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The finite element method is applied to elastic-plastic plate

bending analysis. Square plates are divided into square elements

with corner nodes at which plastic rotations are introduced whenever

the internal principal generalized stress states satisfy a square

yield criterion. The analytical response of plates and. slabs to

monotonically increasing applied load is traced in a step-by-step

manner by digital computer. A complete history of displacements and

generalized stresses 18 developed through the elastic phase to collapse.

Results obtained from experiments on plates and slabs are compared

with those produced analytically inorcier to assess the validity of

the finite element model,
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1.

NOMENCLA1BE

General

x y z	 - Cartesian reference ayste

V	 - Poisson ratio

E	 - modulus of elasticity

- modulus of rigidity

J	 - polar moment of inertia

I	 - moment of inertia

L	 - square plate span length

t	 - plate thickness where appropriate

D = Xt3/12(1— ,2)

Dx=D

D =tD
- plate flexura]. stiffneaaea

Jy=D

Dxy = D = - v)D/2

Mx My M	 - bending and twisting generalized stresses

M1 1(2	- principal generalized stresses

Mx	 - beam bending moment along x axis

M	 - limiting yield value of generalized stresses

- limiting yield value of beam bending moment

= Er = Db	 - flexural stiffness ratios beanVplate
e DL DL

y =

	

	 - limiting strength ratio, beai/plate
ML

= CJ	 - beam stiffness ratio, torsionai/bending
El

V	 - vertical edge reaction on plate
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it
cosine (

Iq

- brackets

- denotes matrix when the elements are

displayed

- transpose of matrix(oea) in brackets

- subscripts for use In summation convention

- superscripts for use in summation convention

- vertical displacement at node I

- slope about y ads at node I

- slope about x axis at node I

- computer appLied. load

- computer elastic limit load

- limit analysis collapse load

- finite element method

-

\2
- ow/6Xdy

\Z2\\
-M/c'xoy or

- orientation angle of principal planes measured

clockwise positive from x axis

- orientation of plastic flow lines measured

clockwise positive from x axis, resulting from

and U2 satisfying yield criterion at node q

i-t
- modulus of cosine (U

tq
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- modulus of sine

It
- - cosine m

_+Jaixie

- plastic rotation at node I

- components of plastic rotation 	 along

x and. y axes

- matrix of nodal displacements at node n

- matrix of plastio rotations resulting from

the principal generalized stresses U5 satisfying

yield criterion at node p

- matrix of nodal forces for node m

- matrix of principal generalized stresse& Ut

at node q

- submatricea of elastic-plastic stiffness

• matrix

- 2nd. column of K matrix

- 3rd column of K 	 trj1
qi

Chapter 1

q
	 - uniformly distributed load

L
	 - long span for slabs
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1	 - short span for 81ab3

= i/L	 - aspect ratio

Chapter 3

a, b

a

We

Wi
S

C

k

B

I

D

ic

H

M

Appendix r

A

a

B

q

- dimensions of element in Figure 3.2 only

- matrix of coefficients from equation 3.7

- matrix of coefficients from equation , 3.73

- external work

- internal work

- coefficient of orthotropy for equation 3.27 only

- matrices

matrix in equations 3.12, 3.13 and 3.15

- matrix in equations Al.3, Al. and. AL7,

otherwise the non-dimensional length of an

• element

matrix in equations Al.18, otherwise a constant

- matrix in equations A]..7 and Al.8, otherwise a

constant

- uniformly distributed load
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K	 - curvature matrix in equationa A1.7

M	 - matrix in equation A1.8

w	 - matrix in equationa A1.].7, A]..18, and A]..19

L	 - matrix in equation A1.18

Appendix III

'I

Ic

Is

b

- total moment of inertia of section

- moment of inertia due to concrete

- moment of inertia due to reinforcing steel

- width of alab section

S
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StTh2ATI0N CONVENTION

Example

Expansion of equations 3.60 for principal generalized stress ,M1

at node q only.

- summation of repeated subscripts is independent of summation

of repeated. superscripts

- values of subscripts and superscripts for rectangular elexnart

rare:

'Ti 2 3 1.1.1 23J. 2
fl)	 qj

I	 !	 I

Mt = tKt	KtSI I n( =	 D +KtSR8
q	 qn	 qp 'Re'	 qn n qp p

1	 1	 I

M1 = K1 D +K1R
q	 qnn qpp

= .K D +K1 D +K1 .,D	 D 
+ 
K11 R1qil q22 q3 q 1i.	qpp qpp

= (	 ditto	 ) + KR+K+KR^K+KR+KjR

For further expansion of the K1 1 and. K1 etc. xnatricea

see equations 3.59 and 3.63.



ThTRODUC TION

Moat of the existing analytical methods used in plate or slab

bending problems are restricted in their application to either a purely

elastic response or to a limiting (collapse) behaviour. The fundamental

principles characteristic of elastic analysis have been well established

for more than a century. The principles underlying the limit analyses

of plates arid slabs have been developed since the early l9li.O's
S

resulting from the pioneering work of Tohanaen in Denmark and Prager

in the U.S.A.

Probably the moat informative contributions to the collapse analyses

of reinforced concrete slabs have been made by British researchers, in

particular the work of Wood at the Building Research Station.

Because of the nature of the two types of analyses existing at

present there is a severe gap in our knowledge of the behaviour between

the end of the elastic stage and the final or collapse stage. To bridge

this gap a unified approach must be developed that will include both

types of behaviour and still produce a realistic complete analysis

throughout the elastic-to-collapse response. This type of analysis

is becoming increasingly more important as more slab designs arø made

using limit methods. The importance of being able to estimate deflections,

extent of cracking and the general behaviour of the slab before collapse

is certainly realized by present code committees.

Wood suggested as far back as 1955 and again in 1961 that this

type of elastic-plastic analysis should be attempted. Few attempts

have been made until very recently since the complexity of the problem

required solution by computers which until recently did not have sufficient

-	 __,_L__



The purpose of the present study reported in thi8 thesis is to

present an elastic-plastic bending analysis for plates and slabs based

on well established fundamentals of structural mechanics and on

currently accepted principles of plastic theory for ductile metals.

In view of the complexity of plate bending problems it is hardly

surprisiig that numerical methods are being applied to their solution.

One such method that has gained appreciable popularity in recent years

is the finite element method. This method is a more physically obvious
S

one than previous methods such as finite difference and Fourier serie

solutions. The structure, in the present case a plate or slab, is

divided into a number of small but finite elements. These elements

are connected only at their nodal points where displacement continuity

(in the purely elastic case) or discontinuity (by introducing plastic

rotations for the present study), together with equilibrium of nodal

forces is established. The solution of the problem follows using

standard structural procedures (such as the displacement method in

the present study).

The method originated from research carried out by aeronauticaL

analysts in the U.S.A. in 1956. Although it has been applied to many

types of problems (not only in the structural field) during the past

decade, few plate bending problems had been attempted until 1964. when

British academics began examining the method and applying it to slab

problems.

Because of the philosophy of the method and. the accuracy obtainable

in elastic plate bending analyses, it was adopted as the analytical

tool in producing the elastic-plastic analyses reported herein. To

the writer's knowledge this wethod has not been applied previously to

8



elastic—plastic plate bending analysis.

The application of the finite element method to the present study

does not introduce ary new fundamental principles for the method but

does involve the use of existing principles in a way that has not been

previously reported.

The thesis consists of seven chapters and three appendices.

Chapters 1 and 2 serve as an introductory background to the present

study by describing existing types of inelastio analyses and summarizing

the fiite element method. Chapter 3 contains the theoretical procedures

developed for the analysis. The experimental tests are described and.

reported in Chapters 14. and 5 respectively.

In Chapter 6 three analytical solutions are presented for reinforced

concrete slabs carrying uniformly distributed loads. These are compared

with available unique solutions presented in Chapter 1.

Chapter 7 summarizes the results (analytical and experimental) of

the study from which certain conclusions are drawn and suggestions for

further research presented.

Appendix I contains the matrices used. in dve1oping the rectangular

element stiffness and generalized stress matrices. These are presented

in explicit form for completeness of presentation.

Appendix II summarizes the computer program developed for the

Atlas computer housed at the University of London Computer Center.

Appendix III contains miscellaneous experimental data for the

tests reported.

References to existing literature are numbered such as Westergaard'

in consecutive order as they appear in the tçxt.

9
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CHAPTER 1 - EXISTING INELASTIC PLATE BETJDING ANALYSES

1.1 General Remarks

The behaviour of plates bending under transverse loading has

received considerable attention since the first attempts at plate

analysis in the early 1800's. For well over a century many analysts

developed and improved upon the theories of plate bending for elastic

analysis. Westergaard1 has summarized, the historical development of

plate theory and described the early tQats to investigate the collapse

2
behaviour of reinforced concrete slabs by Bach and. craf in 1911. A

comprehensive works on the theory of plates and. shells by Timoshenico

and. Woinowsky - Krieger 3 now forms the standard reference for most

investigators.

Although the elastic behaviour of plate bending has retained.

the interest of many present day engineers and researchers, the

collapse behaviour has also attracted many workers, notably Johansen

in Denmark and Prager with his team in the U.S.A. In England, Wood.

has given an excellent account of the plastic theories for the collapse

analyses of reinforced concrete slabs and metal'plates. This text

has been well received and. has stimulated much of the current reseatch

in this field.

From the existing literature it would appear that the missing

link in the complete knowledge of plate bending behaviour is the absence

of any unified theory that encompasses the existing elastio and limit

theories and allows complete elastio—plastio analysis. There have

been few attempts to do this but two recent approaches are outlined in

section 1.5.
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1.2 The Yield Line Method. of Analysis for Reinforced Concrete Slabs

This method of analysis predicts a possible collapse load for

reinforced concrete slabs and was pioneered by Johansen' 6 ' in 194.3.

It has been accepted by many design code committees principally in

Europe. The Comit Europ 'eri duBton has organized extensive research

8,9,10in many laboratories and has published a number of bulletins 	 on

the subject.

The theory is based. on energy and lcLnematio principles and leads
S

to an upper bound on the collapse load. That is, the true collapse

load is either equal to or less than that caloulated by yield line

analysis arid therefore essentially unsafe predictions are made. The

collapse loads are determined by equating the external work done by

applied. loads to that dissipated. internally along the yield lines of

an assumed collapse mechanism. This leaves much choice to the analyst

in selecting the collapse configuration. Although there are certain

well defined procedures to aid in the proper selection, one is never

sure that the lowest possible collapse load has been determined even

after analysing ' many possible mechanism patterns.

The greatest drawback of the method is the impossibility of

predicting what internal generalized. stress states exist within the

portions of the slab bounded by supports and/or yield lines.

A further limitation is the absence from the analyses of the

effects of membrane action on the collapse load. This has lead to

very conservative estimates of the collapse load for slabs in which

in-plane forces are significant. Recently, an upper bound on the

collapse load for a simply supported square slab carrying uniformly

11
distributed load was developed by Kemp . The increase in collapse
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12
load was found to be as much as 2c% greater than that determined by

excluding membrane action.

Even with its limitations, the yield line method has and continues

to stimulate interest in the limit behaviour of concrete slabs. Its

greatest advantage is its simplicity of application and even though

theoretically it leads to an upper bound on the collapse load, it

seldom overestimates the experimental collapse load. This is primarily

why it has been so well accepted.

S
For practical application of the yield line method excellent

12	 13texts have been produced by Thnes and Wood and Jones

1.3 Limit Analysis of Metal Plates

The application of limit analysis theory to perfectly plastic

(ductile) metals in plate bending was mainly due to Prager and his

team at Brown University, U.S.A. The theorems of limit analysis

were introduced by Drucker, Greenberg and Prager 15 . From these

theorems the unique collapse load can be defined. A uniqueness theorem

was first established by Hill' 6 for regular yield loci (no flats nor

corners). Corollaries of this theorem were extended by Haythornthwaite

and Shield'7 to include singular yield loci. For plates, unique

collapse loads are produced whenever the static and kinematic theorems

are satisfied and the collapse loads given by lower bound and upper

bound procedures are identical.

From the existing limit solutions of metal plates it is clear

that researchers have concentrated on producing unique solutions and

have not considered upper bounds of much importance without accompanying

lower bounds to help establish the validity of the collapse load.

The only unique solutions that exist are for circular plates. Radial
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symmetry of plate geometry, loading and boundary conditions permits

thern formulation of unique solutions with little difficulty18.

19	 20
Prager and Hodge have presented upper and lower bound solutions

for simply supported square plates carrying uniformly distributed loads.

21
More recently Shull and Hu presented upper and lower bounds for

rectangular metal plates based on the Tresca yield criterion. Again,

no unique solutions were obtained since the difference in the upper

and lower bounds for the collapse load varied from ic% to 33% for
S

various aspect ratios.

Although the correct oollapse load will be given by unique

solutions, the question will always remain as to how realiatio the

statical stress fields are as determined by limit analysis.

l.J.. Existing Unique Solutions for Non-Circular Slabs

The objeot of this section is to present existing unique solutions

for non-circular slabs to illustrate how few solutions exist and the

similarity between them. Unfortunately only slab solutions exist

based on a square yield criterion. No metal plate unique solutions

using Tresca or von Mises yield. criteria exist to date.

Wood has presented a number of unique solutions for slabs.

Those for non-circular slabs are summarized here without derivation.

The general geometrical arrangement common to these solutions is given

in Figure 1.1.



q - uniformly
distributed.
load

S
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14

y

Non-Circular Slabs for Unique Solutions

Figure 1.1

(i) Simply szpported square slab carrying uniformly distributed

load. (Prager)

This solution was produoed. by Prager. The lower bound is derived.

from the radial generalized stress pattern for a fixed circular plate.

(i)Collapse load from a Idnematically admissible velocity field

(Upper bounöj.

q=2lfM/L2	 1.].

(ii)Statically admissible generalized stress field..

Mx = q(Ii-2x)(i*2x)/2i1.	 1.2
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My = q(-2y)(I*2y)/	 1.3

	

Mxy = qxy/G	 1.4

(iii)Vertical edge reaction acting upwards on slab.

S
	 V=q14/3	 1.5

(iv)Collapse load from a statically admissible generalized

stress field (lower bound).

	

q = 241(/L2	1.6

(2) Simply supported square slab carrying uniformly distributed

load. (Valiance)

(i)Upper bound. on oollapse load.

	

q = 24M/L2 	1.7

(ii)Statically admissible generalized stress field.

Mx = My = q(L-2x)(Lf2x)(L-2y)(LI'2y) 	 1.8

24



3' I1...'.2	 'ii	 .2

2x2 3/2

L

+	
)3/2 } 1.9

L

Mxy = qv4+i
L2 21

1.10

1.11

16

(iii) Vertical edge reaction acting upwards on the slab.

(at x "= L/2)	 V	 qL [1_ _______ 1
I	 (2_)3'2I
L	 L2J

(iv) Lower bound on collapse load.

q = 24.M/L2

(3) Square slabs supported by edge beams with slab carrying uniformly

distributed load. (Wood)

For this solution the key parameter that determines the collapse

mode is

1.12
ML

4,22Wood	 has shown that the composite collapse mode of beams and

slab occurs for. ^1. For	 >i only the slab collapses by a diagonal

mode. In the following the range of	 is restricted to

0	 I
	

1.13
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(i) Upper bound. on collapse load..

q = 8M(1+2$2	 1.14

(ii) Statically admissible generalized. stress field.

Mx = q(L-2x)(L.2x)/8(1+2')	 1.15

S

My = q(L-2y)(I*2y)/8(1,2)	 1.16

= q(Z-1)/2(2+i)	 1.17

(iii) Vertical edge reaction acting upwards on slab.

(at x = L/2)	 V = qL'/(1+2')	 1.18

(iv) Lower bound. on collapse load..

q = 8M(1+21)/L2 	1.19

(4) Rectangular slabs simply supported. carrying uniformly distributed.

load. (Wood.)

This solution is not strictly unique except for aspect ratios

(4, = ]JL) of unity and. infinity. But the difference between the upper



1.21

1.22

1.23

(at x = L er i)	 v =
	 hJ(j -	 I

If__if I2	 2
1. 24.

18
and lower bounds on the collapse load is within 14%.

(i) Upper bound on collapse load.

q=
	 1.20

(ii) Statioafl.y admissible generalized stres8 field.

Mx = q42(Ix)(I,ix)/8(1+P+(j)2)

S

q)(L.2y)/8(1++i2)

2Mxy= q	 /2( 1+4+4 )

(iii) Vertical edge reaotion acting upwards on slab.

(iv) Lower bound on collapse load.

q =
	 1.25

(5) Rectangular slabs supported by edge beams with slab carrying

uniformly distributed load. (Wood)
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The most general case for these slabs occurs when two different

limiting values M and m exist for the slab in the directions parallel

to the long and short beams respectively. If B refers to the long

beams and b the short beams then

°'
	

1.26

	

ML	 XI

S

(a) Case I - Long beams collapse with slab.

(i)Upper bound on collapse load.

q = 8M(1+2YB)/L2
	

1.27

(ii)Statically admissible generalized stress field.

	

= q(L-2x)(I*2x)/8(j+2ç)
	

1.28

My =	 1.29
L	 L

	

- ' ) —4mxy
	

1.30
2	

2L2

(iii)Vertical edge reaction acting upwards on slab.

(aty=)	 v=(i- I )
	

1.31
2	 2	 1+2
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(iv) Lower bound. on collapse load.

q = 8M(1+2)/L2 	 1.32

() Additional requirements.

1+m I
	

1.33

(b) Case II - Collapse load to be equal to or less than the load.

for independent collapse of slab.

1. 34.

4)2

(o) Case 111 - Slab only collapses.

2YB 	 1.35
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Very recently Massonnet 23 presented a number of unique 8OlUtiMn8

for reinforced concrete slabs. He builds these solutions using the

fundamental equations governing complete solutions of rigid plastic

slabs formulated by Hopkins. Massonnet states that for the five

differential equations presented, no general method of integration is

known and that this is why very few complete solutions exist.

Massonnet develop3 a theorem for producing a family of unique

solutions by combining linearly two known omplete solutions for the
a

same problem. As an example, he selected the solutions for the square

simply supported slabs of groups (1) and (2) above. He shows that there

are a number of unique solutions within the family developed. The

resulting generalized, stress field for any one member of the family is

governed by the amount selected from each of the two initial solutions.

However interesting these results are, it remains to be shown that

these families of solutions are other than of academic interest.

Undoubtedly there is only one true solution to any one problem in

reality and it is this solution we should strive to find.

The importance of lower bound and. unique solutions for practical

design cannot be assessed unt•il the generalized stress fields are

investigated experimentally. There does not appear to have been any

attempts made to study lower bound solutions by experiment. For

concrete slabs, previous experiments have been confined to the overall

collapse behaviour and. checking the validity of upper bounds on the

collapse load.

A lower bound approach to slab design was introduced in 1960 by

Hu1lerborg'. In this method the slab is divided into strips in two
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orthogonal directions. Discontinuous moment fields obtained by

uni-directional strip action are employed. It is a simple approach

and results in economical placing of reinforcement. This method has

been given a good deal of attention lately especially by Wood and his

team at the Building Research Station.

1.5 Numerical Methods for Elastic-Plastic Slab Analysis

(a) The method proposed by Levi and applied by Callari.

This method was first proposed by Levi 25 in 1950. The general

approach was outlined by Caliari26 and later applied by him27.

The slab is divided into a number of squares by mesh lines. The

method of finite differences is used to represent the Lagrange plate

equation at each mesh point. To represent the effects of inelastic

behaviour, plastic rotations are introduced at mesh points representing

plastic curvatures occuring over one mesh length. The type of plastic

distorsion imposed was first studied by Somigliana28 in 1908. It is

assumed that by imposing plastic rotations along the axes of the mesh,

the effect of rotations at some other orientation can be represented.

Tn the special case where the maximum generalized stresses occur at

4.5 degrees to the mesh directions, two equal rotations are imposed

along the mesh lines. It follows, necessarily, that at some other

point where the actual rotation is inclinded at other than 4.5 degrees,

unequal component effects should be used.

The slab analysed was a simply supported square carrying four

vertical point loads at the one quarter points along the diagonals.

The maximum generalized stresses producing inelastic behaviour were

directed along the mesh lines since Callari assumed that the twisting

generalized stress vanished whenever cracking of concrete ocoured..
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To determine the various levels of inelastic behaviour at a

mesh point, a generalized stress-plastic rotation diagram was used.

This had a trilinear variation for a cracking analysis and. bilinear

for studying the collapse behaviour. Perfect plasticity was not

allowed in any of the cases. Two types of solutions were produced

for the slab presented, one for cracking only and a second for the

bilinear elastic-plastic collapse.

T? determine the generalized stress field. at any stage of external

loading and internal plastic behaviour, the Lagrange equation written

in terms of total curvature (elastic plus plastic) was solved at each

mesh point. By suppressing the plastic rotation (plastic curvature

multiplied by one mesh length) at all mesh points except one, the

influence of a unit rotation on the vertical displacements was determined..

This was then repeated for each plastic point in turn requiring a

solution to the total set of Lagrangian finite difference equations.

From the influence of unit rotations, the resulting increments of

generalized stresses Mx, My and Mxy could be determined at all points.

This procedure then produced generalized stress influence coefficients

to be used in the elastic-plastic analysis. These multipliers were

set aside and only used when the particular mesh points satisfied the

inelaatio requirements as presented by the generalized stress-rotation

diagrams.

From the purely elastic response of the slab, the effect of applied.

loading on the generalized stresses was solved once, at the outset of

the analysis. During the inelastic response the elastic effects were

always available between any two load. stages. The end result required.

for any application of load was the final generalized stressea Mx and.
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My at each mesh point. These were determined by knowledge of the

initial values (at the end of the last load stage) causing inelasticity,

the increments of the elastic generalized stresses and the influence

of the increase in plastic rotations at affected points. The influenoe.

of the plastic rotations was determined from the generalized stress-

rotation diagram and the previously computed influence coefficients.

The total number of characteristic equations solved was equal to the

number of mesh points that became inelastic. In this manner a history

of cracking or a Uuild. up of a collapse behaviour was traced.

The general approach to this problem is quite good. Nevertheless

there are a number of points worth mentioning in connection with the

method and the particular results that Callari obtained.

The assumption that the true plastic rotation can be represented

by independent rotations in component directions without knowing the

magnitude and. direction of the true rotations requires some justification.

For the particular solution presented, the true rotations weie determined

since Callari assumed that the twisting generalized stresses vanish

once the concrete cracks. If this were not the case, he principal

directions would have to be determined and in some manner two component

rotations introduced along the mesh lines.

The so-cafled "characteristic equations" that are used to compute

the final generalized stresses would have to be written in terms of

principal values. If the orientations of the principal planes changed

during loading the characteristic equations would have to be constantly

corrected. This severely complicates the procedure and it is likely

that principal generalized stresses could not be dealt with using the

plastic distorsions presented.
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From the computer analyses the first solution (cracking only)

gave cracking loads in excess of experimental values in all cases1

The cracking loads determined by any analytical means will probably

never give an accurate picture since there are many factors which govern

crack formation. The higher values might suggest that the actual

maximum generalized stresses are greater than those produced analytically.

The question of load application and. internal stress concentrations

mentioned by Callari are certainly local governing factors.

The largest çrror was found in the apparent collapse load in the

second. solution. Strictly speaking there was no collapse load since

perfectly plastic behaviour was not allowed. The computed collapse

load, defined when the displacements increase rapidly with a small

increase in load, was ij% above the experimental value and 24 above

the yield-line upper bound load. These results seem too high and throw

doubt on the analytical procedures. The slab in question will experience

tensile membrane action within the square bounded by the concentrated.

loads as the Johansen collapse load is exceeded. Experimentally the

slab collapsed at ic% to 1 above the yield line value. Since membrane

behaviour was not included in the analysis, it seems unreasopable to

expect higher loads analytically than those given experimentally.

Callari is to be congratulated on attempting a solution to a most

complex problem. However, the one slab example given does not establish

its validity as a sound elastic-plastic approach.

(b) The method proposed by Massonnet and applied, by Cornelis.

29This method proposed by Massonnet is very similar in principle

to that just described. The fundamental difference is the way in which
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plastic distorsions are introduced. In the Levi method plastic rotations

were imposed in vectora]. form. Massonnet introduces tensora]. components

of total curvature rates and adopts the incremental type of stress-strain

law from the general theory of plasticity.

Although a concrete slab problem is presented by Cornelis 30 , the

generality of the method, allows the solution of metal plate problems

by adopting the appropriate yield criterion and associated flow rule.

In fact, Massonnet describes the method. with reference to the von Misea

criterion for ductile metals.

The analysis begins by solving a set of Lagrangian equilibrium

equations in finite difference form for a purely elastic response to

applied load. From the resulting displacements, the generalized stresses

Mx, My and Mxy are computed at each mesh point. The principal generalized

stresses are computed at all mesh points and scaled until only one

point becomes plastic. This constitutes the end of the elastic response.

This procedure establishes the starting point for the elastic-plastic

analysis. Next the Lagrangian equations are modified to include

plastic curvatures in the x, y and xy directions. The resulting

expressions that include plastic curvature appear as fictitious load

terms. The modified Lagrangian or "characteristic equation" is written

in finite difference form for each mesh point. With no applied load

on the plate these equations are solved a number of times to determine

the effects of unit plastic distorsions imposed one at a time at each

point for eac} of the x, y and r directions. From each solution of

the "characteristic equations" the displacements allow a set of

generalized stress influence coefficients to be determined, for each
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point affected by the unit distorsions. These coefficients are stored

for later use.

