiﬁite element methnd., Chapter 3 contains the theoretical procedures
developed for the analysis. The experimental tests are described and
reported in Chapters 4 and 5 respectively.

In Chapter 6 three analytical solutinns are presented for reinforced
concrete slabs carrying uniformly distributed lnads. These are compared
with available unique snlutinns presented in Chapter 1.

' Chapter 7 summarizes the results (analytical and experimental) of
the study from which certain conclusions are drawn and suggestions for
further research presented.

Appendix I contains the matrices used in developing the rectangular
element stiffness and generalized stress matrices. These are presented
in explicit form for completeness of presentation. .

Appendix II summarizes the computer program develonped for the
Atlas computer hnused at the University of London Computer Center.

Appendix III contains miscellaneous experimental data for the
tests reported.

References to existing literature are numbered such as lbstergaardl

in consecutive order as they appear in the text.
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CHAPTER 1 - EXISTING INELASTIC PLATE BENDING ANALYSES

l.1 General Remarks

The behavinur of plates bending under transverse loading has
received considerable attention since the first attempts at plate
analysis in the early 1800's. For well over a century many analysts
developed and improved upnn the theories of plate bending for elastio
analysis, Westergaardl has summarized the historical development of
plate fheory and described the early tests to investigate the collapse
behavinur of reinforced concrete slabas by Bach and Graf2 in 1911, A
comprehensive works on the theory of plates and shells by Timoshenko

3

and Woinowsky - Krieger” now forms the standard reference for most

investigators.

Although the elastic behavinur of plate bending has retained
the interest of many present day engineers and researchers, the
collapse behavinur has also attracted many workers, notably Johansen
in Denmark and Prager'with his team in the U.S.A. In England, Woodh
has given an excellent account of the plastic theories for the collapse
analyses of reinforced concrete slabs and metal:-plates. This text
has been well received and has stimulated much of the current research
in this field. -

From the existing literature it would appear that the missing

1ink in the complete knowledge of plate bending behaviour is the absence

of any unified theory that encompasses the existing elastic and limit
theories and allows complete elastic-plastic analysis. There have
been few attempts to do this but two recent approaches are outlined in

section 1.5. .
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1.2 The Yield Line Method of Analysis for Reinforced Concrete Slabs

. This method of analysis predicts a possible collapse load for
reinforced concrete slabs and was pioneered by Johansen5’6’7 in 1943.
It has been accepted by many design code committees principally in
Europe. The Comit§ Européén du.Béfon has organized extensive research
in many laboratories and has published a number of bulletinae’g’lo on
the subject.,

The theory is based on energy and kinematic principles and leads
to an Gpper bound” on the collapse load. That is, the true collapse
load is either equal to or less than that calculated by yield line
analysis and therefore essentially unsafe predictions are made. The
collapse loads are determined by equating the external work done by
applied lnads to that dissipated internally along the yield lines of
an assumed collapse mechanism., This leaves much choi?e to the analyst
in selecting the collapse configuration. Although there are certain
well defined procedures to aid in the proper selection, one is never
sure that the lowest pnssible collapse load has been determined even
after analysing many possible mechanism patterns.

The greatest drawback of the method is‘the impossibility of
predicting what internal generalized stress states exist within the
portions of the slab bounded by supports and/or yield lines,

A further limitation is the absence from the analyses of the
effects of membrane action on the collapse load. This has lead to
very conservative estimates of the collapse load for slabs in which
in-plane forces are significant. Recently, an upper bound on the
collapse load for a simply suppnrted square slab carrying uniformly

distributed load was develonped by Kempll. The increase in collapse

11



load was found to be as much as 20% greater than that determined by

excluding membrane action.

Even with its limitations, the yield line method has and continues
to stimulate interest‘in the 1limit behavinur of concrete slabs., Its
greatest advantage is its simplicity of application and even though
theoretically it leads to an upper bound on the collapse load, it
seldom overestimates the experimental collapse load. This is primarily
why it has been so well accepted.

FGr practicel application of the yield line method excellent

13

texts have been produced by ane812 and Wood and Jones “,

1.3 Limit Analysis of Metal Plates

The application of 1imit analysis theory to perfectly plastic
(ductile) metals in plate bending was mainly due to Prager and his
team at Brown Universityl#, U.S.A. The the;rems of 1limit analysis
were introduced by Drucker, Greenberg and Pragerls. From these
theorems the unique collapse load can be defined. A uniqueness theorem
was first established by Hilll6 for regular yield loci (no flats nor
corners). Corollaries of this theorem were extended by Haythornthwaite

17

and Shield ' to include singular yield loci. For plates, unique

collapse lnads are produced whenever the static and kinematic theorems
are satisfied and the collapse loads given by lower bound and upper
bound procedures are identical,

From the existing 1limit solutions of metal plates it is clear )
that researchers have concentrated on producing unique solutions and
have not considered upper bounds of much importance without accompanying
lower bounds to help establish the validity of the cnllapse load.

The only unique solutions that exist are for circular plates. Radial

12



symmetry of plate genmetry, loading and boundary conditions permits
the formulation of unique solutions with little difficultyla.

Prager19 and Hodg920 have presented upper and lower bnund solutions
for simply supported square plates carrying uniformly distributed loads.
More recently Shull and Hu21 presented upper and lower bounds for
rectangular metal plates based on the Tresca yield criterion. Again,
no unique solutions were obtained since the difference in the upper
and lower bounds for the collapse load varied from 10% to 33{% for
various ;spect ratios.

Althnugh the correct collapse load will be given by unique
solutions, the question will always remain as to how realistioc the

statical stress fields are as determined by limit analysis.

l.,4 Existing Unique Solutions for Non-Circular Slabs

The object of this section is to present existing unigue solutions

for non-circular slabs to illustrate how few solutions exist and the

similarity between them. Unfortunately only slab solutions exist
based on a square yield criterion. No metal plate unique solutions
using Tresca or von Mises yield criteria exist to date.

Woodh has presented a number of unique solutions for slabs.
Those for non-circular slabs are summarized here without derivation.

The general geometrical arrangement common to these solutions is given

in Figure 1.1.

13
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q = uniformly 1
distributed
load

p= /1

¢ .44————- L 47%

y
Non-Circular Slabs for Unique Solutions

Figure 1.1

(1) Simply supported square slab carrying uniformly distributed
load. (Prager)

This solution was produced by Prager. The lower bound is derived
from the radial generalized stress pattern for a fixed circular plate.
(1) Collapse load from & kinematically admissible velocity field

(Upper bound).
2
. q = 24M/L 1.1
(11) Statically admissible generalized stress field.

Mx = q(I~2x)(L+2x)/2 1.2



(2)

My = q(1~2y)(I+2y)/2% 1.3

Mxy = qxy/6 1.4

i
(i11) Vertical edge reaction acting upwards on slab,
' ) V = ql/3 1.5

(iv) Collapse load from a statically admissible generalized

stress field (lower bound).

Simply supported square slab carrying uniformly distributed
load. (Vallance)

(1) Upper bound on collapse load.

q = 24M/12 1.7

(i1) Statically admissible generalized stress field.

Mx = My = g(I-2x)(I+2x)(I-2y)(I+2y) 1.8
2 v/ (1-V2x) (L+/2x) (1v/2y) (L+ V2y)

15
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Mxy = q;q{]_-r_‘l_ L L + L L } 1.9
2 2, 0x2.3/2 2 3/2
(1-5) (2-) :
L L |

(i11) Vertical edge reactinn acting upwards on the slab.

(at x = L/2) - Voeiql |1- 1 1.10
(2?2
L2

(iv) Lower bound on collap.se load,

q = 24M/1° 1.11

(3) Square slabs supported by edge beams with slab carrying uniformly

distributed lnad. (Wood)

For this solution the key parameter that determines the collapse

mode is

1.12

o<
Elo™

Woodh’zz has shown that the composite collapse mode of beams and

16

slab occurs for, Yp €1, For Yp >1 only the slab collapses by a diagonal

mode, In the following the range of Xp is restricted to

0£Yp < 14 1.13
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(1) Upper bound on collapse load.

q= 8M(1+2¥p)£2 1.110-

(11) Statically admissible generalized stress field.

Mx = q(L—23:)(I»2x)/8(1+2YP) 1.15
¥y = q(L-Zy)(I»2y)/8(1+2¥p) 1.16
Mxy = q:qy(z?(p-'l )/2(2Xp+1) 1.17

(iii) Vertical edge reactinn acting upwards on slab.

(at x=1/2) V= qLXp/(1+2Xp) 1.18

(iv) Lower bound on collapse load.

q= 8M(1+2¥p)/142 1.19

(4) Rectangular slabs simply supported carrying uniformly distributed
load. (Wood)
This solution is not strictly unique except for aspect ratios
(b = 1/L) of unity and infinity. But the difference between the upper



and lower bounds on the collapse load is within 1%,

(1) Upper bound on collapse load.
q = 2/ G713 4% )2 1,20

(11) Statiocally admissible generalized stress field.

Mx = q ¢ 2(Tm2x) (Ie2x)/8(1+ $ + $2) 1.21

[}
My = qu(1-2y)(Le25)/8(1+ b+ §) 1,22
Wy = qay/2(1+$ +$?) 1.23

(i41) Vertical edge reaction acting upwards on slab.

_ ' _g%L. _ 1
(atx-%or%) V=0 - ) 1.2,
¢ 2
(iv) Lower bound on collapse load. '
q = 8u(1e Ye 92)/ 212 1.25

(5) Rectangular slabs supported by edge beams with slab carrying

uniformly distributed load. (Wood)

18
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The most general case for these slabs nccurs when two different

limiting values M and m exist for the slab in the directions parallel

to the long and short beams respectively. If B refers to the long

beams and b the short beams then

'
(a) Case I - Long beams collapse with slab.

(1) Upper bound on collapse load.
2
q = 8M(1+2Y;)/L

(11) Statically admissible generalized stress field.

Mx = q(I.-Zx)(I»Zx)/S(LtZXB)
My = a(§-2y) (¢ +2y)/§ 2
L L

oy = gxy(4 -T;—y) - Lhmxy
2 +<hy 0 22

(1i1) Vertical edge reaction acting upwards on slab,

wrep gt

1,26

1.27

1.28

1.29

1. 30

1.721

19
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(iv) Lower bound on collapse load.

q = 8u(1+2Y)/1° 1.32

(v) Additional requirements.

2X; < 14

1 1.33
v

=ls
€ |-~
N

(b) Case IT - Collapse load to be equal to or less than the load

for independent collapse of slab.

2&5 £ 141 1.3
b ¢?
(6) Case III - Slab only collapses.



Very recently MassonnetZ} presented a number of unique solutinns
for reinforced concrete slabs, He builds these solutions using the
fundamental equations governing complete solutions of rigid plastioc
slabs formulated by Hopkins. Massonnet states that for the five
differential equations presented, no general method of integration is
known and that this is why very few cnmplete solutinns exist.
Massonnet develops & theorem for producing a family of unique
solutinns by co?bining linearly two known complete solutinns for the

[
same problem. As an example, he selected the solutinns for the square

simply supported slabs of groups (1) and (2) above. He shows that there

are a number of unique sonlutions within the family developed. The
resulting generalized stress field for any one member of the family is
governed by the amnunt selected from each of the two initial solutions.
However interesting these results are, it remains to be shown that
these families of snlutinns are other than of academic interest.
Undnubtedly there is nnly nne true solutinn to any one problem in
reality and it is this solutinn we should strive to find.

The importance of lower bnund and unique solutions for practical
design cannnt be assessed until the generalized stress fields are
investigated experimentally. There does not appear tn have been any
attempts made to study lower bound solutions by experiment. For
concrete slabs, previnus experiments have been confined to the overall
collapse behaviour and checking the validity of upper bounds on the
collapse load.

A lower bound approach to slah design was introduced in 1960 by

Hillerborgzh. In this methnd the slab is divided into strips in two

21
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orthognnal directinns., Discontinunus moment fields obtained by
uni-directinnal strip action are employed. It is a simple approach
and results in ecnnomical placing of reinforcement. This method has
been given a gnod deal of attention lately especially by Wood and his
team at the Building Research Station.

1.5 Numerical Methods for Elastic-Plastic Slab Analysis

(a) The method proposed by Levi and applied by Callari.

This method was first propnsed by Lev125 in 1950. The general
approa;h was nutlined by Ca.llar126 and later applied by him?7.

The slab is divided into a number of squares by mesh lines, The
method of finite differences is used to represent the Lagrange plate
equation at each mesh point. To represent the effects of inelastic
behavinur, plastic rotations are introduced at mesh points representing
plastic curvatures occuring over one mesh length. The type of plastic
distorsion imposed was first studied by Somigliana28 in 1908, It is
assumed that by imposing plastic rotatinns along the axes of the mesh,
the effect of rotations at some other orientation can be represented.
In the special case where the maximum generalized stresses occur at
45 degrees to the mesh direqyions, two equal rotations are imposed
along the mesh lines. It follows, necessarily, that at some other
point where the actual rotation is inclinded at other than 45 degrees,
unequal component effects should be used.

The slab analysed was a simply supported square carrying four
vertical point loads at the one quarter pnints along the diagonals.
The maximum generalized stresses producing inelastic behaviour were
directed along the mesh lines since Callari assumed that the twisting

generalized stress vanished whenever cracking of concrete ocoured.
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To determine the varionus levels of inelastic behaviour at a
mesh point, a generalized stress-plastic rotation diagram was used.
This had a trilinear variation for a cracking analysis and bilinear
for studying the collapse behavinur. Perfect plasticity was not
allowed in any of the cases. Two types of snlutions were produced
for the slab presented, one for cracking only and a second for the
bilinear elastic-plastic collapse.

T? determine the generalized stress field at any stage of external
loading and inter;al plastic behavinur, the Lagrange equation written.
in terms of total curvature (elastic plus plastio) was solved at each
mesh point. By suppressing the plastic rotation (plastic curvature
multiplied by one mesh length) at all mesh poin%s except one, the
influence of a unit rotation on the vertical displacements was determined.
This was then repeated for each plastic point in turn requiring a
solutinn to the total set of Lagrangian finite difference equations,
From the influence of unit rotations, the resulting increments of
generalized stresses Mx, My and Mxy could be determined at all points.
This procedure then produced generalized stress influence coefficients
to be used in the elastic-plastic analysis. These multipliers were
set aside and only used when the particular.mesh points satisfied the
inelastic requirements as presented by the generalized stress-rotation
diagrams,

From the purely elastic response of the slab, the effect of applied
16ading on the generalized stresses was solved once, at the outset of
the analysis. During the inelastic response tﬁe elastic effects were
always available between any two load stages. The end result required

for any application of load was the final generalized stresses Mx and
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My at each mesh point. These were determined by knowledge of the
initial values (at the end of the last load stage) causing inelastiocity,
the increments of the elastic generalized stresses and the influence

nof the increase in plastic rotatinns at affected points. The influence.
nf the plastie rntations was determined from the generelized stress-
rotation diagram and the previnusly computed influence coefficients.

The total number of characteristic equatinns snlved was equal to the
number of mesh pnints that became inelastic. In this manner a history
of craé&ing or a Build up of a collapse behaviour was traced.

The general approach to this problem is quite gnod. Nevertheless,
there are a number of points worth mentinning in connectinn with the
methnd and the particular results that Callarl obtained.

The assumption tgat the true plastic rotation can be represented
by independent rotations in component directions withnut knowing the
magnitud; and directinn of the true rotations requires some justification.
For the particular solution presented, the true rotations were determined
since Callari assumed that the twisting generalized stresses vanish
once the concrete oracks. If this were nnt the case, the principal
directinns would have to be determined and in some manner two component
rotations intrnduced along the mesh lines.

The sn-called "characteri;tic equations" that are used to compute
the final generalized stresses would have to be written in terms of
principal values. If the orientations of the principal planes changed
during loading the characteristic equatinns would have to be onnstantly
corrected. This severely complicates the procedure and it is likely

that principal generalized stresses could not be dealt with using the

plastic distorsinns presented.
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From the computer analyses the first solutinn (oracking only)

gave cracking loads in excess of experimental values in all cases.

The cracking lnads determined by any analytical means will probably

never give an accurate picture since there are many factors which govern
crack formation. The higher values might suggest that the actual

maximum generalized stresses are greater than those produced analytiocally,
The questinn of lnad application and internal stress concentratinns
mentioned by Callari are certainly local gnverning factors.

THMe largest error was found in the apparent collapse load in the
second solutinn. Strictly speaking there was no collapse load since
perfectly plastic behaviour was not allowed., The computed collapse
load, defined when the displacements increase rapidly with a small
increase in load, was 13% above the experimental value and 24% above
the yield-line upper bound load. These results seem too high and throw
doubt on the analytical procedures. The slab in question will experience
tensile membrane action within the square bounded by the concentrated
loads as the Jonhansen cnllapse lnad is exceeded. ZExperimentally the
slab collapsed at 10% to 12% abave the yield line value. Since membrane
behaviour was not included in the analysis, it seems unreasopable to
expect higher lnads analytically than those given experimentally.,

Callari is tn be congratulated nn attempting a solution to a most
complex problem, However, the one slab example given does nnt establish

its validity as a sound elastic-plastic approach.

(b) The method propnsed by Massonnet and applied by Cornelis.
This method proposed by Massonnet29 is very similar in principle

to that just described. The fundamental difference is the way in which
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plastic distorsions are introduced. In the Levi method plastic rotations
were imposed in vectoral form. Massonnet introduces tensoral components

of total curvature rates and adopts the incremental type of stress-strain
law from the general theory of plasticity.

Althnugh a concrete slab problem is presented by Cornelisjo, the
generality of the method allows the solution of metal plate problems
by adopting the appropriate yield criterinn and associated flow rule.

In fact, Massonnet describes the method with reference to the von Mises
criterion for ductile metals.

The analysis begins by solving a set of Lagrangian equilibrium
equations in finite difference form for a purely elastic response to
applied load. From the resulting displacements, the generalized stresses
Mx, My and Mxy are cnmputed at each mesh pnint. The principal generalized
stresses are computed at all mesh points and scaled until only one
point becomes plastic. This constitutes the end of the elastic response.
This procedure establishes the starting point for the elastic-plastioc
analysis. Next the Lagrangian equations are modified to include
plastic curvatures in the x, y and xy directions. The resulting
expressinns that include plastic curvature appear as fictitious load
terms, The mndified Lagrangian or "characteristic equation™ is written
in finite difference form for eagh mesh point. With no applied load
on the plate these equations are snlved a number of times to determine
the effects of unit plastic distorsinns imposed one at a time at each
print for each of the x, y and xy directinns. From each solutinn of
the "characteristic equationa™ the displacements allow a set of

generalized stress influence coefficients to be determined for each
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point affected by the unit distorsinns. These coefficients are stored
for later use.

The generalized stresses obtained at the end of the elastic stage
are scaled up by a small load factor. The principal generalized stresses
are cnmputed and those points where the yleld criterion is violated
are noted. The next step is to establish what actual plastic distorsions
must be introduced to maintain the yield requirements under this small
increase in lnad. This is done by writing the yield function, at each
point {hat is plastic, in terms of the generalized stresses prnduced
by the scale up of preceding values, the influence of distorsions at
nother points and the influence of the unknown distorsion at the current
point. This results in a number of yield equations equal to the number
of existing plastic points. These equations ar; solved for the unknown
distorsions, one at each plastic point. With these distorsions and
the influence coefficients previnusly determined, the increases of
generalized st;esses are found. The principal generalized stresses
are again computed to ensure that the yield criterion is not violated
at any point., If more points appear plastic, the yield equations are
solved again, now including additional equations to account for the new
plastic points, This cycle is repeated within this one load increment
until no pnint violates the yield criterion:

It should be mentioned here that thrnughnut any nne load increment,
the directinns of principal planes at each point are assumed constant.
Since this is nnt strictly true the yield equations mentioned above
ar; only approximatinns to the actual nnes. Therefore,at the end of
any nne load stage these angles shnuld be recomputed and the principal
generalized stresses recalculated to test the degree of approximation.

If the approximation is not within acceptable limits, the new angles
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are substituted into the appropriate yield equations and the distorsions
determined again. If acceptable, then an additional load increment

is added and the calculatinn of distorsions etc. repeated. If after
aprlying an addition;l load increment, no further points become plastio
and the yield condition approximations are acceptable, then an additional
load inc;ement is applied and the procedure repeated. Collapse nf the
plate is defined when the displacements resulting from plal€10 distorsions
increase rapidly.

THis methnd has two definite advantages over a finite element
approach, The number of Lagrangian or equilibrium equations is equal
to the number of mesh pnints and consequently the accuracy obtained
shnuld be gnond even for a large number of points., Furthermore, the
size of computer program required will most likely be suf'ficiently small
to enable compilation on medium sized computers. These twe features
must be considered for elastic-plastic plate analyses.

The analysis example presented by Cornelis is for a rectangular
slab simply supported on four boundaries. The square yield criterion
for isotropically reinforced concrete with elastic perfectly plastie
characteristics was assumed. Very good accuracy was obtained for the
cnllapse load resulting in a 2% increase over the yield line upper
bound value. Collapse was defined by a rapid increase in vertical
displacements,

The overestimate of c¢nllapse load is to be expected since the
yield function was only approximately satisfied at plastic mesh points
off lines of symmetry. The actual principal geﬁéralized stresses are

greater than thnse assumed. Consequently an underestimate of internal
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energy dissipation resulted in more ;xternal work required for collapse.
The eaquatinn selected to represent the yield function (see sectinn 3.4e)
is a pnor chnice for elastic-plastic plate analysis. Using this equation
and assuming that the orientation of principal planes remains constant
during one load increment results in an approximation to the true
limiting yield value. This approximation is a functinn of the actual
change in orientation and the magnitude of the angle assumed to be
constant. This is further discussed in detail in section 3.4e where

it is shown that a much better dpproximation can be made. The yield
functinn used by Cornelis was satisfactory in his example since the
plastic zones were close to a line of symmetry where little change in
orientatinn ig to be expected.

There dnes not appear to have been a definite collapse mechanism
from the results presented. The plastic points are located close to
and along the central axis nf symmetry but do not extend the plastic
zone to the supports in any direction.

There are two particular aspects of Levi's and Massonnet's methnds
which cnuld limit their usefulness. The first is the problem of using
finite difference techniques to establish the plastic distnrsinn
influence coefficients. The accuracy of the difference technique for
small distnrsioqs poses the question as to whether the effect of imponsing
unit distorsions will prnduce changes of vertical displacements of the
proper order. The mesh size employed and the chnice of difference
a.pproximatinns31 becomes much more important for determining the influence
coefficients. These facts alone might lead to substantial error since
vertical displacements may not in general be very sensitive to localized

plastic behaviour.
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The second is the questinn of introducing other types of structural
members, such as edge beams on plates. Just what the composite yield
behaviour would be and how it could be incorporated is not clear.

Unless such support conditions can be dealt with, these methnds have
limited application. Perhaps these questinns should be investigated
more thoroughly before attempts are made to include other behaviour such
as membrane actinn as was mentioned by Massonnet.

On the whonle, Massonnet's approach is based on sound principles

of structural mechanics and plastic theory.

(¢) The method proposed by Parkhill,

In this method an elastic bending analysis using finite differences
is performed on the "rigid" portinns of the slab that form a collapse
mechanism and leads to a lower bound generalized stress field for the
assumed mech;nism. Since the generalized stress field is statically
admissible and nowhere exceeds the yield criterion, and is established in
accordance with a kinematically admissible velocity field, the
solution contains the required uniqueness properties of a complete

limit analysis solution.

Parkhill32

first establishes a possible collapse mechanism by
epplying yield line analysis., Then the "rigid" segments of the slab
are analysed separately by purely elastic considerations using finite
differences. The boundary conditions imposed on each segment are
assumed to represent those existing in the original slab. Plastic
generalized stresses are applied along yield lines and displacements
are allowed in accordance with those that exist in the slab. The

elastic analysis gives the internal stress fields for the segments.
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If after the segments are analysed it is found that the yield oriterinn
is vinlated within the boundary of the element then an incorrect cnllapse
mechanism has been selected and a different mechanism must be used.

Although Parkhill presents a solution to a square simply supported
slab carrying a uniformly distributed load, he implies that other shapes
can also be analysed,

At first sight this methed lnnks inviting since for many practical
slabs the mechanism pattern is fairly well known or onuld be determined
experid%ntally. However, Kemp53 has explained why this method will nnt
work in all but the simplest symmetrical cases of which the one presented
is an example. The difficulties arise whenever the segments of slab
adjecent to 'a yield line are nnn-symmetrical. Of the three quantities
(normal and twisting generalized stresses and vertical shear force) on
the yield line, only two may be specified and made continuous across
the yield line. This problem occurs in classical plate flexure where
not more than two boundary conditions may be specified., Therefore, the
snlutions will not necessarily satisfy both the equilibrium and yield
conditinns.

In the discussinn of Parkhill's paper McNeiceBh presented a
statically admissible generalized stress field for the square plate
obtained from an elastic-plastic approach using finite elements. There
was no similarity to Parkhill's results. It was implied by McNeice
that the field presented by Parkhill seemed far from a realistic one.

Upon further consideration it does appear that Parkhill selected
fictitinus boundary points along the central axis and imposes two
boundary conditions (Mxy = o and normal slope = o). Unless the use

of these fictitious points also maintains the absence of vertical
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shear forces along this boundary, Parkhill's solution is incorrect.

This may explain the equality of principal generalized stresses along

the central axis. This would mean that the results are not even a

valid lower bound field fnr the square slab but simply an elastic

solution to a triangular slab with certain boundary and loading conditions.

