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SUMMARY

Prentice & Pyke (1979) established that the maximum likelihood estimate of an odds ratio in a
case-control study is the same as would be found by fitting a logistic regression; in other words,
for this specific target the incorrect prospective model is inferentially equivalent to the correct
retrospective model. Similar results have been obtained for other models, and conditions have
also been identified under which the corresponding Bayesian property holds, namely that the
posterior distribution of the odds ratio is the same whether it is computed using the prospective
or the retrospective likelihood. In this article we demonstrate how these results follow directly
from certain parameter independence properties of the models and priors, and identify prior laws
that support such reverse analysis, for both standard and stratified designs.

Some key words: Case-control study; Conditional independence; Hyper Markov law; Logistic regression; Retrospective
likelihood..

1. INTRODUCTION

In order to estimate the effects of risk factors on a binary outcome, such as a disease, there are
two basic experimental approaches: a prospective or cohort study, in which subjects are selected
from the population, possibly based on their risk factors, and observed to determine if the disease
arises; and a retrospective or case-control study, in which random samples are taken from both
the subpopulation with the disease, the cases, and the subpopulation without the disease, the
controls, and the relative frequencies of the risk factors in the two samples are recorded. Case-
control studies are often desirable or unavoidable, particularly where the disease is relatively rare
or the time to diagnosis is long, since the costs of obtaining a sufficiently large sample for a
prospective study are then likely to be prohibitive.

Let Y be the outcome variable, taking values 0 or 1 corresponding to the absence or presence of
disease, respectively. Let X be the vector of covariates, or risk factors, taking values in X ⊆ R

k .
In a prospective study we are sampling from the conditional distribution of Y given X . Under a
proportional odds assumption, the model is that of a logistic regression:

p(y | x, α, β)= exp{y(α + βTx)}
1 + exp(α + βTx)

(α ∈ R, β ∈ R
k).

C© 2013 Biometrika Trust. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, pro-
vided the original work is properly cited.
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190 S. P. J. BYRNE AND A. P. DAWID

A case-control study, however, will result in observations generated from the conditional dis-
tribution of X given Y . In this case, specifying and analysing the probabilistic model become
much more difficult, particularly if X is large or infinite. But Prentice & Pyke (1979) showed
that the maximum likelihood estimator of the log odds ratio parameter β, as well as its asymptotic
covariance matrix, can be computed from a logistic regression; in other words, we can use the
incorrect but simpler prospective model to analyse data gathered retrospectively. This result has
been widely applied in epidemiology and other areas. Other models have since been identified
that satisfy this property, notably the multinomial logistic model (Baker, 1994), the stereotype
model (Greenland, 1994), and the multiplicative intercept model (Weinberg & Wacholder, 1993).

There exist analogous results for Bayesian analysis, showing that, for an appropriately
chosen prior distribution, the posterior distribution of β can be computed using the incor-
rect prospective likelihood instead of the true retrospective likelihood. Zelen & Parker (1986),
Nurminen & Mutanen (1987), Marshall (1988) and Ashby et al. (1993) developed this analy-
sis for the case of a single binary covariate; this involves computing the posterior distribu-
tion of the log odds ratio of a 2 × 2 contingency table under a Dirichlet prior. For the case
of categorical covariates, where X is finite, Seaman & Richardson (2004) identified a class of
improper priors that satisfy the desired properties; this class was extended to include proper pri-
ors by Staicu (2010). Extensions to stratified and general multinomial designs have been studied
by Ghosh et al. (2006, 2012).

With the advent of computational tools such as Markov chain Monte Carlo simulation, direct
analysis of the retrospective likelihood need no longer present an obstacle. Müller & Roeder
(1997), Seaman & Richardson (2001) and Gustafson et al. (2002) have pursued this approach,
which is reviewed in Mukherjee et al. (2005). Nevertheless, for complicated models the ret-
rospective likelihood can still be computationally prohibitive, so that use of the prospective
approach remains widespread.

In this paper we observe that these likelihood and Bayesian results are all consequences of
certain properties of independence between parameters. In § 3 we show that the results for max-
imum likelihood estimation hold whenever we have a strong meta Markov model, embodying
properties of variation independence in the parameter space. In § 4 we show that the correspond-
ing Bayesian result holds when, in addition, we use an overall prior distribution that is a strong
hyper Markov law, exhibiting analogous probabilistic independence between parameters. In § 5,
we derive parametric classes of strong hyper Markov laws that can be used for such an analysis,
and show that these encompass the proper prior laws mentioned above. These results are further
extended to stratified designs in § 6.

2. NOTATION AND DEFINITIONS

Throughout the paper, (X, Y ) will denote a single joint observation from the specified model,
and (X (n), Y (n)) a sequence of n such observations; p will denote density with respect to an
appropriate measure, with variables indicating the context.