The generalized stresses obtained at the end of the elastic stage

are scaled up by a small load factor. The principal generalized stresses

are computed and those points where the yield. criterion is violated

are noted. The next step is to establish what actual plastic distorsiona

must be introduced to maintain the yield requirements under this small

increase in load. This is done by writing the yield function, at each

point that is plastic, in terms of the generalized stresses produced

by the scale up of preceding values, the influence of distorsions at

other points and the influence of the unknown distorsion at the current

point. This results in a number of yield equations equal to the number

of existing plastic points. These equations are solved for the unknown

distorsions, one at each plastic point. With these distorsioris an&

the influence coefficients previously determined, the increases of

generalized stresses are found. The principal generalized stresses

are again computed to ensure that the yield criterion is not violated

at any point. If more points appear plastic, the yield equations are

solved again, now including additional equations to account for the new

plastic points. This cycle is repeated within this one load increment

until no point violates the yield. criterion.

It should be mentioned here that throughout any one load increment,

the directions of principal planes at each point are assumed constant.

Since this is not strictly true the yield equations mentioned above

are only approximations to the actual ones. Therefore at the end of

any one load stage these angles should be recomputed and the principal

generalized stresses recalculated to test the degree of approximation.

If the approximation is not within acceptable limits, the new angles
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are substituted into the appropriate yield equations and the distorsiona

determined again. If acceptable, then an additional load increment

is added and the calculation of distorsions etc. repeated. If after

applying an additional load, increment, no further points become plastic

and. the yield condition approximations are acceptable, then an additional

load increment is applied and the procedure repeated. Collapse of the

plate is defined when the displacements resulting from plastio diatorsions

increase rapidly.

Tl1ia method }as two definite advantages over a finite element

approach. The number of Lagrangian or equilibrium equations is equal

to the number of mesh points and consequently the accuracy obtained

should be good. even for a large number of points. Furthermore, the

size of computer program required will most likely be sufficiently small

to enable compilation on medium sized computers. These two features

must be considered for elastic-plastic plate analyses.

The analysis example presented by Cornelis is for a rectangular

slab simply supported on four boundaries. The square yield criterion

for isotropically reinforced concrete wLth elastio perfectly plastic

characteristics was assumed. Very good. accuracy was obtained for the

collapse load resulting in a 	 increase over the yield line upper

bound value. Collapse was defined by a rapid increase in vertical

displacements.

The overestimate of collapse load is to be expected. since the

yield functiin was only approximately satisfied at plastic mesh points

off lines of symmetry. The actual principal generalized stresses are

greater than those assumed. Consequently an underestimate of internal
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energy dissipation resulted in more external work required for collapse.

The eauation selected to represent the yield function (see section 3.4.e)

is a poor choice for elastic-plastic plate analysis. Using this equation

and assuming that the orientation of principal planes remains constant

during one load increment results in an approximation to the true

limiting yield value. This approximation is a function of the actual

change in orientation and the magnitude of the angle assumed to be

constant. This is further discussed in detail in section 3.4.e where

it is shown that a much better approximation can be made. The yield

function used by Cornelia was satisfactory in his example since the

plastic zones were close to a line of symmetry where little change in

orientation is to be expected.

There does not appear to have been a definite collapse mechanism

from the results presented. The plastic points are located close to

and along the central axis of symmetry but do not extend the plastic

zone to the supports in any direction.

There are two particular aspects of Levi's and Massonnet's methods

which could limit their usefulness. The first is the problem of using

finite difference techniques to establish the plastic distorsion

influence coefficients. The accuracy of the difference technique for

small distorsions poses the question as to whether the effect of imposing

unit distorsions will produce changes of vertical displacements of the

proper order. The mesh size employed and the choice of difference

approximations 31 becomes much more important for determining the influence

coefficients. These facts alone might lead to substantial error since

vertical displacements may not in genera]. be very sensitive to localized

plastic behaviour.
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The second is the question of introducing other types of structural

members, such as edge beams on plates. Just what the composite yield

behaviour would be and how it could be incorporated is not clear.

Unless such support conditions can be dealt with, these methods have

limited application. Perhaps these questions should be investigated

more thoroughly before attempts are made to include other behaviour such

as membrane action as was mentioned by Mas8onnet.

On the whole, Massonnet's approach is based on sound principles

of strtictural mechanics and plastic theory.

(c) The method. proposed by Parkhifl.

In this method an elastic bending analysis using finite differences

is performed on the "rigid" portions of the slab that form a collapse

mechanism and leads to a lower bound generalized stress field for the

assumed mechanism. Since the generalized stress field is ataticafly

admissible and nowhere exceeds the yield criterion, and. is estabJ4ahed. in

accordance with a kinematically admissible velocity field, the

solution contains the required uniqueness properties of a complete

limit analysis solution.

Parkhill32 first establishes a possible collapse mechanism by

applying yield line analysis. Then the "rigid" segments of the slab

are analysed separately by purely elastic considerations using finite

differences. The boundary conditions imposed on each segment are

assumed to represent those existing in the original slab. Plastic

generalized stresses are applied along yield. lines and displacements

are allowed in accordance with those that exist in the slab. The

elastic analysis gives the internal stress fields for the Begments.fr
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If after the egtnents are analysed it is found that the yield criterion

is violated within the boundary of the element then an incorrect collapse

mechanism has been selected and a different mechanism must be used.

Although Parkhifl presents a solution to a square simply supported

slab carrying a uniformly distributed load, he implies that other shapes

can also be analysed.

At first sight this method, looks inviting 8inoe for many practical

slabs the mechanism pattern is fairly well known or could be determined

experim'entally. However, Kemp 33 has explained why this method, will not

work in all but the simplest syxninetrica]. cases of which the one presented

is an example. The difficulties arise whenever the segments of slab

adjacent to a yield. line are non-symmetrical. Of the three quantities

(normal and. twisting generalized stresses and vertical shear force) on

the yield line, only two may be specified. and made continuous across

the yield line. This problem occurs in classical plate flexure where

not more than two bouidary conditions may be specified. Therefore, the

solutions will not necessarily satisfy both the equilibrium and yield

conditions.

In the discussion of Parkhill's paper McNeice presented. a

statically admissible generalized stress field. for the square plate

obtained. from an elastic-plastic approach using finite elements. There

was no similarity to Parkhifl's results. It was implied. by McNeice

that the field presented 'by Parkhifl seemed far from a realistic one.

Upon further consideration it does appear that Parkhill selected

fictitious boundary points along the central axis and, imposes two

boundary conditions (Mxy = o and normal slope = o). Unless the use

of these fiotitiou8 points also maintaizs the absence of vertical
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shear forces along this boundary, Parkhill's solution is incorreot.

This may explain the equality of principal generalized stresses along

the central axis. This would mean that the results are not even a

valid lower bound field for the square slab but simply an elastlo

solution to a triangular slab with certain boundary and loading conditions.

It has not been established that incorrect boundary procedures have

been followed. However, Kemp's discussion clearly indicates the

limitation of the Parkhill method.

S
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CHAPTER 2 - THE FINITE ELEMENT METHOD

2.1 Origin

The finite element method was developed in the U.S.A. in l956.

Since its beginning in the aircraft industry, the method. has become

very popular in many other fields. Principal researchers into the

36development and application of finite elements have been Clough et al

in U.S.A. and Zienkiewicz 37 ' 38 et al in the United Kingdom. Many other

authors have contributed to the popularity of the method. Almost all

available literature on the procedures and use of finite elements is

-	 reported in two texts 6 '. The latest text also refers to many of

the relevant papers presented at the Conference 39 on Matrix Methods in

Structural Mechanics held in the U.S.A.

2.2 The Philosophy of the Finite Element Method

The finite element method is essentially a generalization to three

aimensions of the classical structural analyses of skeletal structures.

The basic concept of the method is not new. The structure when

analysed. oonsist of a finite number of elements conneoted to one another

at nodal points. The structure is a mathematical assembly of physical

elements. There is no approximation required in the mathematical

procedures, only in the ohoioe and physical assembly of the elements.

This is the basic difference between the finite element and finite

difference methods. The finite difference method gives an approximate

mathematical solution to the exact continuum whereas the finite element

method gives an exact mathematical solution to an approximate continuum.

By dividing the continuum into elements of various sizes and shapes,

all material properties of the original system can be retained within

the individual elements. This capacity of the method to cope with
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arbitrary material properties is a principal attribute of the method.

Of equal importance, is the facility to del with cutouts, irregularly

shaped boundaries and any type of applied loading.

The three basic steps in any finite element analysis are the

structural idealization or subdivision into elements, the derivation

r' individual element properties and the assembly of elements into a

physical structure. Sound judgement is required in subdividing the

structure. If boundary stresses are required finer divisions should be

used arnng such boundaries. The number of different shaped elements

should be kept to a minimum. This will reduce the amount of initial

oomputation of element stiffness characteristics.

The element stiffness properties describe the nodal force -

displacement response of the element.. These properties are the governing

factors in assessing the validity of the discretization. It is this

second basic step that has been investigated the most in recent years.

The primary concern is to establish a response function that will describe

the element behaviour under various types of traction.

The final step is the assembly of the elements into a substitute

structure. This is done using the well known matrix structural methods,

satisfying equilibrium of nodal forces and. compatibility of corresponding

displacements.

Either of the two approaches to matrix analysis (force or displace-

nient approach) can be used in the finite element formulation. The

development of the force method has been traced by Argyris°. A summary

if'of both and a comparison have been made by gallagher . The displacement

approach has been selected for the present study.



2.3 Finite Elements for Plate Bending

Although the finite element method is by no means restricted to

structural problems, the remaining discussion will be confined to plate

bending analysis since this aspect of the method is of primary interest

in this thesis. An up-to-date account of the method as applied to plate

bending problems has been given by Zienkiewicz38.

The most difficult item in a bending analysis is the selection of

a function that will ensure displacement continuity between elements.

Functi,ns which fail to maintain normal slope continuity have been

labelled "non-conforming" by Zienkiewicz. The complexity of the function

will depend on the number of degrees of displacement freedom allowed at

the nodes of the element. For example, for the present study a cubic

polynomial with twelve coefficients was chosen to represent the displace-

ment response of a rectangular element with three degrees of freedom

at each of four corner nodes. This function was adopted by Zienkiewicz

4.2and Cheung and is a non-conforming type since it does not ensure that

the normal slopes to element boundaries are continuous across the

boundaries. Vertical displacement and slopes tengential to boundaries

are maintained continuous. All three displacements are continuous

at nodes and it is only at these points that internal stress fields

and other quantities are computed.

The cubic polynomial mentioned here is one of the simplest that

have been developed for plate bending problems. It has resulted in

extremely good accuracy where rectangular elements were used. Attempts6'

to reduce this function to nine coefficients for triangular elements

have not met with much success. Unfortunately, rectangular elements have
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limited use since they are not suitable for irregular boundaries.

ZienIdewicz has developed shape functions for triangular elements

by employing a method of area coordinates. He obtains better results

thai previous attempts at using triangular elements but still not as

good as the non-conforming rectangular elements. In an attempt to

produce better shape functions Bhzeley 3 et al developed conforming

functions for triangular elements by applying corrective functions to

non-conforming shaped functions and thereby maintaining continuous

normal slope. Similar techniques were also used by Clough and Tocher.

From the results presented the non-oonforming triangular element solutions

gave better accuracy especially for coarse subdivision. Corrective

functions do not seem to be the immediate answer for triangular elements

in bending.

A novel approach to triangular elements has been developed recently

by Herrmann 5. He introduces a functional that permits both vertical

displacement and generalized stress (w, Mx, My and Mxy) variation at

element nodes. These quantities become the basic unknowns at the nodes.

By allowing only first order derivatives in the functional, continuity

of vertical displacement and generalized stresses is maintained along

and across the element boundaries. The results presented show excellent

agreement with exact solutions.

The question of normal slope continuity for rectangular elements

based on a displacement function has been successfully solved by

ansteen 6. He introduces four degrees of displacement freedom

(w, Ox, Oy,Oxy) at each of the four nodes. Here the normal elope is

continuous across element boundaries and the results presented are



excellent even for a coarse subdivision. These latter two analyses

are good examples of the diversified approaches currently being

investigated.

The application of finite elements to bending problems has just

begun. With the current interest in this application it will soon be

possible to solve many complex and very interesting plate problems

that to date have defied analyais. Even though many questinna remain

to be answered in applying the method to purely elastic problems, there

is evidnce of application being made to non-linear elastio and elastic-

plastic problems.

2. li. Existing Elastic-Plastic Analyses Using Finite Elements

Available literature on elastic-plastic analyses using finite

elements is confined to plane stress problems. Argyria 7 has presented

the fundamentals involved for elastic-plastic analyses of three

dimensional media. He gives solutions to plane stress plate problems

by employing a step-by-step formulation of non-linear plastic behaviour

in a series of linear steps. He describes the procedures in a collapse

analysis by adopting either a force or displacement approach. He compares

these approaches and concludes that the force method is easier to program

by computer and. is more suitable for problems were the degree of

redundancy is much smaller than the number of structural elements. The

redundancies must be chosen with care if the solution is not to be

sensitive to round off error. He further states that the displacement

method is more suitable for structures with many redundancies and that

once the program is written, the problem can be solved by comparatively

unskilled operators.

37
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In the delta wing problem presented, the force method was used

to determine the lower bound on the ooflapse load. The displacement

method was used. to give an upper bound on the load, by establishing a

kinematically adlnissil?le velocity field (mechanism) by considering a

combination of possible mechanisms. No correct collapse load by the

upper bound approach was determined. This method of applying finite

elements to a three dimensional problem only gives a limit solution

with no information about the behaviour before collapse. (Argyria also

applii the element method in plane stress to flat plates with a central

hole. Here a complete history of inelastic behaviour was recorded.

Another example of plane stress elastic-plastic analysis has

been given by Pope . A rectangular panel with uniform edge members

is divided into triangular elements and stressed in two orthogonal

directions. The von Misea yield criterion is used. with both elastic-

perfectly plastic and elastic linear strain hardening properties.

Earlier attempts at elastic-plastic plane stress analysis have been
36reported by Clough

One of the latest applications of the method to plane stress

problems has been made by Ngo and Scordelis' 9. Here the application

is to reinforced conorete beams. The authors have developed a "linkage

element" comprising linear springs in two orthogonal directions to

simulate the bond link between concrete and the reinforong steel.

They investigate single reinforced concrete beams under two point load-

ing by imposing various crack formations of both a vertioal and diagonal

nature. Steel and concrete stresses are computed along with bond. forces

for each crack pattern selected.

This quite novel approach to solving a very complex problem is
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a further example of the importance of the finite element method.

Although only a few problems have been briefly mentioned above

to account for some of the areas in which the finite element method

has been applied to elastic-plastic problems, it is by no means a

complete resum(of those that have been tackled.

However, there does not appear to have been any attempts made

to analyse elastic-plastic plate bending problems. For this reason

the present study was begun in 1965 with the hope that suoceasful use

of the nethoc1 could be made to analyse simple plate problems.



40
CHAPTER 3 - ThEORETICAL DEVELOFMENT

3.]. general Discussion of the Method

The procedures developed for the present study are presented in

detail in this chapter. The following diScussion is confined to the

general aspects of these procedures and their method of application.

The theory of small deflections in plate bending is adopted with

all its assumptions assumed to hold throughout the elastio-plaetio

bending behaviour. The effects of membrane .straining are excluded

inordei not to complicate the investigation. Plates and slabs that

deform into developable surfaces under transverse loading are exempt

from in-plane strains of sufficient magnitude to affect basic bending

behaviour. This is particularly true for plates of so-called medium

thickness. Most concrete slabs and certain metal plate applications

are contained within this category.

Only square plates are analysed by the following procedures.

Symmetrical loading and. boundary conditions are selected to reduce the

size of the computer program required.

To represent the plate in mathematical terms, the concept of

finite elements is applied. The plate is divided into square elements

each joined at their corners to adjacent elements. For each element

a third order polynomial displacement function is used. This function

ensures continuity of vertical displacement everywhere on the boundaries

of adjacent elements. Continuity of slope at junctions or nodes is

also maintained but norma]. slopes across elennt boundaries between

any two nodes of sri element are not necessarily continuous. However,

at the nodes, equilibrium of forces arid compatibility of displacement

are maintained in the elastic portion of tha analysis. Since the elements
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are considered to be joined only at their corners, the bending and

twisting internal generalized stresses are only approximations to the

actual values.

With this displacement method of finite elements, the basic

unknowns are the nodal displacements. Through proper force-displacement

relationships the stiffness matrices for each element are derived. In

addition, the elastic bending theory provides the necessary internal

generalized stress relationships and when combined with the assumed

d.isplaoment function the internal generalized stress matrices are

established. By applying the usual procedures of structural stiffness

matrix methods, the plate continuum can be assembled once the element

stiffness matrices are known.

The effect of edge beams is included in this study. L'he procedures

outlined above apply for beam elements as well. In the inelastic

behaviour of plates with edge beams the question of yield. behaviour

at nodes where plate and beam elements join is dealt with separately

in this chapter. For the present discussion the edge beam effects

will be omitted, although certain aspects of the following also apply

to the beam elements.

Once the plate structure is assembled the resulting nodal force-

displacement xelatinnships form a set of simultaneous linear equations.

Since the nodal forces must be in equilibrium with any applied loading,

the matrix of nodal forces can be replaced by a matrix of applied loads.

Solution of these equations produces the nodal displacements for the

entire structure. From the displacements, the internal generalized

stress state is determined at each node.

Applied loading can consist of point le,ads, distributed loads,
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bending moments or any combination of these. In all cases, the loads

are monotonically increasing with no reversal possible for an elastic-.

plastic analysis. The load matrices required for the present study

are developed in Appendix I.

Wherever the principal generalized stresses satisfy the yield

criterion, plastic behaviour results. The resulting generalized 8train

rates are curvature rates. The concept of' plastic rotations is

introduced by allowing disoontinuities in slope at the nodes and. are

effectvely curvature rates over an infinitesmal length of the plate.

For each principal generalized stress that satisfies the yield

criterion, one additional nodal displacement (plastic rotation) is

introduced. Upon further increase of load these principal generalized

stresses must be maintained at the limiting generalized stress value.

This i8 accomplished by introducing the equation for the principal

generalized stress into the force-displacement relationships for the

elements at the plastic nodes. When the elements are joined to represent

the plate structure this equation enters the total set of simultaneous

linear equations. These additional equations allow for the solution

of the plastic rotations. In this way the total stiffness of the

structure is reduced as more nodes become plastic. The final collapse

of the plate occurs when no solution to the equations is possible.

Mathematically this is implied when the stiffness matrix of the plate

becomes singular.

Inorder to trace the spread of plasticity from node to node the

behaviour is assumed to be a linear function of the displacements.

This is certainly true in the elastic response but not in the plastio.

However,by adopting an incremental linear approach for the applied
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load-internal generalized stress behaviour it is possible to obtain

approximate elastic-plastic behaviour with sufficient accuracy to

warrant a linear analysis.

This linear method can be applied in different ways depending on

the accuracy desired. One approach is to apply small increments of

load in the order of .] of the estimated collapse load. Once the

increment is applied the generalized stress state is computed at all

nodes. If none of the nodes becomes plastic, further small increments

of the , same order are applied consecutively until at least one additional

node is plastic. If the yield criterion is violated at one or more

nodes, the generalized stresses (Mx, My arid Mxy) are scaled linearly

within this last increment until only one additional node is plastic.

A second approach which results in slightly less accuracy is to

apply load, sufficiently large to ensure that all nodes become plastic.

That is, a load, well above the estimated collapse load. The generalized

stresses are scaled down until only one node becomes plastic within

this increment. The same load is again applied and the scaling procedure

repeated until a further node becomes plastic and so on.

For additional accuracy in either of the two methods, an iterative

procedure can 'be adopted within each load increment. However, this

would result in much more computational time since each iteration would

require the solution of the force-displacement equations.

For the present study the first method was selected initially but

because it required more computer time than was available for any one

solution, it had to be abandoned. The second method was therefore used.

The principal generalized stresses at plastic nodes off lines of
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symmetry vary non-linearly with load and therefore the directions of

the plastic generalized strain rates do not remain constant throughout

subsequent applications of load. Since the components of the plastic

rotations are required in the directions of the coordinate axes, the

orientation of principal planes must be known throughout the analysia.

By assuming a linear variation of principal generalized stresses in

azy, one plastic load inorement (that contained, between two node8

becoming plastic) it is implied thar the directions of the plastic

generalized straii rates remain constant within this increment. These

directions are computed at the beginning and end of each plastic load

increment and if the changes in directions are within certain limits,

the same directions can be assumed for the next applied load increment.

If this change is not acceptable for one or more of these nodes and

the yield criterion is severely violated, then these directions are

recalculated for use for the next application of load. In this way,

the yield function is linearized during each applied load increment

and. is adjusted if necessary after each plastic load increment to bring

it closer to the actual non-linear variation.

Although this updating procedure can be used, it is not possible

to determine the exact degree of approximation involved without applying

an iterative procedure within applied load increments in addition to

the above corrections.

On lines of symmetry the yield function varies linearly with

displacements and the directions of the plastic generalized strain

rates are constant throughout the elastic-plastic behaviour. Therefore

the "true" inelastic behaviour is only determined, in cases where a].].

plastic nodes .are located on lines of symmetry.
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The word "true" applies here only in the sense of the mathematical

means of representing the plate continuum. In the finite element method

"true" takes on different meanings depending on the initial approximations

made in the structural idealization.

For best results the continuum should be divided into a large

number of elements. This is important in the elastic analysis but even

more so in the elastic-plastic analysis. When there are many nodal

points the resulting load increments between subsequent stages of plastic

behavi'4ur will be small and the linear approximation discussed above will

be less restrictive on the yield behaviour.

It is conceivable that arguments could develop in favour of using

elements with shapes different from those adopted in the present study.

For example when the plate is divided physically into finite elements,

it is difficult to visualize lines of plastic action (yield lines in

ooncrete slab terminolor) forming in directions other than along

element boundaries. The use of square elements would mean that collapse

mechanisms would be confined to rectangular patterns and therefore

diagonal modes would not be permissible for a realistic solution. Such

a simple physical thought is not as restrictive as one might think. It

is true that element shape has an influence on the accuracy of the

collapse load since kinematically only the nodes of the element contain

the displacement disoontinuities with th element still remaining

continuious in displacement within its boundaries. However, it would.

appear from the results of the analyses presented that the effective

reduction in the bending stiffness of an element with one or more plastic

nodes is sufficient to allow the element to function as though it had. a
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plastic zone across or along some portion of its section. This fact

is evident from the solution for a simply supported square plate oarryin

a uniformly disEributed load in which a diagonal collapse mechanism

forms. The collapse load was approximately two percent above that

determined by limit analysis.

Therefore it seems unnecessary to use elements where boundaries

are on the lines of plastic action. This is an important feature of

the present proposal since the aim is to allow the plate to develop

the colLapse mechanism without imposing any initial conditions on the

kinematics of the collapse mechanism or having to change the element

shapes before a complete solution is obtained.

3.2 Small Deflection Theory of Plate Bending

(a) Assumptions

The classical theory of small defleotions in plate bending is

based on certain assumptions as to the deformation and. straining

characteristics of the middle surface of the plate. This theory is

adopted for the present study and is assumed to be valid throughout

the elastic-plastic analysis.

The assumptions normally used. in this theory are as follows:

(1) The plate is considered. to be medium-thick. That is, it is neither

so thick in proportion to the span that vertical stresses must be

considered, nor so thin that stretching and/or shrinking of the middle

plane occurs when the plate is bent into a doubly-curved. surface.

(2) The plate has uniform thickness and is composed of material of a

homogeneous character. Consequently, the modulus of elasticjty for

horizontal stresses and the Poisson ratio for lateral contraction to
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longitudinal elongation are the only two material constants necessary

to specify the elastic properties of the plate.

(3) Vertical plane sections drawn through the plate before bending

remain plane after bending. This implies that horizontal stresses

vary linearly with depth at all cross-sections of the plate.

() Transverse bending deflections are considered small compared with

the plate thickness.

(b) Plate Bending Formulae

S
The problem rtf determining the stresses and deflections of the

plate is essentially a three dimensional problem in elasticity. By

making the assumptions stated above the problem is reduced to two

dimensions. Norris and Wilbur50 have shown that these approximations

can be justified by considering the order of magnitude of the six

independent stress components that are involved. The equations for

plate bending can be found in standard texts. The best account of

their derivation is given by Timoshenko 3. These equations are used

here with the sign convention for internal bending given in Figure 3.1.

The term" generalized stresses" is used throughout this thesis

to denote bending and twisting moments per unit length of the plate.

This terminology was selected to be consistent with that used in

discussing the yield criterion.
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S

x

y

S

Generalized. Stresses - Positive as Shown

Figure 3.1

The generalized stresses illustrated in Figure 3.1 for elastic

anisotropio plate bending are determined from the following equationar

Mx -(Dx w,xx+D 1 w,y)

My = -(Dy w,yy+D 1 w,xx)	 3.1

Mxy = 2Dxy w,xy

In equatirnis 3.1, Dx, Dy, D 1 , Dxy represent the bending stiffneasea

of the plate. If V is the Poisson ratio of lateral to longitudinal
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strain, then for an isotropic and homogeneous plate Dx = Dy = D, D 1 = vD

and D = (1 - v )D/2 where

D=	 Et3

12(1- v2)

	 3.2

E denotes the modulus of elasticity.

Although the conditions of isotropy and homogenity are assumed

for the analyses presented, the generalized stress and stiffness

matrices are derived here for anisotropic rectangular plate elements of

constant thickness. These matrices are presented in explicit form in

Appendix I.

3.3 The Finite Element Method in Elastic Plate Bending Analysis

(a) The Elastic Element Stiffness Matrix

The philosophy of the finite element method has been summarized

in Chapter 2. In the present study the displacement approach is used

in deriving the element force-displacement characteristics. Clough6

has outlined the basic steps in determining the element stiffness properties

Similar steps were adopted here in deriving the stiffness matrix for a

rectangular element. These procedures are explained for a two dimensional

element in bending.

(1) Select a displacement function that satisfies compatibility of

displacement within the boundaries of the element and also maintains

the best possible displacement compatibility along the boundary between

adjacent elements.