It has not been established that incorrect boundary procedures have

been followed, However, Kemp's discussion olearly indicates the

limitation of the Parkhill method.
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CHAPTER 2 - THE FINITE ELEVENT METHOD

2.1 Origin
The finite element methnd was developed in the U.S.A. in 195635.

Since its beginning in the aircraft industry, the method has become
very popular in many other fields. Principal researchers into the
development and application of finite elements have been Clough36 et al
in U.S.A. and Zienkiewicz37’38 et al in the United Kingdom. Many nther
authors have contributed to the popularity of the method. Almnst all
availahle literat?re on the procedures and use of finite elements is
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reported in two text336’38. The latest text”™ also refers to many of
the relevant papers presented at the Conference39 on Matrix Methods in
Structural Mechanics held in the U.S.A,

2.2 The Philosophy of the Finite Element Methond

The finite elsment methnd is essentially a generalization to three
dimensinns of tpe classical structural analyses of skeletal structures.
The basic concept of the method is not new, The structure when
analysed consists of a finite number of elements connected to one another
at nodal points. The structure is a mathematical assembly of physical
elements., There is no approximation required in the mathematical
procedures, only in the chnine and physical assembly of the elements.
This is the basic difference between the finite element and finite
difference methods. The finite difference methnd gives an approximate
mathematical solutinn to the exact continuum whereas the finite element
methnd gives an exact mathematical solution to an approximate continuum,

By dividing the cnntinuum into elements of varinus sizes and shapes,
all material properties of the original system can be retained within

the individual elements, This capacity of the methnd to cope with
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arbitrary material properties is a principal attribute nf the method.
Of equal impéftance, is the facility to deal with cutouts, irregularly
shaped boundaries and any type of applied loading.

The three basic steps in any finite element analysis are the
structural idealization or subdivision into elements, the derivation
nf individual element properties and the assembly of elements into a
physical structure. Sound judgement is required in subdividing the
structure. If boundary stresses are required finer divisions shnuld be
used along such boundaries. The number of different shaped elements
should be kept to a minimum. This will reduce the amount of initial
computation of element stiffness characteristics,

The element stiffness prnperties describe the nodal force =
displacement response of the element.. These properties are the governing
factors in assessing the validity of the discretization. It is this
second basic step that has been'investigated the most in recent years.
The primary concern is to establish a response function that will desoribe
the element behaviour under various types of traction.

The final step is the assembly of the elements into a substitute
structure. This is dnne using the well known matrix structural methnds,
satisfiying equilibrium of nodal forces and compatibility of corresponding
displacements,

Either of the two approaches to matrix analysis (force or displace-
ment approach) can be used in the finite element formulation. The

development of the force methnd has been traced by Argyrisho. A summary

of both and a comparison have been made by Gallagherhl. The displacement

approach has been selected for the present study.



2.3 Finite Elements for Plate Bending

Althnugh the finite element method is by no means restricted to
structural problems, the remaining discussion will be cnnfined to plate
bending analysis since this aspect of the method is of primary interest
in this thesis. An up-to-date account of the methnd as applied to plate
bending problems has been given by Zienkiewicz38.

The most difficult item in a bending analysis is the selection of
a function that will ensure displacement continuity between elements,
Functipns which fgil to maintain normal slope continuity have been
labelled "non-conforming" by Zienkiewicz. The complexity of the function
will depend on the number of degrees of displacement freedom allowed at
the nndes of the element. For example, for the present study a cubic
polynomial with twelve coefficients was chosen to represent the displace-
ment response of a rectangular element with three degrees of freedom
‘at each of four corner nndes. This function was adopted by Zienkiewicz
and Cheungl'2 and is a non-conforming type since it does not ensure that
the nnrmal slopes to element bnundaries are continuous across the
boundaries. Vertical displacem?nt and slopes tengential to boundaries
are maintained continuous. All three displacements are continuous
at nndes and it is only at these pnints that internal stress fields
and other quantities are computed.

The cubic polynomial mentioned here is one of the simplest that
have been developed for plate bending problems. It has resulted in
extremely gond accuracy where rectangular elements were used. Attempt836’57

to reduce this function to nine coefficients for triangular elements

have not met with much success. Unfortunately, rectangular elements have
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limited use since they are not suitable for irregular beundaries,

Zienkiewicz38 has developed shape functions for triangular elements
by employing a methnd of erea coordinates. He nbtains better results
than previnus attempts at using triangular elements but still not as
gnod as the non-conforming rectangular elements. In an attempt to
produce better shape functions B!a.zeleyz*3 et al develnped conforming
functinns for triangular elements by applying corrective functions to
non-conforming shaped functions and thereby maintaining continuous
normal plope.. Siqilar techniques were also used by Clough and Tocherhh.
From the results presented the non-conforming triangular element snlutinns
gave better accuracy especially for coarse subdivision., Corrective
functinons do not seem to be the immediate answer for triangular elements
in bending.

A novel approach to triangular elements has been developed recently
by Herrmannhs. He introduces a functinnal that permits beth vertical
displacement and generalized stress (w, Mx, My and Mxy) variation at
element nodes. These quantities become the basic unknowns at the nodes.
By allowing only first order derivatives in the functinnal, continuity

of vertical displacement and generalized stresses is maintained alnng

and across the element boundaries. The results presented show excellent

agreement with exact solutions,

The question of normal sleope continuity for rectangular elements
based nn a displacement functinn has been successfully solved by
Hanateenhs. He introduces fnur degrees of displacement freedom

(w, 6x, 6y,0xy) at each of the four nodes. Here the normal slnpe 1is

continunus across element bnundaries and the results presented are
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excellent even for a coarse subdivisinn., These latter twn analyses
are gnod examples nf the diversified approaches currently being
investigated.

The application of finite elements to bending problems has just
begun. With the current interest in this application it will soon be
possible to snlve many complex and very interesting plate problems
that tn date have defied analysis. BEven thnugh many questinns remain
to be answered in applying the method to purely elastic problems, there
is evidence of application being made to non-linear elastic and elastic-
plastic problems.

2.4 Existing BElastic-Plastic Analyses Using Finite Elements

Available literature on elastic-plastic analyses using finite
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elements is confined tn plane stress problems. Argyris has presented
the fundamentals involved for elastic-plastic analyses of three
dimensional media. He gives snlutinns to plane stress plate problems

by employing a step-by-step formulatinn of non-linear plastic behavinur

in a series of linear steps. He describes the procedures in a collapse
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analysis by adopting either a force or displacement approach. He compares

these approaches and concludes that the force method is easier to program

by computer and is more suitable for problems were the degree of
redundancy is much smaller than the number of s‘tructural elements. The
redundancies must be chosen with care if the solution is not to be
sensitive to round off error. He further states that the displacement
methnd is more suitable for structures with many redundancies and that

once the program is written, the problem can be solved by comparatively

unskilled operators.



38

In the delta wing problem presented,the force method was used
to determine the lower bound on the collapse load. The displacement
method was useé to give an upper bound on the load by establishing a
kinematically admissible velocity field (mechanism) by considering a
combination of possible mechanisms, No correct collapse load by the
upper bound approach was determined. This method of applying finite
elements to a three dimensional problem only gives a limit solutinn
with no information about the behaviour before collapse. H&Argyris also
.appliad the element method in plane stress to flat plates with a central
hole., Here a complete history of inelastic behaviour was reocorded.
Another example of plane stress elastic-plastic analysis has
been given by Popeha. A rectangular panel with uniform edge members
is divided into triangular elements and stressed in two orthogonal
directinons. The von Mises yleld oriterion is used with both elastioc-
perfectly pléstic and elastic linear strain hardening properties.
Earlier attempts at elastic-plastic plane stress analysis have been
reported by Clough36. '
One of the latest applications of the method to plane stress
problems has been made by Ngo and Scordelishg. Here the application
is to reinforced concrete beams, The authors have developed a "linkage
element" comprising linear springs in two orthogonal directions to
similate the bond link between concrete and the reinforoing steel.
They investigate single reinforced concrete beams under two point load-

ing by imposing various crack formations of both a vertical and diagonal

nature. Steel and concrete stresses are computed along with bond forces

for each crack pattern selected.

This quite novel approach to solving a very complex problem is
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a further example of the importance of the finite element method.
Althnugh’'nnly a few problems have been briefly mentinned above
to account for some of the areas in which the finite element method
has been applied to elastic~plastic problems, it is by no means a
complete resumé of those that have been tackled.
However, there does not appear to have been any attempts made
to analyse elastic-plastic plate bending problems, For this reason
the present study was begun in 1965 with the hope that successful use

of the hethod could be made to analyse simple plate problems,
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CHAPTER 3 - THEORETICAL DEVELOFMENT

3.1 General Discussion of the Method

The procedures developed for the present study are presented in
detail in this chapter. The following discussion is confined to the
general aspects of these procedures and their method of application.

The theory of small deflectinons in plate bending is adopted with
all its assumptions assumed to hold throughout the elastic-plastic
bending behaviour. The effects of membrane .straining are excluded
inorder, not to complicate the investigation. Plates and slabs that
deform into developablb surfaces under transverse loading are exempt
from in-plane strains of sufficient magnitude to affect basic bending
behaviour. This is particularly true for plates of so-called medium
thickness., Most concrete slabs and certain metal plate applications
are contained within this category.

Only square plates are analysed by the following procedures.
Symmetrical loading and boundary conditions are selected te reduce the
size of the computer program required.

To represent the plate in mathematical terms, the concept of
finite elements is applied. The plate is divided into square elements
each joined at their corners to adjacent elements. For each element
a third order polynomial displacement function is used. This function
ensures continuity of vertical d;splacement everywhere on the boundaries
of adjacent elements., Continuity of slope at junctions or nodes is
also maintained but normal slopes across element boundaries.between
any two nodes of an element are not necessarily continuous, Ho%ever,
at the nndes, equilibrium of forces and compatibility of displacement

are maintained in the elastic portion of the analysis. Since the elements



are considered to be joined only at their corners, the bending and
twisting internal generalized stresses are only approximations to the
actual values.

With this displacement methnd of finite elements, the basic
unknowns are the nodal displacements., Through proper force-displacement
relationships the stiffness matrices for each element are derived. In
additinn, the elastic bending theory provides the necessary internal
generalized stress relationships and when combined with the assumed
displadement function the internal generalized stress matrices are
established. By applying the usual procedures of structural stiffness
matrix methods, the plate continuum can be assembled once the element
stiffness matrices are known.

The effect of edge beams is included in this study. The procedures
outlined sbove apply for beam elements as well. In the inelastic
behavinur of plates with edge beams the question of yield behavinur
at nodes where plate and beam elements join is dealt with separately
in this chapter. TFor the present discussion the edge beam effects
will be omitted, althnugh certain aspects of the following also apply
to the beam elements.

Once the plate structure is assembled the resulting nodal force-
displacement r'elatinnships form a set of simultaneous linear equations.
Since the nndal forces must be in equilibrium with any applied loading,
the matrix of nodal forces can be replaced by a matrix of applied loads.
Solution of these equations produces the nodal displacements for the
entire structure. From the displacements, the internal generalized
stress state is determined at each node.

Applied loading can consist of point loads, distributed loads,
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bending moments or any combination of these. In all cases, the loads
are monotonically increasing with no reversal possible for an elastic-
plastic analysis. The load matrices required for the present study
are develnped in Appendix I.

Wherever the principal generalized stresses satisfy the yield
criterion, plastic behavinur results., The resulting generalized strain
rates are curvature rates. The concept of plastic rotations is
introduced by allowing discontinuities in slopé at the nodes and are
effect%vely curvature rates over an infinitesmal length of the plate.

For each pri;cipal generalized stress that satisfies the yield
criterion, one additional nodal displacement (plastic rotation) is
introduced. TUpon further increase of load these principal generalized
stresses must be maintained at the limiting generalized stress value.
This is accomplished by introducing the equation for the principal
generglized stress into the force~displacement relationships for the
elements at the plastic nndes. When the elements are joined to represent
the plate structure this equation enters the total set of simultaneous
linear equations. These additional equations allow for the solutinn
of the plastic rotations. In this way the total stiffness of the
structure is reduced as more nndes become plastic. The final collapse
of the plate accurs when no solution to the equations is possible.
Mathematically this is implied when the stiffness matrix of the plate
becomes singular.

Inorder tn trace the spread of plasticity from node to node the
behavinur is assumed to be a linear function of the displacements.
This is certainly true in the elastic response but not in the plastic.

However, by adopting an incremental linear approach for the applied
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load-internal generalized stress behaviour it is possible to obtain
approximate elastic-plastic behavinur with sufficient accuracy to
warrant a linear analysis,

This linear method can be applied in different ways depending on
the accuracy desired. One approach is to apply small increments of
load in the order of .1% of the estimated collapse load. Once the
increment is applied the generalized stress state is computed at all
nodes. If none of the nodes becomes plastic, further small increments
of the‘same order are applied consecutively until at least one additional
node is plastic. .If the yleld criterion is violated at oane nr more
nodes, the generalized stresses (Mx, My and Mxy) are scaled linearly
within this last increment until only one additional node is plastic.

A second approach which results in slightly less accuracy is to
apply load sufficiently large to ensure that all nodes become plastic.
That is, a lnad well above the estimated collapse load. The generalized
stresses are scaled down until only one nnde becomes plastic within
this increment. The same load is again applied and the scaling procedure
repeated until a further node becomes plastic and so on.

For additional accuracy in either of the two methods, an iterative
procedure can be adnpted within each load increment. Howev;r, this
would result in much mnre computatinnal time since each iteration would
require the solution of the force-displacement equatinns.

For the present study the first method was selected initially but
because it required more computer time than was available for any one

solutinn, it had to be abandoned. The second method was therefore used.

The principal generalized stresses at plastic nodes off lines of



symmetry vary non-linéarly with load and therefore the directions of
the plastic generalized strain rates do not remain constant throughout
subsequent applicatinns of load. Since the components of the plastic
rotatinns are required in the directinns of the coordinate axes, the
orientation of principal planes must be known throughout the analysis.
By assuming a linear variatinn of principal generalized stresses in
any, nne plastic load inorement (that oontained between two nodes
becoming plastic) it is implied tha® the directions of the plastic
generalized straip rates remain constant within this increment. These
directinns are computed at the beginning and end of each plastic load

increment and if the changes in directions are within certain limits,

the same directions can be assumed for the next applied load increment.

If this change is not acceptable for one or more of these nodes and

the yield criterinn is severely violated, then these directions are
recalculated for use for the next application of load. In this way,
the yield function is linearized during each applied load increment

and is adjusted if necessary after each plastic load increment to bring.
it closer to the actual non-linear variation.

Although this updating procedure can be used, it is not possible
to determine the exact degree of approximation inveolved without applying
an iterative procedure within applied load increments in addition to
the above correctinns,

On lines of symmetry the yield function varies linearly with
displacements and the directinns of the plastic generalized strain

.
rates are constant throughout the elastic-plastic behavinur, Therefore
the "true" inelastic behavinur is only determined in cases where all

plastic nodes are located on lines of symmetry.
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The word "true" applies here nnly in the sense of the mathematical
means of representing the plate continuum. In the finite element method
"érue" takes on different meanings depending on the initial approximations
made in the structural idealization;

For best results the continuum should be divided into a large
number nf elements., This is important in the elastic analysis but even
more 80 in the elastic-plastic analysis, When there are many nodal
points the resulting load increments between subsequent stages of plastic
behavidur will be_ small and the linear approximation discussed above will
be less restrictive on the yield behavinur,

It is conceivable that arguments cnuld develop in favour of using
elements with shapes different from those adopted in the present study.
For example when the plate is divided physically into finite elements,
it is difficult to visualize lines of plastic action (yield lines in
concrete slab.terminology) forming in directions other than along
element boundaries. The use of square elements would mean that collapse
mechanisms would be confined to rectangular patterns and therefore
diagonal modes would not be permissible for a realistic solution. Such
a simple physical thought is not as restrictive as one might think. It
is true that element shape has an influence on the accuracy of the
collapse load since kinematically only the nndes of the element contain
the displacement discontinuities with the element still remaining
continuious in displacement within its boundaries. However, it would
appear from the results of the analyses presented that the effective
reduction in the bending stiffness of an element with one or more plastic

nodes is sufficient to allow the element to function as though it had a
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plastic zone across or along some portinn of its sectinn., This fact
is evident from the solutinon for a simply suppnrted square plate carrying
a uniformly distributed load in which a diagonal collapse mechanism
forms. The collapse load was approximately two percent above that
determined by limit analysis.

Therefore it seems unnecessary to use elements where boundaries
are on the lines of plastic action., This is an important feature of
the present proposal since the aim is to allow the plate to develop
the collapse mechanism without imposing any initial conditions on the
kinematics of the collapse mechanism or having to change the element
shapes before a complete solution is obtained.

3.2 Small Deflection Theory nf Plate Bending

(a) Assumptions

The clasiical theory of small deflections in plate bending 1is
based on certain assumptinns as to the deformation and straining
characteristics of the middle surface of the plate. This theory is
adopted for the present study and is assumed to be valid throughout
the elastic-plastic analysis.

The assumptions normally used in this theory are as follows:
(1) The plate is considered to be medium-thick., That is, it is neither
so thick in proportion to the span that vertical stresses must be
considered, nor so thin that stretching and/or shrinking of the middle
plane occurs when the plate is bent into a dnubly-curved surface.
(2) The plate has uniform thickness and is composed of material of a
homogenenus character. Consequently, the modulus of elasticity for

horizontal stresses and the Poisson ratio for lateral contraction to
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longitudinal elongation are the nnly two material constants necessary
to specify the elastic properties of the plate. o
(3) Vertical plane sections drawn through the plate before bending
remain plane after bending. This implies that horizeontal stresses
vary linearly with depth at all cross-sectinns of the plate.

(4) Transverse bending deflectinns are considered small compared with

the plate thickness.

(b) Plate Bending Formulae

Th; problem of determining the stresses and deflections of the
plate is essentially a three dimensional problem in elasticity. Bys
making the assumptions stated above the problem is reduced to two

50

dimensions. Norris and Wilbur’ have shown that these approximations
can be justified by considering the order of magnitude of the six
independent stress components that are inveolved. The equations for
plate bending can be found in standard texts. The best account of
their derivation is given by TimoshenkoB. These equatinns are used
here with the sign convention for internal bending given in Figure 3.1.
The term™ generalized stresses"™ is used throughnut this thesis
to denote bending and twisting moments per unit length of the plate.

This terminnlngy was selected to be connsistent with that used in

discussing the yield criterinn.

4%
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Generalized Stresses = Positive as Shown
Figure 3.1

The generalized stresses illustrated in Figure 3.1 for elastio

anisotropio plate bending are determined from the following equations:

Mx

-(Dx w,xx-o-D1 w,yy)

'(Dy ':yy"’D1 w,xx) 3.1

My
Mxy = Dxy w,xy

In equatinns 3.1, Dx, Dy, D1, Dxy represent the bending stiffnesses

of the plate. If v is the Poisson ratio of lateral to longitudinal

48
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strain, then for an isotroapic and homogenenus plate Dx = Dy = D, D1 = yD

and Dxy = (1 =y )D/2 where
D=__ Et 5.2
12(1- v?)
E denotes the modulus of elasticity,

Although the conditions of isotropy and homogenity are assumed
for the analyses presented, the generalized stress and stiffness
matrices are derived here for anisotropic rectangular plate elements of
constant thickness. These matrices are presented in explicit form in

Appendix I.

3«3 The Finite Element Methnd in Elastic Plate Bending Analysis

(a) The Elastic Element Stiffness Matrix

The philosophy of the finite element method has been summarized
in Chapter 2. In the present study the displacement approach is used
in deriving the element force-digplacement characteristics, Clough36
has outlined the basic steps in determining the element stiffness prnperties
Similar ateps'were adnpted here in deriving the stiffness matrix for a
rectangular element. These procedures are explained for a two dimensional
element in bending.
(1) Select a displacement function that satisfies compatibility of
displacement within the boundaries of the element and also maintains
the best possible displacement compatibility along the boundary between
adjacent elements.

This function takes a form dictated by the number of degrees of

displacement freedom selected at the nndes of the element. If the node
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displacements are given by the matrix

w3
ui = 9xi 33
Oyi

for nnde i, then the matrix of element displacements for an element

with nodes i,j,k and 1 is given by

34

W F WF

'

3

A typical rectangular plate element is shown in Figure 3.,2. The
sign convention for nndal displacements and external nodal forces is

a "right-handed screw rule" convention,

vi(wi) . v:j (wj)
m l \ /)y, (ey, ) Q;n%‘j (ey,)

o 5 /" > x
mxi(Gx y me‘(Ox;)
b
v, (r,) v (m)
=N VA4 « T
\ / =— a ' KNPz
S ey (o) o)

Typical Rectangular Plate Element
with Positive Nodal Forces and Corresponding Displacements

Figure 3.2



(2) Correspnnding to the nodal displacements of equations 3.3

and 3.4, there exlst nndal forces (one vertical force and two moments).

38

These forces are a fictitious concept” and in some way represent the
shear forces, bending and twisting moments per unit length distributed
along the element boundaries. For nnde i these forces are

' v

Fot the element there are twelve forces given by

3.6

I B -

H R e B

(3) The displacement function selected for the rectangular element

is a cubic polynomial in x and y. This function is given by

2 2 3 2 2 3 3
W= a1+a2x+a3y+a4x +a5xy+a6y +a7x +agx y#agxy +8, Y 48, X y48, XY
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3.7

In accordance with thé sign convention for nndal displacements illustrated

4n Figure 3.2, the displacement at node 1 (and all nther nodes) becomes

wy| = Iu(x,y) li 3.8

Oy w,x
i 7y

[T
]
o]
o
i



Similarly if all the element nodal displacements are written in terms

of w and its first derivatives, these can be written in matrix form as

u = Ca 3-9

In equations 3.9 the matrix a contains the coefficients of equation
3.7. The matrix C contains all the u(x,y) functions as in equations
3.8. The varigbles x and y are givem values to describe the nnde
position relative to the element coordinate axes.

(4) N;xt, the internal generalized stress relationships are derived.
These relationships depend upon the element nndal displacements such
that all internal generalized st?esses can be determined at each node
in the plate, once the displacements are known.

The bending and twisting curvatures are formulated once the

displacement function of equatinn 3.7 is chosen since these curvatures

.

are simply

-W,XX
k= [|-w,yy | = Ba 3.10
W,y

The generalized stresses for anisotrnpic plate bending are given by
Mx DxD, O -W, XX

My | = D1 Dy 0 -w,yy 3.11
Mxy 0 0 2Dxy w,Xy



In general matrix terms equations 3.11 can be stated as

Since k = Ba from equations 3.10 and a‘'= C-lu from equations 3.9, .
equations 3.12 can be established in terms of the element nodal

displacements, That is, the generalized stresses become

M = DBC tu 3.13

(5) Tﬁe next step is to determine the nodal force-displacement response
of the element when subjected to external loading. These relationships
contain the stiffness matrix of the element. One approach leading to
the formation of this stiffness matrix is the use of the principle of
virtual work. If th; nodal forces are moved through a set of virtual
displacements, the resulting external work done must be equal to the
internal.work given by the product of the generalized stresses and their
corresponding curvatures., If virtual displacements of unit 'magnitudes
are imposed at the element nodes in the directions of the external

nodal forces, the external work will have the same value as the nodal
forces. If the unit virtual displacements are given by &u = I (the
identity matrix) and are imposed in turn at each of the element nodes,

then the external work done is
We =0uF =IF=F 3.14

If the resulting internal curvatures are § k, then the internal

work becnmes
Wi= (Gk)T}{dxdy 3.15
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Sincesk = BC™Y Su = BCT'I = BC™' and substituting equations

3.13 into 3.15, the internal work becnmes

Wi (sc™? )TDBc'1udxdy 3.16

Bquating the internal and external work the nodal forces become

F = [:(c'1 ) ﬁTDBd.xdycq] u 3,17

The elastic element stiffness matrix is therefore

k= (¢ T ffﬂnnaxayc“ 3,18

(6) After each element in the structure is considered and its stiffness
matrix derived relative to the element coordinate axes, the assembly

of these elements into the final structure is a‘'simple procedure. If
the coordinate axes of the element are not directed along those of fhe
global system, the element force-displacement relationships must be
transformed into the directions of the global system coordinates. Once

all transfnrmations are performed, equilibrium of nndal forces and
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compatibility nf nodal displacements can be achieved. For the particular

steps necessary in this general formulation, the reader is referred to
Livesleysl. No transformations were necessary in the present study
since the global axes system coincided with -those of all the elements
in the plate.

The matrices involved in the above steps are presented in explicit

form in Appendix I for a single rectangular element of enisotropic

composition,
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(b) The Square Plate Idealization

For the present study only square plates are analysed. These are
divided into square finite elements as illustrated in Figure 3.3. The
12 x 12 mesh shown was selected on the basis of the accuracy obtained

from elastic snlutions based on this subdivision.

-

Subdivision of Square Plate into Finite Elements

Pigure 3.3

S5
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All loading and boundary conditions are symmetrical about the
x and y axes and the diagonals of the plate. Therefore only one eighth
of the plate had to be analysed.

