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Abstract

Cointegration is an important topic for time-
series, and describes a relationship between
two series in which a linear combination is
stationary. Classically, the test for cointe-
gration is based on a two stage process in
which first the linear relation between the se-
ries is estimated by Ordinary Least Squares.
Subsequently a unit root test is performed
on the residuals. A well-known deficiency of
this classical approach is that it can lead to
erroneous conclusions about the presence of
cointegration. As an alternative, we present a
framework for estimating whether cointegra-
tion exists using Bayesian inference which is
empirically superior to the classical approach.
Finally, we apply our technique to model seg-
mented cointegration in which cointegration
may exist only for limited time. In contrast
to previous approaches our model makes no
restriction on the number of possible cointe-
gration segments.

1. Introduction

Cointegration is an important concept in time-series
analysis and relates to the fact that the differences
between two time-series may be more predictable than
any individual time-series itself. We make two contri-
butions to this area—first, we formulate determining
whether two series are cointegrated as an instance of
Bayesian inference in an associated probabilistic model.
This enables us to bring modern statistical and machine
learning techniques to the analysis of cointegration and
also provides a useful conceptual framework to describe
cointegration. The resulting regression estimation al-
gorithm is shown to be more robust than least-squares
estimation to spurious results. This is we believe an
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important result that establishes a new and coherent
approach to the long-standing problem of inconsistency
in establishing cointegration. Second, in practice two
series may only be intermittently cointegrated—that
is, they are only cointegrated over shorter segments of
time. To date the identification of these segments has
been attempted with rather limiting assumptions such
as the presence of either only two or three segments
(Gregory & Hansen, 1996; Hatemi-J, 2008). To address
this we phrase the problem as inference in a correspond-
ing changepoint model, placing no limitation on the
number of segments. We develop an efficient specialised
inference scheme for this model and demonstrate its
practical applicability on real-world problems.

1.1. Cointegration

Whilst individual time-series may not be predictable,
the relationships between two time-series may be more
predictable. For example, series x1:T , y1:T formed by

xt+1 = xt + εt+1, yt+1 = yt + εt+1, εt ∼ N (0, 1)

both follow an unpredictable random walk. However,
the future difference xt+1 − yt+1 = xt − yt, is perfectly
predictable given knowledge of the current difference.
In the economics and finance literature such instances
are common; for example underlying mechanisms such
as limited money supply may forge dependencies be-
tween time-series (Dickey et al., 1991). It is of signifi-
cant interest in finance to find pairs of asset price series
that are cointegrated—such estimation underpins one
of the classical statistical arbitrage strategies known as
‘pairs trading’.

From an individual series x1:T we can form a new
series x12:T by taking the difference x1t = xt − xt−1.
Repeating this differencing process d times, a series is
order d integrated, written I(d), if the series xdt formed
from repeatedly taking the difference d times yields
a stationary series I(0). In our example above, both
x and y are each I(1) and hence integrated. As we
showed, there is a linear combination that is I(0). More
generally, two series x1:T and y1:T are cointegrated
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if they are each individually integrated and a linear
combination of the two is integrated with a lower order.

For our purposes, we define xt and yt to be cointegrated
within a specified time segment if there is a linear
regression relationship between the two variables that
forms a stationary process. For the most simple case
of a single regressor, we write such a relationship as

yt = α+ βxt + εt

εt = φεt−1 + ηt, ηt ∼ N
(
0, σ2

)
, |φ| < 1

where α represents a constant, and β the regression co-
efficient. Here ε1:T forms a mean-reverting, stationary
process. For brevity, we focus attention on estimation
in this model, however more flexible cases can easily be
considered, including the case with a trend coefficient
γ in which the regression is written

yt = α+ βxt + γt+ εt

with the same autoregression for εt. Adapting our
technique to more complex models with exogenous
variables, and to the vector case, is also possible.