This function takes a form dictated by the number of degrees of

displacement freedom selected at the nodes of the element. If the node
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displacements are given by the matrix

Wj

ui = Oxi	 3.3

9Yj

for node i, then the matrix of element displacements for an elewent

with nodes i,j,k and 1 is given by

Ui

U.
J

Uk

S
	 U,

A typical rectangular plate element is shown in Figure 3.2.

sign convention for nodal displacennts and external nodal forces is

a "right-handed screw rule" convention.

V (w )

()
mx(9x

/	 V(w)
j

__________________ ,,'mYj(QYj)my1 (9y1)

z

Typical Rectangular Plate Element
with Positive Nodal Forces and. Corresponding Displacements

Figure 3.2
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(2) Corresponding to the nodal displacements of equations 3.3

and. 3.4, there exist nodal forces (one vertical force and two momenta).

These forces are a fictitious concept and in sOme way represent the

shear forces, bending and. twisting momenta per unit length distributed

along the element boundaries. For node i these forces are

vi

= 
mx

my1

Fof' the element there are twelve forces given by

F1

Fi	
3.6

F1

(3) The displacement ftnction selected. for the rectangular element

is a cubic polynomial in x and y. This function is given by

2	 2	 3	 2	 2	 3	 3	 3w = a1^a2x+a3y+a4x +a5xy+a6y +LL.,X +a8x y+a9xy +a1 0y +81 1 X y+a1 2xy	 3.7

In accordance with th sign convention for nodal displaoeinenta illustrated

'in Figure 3.2, the displacement at node i (and all other nodes) becomes

1w
u = Qx 

= 
w,y 

= J u(x,y) Ii I al	 3.8

I
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Similarly if all the element nodal displacements are written in terms

of w and. its first derivatives, these can be written in matrix form aa

U = Ca
	

3.9

In equations 3.9 the matrix a contains the coefficients of equation

3.7. The matrix C contains all the (x,y) functions as in equations

3.8. The variables x and. y are given values to describe the node

position relative to the element coordinate axes.
S

(4W ) Next, the internal generalized stress relationships are derived.

These relationships depend upon the element nodal displacements such

that all internal generalized stresses can be determined at each node

in the plate, once the displacements are known.

The bending and twisting curvatures are formulated. once the

displacement f.unction of equation 3.7 is chosen since these curvatures

are simply

-w , oc

k= -w,yy =Ba
	

3.10

w ,

The generalized stresses for anisotropic plate bending are given by

Mx	 DxD1 o

My = p1Dy 0	 -w,yy
	

3.1].

Mxy	 0 0 2Dxy	 w,
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In general matrix terms equations 3.11 can be stated. as

M = Dk
	

3.12

Since k = Ba from equations 3.10 and a= Cu from equations 3.9,

equations 3.1.2 can be established in terms of the element nodal

displacements. That is, the generalized stresses become

M = DBC 1 u
	 3.13

(5) The next step is to determine the nodal force-displacement response

of the element when subjected to external loading. These relationships

contain the stiffness matrix of the element. One approach leading to

the formation of this stiffness matrix is the use of the principle of

virtual work. If the nodal forces are moved through a set of virtual

displacements, the resulting external work done must be equal to the

internal work given by the product of the generalized stresses and their

corresponding curvatures. If virtual displacements of unit'magnitudea

are imposed at the element nodes in the directions of the external

nodal forces, the external work will have the same value as the nodal

forces. If the unit virtual displacements are given by Ou = I (the

identity matrix) and are imposed in turn at each of the element nodes,

then the external work done is

We=buP=IP=F	 3.14.

If the resulting internal curvatures are § k, then the internal

work becomes

Wi = ,k)T}(dxdy	 3.15
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SinceSk = BC 5 u = BC 1 I = BC 1 and substituting equations

3.13 into 3.15, the internal work becomes

Wi =	 _I)TIU3	 3.16

equating the internal and external work the nodal forces become

•	 = [(C_I )T,TDBdYc_I] u	 3.17

The elastic element stiffness matrix is therefore

K = (c 1 )TJ TDBaxaYc_1 	 3.18

(6) After each element in the structure is considered and its stiffnesa

matrix derived relative to the element coordinate axes, the assembly

of these elements into the final structure is asimple procedure. If

the coordinate axes of the element are not directed along those of the

global system, the element force-displacement relationships must be

transformed into the directions of the global system coordinates. Once

all transformations are performed, equilibrium of nodal forces and

compatibility of nodal displacements can be achieved. For the particular

steps necessary in this general formulation, the reader is referred to

Livesley51. No transformations were necessary in the present study

since the global axes system coincided with those of all the elements

in the plate.

The matrices involved in the above steps are presented in explicit

form in Appendix I for a single rectangular element of aniaotropio

composition.
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(b) The Square Plate Idealization

For the present study only square plates are analysed. These are

divided into square finite elements as illustrated in Figure 3.3. The

12 x 12 mesh shown was selected on the basis of the accuracy obtained

from elastic solutions based on thi8 subdivision.

S	 L
--

L - - - - - - - - - -

- --	 -

- -- 1Q &Z_ -- - -

- _i iiJ i2iL_ - -

2L2QI21& i21

Z2522122__ -

Subdivision of Square Plate into Finite Elements

Figure 3.3
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All loading and boundary conditions are symmetrical about the

x and y axes and the diagonals of the plate. Therefore only one eighth

of the plate had. to be analysed.

The numbering of the nodes is also shown in Figure 3.3. It is

worth noting that although the numbering of nodes is completely arbitrary,

there is a definite advantage in numbering them such that the difference

between any two adjacent node numbers is kept to a minimum. This will

ensure that the band width of stiffness coefficients in the total

strucMral stiffness matrix is kept ot a minimum. A narrow band width

increases the accuracy of solution and also reduces the amount of computer

storage required. for the coefficients in an elastic analysis.

(c) Discontinuities in Generalized Stresses

At a node common to two or more elements the generalized. stresses

should be identical for each element. That is, in reality there is only

one stress condition at any one point in the plate provided, no discont-

inuity in plate flexural stiffness occurs at that point. However, for

rectangular elements of the type described. above for which the stiffness

matrices are derived by the displacement function of equation 3.7,

slight discontinuities in the generalized stresses occur across element

boundaries. This discrepancy exists because the displacement function

selected does not maintain continuity of curvatures at nodes. For

evidenc of these discontinuities or steps in the generalized stresses,

the reader is referred. to Zienkiewicz.

For the present analyses the generalized. stresses Mx, My and Mxy

were each averaged at.00mmon nodes such that for elements of the same

bending properties, there was only one set of principal generalized.

stresses..
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(d) The Variation of Principal Generalized Stresses within one Element

The variation of internal generalized stresses within the boundaries

of an element can be determined from the second derivatives of the displace

ment function. From equations 3.11 these generalized stresses can be

written as

Mx 
= -1° 

0.0 2 0 2, 6x 2y 2ix 6y 6xy 6Yxy 1 Ia I
= ..J0 00 2)1 02 6))x 2\jy 2x 6y 6yxy 6xYIfa 

1	 3.19

0 0 0 (1-),) 0 0 2(l-)I)x 2(l .-t)y 0 3(l-)J)x2 3(_y)y2J lal

In equations 3.19 the generalized stresses Mx and My vary linearly

and Mxy parabolically within or along the element boundaries. With

these distributions it is possible for the principal generalized stresses

which are given by

M1'2 l/2+MY^MxMY)2+4y2]	 3.20

to have a maximum value within the element boundaries. This is an

important consideration for an elastic-plastic analysis simce the yield

criterion could be violated at points away from the nodes.

The necessary condition for a stationary value of principal

generalized stresses at a point (x,y) is that

t
H, x=o 3.21

and
t
H, y=o

simultaneously. For this stationary value to be a maximum
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(Mt ) (Mt yy)	 (Nt)2	 3.23

with

Ntxx 1
}(t	

_	

0	 3.24

The position (x,y) for a possible maximum depends on the coefficients

a in equations 3.19 which in turn depend on nodal values of displace-

ments. Once these coefficients are known, the distributions of generalized

stresses within the element (equations 3.19)are specified. The next step

is to satisfy equations 3.21 and 3.22 and determine (tsing conditions

3.23 and 3.24) if a maximum exists.

However, because of the form of equations 3.20 it is not possible to

establish algebraically the coordinates (x,y). Consequently, a numerical

approach is required.

For the present study a number of spot checks were made within

elements to assess the violation of the yield criterion. These are

presented and discussed in Addendum I. In general, it can be said that

for the analyses presented herein, the selection of nodal principal

generalized stresses as maxima is justified.

3,4 Yield Criteria for Metals and Reinforced Concrete

(a) General

A fundamental requirement for an elastic-plastic bending analysis

is the selection of a yield criterion for the plate material. In the
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present study both metal plates and reinforced concrete slabs are

considered. Consequently separate yield criteria for these materials

should be used. However, by limiting the analyses to plates arid slabs

with similar limiting stress states, it was possible to adopt one yield

criterion that satisfies closely, the yield properties of both materials.

The terminolor appearing in this section is consistent for the

most part with that used in the theories of plasticity and. limit analysis.

• The terms generalized stress (bending, twisting and. principal) and

genera]'ized. straiz rates (curvature rates) are used to indicate that

the variables specifying the states of stress and strain need not have

the dimensions of stress or strain. The concept of plastic rotations is

adopted to represent slope discontinuity after yielding of the plate

material occurs, These rotations are curvatures over an infinitesmal

length of the plate.

The term "plastic flow line" is here introduced to describe an

imaginary line of infinitesma]. length across which the plastic generalized.

strain rate occurs. For reinforced concrete slabs the8e lines when

joined correspond to yield lines.

(b) Yield Criterion for Metals

The two well known yield. criteria for ductile metals are illustrated

in Figure 3.4.
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Possible Strain Ratea
(Tres ca)

Poasible Strain Rates
(Treaca)	 -

von Misea	 ' —Treaoa

S______

Strain Rate
(von Mises)

Yield. Criteria for Ductile Metals

in M1 ' 2 Generalized Stress Spaoe

Figure 3.4.

The directions of the generalized. strain rates are indicated.

These directions are established by the theory of the plastic potential

due to von Mises in 1928. In 1953 Koiter52 generalized this theorem

and removed the restriction of the yield locus having to be a continuous

piecewise d.iff.erentiable function. This generalization enabled the

plastic potential to be applied to the Tresca criterion and. therefore

established the flow rule. This flow rule states that except at the

corners of the yield, locus, the generalized. strain rates are directed

along the outward normal to the yield. locus. At corners generalized

strain rates are permissible in any direction between those that are

perpendicular to the yield locus.
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The limiting generalized stress condition for the Tresoa criterion

can be specified by several yield functions in the sense of Koiter.

That is

= 0	 3.25

In equation 3.25, the state of goneralized stress is below the

yield limit if all these yield functions have negative values. For a

state of stress at the yield limit, at least one of these functions

must vtnish while none has a positive value.

The von Miaes yield criterion in two dimensional plane space forms

an ellipse. For any one combination of the principal generalized stresses

that satisfy this criterion, there is only one state of generalized

strain rates that can be determined by the theory of the plastic-potential.

The yie]4 function for the von Mises criter.on in bending is

= 0	 326

For a complete discussion of the theory of the plastio potential

and the yield criteria for metals, the reader is referred to HiU.

Hill also describes anisotropic criteria for metals.

(o) The Yield Criteria for Reinforced Concrete

Since any yield criterion is simply a hypothesis concerning the

limit of elastic behaviour of a material subjected to certain combinations

of stresses, its validity must be established by experimentation. For

metals the criteria mentioned above have been investigated experimentafly

with most evidence supporting their basic oonoepts. For plain and

reinforced concrete no yield. criteria have been so firmly established.

I
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as for the case of metals. Recent research into the yield criteria

for isotropic and orthotropic reinforced concrete 8labs has developed

as a result of the increased acceptance in design practice of the yield

line theory of analysis for reinforced concrete slabs pioneered by

Johansen7. British researchers have produced the most note worthy

works on many aspects of the limit analysis and design of reinforced

concrete slabs. The principal stimulus has been the work of Woodat

the Building Research Station.

Mist exponen'ts of yield line theory have assumed that the yield.

of a Johansen slab is governed by a square form of yield criterion.

This, of course, is a false assumption when one considers the criterion

stated by Johansen.

For an orthotropically reinforced concrete slab in which the

ultimate bending resistances are M and M in the x and y directions

respectively, the Johansen criterion is

2	 2
Mn = M(cosine 0 + p. sine %

	

Mt = M(sine2Ø +p.cosine2O) 	 3.27

Mnt = M(1—p.)sineØcosine%

The generalized stresses are shown in Figure 3.5.

.
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/	 p.M

1/1/________	 Line

n

Normal, Tangential and. Twisting
Generalized. Stresses on Yield. Lines

Figure 3.5

This yield. criterion implies that the x and y directions are

principal and. the twisting generalized stress Mxy is zero. For the

isotropic case with = I equations 3.27 reduce to

Mn = X

Mt = U
	

3.28

Unt = 0

If a top 1ayer of reinforcing steel exists with an ultimate
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bending resistance m then the yield criterion for negative bending

is	 Mn=-m

Mt = -m
	

3.29

Mnt = 0

Equations 3.28 and 3.29 represent two points on the yield locus for

the criterion of equations 3.27 when = I • Furthermore, these are

the only points that exist for the isotropio case since M = Mt for

positile or negative bending an therefore it is impossible to have

a positive-negative bending combination. Consequently the 1Tohansen

criterion is far from a square criterion. Only the +,+ or -,- corners

of the souare criterion for the isotropic case are coincident with

the Johansen criterion. The square criterion is illustrated in

principal generalized stress plane space in Figure 3.6 of the next

sectiqn.

When the static theorem of limit analysis was applied to a J'ohansen

slab it was found that inorder to satisfy the equilibrium equation

Mn,nn.*Mt,tt-2Mnt,nt = -q/D	 3.30

at all points along a yield line, the tangential generalized stress

Mt must be made to vary. This variation removes the restriction of

not being able to represent a positive-negative generalized stress

state and consequently a square criterion can be assumed. This is

tantamount to rejecting the Mt condition of Johansen original yield

criterion (equations 3.27). Therefore the square yield criterion was

never really implied by Johansen although it has been assumed by mary
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as a result of applying the lower bound. techniques of limit analysis

to Johansen slabs.

A different yield criterion from that of equations 3.27 for

orthotropically reinforced slabs has been established in the principal

generalized stress space by Kemp5 '. He establishes the flow rule

associated with this criterion and shows that it is consistent with the

predictions of the plastic potential theory. More recently Save55 has

presented the same criterion in generalized stress space. Kemp's

criterin reduces •to the square yield criterion for isotropic slabs.

Experimental evidence on the yield criterion for isotropioally

reinforced slabs has recently been published. by Morley 6 in :England

and by Lenschow and Sozen57 in the United States. Morley used. rhomboid.

slabs loaded at the corners to investigate principal generalized stresses

of opposite sign. The results support the idea of a square yield

criterion for isotropic reinforcement. Lenschow and Sozen performed

tests on two different types of slab configuration loaded. by flexible

cables to reduce the effects of possible membrane action. They 'applied

separately, uniaxial and twisting external bending moments to rectangular

slab elements and equal biaxial bending moments to regular hexagonal

shaped slabs. This latter slab shape aflows bending moments to be

applied in three different directions at sixty degrees to each other.

These experimental results for isotropically reinforced slabs also

support the square yield criterion form in principal generalized stress

plane space.

The square yield criterion is accepted by many at present as a

good approximation for isotrnpically reinforced slabs.
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(d) The Yield. Criterion Adopted for the Present Analyses

The criterion adopted for the present study is the "square criterion"

.12
in principal generalized stress plane space of M , M • This criterion

is illustrated. in Figure 3.6 and is identical to that presently employed

for reinforced concrete. It is also identical to the Tresca criterion

when the principal generalized stresses have the same sign. It was

assumed that by selecting certain metal plate bending problems, internal

generalized. stress states producing principal generalized stresses of

opposite sign wouLd occur at only a few locations in the plate (near

corners for the plates analysed herein) and. that yielding at these points

would not occur until much of the plate away from these locations had.

become plastic. 	 1

q

y

Te2Square Yield Criterion
ifl Mq' Creneralized. Stress Space

Figure 3.6	
_,tx
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In discussing this criterion and its associated flow rule, it is

supposed that the generalized stress state is determined at some point

in the plate. In the context of the finite element method, let thia

point coincide with some node q at the corner of an element. The x

and y axes shown represent the orientation of the global coordinate

axes of the plate in a Cartesian reference system. If the generalized

stresses in bending dre Mx, My and. Mxy given by equations 3.], then the

principal generalized stresses determined from a Mohr generalized. stress

circle,ate simply

= [+Y± 
/()242J	

3.3].

In addition, the directions of these principal values can be specified.

by the angle 
0q	

of which the

TanBent(2%q ) = 2Mxy/(My..Mx)	 3.32

The yield requirement for this criterion is that whenever a

principal generalized stress attains the limiting value of M, plastic

straining takes place. The flow rule associated with this generalized

stress state is such that the plastic strains occur in the direction

of the responsible principal generalized stress. The resulting

generalized strain rates for bending are curvature rates and. are

idealized in the present study by employing the concept of plastic

rotations. Since these rotations have both magnitude and direction,

they can be represented as vectors, the directions of which are

A
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perpendicular to the actual plastic strains (adopting a right-handed.

screw rule). , These rotations concentrated at nodes of' an element are

considered to produoe "plastic flow lines" directed at right angles

to that of the responsible principal generalized stresses. The directions

of these flow lines are given by the angles 	 and.	 measured. clock-

wise positive from the x axis in Figure 3.6. These angles and the

ld.neniatics of displacement behaviour at plastic nodes are discussed.

in the following section of this chapter.

The flow rulø described above satisfies the requirements of the

plastic potential theory since if the yield function is given by

f(Mx,My,Mxy) = Mx+My+/(Mx-My) 2+l4Mxy2 -2M = 0	 3.33

and. the generalized strain rates by

4=pf,x	 ypf,y 10cy=pf,xy	 3.34

then the directions of the principal generalized. strain rates measured

clockwise positive from the x axis should. be

Tangent(2Øq) = 2kxY/(1Sr-kx)	 3.35

Partial differentiation of the yield. function required by equations

3.31. ( p is ah arbitrary positive constant) produces

Tangerit(2Ø)= 2Miy/(My-Mx)	 3.36
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which is identical to the flow condition initially assumed by equation

3.32.

However, this flow rule cannot be strictly enforced using the

finite element method. presented here. The problem of imposing plastic

rotations in plate elements is discussed in section 3.5b where it is

shown that only an approximation to this flow rule can be made.

(e) Linear Approximations to the Yield. Function

Th? non-linear form of equations 3.31 presents certain difficulties

for use in an elastic-plastic bending analysis using matrix algebra.

These difficulties develop at plastic nodes off lines of symmetry where

the generalized stresses Mx and My are not equal and Mxy is non-zero.

At these nodes the yield function cannot be written in matrix terms

unless it is restated in an approximate linear form.

Therefore at a plastic node where the non-linear form of equations

3.31 governs, it is necessary to maintain the limiting value I by using

and approximate yield function throughout the remainder of the analysis.

This can be done by assuming that the angle 0 in Figure 3.6 remains

constant during each plastic load increment. The plastic load increment

is the increment of applied. load between ary one node becoming plastic

and the next. Thus the angle assumed. for any one plastic load increment

has the value obtained at the end of the previous plastic load, increment.

This approximation will have little effect on the accuracy of the solution

if the change n this angle is small when determined at the beginning

and end of the increment.

29	 30
Massonnet and. Cornelia adopted an approximation to equations
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3.31 in the form

= [Mx+MY±(Mx_MY) seoant ( 2øq )]	 3.37

The same approximate equation was independently chosen initially

for the present finite element approach previous to the publication

of these papers. However, it was abandoned in favour of a more aoourate

equation in the form

= {Mx+My±[ivrx_My)oosine(2Øq)_xY sine ( 20q)]}	 3.38

The Mohrs circles of Figures 3.7 arid. 3.8 illustrate geometrically

the differences between the approximate equations 3.37 arid. 3.38 and. the

actual equation 3.31.

M

+	 MX+M
KA	 I	 2"7

7igure 3.7
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Figure 3.8

The angle	 and the assumed generalized stresses in Figure 3.8

have the same values as those in Figure 3.7. The change in 0q
shown as	 and represents the change in orientation of the

principal planes as the load is increased from the beginning of a plastio

load, increment to the end of this increment.

It is clear geometrically that the approximation made using equation

3.38 by assuming	 is constant during the plastic increment is far

superior to that of equations 3.37.

To illustrate the differences between these equations when various

angles %q are assumed constant, the ratio of actual to approximate

radii (R°/R) is plotted against changes 	 of Up to 10 degrees



72

in Figure 3.9. From Figure 3.7 the radii ratio is

R° = O8iflO(2øq+21øqj	 3.39
R	 oosine(20q)

and from Figure 3.8 this ratio is simply

= cosine(2,Ø )	 3.40
R	 q

Of the two ratios in equations 3.39 and. 3.4. 0 the first i.e a function

of both 
0q 

and its change AØ whereas the latter is only a function

of iøq . In Figure 3.9 for the case of 0q = 0 degrees, the radii

ratios are identical for either of the approximate equations. However,

for any other angle 
0q 

and an accompanying change 0q , the superiority

of equations 3.38 becomes quite evident. In equations 3.38 the approx-

imation to the radius of the circle is the same for any	 løq regard..b

less of the orientation (øq ) of the principal directions. On the

other hand equations 3.37 can give as much as ioc% error as
nfl

approaches 4.5 with the change 0q 
only a fraction of a degree.

The error introduced by using R° rather than R is not, however, the

error in the principal generalized. stresses. The error in the prinoipal

generalized. stresses (and therefore violation of the yield criterion)

can only be assessed if the center of the circle, and. R° and R are known.

If Mx = -My then the error implied by the radii ratio is also the error

in the principal generalized. stresses.

The importance of employing equations 3.38 as an approximation

to equations 3.31 for elastic-plastic analysis is that the angle.Øq

need. not be changed for a plastic node after each plastic load increment.
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Indeed from Figure 3.9 it is evident that even a change of A	 = 10

degrees gives at the most	 error in principal generalized stresses

(in the extreme case of Mx = -My).

Equations 3.38 have been used. in producing the solutions presented

in this thesis. From the results it appears to be an excellent approx-

imation to the actual principal generalized atrçsses.

3.5 The Elestic-Plastic Bending Behaviour of Rectangular Elements

(a) General
S

The elastic stiffness matrix for the rectangular element (the basic

steps apply to any element) was derived in section 3.3a. For an elastic-

-	 plastic analysis the resulting stiffness matrix becomes an extension of

the elastic matrix with additional coefficients describing the internal

generalized stress state at the plastic nodes of the element. Its final

form i dictated by the way in which the node displacements are allowed

to become discontinuous (that is, how the flow rule is applied). In

the present proposal, slope discontinuities at nodes occur whenever

plastic rotations are introduced. The components of the plastic rotation

are determined once the rotation and its orientation to the coordinate

axes are known.

(b) The Approximate Nature of Plastic Flow in Finite Elements

In general the finite element idealization of the plate results in

a substitute structure that deforms in acoordance with the kinematics

allowed by the nodal displacements. At a plastic node common to four

rectangular elements the idealized plastic behaviour between elements is

only an approximation to the actual plastio flow. It is impossible to

introduce a single plastic rotation that enforces the elements to deform
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physically in the correct manner. This follows from the fact that when

yield. occurs in the real plate discontinuous slopes form in the direction

of the plastic strains but in the substitute pLate, the only nodal slope

discontinuitiea (plastic rotations) that can be dealt with are those

normal to the element boundaries.

With the displacement function adopted in this study, the plastic

rotation must be divided vectorally into two orthogonal components, each

of which is introduced between adjacent elements and. directed along their

boundaries. In Figure 3.10 this idealized plastic flow is shown.

isTtYirnPoSed

H'
-	

+crj.	

- - ---1k
Discontinuity
that should —"
osour

d)Positive endin.g
Finite Element Idealized Plastic Plow

Figure 3.10
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Plastic behaviour at a typical node is illustrated in Figure 3.lOa

and. b. Positive plastic rotations result from positive bending. For

negative bending the directi'n of the plastic rotation is simply reversed.

Figures 3.lOc and d are displacement patterns for elements with plastic

rotations of Figures 3.lOa and b respectively.

The discontinuity that should occur cannot since the slopes

perpendicular to a are not determined at the node. To approximate the

true behaviour, the components of the plastic rotation are determined.

in the directions of the element boundaries and these result in a double

fold between elements. If the angle	 is measured clockwise positive

from the x axis then

ax = aoosine
3.41

and	 .	 cLy=asinet

for positive or negative bending in Figures 3.lOa and b.

From Figures 3.lOc and d it is evident that two situations develop

for specifying how the displacements are donated to each element. The

elastic—plastic stiffness matrix for any one element in Figure 3.100

will have a different form from that for the same element in Figure 3.lOd.

However, the components of plastic rotations for either displacement

pattern are determined from equations 3.4-]..

It is preferableto have only one displacement pattern for any

plastic rotation that might occur. This will reduce the complexity of

the computer program required. The configuration of Figure 3.l0d is selected.

for the present study. To make Figure 3.lOc consistent with,this choice,
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equations 3.41 are restated as

ax = -a loosine I
3.4.2

and	 ay=c4sine

Equations 3.4.2 simply maintain a negative ax and a positive ay
for positive bending and vice versa for negative bending.

Because the components of plastic rotations are imposed. between

elements in two orthogonal directions, the flow rule associated with

the squ'are yield. o .riterion is not in general satisfied at a plastic node.

If the direction of the plastic rotation vector is along an element

boundary then the flow rule is properly satisfied. since the correct

discontinuity is allowed.