The numbering of the nodes is also shown in Figure 3.3. It is
worth noting that although the numbering of nndes is completely arbitraqy,
there 13 a definite advantage in numbering them such that the difference
between any two adjacent nnde numbers is kept to a minimum., This will
ensure that the band width of st?ffness coefficients in the total
structgral stiffness matrix is kept ot a minimum. A narrow band width

increases the accuracy of solution and also reduces the amount of computer

storage required for the coefficients in an elastic analysis,

(c) Discontinuities in Generalized Stresses

At a node commnn to two or mnre elements the generalized stresses
should be identical for each element, That is, in reality there is only
one stress condition at any one point in the plate provided no discont-
inuity in plate flexural stiffness occurs at that point. However, for
rectangular elements of the type described above for which the stiffnea;
matrices are éerived by the displacement function of equation 3.7,
8light discontinuities in the generalized stresses occur across element
boundaries., This discrepancy exists because the displacement function
selected does not maintain continuity of curvatures at nndes, For
evidence of these discontinuities or steps in the generalized stresses,
the reader is referred to Zienkiewiczja.

For the present analyses the generalized stresses Mx, My and Mxy
were each averaged at.common nodes such that for elements of the same

bending properties, there was only one set of principal generalized

stresses..



57

(d) The Variation of Principal Generalized Stresses within one Element

The variation of internal generalized stresses within the boundaries
of an element can be determined from the second derivatives of the displace
ment function. From equations 3.11 these generalized stresses can be

written as

-'o 0.0 2 0 2y 6x 2y 2yx 6yy 6bxy syxy“a |
-looozyoz 6yx 2yy 2x 6y 6Yxy 6xyHal 3.19

|o 000 (1-)) 00 2(1-y)x 2(1-))y 0 3(L-Wx> 3(L-))y>

a

off ol ol

_ In equations 3,19 the generalized stresses Mx and My vary linearly
and Mxy parabolically within or along the element boundaries. With
these distributions it is possible for the principal generalized stresses

which are given by

M 92 _ 1/2 |Meadtys ;/(Mx-ny)2+auxy2 3.20

to have a maximum value within the element boundaries. This is an
important consideration for an elastic-plastic analysis simce the yield
criterion could be violated at points away from the nodes.

The necessary condition for a stationary value of principal

generalized stresses at a point (x,y) is that
X =0 3.21

and
M Yy = [o] 3.22

gimultaneously. For this stationary value to be a maximum
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(Mt,xx) (Mt,yy) > (M.t,xy)2 3.23
with
M xx i
L, << © 3.24
Mt,yy

The position (x,y) for a possible maximum depends on the coefficients
a 1in equations 3,19 which in turn depend on nodal values of displace-
ments. Once these coefficients are known, the distributions of generalized
stresses within the element (equations 3.19)are specified. The next step
is to satisfy equations 3.21 and 3.22 and determine (ysing conditions
3.23 and 3.24) if a maximum exists,

However, because of the form of equations 3.20 it is not possible to

establish algebraically the coordinates (x,y). Consequently, a numerical

approach is required.

For the present study a number of spot checks were made within
elements to assess the violation of the yield criterion. These are
presented and discussed in Addendum I. In general, it can be said that
for the analyses presented herein, the selection of nodal principal

generalized stresses as maxima is justified.

3.4 7Yield Criteria for Metals and Reinforced Concrete

(a) éeneral

A fundamental requirement for an elastic-plastic bending analysis

is the selection of a yield criterion for the plate material. In the
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present study both metal plates and reinforced concrete slabs are
considered. Consequently, separate yield criteria for these materials
shnuld be used.J However, by limiting the analyses to plates and slabs
with similar limiting stress states, it was possible to adnpt one yield
criterion that satisfies cleasely, the yield properties of both materials.
The terminology appearing in this section 1s consistent for the
most part with that used in the theories of plasticity and limit analysis.
The terms generalized stress (bending, twisting and principal) and
genera¥ized strain rates (curvature rates) are used to indicate that
the variables specifying the states of stress and strain need not have
the dimensions of stress or strain. The concept of plastic rotations is
adopted to represent slope discontinuity after yielding of the plate
material occurs. These rotations are curvatures over an infinitesmal
length of the plate.
The term."plastio flow line" is here introduced to describe an
imaginary line of infinitesmal length across which the plastic generalized

strain rate occurs. For reinforced concrete slabs these lines when

joined correspond to yield lines,

(b) Yield Criterion for Metals

The two well known yield criteria for ductile metals are illustrated

in Figure 3.4
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.'2
¥ Possible Strain Rates
. (Tresca)
kL"kz M
k1: 1:1
Possible Strain Rates 1
(Tresca) = M M
Strain Rate
von Mises Tresca 4 (von lises)
]
' " M 2 x
Strain Rate \
(von Mises)

Yield Criteria for Ductile Metals

in M1’2 Generalized Stress Space

Figure 3.4

The directinns of the generalized strain rates are indicated.
These directinns are established by the theory of the plastic potential
due tn von Mises in 1928, 1In 1953 Koiter52 generalized this theorem
and removed the restrictinn of the yield locus having to be a continuous,
piecewise diffierentiable functinn. This generalizatinn enabled the
plastic potential to be applied to the Tresca criterion and therefore
established the flow rule. This flow rule states that except at the
corners nf the yield locus, the generalized strain rates are directed
along the nutward normal to the yield locus. At corners generalized
strain rates are permissible in any direction between thase that are

perpendicular to the yield locus,
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The limiting generalized stress condition for the Tresca oriterion
can be specified by several yield functinns in the sense of Koiter.
That is

(x1 M) (MZ-M) (M2-M1 ~X) (-mfl -}) (-Mz-u) (M1 -MZ-M) =0 3.25

In equation 3.25, the state of generalized.stress is below the
yield limit if all these yield functinns have negative values. For a
state of stress at the yield limit, at least one of these function;
must vanish while none has a pnsitive value.
The von Mises yield criterion in two dimensional plane space forms
an ellipse. For any one combination of the principal generalized stresses
that satisfy this oriterion, there is only one state of generalized
strain rates that can be determined by the theory of the plastic-patential.

The yield function for the von Mises criterjon in bending is

(M1 )2+ (MZ)Z-M1M2- (M)2 =0 3.26

For a complete discussion of the theory of the plastic potential
and the yield criteria for metals, the reader is referred to Hillsj.

Hill also describes anisotropic criteria for metals.

(c) The Yield Criteria for Reinfarced Concrete

Since any yield criterinn is simply a hypothesis concerning the
limit of elastic behaviour of a material subjected to certain combinations
of stresses, its validity must be established by experimentation. For
metals the criteria mentioned above have been investigated experimentally
with most evidence supporting their basic concepts. For plain and

reinforced concrete no yield criteria have been so firmly established
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as for the case of metals. Recent research into the yield criteria
for isotrnpic and orthotropic reinforced concrete slabs has developed
as a result of the increased acceptance in design practice of the yield
line theory of analysis for reinforced concrete slabs pioneered by
Johansen7. British researchers have produced the most note worthy
works on many aspects of the limit analysis and'design of reinforced
concrete slabs. The principal stimulus has been the work of Woodk‘at
the Building Research Station.

Most exponents of yield line theory have assumed that the yleld
of a Johansen slab 1s governed by a square form of yield criterien.
This, of conurse, is a false assumption when one considers the criterion
stated by Johansen.

For an orthotropically reinforced concrete slab in which the

ultimate bending resistances are M and yM in the x and y directions

respectively, the Johansen criterion is

M(cosinezﬁ + sine%ﬁ)

M(sinezﬂ +LLcosin32¢) 3,27

Mn

Mt

. Mnt = M(1- |1 )sinefcosineff

The generalized stresses are shown in Figure 3.5.
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) Mn Yield Line

Normal, Tangential and Twisting
Generalized Stresses on Yield ILines

Figure 305

This yield criterion implies that the x and y directinns are
principal and the twisting generalized stress Mxy is gzero. For the

isotropic case with 4 = 1 equatinns 3.27 reduce to
P H®

Mn = X
Mnt = 0

If a top layer of reinforcing steel exists with an ultimate



bending resistance m then the yield criterion for negative bending

is Mo = -n
Mt = -0 3-29
Mnt = O

Equations 3.28 and 3.29 represent two points on the yield locus for
the criterion of equations 3.27 when | = 1. Furthermore, these are
the only points that exist for the isotropioc case since Mn = Mt for
positive or negative bending and therefore it is impossible to have

a positive-negative bending combination, Consequently the Johansen
criterion is far from a square criterion. Only the +,+ or -,- corners
of the souare.criterion for'the isotrnpic case are coincident with

the Johansen criterion. The square criterion is illustrated in

principal generalized stress plane space in Figure 3.6 of the next

sectiqn,

When the static theorem of limit analysis was applied to a Johansen

slab it was found that inorder to satisfy the equilibrium equation

Mn,nnsMt,tt-2Mnt,nt = -q/D 3.30

at all points along a yield line, the tangential generalized stress
Mt must be made to vary., This variation removes the restriction of
not being able to represent a positive-negative generalized stress
state and cnnsequently a square criterion can be assumed. This is
tantamount to rejecting the Mt condition of JohansenS original yield

criterion (equations 3.27). Therefore the square yield criterion was

never really implied by Johansen althonugh it has been assumed by many
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as a result of applying the lower bound techniques of limit analysis
to Johansen slabs.

A different yield criterion from that of equatinns 3.27 for
orthotrnpically reinforced slabs has been established in the prinecipal
generalized stress space by Kempsu. He establishes the flow rule
assnciated with this criterion and shnws that it is consistent with the
predictinns of the plastic potential thenry. More recently Smre5 3 has
presented the same criterion in generalized stress space. Kemp's
criteribn reduces to the square yield criterion for isotrnpic slabs.

Experimental evidence on the yield criterion for isotropically
reinf'orced slabs has recently been published by Morley56 in BEngland
and by Lenschow and Sozen57.in the United States. Morley used rhombnid
slabs loaded at the corners to investigate principal generalized stresses
of opposite sign. The results support the idea of a square yield
criterion for isotropic reinforcement. Lenschow and Sozen performed
tests on twn different types nf slab configuration loaded by flexible
cables to reduce the effects of possible membrane action., They -applied
separately, uniaxial and twisting external bending moments te rectangular
slab elements and equal biaxial bending moments to regular hexagonal
shaped slabs. This latter slab shape allows bending moments to be
applied in three different directions at sixty degrees ton each other.
These experimental results for isotropically reinforced slabs also
support the square yield criterion form in principal generalized stress
plane space. '

The square yield criterion is accepted by many at present as a

gnod approximation for isotrnpically reinforced slabs.
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(d) The Yield Criterion Adopted for the Present Analyses
The criterion adnpted for the present study is the "square criterion"
i; principal generalized stress plane space of Ml, Mz. This criterion
is illustrated in Figure 3.6 and is.identical to that presently employed
for reinforced concrete. It is also identical to the Tresca criterion
when the principal generalized stresses have the same sign, It was
assumed that by selecting certain metal plate bending problems, internal
generalized stress states producing principal generalized stresses of
opposite sign would occur at only a few locations in the plate (near
corners for the plates analysed herein) and that yielding at these points

would not occur until much of the plate away from these locations had

become plastic. ‘

M2
q L ]
k?
‘. ' X
M
—\x', 2
§
g q
1
- q u Mq
q @1
q
- -M
y .
eZSquare Yield Criterion
. in Mq’ Generalized Stress Space
otr o

Figure 3.6



In discussing this criterion and its associated flow rule, it is
supposed that the gereralized stress state is determined at some point'
in the plate. In the context nf the finite element method, let this
print coincide with some node q at the corner of an element, The x
and y axes shown represent the orientation of the global coordinate

axes of the plate in a Cartesian reference system. If the generalized

stresses in bending dre Mx, My and Mxy given by equations 3.1, then the

principal generalized stresses determined from a Mohr generalized stress

circle ,are simply

%= g [Mmm / (Mx-My)2+4Mn2} 3,31

In addition, the directinns nf these principal values can be specified

by the angle ﬂq of which the

Tangent(Zﬁa) = 2Mxy/(My-Mx) 3.32

The yield requirement for this criterion is that whenever a
principal generalized stress attains the limiting value of M, plastic
straining takes place. The flow rule associated with this generalized
stress state is such that the plastic strains occur in the directinn
of the responsible principal generalized stress. The resulting
generalized strain rates for bending are curvature rates and are
idealized in the present study by employing the concept of plastic
rotations. Since these rotatinons have both magnitude and direction,

they can be represented as vectors, the directions of which are

A
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perpendicular to the actual plastic strains (adnpting a right-handed
screw rule). , These rotations concentrated at nodes of an element are
considered to produce "plastic flow lines™ directed at right angles
to that of the responsible principal generalized stresses, The directions
of these flow lines are given by the angles @l and Qi measured clock-
wise positive from the x axis in Figure 3.6. These angles and the
kinematics of displacement behavinur at plastic nndes are discussed
in the following section of this chapter.

The flow rule described above satisfies the requirements of the

plastic potential theory since if the yield function is given by

£(Mx, My, Mxy) = MxsMy+ /(Mx-My)2+vacy2 M =0 3.33

and the generalized strain rates by

l.cx =pf,x iy =pf,y fQQ':pf,xy 334

then the directinns of the principal generalized strain rates measured

clockwise positive from the x axis should be
Tangent(2f ) = 2loxy/ (iy=ix) 3.35

Partial differentiation of the yield function required by equations

3.3 ( p is ah arbitrary positive constant) produces

Tangent (2¢q) = 2Uxy/(My-Mx) 3.36



which is identical to the flow condition initially assumed by equation
3. 32,

However, this flow rule cannnt be strictly enforced using the
finite element methond presented here. The problem of imposing plastic
rotations in plate elements is discussed in section 3.5b where it is

shown that only an approximation to this flow rule can be made.

(e) Linear Approximations to the Yield Function

Thg non-linear form of equations 3.3l presents certain difficulties
for use in an elastic-plastic bending analysis using matrix algebra.
These difficulties develop at plastic nodes off lines of symmetry where
the generalized stresses Mx and My are not equal and Mxy is non-zero.

At these nodes the yield function cannot be written in matrix terms
unless it is restated in an approximate linear form.

Therefore at a plastic nnde where the non-linear form of equations
3.31 governs, it is necessary to maintain the limiting value M by using
and approximate yield functinn throughout the remainder of the analysis.
This can be dnne by assuming that the angle ﬁé in Figure 3.6 remains
constant during each plastic load increment. The plastic load increment
is the increment of applied load between any one nnde becnming plastic
and the next. Thus the angle assumed for any one plastic load increment

has the value obtained at the end of the previnus plastic load increment.
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This approximatinn will have little effect on the accuracy of the solution

if the change ?n this angle is small when determined at the beginning
and end of the increment.

Massonnet29 and CornelisBo adopted an approximation to equations



3.31 in the form e
M;’Z = %[Mx-rMyy_(Mx—My)secant(Zﬁq)] 3.37

The same approximate equation was independently chosen initially
for the present finite element approach previnus to the publication

of these papers. However,it was abandoned in favour of a more accurate

equation in the form

M;’Z = -%{Mx-rMyi [i(Mx-My)cosine(qu)-mxy sine( 2¢q):|} 3.28

The Mohrs circles of Figures 3.7 and 3.8 illustrate geometrically
the differences between the approximate equations 3.37 and 3.38 and the

actual equation 3.31.

(o]
M =Assumap Max. Prmaran Varve l

M =AcTua. Max. Prncieas Vass

Figure 3.7
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Figure 3.8

The angle ﬂa and the assumed generalized stresses in Figure 3.8
have the same values as those in Figure 3.7. The change in '“ﬁa +s
shown as Aﬂ% and represents the change in orientation of the
principal planes as the load is increased from the beginning of a plastic
load increment to the end of this increment.

It is clear geometrically that the approximatinn made using equation
3.38 by assuming ﬂa ' is constant during the plastic increment is far
superior tn that of equatinns 3.37.

To illustrate the differences between these equations when varinus
angles ﬂé are assumed constant, the ratin nf actual to approximate

radii (R°/R) is plotted against changes Aﬂq of up to 10 degrees
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in Figure 3.9. From Figure 3.7 the radii ratio is

13: - cosine(2¢q+2A ﬂql 3.39
R cosine(zﬂq)

and from Figure 3.8 this ratio is simply

_I_{: = cosine(24A 4 ) 340
R q ,

Of; the two ratios in equations 3.39 and 3.40 the first is a function
of both ﬂq and i.ts change A ﬁq whereas the latter is only a function
of Aﬁq « In Figure 3.9 for the case of ﬂq = 0 degrees, the radii
ratios are identical for either of the approximate equations. However,
for any nther angle ﬁq and an accompanying cha:nge A ¢q s the superionrity
of equations 3.38 becomes quite evident. In equations 3.38 the approx-
imation to the radius of the circle is the same for any one Aﬁq regarde
less of the orientation (ﬁq ) of the principal directions. On the
other hand equations 3.37 can give as much as 100% error as ﬂq
approaches 14.50 with the change Aﬂq only a fraction of a de;ree. "

The error introduced by using R® rather than R is not » however, the
error in the principal generalized stresses. The error in the principal
generalized stresses (and therefore violatio;x of the yleld oriterion)
can only be assessed if the center of the circle, and R® and R are known.
If Mx = -My then the error implied by the radii ratio is also the error
in the principal generalized stresses.

The importance of employing equations 3.38 as an approximation
to equatinns 3.31 for elastic-plastic analysis is that the angle fq

need not be changed for a plastic nnde after each plastic load increment.
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Indeed from Figure 3.9 it is evident that even a change of A ﬂ; = 10
degrees gives at the most €% error in principal generalized stresses
(in the extreme case of Mx = -My).

Equatinns 3.38 have been used in producing the solutinns presented
in this thesis. From the results it appears to be an excellent approx=-

imation to the actual principal generalized stresses,

3.5 The Elsstic-Plastic Bending Behavinur nf Rectangular Elements

(a) G%neral

The elastic ;tiffness matrix for the rectangular element (the basic
steps apply to any element) was derived in section 3.3a. For an elastic-
plastic analysis the resulting stiffness matrix becomes an extension of
the eiastic matrix with additional coefficients describing the internal
generalized stress state at the plastic nondes of the element. Its final
form is dictated by the way in which the no&e displacements are allowed
to become discontinuous (that is, how the flow rule is applied). In
the present propnsal,‘slope discontinuities at nodes occur whenever
plastic rotations are introduced. The components of the plastic rotation

afé determined once the rotation and its orientation to the coordinate

axes are known,

(b) The Approximate Nature of Plastic Flow in Finite Elements

In general the finite element idealization of the plate results in
a substitute structure that deforms in accordance with the kinematics
allowed by the nndal displacements. At a plastic node common to four
rectangular elements the idealized plastic behavinur between elements is
only an approximation to the actual plastic flow., It is impossible to

introduce a single plastic rotation that enforces the elements to deform
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physically in the correct manner. This follows from the fact that when
yield occurs in the real plate discontinuous slopes form in the direction
of the plastic strains but in the substitute plate, the only nndal slope
discontinuities (plastic rotations) that can be dealt with are thnse
normal to the element boundaries. ’
With the displacement function adopted in this study, the plastic

rotation must be divided vectorally into two orthogonal components, each

of which is introduced between adjacent elements and directed along their

boundaries. In Figure 3.10 this idealized plastic flow is shown,
-

- -
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Figure 3.10
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Plastic behavinur at a typical nnde is illustrated in Figure 3.10a
and b. Positive plastic rotatinns result from pnsitive bending., For
negative bendiné the directinn of the plastic rotation is simply reversed.
Pigures 3.10c and d are displacement patterns for elements with plastic
rotations of Figures 3.10a and b respectively.

The discontinuity that should nccur cannot s8ince the slopes
perpendicular to @ are nnt determined at the nnde. To approximate the
true behavinur, the components of the plastic rotation are determined
in the directinns of the element boundaries and these result in a dnuble
f0ld between elements. If the angle @ is measured clockwise poasitive

from the x axis then

ax = aoosine@ 3.1

and . ay = asineé

for positive or negative bending in Figures 3.10a and b.

From Figures 3.10c and d it is evident that two situatinns develop
for specifying how the displacements are donated to each element, The '
elastic-plastic stiffness matrix for any one element in Figure 3.193
will have a different form from that for the same element in Figure 3.10d.

However, the components of plastic rotations for either displacement

pattern are determined from equations 3.41.

It is preferable'to have only one displacement pattern for any
plastic rotatinn that might naccur. This will reduce the cnmplexity of
the computer program required. The configuratinn of Figure 3.104 is selected

for the present study. To make Figure 3.10c consistent with.this chenice,
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equatinns 3.41 are restated as

ax = ~ajoosine § |
3.42

and ay = a]sineq)l

Bquations 3.42 simply maintain a negative ax and a positive Qy
for pnsitive bending and vice versa for negative bending.

Because the components of plastic rotatinns are imposed between
elements in two orthogonal directinns, the flow rule associated with
the squ'are yield oriterinn is not in general satisfied at a plastic node.
If the directinn of the plastic rotation vector is along an element

boundary then the flow rule is properly satisfied since the correct

discontinuity is allowed.

(¢) Node Displacements Including Finite Rotatinns

Figure 3.11 illustrates the nnde displacements at a plastic nnde j.
Only the boundaries of two elements along the x axis are shown. The
y axis is directed out of the plane of the page. Vector directinns for
displacements are positive if along the posi;:ive axes directions, All
the slopes shown are negative. The vertical displacements and the
component czy‘j nf the plastic rotation are positive. The superscrii)t

o denotes displacements at the node before the principal generallzed

stress state of node j satisfies the yleld conditions,.



Unloaded Plate
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No Plasticity

J
Plasticity at j only

Node Displacements = Slopes and Rotation'Componenta About y Axis

Figure 3.11

From Figure 3.11 the slope

/
O;,rj = Oyj-vayj 3eb3

A similar situation occurs along the x axis if the vector direction of

the plastic reotatinn a , is other than along the y axis. That is,

J
there would be components of the plastic rotation directed along both
the x and y axes. If the generalized stress condition at nnde j is
such that both principal generalized stresses H; and H? satisfy the
yield criterion at different load stages, there would be components in

the x and y axes due to both plastic rotations.
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Equation 3.43 implies that the component Cl.yj is donated to
element jm. Consequently, the stiffness matrix of this element will
contain coeff:i:cients that relate the external nodal forces (V'j Iy m.xJ and
myj) and the internal responsible principal generalized stress at §j tn
this component. Similar relatinnships will exist for the same quantities
with respect to the component axd when‘the elements are viewed along
the y axis bearing in mind that equatinns 3.42 determine the plastic
rotation components,

If‘ this method of introducing the components of the plastic rotations

is applied at all four corners of a rectangular element, it would result

in each node having the displacements shown in Figure 3.12.

. |1 v, w, J
X Qxi-o-): ax, ‘ o% +Zaxj
| Oyi+}: ayi Oyg
Yy
w w.
ok, e)l‘ék
1 9y1+ Zayl Gyk k

Node Displacements for Rectangular Element. ... —
All Nodes Plastio

Flgure 3.12

Only nodes i, j and 1 have cnmponents of the plastic rotatinns
within these nndal displacements. % ax, etc. represent the summation
of components due to all principal generalized stresses l[l and Mf etoc.
satisfying the yield criterinn. This represents the mnst general vase

of nnde plasticity for a rectangular element.
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(d) Plastic Behaviour at a Common Node for Four Rectangular Elements

The methad of intrnducing plastic rotatinns and resolving them
intn conrdinate components as described above will now be applied to

a typical nnde i. It is assumed that both principal generalized stresses

M? and Mf have independently satisfied the yileld criterion at two

i
different plastic load stages. A sectinn taken from the plan view of

these elements is shown in Figure 3.13.

’/<iiDirection of Mz Direction of H1

i i
Vector Directions of Plastic Resulting Node

Rotations and Directions of Displacements
Principal Generalized Stresses

(a) (o)

Typical Plastic Node Behaviour

Figure 3o 13
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Once the plastic rotations form, the four elements become

»

discontinuous in slope in both the x and y directions since components
of these rotations act abnut both axes. Bach plestioc rotation that
forms constitutes one additional independent displacement. For the
case of nnde i the unknown displacements are five in number, That is,
one vertical deflection, two slopes and two independent rotations, A

column matrix of these displacements for node i is
w
i
‘ Qxi
d . 6y,
1i

C‘-i ' Selidy

Ct2
i

The superscripts on the rotations denote which of the principal generalized

stresses was responsible for its formation,
In Figure 3.13 the angle F’i has been described previnusly (see
equation 3.32). The angles @1 and Qf have also been described

previously (see Figure 3.6) and are given by

Bi = He-2)m +8; 3.45

in which t = 1 nr 2 for M1 or M2 respectively, Therefore the

i i
components of the plastic rotations (recalling equations 3.42) in Figure
t
3¢13 are simply
1 1 2 2
zq,xi = -ai cosine %J ('1:l cosine §il
1 1.2 2 346
Lay; = ailsine Q’J +ai]sina ﬁil
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Now that the displacements have been described, the elastic-

plastic stiffness matrix for the rectangular element of Figure 3.12

can be established.

(e) The Elastic-Plastic Stiffness Matrix

Whatever the form of the stiffness matrix is, its coefficients
must relate the nodal forces to the corresponding nndal displacements,
If any of the element nndes are plastic, ad?itional nodal displacements
(plastic rotations) must be determined. Therefore additional equations
mst b; available to solve for these. These equatinns are simply

principal generalized stress equations that satisfy the yield conditions,

In the general case for a node p where the principal generalized stresses

M; and Ms attain the limiting yield value, the rotatinns a1 and a2
can be expressed in a column matrix
R1 a1
5 =13 3.47
R2 a2
P P
or in a general form as
] 8
R = .
p = % 3.48
The other three independent displacements are simply
. W
D Op 4
. = {6x .
P p 3.49
Oy?