Testing for and estimating a cointegration relation-
ship is classically a two-step process (Granger, 1986).
Firstly, the regression equation is estimated based on
a simple ordinary least squares (OLS) fit to minimise∑
t(yt−α−βxt)2 (which we show is equivalent to maxi-

mum likelihood (ML) parameter optimisation assuming
that φ = 0 in a corresponding model). Subsequently,
a test for a unit root in the residuals is performed us-
ing the Dickey-Fuller test, see for example Harris &
Sollis (2003), which tests the hypothesis that φ = 1
against the alternative |φ| < 1 (for |φ| < 1 the series is
stationary and non-stationary otherwise). In the case
that φ = 1, it is well-known that OLS can deliver a
spurious regression (Granger & Newbold, 1974), and
this problem is not limited to cointegration. The classi-
cal approach is conceptually undesirable since it makes
strong, potentially conflicting assumptions about the
data: in the regression part, the residuals are effec-
tively assumed uncorrelated whilst in the subsequent
unit root test, they may be determined not to be (un-
der the null hypothesis of the test, the regression was
spurious). In this work we relax the assumptions placed
on φ during parameter estimation to reduce the impact
of any conflicting assumptions.

2. Modelling Cointegration

Our approach is to form a generative model of obser-
vations p(y1:T x1:T , θ), where θ =

{
α, β, σ2, φ

}
. First,

we form a generative model on observations1 y1:T and
latent variables ε1:T

p(y1:T , ε1:T x1:T ) =
∏
t

p(yt xt, εt) p(εt εt−1) , ε0 = ∅

where2

p(yt xt, εt) = δ(yt − α− βxt − εt)

and the transition for εt is given as

p(εt εt−1) = N
(
εt φεt−1, σ

2
)

.

The belief network (see Barber (2012) for an introduc-
tion) for this model is given in figure 1. The likelihood
on the observations y1:T is given by

p(y1:T x1:T ) =

∫
ε1:T

p(y1:T , ε1:T x1:T ) .

The integration distributes,

p(y1:T x1:T ) =

∫
ε1:T−1

T−1∏
t=1

p(yt xt, εt) p(εt εt−1)

×
∫
εT

p(yT xT , εT ) p(εT εT−1)

and since we have a delta function, the final term
evaluates to N

(
yT − α− βxT φεT−1, σ

2
)
. Iterating

this yields a product of Gaussian terms

T∏
t=2

N
(
yt − α− βxt φ (yt−1 − α− βxt−1) , σ2

)
.

Finally, applying labels according to εt = yt − α− βxt,

p(y1:T x1:T ) = p(ε1)

T∏
t=2

N
(
εt φεt−1, σ

2
)

= p(ε1:T ) .

Hence the likelihood p(y1:T x1:T ) is equivalent to the
likelihood on the Markov chain with ‘observations’ εt
shown in figure 2. The log likelihood log p(ε1:T ) is

log p(ε1)− 1

2σ2

T∑
t=2

(εt − φεt−1)
2 − T − 1

2
log 2πσ2

1Note that we make no assumption about the underly-
ing process x; we work with the conditional relationship
p(y1:T x1:T ) not the joint p(x1:T , y1:T ). As far as we are
aware previous Bayesian approaches to cointegration make
stronger assumptions about the underlying process, see for
example Koop et al. (2006).

2The Dirac delta distribution δ(x− a) represents a de-
generate probability density function with the property that∫
x
δ(x− a) f(x) = f(a) .



Bayesian Conditional Cointegration

x3x2x1 . . . xT

ε3ε2ε1 . . . εT

y3y2y1 . . . yT

Figure 1. Belief network for the natural model for cointegra-
tion. Diamonds represent delta functions, shaded variables
are in the conditioning set.

ε3ε2ε1 . . . εT

Figure 2. Belief network for the Markov chain model for εt.

and when φ = 0, maximising this degenerates to min-
imising the sum of squared residual terms

T∑
t=2

ε2t =

T∑
t=2

(yt − α− βxt)2 .

OLS estimation for the regression parameters α and β
therefore corresponds to the ML solution of this model,
on the assumption that φ = 0. In the case that φ is
non-zero, a different solution may be optimal in the
ML sense. This is a source of potential inconsistency
in the classical approach to cointegration testing.

3. Bayesian Cointegration

We can construct a model for estimating both φ and
the parameters α, β, σ2 by considering φ to be a latent
variable and providing a prior distribution. In this case,
for cointegration we require |φ| < 1, and we can encode
this with a uniform distribution p(φ) = U(φ (−1, 1)) =
1
2 [φ ∈ (−1, 1)]. We complete the model specification
with a distribution for ε1 and form the joint model

p(y1:T , ε1:T , φ x1:T ) = p(y1:T ε1:T , x1:T ) p(ε1:T φ) p(φ)

from which the marginal model

p(y1:T , φ x1:T ) = p(φ)

∫
ε1:T

p(y1:T ε1:T , x1:T ) p(ε1:T φ)

is formed by integration. The posterior p(φ x1:T , y1:T )
is then equivalent to p(φ ε1:T ) ∝ p(φ) p(ε1:T φ).