(c) Node Displacements Including Finite Rotations

Figure 3.11 illustrates the node displacements at a plastic node j.

Only the boundaries of two elements along the x axis are shown. The

y axis is directed. out of the plane of the page. Vector directions for

displacements are positive if along the positive axes directions. All

the slopes shown are negative. The vertical displacements and. the

component ay of the plastic rotation are positive. The superscript

o denotes displacements at the node before the principal generalized.

stress state of node j satisfies the yield conditions.
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Unloaded Plate
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w	 0
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m

1
No Plasticity

I	 . Plasticity at j only

Node Displacements - Slopes and. Rotation Components About y Axis

Figure 3.11

From Figure 3.1]. the slope

/
= OY4C1Yj	 3.43

A similar situation occurs along the x axis if the vector direction of

the plastic rotation	 is other than along the y axis. That is,

there would be components of the plastic rotation directed along both

the x and y axes. If the generalized stress condition at node j is

such that both principal generalized stresses 	 and	 satisfy the

yield criterion at different load. stages, there would be components in

the x and y axes due to both plastic rotations.

1
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quation 3.43 implies that the component aYj is donated to

element jm. Consequently, the stiffness matrix of this element will

contain coefficients that relate the external nodal forces (v s , mxj arid

mYj ) and the internal responsible principal generalized stress at j to

this component. Similar relationships will exist for the same quantities

with respect to the component cLx when the elements are viewed along

the y axis bearing in mind that equations 3.42 determine the plastic

rotation components.

If, this method of introducing the components of the plastic rotations

is applied at all four corners of a rectangular element, it would result

in each node having the displacements shown in Figure 3.12.

Node Displacements for Rectangular Element. 	 -
Al]. Nodes Plastic

Figure 3.12

Only nodes 1, j and 1 have components of the plastic rotations

within these nodal displacements. 	 ax etc. represent the summation

1	 2
of components due to all principal generalized stresses 	 and	 etc.

satisfying the yield criterion. This represents the most general ose

of node plasticity for a rectangular element.
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(d) Plastic Behaviour at a Common Node for Four Rectangular Elements

The method of introducing plastic rotations and. resolving them

into coordinate components as described above will now be applied to

a typical node i. It is assumed that both principal generalized stresses

and	 have independently satisfied. the yield criterion at two

different plastic load stages. A section taken from the plan view of

these elements is shown in Figure 3.13.

Wi

Ox	 Ox
axl _________________	 1

diL/4 ei!)c

/Direction of Direction of

Vector Directions of Plastic 	 Resulting Node
Rotations and. Directions of	 Displacements

Prinoipal Generalized Stresses

(a)	 (b)

Typical Plaa tic Node Behaviour

Figure 3.13
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Once the plastic rotations form, the four elements become

discontinuou8 in slope in both the x and. y directions since components

of' these rotations act about both axes. Each plastio rotation that

forms constitutes one additional independent displacement. For the

case of node I the unknown displacements are five in number. That is,

one vertical deflection, two slopes and two independent rotations. A

column matrix of these displacements for node I is
WI

Ox1

S	 •	 0y1
I

c1	 3.44

ct

The superscripts on the rotations denote which of the principal generalized

stresses was responsible for its formation.

In Figure 3.13 the angle øj	 has been described. previously (see

equation 3.32). The angles	 and	 have also been described

previously (see Figure 3.6) and. are given by

= (t-2> +ø	 3.4.5

in which t = I or 2 for	 or	 respectively. Therefore the

components of the plastic rotations (recalling equations 3.4.2) in Figure

3.33 are simply

Zax1 =
3.46

= aJsineij+aIsineI
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Now that the displacements have been de8cribed, the elastic-

plastic stiffness matrix for the rectangular element of Figure 3.12

can be established.

(e) The Elastic-Plastic Stiffness Matrix

-	 Whatever the form of the stiffness matrix is, its coefficients

must relate the nodal forces to the corresponding nodal displacements.

If any of the element nodes are plastic, additional nodal displacements

(plastic rotations) must be determined. Therefore additional equations
S

must be available to solve for these. These equations are simply

principal generalized 8tress equations that satisfy the yield conditions.

In the general case for a node p where the principal generalized stresses

and. M2 attain the limiting yield value, the rotations a1 and a2

can be expressed in a column matrix

I	 I
R	 ap - p

2	 2
R	 ap	 p

or in a general form as

S	 S

p	p

The other three independent, displacements are simply
wp

-	 = Ox	 3.49
Gyp

If the same procedure is applied to four nodes numbered 1,2,3 and

4. of a rectangular element then the displacements for the element can be

assembled into one single column matrix

3.47
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R

R

=

R2

The oini.ssionof independent rotatio

3.50

ne at node 3 follows from

Figure 3.12 if i = 1, j = 2, k = 3 and 1 = for the present example.

The introduction of the subscript n implies that n and p can have different

node number values.

The external nodal forces corresponding to the displacements D for

the element node n are simply

V
n

F =mx
n	 n

my

If the subscript m is introduced. such that it has the same range

of values as n in equations 3.50, the nodal forces for the eiement are

F1

F

m 73

F'

All of the internal principal generalized stresses at the nodes

have attained the limiting value U. They can therefore be established

in matrix form to read

3.51
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ons 3.54. are related to the

elastic—plastic stiffness

F1

F3

F'

I
M1

iati

by

M

:exl
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Mt =
q

The complete force vector

Ii

M

M

M

;ernal n

3.53

oda]. foroes and internal

principal generalized. tresea) can be written by combining equations

3.52 and. 353 in the form

I

F

1ML

The subinatrices F and. Mt in eqi

D and. matrices of equations 3.50

coefficients.

To determine these coefficients the following are required for the

element:

(i) The elastic stiffness coefficients determined from equations 3.18.

(2) The principal generalized stress equations 3.31 establisbed in

matrix form through knowledge of equations .l3.

(3) The angles	 determined. from equations 3.45.

To simplify the disoussion of the formation of the stiffness

coefficients only the forces at node I will be considered. The forces
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at node i (i = i) in Figure 3.12 are given by the equations

'TI

9x1+ çx1

Oyl + ZaY1

V!2

9x.+ Eax

F1 = 1K11 X1 2,K13,K1°Y2

1w3

0y3

S

JOy+ZyJ

The submatrices K are 3 x 3 in size for the rectangular element since

there are three degrees of displacement freedom corresponding to F 1 . If the

components of rotation ax1 etc. are replaced by the relationships of equation

346 and separated from the slopes, equations 3.55 can be written as
WI

Ox1

gyl

W2

Ox2

F1 =	
I	 OY

Ox

22
1 +a1 C1

11 22

1c1 
22

q2 22 2
11 22
aS+aS

3.55
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The matrices K11 etc. are 3 x I in size and. are simply columns

of coefficients repeated from the matrices K etc. For example K11

is the second column of the matrix K11 . This column of coefficients

multiplies the displacements Ox1 and aC+ CLC. The Roman numeral denotes

which of the columns (2nd. or 3rd)is repeated. 	 and	 etc. represent

(- Joosine	 ) and. ( Jsinecfl I ) respectively where the subscripts denote
node numbers and the superscripts, the principal generalized stresses.

Once again equations 3.56 can be rearranged by multiplying the

sines and cosines of the angles 	 by the stiffness coefficients.

Restatiig equations 3.56 in this manner the forces become

I

2

3

I-'

1	 1111	 112 11121
=

	

	 S1,K11 C1+K11 3i'1a2

1111 1112III
K12 C2 ,K1 'C,K1	S,K1	 s J1a

Li

To simplify these equations a summation convention can be used to

advantage and. allows the following generalization of the external nodal

force-displacement equations.	

3.58F=IK	
K

in	 mn	 mp

jR

The summation convention applied here is the same as that explained

by Hill53 except here it applies independently to both subaoiipts and.

superscripts. For the rectangular element the subscripts and superscripts

3.57
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have the following values:

m} 1,2,3,	 PJ. 1,2,3
	

1,2

The use of superscript t is shown in equations 3.51.

The next requirement is to establish, in matrix form, the internal

principal generalized stress conditions that satisfy the yield criterion.

By substituting the generalized stress equations 3.13 into equations

3.31 tle principal generalized stresses can be written in matrix form

as

I
I	 I	 I	 f	 III 1 1111 I III 2 1111 2

K11 ,K12 ,K131K1 ,K11 C 1 +K11 31 ,K11 C 1 +K11 SI,

1111 1112 11111 1III2
=	 Ic12 C2 ,K12 C 2 ,K1	S,K1

2 .2 2 2 211 1 2111 I 211 2 2111 2 IK11 ,IL12 ,K13,K1 ,K11 C 1 +K11 S11K11 C1+K11

211 1 211,.2 K21fbI K2111S2K12 C2,K12 "2'-41,.- 4. ' 4-1-i

Di

D2

D3

3.59

c
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These equations can also be stated generally by using the summation

convention. That is

Mt = I Kt	 Kt5 'D 
I	 3.60q	 jqn	 qjIni

I	 a I.

JR	 I

I 
P1

S

Equations 3.58 and 3.60 can now be combined to form the required

elastic-plastic nodal force-displacement relationships.

JF I	 'K	 KI'D	 Iimi	 I mn	 mpIJn	
3.61

I Mt I - I K	 Kt8 I I R5 I
I	 J qn	 'II	 I

• The coefficients Km and. K are determined systematically from

the following equations. The Ironecker Delta 61 has its usual

meaning

o =Oifipand 6 =lifi=pip	 ip

S
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The coefficients are

us lila	 II

	

K = 6 (K C +K	 sj + o i c8 ) i	 (K HISS)
mp	 Ip ml I m	 2p m2 2	 4.p in4. 4.	

3.62

and

til S till aKt8 =	 (K C 4 +K A	 + a 

(1tII8) + a
	 3.63

qp	 Ip qi	 qu	 2	 q2 2	 i.j, q4.	 4.

The sumniatinn convention which allowa the generalization of the

force-displacement equations (equations 3.61, 3.62 and 3.63) can be

employed in deriving the stiffness relationships by computer.

3.6 The Total Structural Stiffness Matrix

Livesley has outlined the procedures to follow in formulating

the total structural stiffness matrix once the individual element

stiffnesses have been established. To satisfy both equilibrium and

compatibility for an elastic solution, the structural stiffness matrix

-	 can be assembled at the outset and need not be altered during the analysis.

However, for an elastic-plastic solution this is no longer true. As the

structure develops more plasticity, its total stiffness matrix must be

altered in such a way that the stiffness of the structure is progressively

reduced.

For elastic-plastic analyses of skeletal structures the reduction

of stiffness can be achieved by two different methods. One method

results in a decrease in the total number of stiffness equations by

eliminating the displacement corresponding to the force which satisfies

the yield condition. For members such as beams and columns the external

nodal forces such as mx or ny are the same quantities as the internal

nodal bending moments. Therefore when the internal bending moment



attains the limiting yield value the external nodal force (ay mx)

also has this value. Consequently the corresponding displacement

(slope Ox) at that node can be eliminated from all the stiffness

equations since mx is known. This reduces the total number of equations

by one. Each of the remaining equations will include the limiting yield

value which thereafter results in the internal bending moment at that

node maintaining the yield condition.

A second method requires additional equations, one for each additional

unknown plastic rotation. For uniaxial members (beams or columns) these

rotations will occur at right angles to the longitudinal bending axis.

The additional equations specify that the internal bending mQments equal

the limiting value. Both methods are identical with respect to the

equilibrium of external nodal moments and internal bending moments.

The first is an implicit formulation whereas the second is an explicit

one.

For elastic-plastic bending of plate elements using the displacement

approach of the present study, only an explicit formulation is possible.

This follows from the fact that the external nodal forces such as mx

and. my are not the same quantities as the internal generalized stresses

Mx and My. (Even if their dependence on one another were exactly knewn,

the principal generalized stresses would have to be established in terms

of these external nodal forces. The resulting non-linear relationship

would make the elimination of the corresponding displacements Ox or

impossible). Consequently the total plate stiffness must be reduced

by the addition of yield function equations. These equations prevent

any increase in principal generalized stresses at platic nodes when

90
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3.65

3.66
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the applied load is increased and the bending resistance of' the plate

is therefore reduced.

The stiffness equations for the plate resemble those of equations

3.61. If the displacement vector for the plate is

111

Q	 'I

= R:l

and the force vector	 :

S
S
S

L

S-

then the total structural stiffness equations are

L - x(E.E) K(LP) Q

a	 K(P.E) x(p. p) P

The four groups of submatrices in the total stiffness matrix

have coefficients that connect the following parameters;

K(E.E) - The external nodal forces L to the nodal slopes and vertical

displacements Q.

K(E.P) - The external nodal forces L to the nodal plastic rotations P.

K(P.E) - The internal principal generalized stresses S to the nodal

slopes and vertical displacements Q.

K(P.P) - The internal principal generaLized stresses S to the nodal

plastic rotations P.

The summation of the external nodal forces (see equations 3.65)

must provide equilibrium with the applied loading at the nodes. Therefore

the column matrix o' equations 3.65 can be replaced by a column matrix
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of applied loads. The solution of these equations determines the nodal

displacements and these in turn allow the internal generalized stresses

to be computed at each node of the plate.

In equations 3.66 the coefficients in the K(.:E) matrix are additiona

of those taken from the	 matrices in equations 3.61 for each element.

These coefficients remain the same throughout the elastic-plastic analysis.

The K(LP), X(P.E) and x(p. p) matrioes form from additions of the

Kt aM KtS matrices respectively. It is the formulation of these latterqm	 .qp

matrics for an elastic-plastic analysis that requires a much more

sophisticated computer program than does an elastic analysis '. However,

the procedures required are systematic and lend themaelves to a computerized

formulation. eoause of the non-linear form of equations 3.31 for certain

plastic nodes, some of the coefficients in the K(E.P), K(P.E) and K(P.P)

matrices may have to be changed after each plastic load, increment since

the directions of the principal planes and the plastic flow lines change

(see sections 3.4-e and 3.5d).

For a general plate structure with n nodes there would be- 3n

external nodal forces and 2n possible independent principal generalized

stresses. Correspondingly, there would be 3n nodal displacements and

a possible 2n independent plastic rotations. Therefore the total number

of equations possible in equations 3.66 would be 5n. The size of sub-

matrices in equations 3.66 would be

3nxl	 3nx3n 3nx2n	 3nxl
3.67

2nxl	 2nx3n 2nx2n	 2nxl
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For a symmetrical plate structure the total number of equations

can be reduced. ., For example, for the plates analysed in this study

symmetry of plate geometry, loading and bouMaxy conditions reduoed

81+5 possible equations to ]40 independent equations.

37 Load. Application and Scaling Technique

(a) A Simplified Example

To' illustrate, the general procedures for determining plastic nodes

and the final collapse of a plate, a simplified example is given in

which only three plastic nodes cause the plate to collapse. The plastic

nodes are i, j and k at which only the principal generalized stresses

M' , M) 2and M satisfy the yield conditions. The larger principal

generalized stress	 at node 1 is presented with those above to illustiate

typical behaviour at a non-plastic node.

(b) Principal Generalized Stress-Applied Load Characteristics

If the principal generalized stress and applied load oharacter{saos

of each of the four nodes are plotted for each load stage causing

plasticity, the complete elastic-plastic solution would result in five

diagrams as in Figure 3.114..



L1
(a)

M,

M

L1 L2	 LA
(b)

M

LA

M1

I

M

L1 L2

(C)

M

M

L3 LA	 -

t.
M

M

94
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(ci)	 (e)
A Simplified Example of an Elastic-Plaetio Solution

Figure 3.34
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The load is applied in large increments and scaled until only

one node becomes plastic within each increment. In the present study

only scaling down procedures were adopted. Consequently the applied

load had to be sufficiently large to form a collapse mechanism.

In Figure 3.14 the load LA is applied and from the nodal displace—.

ments the generalized stresses (Mx, My and Mxy) are computed at all nodes.

The principal generalized stresses are then determined. Those for the

four nodes are shown in Figure 3.14-a. The largest principal value at

LA is M. A scale factor is next computed such that M = M, resulting

in load stage L1 . The generalized stresses at LA are scaled to L1 and

recorded for the next application of load (LA). At node i the yield

conditions (i4 M) is now maintained for the remainder of the analysis

by introducing this condition into the stiffness equations for all

elements joining at node i (see equation 3.60).

The load LA is again applied. and the principal generalized stresses

computed. The variation in principal values between L 1 and LA is

different from before since the plate bending stiffness has been reduced

(Figure 3.14-b).
'I

The largest principal value at LA is now M. Again a scale factor

is determined that results in node j becoming plastic at load L 2. The.

generalized stress field is scaled down to L 2 and recorded for the next

increment of load. These steps are repeated until the third node becomes

plastic with M = M at L4-. If the load LA is again applied, no solution

to the equations exists and this defines collapse of the plate.

The plastic load, increments are o to L1 , L1 to L2 , L2 to L3 and

to L4-. The scale factors that determine the plastic behaviour are
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computed from the generalized stresses (Mx, My arid Mxy) at the beginning

of a plastic load, increment, the slopes of their variations and the

principal generalized stress equations (either equations 3.31 if the

node was previously non-plastic or 3.38 if previously plasto).

There are two types of scale factors, one for non-plastic nodes

based on a non-linear variation of principal generalized stress and

a second for nodes that were previously plastic due to one principal

value and subsequently become plastic due to the seoond principal

genera'ized stress. In Figure 3.14-, the first type was used for nodes

i, j arid k in Figures 3.14-a, b and d respectively. The second type

was used in Figure 3.140 for node j.

To illustrate the calculation of these scale factors consider

node j. Before plasticity occurs at j, the principal values M and

are computed by equations 3.31. If at node j, Mx, My , and Mxy are the

generalized stresses at load 	 with the orientation of principal planes

given by	 , then the generalized stresses at some load stage between

and LA are simply

Mx = M +XjiMx
My = M2 •XjiMy	 3.68

= M9j+AjtMxy

since the generalized stresses vary linearly with displacements. In

equations 3.68, Aj is the required scale factor andL^.x etc. are the

rises of the generalized stress slopes between L1 and LA. Subatituting

equations 3.68 into equations 3.31 and. rearranging to form a quadratic

equation in Xj gives

= (_B/B2_4Ac)/2A	 3,69
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in which

	

	
2

A= LMxMy-(AM)

B =

C =

For negative bending, M is replaced by -M. The smallest positive

Xj from equations 3.69 is the relevant scale factor. Since 	 = M

at L2, let the scale factor be 	 • In Figure 3.14b this scale

factor leads to load. L 2. With further increase in load, the principal
1	 2

genera3ized stresses 	 and	 are assumed to vary linearly with

displacements by maintaining Ø	 (now computed at L2) constant for

load stage L2 to LA. This step requires that the principal generalized

stresses be given by equations 3.38. If M, M9 and My are recorded.

at L2 (scaled from LA by	 ) a set of equations like that of 3.68

is substituted into equations 3.38 giving

0 0	 0 0	 •	 dO	 0

1 2 2M-(Mx+My)+(Mx-My)cosine(2jô )2Mxy sine(2 )
Xj' =	 3.71

Mx+A My+(i Mx-A My)cosine(2Ø)^2 Mxy sine(2Ø)

The scale factor	 results in	 = M at L3.

In Figures 3.]4a to d. the largest principal generalized stress

at load LA indicated. which node was the next to become plastic. ThJ.a

is not always the case since the variation of principal values may

result in some other node becoming plastic before the one indicated

at LA. For example in Figure 3.l4.b, if the variation of	 followed.

the broken line,	 would have exceeded.	 at LA. This would have led

to a load causing	 = M with M>M. Therefore, once the scale factor

is determined on the basis of the largest principal value at LA and

the generalized stress field. scaled down, it is necessary to recompute

3.70
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all principal generalized stresses at this scaled load stage to test

for a violation of the yield criterion. If such a condition exists,

then a new scale factor must be established to produce a lower load,

This is repeated if necessary until only one additional node becomes

plastic for each application of LA.

3.8 Edge Beam Elements for Plates

(a) Ceneral

Beam elements can be readily included in the finite element method

when applied to elastic plate bending analysis. Once the beam element

stiffness matrices are determined, these elements can be joined to

plate elements by the usual matrix methods.

The effects of edge beam elements on the elastic-plastic behaviour

of p.ates is included in this study. The concept of plastic beam

rotation is retained with the general formulation of the edge beam

behaviour based on well established principles of structural mechanics.

The simple principles involved in the composite yield behaviour between

plate and beam elements illustrate how easily beam elements can be -

included in the present proposal.

(b) The Elastic Stiffness Matrix for Beam Elements in Bending

A typical beam element is shown in Figure 3.15. The conventiorf

for external nodal forces and corresponding displacements is the same

as that for the plate elements. For beam elements the vertical shear

forces are the same as the external nodal vertical forces V. Also the

external nodal forces uy and mx are the same quantities as the internal

bending and twisting moments respectively. This was not the case for
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x
V (wi )

plate ele

Inyi

z
S

Typical Beam Element
with Positive Nodal Forces

and. Corresponding Displacements

Figure 3.15
The internal shears and. moments are based on the normal convention

in which positive curvature is produced when beam fibres below the neutral

axis are in tension. Shear forces are positive when their summation

in the positive x direction acts downwards. This convention is consistent

with that adopted for the plate elements (Figure 3.1) and is illustrated

for a beam element in Figure 3.16.

S

Loading
%_ Ecterna1	 ______

a

Beam Element
Internal Shear and Moment Convention

Figure 3.16
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If El is the flexural stiffness of the beam element, the bending

moment in Figure 3.16 is simply

—El w,xx	 3.72

Following the seine procedures of section 3.3 the stiffness matrix

of the beam is next derived. The assumed displacement function of the

beam is

•	 w = b 1 +b2x+b3x2+bx3	 3,73

The nodal displacements are functions of x and. can be written as

Uj =	 = u(x) b I	 3.74.
0Yj

Tn general the displacements for both nodes of ary beam element

become

= Cb
	

3.75

The corresponding external nodal forces at node i are

vi -	 -
F= mx1	3.76

UTj

For the two nodes the force vector becomes

F	
3.77

By equation 3.72, if Db = El, the internal bending moments are

M=Db k=Db Hb	 3.78

In deriving the bending stiffness matrix the torsional behaviour

can be excluded initially. The external work done by the nodal forces
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*	 *
in bending (p ) acting through unit virtual displacements ôu = I is

given by

**	 *	 *
We = Ou P = IF = F	 3.79

The internal work done by the bending moments through resulting

curvatures 6k is

Wi =5ok)TMdx	 .3.80

From eqations 3.75, b = 1u and. when substituted into equations 3.78

the moments become

M =	 H 1u 	 3.81

For virtual displacements the resulting curvatures are simply

-1 ••
§k=Hb=H	 öu	 3.82

Equating internal and external work in bending the nodal forces become

= H G. ou*)TDb H 1ud..x

= •_1 
)T	

Db HaX] cf•lJ U	
3.83

The quantity in the curled brackets is therefore the bending stiffness

matrix for the beam element. This matrix is presented explicitly in

Appendix I.

The torsional components of the element stiffness matrix can now

be included. The torsional atiffness is the product of the polar moment

of inertia of the cross-section and the modulus of elasticity in shear.
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If the angle of twist per unit length of the beam element in Figure 3.15

is

(Qxj_Qx)/a	 3.84.

then the external torsional moments mx. and mx. are1	 3	 Iwil
9X

lmxI	 10 !ooJ.0110y41
I	 a	 a	 i 3.85
Iii	 loll i Ia	 a	 J9XJ1

I°jI
By'cnmbinirig equations 3.83 and 3.85 the complete stiffness

relationship between nodal forces and corresponding displacements can

be determined for the beam in the matrix form

F = Ku
	

3.86

At nodes where beam and plate elements join there will be three

displacements common to both elements. The assembly of the elements

follows in the conventional manner by summing stiffness coefficients

for each element. Therefore in the elastic response both equilibrium

and compatibility are satisfied in the usual way.

3.9 Composite Yield Behaviour of Plates and Edge Beam Elements

(a) General

Wood22 has developed the mathematical relationships for the elastio

behaviour of plate-beam systems based on the small deflection theories

of plate and beam bending. He included the effects of in-plane or

membrane forces which occur when the centroids of the plate and beam do

not coincide. The numerical solutions presented were based o'n the method

of finite differences and the particular problems solved excluded the
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effects of membrane forces, twisting moments in the beams and beam width.

In the present study similar simp],ifications are employed. The

effects of membrane forces are excluded by maintaining plate and beam

centroids at the same position. The beam elements have zero width so

that the beam and plate have the same vertical displacement along their

boundaries in the elastic case but not necessarily in the plastic case.

However, at their junctions or nodes, they have the same vertical

displacement throughout the elastic-plastic analysis.

The effects of torsional stiffness of beams are included in the

structural interaction of plate and beam elements. The twisting momenta

are excluded from the yield criterion for the beams.

The neglect of membrane act*ion was made not because its effect was

considered negiigiSie but rather to allow the development of the present

elastic-plastic approach to proceed as a first approximation to what

is in realitya complex structural problem.

(b) The Yield Behaviour of Beazn Elements only.

It is assumed in the following presentation that a beam becomes

plastic whenever the internal bending moment at a node attains a limiting

value Mb. The effects of strain hardening are excluded but it need not

be if a linear rule is selected. Once the limiting value is reached,

displacement discontinuities (plastic rotations) are allowed at the

node. The vector direction of these rotations is always perpendicular

to the longitudinal bending axis of the beam.

A typical aituation which illustrates the yield behaviour of two

beam elements joined at node i is seen in Figure 3.17.
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Unloaded. Beam

i

0
Wi

Qyi	 i

lastioPlastioity

Plasticity at Node i

Plastic Behaviour of Beam Elements

Figure 3.17

Here the right-hand screw rule is applied to the displacements. The

plastic rotation a..1, is positive as shown since its vector direction

is perpendicular to the plane of the page along the positive y axis.