If the same procedure is applied to four nndes numbered 1,2,3 and
4 of a rectangular element then the displacements for the element can be

assembled into one single column matrix
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D
D1
D2
D)
4
1
Ry
D Rf
n- = 3. 50
Rs R1
P 2
2
Ry
1
R, .
2
1 ] RA

Tﬁg orission of independent rotations at node 3 follows from
Figure 3.12if i =1, j =2, k=3 and 1 = 4 for the present example.
The introduction of the subscript n implies that n and p can have different
node number values.

The external nodal forces corresponding to the displacements Dn for

the element node n are simply

) F =(mx 3.51
If the subscript m is introduced such that it has the same range
of values as n in equations 3,50, the nodal forces for the element are

F

3.52

W N -

F
m F
o
All of the internal principal generalized stresses at the nodes

have attained the limiting value M. They can therefore be established

in matrix form to read
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2
M M
1
M M
t
M= | 2| = 3.53
2
‘ 1
M, M
2
M
¥,

The complete force vector (external nodal foroes and internal
principal generalized stresses) can be written by combining equations
3,52 and 3.53 in the form

-
&)
..LNNN—L—‘N—LE_L.P' \;#N.d_:#

354

K o B
=2 =B = =

N F

=
=

The submatrices Fm and M; in equations 3.54 are related to the
Dn and R; matrices of equations 3.50 by elastic-plastic stiffness
coefficients.
To determine these coefficients the following are required for the
element:
(1) The elastic stiffness coefficients determined from equations 3.18.
(2) The principal generalized atress equations 3.31 established in
matrix form through knowledge of equations 3.13.
(3) The angles @: determined from equations 3.45.

To simplify the discussion of the formation of the stiffness
coefficients only the forces at node 1 will be considered. The forces
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at node i (i = 1) in Figure 3,12 are given by the equations
w1 . .
9x1+ pX ax,
Oy* Iay,
W

2
9x2+ Yax

= 8y
F= B2 wal 2

2

3¢55

9y3

4

' Qxl'

oy, * la ¥,

The submatrices Kmn are 3 x 3 in size for the rectangular element since
there are three degrees of displacement freedom corresponding to F1. If the

components of rotation Gx, etec. are replaced by the relationships of equation

1
3.46 and separated from the slopes, equations 3.55 can be written as
b
9x1
9y1

W2
9x2

9y2
"3

Ox
X KIIKIIIKIIKIII 3 3,56

F P L TR P TIPS PILITA o7

1= |Fqpok

=N =N

FNONON
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The matrices K1§I etc, are 3 x 1 in size and are simply columns

of coefficients repeated from the matrices K11 etc, For example K1fI

is the second column of the matrix K11. This column nf coefficients

multiplies the displacements 9x1 and a1014vafbf. The Roman numeral denotes

which of the columns (2nd or 3rq)is repeated. C: and S: etc. represent

(-

node numbers and the supersoripts, the principal generalized stresses.

oosineQ: ) and ( lsineq:l ) respectively where the subsoripts denote

Once again equations 3,56 can be rearranged by multiplying the
sines and cosines of the angles @I by the stiffness coefficients.

Restati%g equations 3.56 in this manner the forces become

L=
-

[~
£ W N

-LQ_L

IT 4 TIT A, IT 2  III 2

1= B0 Fa2oR 3% %0 OBy 8% Oy Sy
IT 1. II,2  IIT A . III_2
Ky2 Co%2 CorFay SyoFy, Sy

F 357

[=]

NQ—‘ - N

o L P

To simplify these equations a summation convention can be used to
advantage and allows the following generalization of the external nodal

force—~displacement equations,

8
. Fm = Kmn K Dn 3.58
S
Rp

The summation convention applied here is the same as that explained
by HillB} except here it applies independently to both subscripts and

superscripts. For the rectangular element the subscripts and superscripts



have the following values:

:}1,2,3,4 §}1,2,3 :}1,2

The use of superscript t is shown in equations 3.54.

8%

The next requirement is to establish, in matrix form, the internal

principal generalized stress conditions that satisfy the yield oriterion,

By substituting the generelized stress equations 3.13 into equations

3.31 the principal generalized stresses can be written in matrix form

as

1] |t ot gt 1 ATIA ATIT 4TI 2 ATII 2
Mol [Faa%428g 30Ky Kaq Cp#Kgq 590Ky CrKyy 500
11,1 AII 2 ATIT A _ATII 2

- Kyp OprKyp Carky, S, Ky 1S
2| |2 2 .2 | 2IT 4 2ITI 1 2T 2  2TTT 2
L I T ey ST T

20I1.1 ,2II1.2 . .2TI1,1 KZIIISZ

K2 €20k

c

22K,

S

RASTL/N

R Y U u o

o]

R Q R
F2MONN2INN=2 2 N =

R
ol N

3.59
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These equations can also be stated generally by using the summation

convention, That is

D 3.60

'

Equations 3.58 and 3.60 can now be combined to form the required

elastic-plastic nodal force-displacement relationships,

F K K3 {p
- mn mp n 5.61
Mt t Kts R® .
q qn qp ||'p

The coefficients Kh; and K:; are determined systematically from

the following equatinons. The Kronecker Delta §

has its usual
ip

meaning:

5ip=01fi;!pand Gip=1ifi=p
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The coefficients are

s II s g8 IIs III s
Kmp= 61p( mi %1% m1 ) + 62p(m2 2) ’64p(KmA Sh) 3.62
and
ts

tII 8 tIII a)

tII 8 tIII 8

qhh

The summation convention which allows the generalization of the
force-displacement equations (equatinns 3.61, 3.62 and 3.63) can be

employeg in deriving the stiffness relationships by computer.

3,6 The Total Structural Stiffness Matrix

Livesley51 has outlined the procedures to follow in formulatiné
the total structurel stiffness matrix once the individual element
stiffnesses have been established. To satisfy both equilibrium and
compatibility for an elastic solution, the structural stiffness matrix
can be assembled at the nutset and need not be altered during the analysis,
However, for an elastic-plastic solution this is no longer true. As the
structure develops more plasticity, its total stiffness mqﬁfii_gu&tlEL_ _
altered in such a way that the stiffness of the structure is progressively
reduced.,

For elastic-plastic analyses of skeletal structures the reductinn
of.stiffness can be achieved by two different methnds. One methnd
results in a decrease in the total number of stiffness equations by
eliminating the displacement corresponding to the force which satisfies
the yield condition. For members such as beams and columns the external

nodal forces such as mx or my are the same quantities as the internal

nodal bending mnments. Therefore when the internal bending mnment
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attains the limiting yleld value the external nodal force (s;y mx)

also has this value. Consequently the corresponding displacement

(slnpe 0x) at that node can be eliminated from all the stiffness
equatinns since mx is known. This reduces the total number of equations
by one. Each of the remaining equations will include the limiting yield
value which thereafter results in the internal bending moment at that
nnde maintaining the yield condition,

A second methed requires additinnal equations, one for each additional
unknowrt plastic rotation. For uniaxial members (beams or columns) these
rotatinns will occur at right angles to the longitudinal bending axis.
The additional equations specify that the internal bending moments equal
the limiting value. Both methods are identical with respect to the
equilibrium of external nodal moments and internal bending moments.

The first is an implicit formulation whereas the second is an explicit
one.,

For elastic-plastic bending nf plate elements using the displacement
approach of the present study, only an explicit formulation is possible.
This follows from the fact that the external nndal forces such as mx
and my are nnt the same quantities as the intern;1 generalized stresses
Mx and My. (Even if their dependence on one another were exactly knewn,
the principal generalized stresses would have tb be established in terms
of these external nodal forces. The resulting non-linear relationship
would make the elimination of the corresponding displacements Ox or 6y
impossible). Consequently the total plate stiffness must be reduced
by the addition of yield function equations. These equations prevent

any increase in principal generalized stresses at pldastic nondes when
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the applied load is increased and the bending resistance of the plate

i8s therefore reduced.

The stiffness equations for the plate resemble those of equations

3,61, If the displacement vector for the plate is

D,
Q W '
. IP = R1 3.6&.
and the force vector :
. ZF1
' . .
L : ,
,Sl - ZM1 3.65
then the total structural stiffness Qquations are
L K(E.E) K(B.P) |]|Q
= 3.66
S k(P.E) K(P.P) ||P

The four groups of submatrices in the total stiffness matrix
have coefficients that connect the following parameters;
K(E.E) - The external nodal forces L to the nodal slopes and vertical

displacements Q.

The external nodal forces L to the nodal plastic rotations P,

K(E.P)

K(P.E) - The internal principal generalized stresses S to the neodal

slopes and vertical displacements Q.
K(P.P) ~ The internal principal generaligzed stresses S to the nodal
plastic rotations P,
The summation of the external nodal forces (see equations 3,65)
must provide equilibrium with the applied loading at the nodes. Therefore

the column matrix of equations 3.65 can be replaced by a column matrix

.
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of applied loads. The solution of these equations determines the nodal
displacements and these in turn allow the internal generelized stresses
to be computed at each node of the plate.

In equations 3.66 the coefficients in the K(E.E) matrix are additions
of those taken from the Kmn matrices in equations 3,61 for each element.
These coefficients rgmain the same throughout the elastic-plastic analysis.
The K(E.P), K(P.E) and X(P.P) matrices form from additions of the xm;,

K;m and %:; matrices respectively, It is the formulation of these latter
matricés for an elastic-plastic analysis that requires a much more
sophisticated computer program than does an elastic analysié. However,

the procedures required are systematic and lend themselves to a computerized
formulation. Because of the non-linear form of equations 3.31 for certain
plastic nodes, some of the coefficients in the K(E.P), K(P.E) and K(P.P)
matrices may have to be changed af'ter each plastic load increment since

the directions of the principal planes and the plastic f}ow lines change
(see sections 3.4e and 3.5d).

For a general plate structure with n nondes there would be 3N o
external nodal forces and 2n possible independent principal generalized
stresses. Correspondingly, there would be 3n nodal displacements and
a possible 2n independent plastic rotations., Therefore the total number
of equations possible in equations 3.66 would be 5n. The 8size of sub-

matrices in equations 3.66 would be

Inx1 Znx3n 3nx2n

3. 67

3nx1l

2nx1 2nx3n  2nx2n 2nx1
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For a symmetrical plate structure the total number of equations
can be reduced, . For example, for the plates analysed in this study
symmetry of plate geometry, lnading and boundary conditions reduced

845 possible equations to 140 independent equatinns,

3.7 Load Application and Scaling Technique

(a) A Simplified Example

Tt 11lustrate the general procedures for determining plastic nodes
and the final collapse of a plate, a simplified example is given in
which only three plastic nndes cause the plate to collapse. The plastiec
nodes are i, j and k at which only the principal generalized stresses
M;, M;izand M; satisfy the yield conditions. The larger principal
generalized stress Mi at node 1 is presented with thnse above to illustrate

typical behaviour at a non-plastic rinde.

(b) Principal Generalized Stress-Applied Load Characteristics
If the principal generalized stress and applied load characterfsfics
of each of the faur nodes are plotted for each load stage causing

plasticity, the complete elastic-plastic solutinn would result in five

diagrams as in Figure 3.1l4.
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(e)

(a) (e)

A Simplified Example of an Elastic-Plastic Solution
Figure 3.14



95

The load is applied in large increments and scaled until only
one nnde becnmes plastic within each increment. In the present study
only scaling down procedures were adopted. Consequently the applied
load had to be sufficiently large to form a collapse mechanism,

In Figure 3.14 the load LA is applied and from the nodal displace=-
ments the generélized stresses (Mx, My and Mxy) are computed at all nodes.
The principal generalized stresses are then determined. Those for the
four nndes are shown in Figure 3.1l4a. The largest principal value at
LA is M;. A scale factor is next ocnmputed such that Ml = M, resulting
in load stage L1. The generalized stresses at FA are scaled to L1 and
recorded for the next applicatinn of load (LA)' At node 1 the yield
conditions (Ml = M) is now maintained for the remainder of the analysis
by introducing this condition into the stiffness equations for all
elements joining at node i (see equation 3.60).

The load FA is again applied and the principal generalized stresses
computed. The variation in principal values between L1 and QA is
different from before since the plate bending stiffness has been reduced
(Figure 3.14b).

The largest principal value at LA is now M;. Again a scale factor
is determined that results in nnde j becnming plastic at load L2. The -
generalized stress field is scaled down to Lz and recorded for the next
increment of load. These steps are repeated until the third node becomes
plastic with M; =M at Lh’ If the load ;A is again applied, no solution

to the equations exists and this defines collapse of the plate.

The plastic load increments are o to I.1, L1 to L2, L2 to I.3 and

L} to LL' The scale factors that determine the plastic behaviour are
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computed from the generalized stresses (Mx, My and Mxy) at the beginning
of a plastic load increment, the slopes of their variations and the
principai generalized stress equations (either equations 3.3l if the
node was previnusly non-plastic or 3,38 if previnusly plastio).

There are two types of scale factors, one for non-plastic nodes
based on a non-linear variation of principal generalized stress and
a second for nodes that were previnusly plastic due to one principal
value and subsequently become plastic due to the second principal
generakized stress. In Figure 3.1k, the first type was used for nndes
i, j and k in Figures 3.l4a, b and d respectively. The secnnd type
was used in Figure 3.14c for node j.

To illustrate the calculation of these scale factors cnnsider
node j. Before plasticity occurs at j, the principal values M; and M§
are computed by equations 3.,3l. If at nnde j, Mg, Mg , and ng are the
generalized stresses at load L1 with the orientation of prinecipal planes
given by ﬁg , then the generalized stresses at snme load stage between

L, and L, are simply

1 A - — ——
Mx = MX + A AMx
My = MR +AjAMy : 3.68
Mxy = MRy +2AjAMxy

since the generalized stresses vary linearly with displacements., In
equatinns 3.68, A jis the required scale factor and AMx etc. are the
rises nf the generalized stress slopes between L’ and LA' Substituting
equations 3.68 into equations 3.3l and rearranging to form a quadratic

equation in A J gives

2372 = (-Bs /B%-uac)/28 3.69



in which 2
AMx A My-(A Mxy)

AMXET+ A MyMJO:-Z A MquM)nqy-M( A Mx+ A My) 3.70
MRUF- (U ) %4 (1) 2~ (UR¥)

[
" o

Q
!}

For negative bending, M is replaced by =M, The smallest positive
Aj from equations 3.69 is the relevant scale factor. Since M; =M
1
at Lz, let the scale factor be Aj . In Figure 3,14b this scale

factor leads to load L2. With further increase in load, the principal

genera%ized stresses M; and M? ars assumed to vary linearly with

displacements by maintaining ¢§ (now computed at L2) constant for

load stage L, to LA' This step requires that the principal generalized

2
stresses be given by equations 3.38. If Mg, M? and M%y are recorded

1
at I, (scaled from L, by Aj ) a set of equations like that of 3,68

is substituted into equations 3.38 giving
1.2 M- (MR4UT )+ (MR-VT )cosine (28° )+ MRy sine(28°)
)2 3= J 3.71
AMx+ A My+( A Mx-A My)cosine(zﬁg);zA Mxy sine(2¢g)

-~ w ~x youn

The scale factor 13 results in M? =N at LB.
In Figures 3.1lha to d the largest principal generalized stress

at load LA indicated which node was the next to become plastic, °‘This

is not always the case since the variation of principal values may

result in some other node becoming plastic before the one indicated

at L,. For example in Figure 3.14b, if the variation of H; followed

A
the broken line, M§ would have exceeded H; at LA’ This would have led
to a 1lnad causing M? = M with l;>»l. Therefore, once the scale factor

is determined on the basis of the largest principal value at L, and

the generalized stress field scaled down, it is necessary to recnmpute
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all principal generalized stresses at this scaled load stage to test
for a vinlatinn of the yield criterion. If such a condition exists,
then a new scale factor must be established to produce a lower load,
This is repeated if necessary until only one additional node becnmes
plastic for each application nf LA.

3.8 Edge Beam Elements for Plates

(a) General

Beam elements can be readily included in the finite element methnd
when a;plied to elastic plate bending analysis. Once the beam element
stiffness matrices are determined, these elements can be jngned to
plate elements by the usual matrix methonds.,

The effects of edge beam elements on the elastic-plastic behaviour
of plates is included in this study. The concept of plastic beam
rotation is retained with the generel formulation of the edge beam
behaviour based on well established principles of structural mechanics,
The simple principles involved in the composite yield behaviour between

plate and beam elements illustrate how easily beam elements can be

included in the present proposal.

(b) The Elastic Stiffness Matrix for Beam Elements in Bending

A typical beam element is shown in Figure 3.15. The convention
for external nndal forces and correspnonding displacements is the same
as that for the plate elements. For beam elements the vertical shear
forces are the same as the external nndal vertical forces V. Also the
external nodal forces my and mx are the same quantities as the internal

bending and twisting méments respectively, This was not the case for
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Typical Beam Element
with Positive Nodal Forces
and Corresponding Displacements

Figure 3.15
The internal shears and mnments are based oan the normal convention

in which pesitive curvature is prnduced when beam fibres below the neutral
axis are in tensinn., Shear forces are positive when their summation

in the pnsitive x direction acts downwards. This convention 1s consistent
with that adopted for the plate elements (Figure 3.1) and is illustrated

for a beam element in Figure 3.16.

External Loading

Beam Element
Internal Shear and Moment Convention

Figure 3.16



If ETI is the flexural stiffness nf the beam element, the bending

moment in Figure 3.16 is simply

Pl

MxD= -EI Wy,XX 3.72

Following the same procedures of section 3.3 the stiffness matrix

of the beam 13 next derived. The assumed displacement function of the

beam is
W = b,+b_x+b_x24b, x° 373
' ) 170208 PRy g
The nodal displacements are functions of x and can be written as
W
i
u, = Oxi = Ju(x) l.ll b I 3Tl
Gyi

In general the displacements for both nodes of any beam element

become
= Gb 3075

The corresponding external nodal forces at node i are

vi op—y -—e
Wi :

For the two nndes the force vector becnmes

F
F=|1
Fy 3.77
By equation 3.72, if Db = EI, the internal bending moments are
M= Db k= Db Hb 3.78

In deriving the bending stiffness matrix the torsional behaviour

can be excluded initially. The external work done by the nodal forces

100
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* .
in bending (F ) acting through unit virtual displacements 6u = I is
given by

* % * *
We = §6uPF =IF =F 379

The internal work dnne by the bending moments through resulting

curvatures §k 1is
W= (5k)Tde . 3.80

From eqyations 3.75, b = G-1u and when substituted into equations 3.78

the moments become

=D H ¢ u 3.81

For virtual displacements the resulting curvatures are simply
-1 .
6k=Hb=HG 6u 3.82

Bquating internal and external work in bending the nodal forces become

F*

w867l
{EH'%)TG [‘é D Hnix] ax} 383

The quantity in the curled brackets is therefore the bending stiffness
matrix for the beam element., This matrix is presented explicitly in
Appendix I,

The torsional components of the element stiffness matrix can now
be included. The torsinnal stiffness is the product of the polar moment

of inertia nof the cross-section and the modulus of elasticity in shear.
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If the angle nf twist per unit length of the beam element in Figure 3.15

is
: (6x;-6x,)/a 3.84

then the external torsinnal moments mxi and mxJ are w
i
0o 1oo0-to oL

mx - - Oy

mx w

J 0.;1 00 Lolld
a a QxJ

(*)
£

By’combining equations 3.83 and 3.85 the complete stiffness
relatinnship between nndal forces and corresponding displacements can

be determined for the beam in the matrix form
F = Ku 3.86

At nndes where beam and plate elements join there will be three
displacements ;ommon to both elements., The assembly nf the elements
follows in the cnnventinnal manner by summing stiffness ocoefficients
for each element. Therefore in the elastic response both equilibrium
and compatibility are satisfied in the usual way.

3.9 Composite Yield Behavinur of Plates and Edge Beam Elements

(a) General

Wood22 has develnped the mathematical relatinnships for the elastic
behavinur of plate-beag systems based on the small deflectinn theories
of plate and beam bending. He included the effects of in-plane or
membrane éorces which nccur when the centroids of the plate and beam do
not coincide. The numerjical solutinns presented were based on the methnd

of finite differences and the particular problems solved excluded the
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effects of membrane forces, twisting moments in the beams and beam width.

In the present study similar simplificatinns are employed. The
effects of membrane forces are excluded by maintaining plate and beam
centrnids at the same pnsition. The beam elements have gzero width so
that the beam and plate have the same vertical displacement along their
boundaries in the elastic case but not necessarily in the plastic case,
However, at their junctinns or nodes, they have the same vertical
displacement throughnut the elastic-plastic analysis.

The effects of torsinnal stiffness of beams are included in the
structural interaction of plate and beam elements., The twisting moments

are excluded from the yield criterion for the beams.

The neglect of membrane actinn was made nnt because its effect was
considered negligi%le but rather to allow the development of the present
elastic-plastic approach te proceed as a first approximation to what

is in reality'a complex structural problem.

(b) The Yield Behaviour of Beam Elements only.

It is assumed in the following presentatinn that a beam becnmes
plastic whenever the internal bending moment at a node attains a limiting
value Mb. The effects nf strain hardening are excluded but it need not
be if a linesr rule is selected. Once the limiting value is reached,
displacement discontinuities (plastic rotatinns) are allowed at the
node. The vector directinn of these rotations is always perpendicular
to the longitudinal bending axis of the beam.

A typical situation which illustrates the yield behavinur of two

beam elements joined at nnde i is seen in Figure 3.17.
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Unloaded Beam

i

s p ] Plasticity at Node i

Plastic Behaviour of Beam Elements

Figure 3.17

Here the right-h;nd screw rule is applied to the displacements. The
plastic rotation a is positive as shown since its vector direction
is perpendicular to the plane nf the page along the positive y axis,
The introduction of beam elements and plastic rotations follows directly
from the procedures adnpted for plate elements.

The elastic-plastic stiffness matrix for beam elements that have
plastic nndes can be derived by the methnds of sections 3.5. The result

would take the form of equations 3.61, For each new unknown (beam

plastic rotation) there will be one additinnal equatinn tn be satisfied

(Mx = W)
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(o). Composite Yield Behaviour at Nodes Common to Plate and Beam Elements.

Now that the yield behavinurs of beam and plate elements have been
developed separately the next step is tn establish the composite yield
behavinur for these elements when joined at common nndes. It is important
to realize that a complex stress state exists at such interfaces and
that only en idealized interaction nf elements can be used to produce
a tractable solution, From a stress analysis point of view the yield
characteristics of the combined system cannot be separated into one
system for beams apd annther for the plate. The following proposal is
not based on the knowledge of the actual stress situation at such an
interface but rather on well established theories of structural analysis
and idealized material behaviour,

In this approach there are separate stress states in each of the
two types of members. That is, the principal generalized stresses in
the plate can occur in any direction relative to the bending axis of
the beam but the beam bending stresses will always produce bending moments
along the longitudinal bending axis. Therefore, if the yield behaviour
of plate-beam elements is based on independent stress states, the resulting
plastic flows in these elements are also independent of each other,

With the method of finite elements the separation of nodal force
equilibrium and displacement compatibility between beam and plate elements
allows the composite yield behaviour to develop in a manner con;istent
with the force-displacement apprnach to matrix structural analysis and
the simple plastic theories of idealized member behavinur,

The fundamental idea adnpted in the composite yield mechanism is

that of a structural pin connection between plate and beam elements. This
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pin allows the beam to bend and/or rotate freely abnut an axis normal
to the plate elements at the common node. This results in different
slopes occuring between plate and beam elements along the directinn of
the beam axis. These slopes are made independent of one another by
separating the total equilibrium of nodal forces into one equilibrium
condition for beam elements and another for plate elements. This pin
concept then allows plastic rotations to develop separately in the
plate and/or beam elements.

The differences between the composite yield behavinur of plate
and beam elements and that for four plate elements are the introduction
of different slopes sbout the y axis (see Figure 3.18) and the fact that'
the beam pIastic rotation vector is always perpendicular to the beam
bending axis and is independent of the yield behaviour of the plate

elements,
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Composite Yield Behaviour at Plate-Beam Common Nodes

Figure 3,18
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Figure 3.18 illustrates four possible displacement patterns for
beam-plate nndes, Comparing Figure 3.18d with Figure 3.13b, the essential
differences are 9; (the beam slope) instead nf Oy for the beam elements
and a, rather than Y ay . The displacements 9)4 and O-.b are independent
from those of the plate elements (Oy and Yqy ) and therefnre additional
independent equations must be available for their solution. For xy

the yield condi‘hon is simply that the beam bending moment

4 MBeam = llb . 3.87

/
For 6y the equilibrium of nodal forces on the beam elements requires that
zmyb = 0 3.88

The subscript b denotes beam. In the plate element equilibrium of

forces correspnnding to 8y requires that

= 0 L]
Zmyp 3.89

in which p denotes plate elements. When nn plasticity occurs (Figure
/
3.18a) the slope 6y = €y and the normal equilibrium of nodal forces

requires that

Zmyb-rl'mypzo 3.90

The equilibrium of vertical and twisting (mx) nodal forces remains

the same whether the nnde is plastic or nnt. That is

va-r va=0 391



and }:mxb+ mep:O 3.92
Teble 3.1 is a summary of the composite yield behaviour of plate
and beam elements, For each yield condition the independent unknown
displacements are given accompanied by the equations required to solve
for these unknowns. Of the eight yield conditions presented there are
only four different combinations of unknown displacements that must be

allowed for in the elastic-plastic anslysis,

109
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Yield Inderendent
Conditions Displacemen Available Independent Equations
at Common Node || Unknowns

w OXQ%LHZL;Q va+ bnxp" Zmyp* L“' ’2=ME}IW =0 meb=C&Beam
L va=0me_b=o ;mybzc P =

1
No Plasticity]lx |x [x x x x

2. Plate only
Plastic, One Flo X
Liﬁp only

(3. Plate only
Plastic, One Flowx |x [x [x K x x x x x
Line only not

arallel to Beam

. Plate only

astic, Two Flofy Iy |x |x Ix x x x x x
Lines in any
Direction
5
Beam only
xx|x| [xx| x x x x x
Plastic

6. Beam and
Plate Plastic
at Different
Times

7e Beam and
Plate Plastic |xjxix|x|x x|} x x N < x x x
at Same Time

8.Beam Plastic
vuth.Plate x|x|x|x|x x| x x x x x x
Previously
Plastic
9.Plate Plastic }
with Beam
Previously
____Plagtic

—4

Plate~Beam Composi‘te Yield Behaviour

Table 3.1
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CHAPTER 4 - EXPERIMENTAL TESTS ON PLATES AND SLABS

4.1 General Remarks

To establish the validity of the aﬁalytical model a series of
experiments was performed on four reinforced concrete slabs and four
mild steel plates. The investigation includes the effects of two different
point load arrangements on the metal plates and the effect of edge beams
on the elastic-plastic response of both plates and slabs.