3.1. Inference of φ

The process ε1:T is stationary when each3 〈εt〉 = 0
and

〈
ε2t
〉

is constant, independent of t. According to
the recurrence relation for εt, the variance satisfies〈
ε2t+1

〉
= φ2

〈
ε2t
〉

+ σ2 and we can therefore ensure

stationary of ε1:T if
〈
ε21
〉

= σ2/
(
1− φ2

)
. We then

choose p(ε1 φ) = N
(
ε1 0, σ2/

(
1− φ2

))
. The posterior

p(φ ε1:T ) is proportional to

p(φ)
√

1− φ2 exp
−1

2σ2

[
ε21
(
1− φ2

)
+

T∑
t=2

(εt − φεt−1)
2

]

and by completing the square we see that the posterior
is given by a truncated Gaussian distribution with a
prefactor (subject to normalisation),

p(φ)
√

1− φ2N
(
φ
ê12
ê1
,
σ2

ê1

)
where

ê12 ≡
T∑
t=2

εtεt−1, ê1 ≡
T∑
t=3

ε2t−1.

For the data likelihood, we write for p(ε1:T ),

(
2πσ2

) 1−T
2 exp− 1

2σ2

(
T∑
t=1

ε2t −
(ê12)

2

ê1

)

× 1√
ê1

∫ 1

−1
φ

1
2

√
1− φ2N

(
φ
ê12
ê1
,
σ2

ê12

)
.

3.2. Estimating α, β, σ2

Our interest is to set the parameters θ =
{
α, β, σ2

}
based on maximising the likelihood

p(y1:T x1:T , θ) =

∫
φ

p(φ) p(ε1:T φ) .

Since φ is a latent variable, it is convenient to approach
this using the Expectation-Maximisation algorithm.
Writing v for the observations and h for the latent
variables EM is based on the Kullback-Leibler bound

0 ≤ KL(p q) ≡
〈

log
q(h v)

p(h v)

〉
q(h v)

log p(v) ≥ 〈log p(h, v)〉q(h v)︸ ︷︷ ︸
energy

−〈log q(h v)〉q(h v)︸ ︷︷ ︸
entropy

where p is a variational distribution and q a fixed pos-
terior. EM corresponds to iteratively maximising this

3Angled brackets represent expectation, 〈x〉 = E [x].
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lower bound with respect to the variational distribution
p, and using this as the next q following inference. For
this model, we replace h→ φ, v → ε1:T .

The energy term4 is the log of the model joint, and
since we are interested in maximising with respect to
the regression parameters α and β the only relevant
terms are given as

〈log p(ε1 φ)〉q(φ ε1:T ) +

T∑
t=2

〈log p(εt εt−1, φ)〉q(φ ε1:T )

and up to a constant, this equals

−1

2σ2

[
ε21
〈
1− φ2

〉
+

T∑
t=2

〈
(εt − φεt−1)

2
〉]
− T

2 log 2πσ2

where q(φ ε1:T ) = p
(
φ ε1:T , θ

old
)

is the posterior from
the previous iteration. The energy can be optimised
by finding the stationary point by differentiating by α
and β. Since〈

(εt − φεt−1)
2
〉

= ε2t − 2εtεt−1 〈φ〉+ ε2t−1

〈
φ2
〉

the result is a system of linear equations for α and β
involving the first and second (non-central) moments
of φ from the posterior q(φ ε1:T ).

By differentiating the above energy term with respect
to σ2, we find that optimally

σ̂2 =
1

T

[
ε21
〈
1− φ2

〉
+

T∑
t=2

〈
(εt − φεt−1)

2
〉]

so the variance can be estimated once the new regres-
sion estimates α and β have been found.

4. The Random Walk model

A primary concern in the economics literature is to test
the hypothesis of cointegration for series. The analogue
with our Bayesian generative model is to compare the
likelihoods of the above cointegration model and a
random walk (RW) model. The likelihood for ε1:T a
RW is calculated as

p(ε1:T φ = 1) = p(ε1)

T∏
t=2

N
(
εt εt−1, σ

2
)

For p(ε1) we choose a wide-interval uniform distribution.
The cointegration model and random walk model can
then be compared according to the Bayes factor,

p(y1:T x1:T ;φ = 1)

p(y1:T x1:T ; |φ| < 1)
=

p(ε1:T φ = 1)

p(ε1:T |φ| < 1)
≡ lRW

lC

4Also called the expected completed data log likelihood.