The introduction of beam elements and plastic rotations follows directly

from the procedures adopted for plate elements.

The elastic-plastic stiffness matrix for beam elements that have

plastic nodes can be derived by the methods of sections 3.5. The result

would take the form of equations 3.61. For each new unknown (beam

plastic rotation) there will be one additional equation to be satisfied

(Mx= Mb).



105

(c) Composite Yield Behaviour at Nodes Common to Plate and Beam Elements.

Now that the yield behaviours of beam and plate elements have been

developed separately the next step is to establish the composite yield

behaviour for these elements when joined at common nodes. It is important

to realize that a complex stress state exiatä at such interfaces and

that only an idealized interaction of elements can be used to produce

a tractable solution. From a stress analysis point of view the yield.

characteristics of the combined system cannot be separated into one

system (or beams and another for the plate. The following proposal is

not based on the knowledge of the actual stress situation at such an

interfaoe but rather on well established theories of structural analysis

and idealized material behaviour.

In this approach there are separate stress states in each of the

two types of members. That is, the principal generalized stresses in

the plate can occur in any direction relative to the bending axis of

the beam but the beam bending stresses will always produce bending moments

along the longitudinal bending axis. Therefore, if the yield behaviour

of plate-beam elements is based on independent stress states, the resulting

plastic flows in these elements are also independent of each other.

With the method of finite elements the separation of nodal force

equilibrium and displacement compatibility between beam and plate elements

allows the composite yield behaviour to develop in a manner consistent

with the force-displacement approach to matrix structural analysis and

the simple plastic theories of idealized mpmber behaviour.

The fundamental idea adopted in the composite yield mechanism is

that of a structural pin connection between plate and beam elements. This



106

pin allows the beam to bend and/or rotate freely about an axis normal

to the plate elements at the common node. This results in different

slopes occuring between plate and beam elements along the direction of

the beam axis. These slopes are made independent of one another by

separating the total equilibrium of nodal forces into one equilibrium

condition for beam elements and another for plate elements. This pin

concept then allows plastic rotations to develop separately in the

plate and/or beam elements.

Th differences between the composite yield behaviour of plate

and beam elements and that for four plate elements are the introduction

of different slopes about the y axis (see Figure 3.18) and, the fact that

the beam plastic rotation vector is always perpendicular to the beam

bending axis and is independent of the yield behaviour of the plate

elements.

.
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Figure 3.18
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Figure 3.18 illustrates four possible displacement patterns for

beam-plate nodes. Comparing Figure 3.18d with Figure 3.13b, the essential

/
differences are Qy (the beam 8lope) instead of Qy for the beam elements

and	 rather than Eay . The displacements Qy and	 are independent

from those of the plate elements (Qy and 	 ) and therefore additional

independent equations must be available for their solution. For

the yield condition is simply that the beam bending moment

MEe am = Mb	 3.87

/
For øy the equilibrium of nodal forces on the beam elements requirea that

= 0
	

3.88

The subscript b denotes beam. In the plate element equilibrium of

forces corresponding to Oy requires that

znYp = 0
	

3.89

in which p denotes plate elements. When no ;1asticir occurs (Figure

3.l8a) the slope 	 = Oy and the normal equilibrium of nodal forces

requires that

Znwb + Em = 0	 3.90

The equilibrium of vertical and twisting (mx) nodal forces remains

the same whether the node is plastic or not. That is

v +v =0	 3.91
b	 p
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and

	

	 Emxb+ Zuix1, =O	 3.92

Table 3.1 is a summary of the composite yield behaviour of plate

and beam elements. For each yield condition the independent unknown

displacements are given accompanied by the equations required to solve

for these unknowns. Of the eight yield conditions presented. there are

only four different combinations of unknown displacements that must be

allowed for in the elastio-plaatio analysis.
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Yield	 Independent
Conditions	 Displacemen	 Available Independent Equations

at Common Node Unknowns______________ - _ = = = =

	

E V+	 :	 (1 , 2=M	 my= 53e am
_____________ - - - - - Vb=C :mxb=O	 _____ _____ _____

1.

No Plasticity x x x	 x	 x	 x

2. Plate only
lastic, One Plo xxxx	 x	 x	 x	 x
Line only

	

to Beam - - - _____	 _____ _____ _____ _____ _____
3. Plate only
Plastics One Plo x x x x	 x	 x	 x	 x	 x
Line only not
Parallelto Beam - - - - - - _____ _____ _____ _____ _____ _____ _____

.. Plate only
P].astic,Two Plo
Lines in any
Direction - - - - - _____ _____ _____ _____ _____ _____ _____

5.
Beamonly
Plastic

6. Beam and.
Plate Plastic

	

xxxxx: x	 x	 x	 x	 x	 x
at Different
Times___ ___ ___ ___ ___ ___ ___

Beam and.
PlatePlastio xxxxx	 x	 x	 x	 x	 x	 x
at Same Time

8.Beam Plastic - - - - - _____ _____ _____ _____ 	 _____
with Plate

	

xxxxx( x	 x	 x	 x	 x	 x
Previously
Plastic___ ____ ___ ___ ____ ___ ___

9.Plate Plastic
with Beam

	

xxxxxc x	 x	 x	 x	 x	 x
Previously
Plastic- - -	 - _____ _____ _____ _____ _____ _____ _____

Plate—Beam Conrposi1te Yield. Behaviour

Table 3.1
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CHAPTER 4. - EXPERIMENTAL TESTS ON PLATES A1'ID SLABS

4..l eneral Remarks

To establish the validity of the analytical model a series of

experiments was performed on four reinforced concrete slabs and four

mild steel plates. The investigation includes- the effects of two different

point load arrangements on the metal plates and the effect of edge beams

on the elastic-plastic response of both plates and slabs.

The plates, slabs and test procedures are described in this

chapters the results of the tests and their comparison with analytical

results are presented in Chapter 5.

Reinforced Concrete Slab Tests

4..2 Purpose of Slab Tests and Quantities Measured

The basic purpose of the slab tests was t& obtain certain data

for comparison with the analytical results. Wherever possible the

following items were recorded:

(i) Deflection contours.

(ii) General cracking behaviour and. final collapse mechanism.

(iii)Internal generalized atresses in the Blab.

(iv) Bending moments in the edge beams.

(v) The collapse load.

A summary of the slabs tested is presented in Table 4.1.
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4.3 Generalized Stresses in Reinforced Concrete Slabs

It was realized at the outset of this investigation that the

measurement and interpretation of bending strains in reinforced concrete

is a difficult task. The approach adopted for the lab tests consisted

of measuring strains on the top surface of the slabs and on the reinforcing

steel. This provides an estimate of bending curvature.

The generalized stress-curvature characteristics of the slab were

determined, from a statically determinate bending test on a control beam

specimen. From this test the applied bending moment per unit width of

specimen (generalized stress) was kflown and the strain measurements

(concrete compressive strain and reinforcing steel tensile strain)

provided an estimate of bending curvature. Once this relationship was

established and. the curvatures measured in the slabs, the generalized

stresses were determined.

-.4 Metal Edge Beams

Mild steel edge beams were used on slabs No. 2 and No. l . Metal

beams simplified casting of the slab structure and provided a more

accurate means of measuring bending strains than would reinforced concrete

beams. Furthermore, the neutral axis of the steel beam would be

maintained close to the center of the beam, a condition that was

assumed in the analytical study.

The bending moment-curvature characteristics of the edge beanis

were determined from a control specimen following the usual procedures

discussed above.

The beams were connected to the slabs by threaded shear connectors

that were wired firmly to the slab reinforcing steel. For the " x

bosnia of slab No. 2, " diameter bright mild steel connectors were used.
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For slab No. l, 3/32" diameter high strength steel screws were used..

At the corners of the slabs, the beams were welded together. The beams

were made of mild, steel, British Standard 115.

4,5 Slab Reinforcement

The steel reinforcement for slabs No. 1 and No. 2 consisted of

commercial black mild steel. Fr slab No. 1 round bars were used at

approximately 3" spacing both ways. The two layers of steel had different

total steel areas in an attempt to produce equal ultimate bending

strength in the two orthogonal direction. However this was not entirely

successful since under test, slab No. 1 showed a definite weakness in

one direction. Therefore,for slab No. 2 a flat bar rectangular cross-

seotion was selected. The bars in one direction were staggered above

and. below those of the orthogonal direction. With this facility and

the flat cross-sectional shape the effective steel layer depth was

almost constant in all directions. This arrangement of reinforcement

produced a more symmetrical pattern of cracks and deflections than did

that for slab No. 1.

For the sml1 slabs No.3 and. No.4. the problem of unequal effective

steel depths and. unequal ultimate bending resistances was a more serious

item to be considered than for the larger slabs. To overcome these

difficulties a perforated sheet type of reinforcement was used. This

was produced by punching 1" square holes in .04.0" thick mild steel sheet

(British Standard En.3 series), The center of the holes were spaced.

1" apart in two orthogonal directions. This gave a reinforcement meah

with steel strips .25" wide by .04.0" thick. This type of reinforcement

reduced. the effective bond between steel and concrete but the general

performance of the slabs under test was good.
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4.6 Strain Measurement

Electrical resistance foil type strain gauges were used. These

gauges were purchased from Westland Aircraft Limited, Saunders-Roe Division,

Osborne, East Cowes, Isle of Wight. Gauges of 1" gauge length were used

on the surface of the concrete for slab No. 2 along with -" gauge lengths

on the reinforcing steel and. metal edge beams. For the edge beams of

slab No. 4, " gauge lengths were used. For the gauges on the reinforcement

protection against water damage was provided by a covering of Araldite

and a iubberized coating. All exterior surface mounted gauges were covered

with a temperature protecting grease and po].ythene sheeting. Some gauges

were connected to dummy gauges to compensate for strain errors resulting

from temperature changes during the tests. Other pairs of gauges were

wired to read only bending strain.

All strain recordings were made by a 10 channel portable data logger

manufactured by Westland Aircraft Limited. This logger was extended to

20 channels, each channel requiring l- seonnds to register a reading.

4.7 Slabs No. I and No. 2

These slabs were cast in the mould shown in Photo 4.1. The mould was

covered with contact paper to prevent water entering the shuttering and to

produce smooth surfaces on the slabs. In this photo are pictured the

reinforcement, strain gauge positions, edge beams with shear connectors for

slab No. 2. For each slab a control beam specimen was also cast. This

specimen represented 4 the width of the slabs. The mould used is pictured
in Photo 4.2. Also shown are the gauges for determining the steel tensile

strain leading to curvature measurements. Three positions were used in

determining the bending-curvature characteristics as a check against

faulty reading8. Two point loading was applied approximately at one
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Photo Li

Photo )+.2



ii'

third span intervals resulting in constant moment over the middle third

of the span.

The general arrangement for tests No. 1 and No. 2 is shown in

Photo 4.. 3. The slabs were tested vertically to permit the taking of

photographs of crack patterns as they developed during the test. The

underside of each slab was covered with a fine coating of white Snowcem

to help detect cracking. A 3" square grid was marked out to correspond

to the 12 x 12 mesh of finite elements adopted for the analytical model.

Fiach corner of the slab was supported against transverse displacement

by 1" diameter steel balls. In-plane movement was allowed. A central

point load was applied by }ydraulio jack, the load being distributed

over a 3" diameter hard rubber pad " thick. The load was measured

using a high strength steel proving ring as well as a load cell as a

double check.

Deflections were recorded by the dial gauges shown in Photo 1.3.

These gauges were connected by fine high tensile steel wire to the top

surface of the slab. Readings were recorded by a 35mm. camera. Photo

4.li is a typical set of deflection readings. Also shown are the surface

mounted adapters for, connecting the wire to the slab surface. Deflections

were measured over th of the slab area at 3" intervals as shown.

Deflectjons at a number of other points were also measured to check

symmetry of transverse movement.

The data logger and load cell measuring equipment are also pictured

in Photo 4.3.

4.8 Slabs No. 3 and No. 4.

These slabs were tested using the apparatus designed for the metal

plate tests. They were corner supported and centrally loaded. Slab No.4



Photo 14.3

Is-u

/

118

-	

7:i

Photo L.4.



119

had square cross-sectional metal edge beams. Strain measurements

were made on these edge beams but no attempt was made to place gauges

in the slabs on the reinforcement. Photographs were taken of the crack

patterns at collapse. Deflections were recorded at two positions; at

the center and. at mid-span along the edge.

These tests were performed to check the analytical results with

small scale or model slabs.

Mild Steel Plate Tests

.9 Purpose of Plate Tests and Quantities Measured

The following items were measured in the metal plate tests for

comparison with analytical results:

(i) Deflections at center of plate and/or at mid-span on

the edges.

(ii) Internal generalized stresses.

(iii)Bending moments in the edge beams.

(iv) The collapse load.

A summary of the plates tested is presented in Table .2.
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14.,jO Generalized Stresses in Metal Plates

The measirement of generalized stresses in metal plates did not

present any particular difficulties. Foil type electrical resistance

strain gauges with " gauge lengths were used on all plates and edge

beams. Principal generalized stresses were determined at certain

locations by using a rectangular type of strain rosette.

The generalized stresses were determined using generalized stress-

curvature characteristics computed from bending tests on control beam

8pecimns. Bending moment-curvature relationships for the metal edge

beams were also determined from control specimen tests.

Strain gauges were placed on the top and bottom surfaces of the

plates and edge- beams for curvature measurement. Both bending and

in-plane strains were measured. Dumxny gauges were used in conjunction

with certain active gauges. All gauges were protected against the

effects of temperature differentials and air currents on strain

measurement.

4..11 Metal Edge Beams

Metal edge beams were welded on plates No. 2 and No. 4 .. These

beams were made from commercial black mild steel and had a 	 x

channel cross-section. The ends of the beams were mitred and welded

together at the corners of the plates. The beams were welded to the

plates (continuous fillet welds on top and bottom of plate) such that

the centroid of the beam coincided with the middle piano of the plate.

4..12 Yetal Plates No. 1 and No. 2

All the plate tests were performed using a Denison tension-compression

machine. Plates No. 1 and No. 2 were loaded at their centers by a point

load distributed over a " diameter circle. Plate No. 1 had free edges
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with vertical corner supports. This plate is shown in Photo 4.5 prior

to testing. Plate No. 2 had the same loading and general test arrange-

ment except for metal edge beams around its periphery. The steel support

plates at the corners housing the 1" diameter steel balls were attached

to the plate specimens by three high tensile 4" diameter screws. The

1" diameter balls were held in position under the corner of the plates

by countersunk holes in the corner support plates.

4.13 Corner Support Columns

T}e loading and boundary conditions selected for all the tests

(plates and slabs) were selected to allow the plates and slabs to deform

into developable surfaces and. thereby reduce the chance of membrane

forces developing. For the metal platas, special corner support

columns were constructed to allow freedom of horizontal movement and

also rotation in the vertical plane.

Photo 4.6 shows the pipe column support with the lower distribution

plate welded to the top of the column and carrying an array of j" diameter

steel balls set in a perspex mould. The purpose of these balls is to

allow horizontal movement. An upper distribution plate was placed on

top of these balls (Photo 4.5) and it in turn supported the 1" diameter

ball and plate structure. The exposed faces of the upper and lower

distribution plates were covered with spring steel sheet material to

prevent indentation of steel balls under load.

These supports proved very valuable in eliminating in-plane

forces and allowed the plates to develop definite collapse mechanisms.

The supports were also lubricated with oil to further reduce frictional

effects.
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Photo 4.5

ijiijj.
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Ll4 Metal Plates Nr,. 3 and No. 4.

These plates were made identical to plates No. 1 and No. 2

respectively. Iowever, plates No. 3 and. No. 4. were loaded by four point

loads positioned as shown on plate No. 4. in Photo 4.7. The eteel core

cables shown were purchased from British Ropes Limited.

To apply the load from under the plates, a loading yoke was

constructed for use on the compression head of the Dension machine.

This yoke is shown in Photo 4.8 along with a statically determinate

system*-f load. distribution beams. The four uppermost cables in

Photo 4.8 are the same cables pictured in Photo 4.7. The top center

of the yoke was fastened. to the compression head. The yoke and

distribution beams were assembled around the plate structure. A typioal

arrangement of applying the four point loads (in this case plate No. 3)

is seen in Photo 4.9.

The general test arrangement is shown in Photo 4.10. All strain

measurements were rec.rded by the data logger previously mentioned. As

an added precaution against effects of temperature change and drafts on

the strain measurements, the entire loading area of the Dension machine

was enclosed in polythene.
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Photo 4,7

I

Photo l.8
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Photo 4p9

Photo 24.1O
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CHAPTER 5 - COMPARISON OF EXPEIYENTAL AND ANALYTICAL RESULTS

5.1 Genera]. Remarks

In this chapter the experime-ntal results from the tests of plates

and slabs described in Chapter 4 are presented and compared with those

produced by analytical analyses based on the theory of Chapter 3.

The test results for slabs are presented in four separate groups,

one for each slab test. Deflections for all slabs measured at mid-span

on the slab boundaries and. under the point load are presented at the

end of st} slab tests. For slabs No. 1 and 2 crack formations and

deflection contours were recorded over most of the applied load range.

For brevity only the crack patterns and contours for the elastic limit

stage (according to the analyses) and one other load stage within the

elastic-plastic behaviour are presented. For slab No. 3. the last recorded

contours were measured at 85.5% of the analytical collapse load.

The metal plate results follow those for the slabs and are presented

in the same fashion. In addition to the grouping of deflectiona at

the end of the plate tests, results from the measurements of principal

plane directions are presented. Also evidence of inhomogeneous plastic

deformation is reported with photographs from two plate tests showing

the formation of' LUders lines. An explanation of the stress states

is given with analytical predictions of their formation.

The results of both plate and slab tests a4e presented in separate

sections independent of each other. No comparisons of plate or slab

tests with each other are made although the teats were organized so

that such comparisons would be possible. They are not reported since

the primary purpose of the tests was to assess the validity of the
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analytical model.

The graphs are numbered with reference to test type and number.

For example P4..6 refers to the sixth graph of results from plate test

No. 4.. The ordinates on graphs of generalized stresses and edge beam

bending moments are labeled M/M0 where M refers to the item measured

(indicated at the top center of the graph) and M has the meanings: Mu

for the ultimate bending resistance of reinforced concrete, M for

metal plate sections and. M for metal edge beams. In Chapter 3,M

was caj,led to prevent possible confusion with the use of suffix notation.

The generalized stresses M, and Msp denote largest and. smallest principal

values respectively. M refers to beam bending moment.

For the graphs of d.efleotions, the abscissa (wIt) is the ratio of

transverse displacement to the total thickness of plate or slab. The

label	 in all graphs is the ratio of applied load. to the collapse

load determined from limit analysis.

The estimation of collapse load. for the slab tests reported was a

simple matter. However, for the metal plates although the same could.

not be said, there was a definite indication of limit behaviour in all

the plate tests. The maximum load. reached. was governed to a large

extent by the rate at which load was applied. For example in plate test

No. 1 the maximy \d reached. was about 2C% above the limit analysis

value. This p	 from increasing the load. too rapidly without

I
allowing th
	

deform sufficiently between load stages. For

the three	 s, the load was allowed to remain constant until

all t
	

ceased. The limiting loads for these tests

were quite i
	

' Oollapse load. he freedom of movement
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given by the support columns described in Chapter 4. were primarily

responsible for allowing the plates to deform into collapse mechanisms.

Most of the experimental results were processed by computer. Separate

computer programs were written for each of the metal plate tests and

for slabs No. 2 and. No. 4. Many readings were recorded especially of

strain by the data logger to eliminate gross errors due to faulty

recordings. The accuracy (with respect to strain measurement) in

determining generalized stresses is in the order of ± i. $. Only a sample

of the,experimntal results was selected for the graphs presented.

Approximately three times as many recordings were made as are shown

on the graphs. The analytical results, however, are shown at each stage

of plasticity (where possible) causing plastic nodes.

The analytical results were determined from computer solutions for

each plate and slab tested. These solutions were based on the theoretical

procedures of Chapter 3 and give complete generalized stress and.

displacement fields f1 or each load causing a plastic node. For a general

account of the elastic-plastic behaviour, plastic flow patterns are

presented at the beginning of each test description. Each pattern consists

of a 12 x 12 mesh of square finite elements showing the plastic flow

lines inclinded to the element boundaries at the appropriate angles.

These flow lines are really only tangents to the actual flow line

trajectories. The configuration shown in each pattern represents the

collapse stage pattern of flow lines. However, patterns developed. at

other load stages before collapse can also be determined since on the

left of the pattern is listed the ratio of applied (computer) load. P

to the limit analysis coflapse load. P0 for each stage of plasticity.
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The final collapse pattern is simply a superposition of patterns for

each plastic node. The order in which plasticity occurs is also given

with the load, ratios. These integers are shown beside the plastic nodes

corresponding to the load ratios.

Below th? pattern, the collapse load by computer ( p) js stated

to three decimal places. Also shown is the limit analysis collapse

pattern giving an upper bound P0 to the collapse load. To the right of

the limit analysis collapse mechanism, the ratios of computer elastic

limit .nd collaps9 loads to the limit analysis value are indicated.

To the left of the limit analysis solution is listed the strength

and stiffness paranieters used in the computer solution. Each solution

is based on a non-dimensional limiting generalized stress value of

unity so that the generalized stress fields were output in the ratio

of M/M. To determine other quantities that are not ratios of M, the

computer results were multiplied by the experimental limiting values

(ML/D) of Tables 5.1 and 5.2. The Poisson ratio used for concrete was

.15 and for steel .30.

When refercnce is made to the finite element method, the abbreviation

F.E.M. will be used.

Reinforced Concrete Slab Tests

5.2 Stiffness and Strength Parameters

These parameters pertaining to the alab tests are presented. in

Table 5.1. Most of the items shown have been measured experimentally.

The measurements and calculations for these quantities are presented in
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Item	 Slab No.1 Slab No.2	 Slab No.3 Slab No.4

D	 354,000	 353,000	 58,800	 58,800

Lb_in. __________ __________ __________ __________

ML	 .1280	 .1060	 .04.64	 .04.64.
D

El	 0	 3,64.0,000	 0	 16,200

2Lb_in. __________ __________ __________ __________

0	 .0226	 0	 .004.93
D

0	 .2860	 0	 .0172

0	 .2140	 0	 .1065
PL

0	 .00705	 0	 0.480

Stiffness and Strength Parameters for Slab Teats

Table 5.1
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Appendix III. The polar momenta of inertia in the 

't 
ratio for the

edge beams on plates and slabs were determined from the results of

St. Venant's analysis on torsion of non-circular cross-sections reported

by Seely and Smith58. The analytical 8olUtiflfls are also based on the

parameters of Table 5.1 and are therefore directly comparable with the

experimental results.

The slab stiffness D for slab No. 2 was determined, from the moment-

curvature relationship for the concrete control specimen (see Appendix iii).

The atlffnesses for the other slabs were determinded on the basis of a

"cracked to the neutral axis" cr088-section. That is, the entire slab

was considered cracked with a constant f'lexura1 stiffness maintained

throughout the analysis.

5.3 Slab No. 1

(a) Plastic Flow Pattern

Pattern No. 1 shows the directions of the plastic flow lines that

form at the nodes where the limiting principal generalized stress is

attained.

In this computer solution the end. 'of the elastic limit occurred

when the center of the slab became plastic at 55.% of the collapse load.

A total of eight plastic points reduces the plate to a mechanism with

a collapse load identical to that given by limit analysis. The only

difference between the plastic flow pattern shown and the mechanism

of limit analysis is the indication of plasticity on the diagonals close

to the point load. This local plastic behaviour is to be expected. and

spreads radially from the center of the plate.
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(b) Crack Pattern at End of Elastic Behaviour

The crack pattern which developed at the end of the elastic behaviour

(p/p0 = . 557 as predicted by computer) is shown in Figure 5.1. These

cracks were visible to the naked eye. Most cracks formed at about 3

of the collapse load. The corresponding analytical plastio flow is

superimposed on this crack pattern in Figure 5.1.

(c) Deflection Contours at End of Elastia Behaviour

The contours of Figure 5.2 show symmetry of transverse displacement.
I

During the test, deflections were recorded at mid-span on all the edges

to establish the degree of symmetrical behaviour. The deflections in

one direction exceeded those of the orthogonal direction by as much as

3c%. Therefore deflections recorded by the bank of gauges had to be

adjusted by an averaging process governed. by the corresponding defleotiona

in other parts of the slab. The maximum deflection at the center under

the point load represents approximately 1/80 of the span.

From Figure 5.2 it is clear that the finite element mod.el under-

estimates the stiffness of the slab resulting in displacements far

greater than actually occur. This is to be expected since the stiffness

used in the analyses was based on the cracked concrete section. In

Figure 5.1 although a substantial area of the slab is cracked, these

had not penetrated far enough into the slab section to reduce the

stiffness to the degree assumed.

(a) Crack Pattern at 85.J% of Collapse Load

Figure 5.3 indicates the formation of additional cracks to those

of Figure 5.1 and also the opening of those where the ultimate bending
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Slab No.1 - Crack Pattern at P/P0 = . 557

Figure 5.].
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Slab No.]. - Crack Pattern at P/P = .855
0

Figure 5.3
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resistance is reached. Although the applied load was only 85.5% of the

limit analysis collapse load, the final crack pattern had already

formed. Upon further increase of load these cracks simply opened allowing

the final mechanism to develop.

The F.E.M. flow pattern as developed at this load stage is also

shown in Figure 5.3. This pattern indicates that yielding of the

reinforcing bars across the central axes had occurred along half of the

span length. The flow lines shown represent those existing after the

third plastic node formed in Pattern No.1. The opening of cracks along

the diagonals extending from the central point load appear to subs taniate

the formation of the fifth plastic node in Pattern No. 1.

The experimental collapse load for this slab was equal to the

limit analysis prediction to within .5%.