The plates, slabs and test procedures are described in this
chapter¢ the results of the tests and their comparison with analytiocsal

results are presented in Chapter 5.

Reinforced Concrete Slab Tests

he2 Purpose of Slab Tests and Quantities Measured . .

The basic purpose nf the slab tests was to obtain certain data
for comparison with the analytical results, Wherever possible the
following items were recorded:

(1) Deflection contours.

(i1) General cracking behavinur and final collapse mechanism.

(11i) Internal generalized stresses in the slab.

(iv) Bending moments in the edge beams:

(v) The collapse load.

A summary of the slabs tested is presented in Table 4.1.
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4e32 Generelized Stresses in Reinfnrced Concrete Slabs

It was realized at the nutset of this investigation that the
measurement and interpretation of bending strains in reinforced concrete
is a difficult task. The epproach adnpted for the slab tests conaisted
of measuring strains on the top surface of the slabs and on the reinforcing
steel., This provides an estimate of bending curvature.

The generalized stress-curvature characteristics of the slab were
determined from a statically determinate bending test on a control beam
specimen. From this test the applied bending moment per unit width of
specimen (generalized stress) was krown and the strain measurements
(concrete compressive streain and reinforcing steel tensile strain)
provided an estimate of bending curvature. Once this relationship was
established and the curvatures measured in the slabs, the generalized
stresses were determined,

4ot Metal Edge Beams

Mild steel edge beams were used on slabs No, 2 and No. 4. Metal
beams simplified casting of the slab structure and provided a more
accurate means of measuring benQing strains than would reinforced concrete
beams, Furthermore, the neutral axis of the steel beam would be
maintained close to the center of the beam, a condition that was
assumed in the analytical study.

The bending moment-curvature characteristics of the edge beams
were determined from a control specimen following the usual procedures
discussed above.

The beams were connected to the slabs by threaded shear connectors
that were wired firmly to the slab reinforcing steel. For the x l%"

beams of slab No., 2, 4" diameter bright mild steel connectors were used.
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For slab Nn, 4, 3/32" diemeter high strength steel screws were used.
At the corners of the slabs, the beams were welded together. The beanms
were made of mild steel, British Standard 115.

4.5 Slab Reinfnrcement

The steel reinforcement for slabs No, 1 and No, 2 consisted of
commercial black mild steel. For slab No. 1 round bars were used at
approximately 3" spacing both ways. The two layers of steel had different
total steel areas in an attempt to produce equal ultimate bending
strength in tge two orthngonal directinn. However, this was not entirely
successful since under test, slab No, 1 showed a definite weakness in
one direction. Therefore,for slab No. 2 a flat bar rectangular cross-
sectinn was selected. The bars in one direction were staggered sabove
and below those of the orthogonal direction. With this facility and
the flat crnss-sectinnal shape the effective steel layer depth was
almost cnnstant in all directinns. This arrangement of reinforcement
produced a more symmetrical pattern of cracks and deflectinns than did
that for slab No, 1.

For the small slabs Nn.3 and Non.4 the problem of unequal effective '
steel depths and unequal ultimate bending resistances was a more serinus
item to be considered than for the larger slaba. To overcome these
difficulties a perforated sheet type of reinforcement was used. This
was produced by punching 1" square holes in .04O" thick mild steel sheet
(British Standard En.3 series)P The center of the hnles were spaced
13" apart in two orthogonal directinns. This gave & reinforcement mesh
with steel atriﬁs «25" wide by .040" thick. This type of reinforcement
reduced the effective bnnd between steel and concrete but the general

performance of the slabs under test was gnod.



4.6 Strain Measurement

Electrical resistance foil type strain gauges were used. These
gauges were purchased from Westland Aircraft Limited, Saunders-Roe Division,
Osborne, East Cowes, Isle of Wight, Gauges of 1" gauge length were used
on the surface of the concrete for slab Nn, 2 alnng with %‘ gauge lengths
on the reinforcing steel and metal edge beams., For the edge beams of .
slab No. 4, 3" gauge lengths were used. For the gauges on the reinforcement
protection against water damage was provided by a covering of Araldite
and a gubberized coating. All exterior surface mounted gauges were covered
with a temperatur; protecting grease and polythene sheeting. Some gauges
were connected to dummy gauges to compensate for strain errors resulting
from temperature changes during the tests. Other pairs of gauges were
wired to read only bending strain.,

All strain recordings were made by a 10 channel portable data logger
manuf'actured by Westland Aircraft Limited. This logger was extended to

20 channels, each channel requiring I% secnnds to register a reading.

4.7 Slabs No, 1 and No. 2

These slabs were cast in the mould shown in Photo 4.1. The mould was
covered with contact paper to prevent water entering the shuttering and to
produce smnoth surfaces on the slabs. In this photo are pictured the
reinforcement, strain gauge positions, edge beams with shear connectors for
slab No, 2, For each slab a control beam specimen was also cast. This
specimen represented ¥ the width of the slabs. The mould used is pictured
in Phnto 4.2. Also shown are the gauges for determining the steel tensile
strain leading to curvature measurements. Three positions were used in
determining the bendihg—curvature characteristics as a check against

faulty readings. Twn point loading was applied approximately at one
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Photo 4.1

Photo 4.2
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third span intervals resulting in constant moment over the middle third
of the span.

The general arrangement for tests No., 1 and No, 2 is shown in
Photo L4.3. The slabs were tested vertically to permit the taking of
photographs of crack patterns as they developed during the test. The
underside of each slab was covered with a fine coating of white Snowcem
to help detect cracking. A 3" square grid was marked nut to correspond
to.the 12 x 12 mesh of finite elements adnpted for the analytical model,

Bach corner'of the slab was supported against transverse displacement
by 1" diameter steel balls, In-plane movement was allowed. A central
point loed was applied by hydraulic jack, the lnad being distributed
over a 3" diameter hard rubber pad " thick. The load was measured
using a high strength steel proving ring as well as a load cell as a
double check,

Deflections were recorded by the dial gauges shown in Photo 4.3.
These gauges were connected by fine high tensile steel wire to the top

surface of the slab. Readings were recorded by a 35mm. camera. Photo

D S e

L.4 is a typical set of deflection readings. Also shown are the surface
mounted adapters for, connecting the wire to the slab surface. Deflections
were measured over %th of the slab area at 3" intervals as shown.
Deflections at a number of other points were also measured to check

symmetry of transverse movement,
!

The data logger and load cell measuring equipment are also pictured

in Photo ll—- 3.
4,8 Slabs No. 3 and No. &4

These slabs were tested using the apparatus designed for the metal

plate tests. They were corner supported and centrally loaded. Slab No.4
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Photo 4.3

Photo l&ol}
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had square cross-sectinnal metal edge beams. Strain measurements
were made nn these edge beams but no attempt was made tn place gauges
in the slabs on the reinforcement. Photographs were taken of the crack
patterns at collapse. Deflectinns were recorded at two positions; at
the center and at mid-span along the edge.

These tests were perfnrmed tn check the analytical results with

small scale or mndel slabs.

Mild Steel Plate Tests

4.9 Purpose of Plate Tests and Quantities Measured

The following items were measured in the metal plate tests for
comparison with analytical results:
(i) Deflectinns at center of plate and/or at mid-span on
the edges.
(ii) Internal generalized stresses.
(iii) Bending moments in the edge beams.

(iv) The collapse load.

A summary of the plates tested is presented in Table 4.2.
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4,10 Generalized Stresses in Metal Plates

The measurement of generalized stresses in metal plates did not
present any particular difficulties. Foil type electrical resistance
strain gauges with 3" gauge lengths were used on all plates and edge
beams. Principal generalized stresses were determined at certain
locations by using a rectangular type of strain rosette.

The generalized stresses were determined using generalized stress-
curvature characteristics computed from bending tests on control beam
speciméns. Bending moment-curvature relationships for the metal edge
beams were also determined from control specimen tests.

Strain gauges were placed on the top and bottom surfaces of the
plates and edge’ beams for curvature measurement, Both bending and
in-plane strains were measured. Dummy gauges were used in conjunction
with certain active gauges. All gauges were protected against the
effects of temperature differentials and air currents on strain

measurement,

4,11 Metal Edge Beams

Metal edge beams were welded on plates No. 2 and No. 4. These
beams were made from commercial black mild asteel and had a 3" x 13"
channel cross-section. The ends of the beams were mitred and welded
together at the corners of the plates. The beams were welded to the
plates (continuous fillet welds on top and bottom of plate) such that
the centrnid of the beam coincided with the middle plane of the plate. .

4,12 Yetal Plates No, 1 and Nn. 2

All the plate tests were performed using a Denison tension-compression
machine. Plates No, 1 and Nn, 2 were loaded at their centers by a point

load distributed over a 3" diameter circle. Plate No. 1 had free edges
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with vertical corner supports. This plate is shown in Phnto 4.5 prier

to testing., Plate No, 2 had the same lonading and general test arrange-
ment excépt for metal edge beams arnund its periphery. The steel support
plates at the corners housing the 1" diameter steel balls were attached
to the plate specimens by three high tensile %" diameter screws. The

1" diameter balls were held in positinn under the corner of the plates
by eountersunk holes in the coarner support plates.

4.13 Corner Support Columns

The loading and boundary conditions selected for all the tests
(plates and slabsi were selected to allow the plates and slabs to deform
into develnpable surfaces and thereby reduce the chance of membrane
forces developing. For the metal plates, special corner support
columns were constructed to allow freedom of horizontal movement and
alsn rotation in the vertical plane.

Photo 4.6 shows the pipe column support with the lower distribution
plate welded to the top of the column and carrying an array of 3" diameter
steel balls set in a perspex mould. The purpose of these balls is to
allow horizontal movement. An upper distribution plate was';I;ced n£_~
top of these balls (Photo 4.5) and it in turn supported the 1" diameter
ball and plate structure. The exposed faces of the upper and lower
distributinn plates were covered with spring steel sheet material to
prevent indentation of steel balls under load.

These supports proved very valuable in eliminating in-plane

forces and allowed the plates tn develop definite cnllapse mechanisms.

The supports were also lubricated with oil to further reduce frictinnal

effects.
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Photo 4.5

Photo L4.6
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L.14 ¥etal Plates No. 3 and No. k4

These plates were made identical to plates No, 1 and Nn, 2
respectively. However, plates Nn. 3 and Nn. 4 were lnaded by four point
loads pnsitinned as shown on plate Nn. 4 in Photo 4L.7. The steel core
cables shown were purchased from British Ropes Limited.

To apply the load from under the plates, a loading yoke was
onnstructed for use on the cnmpressinn head of the Densinn machine,

This yoke is shown in Photo 4.8 along with a statically determinate
system of load distribution beams. The four uppermost cables in

Photn 4.8 are the same cables pictured in Photo 4.7. The tnp center

of the yoke was fastened to the compression head. The yoke and
distribution beams were assembled arnund the plate structure. A typi;al
arrangement of applying the four point loads (in this case plate No. 3)
is seen in Photo 4.9.

The general test arrangement is shown in Photo 4.10. All strain
measurements were recerded by the data logger previously mentinned. As
an added precaution against effects of temperature change and drafts on
the strain measurements, the entire loading area of the Dension machine

was enclosed in polythene. ,
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Photo 4.7

Photo 4.8
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Photo 4.10
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CHAPTER 5 - COMPARISON OF EXPERIMENTAL AND ANALYTICAL RESULTS

5«1 General Remarks

In this chapter the experimental results from the tests nf plates
and slabs described in Chapter 4 are presented and compared with thnse
produced by analytical analyses based on the theory of Chapter 3.

The test results for slabs are presehted in four separate groups,
one for each slab test. Deflectinns for all slabs measured at mid-span
on the slab boundaries and under the point lnad are presented at the
end of ,the slab tests. For slabs No. 1 and 2 crack formations and
deflection contours were recorded over mnst of the applied load range.
For brevity only the crack patterns and contours for the elastic limit -
stage (according to the analyses) and one other lnad stage within the
elastic-plastic behavinur are presented. For slab No. 1 the last recorded
contours were measured at 85.5% of the analytical collapse load.

The metal plate results follow those for the slabs and are presented
in the same fashinn. In additinon to the grouping of deflectinns at
the end of the plate tests, results from the measurements of principal
plane directinns are presented. Alsn evidence of inhomogeneous plastic
deformatinn is reported with photographs from twn plate tests showing
the formation nf Liders lines. An explanation of the stress states
is given with analytical predictinns of their formation.

The results of both plate and slab tests are presented in separate
sectinns independent of each other. No comparisons of plate or slab
tests with each nther are made althnugh the tests were organized so
that such comparisons would be pnssible. They are nnt repnrted since

the primary purpnse nf the tests was tn assess the validity of the
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analytical mndel.

. The graphs are numbered with reference to test type and number.
For example P4.6 refers to the sixth graph of results from plate test
No., 4. The nrdinates on graphs of generalized stresses and edge beam
bending moments are labeled M/Mc where M refeers to the item measured
(indicated at'the tnp center of the graph) and Mc has the meanings: Mu
for the ultimate bending resistance of reinforced concrete, Mp for
metal plate sections and Mi for metal edge beams. In Chapter 5’“0
was called M to prevent possible confusion with the use of suffix notation.
The generalized stresses M and M_,_ dennte largest and smallest principal

LP SP

values respectively. Mbm refers tn beam bending moment.

.

For the graphs of deflections, the abscissa (W/t) is the ratio of
transverse displacement to the total thickness of plate or slab. The
label R/Pc in all graphs is the ratin of applied load to the collapse
load determined from limit analysis.

The estimation of collapse load for the slab tests repoFted was a
simple matter. However, for the metal plates althnugh the same could
not be said, there was a definite indication of 1limit behavinur in all
the plate tests. The maximum load reached was governed to a large
extent by the rate _at which lnad was applied. For example in plate test

No. 1 the maximB"‘\hd reached was about 20% above the limit analysis

value., This p from increasing the load too rapidly witheout
allowing th‘, deform sufficiently between lnad stages. For

the three s, the load was allowed to remain constant until
all t ceased. The limiting lnads for these tests

were quite 1 1 ¢6ollapse load. The freedom of movement

é P
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given by the support columns described in Chapter 4 were primarily
responsible for allowing the plates to deform into collapse mechanisms,

Most of the experimental results were processed by cnmputer. Separate
computer programs were written for each nf the metal plate tests and
for slabs Nn, 2 and No, 4, Many readings were recorded especially of
strain by the data logger to eliminate grnss errnrs due to faulty
recordings. The accuracy (with respect to strain measurement) in
determining generalized stresses is in the nrder of + 10%. Only a sample
of the,experimental results was selected for the graphs presented.
Approximately three times as many recordings were made as are shown
on the graphs. The analytical results, however, are shown at each stage
of plasticity (where possible) ¢ausing plastic nodes.

The analytical results were determined frnm computer solutions for
each plate and slab tested. These solutinns were based on the theoretical
procedures of'Chapter 3 and give complete generalized stress apd
displacement fields f'or each lnad causing a plastic nnde. For a general
accnunt of the elastic-plastic behavinur, plastic flow patterns are
presented at the beginning of each test description. Each pattern consists
of a 12 x 12 mesh of square finite elements showing the plastic flow

lines inclinded ton the element boundaries at the appropriate angles.
These flow lines are really only tangents to the actual flow line
trajectories. The configuratinn shown in each pattern represents the
collapse stage pattern of flow lines. However, patterns developed at
other 1lnad stages before collapse can also be determined since on the
left of the pattern is listed the ratin of applied (computer) load P

to the limit analysis collapse lnad PB for each stage of plasticity.
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The final collapse pattern is simply a superposition of patterns for
each plastic node. The order in which plasticity occurs 1s also given
with the load ratios. These inéegers are shown beside the plastic nodes
corresponding to the load ratios.

Below th? pattern, the collapse lnad by computer (P) is stated
to three decimal places. Also shown is the limit analysis collapse
pattern giving an upper bnund P° to the collapse lnad. To the right of
the limit analysis collapse mechanism, the ratins of computer elastic
limit 4nd collapse loads to the limit analysis value are indicated.

To the left of the 1limit analysis solution is listed the strength
and stiffness parameters used in the computer solution. Each solution
is based on a nnn-dimensinnal limiting generalized stress value of
unity so that the generalized stress fields were output in the ratio
of M/Mc. To determine other quantities that are not ratios of Mc’ the
computer results were multiplied by the experimental limiting values

(McL/D) of Tables 5.1 and 5.2. The Poisson ratio used for concrete was

«15 and for steel .30.

- ~

When reference is made tn the finite element methnd, the abbreviation

F.E.M. will be used.

Reinforced Concrete Slab Tests

5.2 Stiffness and Strength Parameters

These parameters pertaining tn the slab tests are presented in
Table 5.1, Mnst of the items shown have been measured experimentally.

The measurements and calculations for these quantities are presented in



Item Slab No.l Slab No.2 Slab No.3 | Slab No.4
D 354,000 353,000 58,800 58,800
Lb in.

ML

u .1280 .1060 « 0464 - 0464
D

2
ET 0 3,640,000 0 16,200
Lb in.
My 0 . 0226 0 .00493
D
EL
Xe 5 0 .28.60 0 L0172
Y i ) .2140 0 .1065
P MuL

GJ
¥t=E—I 0 .00705 0 0.480

Stiffness and Strength Parameters for Slab Tests

Table 5.1
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Appendix IIX, The polar mnments of inertia in the X; ratio for the
edge beams on plates and slabs were determined from the results of
St. Venant's anzlysis on torsion of non~circuler cross-sections reported.
by Seely and Smith58. The analytical solutinns are also based on the
perameters of Table 5.1 and are therefore directly comparable with the
experimental results.

The slab stiffness D for slab Nn, 2 was determined from the moment-
curvature relatinnship for the concrete control specimen (see Appendix 111).
The st%ffnesses for the other slabs were determinded on the basis of a
"cracked tn the n;utral axis" cross-sectinn. That is, the entire slab
was considered cracked with a constant flexural stiffness maintained
throughnut the analysis.

53 Slab No, 1

(a) Plastic Flow Pattern
Pattern No, 1 shows the directions of the plastic flow lines that

form at the nndes where the limiting principal generalized stress is

attained.

In this computer solution the end »f the elastic limit occurred
when the center of the slab became plastic at 55.2% of the collapse load.
A total of eight plastic points reduces the plate to a mechanism with
a collapse lnad identical to that given by limit analysis. The only
difference between the plastic flow pattern shown and the mechanism
of 1limit analysis is the indication of plasticity on the diagonals clnse
to the point load. This local plastic behaviour is to be expected and

spreads radially from the center of the plate.
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(b) Crack Pattern at End of Elastic Behaviour

The crack pattern which developed at the end of the elastic behaviour
(P/P° = .557 as predicted by computer) is shown in Figure 5.1. These
cracks were visible to the naked eye. Mnst oracks formed at about 35% '
of the collapse load. The corresponding analytical plastio flow is

superimposed on this crack pattern in Figure 5.1.

(¢) Deflection Contours at End of Elastic Behaviour

T?e contours of Figure 5.2 show symmetry of transverse displacement.
During the test, deflectinns were recorded at mid-span on all the edges
to establish the degree of symmetrical behaviour. The deflections in
one direction exceeded those of the orthogonal directinn by as much as
30%. Therefore deflqctions recorded by the bank of gauges had to be
adjusted by an averaging process governed by the corresponding deflections
in other.parts of the slab. The maximum deflection at the center under
the point load represents approximately 1/80 of the span.

From Figure 5.2 it is clear that the finite element mo&el under=
estimates tﬂe stiffness of the slab resulting in displacements far
greater than actually occur. This is to be expected since the stiffneas
used in the analyses was based on the cracked concrete section. In

Figure 5.1 although a substantial area of the slab is cracked, these .

had not penetrated far ennugh into the slab section to reduce the

stiffness to the degree assumed.

(a) Crack Pattern at 85.5% of Collapse Load
Figure 5.3 indicates the formation of additional cracks to those

of Figure 5.1 and also the npening of those where the ultimate bending
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Slab No.l = Crack Pattern at R/Po = «557

Figure 5.1
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Computer — = - —
Experimental

Slab No.l ~ Deflection Contours at 1='/1:'c = 557

Figure 5.2



N

Slab No.l - Crack Pattern at P/Po = .855

Figure 5.3

13%7
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Computer — — — —

Experimental

Slab No.l ~ Deflection Contours at P/Po = ,855

Figure 5.4
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resistance is reached. Althnugh the applied load was only 85.5% of the
limit analysis cnllapse load, the final crack pattern had already
formed. Upnn further increase nf load these cracks simply npened allowing
the final mechanism to develop.
The F.B.M. flow pattern as developed at this load stage is also
shown in Figure 5.3. This pattern indicates that yielding of the
reinforcing bars across the central axes had accurred along half of the
span length. The flow lines shnwn represent thnse existing after the
third plastac nnd? formed in Pattern No.l. The npening of cracks along
the diagnnals extending from the central point load appear te substaniate
the formation of the fif'th plastic nnde in Pattern Na. 1. o,
The experimental collapse load for this slab was equal to the

limit analysis prediction to within .5%.

(e) Deflection Contours at 85.5% of Collapse Load

Figure 5.4 1s a sketch of the contours which indicate that the
F.E.M. predictinns are still in excess of measured values but areé much
cloger to the real values than at the end of the elastic range. This
is 8o because the extensive cracking has reduced the flexural stiffness
to a value close to that assumed in the analysis. ~ 4,
5.4 Slab Nn, 2

(ai Plastic Flow Pattern

This slab was supported by rectangular metal edge beams and cnllapsed
analytically inton the flow pattern of Pattern No, 2, Here eleven stages
of plastic behavinur were recorded with ten plastic nodes occurring in

the slab. The first plastic nnde appeared under the point load at 43.3%%
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of the collapse load with the last indication of plastic behaviour
ocourring in the slab at the slab-beam interface at mid-span.

The pattern indicetes a spread of plasticity in a radial directinn
from the center forming a wide band of yielding along most of the central
axes, Only one plastic node appeared for the beam elements. This node
became plastic at 97.8% of Po and occurred independently of and before

the adjacent slab element.

(v) Cl"ack Pattern at End of Elastic Behaviour

Figure 5.5 shows the extent of cracking at P/Po = 433 and also
the superimposed flowllines from Pattern No. 2. The cracks shown were
barely visible to the naked eye. As for the case of slab Nn, 1, mnst
of these cracks had formed at 30% of the collapse load. However, with
slab No, 2 the cracks had not opened to the same extent. In fact, strain
measurement on the reinforeing steel under the point load indicated
that first yield occurred at approximately 55% of the limit analysis
cnllapse load. Therefnre the P/Pc = .433 ratio predicted by the F.E.M,
proved premature. Again the same reason applies as before since the

actual slab stiffness is much greater than assumed in the analysis.

(c) Deflectinn Contours at End of Elastic @ehaviour
Figure 5.6 shows the centours corresponding to the crack pattern
of Figure 5.5. It is quite evident that the flexural stiffness of the

slab has been greatly underestimated in the analytical model.

(&) Crack Pattern at Thenretical Collapse
This slab collapses at a lnad about 10% above the calculated

cnmputer and limit analysis values. The final erack pattern and evidence
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Slab No,2 - Crack Pattern at P/Pc = 443

Figure 5.5
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Slab No.2 - Crack Patter tP/P°=1.000

Figure 5.7
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of the crack openings appear in Figure 5.7. The plastic flow of Pattern
No. 2 is superimpnsed to compare the directions of the yield lines with
those predicted by the F.E.M. model., For the most part the crack

formations support the analytical results.

(e) Deflection Contnurs at Theoretical Collapse

The contours of Figure 5.8 were sketched from the results of
def'lection photographs previnusly described (see Chapter 4). In this
test, iymmetry of transverse deflection was well maintained and no
averaging process.was necessary to produce the contours,

The analytical results of Figure 5.8 show a close similarity to
measured values, the analytical being slightl& in excess of the

experimental.

(f) Generalized Stresses and Beam Bending Moments

The generalized stresses in the slab were measured at six locations.
These are presented on Graphs S2.1 to S2,6. These positions are
indicated on the figure accompanying the graphs, representing“i of the ...
slab area. Also shown on this figure are the four positions on the
edge beams at which bending moments were determined.