Algorithm 1 Bayesian cointegration testing{
α, β, σ2

}
← LinearRegression (x1:T , y1:T )

repeat
ε1:T ← y1:T − α− βx1:T{
lC, 〈φ〉 ,

〈
φ2
〉}
← CointInference

(
ε1:T , σ

2
){

α, β, σ2
}
← EM

(
x1:T , y1:T , 〈φ〉 ,

〈
φ2
〉)

until convergence
lRW ←

∏T
t=2N

(
εt εt−1, σ̂

2
)

return cointegrated← lRW/lC < threshold

where the numerator represents the ‘null hypothesis’
of a unit root in the residuals process. The denomina-
tor is simply the marginal likelihood for the Bayesian
cointegration model given in section 3.1.

Whilst a fully-Bayesian approach to cointegration test-
ing may be considered by placing prior distributions
and seeking to integrate over the parameters α, β, σ2

separately for each model, here we restrict our analysis
to point estimation for reasons of both simplicity and
computational speed. Furthermore we wish to relate
closely to the classical point estimate approach to coin-
tegration estimation and testing. The purpose of this
study is demonstrate the potential advantage of using
a ‘partial’ Bayesian approach for φ alone.

4.1. Point Estimation

Both the numerator and denominator of the Bayes
factor are functions in the variance σ2, and we set σ
for each of the two models by ML. The estimate for σ2

for the RW model is given according to

σ̂2 =
1

T − 1

T∑
t=2

(εt − εt−1)
2

.

Note that here εt depends on α and β, and we now
discuss possible ways to determine point estimates for
these parameters. There are three primary options: (i)
find the parameters by OLS and use these values for
both the cointegration and RW models; (ii) find the
parameters by ML in the cointegration model and use
the same parameters for the RW model; and (iii) find
the parameters for each of the cointegration and RW
models by ML. Conceptually, our interest is to first
estimate a cointegration relationship, and second to test
whether this relationship is more likely to be a random
walk—and for this reason, we consider the third option
undesirable. Whilst the first option is computationally
the simplest it suffers from the implicit assumption
that φ = 0. For this reason the second is our preferred
method.

Algorithm 1 shows the calculation steps for the
Bayesian cointegration test. The results in figure 3
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Figure 3. Plot of false positive (FP) and false negative (FN)
rates (calculated as number of FP/FN outcomes divided
by number of true negatives/positives respectively) for the
classical OLS/DF approach (5% significance) and Bayesian
EM/likelihood method (threshold C = exp 2) for generated
series. 5000 series of each length were simulated according
to the generative model, uniformly split between |φ| < 1
in the cointegrated case and φ = 1 in the random walk
case. The high rate of false positives for the classical test
is striking: here cointegration was detected when the data
were generated with φ = 1. We attribute this to the fact
that OLS is known to produce invalid estimates when the
process is non-stationary: so called ‘spurious regression’.

show that, compared with OLS estimation and unit
root testing, our Bayesian technique is less likely to
result in a spurious relationship for series of length
T > 20. In figure 4 we show comparisons for differing
decision boundaries5.

5. Intermittent Cointegration

For some series, cointegration may only apply for cer-
tain segments. A good example is the Interconnector
gas pipeline between Bacton, UK and Zeebrugge, Bel-
gium, which allows gas to flow between the two coun-
tries, providing a direct link in the gas price at each end.
When the pipeline closes each year for maintenance,
the link between the prices is temporarily broken. It
was shown by Kim (2003) that classical tests for coin-
tegration may fail to detect a relationship even though,
for a part of the series, there is such a relationship. The
following model seeks to detect a cointegration rela-
tionship between two series, while allowing for regions
when the relationship is in fact a random walk.