(e) Deflection Contours at 85.5% of Collapse Load

Figure 5.L is a sketch of the contours which indioate that the

F.E.M. predictions are still in excess of measured values but ar much

closer to the real values than at the end of the elastic range. This

is so because the extensive cracking has reduced the flexural stiffness

to a value close to that assumed in the analysis.

5.4 Slab No. 2

(a) Plastic Flow Pattern

This slab was supported by rectangular metal edge beams and collapsed

analytically into the flow pattern of Pattern No. 2. Here eleven stages

of plastic behaviour were recorded with ten plaatio nodes occurring in

the slab. The first plastic node appeared under the point load at 43. 33
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of the collapse load with the last indication of plastic behaviour

occurring in the slab at the slab- 'beam interface at mid-span.

The pattern indicates a spread of plasticity in a radial direction

from the center forming a wide band of yielding along most of the central

axes. Only one plastic node appeared for the beam elements. This node

became plastic at 97.& of P0 and occurred independently of and. before

the adjacent slab element.

(b) Crack Pattern at End. of Elastic Behaviour

Figure 5.5 shows the extent of cracking at P/P 0 = .1.33 and also

the superimposed flow lines from Pattern No. 2. The cracks shown were

barely visible to the naked eye. As for the case of slab No. 1, most

of these cracks had formed at 3c$ of the collapse load. However, with

slab No. 2 the cracks had not opened to the same extent. In fact, strain

measurement on the reinforcing steel under the point load indicated

that first yield occurred at approximately 55% of the limit analysis

collapse load. Therefore the P/P0 = . 14 33 ratio predicted by the F.E.M.

proved premature. Again the same reason applies as before since the

actual slab stiffness is much greater than assumed in the analysis.

(c) Deflection Contours at End of Elastic Behaviour

Figure 5.6 shows the contours corresponding to the crack pattern

of Figure 5.5. It is quite evident that the flexural stiffness of the

slab has been greatly underestimated in the analytical model.

(a) Crack Pattern at Theoretical Collapse

This slab collapses at a load about 1( above the calculated

computer and limit analysis values. The final crack pattern and evidence
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Slab No.2 - Crack Pattern at p/p = . 443

Figure 5.5
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Slab No.2 - Crack Pattern at P/P = 1.000

Figure 5.7
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of the crack openings appear in Figure 5.7. The plastic flow of' Pattern

No. 2 is superimposed, to compare the directions of the yield lines with

those predicted by the F.E.M. model. For the most part the crack

formations support the analytical results.

(e) Deflection Contours at Theoretical Coflapse

The contours of Figure 5.8 were sketøhed from the results of

deflection photographs previously described (see Chap±er 4). In this

test, s,ynunetry of transverse deflection was well maintained and no

averaging process was necessary to produce the contours.

The analytical results of Figure 5.8 show a close similarity to

measured values, the analytical being slightly in excess of the

experimental.

(f) Generalized Stresses and Beam Bending Momenta

The generalized stresses in the slab were measured at six locations.

These are presented on Graphs 32.1 to 32.6. These positions are

indicated on the figure accompanying the graphs, representin.g 	 f jl_

slab area. Also shown on this figure are the fnur positions on the

edge beams at which bending moments were determined.

In the case of slab generalized stresses, wherever the analytibal

elastic response deviates from experiment, the elastic-plastic portion

of the analytical results have been superimposed on the experimental

curve. These results are indicated by a broken line and are presented

to compare the form of variation beyond the elastic limit of the

analytical and experimental curves.

In all the graphs of generalized stresses except 32.2, the F.E.M.

gives lower generalized stresses then determined experimentally because
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of the underestimate of flexural stiffness. In general the analytical

values are between 25% and. 5C$ different from the measured values. It

is difficult to assess the validity of the F.E.M. model for generalized.

stresses since the uncertainties in measuring bending strains do not

allow a proper comparison to be made. However, it is clear from craphs

32.1 to 32.4. that yielding of the reinforcing steel occurs experimentally

over a wide band. about the central axes. Only a portion of thia band

was predicted. by computer.

G.saphs S2.7 to 32.10 show ihe edge beam bending moments to be

fairly closely predicted especially in the elastic-plastic range of

behaviour. Once again the effects of slab stiffness during the unoracked.

load, range (o p/P .' z.3) results in initial deviation between curves.

This effect is less pronounced at position 7 since most of the slab in

this area begins to crack at an early load. stage (P/P 0 = 0.1). The

effects of uncracked stiL'fness are most pronounced in Graph 32.10 where

the drop in slab flexural stiffness does not occur until about P/P0 = . 4..

This corresponds to the end. of 'the analytical elastic response assuming

a cracked. section throughout the slab. On the whole, the beam bending

moments are closely predicted. by computer in the elastic-plastic range

of behaviour.

5.5 Slab No. 3

(a) Plastic Flow Pattern

Pattern No. 3 is identical to that for slab No. 1 and the comments

made in section 5.3a also apply here.
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Slab No.3 - Crack Pattern at p/P = 1.000

Figure 5.9
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(b) Crack Pattern at Collapse

The collapse load for this slab was identioa]. to that predicted

by limit analysis. The crack pattern at collapse is 8howfl in Pigure 5.9

on which is superimposed the plastic flow pattern for collapse given

by the F.E.M. analysis.

The cracking began almost immediately upon load application. Due

to the insufficient bonding properties between the concrete and the

perforated sheet reinforcing steel, general cracking occured from the

outset of the test. This results ifl a closer approximation to the

analytical behaviour since the flexural stiffne8ses are taen similar.

The only other items recorded in this est were the defleotions

at two positions. These are presented later.

5.6 Slab No. 1i

(a) Plastic Plow Pattern

The plastic flow lines are shown in Pattern No. 4. in which 18 stages

of plastic behaviour occur before collapse of the slab. Again the

analytical collapse load is identical to the limit analysis upper bound.

Acco'ding to the computer solution a wide band of plasticity occurs

about the central axis. This occurs since the bending stiffness of the

beam was small compared to that of the slab. Analytically at 75% of

P the slab developed a continuous yield line across its span but an

additional 15% of load was required until the beam developed a plastic

hinge allowing the structure to collapse. During this latter load

range, 9 additional positions became plastic forming the band indicated.
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Slab No.)4. - Crack Pattern at P/P = 1.000

Figure 5.10
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(b) Crack Pattern at Theoretical Collapse

The collapse crack pattern is shown in Figure 5.10 with the flow

pattern superimposed. Again the extent of craóld.ng closely resembles

the plastic flow pattern.

The experimental collapse load was abotit ic% above that predicted

by limit analysis.

(c) Edge Beam Bending Moments

The edge beam bending moments at four positions are presented in
S

Graphs S.l to S!4... The effects on beam moments of gradual reductions

in slab stiffness is seen as before. However, for this slab the cracking

was continuous with no abrupt change in stiffness noticeable. Good accuracy

is obtained until about 9c% of P where although the analytical results

overestimate the moments, the general performance is well reproduced.

5.7 Defleotioris - Slabs No. 1 to No. 4.

The deflections of the slabs measured under the point load and. at

mid-span on the edge are presented in Graphs 31.0 to 34.0. The comments

made previously about slab fle±ural stiffness also apply here. The

analytical results show good agxeement with experiment in most cases

during the elastic-plastic behaviour.

5.8 Concluding Remarks - Slab Tests

From the results presented thus far it is difficult to establish

the validity of the analytical model primarily because a variation of

slab bending stiffness has not been allowed. Furthermore, the measure-

ment of strain and. subsequent calculation of generalized stresses in

reinforced concrete is a difficult task. The resulting measurements

are usually crude approximations to the actual strain distribution,
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and the deduced stress distributions will be even less reliable.

However, the analytical predications of the overall yield behaviour

and especially the collapse load are in good agreement with experiment.

The yield patterns, deflection contours and beam moments are in good

agreement in he elastic-plastic range of behaviour. In general,

conservative predioations are made by the F.3.M. model when compared

with experiment.

I	 •	 Mild Steel Plate ests

5.9 Stiffness and Strength Parameters

A summary of these parameters is given in Table 5.2. All quantities

shown except Y. (see section 5.2) were determined, experimentally. Various

data used in these calculations are presented in Appendix III.

All plates have the same flexural stiffness and fully plastic value

of the limiting generalized stress. The properties of edge beams for

plates No. 2 and No. 4 are identical. These plate tests could be

compared with each other to investigate the effects of point load

arrangement and. edge supporting beams on the elastic-plastic behaviour.

However, such comparisons have been left for future presentation since

the purpose of these tests is to assess the validity of analytical results

when applied to different plate problems.

The difficulty of determining the flexural stiffness does not arise

for the metal plates as it did for the slabs since fracture of the plate

material does not occur. Therefore, the experimental generalized stresses

I
	 etc. presented in the next sections can be considered reliable for

comparison with the analytical results.
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Item	 Plate No.] Plate No.2 Plate Nr.3 Plate No.

D	 325,000	 325,000	 325,000	 325,000

Lbin, _______ _______ _______ _______

	

.1120	 .1120	 .1120	 .1120
D

0	 ,700,O0O	 0	 4.,700,000

2Lb_in. __________ __________ ___________ ___________

0	 .0244	 0	 .021.4

D

0	 .9050	 0	 .9050
e DL

'' =!.	 0	 .2180	 0	 .2180
}d L
p

)( t=	 0	 . 004.84	 0	 .004.84.

Stiffness and. Strength Parameters far Plate Tests

Table 5.2
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5.10 Plate No. 1

(a) Plastic Flow Pattern

Pattern No. 5 for this plate is similar to those for slaba No. 1 and

No. 3 except for the P/P0 ratios. The higher Poisson ratio results in

less redistribution of generalized stress between the elastic limit

and collapse.

(b) Generalized Stresses

G.eperalized stresses reported were measured at seven locations

on Plate No. 1. These positions are indicated on of the plate in the

figure shown with Graphs P1.1 to P1.10. The strain gauge positions

are marked showing rectangular rosettes along the diagonal. Strain

measurements were recorded at locations symmetrically opposite (across

diagonal) the positions of 1,2 and 3 inorder to check symmetry of

curvature. Also certain gauges measured membrane strains. These

additional measurements are discussed in Appendix III. Similar discussions

are also presented there for the other plate tests.

The analytical generalized stress of Graph P1.1 is much greater

than the experimental value because position I is located directly under

the point load. Analytically the load, is concentrated at one node and.

• this results in very large disp1acnent gradients in the vicinity of the

load. Consequently, a direct comparison with experiment cannot be made.

All of the remaining graphs for this plate show excellent agreement

between the experimental and F.Z.M. predictions with the exception of

Graph P1.6 in which the magnitudes are in error but the correct form

of variation is produced by computer.

From the graphs it is clear that the plate was loaded to approximately
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23% above the limit analysis upper bound va1ue. However, at load

slightly above the theoretical collapse the deflections increased

rapidly. This value of 23% would have been reduced had. the load not

been increased as rapidly as it was during the last stages of the teat.

5.11 Plate No.2

(a) Plastic Plow Pattern

Pattern No. 6 indicates twelve stages of plastic behaviour, The

independent plastic behaviour of edge beam elements is illustrated by
I

this solution. Cl1apse does not occur until the plate becomes plastic

at the beam interface at mid-span. The analytical collapse load is

again identical to the limit analysis value. The experimental.00llapae

load was approximately IC% above this value.

(b) Generalized. Stresses and Beam Bending Moments

The generalized stresses for this plate are presented in Graphs

P2.1 to P2.8. Again excellent correlation of results is seen with the

exception of Graph P2.1 corresponding to the point load position. The

beam bending moments at positions 7 and 8 have been closely reproduced

by the finite element method.

5.12 Plate No. 3

(a) Plastic Flow Pattern

In this solution (see Pattern No. 7) almost one half of the plate

material is plastic at collapse with a total of 15 stages of plasticity

indicated. The computer collapse load is identical to that of limit

analysis based on either of the collapse mechanisms shown. Experimentally
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the collapse load, was about 5 below this value although the graphs

do not show this.

(b) Genera1ized Stresses

With the exceptions of Mx at positions 1,5 and. 6, the graphs of

generalized, stresses (P3.1 to p3.11) show good. agreement. The spread.

of plasticity predicted. by computer is quite evident experimentally.

The largest discrepancy in generalized stress 000ura around the center

of the plate s•ince the computer indicates that the center is the final

plastic' region before collapse but experimentally the plate reaches

only 6c% of the limiting generalized stress value. It was quite evident

during the test that the central region was not developing plasticity

and. of the two possible collapse mechanisms of limit analysis, only

the across-diagonal mode developed. The reason for this mode occuring

rather than the rectangular one is found in the comparison of collapse

loads for the mechanisms of Figure 5.11a and b.
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Here the limit analysis loads are determined from the real geometry

• of the test plate. That is, including the effects of the holes made

for the loading cables (see Photo 1.7). In Figure 5.11 edge beam8

are included since the next test (Plate No. i ) also failed by the

across-diagonal mode. The collapse load for Figure 5.11a is

Pd. = 2M [1_1+)Y+2Y] /(1+2x)	 5.1

The collapse load for Figure 5.13.b is

Pr = 2M (1-2y+2' ) /(1,2x)	 5.2
0	 p

with their ratio as

Pd= 1-(1+v1)y+2Y	 5•5
Pr l-2y+2i	 p

For the present test, 	 = 0 in equations 5.1,5.2 and. 5.3. The subscripts

d and r denote diagonal and. rectangular respectively when referring to

the collapse loads. from equations 5.]. and 5.2 the limit analysis load.

on Pattern No. 7 can be computed by setting	 = 0 and y = 0. Then

both modes give identical collapse loads. However, when holes exist

on the central axes, the rectangular mode does not occur. This becomes

more obvious as the holes increase in size and approach, tangentially

the diagonals of the plate. Figure 5.12 illustrates the limiting size

of holes causing the collapse load to vanish. If the rectangular mode

was assumed, the limiting value of y would be given by equation 5.2 by

setting Pr = 0. This makes the hole diameter equal to one half the

plate span (shown by dotted lines in Figure 5.12). It is obvious that

the plate would. collapse before y = .5. The limiting y value is given
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in Figure 5.12 to be y .4.14..

Consequently, the presence of holes in plate No. 3 resulted. in the

across-diagonal mode. The experimental collapse load, although slightly

lower than the computer and limit analysis (y = a) value, was about

5% above that given for Pd in equations 5.].. That is, the experimental

collapse load was between the calculated values based on plates with

and. without holes respectively.

The failure of the rectangular mode to develop experimentally

explaiis the lar&e differences between computer and experimental

generalized stresses around the center of the plate (see Graph P3.1).

5.13 Plate No. 1.

(a) Plastic Flow Pattern

Pattern No. 8 indicates composite collapse behaviour involving

plate and beam elements resulting in a rectangular collapse mode. Of

the 14. stages of plasticity, the first 2 occured. in the beams with the

final stage appearing at the center of the plate as was the case with

plate No. 3. This pattern shows the band of plasticity closer to the

central axes when compared with Pattern No. 7. Again the computer collapse

load is identical to the limit analysis value (no holes in plate) based.

on either mechanism shown at the bottom of Pattern No.8. The maximum

experimental collapse load attained was approximately iC% above this

limit analysis value.

(b) Generalized Stresses

Graphs P4..l to P4..9 again indicate the accuracy obtained using the

element method. The discrepancy of Graph P4 ..]. has the same explanation
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as that for P3.1 except for plate No. 4. the comparison shows a slightly

better correlation. The explanation for this can also be explained from

the collapse loads for the modes of Figure 5.11. When edge beams are

involved, the collapse load does not vanish when y .4.14. but now is

governed solely by the	 value. For plates No. 3 and. No. 4., y = . 04..

For plate No. 4.,	 = . 218. Therefore, for plate No. 3 equation 5.3

gives Pd/Pr = . 980 and .988 for plate No. 4. Although this difference

is small and he across-diagonal mode still governs for plate No. 4. , it

also ,ndicates that the possihi,lity of this mode ocouring is less

pronounced than for plate No. 3. This may result in higher generalized.

stresses in the central region for plate No. 4. than for plate No. 3 since

the rectangular mode has a better chance of forming even though it cannot.

The experimental collapse load was approximately 1 above the

limit analysis value when holes are excluded. in the calculation. When

compared with the limit analysis value based on holes with values

y = .04. and.	 = . 218 in equation 5.1, the experimental value is about

iZ above the true upper bound collapse value.

Good. accuracy is again obtained for the beam bending moments with

the greatest deviation ocouring at points closer to the ends of the beams.

This is not surprising since under test the corners of the plates with

edge beams appeared to be quite rigid, preventing the beam curvature

from attaining as high values as predicted. by the F.E.M. model.

5.14. Deflections - Plates No. 1 to No. 4.

Graphs P1.0 to P4.0 compare the analytical and experimental deflection

at the center and mid-span on the edge of plates No. 1 and 2 and under

the point load. for plates No. 3 and. 4.. Reasonably good. accuracy is

obtained, except for position 2 on Graph P2.0 and the d.efleotiona of
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ran P4.0.

Otner deflection measurements were taken to check symmetry of

ransv rse displacement. Excellent symmetry was produced in plates No.3

and No. 4 with approximately 1 difference for plate No, 1 and less

than 5% for plate No. 2. Measurements could not be made at the centers

of plates No. 3 and 4. for lack of space around the loading yoke.

5.15 Change in Directions of Principal Planes

The orientation of principal planes was measured on plates No. 2,

No. 3 and No. 4. at one and the same location for each test. The results

of these measurements. are shown on Graphs P2.12, P3.12 and. P4.13. The

accompanying figure indicates the position where the angle 0 was
measured. This position corresponds to positions 6,7 and 6 on plate

tests No. 2, No.3 and No, 4. respectively.

The object of determining these angles was twofold. Firstly, it

was to compare the experimental variation in this angle with the

predictions of the F.E.M. approach at some point that would remain

non-plastic over a wide range of elastic-plastic behaviour. Consequently,

the position shown was selected on plate No. 2. Secondly, it was to

assess the reliability of the assumption of constant angle 0 for plastic
nodes during plastic load increments (see section 3.4e). Therefore,

the same position was selected on plates No. 3 and No. 4. It was thought

that these latter plates would show plasticity in this area during the

early stages of elastic-plastic response.

The first objective was accomplished for plate No. 2. The second

failed to materialize since experimentally neither plate No. 3 nor

No. 4 reached plasticity during the load. range indicated by computer.
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Frtherrnore, from the computer results only plate No. 3 indicated plastic

flow at the point chosen but this did not occur until 98. of the

cr)nuter collapse load had been reached. This would have made a

comparison with experimental plasticity impossible anyhow. It should be

mentioned here that none of the computer solutions were available before

the slab and plate teats were completed and therefore a proper choice of

position for measuring strain could not be predetermined. As a result

the graphs presented only satisfy the first objective.

Hiwever unsuccessful these attempts were, the results of Graphs

P2.12, P3.12 and P4.13 are encouraging. With the exception of the results

of C-raph P4.13 during the first half of the load range, the form of

variation in experimental results is closely reproduced by the F.E.M.

model for all three tests. The differences between experimental and

analytical are practically constant throughout the load range. That is,
o o	 0

3 , 5 and 8 for plates to.2, No. 3 and No. 4. respectively.

5.16 vidence of Inhomnogeneous Deformation

Photos 5.1 and 5.2 show evidence of inhomogeneous plastic deformation

in the form of Lüder lines appearing in the mill scale. These lines

appear as a result of the maximum shearing generalized stress attaining

one half the limiting fully plastic bending value CM). The plate

material between the lines remains wholly elastic while the plastic

straining occurs in the line.

In Photo 5.1 this phenomenon ocours as a result of the plate material

shearing plat-to-atmnsphere at an angle of 4.5° to the plate surface.

This pattern appeared on plate No. 1 on the compression face only, at

least to the naked eye. This plate had a mill scale that was not
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Photo 5.1

Photo 5.2
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removed, before testing since the plate was tested. as purchased. The

other three plates were normalized and. the mill scale removed before

testing. Consequently, similar patterns (shearing plate-to-atmosphere)

did not appear, at least to the naked eye. On plate No. 3 Ler's

lines formed. near the corners of the plate on the underside. As seen

in Photo 5.2 these lines form a criss-cross pattern at approximately

5O to the principa], plane directions. This represents plastic

behaviour resulting from the maximum shearing generalized stress

satisfying the Tresca +, - yield conaition in the plane of the plate.

The only strain measurements made near the corners of the plates

were made in plate No. 1. Unforturately due to one faulty gauge in

the strain rosette, only the largest of the principal generalized.

stresses could be determined by using the gauges on the diagonal. This

principal value did. not reach 	 at collapse and it was not possible

to determine if thejM1 - M2 1 = M state existed. there or not. But
p

since this plate had? sufficient mill scale to show in-plane shear

plastic straining and. none was evidenced, it is reasonable to assume

that the +, - Tresca condition was not satisfied..

To illustrate possible generalized stress states that could produce

the effects indicated by Photo 5.1 and 5.2, Mohr circles are presented

in Figure 5.13 accompanied. by two-dimensional projections of the Tresoa

criterion and. the possible stress state.
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Figure 5.13

For Photo 5.1
	

For Photo 5.2
(a)
	

(b)

Possible Generalized. Stress States for Photos 5.1 and. 5.2

In each of Figures 5.l3a and b the maximum shearing generalized

stress has a value of Mp and therefore satisfies the Tresca criterion.

From the projections of the stress state of Figure 5.13a onto the

M1 ,M3 and M1 1 M2 planes, it is clear that both conditions indicate

	

plastic straining in the plane of the plate.	 Mp in the M1 , M2 plane
13	 ..	 o

arid in the M , M plane plastic shear straining ocura at 5 to this

plane since M3 0 and. the stress state occurs at the obtuse angled corner

of the yield locus.

The other stress situation that could. have resulted in the lines

on Photo 5.2 appears on the yield locus at only one point in Figure 5.flb

(i.e. IM - M21 = Mp). Therefore, in this case, the plastic straining

is due to shearing failure in the plane of the plate and because of equal
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shear stresses on orthogonal planes, a criss-cross pattern develops.

From the computer solutions for the metal plate tests, the

formation of Ltider's lines on plate No. 3 is well substantiated since

only plate No. 3 had a generalized stress state near its corners that

would satisfy the Tresca criterion in the +,— quandrant. One corner

of the plate analysed is shown in Figure 5.l1 on which is superimposed

the stress conditions 1 M1 — M2 = Mp produeed by computer at the collapse

stage of the analysis. Also shown are the load ratios P/P0 at which

the nod,e had attained a value of (M1 — M2) sufficient to satisfy the

Tresca condition. The region over which the LUder's lines have formed

in Photo 5.2 is also shown.

Plate No.3 — Analytical Evidence of +,— Tresoa Yield

Figure 5.14
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From the results shown it appears that analytically, the generalized

stress conditions requ.ired to satisfy the 1 M1	 = Mp condition would

occur near the corners at load ratios above .86. This is the only

analytical solution in winch the Tresca criterion is violated by

assuming a square yield locus.

Since experimental evidence suggests that only one plate test

involved a shearing type failure, it is reasonable 	 conclude that

plastic straining in the other plate tests vas caused by generalized

stress states that can be positioned on a square yield locus. If so,

then the use of a square criterion in the computer analyses for the

plates tested is justified. The experimental-analytical comparisons

of results previously presented seems to indicate that this is so.
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CHAPTER 6 - ADDITIONAL COMPUTIR SOLUTIONS

6,1 eneral Remarks

In this chapter three elastic-plastic slab analyses are presented

and their collapse stago gonoralizod stross fiold are onrnparocl with

certain lower bound solutions. Only the plastic flow patterns for

the analyses are given, although the complete histories of generalized

stress and displacement fields were also established.

The choice of solutions made here was influenced by the "junction

modes" 1escribed. by Wood 22 in which square slabs with edge beams of

= 1.0 develop collapse mechanisms of a rectangular type, a diagonal

type or any combination of either of these types. Consequently, the

three analyses chosen were for the following square slabs each carrying

a uniformly distributed load.

(i) Simply supported

(2) Free edges with corners supported vertically

(3) Edge beanis.with Y = 1.0 with corners supported vertically
The x direction for all the graphs of the chapter is directed

along the. line marked I from left to right on the figure accompanying

the graphs. The y axis coincides with the center line shown and is

directed from top to bottom of the figure.

Simply Supported Square Slab

6.2 Plastic Flow Pattern

The plastic flow pattern for this slab is shown by Pattern No. 9

in which a diagonal collapse mode appears. This solution results in
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very little redistribution of generalized stress between the elastic

limit and collapse stages of load. As a result the final generalized

stress field is much the same as the elastic one except, of course,

close to and along the diagonals.

A definite band of plasticity develops about the diagonals with

14 stages of plastic behaviour resulting in a collapse load. 2% above

the limit analyeis value. One explanation for thia diaorepanoy ii the

fact that the directions of plastic flow lines are diagonally across

the elements and., since the elements remain wholly elastic within their

boundaries the mechanism cannot form entirely in accordance with the

kinematics required. for a diagonal mode.

Before collapse eould. occur the outer boundaries of the band had

to reach the support (plastic stage 14 in Pattern No. 9). It is possible

that from this result diagonal type modes can only develop (when using

square or rectangular elements) if all nodes of the elements on the

diagonal are plastic allowing sufficient reduction in bending resistance

to form a mechanism. This might explain why the band of plasticity

extended. to the supports since in Pattern No. 9 all the diagonal elements

have four plastic nodes.

It is not to be concluded that because the diagonal mode developed

in this solution gives only a 2% error in collapse load that the use

of. square elements will always give as small an error when diagonal type

modes are involved. The simply supported. slab is not the best type of

-	 problem to solve in attempts to investigate this accuracy because of

the little redistribution involved. The limit analysis collapse load.

is only about 3) above the elastic limit load and. the computer collapse

load is of the same order above the limit analysis value.
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6.3 Corpr son with Lower Bound. Solutions

The generalized stress field at collapse (P/P = 1.021) is compared

with those for the unique solutions (i) and (2) outlined in Chapter l.•

Comparisons are made across one half of the slab span (W2) at three

positions as shown on the figure with Graphs 6.1 to 6.4. The solution

referred to as rwood" is actually due to Prager as reported in Chapter 1

but has been summarized by Wood4.