In the case of slab generalized stresses, wherever the analytioal
elastic response deviates from experiment, the elastic-plastic portion
of the analytical results have been superimposed on the experimental
curve. These results are indicated by a broken line and are presented
to compare the form of variation beyond the elastic limit of the
analytical and experimental curves.

In all the graphs of generalized stresses except 52.2, the F.E.M.

gives lower generalized stresses then determined experimentally because
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of the underestimate of flexural stiffness. In general the analytical
values are between 25% and SQ% different from the measured values, It
is difficult to assess the validity nf the F.E.M. model for generalized
stresses since the uncertainties in measuring bending strains do not
allow a proper comparison to be made. However, it is clear from Graphs
S2.1 to S2.4 that yielding of the reinforcing steel occurs experimentally
over a wide band about the central axes. Only a portion of this band
was predicted by computer.

Gwaphs S2,7 Po 52,10 shnw the edge beam bending moments to be
fairly clesely predicted especially in the elastic-plastic range of
behaviour., Once again the effects of slab stiffness during the uncracked
load range (0.<:FVP° <.3) results in initial deviatinn between curves.
This effect is less pronounced at position 7 since most of the slab in
this area begins tn crack at an early load stage (PVPO = 0.1). The
effects of uncracked stiffness are most pronnunced in Graph S2.10 where
the drop in slab flexural stiffness does not occur until about P/Po = ok
This correspnnds to the end of the analytical elastic response assuming
a cracked sectinn throughout the slab. On‘the whole, the beam bending

moments are closely predicted by computer in the elastic-plastic range

of behaviour.

5.5 Slab No. 3

(a) Plastic Flow Pattern

Pattern No. 3 is identical to that for slab No, 1 and the comments

made in section 5.3a also apply here.
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Slab No.3 - Crack Pattern at P/Po = 1,000

Figure 5.9
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(b) Crack Pattern at Collapse

The collapse load for this slab was identical to that predicted
by limit analysis. The crack pattern at collapse is shown in Figure 5.9
on which is superimposed the plastic flow pattern for collapse given
by the F.E.M..analysis.

The cracking began almnst immediately upon loed application. Due
to the insufficient bonding properties between the concrete and the
perfor%ted sheet reinforcing steel, general cracking occured from the
outset of the tes;. This results in a closer approximation to the
analytical behaviour since the flexural stiffnesses are then similar.

The only other items recorded in this test were the deflectinns

at two positions. These are presented later.

5.6 Slab No., 4

(a) Plastic Flow Pattern

The plastic flow lines are shown in Pattern No. 4 in which 18 stages

——

of plastic behavinur occur before collépse of the slab. Again the
analyticel collapse load is identical to the limit analysis upper bound,
According to the computer solution a wide band of plasticity occurs
about the central axis. This occurs since the bending stiffness of the
beam was small compared to that of the slab. Analytically at 75% of

Pc the slab developed a continuous yield line across its span but an
additional 15% of load was required until the beam developed a plastic
hinge allowing the structure to collapse. During.this latter load

range, 9 additional positinns became plastic forming the band indicated.
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Slab No.4 = Crack Pattern at R/?; = 1.000

Figure 5.10
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(b) Crack Pattern at Theoretical Collapse

The collapse crack pattern is shown in Figure 5.10 with the flow
pattern superimposed. Again the extent of cradking closely resembles
the plastic flow pattern.

The experimental collapse load was asbnit 10% above that predicted

by limit analysis.

(c) Bdge Beam Bending Moments

The edge beam bending mnments at four positions are presented in
Graphs‘Sh.l to Shk.4. The effects on beam moments of gradual reductions
in slab stiffness is seen as before. However, for this slab the cracking
was continuous with no abrupt change in stiffness noticeable. Good accuracy
is obtained until about 90% of Pc where althnugh the analytical results

overestimate the moments, the general performance is well reproduced.

5.7 Deflections - Slabs No., 1 tn No. 4

The deflectinns of the slabs measured under the point load and at
mid-span on the edge are presented in Graphs S1.0 to S4.0, The comments
made previnusly about slab flexural stiffness also apply here. The
analytical results show gnod agféement with experiment in most cases
during the elastic-plastic behavinur,

5.8 Concluding Remarks -~ Slab Tests

From the results presented thus far it is difficult to establish

the validity of the analytical mndel primarily because a variation of
slab bending stiffness has not been allowed. Furthermore, the measure-
ment of strain and subsequent calculation of generalized stresses in
reinforced concrete is a difficult task. The resulting measurements

are usually crude approximations to the actual strain distribution,
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and the deduced stress distributinns will be even less reliable. .
However, the analytical predications of the overall yield behavinur
and especially the collapse load are in gnod agreement with experiment.
The yield patterns, deflectinn contnurs and beam moments are in gnod
agreement in the elastic-plastic range of behaviour. In general,

-

conservative predications are made by the F.E.M. model when compared

with experiment.,

4 . Mild Steel Plate Tests

5.9 Stiffness and Strength Parameters

A summary nf these parameters is given in Table 5.2. All quantities
shown except Y; (see section 5.2) were determined experimentally. Various
data used in these calculatinns are presented in Appendix III,

All plates have the same flexural stiffness and fully plastic value
of the limiting generalized stress. The properties of edge beams for
plates No. 2 and No. 4 are identical. These plate tests could be
compared with each other to investigate the effects of point load
arrangement and ed§e supporting beams on the elastic-plastic behaviour,
However, such comparisons have been left for future presentatinn since
the purpnse of these tests is to assess the validity of analytical results
when applied to different plate problems.

The difficulty of determining the flexural stiffness does not arise
for the metal plates as it did for the slabs since fracture of the plate
material dnes not occur. Therefonre, the experimental generalized stresses

etc. presented in the next sectinns can be cnnsidered reliable for

comparison with the analytical results.




Item Plate No.l Plate No.2 | Plate Nn.3 |Plate No.,4
D 325,000 325,000 325,000 325,000
ILb in.
ML
_p_ .1120 «1120 <1120 .1120
D .
'
ET 0 4,700,000 0 4,700,000
Lh in£
oY 0 . 0244 0 .02
D
Y EL 0 .9050 0 «9050
e DL
Y.=2 0 .2180 0 .2180
P¥1L
Y
GJ
=Z 0 .0 0 .0
B 0484 01,81

Stiffness and Strength Parameters faor Plate Tests

Table 5.2
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5.10 Plate No, 1

(a) Plastic Flow Pattern .

Pattern No, 5 for this plate is ;imilar to thnse for slabs Na. 1 and
No. 3 except for the R/Pc ratios, The higher Pnisson ratio results in
less redistribution of generalized stress between the elastic limit

and cnllapse.

(b) Generalized Stresses

Geperalized stresses reported were measured at seven locations
on Plate Nn. 1. fgese positions are indicated on % of the plate in the
figure shown with Graphs Pl.1 te P1l.10. The strain gauge positions
are marked showing rectangular rosettes along the diagonal. Strain
measurements were recorded at locatinns symmetrically opposite (across

diagnnal) the positions of 1,2 and 3 innrder to check symmetry of

curvature. Also certain gauges measured membrane strains. These

additional measurements are discussed in Appendix III. Similar discussions

are also presented there for the other plate tests.

The analytical generalized stress of Graph Pl.1 is much greater
than the experimental value because position 1 is located directly under
the point load. Analytically the 1lnad is concentrated at one node and
this results in very large displacement gradients in the vicinity of the
load. GConsequently, a direct comparison with experimeét cannot be madse.
All of the remaining graphs for this plate show excellent agreement
between the experimental and F.E.M. predictions with the exception of
Graph P1.6 in which the magnitudes are in error but the correct form

of variation is produced by computer.

From the graphs it is clear that the plate was loaded tn approximately
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23% above the limit analysis upper bound value. However, at load
slightly above the theoretical collapse the deflections increased
rapidly. This value of 2% would have been reduced had the load not

been increased as rapidly as it was during the last stages of the test.

5.11 Plate Nn.2

(a) Plastic Flow Pattern

Pattern No, 6 indicates twelve stages of plastic behavinur., The
independent plastic behavinur n€ edge beam elements is illustrated by
this s;lutlnn. Collapse dnes nnt occur until the plate becnmes plastic
at the beam interface at mid-span. The analytical collapse load is

again ldenticgl to the limit analysis value. The experimental-collapse

load was approxamately 10% above this value.

(b) Generalized Stresses and Beam Bending Moments

The generalized stresses for this plate are presented in Graphs
P2.1 to P2.8. Again excellent correlation of results is seen with the
exception of Graph P2.l1 corresponding to the point load position. The
beam bending moments at positions 7 and 8 have been clensely reproduced

by the finite element methnd.

5.12 Plate No, 3

(a) Plastic Flow Pattern

In this solution (see Pattern No. 7) almnst nne half of the plate
material is plastic at collapse with a total of 15 stages of plasticity
indicated. The computer collapse load is identical to that of limit

analysis based nn either of the cnllapse mechanisms shown., Experimentally
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the collapse lnad was abnut 3% below this value although the graphs

do nnt show this.

(b) Generalizeé Stresses

With the exceptinns of Mx at pnsitions 1,5 and 6, the graphs of
generalized stresses (P3.1 tn P3.11) shew gnod agreement. The spread
of plasticity predicted by computer is quite evident experimentally.
The largest discrepancy in generalized stress nccours arnund the center
of the plate since the computer indicates that’ the center is the final
plastiJ region before collapse but experimentally the plate reaches
only 60% of the limiting generalized stress value. It was quite evident
during the test that the central region was not developing plasticity
and of the {wo possible collapse mechanisms of limit analysis, only
the acrnss-diagonal mode developed. The reason for this mnde occuring

rather than the rectangular one is found in the comparison of collapse

loads for the mechanisms of Figure 5.1lla and b.
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Effect of Circular Holes on Collapse Mode
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Here the limit analysis loads are determined from the real genmetry
*of the test plate. That is, including the effects of the holes made

for the loading cables (see Photo h.7). In Figure 5.11 edge beams

are included since the next test (Plate Na., 4) also failed by the

across-diagnnal mnde. The collapse load for Figure 5.1la is
Pd = 2 [1-(1+/§)y+21(p:| /(1+2x) 5.1

The collapse load for Figure 5.11b is

‘ © Pr= 2 (1-2y+2Xp) /(142x) 5.2

with their ration as

Pd = 1-(1+/2)y+2Y 5.7
Pr 1-2y+2¥p £

For the present test,}&) = 0 in equations 5.1,5.2 and 5.3. The subscripts
d and r dennte diagnnal and rectangular respectively when referring to
the collapse lnads. From equatinns 5.1 and 5.2 the limit analysis load
P, on Pattern No. 7 can be computed by setting X; =0and y = 0. Then
bnth modes give identical collapse loads. However, when holes exist

on the central axes, the rectangular mode does not occur. T?is becones
more obvinus as the holes increase in size and approach, tangentially
the diagnnals nf the plate., Figure 5.12 illustrates the limiting size
of hnles causing the collapse lnad tn vanish. If the rectangular mnde
was assumed, the limiting value of y would be given by equation 5.2 by
setting Pr = O. This makes the hole diameter equal tn one half the
plate span (shown by dotted lines in Figure 5.12). It is nbvinus that

the plate would collapse before ¥y = .5. The limiting y value is given
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in Figure 5.12 to be y = Bk

Consequently, the presence of holes in plate No. 3 resulted in the
across-diagonal mode. The experimental collapse load, although slightly
lower than the computer and limit analysis (y = 0) value, was about
5% above that given for Pd in equations 5.1; That is, the experimental
collapse load was between the calculated values based on plates with
and without holes respectively.

The failure of the rectangular mode to develop experimentally
explaihs the large differences between computer and experimental

generalized stresses around the center of the plate (see Graph P}.l).

5.13 Plate No. 4

(a) Plastic Flow Pattern

Pattern No. 8 indicates composite collapse behaviour involving
plate and beam elements resulting in a rectangular collapse mode. Of
the 14 stages of plasticity, the first 2 occured in the beams with the
final stage appearing at the center of the plate as was the case with
plate No. 3. This pattern shows the band of plasticity closer to the
central axes when compared with.Pattern No. 7. Again the computer collapse
load is identical to the 1imit analysis value (no holes in plate) based
on either mechanism shown at the bottom of Pattern No.8. The maximum

experimental collapse load attained was approximately 10% above this

limit analysis value.

(b) Generalized Stresses
Graphs P4.1 to PL.9 again indicate the accuracy obtained using the

element method. The discrepancy of Graph P4.l1 has the same explanation
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as that for P3.1 except for plate No. 4 the comparison shows a slightly
better correlation. The explanation for this can also be explained from
the collapse loads for the modes of Figure 5.,11. When edge beams are
involved, the collapse load does not vanish when y = 414 but now is
governed solely by the ‘YP value. For plates No. 3 and No., 4, y = .04.
For plate No. a,'Xp = .218. Therefore, for plate No. 3 equation 5.3
gives Pd/Pr = .980 and ,988 for plate No. 4. Although this difference
is small and the across~diagonal mode s8till governs for plate No. &4, it
also jndicates that the possibjlity nf this mode occuring is less
pronounced than éor plate No. 3. This may result in higher generalized
stresses in the central region for plate No. 4 than for plate No. 3 since
the rectangular mode has a better chance of forming even though it cannot.

The experimental collapse load was approximately 10% above the

limit analysis value when holes are excluded in the caloulation. When

compared with the limit analysis value based on holes with values
Yy = .04 and X;,= .218 in equation 5.1, the experimental value is about
16% above the true upper bound collapse value.

Good accuracy is again obtained for the beam bending moments with
the greatest deviation ocouring at points closer to the ends of the beams.
This is not surprising since under test the corners of the plates with
edge beams appeared to be quite rigid, preventing the beam curvature
from attaining as high values as predicted by the F.E.M. model.

5.14 Deflections = Plates No. 1 to No., 4

Graphs P1.0 to P4.0 compare the analytical and experimental deflection.
at the center and mid-span on the edge of plates No. 1 and 2 and under
the point load for plates No, 3 and 4. Reasonably good accuracy is

obtained except for pnsition 2 on Graph P2.C and the deflections of
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srayn 4.0,

Otner deflectinn measurements were taken to check symmetry of
*ransv rse dl;placement. Excellent symmetry was produced in plates No.3
and No. 4 with approximately 10% difference for plate No. 1 and less
than 5% for plate No., 2. Measurements could nnt be made at the centers

of plates No. 3 and 4 for lack of space arnund the loading yoke.

5.15 Change in Directinns of Principal Planes

The orientatinn of principal planes was measured on plates No, 2,
No. 3 %nd No. 4 at one and the same location for each test. The results
of these measurem;nts are shown on Graphs P2,12, P3.12 and P4.13. The
accompanying figure indicates the positinn where the angle # was
measured. This positinn corresponds to positions 6,7 and 6 on plate
tests No. 2, No.3 and Nn, 4 respectively. '

The object of determining these angles was twofold. Firstly, it
was to cnmpare the experimental variation in this angle with the
predictions of the F.E.M. apprnach at some ponint that would remain
non-plastic over a wide range of elastic-plastic behavinur. Consequently,
the position shown was selected on plate No. 2., Secondly, it was to
assess the reliability of the assumption of constant angle @ for plastic
nodes during plastic load increments (see section B.Ae). Therefnre,
the same ponsition was selected on plates No. 3 and No, 4. It was thought
that these latter plates wnuld show plasticity in this area during the
early stages of elastic-plastic response.

The first objective was accnmplished for plate No, 2., The second

failed to materialize since experimentally neither plate No. 3 nor

No. 4 reached plasticity during the load range indicated by computer.
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Purthermore, from the computer results only plate No. 3 indicated plastic
flow at the p?int chnsen but this did nnt nccur until 98.5% of the

cnt, uter collapse load had been reached. This would have made a

cnrparison with experimental plasticity impossible anyhow, It should be
mentinoned here that none nf the computer solutinns were available before

the slab and plate tests were completed ahd therefore a prnper choice of
position for measuring strain cnuld neot be predetermined. As a result

the graphs presented only satisfy the first objective.

Hqwever unsuccessful these attempts were, the results nf Graphs
P2.12, P3.12 and P4.13 are encouraging. With the exception of the results
nf Graph P4.13 during the first half »f the load range, the fnrm of
variatinn in experimental results is closely reproduced by the F,.E.M.
model for all three tests. The differences between experimental and
analytical are practically constant throughnut the load range. That is,
30, 5° ana 8° for plates No.2, No. 3 and No, 4 respectively.

5.16 Evidence of Inhomogeneous Deformation

Phntns 5.1 and 5.2 show evidence of inhomogenenus plastic deformatinn
in the form of Liders lines appearing in the mill scale. These lines
appear as a result of the maximum shearing generalized stress attaining
one half the limiting fully plastic bending value (Mp). The plate
material between the lines remains wholly elastic while the plastic
straining nccurs in the line.

In Photn 5.1 this phennmennn ocrurs as a result of the plate material
shearing plateg-to~atmnsphere at an angle of 450 to the plate surface.

This pattern appeared on plate Nn. 1 nn the compression face only, at

least tn the naked eye. This plate had a mill scale that was not
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Photo 5.1

Photo 5.2
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removed before testing since the plate was tested as purchased. The
other three plates were normalized and the mill scale removed before
testing. Consequently, similar patterns (shearing plate-to-atmosphere)
did not appear, at least to the naked eye. On plate No. 3 Lider's
lines formed near the corners of the plate on the underside. As seen
in Photo 5.2 these lines form a criss-cross pattern at approximately
450 to the principal plane directions. This represents plastic
behaviour resulting from the maximum shearing generalized stress
satisfying tke Tresca +, - yield condition in the plane of the plate.

The only strain measurements made near the corners of the plates
were made in plate No., 1. Unfortunately due to one faulty gauge in
the strain rosette, only the largest of the principal generalized
stresses could be determined by using the gauges on the diagonal. This
principal value did not reach Mp at collapse and it was not possible
to determine if thelM1 - le = Mp state existed there or not. But
since this plate had sufficient mill scale to show in-plane shear
plastic straining and none was evidenced, it is reasonable to assume
that the +, - Tresca condition was not satisfied.

To 1llustrate possible generalized stress states that Fould produce
the effects indicated by Photo 5.1 and 5.2, Mohr circles are presented
in Figure 5.13 accompanied by two-dimensional projections of the Tresca

criterion and the possible stress state.
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Possible Generalized Stress States for Photos 5.1 and 5.2

Figure 5.15 '

In each of Figures 5.13a and b the maximum shearing generalized

stress has a value of % Mp and therefnre satisfies the Tresca criterion.

-

From the projectinns of the stress state of Figure 5.13a onto the
M1,M3 and M1,M2 planes, it is clear that both conditions indicate
plastic straining in the plane of the plate. M1 = Mp in the M1, M2 plane
and in the M1, M3 plane plastic shear straining oc¢curs at ASO to this
plane since M3 = O and the stress state nccurs at the obtuse angled corner
of the yield locus.

The onther stress situation that could have resulted in the lines
on Photo 5.2 appears on the yield locus at only one point in Figure 5.11b
2| '

(i.e. |M1 - M°| = Mp). Therefore, in this case, the plastic straining

is due tn shearing failure in the plane of the plate and because of ‘equal



shear stresses on orthogonal planes, a criss-cross pattern develops.
From the cnmputer solutions for the metal plate tests, the

formetion of Luder's lines on plate No. 3 is well substantiated since
only plate No. 3 had a generalized stress state near its corners that
would satisfy the Tresca criterion in the +,- quandrant.
of the plate analysed is shown in Figure 5.14 on which is superimposed
the stress cnnditions IM1 - M2 l=
stage of the analysis. Also shown are the load ratios P/P° at which

the node had attained a value of (M1 - Mz) sufficient to satisfy the

Tresca condition,.

The region over which the Llider's lines have formed

in Photo 5.2 18 also shown,

One corner
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Figure 5.1k
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Mp produced by computer at the collapse
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From the results shown it appears that analytically, the generalized
stress conditions required to satisfy the |M1 - le = Mp condition would
occur near the corners at load ratios above .86. This is the only
analytical solution in which the Tresca criterion is violated by
assuming a square yleld locus.

Since experimental evidence suggests that only one plate test
invnlved a shearing type failure, it is reasnnable tn cnnclude that
plastic straining in the nther plate tests was caused by generalized
stress’states that can be pnsitioned on a square yield locus. If so,
then the use of a square criterion in the computer analyses for the
plates tested is Justified. The experimental~analytical comparisons

of results previously presented seems to indicate that this is so.



CHAPTER 6 - ADDITIONAL COMPUTDR SOLUTIONS

6.1 GCeneral Remarks

In this chapter three elastic-plastic slab analyses are presented
and their onllapse stago goneralizod stress fielda are onmpared with
certain lower bound solutions. Only the plastic flow patterns for
the analyses are given, although the complete histories of generalized
stress and displacement fields were also established.,

The chnice of snlutions made here was influenced by the "junction
mocdes" descriged Qy Wood22 in which square slabs with edge beams of
XI>= 1.0 develop collapse mechanisms of a rectangular type, a diagonal
type or any combination of either of these types. Consequently, the
three analyses chosen were for the following square slabs each carrying
a umformly distributed lead.

(1) Simply supported

(2) Free edges with corners supported vertically

(3) Edge beams.with y; = 1.0 with corners supported vertically

The x direction for all the graphs of the chapter is directed
along the. line marked 1 from left to right on the figure accompanying
the graphs. The y axis coincides with the center line shnwn'and is

directed from top to bottom nf the figure.

Simply Suppnrted Square Sladb

6.2 Plastic Flow Pattern

The plastic flow pattern for this slab is shown by Pattern No., 9

in which a diagonal collapse mode appears. This solution results in
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very little redistribution of generalized stress between the elastic
limi{ and collapse stages of load. As a result the final generalized
stress field is much the same as the elastic one except, of course,
close to and along the diagonals.

A definite band of plasticity develops about the diagonals with
1, stages of plastic behaviour resulting in a collapse load 2% above
the limit analysis value. One explanation for this disorepancy is the
fact that the directions of plastic flow lines are diagonally aoross
the elements and,since the elements remain wholly elastic within their
boundaries the mechanism cannot form entirely in accordance with the
kinematics required for a diagonal mode.

Before collapse could occur the outer boundaries of the band had
to reach the support (plastic stage 14 in Pattern No. 9). It is possible
that from this result diagonal type mndes can only develop (when using
square or rectangular elements) if all nodes of the elements on the
diagonel are plastic allowing sufficient reduction in bending resistance
to form a mechanism. This might explain why the band of plasticity
extended to the supports since in Pattern No. 9 all the diagonal elements
have four plastic nodes.

It is not to be concluded that because the diagonal mode developed
in this solution gives only a 2% error in collapse load that the use
of. square elements will always give as small an error when diagonal type
modes are involved. The simply supported slab is not the best type of
problem to solve in attempts to investigate this accuracy because of
the little redistribution involved. The 1limit analysis collapse load
is only about 3% above the elastic limit load and the computer collapse

load is of the same order above the limit analysis value.
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6.3 Corper ' son with Lower Bound Solutinns

-

The generalized stress field at collapse (P/P° = 1.021) is compared
with thnse for the unique solutions (1) and (2) nutlined in Chapter 1.
Compsrisons are made across one half of the slab span (n/z) at three
positions as shown on the figure with Graphs 6.1 to 6.4. The solution
referred to as "Wood" is actually due to Prager as reported in Chapter 1
4

but has been summarized by Wood .

" It is clear that the Vallance solution is very similar to the finite
element results. The Wood solution is a good indication of the absurd
generalized stress fields which can sometimes occur for lower bound
solutions, It is quite unreasonable to believe that, for the simply
supported slab which is almost in a conllapse state at the end of the
elastic limit, the final generalized stress field would look anything
like Prager's solution.

The error in generalized stress perpendicular to the boundary in the
element method is shown in Graph 6.2 and represents less than 2% of the
meximum value.

In Graph 6.4 the support reaction between slab and beam results
in the distributinn of 1lnad on the support as shown, In addition
to the distributed load there exists a concentrated corner reaction
acting upwards on the beam, downwards on the corner of the slab., This
reaction is the same for computer and lower bound solutions. Again the
Vallance and F.E.M. solutions are similar. The integration ;f these
reaction distributions around the slab periphery combined with the
concentrated corner reactinns should equal the collapse intensity of

load. For the Vallance and Wood solutions this is so. In the F.E.M.
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solution an underestimate of total reaction results in a difference
of 1% between reaction and applied load. This error is partially
due to the approximate nature of the element method along boundaries.
The distinct difference between the lower bound solutions and
that by the element approach is the indicatinn of redistribution

of generalized stresses resulting in irregularly shaped distributinns.

Square Slab with Free Edges and Corner Supports

¢

6.4 Plastic Flow Pattern

This solution resulted in 27 plastic nodes forming out of the 28
possible. The collapse load was .5% below the limit analyses value.
This error is mnst likely due to round off errors occuring in the
scaling procedures to determine plastic nodes. The collapse mechanism
in Pattern No, 10 is the same as that given by limit analysis with the
first indication of plasticity occuring in the mnst highly stressed area
at mid-span on the edges. The final plastic nnde occurs at the center

resulting in collapse of the plate.