5Differing decision thresholds correspond to different
widths of uniform prior for ε1 in the RW model since

lRW

lC
< C ⇔ l̃RW

lC
< 1, l̃RW ≡

lRW

C
.
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Figure 4. Plot of the receiver operating characteristic (ROC)
curve for the cointegration estimation/testing combinations,
for T = 100. 10,000 series were generated; we plot the true
positive rate against the false positive rate for different
values of the decision threshold. EM refers to estimation
in the Bayesian cointegration model by ML; DF refers to
a Dickey-Fuller test; Likelihood refers to a comparison of
the likelihood in the cointegration model with the random
walk model φ = 1. Optimal classification occurs with true
positive rate 100%, false positive rate 0%—the results show
that OLS/DF is dominated by EM/Likelihood.

Previous works in this area typically limit the number
of regimes in which cointegration can occur to either
only two or three segments (Gregory & Hansen, 1996;
Hatemi-J, 2008). In contrast, for our model we allow
time-varying φt arranged to be piecewise-constant with
no a priori restriction on the number of piecewise-
constant regions. The model will switch between the
cointegrated case |φt| < 1 and the alternative φt = 1,
corresponding to a random walk.

We use the binary state switch it to denote whether
there is a cointegration relationship at time t: it =
1 denotes regions of εt corresponding to a random
walk; alternatively when it = 0, εt follows a stationary
cointegration relation. In the random walk regions, we
have φt = 1, which is encoded in the prior distribution
p1(φt) = δ(φt − 1). We therefore specify

p(φ2 i2 = 0) =

{
p1(φ2) = δ(φ2 − 1) i2 = 1

p0(φ2) = U(φ2 (−1, 1)) i2 = 0

and for the piecewise-constant transition,

p(φt φt−1, it, it−1) =


p1(φt) it = 1

δ(φt − φt−1) it = 0, it−1 = 0

p0(φt) it = 0, it−1 = 1.

Whilst the state transition p(it it−1) and p(i2) can
also in principle be learned on the basis of ML, we
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i3i2 . . . iT

ε3ε2ε1 . . . εT

Figure 5. Belief network for the intermittent cointegration
model. Dashed edges to φt are absent when it = 1.

leave these quantities to be user specified. Note that
whilst φt can change with time, for computational
tractability we assume that the remaining parameters
α, β, σ2 are fixed throughout time. The belief network
representation is given in figure 5.

The switching inference routine described in the fol-
lowing section relies on the recursive updates given in
appendix A, in which we use the uniform prior for εt
at the start of each cointegrated segment.

5.1. Inference of i2:T , φ2:T

The regime-switching model with piecewise-constant φt
is an example of a changepoint model, in which a change
of regime drops the dependency of the continuous latent
variable φt on the past. The model is therefore an
example of the ‘reset model’ as set out by Bracegirdle
& Barber (2011), and we apply such results here. Exact
inference is then possible by applying recursions for
filtering (calculating each p(φt, it ε1:t)) and correction-
smoothing (for p(φt, it ε1:T )). For brevity, we show here
only some of the key considerations; a full derivation
is given in the supplementary material.

It is easy to show that both the filtered and smoothed
posteriors for φt in the case that it = 1 degenerate in
an intuitive way to

p(φt it = 1, ε1:t) = p(φt it = 1, ε1:T ) = p1(φt) .

For the case it = 0, the posterior for φt is more complex
because of the temporal dependency. For filtering, the
posterior depends on the previous regime: in the event
that it−1 = 1, a new cointegration regime has begun,
and a Gaussian term is contributed to the posterior
in accordance with (2); otherwise, each component is
updated as for the simple cointegration case (1). We
therefore see that the posterior p(φt it = 0, ε1:t) is given
as a truncated mixture of Gaussian components.

For correction smoothing, it can be difficult to derive a
recursion analytically because the backwards-recursive

step requires a ‘dynamics reversal’ term that is calcu-
lated with the filtered posterior in the denominator. In
the case that the filtered posterior is a mixture distri-
bution, the algebra is intractable. However, we appeal
to the result of Bracegirdle & Barber (2011) that by
indexing the components in the filtered posterior ac-
cording to the number of observations since a switch
to cointegration, the smoothing recursion can be writ-
ten exactly. The resulting recursion shows that, as we
may expect, a subset of the Gaussian components from
p(φt+1 it+1 = 0, ε1:T ) are contributed to the posterior
p(φt it = 0, ε1:T ) without change, along with the com-
ponents from filtering p(φt it = 0, ε1:t) in the case that
the cointegration regime ends at t.