It is clear that the Valiance solution is very similar to the finite

elemen results. The Wood. solution is a good indication of the absurd

generalized stress fields which can sometimes occur for lower bound

solutions. It is quite unreasonable to believe that, for the simply

supported sla6 which is almost in a collapse state at the end of the

elastic limit, the final generalized stress field would look anything

like Prager t s solution.

The error in generalized stress perpendicular to the boundary in the

element method is shown in Graph 6.2 and represents less than 	 of the

maximum value.

In Graph 6. the support reaction between slab and beam results

in the distribution of load on the support as shown. In addition

to the distributed load, there exists a concentrated corner reaction

acting upwards on the beam, downwards on the corner of the slab. This

reaction is the same for computer and lower bound solutions. Again the

Valiance and F.LM. solutions are similar. The integration of these

reaction distributions around the slab periphery combined with the

concentrated corner reactions should equal the collapse intensity of

load. For the Valiance and Wood solutions this is so. In the F.E.M.
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solution an underestimate of total reaction results in a difference

of 12% between reaction and applied load. This error is partially

due to the approximate nature of the element method along boundaries.

The distinct difference between the lower bound solutions and

that by the element approach is the indication of redistribution

of generalized stresses resulting in irregularly shaped distributions.

Square Slab with Free Edges and Corner Supports

6.4. Plastic Flow Pattern

This solution resulted in 27 plastic nodes forming out of the 28

possible. The collapse load was .5% below the limit analyses value.

This error is most likely due to round off errors occuring in the

scaling procedures to determine plastic nodes. The collapse mechanism

in Pattern No. 10 is the same as that given by limit analysis with the

first Indication of plasticity occuring in the most highly stressed area

at mid-span on the edges. The final plastic node occurs at the center

resulting in collapse of the plate.

6.5 Coirparison with a Lower Bound Solution

This solution when compared with the unique solution (3) of Chapter 1

shows a remarkable similarity as indicated by Graphs 6.5 to 6.7. For

the cnmParisonY = o when determining the twisting generalized stress

of equation 1.17. The lower bound Mx and My generalized stresses stiown

here are identical to those previously given for the "Wood" simply

supported case and in fact these values are the same in the next solution

that is presented. Wood has based these solutions on the Prager stress

field mentioned earlier. The only difference between the "Wood" lower
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bound. generalized stress fields is the value of Mxy.

From Graph 6.7 the F.E.M. gives Mxy to be less than M which means

that the corner reaction between slab and. support is less than it should

be. The results show that since the corner node did. not become plastic,

the reaction is approximately 17% below the required value to support

the collapse load indicated. by Pattern No. 10. This error could be due

to the usual inconsistencies experienced on boundaries in finite

element analysis. However, this difference is larger than is usually

expeririced on boundaries and sdrne may be due to the way in which plastic

flow is allowed only along element boundaries (see section 3.5b) resulting

in a displacement field. which does not permit the twisting generalized

stresses to increase properly. This may also explain the small differences

between the analytical and unique collapse loads that occur in all three

solutions presented here.

The reasons for the discrepancies in support reactions, variation of

twisting generalized stress, errors in generalized stresses on boundaries

that do occur have not been investigated in this study and. therefore the

statements made above are strictly conjectures on the part of the writer.

Square Slab with Edge Beairs and Corner Supports

6. 6 Plastic Flow Pattern

This solution results in the plastic flow distribution of Pattern

No. 11 in which 23 stages of plasticity are experienced before the final

collapse mode forms. This problem is an example of the "junction mode"
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cases presented by Wood22. From Pattern No. 11 it is quite evident

that the combined diagonal and rectangular modes have almost completely

formed. The actual collapse mechanism is a rectangular type involving

collapse of the edge beams and the slab.

The	 = 2 value was chosen arbitrarily as a possible practical

value. This may explain why the diagonal mode did not extend closer

to the corner. As "4' is made larger, the principal generalized 8treBseS

perpendicular to the diagonals increase in magnitude and could result

-	 in mor plastic behaviour along the diagonal. However, the results of

Pattern No. 11 are proof of the existence of junction modes for the

critical beam ratio, '' = 1.0. The collapse load again occurs .% below
p

the limit analysis value.

6.7 Comparison with a Lower Bound Solution

The results from the computer analysis for generalized stresss

are again compared with the statically admissible stress field for the

unique solution (3) of Chapter 1 withY = 1.0 in equations 1.15 to 1.19.

The stress fields are quite dissimilar as seen in Graphs 6.8 to 6.11.

In G.raph 6.8 the generalized stress Mx shows a wide region of plasticity

covering one half of the span length (along line 1). It also shows

that at the slab-beam interface (line 3) where the beam is plastic, there

is a sharp increase in Mx resulting in the slab becoming plastio after

the beam.

A further difference between these solutions is the edge reaction

between slab and beam. The load delivered to the beam from the slab is

shown in Graph 6.11. The concentrated reaction from the P.E.M. solution

18 25% less than that given by Wood. This is evident from Pattern No.11

in which the corner of the slab does not become plastic and. therefore
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R = 2Mxy is less than Wood's result. It is also quite evident from

Graph 6.11 that due to the plasticity at mid-span on the beams, the

beams shed their load from the center of the span towards the ends.

Coirparing support reaction with applied load results in an under-

estimate of reaction.

6.8 Concluding Remarks

• The lower bound generalized stress fields used in comparison with

the F.E.M. analyses were each based on the Prager solution (i) in

Chaptet 3. with th important exception of the Valiance solution (2).

It is quite clear that for the simply supported slab, Valiance has

given an excellent stress field when compared with the FILM. results.

For the other two solutions the lower bound comparisons show that

Wood's stress fields are excellent for the case of free edges but rather

questionable (from the practical point of view) for the simply supported

slab and the "junction mode" solution.
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CHAPTER 7 - CO?'CU3DIN DISCUSSION AND FtJTrJRE RESEARCH

7.1 Cerieral Discussion

Few attempts have been made to produce elastic-plastic analysos

of two dimensional plate continua in bending. In this respect, the

present application of the finite element method to the solution of

elastic-plastic plate and slab problems is the first of its kind to

be reported. As is usual with first attempts, more questions remain

at the end of the study than were present at the beginning.

The foundations of the present proposal lie within the development

of the finite element method. With the present state of knowledge

on the use of displacement functions for elastic element bending

behaviour, it is not surprising that application to elastic-plastic

problems has not appeared previously.

The procedures developed in this thesis have been successfully

used. in producing computer solutions which when compared with

experimental results show good agreement.

In each of eight solutions that are compared with experiment,

the oomputer collapse load is identical to the limit analysis upper

bound value (no lower bound solutions exist for these plates and

slabs). A good deal of redistribution of generalized stress occurs

in each of these solutions. The ranges of load over which plastlo

behaviour is traced varies from 35% to 6c% of the collapse range,

thereby testing the reliability of the method. to predict plastic

behaviour over a wide range Qf load.

The computer collapse loads for three analyses that are not

compared with experiment differ from the limit analyses values. The

largest difference is 	 above the limit analysis value and the
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smallest 0.5% below.

The collapse mechanisms of the eleven solutions presented are

clearly indicated by computer. A rectangular mode developed in all

but the simply supported case, in which a wide band of plas'ticity

forind. a diagonal mode.

A comparison of computer results with experiment shows the

generalized stresses for the slab tests to be the least stiafactory.

The primary cause of discrepancy is the flexural stiffness assumed

for tile F.E.M. model. The stiffness of the uncracked concrete section

was of the order 10 times greater than that for a cracked section.

Consequently, the early elastic behaviours showed little agreement.

Better agreement is seen when the elastio-plastiô portion of the

computer generalized stress curves are superimposed on the experimental.

The agreement here indicates that the computer closely reproduces the

general form of variation in generalized stress.

A further difficulty with investigations of generalized stresses

in slabs is the uncertainty of determining generalized stresses from

curvature measurements made in the slab.

The comparisons of experimental edge beam bending moments with

analytical for the slabs shows better agreement than do those for

generalized stresses. The effects of slab flexural stiffness on the

beam curvature are less than on the slab generalized stresses during

the early experimental elastic behaviour. Also, the measurement of

curvature on the steel beams and subsequent determination of bending

.nioments is more reliable than similar measurements made for the slab.

The correlation between experimental and analytical generalized

-	 stresses for the plates was much better than for the slabs. The plate
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results include effects of edge supporting beams and two different

point load, arrangements.

For three of the plates, the variation of principal plane

orientation at a point off lines of symmetry was investigated. The

F.E.M. model closely reproduces the form of variation with the difference

in magnitude between experimental and analytical being only a few degrees.

Deflections measured at the center and mid-span on the edges of

both plates and slabs were also compared with computer predictions.

For tl1e slabs, the computer overestimates deflections and underestimates

for the plates. For the plates the agreement is reasonably good over

the entire load range but for the slabs, the early elastic-plastic

range of d.eflections is not as good as the agreement closer to collapse.

The underestimate of slab flexural stiffness assumed for the analyses

is again responsible for the discrepancies.

Evidence of inhomogeneous plastic deformation in the form of

Lider's lines is seen in two of the plates tested. Only one of these

plates shows a shearing type failure in the plane of the plate. This

behaviour occurs close to the corners of the plate and indicates that

the experimental generalized stress field. satisfies the ., - yield

condition of the Tresca criterion in the plane of the plate. The other

plate indicates shear failure plate-to-atmosphere at 
50• 

The computer

solutions for the four plate tests performed. give generalized stress

fields based on a square yield. criterion and therefore do not reproduce

the +, - Tresca yield. behaviour. However, it is interesting to note

that of the four plate solutions produced only one would have satisfied

the +, - condition in the plane of the plate. This solution was for
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the saire plate mentioned above and indicates the same regidn near

the corner of the plate where the Ltiders lines form.

7.2 The Compoite Plate-Beam Behaviour

One of the most important features of the finite element method

in elastic analysis is its ability to deal with different types of

elements (shape and. material properties). For plate bending analyses,

thi8 feature allows the effects of edge beams to be included. The same

is now true for elastic-plastic analyses when it includes the composite

plate-beam yield behaviour developed in this study. The procedures

outlined. herein are simple and. are based on well established principles

of structural meohanics and. idealized plastic behaviour. The reliability

of the composite model in predicting edge beam effects is substantiated

by four experiments (two on pl&tes and. two on slabs). The experimental

bending moment distributions and evidence of plastic behaviour is closely

reproduced by computer.

G.enerally, the method described in this study has been well

supported experimentally. The procedures reported have been developed

to solve plate and. slab problems within the category to which the

experimental tests reported belong. Any extension of these procedures

to more complex problems (non-developable collapse surfaces involving

membrane forces and. the use of other yield criteria) must be made with

the knowledge of the limitations of the present approach.

7.3 Limitations of the Method

-	 (a) The Use of Rectangular Elements and the Flow Rule

Probably the moat severe limitation of the method is the veotoral

representation of plastic deformation used. By resolving the total
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plastic rotation into components along the orthogonal element boundaries,

a double plastio fold. develops at the nodes rather than a single line

of discontinuity. If the total rotation vector is directed. along

an element boundary, only then can the actual plastio rotation be

introduced..

Wherever yielding occurs in two orthogonal directions such that

the total rotation vectors have magnitudes of opposite sign and. whose

components along element boundaries cancel each other, no (plastic

rotati,on) discontinuity can occur. The total plastic rotations can

still be solved for arid the yield stress condition ihaintained in the

analysis. However, no kinematical representation of plastio flow can

be realized. For the procedures present herein, this limitation would

mean that the +, - Tresca oondition occuring on lines of symmetry could.

not be satisfied Icinematically if the plastic straining occurs at 4.5°

to the element boundaries.

(b) The Use of Other Element Shapes

The severity of the previously mentioned limitation is not fully

appreciated until elements with shapes other than rectangular are

considered.

Because of the vectoral representatiox of the total plastic rotation,

only two component rotations can be introduced along element boundaries.

Inorder to allow discontinuity between two adjacent elements, the

boundaries of the elements must be straight and when extended pass

through the node. At least two continuous straight lines (boundaries)

must exist at a plastic node inorder to allow components of plaatio

rotations to be imposed. between elements. Figure 7.]. illustrates a
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number of elements at a ooirunon node. None of the boundary 'ines are

continuous through the node and therefore plastic rotations cannot be

allowed. For example, if a component of a

Element Alement A

k

Figure 7.1

is specified along the boundary ij, the discontinuity in slope will

occur between elements A and. B. However, this cannot be allowed, since

element C would have to fold. about the dotted line of ij produced.

Similar arguments hold. for the other boundaries and elements. Figure

7.2 illustrates the necessary and. sufficient conditions (niiniinum of

two straight lines) for using the vectoral representation of plastic

rotations. Boundaries ilc and ii are straight and. continuous.

E	 I	 '
A

/ I	
a.

I'	 '

C	 B
ki

y
Figure 7.2

The two components of a are shown along these boundaries. Slope

discontinuity develops only between elements B and. C, C and D, E arid. F,

and F and A. If more than two straight lines occur, a choice of two

must be made. The best choice being the pair that produces plastic

flow as close as possible to what the actual plastlO rotation would

produce.
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In sunmary, the type of flow rule used in this study has definite

liniltations for general application in finite element analyses and if

used, care should be exercised in assessing its value to the analytical

results.

(c) Monotonic Load Application

A further limitation of the method 18 its inability to deal with

reversal of applied loading. The loads must be monotonioally increasing

throughout the elastic-plastic analysis. This does not preclude stress

1
reversal in the non-plastio areas but it does restrict it to a study of

reversal under increasing load. Stress reversals in the non-plastic

regions did occur both experimentally and analytically in this study.

Stress reversals in plastic regions, regardless of load application,

cannot be investigated by the procedures outlined herein.

(a.) Linear Approximations to Non-Linear Behaviour

This limitation is not peculiar to the present method but is found.

in all linear elastic-plastic plate bending analyses in which the

principal generalized stress equations are the yield. functions. The

non-linear form of these functions must be approximated by a linear

relationship that is assumed. to apply over small intervals of the

plastic load range. This linearization can be accomplished by writing

the principal generalized stress equations

M1 ' 2 =	 [isix^My+ /TMX-My) 2+2]
	

7.1

in a form

M1'2 = f(Mx,My,Mxy,Ø)	 7.2.
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Since Mx, My and Mxy are linear functions of load between ary two

stages of plastic behaviour, the only variable is the angle 0 of

which the

Tangent (20) = 2Mxy/(My-Mx) 	 7.3

Therefore, by maintaining 0 constant over small increments of load, an

approximation to equations 7.1 can be made. For the present study, this

approximation in the form of equations 7.2 is

= j. {Mx+My^ [(Mx_My)cosine (2Ø)-2Mxy sine (20)]) 7.4.

Equation 7.4. has proved to be an excellent approximation for the present

proposal.

The use of equations 7.4 results in an approximation to equations

7.1 once the angle 0 is assumed constant during a load interval. This

assumption is not strictly true at points off lines of symmetry where

the orientations of principal planes change as redistribution of

generalized stresses occurs.

(e) Limitations of Present Computer Size

Another disadvantage of the present method is the size of computer

required to produce the solutions. In the present study, the computer

program required all the available compilation store of the Atlas

computer at the University of London Computer Center. Since this

program analyses only one eighth of the square plate, any extension

of the method to more corp1ex studies will probably meet with some

difficulty in acquiring sufficient computer Btore and computational

time. However, the current limitations on computer store and. available
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time (a problem of computer speed) are not likely to be present in

the future as computers continue to become larger and more complex.

7.4 Comparison with Unique Solutions

The generalized stress fields and support reactions from three

computer solutions are compared with those from the lower bound solutions

to the unique collapse loads. These comparisons show how unrealistio

lower bound stress fields can be. Even for the same problem, completely

different stress fields are possible.

The theoretioal requirements to be satisfied in producing lower

bounds on collapse loads do not ensure that the admissible stress field

is a realistic one. In this respect lower bound solutions have really

only one purpose, i.e. to bound the collapse load. Consequently, it

is one matter to produce unique collapse loads by coincidental upper

and. lower bounds but an entirely different matter to suggest that

design should follow using the generalized stress fields from the

lower bound solutions. As an example of such a suggestion a recent

statement by Massonnet23 is quoted here:

"The aim of the present paper is to show that,......, we can

......(d.) find, for simply supported slabs, several new complete

solutions which, up to now, were only known as ld.nematioally admissible

solutions, with the advantage of guaranteeing the correctness of the

value found for the limit load and. of giving the distribution of

moments and of support reactions - this makes it possible to distribute

the reinforcement of the slab judiciously and to design its supporting

beams...... ;"

Admittedly, this quotation is puzzling since at the beginning
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it mentions simple supports and at the end, supporting beams. However,

the point is quite clear - the unique collapse load is determined and

the generalized stress field. with support reactions allows the slab

and supporting beams to be designed. If this attitude is to be the

aim of lower bound solutions then the present gap in the communication

link between the academic and the designer is certain to widen.

The writer finds it difficult to accept lower bound fields as

possible realistic ones unless they are intuitively obvious (most are

far frpm it) or if they have been supported by experimental evidence.

The lack of experimental evidence in support of lower bound solutions

is obvious, especially for reinforced, concrete slabs where most research

effort to determine unique solutions has been directed.

Of the very few unique solutions in existence, those reproduced

in this thesis when compared with the F.E.L solutions (which are

likely to be the most realistic of existing ones for the problem

presented) show that a realistic limit analysis generalized stress field

is not always produced. Except for the Valiance solution to the simply

supported slab, the lower bound solutions reported herein give constant

intensity of support reaction regardless of the supporting conditions.

Indeed, most lower bound solutions (whether for unique solutions or

not) result in constant support reaction since their admissible stress

field variations are usually of a parabolic nature. It is doubtful

whether such lower bound solutions give any reliable information about

support reactions.
S

7.5 Future Research

In the application of finite elements to elastic-plastic slab

analysis, the problem of oracidag of conorete and subsequent reduction
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in flexural stiffness should be included. This could be done in the

present proposal by as&uniing an uncracked. stiffness before cracking

and. after cracking to allow the elements about a "cracked" node to

reduce their stiffnesses. Until a cracking response is included, the

generalized stress fields etc. developed over the elastic and early

elastic-plastic load ranges will not compare favourably with the

experimental.

Beyond the cracking stage the problem of satisfying the flow rule

assocated with the yield criterion chosen is of primary importance.

The present proposal does not allow the correct plastic flow to develop.

However, this is governed by the number and type of displacements

allowed. at the element nodes. Consequently, other forms of displacement

functions should be investigated that will allow a better approximation

to the real plastic flow than does the function presented herein. Possible

alternative approaches mi&ht be considered using the developments of

previously mentioned current researoh'6.

If a more realistio way of representing the flow rule can be

established, the application to metal plates will require the use of

the Tresca or von Mises criteria. Therefore, additional research will

be needed to investigate analytically the use of these types of criteria.

The problem of strain hardening for plates can also be studied.

The present proposal could include an idealized linear work hardening

rule. For example if an expanding square yield. locus with a stationary

origin is represented in plane space by functions such as

-	 Mt = M+hR	 7.5
q	 q
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in which h is a constant, then substituting into equations 3.60 gives

'ID	 I
Mt =	 IKt 	 Kt8_h II n 

f	 7.6q	 1qn	 qp
Ii P

Therefore, linear strain hardening can be included. into the general

scheme for the present plate analyses.

Future work on the effects of membrane forces on the elaatio-plastio

behaviour of plates arid, slabs is required.. Here the finite element

method may prove . a useful tool.

With the facility of finite elements to deal with elements of

different shapes, physical and material properties, it would be

interesting to explore the use of this facility for yield behaviour of

elements with different yield properties. This might be attempted by

assuming independent yield behaviour for each element at a common node

and introducing a concept similar to that used herein for plate-beam

composite yield behaviour.

It may prove more profitable to use other numerical variational

-	 methods such as the Localized Rayleigh-Rit 9method in which the Rayleigh

functions describe behaviour over small regions of the continuum rather

than over the complete continuum. The use of the finite difference

technique should. also be more fully investigated for use in elastic-

plastic analysis than it has been up to the present.

Finally, more experiments on metal plates are definitely required

particularly for medium thick plates like those reported herein. The

fact that collapse behaviour is observed at loads close to those

predicted by limit analysis means that generalized stress fields can
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be studied and. compared with lower bound fields. Although, these types

of metal plates have less obvious application than do reinforced concrete

slabs, their investigation may lead to a better understanding of

admissible stress field distributions. The question of edge supports

and. load transfer from plate to beam can be studied. The important

experimental consideration is to reproduce as closely as possible the

boundary and loading conditions assumed analytioal].y,
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APPEI'DIX I - MATRICES FOR ELASTIC ANALYSIS

Al.l Non-Dim Psirnl Parameters

The non-dimensional form or the parameters used in the derivation

of the matrices contained in Chapter 3 are as follows:

L - is a representative length of the plate system

X=x/L Y=y/L

W=w/L A=a/L B=b/L

P = qL3/'D (for a uniformly distributed load. q)

P = pL/D (for a concentrated point load p)

t =	 a = Dy/D	 = Dxy/D

w,x=W,X

DL

YP=

	

	 W]OC = W,XX/L

ML

w,xxx = W,XXX/L2 etc.
Db

Table Al.l
Al.2 Rectangular Finite Element Displacement Function

The displacement function of equations 3.7 when written in non-

dimensional form is

W = A1+A2X+A3Y+AX2+A5XY^A6Y2+A7X3+A8X2Y+A9XY2+A1 0Y3+A1 iX3Yi 2U 	 • 3.

The coordinate positions for nodes i, j, k and 1 of the rectangular

element (see Figure 3.12) are simply

± = (o,o)

j = (A,o)

k = (A,B)

1 = (o,B)
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with respect to the individual element system of axes.

The nodal displacements of equations 3.8 in non—dimensional

form for node i as an example are

WI	W

u1 =	 =	 = Ju(x,Y)J1JAI

	
Al. 3

Gy	 —WX

Substituting the values of X and Y of equation Al.2 Into equations

Al.3, the displacements for all four nodes become

which when written in full produces

(See next page)

Al



/
221
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o o 0 0 0 0	 0 0

c.J	 cJo 0 0 0	 0 N	 0 0 0

C.,'
o o 0	 0	 0	 0 0 0

CsJ	 C','o	 o • o	 0	 0	 0	 C'J	 0	 C'J	 0
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Al,3 Internal C.eneralized. Stress Matrix

The curvatures of equations 3.10 in non-dimensional form become

-W,J0t	 000-200-.6X-2Y00-6XYO A1

-W,YY	 = 00000-200-2X-6Y0-6XY :

W,XY/L	 00001002X2Y03X23Y2	 Al2

V

That is

K=BA	 Al.7

Substituting the coordinate positions of the nodes (equation £1.2)

into equations AL6 and. substituting the result into equation 3.12

leads to the generalized stress matrix of

M = DBC1U
	

Al. 8

If the inverse of matrix C in equations £1.5 is

(See next page)

S



223

c_•1 =

1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0

o	 0	 -1	 0	 0	 0	 0	 0	 0	 0	 0	 0

o	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0

o	 2	 . 1..	 0	 0	 0	 0	 0	 0	 0
A2	 A	 A2 ____ A

	

_j_.	 I	 I	 I	 0	 1	 0	 0	 j_	 0	 1
AB..A	 B	 AB A	 AR	 AR

	

_.L	 .a	 0	 0	 0	 0	 0	 0	 0	 .1-s	 I 0B2 B ___ ___ ___ ___ ___ ___ ___ B2 B ___
2 0 -	 - L.	 0 -	 0	 0	 0	 0	 0	 0

	

A2	 A3	 A2

0	 0

	

--- 0 - _a -i-- 0	
AR A2B	 AR

	

A2B	 AR A2B

2	 0 ---'-	 2	 0	 --	 1	 0 -	 1	 0

	

AR2	
2 -	

AR2 - AB	 AR2 AR

2	 1	 0	 0	 0	 0	 0	 0	 0	 2	 1	 0
B3 B2____ ___ BB2 _

2 0	 —a-.	 o	 2	 o 0
- AB __ A2B AB ___ A2B AB ___ AB AB	 -

2	 1

	

2	 1	 - 2	 1	 0	 ?	 ...J.	 0

	

AB3AB2____ 2	 AB AR ________

1.
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then the gereralized 8tresses for an anisotropio rectangular element

are given by

S

(See next page)
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A1.4 Elastic Stiffness atrix

The elastio stiffness matrix for the anisotropio rectangular

element as derved. by equations 3.18 is presented here in explicit

form in the following nodal force-displaoement relationships. (See

next page)

Al.5 Edo Reaction Matrix

For the present study the edge reaction between plate and. edge

support was determined, only along the boundary Y = 1/2 of Figure 3.3.

This rpaotion is given by

Vy = -D ( a W,YYY+ w,xxy)/L2
	

Al.12

in which	 = t +4j, and acts downwards on the plate. These reactions

are computed only at the boundary nodes. The required reaction matrix

for nodes k and. 1 of the element shown in equations AJ..l1 is

6 /A2B, O,-2 /AB7 -12o/B3-6 -, /AB,-6a/B - /AB,

12a/B3+6i /A2B,-6a/B	 11/AB-6/A2B4O,2j/AB

-1 20/B3-6 r /A2B,-6a/B	 /AB 6 /A2B, O2 /AB,

-6, /A2B O,-2q /.AB,6 /A2B+124/B -6a/B -4. 'fl /43

41.6 Applied. Load. Matrices

In the finite element method, external loading can only be applied

at the nodes of elements. These loads must be in equilibrium with the

nodal forces. For bending analyses such as those described herein, the

applied loads can consist of vertical point loads, bending couples or a

combination of these. The bending couples can only be applied in the

orthogonal directions dictated by the bending forces (mx and my) at

nodes.
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As an example, consider a loading case in which vertical point

loads P1 and. P. are applied at nodes I and j respectively arid the

bending couples C 
k 

at node k. If there are only nine nodes in the

entire structure (i.e. i to q) the structure's nodal force matrix would

be	
F1	 ZV

S	 =	 Al.14.