We recall the notation and definitions of Dawid & Lauritzen (1993). If θ denotes a joint proba-
bility distribution for (X, Y ), then θX and θY will denote the corresponding marginal distributions
of X and Y , respectively. We use θY |X=x to denote the conditional distribution of Y given X = x ,
and θY |X = (θY |X=x : x ∈X ) the family of all such conditional distributions, labelled by x ; we
define θX |Y=y and θX |Y similarly.

A model is a set� of joint probability distributions θ . A parameter in this model is a function
defined on�. We use the relation φ �ψ to signify the existence of a bijective function between
the parameters φ and ψ . For example, we have θ � (θX , θY |X )� (θY , θX |Y ).
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Bayesian analysis of case-control studies 191

For two parameters φ and τ , we define the conditional range of φ given τ = t to be {φ(θ) : θ ∈
�, τ(θ)= t}. We say that φ is variation independent of τ , and write φ ‡ τ , when this conditional
range is constant for all possible values t of τ or, equivalently, when (φ, τ ) takes values in a
product space. In a similar manner we can define the conditional variation independence φ ‡ τ |
ψ (Dawid & Lauritzen, 1993).

A model is said to be strong meta Markov if

θX ‡ θY |X , θY ‡ θX |Y . (1)

In a Bayesian setting, we use the term law to mean a probability distribution over the model
� for the parameter variable θ̃ . We say that a law L is strong hyper Markov if the variation
independence of (1) is replaced with probabilistic independence, denoted by ⊥⊥, under L:

θ̃X ⊥⊥ θ̃Y |X , θ̃Y ⊥⊥ θ̃X |Y [L].

A necessary, but not sufficient, condition for a law to be strong hyper Markov is that its support
be a strong meta Markov model.

3. MAXIMUM LIKELIHOOD ESTIMATION IN STRONG META MARKOV MODELS

The saturated model, consisting of all probability distributions on the product space X × Y ,
is trivially strong meta Markov. We now investigate some other meta Markov models.

Example 1. Let νX and νY be measures over X and Y , respectively. The family of all proba-
bility distributions which have positive densities with respect to νX × νY is strong meta Markov.

In particular, if X and Y are finite, with νX and νY being counting measures, this is the family
of two-way |X | × |Y| contingency tables without structural zeros.

Example 2. Let � be the family of bivariate normal distributions for (X, Y ):

θ = N

([
μX

μY

]
,

[
σX X σXY

σXY σY Y

])
.

Then θX = N (μX , σX X ) and θY |X=x = N (μY |X + βY |X x, σY |X ), where

μY |X =μY − σXYμY

σX X
, βY |X = σXY

σX X
, σY |X = σY Y − σ 2

XY

σX X
.

It is straightforward to establish that (μX , σX X ) ‡ (μY |X , βY |X , σY |X ) and hence θ̃X ‡ θ̃Y |X , with
parallel results when X and Y are interchanged. Therefore this family is a strong meta Markov
model. This property extends to higher dimensions.

DEFINITION 1. Suppose that the model � consists of a set of joint distributions θ for (X, Y )
having positive joint density p(x, y | θ). The odds ratio parameter λ= λ(θ) is defined to be the
labelled collection (

p(x, y | θ) p(x ′, y′ | θ)
p(x, y′ | θ) p(x ′, y | θ) : x, x ′ ∈X ; y, y′ ∈Y

)
. (2)

As an example, in the bivariate normal model, elements of (2) are of the form exp{−�XY (x −
x ′)(y − y′)}, where �XY = −σXY /(σX XσY Y − σ 2

XY ) is the off-diagonal term of the precision
matrix. Therefore λ��XY .
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192 S. P. J. BYRNE AND A. P. DAWID

The parameter λ has been well studied in the context of contingency tables. Altham (1970)
demonstrated that it has certain desirable properties as a measure of association between X and
Y . We note that λ also characterizes such dependence for more general models.

LEMMA 1. For a given joint distribution θ, λ(θ)≡ 1 if and only if X and Y are independent
under θ .

Proof. By definition, λ≡ 1 if and only if

p(x, y | θ) p(x ′, y′ | θ)= p(x, y′ | θ) p(x ′, y | θ) (3)

for all x, y, x ′, y′. If (3) holds, then upon integrating over x ′ and y′ we obtain p(x, y | θ)= p(x |
θ) p(y | θ). Conversely, if p(x, y | θ) factorizes in this manner, (3) must hold. �

Our particular interest in λ is due to its being a common parameter of both the prospective and
retrospective models.

LEMMA 2. The odds ratio λ can be expressed as a function of θY |X and also of θX |Y .