6.5 Comrparison with a Lower Bound Solution

This solution when compared with the unique solution (3) of Chapter 1
shows a remarkable similarity as indicated by Graphs 6.5 to 6.7. For
the comgarison,?} = o when determining the twisting generalized stress
of equatinn 1.,17. The lower bound Mx and My generalized stresses shown
here are identical to thnse previnusly given for the "Wnod" simply
supported case and in fact these values are the same in the next solution
that is presented. Wond has based these solutinns on the Prager stress

field mentioned earlier. The nnly difference between the "Wond" lower
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bound generalized stress fields is the value of Mxy.,

From Graph 6.7 the F.E.M. gives Mxy to be less than Mo which means
that the corner reaction between slab and support is less than it should
be. The results show that since the corner nnde did not become plastic,
the reaction is approximately 17% below the required value to support
the collapse load indicated by Pattern No. 10, This error could be due
to the usual inconsistencies experienced on boundaries in finite
element anslysis., However, this difference is larger than is usually
experianced on boundaries and sdme may be due to the way in which plastic
flow is allowed only along element bnundaries (see sectinn 3.5b) resulting
in a displacement field which does not permit the twisting generali:zed
stresses to iﬁcrease properly. This may also explain the small differences
between the analyticel and unique collapse loads that nccur in all three
solutions presented here.

The reasons for the discrepancies in support reactions, variation of
twisting generalized stress, errors in generalized stresses on boundaries
that do occur have not been investigated in this study and therefore the

statements made above are strictly congectures on the part of the writer.

Square Slzb with Edge Bears and Corner Supports

6.6 Plastic Flow Pattern

This solution results in the plastic flow distributinn of Pattern
No. 11 in which 23 stages of plasticity are experienced before the final

collarse mode forms, This problem is an example of the "junotion mode™



P

1.8
;s
2-.8°8
4--826
5-:343
6--850
7-875
8-876

. 9--885

1Q--888
11--893
12-.925
13-.937
14--948
15-+950
16-+967
17-.968
18--975
19-.-980
20-.087
21--991

22-.994
23-995

Pattern No.,1l1l

r I ] T T
\ l/
AN ' /
SO NN N ( / \
SN NN O | 7
NN an v
\\\\‘\\\ N /|
>
2 34 _
5 E’a\{\
1 7 Ao Fle
15 V12 113 s |22
20 21
19
17 114
Px23-889 M,
v =15
21.0D
M, =1-0D/L R v.a12
Yo 220 fe
¥b=$o
Y, =00 £ w995
R
" R=24M,




It

203

cases presented by Woodzz. From Pattern Na. 11 it i8 quite evident
that the cnmbined diagonal and rectangular mndes have almnst cnmpletely
formed. The actusl collapse mechanism is a rectahgular type involving
cnllapse of the edge beams and the slab.

The \{e = 2 value was chosen arbitrarily as a possible practical
value. This may explain why the diagonal mnde did not extend c¢loser
to the corner. As y; is mede larger, the principal generalized stresses
perpendicular to the diagnnals increase in magnitude and cnuld result
in mord plastic behaviour along the diagonal. However, the results of
Pattern No. 11 are proof of the existence of junction modes for the
critical beam ratio,X; = 1.0. The collapse load again occurs .5% below
the limit analysis value.

6.7 Comparison with a Lower Bound Solution

The results from the computer analysis for generalized stresses
are again compared with the statically admissible stress field for the
unique solution (3) of Chapter 1 with Yp = 1.0 in equations 1.15 to 1.19.
The stress fields are quite dissimilar as seen in Graphs 6.8 to 6.11.

In Graph 6.8 the generalized stress Mx shnws a wide region of plasticity
covering one half of the span length (along line 1). It also shows

that at the slab-beam interface (line 3) where the beam is plastic, there
is a sharp increase in Mx resulting in the slab becoming plastic after
the beam,

A further difference between these snlutinns is the edge reaction
between slab and beam. The lnad delivered to the beam from the slab is
shown in Graph 6.11. The concentrated reactinn from the F.E.M. snlution
is 25% less than that given by Wond. This is evident from Pattern No.11

in which the corner of the slab does not become plastic and therefnre
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R = 2Mxy is less than Wond's result. It is also quite evident from
Graph 6.11 that due tn the plasticity at mid-span on the beams, the
beams shed their leoad from the center nf the span towards the ends.
Corparing support reactinn with applied lnad results in an 8% undeg-

estimate of reactinn.

6.8 Concluding Remarks
The lawer bound generalized stress fields used in comparison with
the F.E.M. analyses were each based on the Prager solutinn (1) 4in
Chapte? 1 with the important exception of the Vallance solution (2).
It is quite clear that for the simply supported slab, Vallance has
given an excellent stress field when compsred with the F.E.M. results.
For the other two salutions the lower bound comparisans shnw that
Wood's stress fields are excellent for the case of free edges but rather
questinnable (from the practical point of view) for the simply supported

slab and the "junction mode" solution.
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CHAPTER 7 - CONCIUDING DISCUSSION AND FUTURE RESEARCH

7.1 General Discussion

Few attempts have been made to produce elastic-plastic analysos

of two dimensional plate continua in bending. In this respect, the
present apglicatlon of the finite element method to the solution of
elastic-plastic plate and slab problems is the first of its kind to
be reported. As is usual with first attempts, more questions remain
at the end of the study than were present at the beginning.

The foundations of the present proposal lie within the development
of the finite element method. With the present state of knowledge
on the use of displacement functions for elastic element bending
behaviour, it is not surprising that application to elastic-plastic
problems has not appeared previously.

The procedures developed in this thesis have been successfully
used in'producing computer solutions which when compared with
experimental results show good agreement. .

In each of eight solutions that are compared with experiment,
the computer collapse load is identical to the limit analysis upper
bound value (no lower bound solutions exist for these plates and
slabs). A good deal of redistribution of gerneralized stress occurs
in each of these solutions. The ranges of load over which plastic
behaviour is traced varies from 35% to 60% of the collapse range,
thereby testing the reliability of the method to predict plastio
behaviour over a wide range of load.

The computer collapse loads for three analyses that are not
compared with experiment differ from the limit analyses values. The

largest difference is 2% above the limit analysis value and the
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smallest 0.5% below.

The collapse mechanisms of the eleven solutions presented are
clearly indicated by computer. A rectangular mode developed in all
but the simply supported case, in which a wide band of plas%icity
formed a diagonal mode.

A comparison of computer results with experiment shows the
generalized stressaes for the slab tests to be the least satisfactory.
The primary cause of discrepancy is the flexural stiffness assumed
for tHe F.E.M. model. The stiffness of the uncracked concrete section
was of the order 10 times greater than that for a cracked section.
Consequently, the early elastic behaviours showed little agreement.
Better agreement is seen when the elastic~plastie¢ portion of the
computer generalized stress curves are superimposed on the experimental,
The agreement here indicates that the computer closely reproduces the
genereal form of variation in generalized stress.

A further difficulty with investigations of generalized stresses
in slabs is the uncertainty of determining generalized stresses from
curvature measurements made in the slab.

The ocomparisons of experimental edge beam bending moments with
analyticel for the slabs shows better agreesment than do those for
generalized stresses. The effects of slab flexural stiffness on the
beam curvature are less than on the slab generélized stresses during
the early experimental elastic behaviour. Also, the measurement of
curvature on the steel beams and subsequent determination of bending
moments 18 more reliable than similar measurements made for the slab.

The correlation between experimental and analytical generalized

stresses for the plates was much better than for the slabs. The plate
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results include effects of edge supporting beams and two different-
point load arrangements.

For three of the plates, the variation of principal plane
orientation at a point off lines of symmetry was investigated. The
F.E.M. mndel closely reproduces the form of variation with the difference
in magnitude between experimental and analytical being only a few degrees.

Deflections measured at the center and mid-span on the edges of
both plates and slabs were also compared with computer predictions,
For th slabs, the computer overestimates deflections and underestimates
for the plates. .For the plates the agreement is reasonably good over
the entire load range but for the slabs, the early elastic-plastioc
range of deflections is not as gond as the agreement closer to collapse.
The underestimate of slab flexural stiffness assumed for the analyses
is again responsible for the discrepancies.

Evidence of inhomogeneous plastic deformation in the form of
Lider's lines is seen in two of the plates tested. Only one of these
plates shows a shearing type failure in the plane of the plate. This
behaviour occurs close to the corners of the plate and indicates that
the experimental generalized stress field satisfies the +, - yleld
condition of the Tresca criterion in the plane of the plate. The other
plate indicates shear failure plate-to-atmosphere at LSO. The computer
solutions for the four plate tests performed give generalized stress
fields based on a square yield criterion and therefore do not reproduce
the +, - Tresca yield behaviour. However, it is interesting to note
that of the four plate solutinns produced only one would have satisfied

the 4, - condition in the plane of the plate. This solution was for
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the sare plate mentioned above and indicates the same regidn near

the corrner of the plate where the Luders lines form.

7.2 The Cnmpocite Plate-Beam Behaviour

One of the most important features of the finite element method
in elastic analysis is its ability to deal with different types of
elements (shape and material properties). For plate bending analyses,
this feature allows the effects of edge beams to be included. The same
is now true for elastic-plastic analyses when it includes the composite
plate;beam yield behaviour developed in this study. The procedures
outlined herein ;re simple and are based on well established principles
of structural mecharics and idealized plastic behaviour. The reliability
of the composite model in predicting edge beam effects is substantiated
by four experiments (two on plates and two on slabs). The experimental
bending moment distributions and evidence of plastic behaviour is closely
reproduced by computer.

Generally, the method described in this study has been well
supported experimentally. The procedures reported have been developed
to solve plate and slab problems within the category to which the
experimental tests reported belong. Any extension of these procedures
to more complex problems (non-developable collapse surfaces involving
membrane forces and the use of other yield criieria) must be made with
the knowledge of the limitations of the present approach.

7.3 Limitations of the Method

(a) The Use of Rectangular Elements and the Flow Rule
Probably the most severe limitation of the method is the vectoral

representation of plastic deformation used. By resolving the total

.
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plastic rotation into components along the orthogonal element boundaries,
a double plastic fold develops at the nodes rather than a single line
of discontinuity. If the total rotation vector is directed along
an element boundary, only then can the actual plastic rotation be
introduced.

Wherever yielding occurs in two arthogonal directions such that
the total rotation vectors have magnitudés of opposite sign and whose
components along element boundaries cancel each other, no (plastic
rotat%on) discontinuity can occur. The total plastic rotations can
still be solved éor and the yield stress condition taintained in the
analysis. However, no kinematical representation of plastic flow can
be realized. For the procedures present herein, this limitation would
meen that the +, = Tresca condition occuring oﬂ lines of symmetry could
not be satisfied kinematically if the plastic straining occurs at AEO

to the element boundaries.

(b) The Use of Other Element Shapes

The severity of the previnusly mentioned limitation is not fully
appreciated until elements with shapes other than rectangular are
considered.

Because of the vectoral representation of the total plastic rotation,
only two component rotations can be introduced along element boundaries.
Inorder to allow discontinuity between two adjacent elements, the
boundaries of the elements must be straight and when extended pass
through the node. At least two continuous straight lines (boundaries)
must exist at a plastic node inorder to allow components of plastic

rotations to be imposed between elements. Figure 7.1 illustrates a
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number of elements at a common node. None of the boundary 1ines are
continuous through the node and therefore plastic rotations cannot be

allowed. For example, if a component of a

Figure 7.1

4
is specified aloﬁg the boundary ij, the discontinuity in slope will

occur between elements A and B. However, this cannot be allowed since
element C would have to fold about the dotted line of ij produced.
Similar arguments hold for the other boundaries and elements. Figure
7.2 illustrates the necessary and sufficient conditions (minimum of
two straight lines) for using the vectoral representation of plastic

rotations. Boundaries ik and il are straight and continuous.

y
Figure 7.2

The two components of g are shown along these boundaries. Slope
discontinuity develops only between elements B and C, C and D, E and F,
and F and A, If more than two straight lines occur, a choice of two
must be made. The best choice being the pair that produces plastic

flow as close as possible to what the actual plasti¢ rotation would

produce.
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In summary, the type of flow rule used in this study has definite
liritations for general application in finite element analyses and if
used, care should be exercised in assessing its value to the analytical

results.

(¢) Monotonic Load Application

A further limitation of the method is its inability to deal with
reversal of applied loading. The loads must be monotonically increasing
throughout the elastic-plastic analysis., This does not preclude stress
rever;al in the non-plastic areas but it does restrict it to a study of
reversal under increasing load. Stress reversels in the non-plastic
regions did occur both experimentally and analytically in this study.

Stress reversals in plastic regions, regardless of load application,

cannot be investigated by the procedures outlined herein.

(d) Linear Approximations to Non-Linear Behaviour

This limitation is not peculiar to the present method but is found
in all linear elastic~plastic plate bending analyses in which the
principal generalized stress equations are the yield functions. The
non-linear form of these functions must be approximated by a linear
relationship that is assumed to apply over small intervals of the
plastic load range. This linearization can be accomplished by writing

the principal generalized stress equations

w2 oy [ux»fuy: 4 (Mx-uy)2+w2] 7.1

in a form

M1’2 = f(HX,MYsMJU,ﬁ) 7.2 .
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Since Mx, My and Mxy are linear functions of load between any two
stages of plastic behaviour, the only variable is the angle f of
which the

Tangent (2f) = 2Mxy/(My-Mx) 7.3

Therefore, by maintaining g constant over small inorements of load, an
approximation to equations 7.1 can be made. For the present study, this

approximation in the form of equations 7.2 is

w12 =3 {[Mx+Myi [(Mx—My)cosine (28)-2Mxy sine (2¢i[} YN

Equation 7.% has proved to be an excellent approximation for the present
proposal,

The use of equations 7.4 results in an approximation to equations
7.1 once the angle @ is assumed conatant during a load interval. Thié
assumption is not strictly true at points off lines of symmetry where
the orientations of principal planes change as redistribution of

generalized stresses occurs.

(e) Limitations of ?resent Computer Size

Another disadvantage of the present method is the size of computer
required to produce the solutions. In the present study, the computer
program required all the available compilation store of the Atlas
computer at the University of London Computer Center. Sincé this
program analyses only one eighth of the square plate, any extension
of the methnd to more complex studies will probably meet with some
difficulty in acquiring sufficient computer store and computational

time. However, the current limitations on computer store and available
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time (a problem of computer speed) are not lakely to be present in
the future as computers continue to become larger and more complex.

7.4 Corperison with Unique Solutions

The generalized stress fields and support reactions from three
corputer solutions are compared with those from the lower bound solutions
to the unique collapse loads. These comparisons show how unrealistic
lower bnund stress fields can be. Even for the same problem, completely
different stress fields are possible.

The theoret@cal requirements to be satisfied in producing lower
bounds on cnllepse loads do not ensure that the admissible stress field
is a realistic one. In this respect lower bound solutions have really
only one purpose, i.e. to bound the collapse load., Consequently, it
is one matter to prnduce unique collapse loads by coincidental upper
and lower bounds but an entirely different matter to suggest that
design should follow using the generalized stress fields from the
lower bound solutions. As an example of such a suggestion a recent
statement by Massonnet23 is quoted here:

"The aim of the present paper is to show that,......, we can
veee..(d) find, for simply supported slabs, several new complete
solutions which, up to now, were only known as kinematically admissible
solutions, with the advantage of guaranteeing the correctness of the
value found for the limit load and of giving the distribution of
moments and of support reactions - this makes it possible to distribute
the reinforcement of the slab judiciously and to design its supporting

bem.oooo.;"

Admittedly, this quotation is puzzling since at the beginning
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it mentions simple supports and at the end, supporting beams. However,
the point is quiie clear - the unique collapse load is determined and
the generalized stress field with support reactions allows the slab
and supporting beams to be designed. If this attitude is to be the
aim of lower bound solutions then the present gap in the communica%lon
link between the academic and the designer is ;ertain to widen.

The writer finds it difficult to accept lower bound fields as

possible realistic ones unless they are intuitively obvious (most are

far frpm it) or if they have been supported by experimental evidence.
The lack of experamental evidence in support of lower bound solutions
is obvinus, especially for reinforced concrete slabs where most research
effort to determine unique solutinns has been directed.

Of the very few unique solutinns in existence, those reproduced
in this thesis when compared with the F.E.M. solutions (which are
likely to be the most realistic of existing ones for the problem
presented) show that a realistic limit analysis generalized stress field
is not always produced. Except for the Vallance solution to the simply
supported slab, the lower bound solutions reported herein give constant
intensity of support reaction regardless of the supporting conditions.
Indeed, most lower bound solutions (whether for unique solutions or
not) result in constant support reaction since their admissible stress
field variations are usually of a parabolic nature. It is doubtful
whether such lower bound snlutions give any reliable information about
support reactions.

7.5 Future Research

In the application of finite elements to elastic-plastio slab

analysis, the problem of cracking of concrete and subsequent reduction
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in flexural stiffness should be included. This could be done in the
present proposel by assuming an uncracked stiffness before oracking
and af'ter cracking to allow the elements about a "cracked" node to
reduce their stiffnesses. Until a cracking response is included, the
generalized stress fields etc. developed over the elastic and early
elastic-plastic load ranges will not compare favourably with the
experimental,

Beyond the cracking stage the problem of satisfying the flow rule
assoc%ated with the yield criterion chosen is of primary importance.
The present prop;sal does not allow the correct plastic flow to develop.
However, this is governed by the number and type of displacements
allowed at the element nodes. Consequently, other forms of displacement
functions should be investigated that will allow a better approximation
to the real plastic flow than does the function presented herein. Possible
alternative approaches might be considered using the developments of
previnusly mentioned current researchhs’hé.
If a more realistic way of representing the flow rule can be
established, the application to metal plates will require the use of
the Tresca or von MiFes oriteria. Therefore, additional research will
be needed to investigate analytically the use of these types of criteria.
The problem of strain hardening for plates can also be studied.
The present proposal could include an idealized linear work hardening
rule. For example if an expanding square yield locus with a stationary

origin is represented in plane space by functions such as

t t
l( =uhR 3
q * q 15
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in which h is a constant, then substituting into equations 3,60 gives

wt = |x*  k®an || B 7.6
q qn  Tqp  ||p®
P

Therefore, linear strain hardening can be included into the general
scheme for the present plate analyses.

Future work on the effects of membrane forces on the elastic-plastio
behaviour of plates and slabs is required. Here the finite element
method mey prove-a useful tool.

With the facility of finite elements to deal with elements of
different shapes, physical and material properties, it would be
interesting to explore the use of this facility for yield behaviour of
elements with different yield properties. This might be attempted by
assuming independent yield behaviour for each element at a common hode
and introducing a concept similar to that used herein for plate-beam
composite yield behaviour.

It mey prove more profitable to use other numerical variational

methods such as the Localized Rayleigh—R1t29

method in which the Rayleigh
functions describe behaviour over small regions of the continuum rather
than over the complete continuum. The use of the finite difference
technique should also be more fully investigated for use in elastic-
plastic analysis than it has been up to the present.

Finally, more experiments on metal plates are definitely required,
particularly for medium thick plates like those reported herein, The

fact that collapse behaviour is observed at loads close to those

predicted by 1limit analysis means that generalized stress fields can
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be studied and compared wilh lower bound fields. Although, these types
of metal plates have less obvinus application than do reinforced concrete
slabs, their investigation may lead to a better understanding of
admissible stress field distributions. The question of edge supports

and load transfer from plate to beam can be studied. The important
experimental consideration is to reproduce as closely as possible the

boundary and loading conditinns assumed analytically.
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APPENDIX I - MATRICES FOR ELASTIC ANALYSIS

Al.]l Non-Dim reinnel Parameters

The non-dimensional form of the parameters used in the derivation
nf the matrices contained in Chapter 3 are as follows:

L - is a representative length of the plate system
X = x/L Y = y/L
W=w/L A=2a/L B=>5v/L
P= qLB/D (for a uniformly distributed load q)

P

pL/D (for a concentrated point load p)
t=D0,/p =Dy/d up= Dxy/D

Ye = Db w,x = W,X
DL
y; = M w,xx = W,XX/L
ML
Yt = 1(,);_J_ W,XXX = W,XXX/LZ etc,
b

Table Al.1l
Al,2 Rectangular Finite Element Displacement Function

The displacement functinn of equations 3.7 when written in non~-

dimensional form is

_ 2 3 3, .3 3
W= A1 +A2X+A3Y+AAX +A5XY+A6Y2+A7X +A8X%I+A9XY2+A1 OY +A 1 11( Y+A1 ZXY Al.1

.

The coordinate positinns for nndes i, j, k and 1 of the rectangular

element (see Figure 3.12) are simply

i = (0,0)

J = (A,O) Al.2
k = (4,B) iy
1 = (0,B)
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with respect to the individual element system of axes.

The nodal displacements of equations 3.8 in non-dimensinnal

form for nnde 1 as an example are

W, W
U, = |6x | = | WY = lU(x,Y)lilA, A1,3
o3 Xy

Substituting the values of X and Y of equation Al.2 intn equations

Al.3, ;he displacements foor all four nndes become

which when written in full produces

(See _next page)

Al
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Al,.3 Internal Generalized Stress Matrix

The curvatures of equations 3.10 in non-dimensional form become

-W, XX 000-200=-6Xx-2Y 0 0 ~6xY 0| | 4, :
W,YY | ={00000-200-2x-6Y0-6xy||: | AL.6
W,XY/L 00001002x2y0 3% 3" ||4,,
' [ ]
That is

Substituting the coordinate positions of the nodes (equation Al.2)
into equations Al.6 and substituting the result into equation 3.12

Jleads to the generalized stress matrix of

If the inverse of matrix C in equations Al.5 is

(See next page)

222
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then the generalized stresses for an anisotropic rectangular element

are given by

(See next page)
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Al.} Flastic Stiffress Matrix

The elastic stiffness matrix for the anisotropioc rectangular
elerent as derived by equations 3.18 is presented here in explicit
form in the following nodal force-displacement relationships. (see
next page)

Al.5 Edre Reaction Matrix

For the present study the edge reaction between plate and edge
support was determined only along the boundary Y = L/2 of Figure 3.3.

This rpaction is given by
Vy = -D(0 W,Y¥Y+q wr,xn)/r.2 Al,12

in which 7 = t+4u and acts downwards on the plate. These reactions
are computed only at the boundary nodes. The required reaction matrix

for nodes k and 1 of the element shown in equations Al.l1ll is

61 /A%B, 0,~27 /ABy~120/B7-6 /A%, ~60/85 -4y /8B, ||
120/B4+6 7 /A%, -60/33 L7 /AB,~6 /AZB, 0,27 /AB i

-1 20/133-6 ) /Aza,-éo/Bf Ly /AB,67 /AZB, 0,2y /AB, .
~67 /A%B, 0,-27 /4B, 67 /8%B412¢/8% ~60/8% -4 /AB

Vyk

-2
Vyl L2

Al.6 Applied Load Matrices

In the finite element method, external loading can only be applied
at the nodes of elements. These loads must be in equilibrium with the
nodal forces. For bending analyses such as those described herein, the
applied loads can consist of vertical point loads, bending couples or a
combination of these. The bending couples can only be applied in the
orthogonal directions dictated by the bending forces (mx an& my) at

nodes.
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As an example, consider a loading case in which vertical point

loads P, and Pj are applied at nodes i and j respectively and the

i

bending conuples Cx X at nnde k. If there are only nine nodes in the

228

entire structure (i.e. i to q) the structure's nndal force matrix would

be

Fy

3 o o o o o

ZVi

ani

r Wi

TV
q

¥ mx

Im
Yq

In order to maintain equilibrium with externally applied loading this

force vector is simply replaced by the load vector.

ZV&

anx],,L

Iy,

ZVj

¥ mx

J
mej
vy,

Lmxy
Loy,

my

Ceo o o s ¢ o o O Q O o o o
h?‘ U o._;u

Al.15
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For a uniformly distributed load, twon approaches are possible in
representing this load by nodal equivalents. One approach is to divide.
the distrabuted loed on one element into equal vertical concentrated
loads at each af the element nodes.
A second a.pprma.chz"2 is more consistent with the deravation of
the stiffness matrix and is based on the virtual work principle that
results in nndal forces equivalent tn the distributed lnading.
Consider a se¥ of nndal forces N equivalent to the distributed
loading on one element. The work done by these nodal forces during

the unit virtuel displacements §u = I is
T
WN=(5u)N=IN=N Al.16
The work done by the distributed loading q is
T
Wq =5§( 6 w)" qdxdy Al1,17
Restating equation 3.7 in matrix form as

w = La Al,18

and recalling equations 3.9
6w =1 fu=1I1C I=1LC A1.19

Substituting equatinons Al1.19 into Al.17 and equating the work done gives

the nndal forces to be

N = \\(e™ Y qaxay = (™) | LTqaxay A1,20
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When written in non-dimensional form equations Al.20 become

N AB/Y
Nx, 48%/2),
' Ny, -A23/21+
N, AB/l
Nx, AB2/21+
AR =]ﬂﬁzﬁ/}h v AL21
P N AB/l
, N A2
o Ny | A%z
N, AB/L
Nx; -A32/24
Ny, -AZB/%

It is apparent from equation Al.21 that to properly represent
the distributed load, bending couples must be included at the nodes in
addition to the vertical point loads. At interior nodes where four
elements join, these couples cancel one another and only the vertical
point loads remain., However, along the boundaries of plates carrying
uniform loading these couples exist, producing bending normal to the
boundaries.

In the three analytical solutions presented in Chapter 6 with
distributed loads, these loads are represented by a set of nodal forces
given by equation Al.21.

Al.7 Beam Element Stiffness Matrix

.