F
q	 q

Zmxq

mY

In order to maintain equilibrium with externally applied loading this

force vector is simply replaced by the load. vector. That is

z

mx1

Z

z v

Z

Z XXT

Z IflX

.

S

S

ZU?q
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For a uniformly distributed load, two approaches are possible in

representing this load by nodal equivalents. One approach is to divide

the distributed load on one element into equal vertical concentrated

loads at each of the element nodes.

l.2
A second approach is more consistent with the derivation of

the stiffness matrix and is based on the virtual work principle that

results in nodal forces equivalent to the distributed loading.

Consider a set of nodal forces N equivalent to the distributed

loadin on one element. The work done by these nodal forces during

the unit virtual displacements äu = I is

WN_	 NINN	 Al.16

The work done by the distributed loading q is

Wq =595 w)Tqdxdy	 Al. 17

Restating equation 3.7 in matrix form as

w = La
	

A]. • 3.8

and recalling equations 3.9

Sw = LC '1 bu = LC'11 =	 Al.19

Substituting equations Al.19 into Al.17 and equating the work done gives

the nodal forces to be

N 
= 5,tc1 )Tq	 = (c )TJJTqdxaY	 Al. 20
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N1

Ny1

ria]. form equi

AB/4.

A2B/24.

AB/L4.

=	 A2B/2)+

AB/14.

AB2/24.

A2B/2L

AB/4.

-A2B/2l.

It is apparent from equation Al.21 that to properly represent

the distributed, load, bending couples must be included at the nodes in

addition to the vertical point loads. At interior nodes where four

elements join, these couples cancel one another and only the vertical

point loads remain. However, along the boundaries of plates carrying

uniform loading these couples exist, producing bending norma]. to the

boundaries.

In the three analytical solutions presented in Chapter 6 with

distributed loads, these loads are represented by a set of nodal forces

given by equation .A1.21.

A1.7 Beam Element Stiffness Matrix

The beam element stiffness matrix is derived by following the same

procedures as those for plate elements. Based on the derivation of
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section 3.8b the sti.ffness equation for beam elements given by equationa

3.86 are as follows:

- for a beam element with longitudinal axis along the x axiB

with nodes 1 and. k

.9

12'x	 0

A3

U	 'xtYx
A

-6 'x	 0

A2

-iox	 'I

A3

0 •	 -'tYx
A

-6 'x	 0

A2

-6Yx	 -12x	 0	 -6Yx

A2	A3

0	 0	 -'ct'x
	

0
A

0
	

2è'x

	

A2
	

A

	

l2Yx
	 6lc

A2	A3
	

A2

	

o0	 _____	 0
A

___	 6Yx	 0

A	 A2
	

A

Wi

Qx1

Qy1

A1.22

in which	 = DbJDL and Yxt = GJ/'Db.
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- for a beani element directed along the y axle with nodea i and. 1

I2y	 0	 -I2	 0

	

B 3	B2	 B3	 B2

0	 -6y	 0

	

B2	 B	 B2	 B

	

0	 0	 tYy	 0	 0	 _____
B	 B

-l2Yy	 -6'y	 0	 I2Yy	 -6Yy	 0

B 3	B2	 B3	 B2

iz	 0	 -6Y7	 0

B2	 B	 B2	 B

0	 0	 -Y3rt1y	 0	 0	 ___
B	 B

i Yy = Db3/DL and yt =

Wi

gxi

oyi

A].23

Wi
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.A.1.8 Beam Eleirent Bendng and Twisting Moment Matrix

The bencing moments given by equations 3.78 and. twisting moments

by the convention of Figure 3.16 are oombined. into the following matrix

equations:

- for beams along the x axis with nod.e 1 and k

Wi

Ox1

Oyl

A1.24

Wk

t

Mx1

T1

I

D-

0	 -4.Yx	 -6Yx	 0	 .-2Yx

A2	
A	

A2	
A

0	 XxtYx	 0	 0	 -YxtYx	 0
A	 A

-6'x	 0	 21x	 6Yx	 0

A2	
A	 A2	 A

o	 -xtYx	 0	 0	 YxtYx	 0
A	 A

OXk
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APPENDIX II - COMFUTR PROGRAM

A2.l Type of Computer and Languag

The computer program was developed for use on the Atlas computer

housed at the University of London's Computing Center. The language

used was EXCHLF autocode because of it8 simplicity of statement form

and its ability to manipulate large arrays of numbers with the very

minimum of program effort.

The Atlas computer performs approximately 10,000 machine instrtotions

per xniute arid operates a vast execution store. The compilation store

available (store required for compiling the object program) has an

economical limit specified by the U.L.C.U. and is approximately 150

blocks (one block consists of 512 storage locations, each comprising

one J4 digit number). In single length form the Atlas provides 12

decimal digits in its computation. Double length facilities are also

available.

A2.2 General Remarks

At the outset of this study a computer program was developed to

solve only th simply supported uniformly distributed load case of

elastic-plastic plate bending as a trial for the finite element approach.

Once this solution was complete and the method appeared to work sufficiently

well, an automated program was next developed to analyse other types of

plates. However, it was quite obvious during the development of the

first program that the total cowpi.lation store required for such a

procram would be large even for the Atlas cmputer. In fact the final

program store exceeded the allowable capacity of 150 blocks. To overcome

this difficulty the program was semi-compiled onto magnetic tape and.
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fully compiled in sections that were not interconnected by the general

program flow. Once one section was fully compiled, portions of the

storage area used. could be c'eared out and made available for the

following sections of program. In this way the program was ompiled

into the computer from its magnetic store library requiring 135 blocks

of final compiled store. Unfortunately, the size of the program placed

it in the stream of Complex Work at U.L.C.U. and thereby reduced. the

availability of computer time for this study.

Approximately one year was required to complete the analytical portion

of this study which included the development and. ue of the automated

program.

A2.3 Purpose of Computer Program

The final program was developed to analyse isotropic square plates

supported and loaded symmetrically about the central axes and diagonals,

i.e. only one eight of the plate was analysed.. This required the use

of 28 nodes for a 12 x 12 subdivision into finite elements (see Figure

3.3).

The loading and boundary conditions were specified by indices

placed in the input stream. The program also included the effects of

edge beams on the elastic-plastic behaviour of the plate.

Each time a node becomes plastic the program outputs complete

descriptions of the generalized stress and displacement fields, the

applied load causing plasticity, the edge reactions and the edge beam

bending and twisting moments if they exist.

Although many plate problems could. be solved by this program, only

those reported in this thesis were produced. because of the lack of
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available computer time.

A2.4. Crnpiltion and Execution T me Used.

The U.L.C.U. allowed. 30 minutes of computer time per month to

each university user (based. on compilation of program, execution of

analysis and. running cost time). Tins amount of time on the Atlas

computer is quite sufficient for normal computer work. Table A2.1 is

a summary of the times required. for the solutions presented. herein.

*
SOlUTION	 COYPILATION EXECUTION TOTAL TTh(E 	 PLASTIC ?ODES

nan.	 nan.	 N

Slab lb. 1	 0.4.	 3.87	 10.82	 8
Slab No. 2	 tt	 5.25	 13.76	 11
Slab No. 3	 3.87	 10.82	 8.
Slab No. 4.	8.58	 21.39	 19
Plate No. 1	 3.87	 9.27	 8
Plate No. 2	 5.64.	 14.76	 12
Plate No. 3	 St	 7.00	 15.94.	 15

Plate No. 4.	 6.45	 17.14.	 14.

Simple Supports	 6.39	 i6.L.8	 14.
Free Edges	 "	 12.67	 30.20	 27
Edge Beams '=1.O	 11.25	 27.26	 20

* Total time available per month = 30 minutes.

Table A2.l

On the basis of the solutions presented here approximate time

and cost formulae are:

Program Compilation + Execution Time = .5(N+1) minutes

Total Computer Time = 1.25N minutes

Total Cost	 (.C6.Os.Od.)N

where N = number of plastic nodes in the analysis.
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A2.5 Discussir,n of Progrm

Only a brief outline of the program is given here. The actual

program typescript consisted of approximately 130 foolscap pages and.

consequently is riot presented here. Furthermore, any complex program

if presented in computer language is of little value to the reader.

Therefore the program is discussed here in accordance with the flow

diagram of Figure A2.1.

The program consisted of 65 routines, 7 programmes (subprograms)

and thd supervisoiy chapter controlling the flow. Each section of the

flow diagram is described below in the order in which they are entered

during program execution.

(i) Specify input data according to analysis desired.

There are sixteen items that are standard input data.

- the number of times the complete set of stiffness equations

are output for inspection before they are solved. This

allows the checking of elastic-plastic coefficients at each

stage of plasticity if desired.

- the number of times the solution of the equations is to be

refined during each stage of plasticity.

v - Poisson ratio. of plate material.

- D1 /D where D = Et3/12(1- v2)

a- Dy/D

4- Dxy/D

ML - non-dimensional limiting value for yield criterion of plate

D	 material.

y = Db - elastic stiffness ratio (beanv'plate)
C DL



START
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Specify input data according to analysis desired

Compute elements of matrices required

Assemble K(E.E) portion of total structural stiffness matrix

STOP

Apply external loading

Introduce boundary
conditions

Solve for node
displacements

- Is
ment of solu
	 0

equired.?	 -

Yes

Refine solution to
degree secified

8 Calculate plate generalized
stresses Mx, My and. Mxy at

all nodes

15 Check accuracy of yield
function approximation for

non-linear principal
generalized stresses at
plastio nodes and. change

orientation of plastio flow
lines if necessary

Assemble the parts of
K(E.P), K(P.E) and. K(P.F)
portions oç elastio-p].astio
stiffness matrix relating
to plastic behaviour at

current plastic node (for
beam and/or plate)

requested. number
of nodes become -

13 Output results according
to analysis specified.

I 12 If beams exist check for
beam yield. behaviour and

I	 adjust generalized. stress
I field., displacements etc.xis t?

if beam is plastic
Yes

9
Calculate edge beam bending

and twisting moments

10
Calculate rincipal generalized.

stresses M and.	 at aU nodes

11 Adjust generaLized stress
field to satisfy the yield
criterion at one node in

the plate

4 Yea

Isari
elastic-plastic

solution
required?

Figure A21
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=	 - beam torsional stiffness ratio

Mb - limiting bending moment for edge beams
D

= Mb - plastic strength ratio
ML
C

n3 — round off parameters for comparing numerical values

eg. n3 = 10 n = .5 rounds off to SIX places of decimal

n5 - applied load index

, 100 - indicates a uniformly distributed load.

20 - indicates point loads

3 - indicates applied bending couples

123 - ind.icates a combination of all three load types

- the number of nodes that are to become plastic before the

solution terminates. If n6 = 0 only an elastic solution is

presented.

- if n7 0 the approximation to the yield function is checked

at plastic nodes off lines of symmetry and if necessary,

updating procedures are used.

The remaining input data describes the applied load values and

boundary conditions.

- value of uniformly distributed load, if n5 contains 100

n9 - number of nodes at which point loads are applied if 	 contains

20

- node number
nil - point load vaiuej repeated n

9 times

- number of nodes at which bending couples are applied
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- node number
n - value of bending couple} repeated n 12 times

n15 - number of nodes at which boundary conditions must be satisfied

- number of nodes where boundary condition exists

- boundary condition index

100 - indicates vertical displacement is zero

20 - indicates slope about y axis i8 zero

3 - indicates slope about x axis is zero

,	 123 - indicates encastered boundary

The n16 and n17 integers are repeated in pairs n15 times.

The loading and. boundary conditions specified by the n5 and n17 in.ices

are made symmetrical about the central axis and. diagonals of the square

plate.

(2) Compute elements of matrices required

These matrices were derived and presented explicitly in Chapter 3

and Appendix I respectively.

(3) Assemble K(E.E) portion of total structural stiffness matrix

This portion of the total stiffness matrix is established at the

outset of the analysis and remains unaltered during the elastic-plastic

analysis except where the composite yield behaviour of plate-beam elements

requires the separation of nodal force equilibrium as described in

section 3.9c.

(4.) Apply external loading

The external loading is applied in accordance with the n 5 index

described, above.

(5) Introduce boundary conditions

The boundary conditions are satisfied in accordance with the
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index described above and results in rows and corresponding columns

being removed from the analysis.

(6) Solve for node displacements

The equations are solved by G-aussian elimination with row interchanges

to reduce rounding off errors. There is a maximum of 154. equations for

plate-beam systems. That is, five degrees of displacement freedom at

each of 28 nodes in the plate, seven equilibrium and seven yield equations

for the beams.

(7) Rfine solution to degree specified

Following the initial solution for the unknown d.isp].acements at

each stage of plasticity, the solution can be refined as mary times as

desired. The refinement procedures were applied to two of the solutions

contained in this thesis. The increase in accuracy was so small that

refinement was not necessary. The equations were well conditioned

throughout the elastic-plastic analysis.

(8) Calculate plate generalized stresses at all nodes

Each of the generalized stresses Mx, My and M were computed at

each node for each separate element and averaged so that only one

generalized stress state existed at any one node. These were stored

and made available for calculating principal generalized stresses and

computing scale faottrs for the yield behaviour of the plate.

(9) Calculate edge beam bending and twisting moments

These were computed and averaged at nodes joining beam elements

and made available for the investigation of their composite yield

behaviour with plate elements.

S
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(io) Calculate princi;al generalized stresses at all nodes

These are computed using the generalized stresses of (8) above

and the equations discussed in sections 3.14 and e. These are stored

for use in the next section of the program and constitute the major

output quantities required from the analysis.

(ii) Adjust generalized stress field to satisfy yield criterion

This portion of the program determines the plastio behaviour at

nodes in the plate and functions in accordance with the procedures

outlined in secti9n 3.7. It specifies which of the nodes has become

plastic during an increase in load and. gives the load causing plasticity.

The node number is recorded and the responsible principal generalized

stress indicated by a plasticity index. Thi8 index is simply an integer

such that if its value is

0 - the node is non—plastic.

2 - the principal generalized stress 	 =

10 - the principal generalized stress 	 = M.
-	 1	 212 - both principal generalized stresses M and M = IL.

(12) Check for beam yield behaviour

Once the yield criterion is satisfied in the plate at one node,

the beam bending moments are checked. and if any exceed the limiting

value for the beams, the load given by (11) above must be reduced such

that the beam becomes plastic and not the plate. The beam node affected

is noted and a plasticity index computed for this node. This index is

O - if neither beam nor plate element joining at the node is

plastic.

I - if plate is plastic but not beam such that beam has continuous

slope but different from that of the plate.
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2 - if beam has reached plasticity.

(13) Output results according to analysis specified

Output is presented after an elastic analysis or for an ela8tic-

plastic analysis after each stage of plastic behaviour whether it occurs

in the plate, beam or both simultaneously. The output for the collapse

stage of the third solution described in Chapter 6 18 shown in Tables

A2.2, A2.3 and A2,.

In Table A2.2 the input items n16 and. n are showD. In this

solutisn only the vertical displacement at node 28 (corner of the plate)

was prevented. In Table A2.3 the displacement field at collapse is

shown with the column matrix of displacements of equations 3.61 indicated.

Here the subscripts n and. p have the range of values 1 to 28. A.so shown

in this table are the angles of principal plane orientations and of

plastic flow lines as described for Figure 3.13a. In Table A2.4., the

violation of the yield criterion is indicated. This occurs as a result

of assuming 0 constant in equations 3.38. The change Ø. is also shown.q	 1
From the results it is clear that for node 5 with AØ5 = 19.29° equations

3.38 underestimates the true yield limit by only 2.36% and correspondingly

overestimates the smaller principal generalized stress by . This node

became plastic with	 = M at a load equal to 81% of the collapse load.

This solution is a good indication of the importance of equations 3.38

in approximating the yield function for large changes in the angle Ø

/
Also in Table A2.4. are shown the beam slope Qy and. plastic rotations

that were described for the composite plate-beam yield behaviour of

Figure 3.18. The plasticity index for the slab at node 22 indicates

that U22 = U. The beam index indicates that the beam bending moment
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at this node is also at its limit. For node 23 the index for the slab

indicates that no plasticity has occured in the slab. However, the beam

index shows that the beam is plastic at node 23. These are two examples

of composite yield behaviour.

At the begining of Table A2. 2 and at the end of Table A2.4- are

samples of "query printing". This allows the flow of the program to

be traced before and. after output. Q\ieries are made by placing a

question mark after a calculation or at the end of any program statement.

This facility was used. a great deal in the program development. It can

be easily suppressed and need not appear with the output. However, it

was included here to illustrate what happens when the elastic-plastic

analysis results in collapse of the plate or slab. When collapse occurs

no solution to the equations is possible and the yield criterion is

violated at previous plastic nodes. In the present example node 16 had

reached plasticity previous to the collapse stage shown and the yield

criterion was satisfied during subsequent increases in applied loading.

But when node 7 beoame plastic and allowed a rectangular collapse mechanism

to form, further increase in load resulted in node 16 violating the yield.

criterion. The underlined query printing gives the principal generalized.

stress M 6 M, the value of M = 1.0 and the node number 16 along with

-	 the caption indicating violation of the yield criterion.

(34) Assemble parts of elastic-plastic stiffness matrix for plate and.

beams

This portion of the program required. the most programming effort

and. resulted in complicated but systematic procedures for building the

coefficients in the total structural elastic-plastic stiffness matrix.
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The plasticity indices for indicating plate and beam plastic behaviour

were used throughout this section and they completely controlled the

calculation and. placement of the reauired coefficients. Of the total

store required for the program, this portion required approximately

one third.

(15) Update orientation of principal planes at plastic nodes where

necessary

This updating procedure and reasons for its use are described in

section 3.Le. None of the analyses presented in this study required

these procedures since the yield criterion was never violated more than

the 2.36% of Table A2.4.. In fact, all the other solutions gave errors

of less then 1%.
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APPENDIX III - MISCELLA1'EOUS EXPERIMENTAL DATA

A3.l Ceneral R marks

On each of the metal plates d.eflections and strain recordings were

made at more locations than the results indicate in Chapter 5. However,

these additional measurements were made to establish the degree of

symmetry produced for curvature and defleotions, since symmetry about

the central axes and diagonal is assumed in the computer analyses.

These results have not been presented. The symmetry conditions were

very food in all plate tests. The positions whe.re measurements were

taken are reported in this appendix along with general comments on

membrane strain measured in the plate tests.

For both plates and slabs, various control beam tests and other

miscellaneous material tests were performed. The results of these

tests are included in this appendix.

Each of the plate and slab tests was performed over a period of

L1. to 6 hours except for slab No.2 which was loaded over a period of

7 hours.

A slow rate of straining was used in all tests. The accuracy of

strain measurement recorded by the data logger was to the nearest

4. micro-strain on the maximum gain. But since most of the strain read.-

ings were made during inelastic strain ranges, this gain had to be

reduced. The estimated accuracy of strain measurement is about ±5%.

Since generalized stresses were determined from experimental generalized

stress-curvature curves, an additional 5% error could be introduced.

Therefore, the maximum possible error in determining generalized stresses

is approximately +10%.

All graphs and figures are placed at he end of the appendix.
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Reinforced. Concrete Slab Tests

A3.2 Slab No.1

(a) Flexural Stiffness for Slab

For this slab the flexural stiffness had to be computed theoretically.

It was assumed that the concrete was cracked to the neutral axis, every-

where in the slab. The oalculation of D for this slab follows:

U =	 = 10 Bc = 3x106p.s.i.

I

I

2
As = . 0336 in.

Bc

d 1 = 1.31	 b = 3	 v = .15

bk2 = 2nAs(1-k) k = . 375

Ic =	 = .0525 in1

Is = nAs(1-k) 2 = .291 O int

I/b = .1155 in

D = El = 3514.,000 lb in.
,	 2
1-v

If based on an unoracked section, D = 810,000 lb in.

(b) Control Beam for Determining 	 of Slab

The load-deflection curve for the control beam specimen for this

slab is shown in Craph A3.l. From this graph, ultimate = .81 tons

giving

= 1260 lb in/in
	

A3. 2

Since for this slab, L = 36 and. D is given by equation 13.1, the

non-dimensional limiting generalized stress is

ML = .1280
	

A3. 3
D

A3. 1
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A3.3 Slab No.2

(a) Flexural Stiffness for Slab

The theoretical stiffness based. on a cracked. section is given

be low.

I',

I. F1(11
As = .04-68 in

1.313	 b = 4.

k = . 449

Ic = .1207 in1t

Is = .34.85 in

I/b = .1173 in

D = El = 360,000 lb in.

(1- v2)

(b) Control Beam for Slab

The generalized. stress-curvature diagram for this control beam

is presented. in Craph A3.2. The limiting generalized. stress is seen

to be M = 104-0 lb in/in with an ultimate curvature of .0024. in1

The flexural stiffnesses for this slab as determined from Graph

.A3.2 are:

Before Cracking - D = 3,100,000 lb in.	 A3.5
After Cracking - D = 353,000 lb in. 	 A3.6

For the other slabs, only theoretical stiffnesses could. be  used.

since no curvature measurements were made. These atiffnesses were

based on a cracked. (to the neutral axis) concrete section.

(c) Flexural Stiffness of Edge Beam

For the edge beam section ( "x i) on this slab, the theoretical

bending stiffness is

El = 3,170, 000 lb in
	

A3.7
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(a) Control Beam for Edge Beam

The experimental bending moment-curvature charaoterietics of the

edge supporting beams are shown in G .raph A3.3.

The fully plastio bending moment is	 = 8000 lb in. and the

bending stiffness is slightly greater than the theoretical value

(equation A3.7); i.e. experimentally

El = 3,611.0,000 lb in	 A3.8

The non-dimensional limiting values for slab and edge beams with

L=3are:

M L = .1060

D	
using D = 353, 000 lb in.

Mb = .0226

D

A3.4. Slabs No.3 and No.!1.

(a) Plexural Stiffness for Slabs No.3 and. No.11.

A3. 9

A3. 10

The stiffness for these slabs based on the cracked section is as

follows:

b.	 b = I	 d.h= .625"

____ i	
k=.2675

Ic = .00637in

L. 
j.,L	 Is = .0128 in1

As = .oioz4. in	 I/b = .01917

D = El = 58,800 lb in.

(1_v2)
A3.11

(b) Control Beam for Slabs

The load-displacement graph for the control specimen for these

slabs is shown in Graph A3., from which

M = 170 lb in/in .	 A3.l2
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Therefore, the non-dimensional value becomes (for L = 16")

ML = . 04.614.	 A3.13

D

(o) Control Beam for Edge Beams on Slab No.4.

The moment-curvature characteristics of these edge beams are

shown in Graph A3.5. The fully plastic bending moment for the beams

is

= 290 lb in.	 A3.].4

with bending stiffness f

El = 16,00 lb in	 A3.15

The non-dimensional fully plastic value using equation A3.11 is
= .004.93	 A3.16

D

Mild. Steel Plate Tests

A35 PlatesNo.l to No.4.

(a) Stress-strain Characteristics of Plate Material

A portion of the stress-strain relationship for the metal plates

is shown in Craph A3.6. Tensile coupon tests were made for all the

plates. Graph A3.6 is a typical relationship since very little differettce

in properties was found between the tests.

(b) Control Beam for Plates

The bending stiffness of the plates was determined from the

generalized stress-curvature results of a control beam test. This

relationship is shown in Craph A3.7.
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From this graph the stiffness

D = 325, 000 lb in.	 A3.l7

The theoretical value is

D = Et3 	 = 332,000 lb in.	 A3.18
12(1-v2)

The limiting generalized. stress value is

M = 2270 lb in/in	 A3.19

and. in non-dimensional form is
I

M L = .1120
	

A3.20

D

(c) Control Beam for Edge Beams

The bending moment-curvature diagram of Craph A3.8 for the

edge beams used on plates No.2 and. No. indicates that

El = ,700,000 lb in	 .A3.21

and.

M..b = 7920 lb in.	 A3.22

Using the plate stiffness of equation .A3.17, the non-dimensional

limiting value is

= .0244
	

A3.22

D

(a) Strain Measurement

The locations on plate No.1 at which strains were recorded. are

shown on of the plate in Figure A3.l. Symmetry of curvature was

checked. by comparing the results of diagonally opposite pairs of gauges.
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The maximum difference between curvature measurements made across the

x and y axes was less than 33g.

Measurements of membrane strains were made at the locations shown

in Figure A3.l. Of the 72 stages of loading at which strains were

recorded., the average of membrane to bending strain was less than .05;

i.e. 5% membrane strain. It was evident from the strain readings that

this was compressive membrane strain.

Figures A3.2 to A3.4. give the position of strain gauges on plates
S

No.2, No.3 and. Nd.4 respectively.

From strain measurements (at more than 70 load stages) for each

of the last three plate tests, the results indicated better 8ymmetry

of curvature than for plate No.1 and about the same order of membrane

strain to bending (5%). In-plane strains were, of course, largest near

the cable point loads. Here the membrane stain was largest in plate

No.3 where it reached 35% of the bending strain close to the collapse

load. It increased rapidly at collapse to more than 1.5 times the

bending strain.

&3.6 Loading Cables

The cables used in loading plates No.3 and. No.4 were purchased.

from British Ropes Limited, London S.L7, and have the following

particulars:

N.B.L. (Tons)	 Size	 Thread

4	 B.S.F.	 5/l6dia. 6/9x9x1 W.S.C.

6	 B.S.F.	 dia. 6/9x9x1 I.LR.C.

10	 B.S.R.	 dia. 6/9x9x1 I.LR.C.

Table A3.l

.
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