The discrete filtering and smoothing components,
p(it ε1:t) and p(it ε1:T ), are also calculated as part of
the recursions. The result is an algorithm for exact
inference in this switching model that scales as T 2.

5.2. Likelihood

It is useful to evaluate the likelihood in order to (i)
ensure that the likelihood is maximised, and (ii) provide
a convergence criterion. Fortunately the likelihood
is easy to calculate since the value is given by the
product of normalisation constants from each step of
the filtering recursion,

p(ε1:T ) = p(ε1)

T∏
t=2

p(εt ε1:t−1) = p(ε1)

T∏
t=2

Zt

where each Zt is calculated when filtering, see the
supplementary material.

5.3. Learning

EM is again used for parameter estimation in this
model. For this regime-switching problem, the latent
variables are h → {i2:T , φ2:T }, and the observations
remain as before, v → ε1:T .

Terms relevant to the optimal solution are the sum of
quadratic forms derived in section 3.2 with varying φt,〈

(εt − φtεt−1)
2
〉

= ε2t − 2εtεt−1 〈φt〉+ ε2t−1

〈
φ2t
〉

.

By retaining the first and second (non-central) moments
of each component found while filtering, the linear
system of equations for the regression parameters can
be solved exactly in this switching model, and the
variance estimate can be updated accordingly.

5.4. Point Estimate of φt

Whilst our model gives a distribution over φt for each
timepoint, in order to be able to compare our approach
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Figure 6. Results of learning for the Interconnector gas
prices—maintenance occurs each September. We show
(NW) the price series xt, yt; (SW) residuals εt calculated
with the final estimates for α, β; (NE) filtered (blue) and
smoothed (red) posterior for random walk it = 1; and (SE)
the maximum posterior marginal result for φt.

to other intermittent cointegration methods that only
give point estimates, we may take each

ît = arg max
it

p(it ε1:T )

and then calculate the posteriors p
(
φt î2:T , ε1:T

)
to

give the point estimates

φ̂t = arg max
φt

p
(
φt î2:T , ε1:T

)
.

6. Experiments

We consider real-world applications for the intermittent
cointegration model. For these experiments, we ran the
inference and learning algorithm for the parameters θ =
{α, β, σ} initialised by OLS, and use the state transition
distributions fixed at values designed to match our a
priori belief about the cointegration regimes.

6.1. Gas Prices

The Interconnector, as noted in section 5, is a sub-sea
natural gas pipeline: we took for y UK gas prices6 and
for x the Zeebrugge prices7. There are approximately

6UK SAP natural gas prices were downloaded from
www.nationalgrid.com/uk/Gas/Data.

7Prices for Zeebrugge are from www.apxendex.com and
were converted into kWh using 1 kWh=29.3072222 therm.
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Figure 7. Results of learning for the Euro-area bond yields.
We show (NW) the yield series xt, yt; (SW) residuals εt
calculated with the final estimates for α, β; (NE) filtered
(blue) and smoothed (red) posterior for random walk it = 1;
and (SE) the convergence of parameters α, β—note the
relative change in the estimate for intercept α (green).

245 pricing days per year, and the pipeline closes annu-
ally for two weeks, so we specified the state transition
distribution accordingly. The algorithm reaches conver-
gence within four minutes with parameters α, β that
show cointegration between the annual maintenance
period, see figure 6.

6.2. Euro-area Bond Yields

We consider possible cointegration between Greek and
German 10-year benchmark bond yields8 prior to the
Euro-area financial crisis. We use the cointegration
switching model to find regions of cointegration, which
we expect to hold until the yield on Greek debt spi-
ralled as Greece’s debt burden took toll. The results
are shown in figure 7; inference and learning takes
roughly five minutes. This is an example for which,
over the time window shown in the figure, the data
do not show cointegration according to the classical
test (Dickey-Fuller test shows p-value 0.927241, and
does not reject the null hypothesis of random walk),
but the intermittent cointegration model does show a
segment of cointegration—the classical test passes in
the detected region, and fails for the remainder.

Whilst our approach is both flexible and simple, there
are limitations. In particular, the switching model

8The bond yield data were obtained from Reuters.

www.nationalgrid.com/uk/Gas/Data
www.apxendex.com
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requires that the regions of cointegration are governed
by a time-invariant linear relationship. For example,
in the case that deviations from the relationship in
the random-walk segments are permanent, the model
presented here would struggle to properly estimate
a relationship since piecewise-constant values of the
constant term α would be required. Such considerations
provide opportunities for future research.