The beam element stiffness matrix is derived by following the same

procedures as those for plate elements. Based on the derivation of
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section 3.8b the stiffness equation for beam elements given by equations
3,86 are as follows:
- for a beam element with longitudinal axis along the x axis

with nodes 1 and k

v.L 12¥x 0 =6 Xx -1 2)6: 0 -6 YX W
1 == 5 £ == 1
A A A A
0 Yt Yx 0 0 =Yt ¥x o ||e
mXy n == ot
N I - S| At
ol e & A A A A1,22
V,L| |12 0 6x  12% 0 8)%| | W,
A’ A2 It A
0 < Yxt Yx 0 0 Yxt¥x o|le
Xy I e *x
mYy —6¥x 0 o¥x 6)2{x 0 _lﬁ_/; oy,
A2 A A A

in which ¥x = D__/DL and Yxt = c3pp, .



- for a beam element directed along the y axis with nodes i and 1

in which Yy = D, y/DL and Yyt = GJ/'Dby.

v,L 12y &Yy 0 -12Yy 6%
B’ B2 B° p°
mx, 6%y Ny 0 -6¥y 2Yy
2 B 2 B
B B
my, 0 0 Yyt¥y 0 0
, B
D =
v.L| p12ly 6%y 0 12y =sly
3 2 T3 2
B B B B
m | | &y 2 0 =6% LYy
2 B 2 B
B B
myl | | O 0 Yty o 0
B

8x

Gyi
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Al.23
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Al.8 Beam Elerent Bend ng and Twisting Moment Matrix

233

The bending moments given by equations 3.78 and twisting moments

by the convention of Figure 3.16 are combined into the following matrix

equations:

x)

~ for beams along the x axis with node 1 and k

6¥x 0
A
0 th’&
A
-6Yx 0
A2
0 -th)&
A

=1 ¥x -63%
A AZ
0 0

2¥x 6 Yx
A AZ
0 0

0

=2)x

0

ex

Qyi

Oyk
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APPENDIX II - COMFUTTR PROGRAM

A2,1 Type of Comrputer and Language

The computer program was developed for use nn the Atlas computer
hnused at the University of London's Computing Center. The language
used was EXCHLF autocode because of its simplicity of statement form
and its ability to manipulate large arrays of numbers with the very
minimum of program effort.

The Atlas computer performs approximately 10,000 machine instructions
per miBute and operates a vast execution store. The compilation store
available (store required for compiling the object program) has an
economical limit specified by the U.L.C.U. and is approximately 150
blocks (one block consists of 512 storage locations, each comprising
one 14 digit number). In single length form the Atlas provides 12
decimal digits in its computatinn. Dnuble length facilities are also
evailable. .

A2.2 General Remarks

At the outset of this study a computer program was developed to
solve nnly the simply supported uniformly distributed load case of
elastic-plastic plate bending as a trial for the finite element approach.
Once this snlution was cnmplete and the method appeared to work sufficiently
well, an automated program was next developed to analyse other types of
plates. However, it was quite obvinus during the development of the
first prngram that the total corpilation store required for such a
program would be large even for the Atlas computer. In fact the final
program store exceeded the allowable capacity of 150 blocks., To overcome

this difficulty the program was semi-compiled onto magnetic tape and
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fully compiled in sections that were not interconnected by the general
program flow. Once one section was fully compiled, portions of the
storage area used could be cleared out and made available for the
following sectinns of program. In this way the program was hnmpiled
into the computer from its magnetic store library requiring 135 blocks
of final compiled store. Unfortunately, the size of the program placed
it in the stream of Complex Work at U.L.C.U, and thereby reduced the
availability of computer time for this study.

Afproximately one year was required to complete the analytical portion
of this study which included the development and use of the automa;ed
program,

A2,3 Purrose of Computer Program

The finzl program was developed to anelyse isotropic square plates
supported and loaded symmetrically about the central axes and diagonals,
i.e. only one eight of the plate was analysed. This required the use
of 28 nodes for a 12 x 12 subdivision into finite elements (see Figure
3.3).

The loading and boundary conditions were specified by indices
placed in the input stream. The program also included the effects of
edge beams on the elastic-plastic behavinur of the plate.

Each time a node becomes plastic the program outputs complete
descriptions of the generalized stress and diSpiacement fields, the
applied load causing plasticity, the edge reactions and the edge beam
bending and twisting moments if they exist.

Although many plate problems could be solved by this program, only

those reported in this thesis were produced because of the lack of
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available computer time,

A2.4 Compilation and Execution T me Used

The U.L.C.U. allowed 30 minutes of computer time per month to
each university user (based on compilation of program, execution of
analysis and running cost time). This amount of time on the Atlas
computer is quite sufficient for normal computer work. Table A2.1 is

a summary of the times required for the solutions presented herein.

»
SOIUTION COVPTILATION EXECUTION TOTAL TIME PLASTIC NODES
) min, min. min, N
Slab No. 1 . 0.4 3.87 10.82 8
Slab No. 2 " 5.25 13.76 11
Slab No. 3 " 3.87 10,82 8.
Slab No. & " 8.58 21.39 19
Plate No. 1 " 3.87 9.27 8
Plate No. 2 n 5.64 14.76 12
Plate No. 3 " 7.00 1594 15
Plate No. 4 " 6.45 17.14 14
Simple Supports " 6.39 16.48 14
Free Edges " 12,67 30,20 27
Edge Beams XP=1.0 n 11.25 27.26 20

* Total time available per month = 30 minutes.

Table A2.1

On the basis of the solutions presented here approximate time
and cost form?lae are:

Program Compilation + Execution Time = .5(N+1) minutes

Total Computer Time = 1.25N minutes

Tnotal Cost = (£6.0s.0d.)N

where N = number of plastic nodes in the analysis.
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A2.,5 Discussinn of Progr-m

Only a brief onutline of the program is given here. The actual
program typescript consisted of approximately 130 foolscap pages and
consequently is not presented here. Furthermore, any complex program
if presented in computer language is of little value to the reader.
Therefore the program is discussed here in accordance with the flow
diagram of Figure A2.1.

The program consisted of 65 routines, 7 programmes (subprngrams)
and thd supervisory chapter controlling the flow. Each sectinn nf the
flow diagram is described below in the order in which they are entered
during progrem executinn,

(1) Specify input data according to analysis desired.

There are sixteen items that are standard input data.

n, = the number of times the complete set nf stiffness equatinns
are output for inspectinn before they are solved. This
allows the' checking nf elastic-plastic coefficients at each
stage of plasticity if desired.

n, = the number of times the snlution of the equations is to be
refined during each stage of plasticity. ,

v = Poisson ratio of plate material.

T- D1/D where D = Et3/12(1- v2)

o- Dy/D

M- Dxy/D

McL - non~dimensional limiting value for yield criterion of plate
B material.

)/e = 22 ~ elastic stiffness ratio (beam/blate)
DL
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1 Specify input data according to analysis desired

1

2Compute elements of matrices required

Y

3Assemble K(E.E) portion of total structural stiffness matrix

Y

Apply external’ loading

( -

15 Check accuracy of yield

P Introduce boundary
conditions

. Y

Solve for néde
displacements

function approximation for
non-linear principal
generalized stresses at
plastic nodes and change
orientation of plastio flow
lines if necessary

}

14 Assemble the parts of

K(E.P), X(P.E) and K(P.P)
portions of elastic-plastioc
stiffness matrix relating
to plastic behaviour at
current plastic node (for

beam and/or plate)

degree specified

Refine solution to STOP

Y
Y

8Calculate plate generalized
stresses Mx, My and Mxy at
all nodes

9
Calculate edge beam bending
and twisting moments

1

10 .
Calculate grincipal generalized

stresses M and M2 at all nodes

Figure A2,1

he requested number
of nodes become

__13 Output results according
to analysis specified

4
12 If beams exist check for
beam yield behaviour and
adjust generalized stress
field, displacements etc.
if beam is plastic

A ]

11 Adjust generalized stress
field to satisfy the yield
criterion at one node in
the plate

Is an
elastic-plastic

solution
required?
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o<l
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GJ - beam torsinnal stiffness ratio

Y

limiting bending moment for edge beams

=

b - plastic strength ratio

VL
<

nf}: round off parameters for comparing numerical values

eg. nz = 1of n, = 5 rounds off to six places of decimal

4

n_ - applied load index
¢ 100 - ipdicates a uniformly distributed load
20 - indicates point loads '

3 - indicates applied bending couples

123 - indicates a combination of all three load types

ng = the number of nndes that are to becnme plastic before the
solution terminates. If ng = 0 only an elastic solution is
presented.

n7 - if n7>-0 the approximation to the yield function is checked
at plastic nndes off lines of symmetry and if necesseary,
updating procedures are used.

The remaining input data describes the applied lnad values and

boundary conditions.

.

- value of uniformly distributed load if n_ contains 100

ng 5

- number of nodes at which point lonads are applied if n_ contains

5

n

9
20

n = node number

nyd - point losd valué}' repeated n9 times

n,, - number of nodes at which bending cnuples are applied
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n,, = node number
15 _ value of bending cnupl{}' repeated P12 times

n,. = number of nndes at which boundary conditinns must be satisfied
- number of nodes where boundary condition exists

n,., = boundary condition index
100 - indicates vertical displacement is zero
20 - indicates slope abnut y axis is zero

3 - indicates slope about x axis is zero

* 123 = indicates encastered boundary
The ny¢ and n17 integers are repeated in pairs n15 times.
The loading and bnundary conditinns specified by the n5 and n17 indices

are made aymmétrical about the central axis and diagonals of the square

plate.
(2) Compute elements of matrices required

These matrices were derived and presented explicitly in Chapter 3
and Appendix I respectively.
(3) Assemble K(E.E) portion of total structural stiffness matrix

This portinn of the total stiffness matrix is established at the
outset of the analysis and remains unaltered during the elastic-plastic
analysis except where the composite yi1eld behaviour of plate-beam elements
requires the separation of nodal force equilibrium as described in
sectinn 3.%c.
(4) Apply external loading

The external lnading is applied in accordance with the n5 index
described above.
(5) Intrnduce bnundary conditions

The boundary conditinns are satisfied in accordance with the n17



P

241

index described above and results in rows and corresponding columns
being removed from the analysis.
(6) Solve for node displacements

The equations are solved by Gaussian elimination with row interchanges
to reduce rounding off errors., There is a maximum of 154 equations for
plate-beam systems. That is, five degrees of displacement freedom at

each of 28 nndes in the plate, seven equilibrium and seven yield equations

for the beams.
(7) R&fine solution to degree specified

Following the initial solution for the unknown displacements at
each stage of plasticity, the solutinn can be refined as many times as
desired. The refinement procedures were applied to two of the solutions
contained in this thesis. The increase in accuracy was so small that
refinement was not necessary. The equations were well conditinned
throughnut the elastic-plastic analysis.
(8) Calculate plate generalized stresses at all nodes

Each of the generalized stresses Mx, My and Mxy were computed at
each nnde for each separate element and averaged so that only one
generalized stress state existed at any one node. These were stored
and made available for calculating principal generalized stresses and
computing scale factars for the yield behaviour of the plate.
(9) Calculate edge beam bending and twisting moments

These were computed and averaged at nndes Jonining beam elements
and made available for the investigation of their composite yield

behavinur with plate elements.
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(10) Calculate princlﬁal generalized stresses at all nodes
These are cnmputed using the generalized stresses of (8) above
and the equatinns discussed in sections 3.44 and e. These are stored
for use 1n the next sectinn of the program and constitute the majoq
output quantities required from the analysis,
(11) Adjust generslized stress field to satisfy yield criterion
This portion of the program determines the plastic behavinur at
nodes in the plate and functions in accordance with the procedures
outlindd in section 3.7. It specifies which of the nodes has become
plastic during an increase in load and gives the load causing plasticity.
The nnde number is recorded and the responsible principal generalized
stréss indicated by a plasticity index. This index is simply an integer
such that if its value is
0 - the node is non-plastic.
2 - the principal generalized stress M2 = M.

10 - the principal generalized stress M1 = M,

12 - both principal generalized stresses M1 and M2 = N,

(12) Check for beam yield behaviour

Once the yield criterion is satisfied in the plate at one node,
the beam bending moments are checked and if any exceed the limiting .
value for the beams, the load given by (11) above must be reduced such
that the beam becomes plastic and not the plate. The beam node affected
is noted and a plasticity index computed for this node. This index is

0 - if neither beam nor plate element joining at the node is
plastic. )

1 - if plate is plastic but not beam such that beam has continuous

slope but different from that of the plate.
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2 - if beam has reached plasticity.

(13) Output results according to analysis specified

Output is presented after an elastic analysis or for an elastic-
plastic analysis after each stage of plastic behavinur whether it occurs
in the plate, beam or both simultaneously. The output for the collapse
stage of the third solution described in Chapter 6 is shown in Tables
A2,2, A2.% and A2.4.

In Table.A2.2 the input items n ¢ and n17 are shown. In this
solutien nnly the vertical displacement at node 28 (corner of the plate)
was prevented. In Table A2,3 the displacement field at collapse is
shown with the column matrix of displacements of equations 3.61 indicated.
Here the subscripts n and p have the range of values 1 to 28. Also shown
in this table are the angles of principal plane orientations and of
plastic flow lines as described for Figure 3.l13a. In Table A2.L, the
vinlation of the yield criterion is indicated. This nccurs as & result
of assuming ﬁq constant in equatinns 3.38. The change Aﬁi is also shown.
From the results it is clear that for node 5 with Aﬁs = 19.29° equations
3.328 underestimates the true yield limit by only 2.36% and correspondingly
overestimates the smaller principal generalized stress by 3@. This node
became plastic with M; = M at a load equal to 84% of the collapse load.
This solution is a good indicatinn of the importance of equations 3,38
in approximating the yield functinn for large changes in the angle ﬁi o

/
Also in Table A2.4 are shown the beam slope Oy and plastic rotations

a, that were described for the composite plate-~beam yield behaviour of

b
Figure 3.18. The plasticity index for the slab at node 22 indicates

that “;2 = M. The beam index indicates that the beam bending moment
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at this nnde is also at its limt. For node 23 the index for the slab
indicates that nn plasticity has occured in the slab. However, the beam
index shows that the beam is plastic at nnde 23. These are two examples
of composite yield behaviour.

At the begining of Table A2.2 and at the end of Table A2.4 are
samples of "query printang". This allows the flow of the program to
be traced before and after output. Queries are made by placing a
question mark after a calculation or at the end of any program statement.
This fecility was.used a great deal in the program development, It can
be easily suppressed and need not appear with the output. However; it
was included here to illustrate what happens when the elastic-plastic
analysis results in collapse of the plate or sleb. When collapse occurs
no solution to the equations is possible and the yield criterion is
violated at previnus plastic nodes. In the present example nnde 16 had
reached plasticity previous to the collapse stage shown and the yield
criterion was satisfied during subsequent incre;ses in applied loading.
But when node 7 became plastic and allowed a rectangular collapse mechanism
to form, further increase in load resulted in nnde 16 violating the yield
eriterion. The underlined query printing gives the principal generalized
stress M:6>-M, the value of M = 1.0 and the node number 16 along with
the caption indicating violatinn of the yield criterion.
(14) Assemble parts of elastic-plastic stiffness matrix for plate and

beams

This portion of the program required tﬂe most programming effort
and resulted in complicated but systematic procedures for building the

coefficients in the total structural elastic-plastic stiffness matrix.
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The plasticity indices for indicating plate and beam plastic behavinur
were used throughnut this section and they completely controlled the
calculatinn and placement of the recuired coefficients. Of the total
store required for the program, this portion required approximately
one third.
(15) Update orientation of principal planes at plﬁstic nodes where
necessary
This updating procedure and reasons for its use are described in
section 3.4e. None of the analyses presented in this study required
these procedures since the yield criterion was never violated more ;han
the 2.36% of Table A2.4. In fact, all the other solutions gave errors

of less then 1%.
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APPENDIX III - MISCELLANEOUS EXPERIMENTAL DATA !

A3,1 General R marks

On each of the metal plates deflections and strain recordings were
made at more locations than the results indicate in Chapter 5. However,
these additional measurements were made to establish the degree of
symmetry produced for curvature and deflections, since symmetry about
the central axes and diagonal is assumed in the computer analyses.

These results have not been presented. The symmetry conditions were
very good in all plate tests. The positions where measurements were
taken are report;d in this appendix along with general comments on
membrane strain measured in the plate tests.

For both plates and slabs, various control beam tests and other
mscellaneous materiael tests were performed. The results of these
tests are included in this appendix.

BEach of the plate end slab tests was performed over a period of
4 to 6 hours except for slab No.2 which was loaded over a period of
7 hours.

A slow rate of straining was used in all tests. The accuracy of
strain measurement recorded by the data logger'was to the nearest
4 micro-strain on the maximum gain. But since most of the strain read-
ings were made during inelastic strain ranges, this gain had to be
reduced. The estimated accuracy of strain measurement is about 15%.
Since generalized stresses were determined from experimental generalized
stress-curvature curves, an additional 5% error could be introduced.
Therefore, the maximum possible error in determining generalized stresses
is approximately +10%.

All graphs and figures are placed at the end of the appendix.



Reinforced Concré%e Slab Tests

A3.,2 Slab No.l
(a) Flexural Stiffness for Slab

For this slab the flexural stiffness had to be computed theoretic
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ally,

It was assumed that the concrete was cracked to the neutral axis, every-

where in the slab. The calculation of D for this slab follows:

n=E =10 Ec = 3x106p.s.i.
b Ec

1.31" b=23 v = .15

f 7/ xd dy=
71 2 "
bk® = 2nas(1-k) k = .375
1-k)d
(1-x) 1 Ic = %bdf = .0525 1o
[ ]
As = .0336 in? Is = nAs(1-k)2 = .29#0 in?
I/b = .1155 1n?
D = ET = 351;-,000 1b in. A}ol

(1-v)

If based on an uncracked section, D = 810,000 1b in.
(b) Control Beam for Determining M of Slab
The load=-deflection curve for the control beam specimen for this

slab is shown in Graph A3.l. From this graph, Pﬁltimate = .81 tons

giving
¥ = 1260 1b in/in A3,2
”
Since for this slab, L = 36 and D is given by equation A3.1, the
non~dimensional limiting generalized stress is

KL

L84 = .1280 A}l}
D
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A3.3 Slgb No.2
(a) Flexural Stiffness for Slab

The theoretical stiffness based on a cracked section is given

below.
d,= 1.313 b=

;b—* . K = 449
/// 1 Tc = .1207 int
(1-x)4, Is = .3,85 int

. »

3 3
I = .11 i .
' As = .0468 in? /o 73 in
D=_EI = 360,000 1b in. A3
(1-v2)

(b) Control Beam for Slab
The generalized stress-curvature diagram for this control beam
is presented in Graph A3.2, The limiting generalized stress is seen
to be M_ = 1040 1b in/an with an ultimate curvasture of .0024 in:'
The flexural stiffnesses for this slab as determined from Graph
A3.2 are:

3,100,000 1b in. A3.5
353,000 1b in. A3.6

Before Cracking = D
After Cracking - D

For the other slabs, only theoretical stiffnesses could be used
since no curvature measurements were made. These stiffnesses were
based on a cracked (to the neutral axis) concrete section,

(c) Flexural Stiffness of Edge Beam
" " .
For the edge beam section (§ x 1% ) on this slab, the theoretical

bending stiffness is
EI = 3,170,000 1b 1n? A3.7



(a) Control Beam for Edge Beam
The experimental bending moment-curvature characteristics of the
edge supporting beams are shown in Graph A3J.3.
The fully plastic bending moment is Mb = 8000 1b in, and the
bending stiffness is slightly greater than the theoretical value
(equation A3.7); i.e. experimentally

ET = 3,640,000 1b in2 A3.8

The non-dimensional limiting values for slab and edge beams with
-

L= 36" are:
ML = 1060 A3.9
D using D = 353,000 1b in.
M = .0226 A3.10
D

A3.4 Slabs No,3 and No.4

(a) Flexural Stiffness for Slabs No.3 and No.L

The stiffness for these slabs based on the cracked section is as

follows:
b b=t 4= 625
Z, kd k = .2675
Zin -
(1—k)d Ic = 000637 inc
. ! Is = .0128 in¥
As = 010, 4n2  I/b = .01917 ind
D=__EI = 58,800 1b in. A3,11
2
(1-v°)

(b) Control Beam for Slabs
The load-displacement graph for the control specimen for these
slabs is shown in Graph A3.4, from which
¥ =170 1b in/in - A3.12
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]
Therefore, the non-dimensional value becomes (for L = 16 )

D

(c) Control Beam for Edge Beams on Slab No.lL
The moment-curvature characteristics of these edge beams are

shown in Graph A3.5. The fully plastic bending moment for the beams

is
Mb = 290 1b in. A3. 1,
with d bending stiffness of *
ET = 16200 1b in? A3.15

The non—dimeqsional fully plastic value using equation A3.11 is
M, = .00493 " A3.16

D

Mild Steel Plate Tests

A3,5 PlatesNo.l to No.,4

(a) Stress-strain Characteristics of Plate Material
A portion of the stress-strain relationship for the metal plates

is shown in Graph A3.6. Tensile coupon tests were made for all the
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plates. Graph A3.6 is a typical relationship since very little difference

in properties was found between the tests.

(b) Control Beam for Plates
The bending stiffness of the plates was determined from the

generalized stress—curvature results of a control beam test. This

relationship is shown in Graph A3.7.



From this graph the stiffness

D = 325,000 1b in, A3,17
The theoretical value is
D= Et) = 352,000 1b in. A3.18
12(1-v2)

The limiting generalized stress value is
M = 2270 1b in/in A3.19

and in non-dimensional form is
']

ML=.1120 A3, 20
- ’
D
(c) Control Beam for Edge Beams
The bending moment-curvature diagram of Graph A3.8 for the
edge beams used on plates No.2 and No.,4 indicates that

EI = 4,700,000 1b in? A3.21

and

Mb = 7920 1b in. A3,22

Using the blate stiffness of equation A3.17, the non-dimensional

limiting value is
Mb = o024 A3,22
D

(d) Strain Measurement

The locations on plate No.l at which strains were recorded are

shown on § of the plate in Figure A3.1l. Symmetry of curvature was
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checked by comparing the results of diagonally opposite pairs of gauges.
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The maximum difference between curvature measurements made across the
x and y axes was less than .

Measurements of membrane strains were made at the locations shown
in Figure A3.1. Of éhe 72 stages of loading at which strains were
recorded, the average of membrane to bending strain was less than .05;
i.e. 5% membrane strain. It was evident from the strain readings that
this was compressive membrane strain. .

Figures A3.2 to A3.4 give the position of strain gauges on plates
No.2, %b.} and Nd.4 respectively.

From strain measurements (at more than 70 load stages) for each
of the last three plate tests, the results indicated better symmetry
of curvature than for plate No.l and about the same order of membrane
strain to bending (5%). In-plane strains were, of course, largest near
the cable point loads. Here the membrane strain was largest in plate
No.3 where it reached 35% of the bending strain close to the collapse
load. It increased rapidly et collapse to more than 1.5 times the
bending strain.

A3.6 Loading Cables

The cables used in loading plates No.3 and No.)4 were purchased

from British Ropes Limited, London S.E.7, and have the following

particulars:
N.B.L.(Tons) Size Thread
4 2"B.3.F.  5/16 dia. 6/9x9x1 W.S.C.
6 3".s.F. 2 dia. 6/9x9x1 I.W.R.C.
10 Z'B.S.R. % dia. 6/9x9x1 I.W.R.C.

Table A3.1
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ADDENDUM T - VIOLATION OF YIELD CRITERION IN SINGLE ELEMENTS

ADDL.0 Variation of Maximum Principal Generalized Stresses in Elements

In order to determine if énd to what extent the yield criterion
has been violated within elements, principal generalized stresses were
computed at nine locations (in addition to nodal points) on elements
selected from five of the eleven analyses presented. The five chosen
consisted of Metal Plate Tests No. 1 and No. 3 and the three additional
solutions reported in Chapter 6. The first two were selected because the
gradients. of pr1nc1pa1 values were larger for plates without beams and
also they were essentially the same type of analyses as those for Slab
Tests No. 1 and No.3. The three additional solutions were selected since
they involved different loading and to some extent different supporting
conditions from the previous eight solutions.

From each of the five analyses, one element was selected. These
elements (with one exception) involved plastic behaviour at ome node at
the end of the elastic range and considerable nodal plasticity at the
collapse state.

The values of largest principal generalized stresses were computed
using equations 3.20 at thirteen positions on the element. This was A
done by combining equations 3.9 (u = displacements at the node which are
known at each stage once the elastic-plastic analysis is complete) with
equations 3.19 to determine Mx, My and Mxy at each p%iﬁt selected.

The results are shown in Figures ADDL.O to ADDl.4. The node
numbers are indicated and correspond to those glven in Figure 3.3. 1In
addition to the computed largest principal values, the largest nodal
principal generalized stresses produced during the elastic-plastic analyses
are indicated (based on average values of Mx, My and\Mxy - see section
3.3¢). The comparison of nodal values indicates that discrepancies of
about 10% exist between individual element values and those determined by
the averaging procedures.

Trom the distributions of largest principal generalized stresses
in each of Figures ADD1.O to ADDL.4 it is clear that the greatest values

occur at nodes. The averaged nodal values used in the elastic-plastic



3L
L0

analyses were maintained at unity for plastic nodes. However, the
actual nodal values (using one element only) appear to Violatg the yield
criterion by less than 10%. Consequently, it is reasonable to suggest
that the greatest violation exists at the nodes and can be of the order

107 in the class of problems considered.
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