7. Discussion

We presented two novel techniques for estimation of a
linear cointegration relationship for time-series. First,
the method in section 3 allows estimation of a linear
relationship between variables and we showed that our
resulting algorithm is less likely to deliver a spurious
relationship than the classical OLS–unit root testing
approach. The benefit of our approach is that it results
in a fast O(T ) algorithm for testing cointegration. A
natural extension would be to consider a more complete
Bayesian analysis and marginalise over all parameters
in both the cointegration and random walk models.

Second, we developed a switching model to detect a
relationship and regimes in which that relationship
is a random walk. Whilst the model has an obvious
limitation (shared by other existing intermittent cointe-
gration models) it has the benefit of fast exact inference,
scaling O(T 2). A further natural extension would be
to consider regimes in which the linear relationship can
also vary. A full derivation of inference for the switching
model is given in the supplementary material.

Acknowledgements

We thank Ricardo Silva for useful discussions.

References

Barber, D. Bayesian Reasoning and Machine Learning.
Cambridge University Press, 2012.

Bracegirdle, C. and Barber, D. Switch-Reset Models :
Exact and Approximate Inference. In AISTATS,
volume 15. JMLR, 2011.

Dickey, D. A., Jansen, D. W., and Thornton, D. L.
A primer on cointegration with an application to
money and income. Federal Reserve Bank of St.
Louis Review, (Mar):58–78, 1991.

Granger, C. W. J. Developments in the study of coin-
tegrated economic variables. Oxford Bulletin of Eco-
nomics and Statistics, 48(3):213–228, 1986.

Granger, C. W. J. and Newbold, P. Spurious regressions

in econometrics. Journal of Econometrics, 2(2):111–
120, 1974.

Gregory, A. W. and Hansen, B. E. Residual-based tests
for cointegration in models with regime shifts. Jour-
nal of Econometrics, 70(1):99–126, January 1996.

Harris, R. and Sollis, R. Applied Time Series Modelling
and Forecasting. Wiley, 2003.

Hatemi-J, A. Tests for cointegration with two unknown
regime shifts with an application to financial market
integration. Emp. Economics, 35(3):497–505, 2008.

Kim, J. Y. Inference on Segmented Cointegration.
Econometric Theory, 19(4):620–639, 2003.

Koop, G. M., Strachan, R. W., Van Dijk, H., and
Villani, M. Bayesian approaches to cointegration. In
The Palgrave Handbook of Theoretical Econometrics,
pp. 871–898. Palgrave Macmillan, 2006.

A. Sequential inference of φ

Given a sequence of ‘observations’ ε1:T we describe
here a method to sequentially update the posterior
distribution p(φ ε1:T ). An extension of this inference
routine is used in the intermittent cointegration model
in section 5. We place an improper uniform prior
p(ε1) = U(ε1 R), representing our belief that ε1 may
take any real value, and use a recursive update filtering
routine—see for example Barber (2012).

Initially, we begin with the prior p(φ) = U(φ (−1, 1)),
and then update the distribution by finding the
posterior after observing each εt. For ε1, there
is no update to make since p(φ ε1) ∝ p(φ) p(ε1).
Thereafter, p(φ ε1:t) ∝ p(εt εt−1, φ) p(φ ε1:t−1).
This can be calculated analytically since, if
p(φ ε1:t−1) ∝ p(φ)N (φ ft−1, Ft−1), then9p(φ ε1:t) ∝
p(φ)N (φ ft, Ft) where

ft =
ft−1σ

2 + εtεt−1Ft−1

σ2 + ε2t−1Ft−1
, Ft =

σ2Ft−1

σ2 + ε2t−1Ft−1
(1)

which on setting the initial10 f2, F2 from the emission

N
(
ε2 φε1, σ

2
)

=
1

|ε1|
N
(
φ
ε2
ε1
,
σ2

ε21

)
(2)

defines a recursion for the parameters ft, Ft. After com-
pleting the updates, the required posterior p(φ ε1:T ) is
given by a Gaussian distribution with mean fT and
covariance FT truncated to the interval (−1, 1).

9Details of the derivation are omitted; recursions corre-
spond to Kalman updates—see for example Barber (2012).

10In the unlikely event that ε1 = 0, the Gaussian term
arises from the first non-zero εt−1.