Proof. Elements of (2) can be written as

p(y | x, θY |X ) p(y′ | x ′, θY |X )
p(y′ | x, θY |X ) p(y | x ′, θY |X )

= p(x | y, θX |Y ) p(x ′ | y′, θX |Y )
p(x | y′, θX |Y ) p(x ′ | y, θX |Y )

. �

As we shall see below, it is this shared parameter property that makes it possible to use retro-
spective data to make inferences about the prospective model.

By constraining λ, we can construct new strong meta Markov models.

LEMMA 3. Let� be a strong meta Markov model for (X, Y ), and for a given function f define
�′ = {θ ∈� : f (λ)= 0}. Then �′ is strong meta Markov.

Proof. Since θY |X ‡ θX and f (λ) is a function of θY |X , it follows from the separoid properties
of variation independence (Dawid, 2001a,b) that θY |X ‡ θX | f (λ). Similarly, θX |Y ‡ θY | f (λ).

�

Example 3. Let Y = {0, 1}, and let X be a subset of R
d whose affine span is R

d . Let the
model � comprise all distributions with positive densities on X × Y . By the affine condition,
there exist x1, . . . , xd+1 ∈X such that (1, x1), . . . , (1, xd+1) are linearly independent. We can
then write θY |X � (α, β, η), where

p(y | x, α, β, η)= exp{y(α + βTx + ηx )}
1 + exp(α + βTx + ηx )

with ηx = 0 for x = x1, . . . , xd+1. The odds ratios are then

p(1 | x, α, β, η) p(0 | x ′, α, β, η)
p(1 | x ′, α, β, η) p(0 | x, α, β, η)

= exp{βT(x − x ′)+ ηx − ηx ′ },

and hence λ� (β, η). The logistic model is then obtained upon constraining η to be 0. As η is a
function of λ, by Lemma 3 it is strong meta Markov. Moreover, λ� β in this model.
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Bayesian analysis of case-control studies 193

Example 4. We can generalize to let Y be a finite set. Using essentially the same argument
yields the multinomial logistic model:

p(y | x, α, β)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp(αy + βT
y x)

1 + ∑
y′ |= y∗ exp(αy′ + βT

y′ x)
, y |= y∗,

1

1 + ∑
y′ |= y∗ exp(αy′ + βT

y′ x)
, y = y∗,

for some reference element y∗ ∈Y . We then have λ� β = (βy : y |= y∗).

The cumulative logit model (McCullagh, 1980), which is widely used for ordinal data, is not
strong meta Markov. However, there is an alternative model that can be used in this setting.

Example 5. The stereotype model (Anderson, 1984) is obtained by constraining the multino-
mial logistic model so that βy = βγy , where β ∈ R

d and γy ∈ R. Then λ� (β, γ ). This model can
be made more general by allowing β to take values in R

d×k and γy to take values in R
k , where

k < |Y| − 1. Several authors have proposed this model for ordinal data; in particular, Greenland
(1994) noted its validity for analysing retrospective data, as we demonstrate below.

Example 6. The multiplicative intercept model (Hsieh et al., 1985; Weinberg & Wacholder,
1993) is a general strong meta Markov model for binary response data. Its density has the form

p(y | x, α, β)=
[
exp{α + f (x, β)}]y

1 + exp{α + f (x, β)} .

This model can be obtained by constraining the odds ratios (2) to be of the form f (x, β)−
f (x ′, β). It has λ� β.

For the logistic model, Prentice & Pyke (1979) showed that the maximum likelihood odds ratio
estimators obtained from a case-control study have the same values and asymptotic distribution
as those arising from a prospective study. The following result states that this property holds for
any strong meta Markov model.

THEOREM 1. Let � be a strong meta Markov model for (X, Y ). Then the profile likelihood
function for any function of λ is the same, up to proportionality, under the joint model �, the
retrospective model �X |Y and the prospective model �Y |X .

Proof. The argument is similar to that of Lemma 4.10 in Dawid & Lauritzen (1993). The joint
density under the model θ can be written as p(x, y | θ)= p(x | θX ) p(y | x, θY |X ). Therefore the

profile likelihood L joint
p (λ) for the joint model is

L joint
p (λ)= max

θ :λ(θ)=λ
p(x | θX ) p(y | x, θY |X ). (4)

Since we have the conditional variation independence θX ‡ θY |X | λ, the maximization in (4) can
be performed separately for each factor; hence

L joint
p (λ)= max

θX :λ(θX )=λ
p(x | θX )× max

θY |X :λ(θY |X )=λ
p(y | x, θY |X ).
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194 S. P. J. BYRNE AND A. P. DAWID

Moreover, since θX ‡ θY |X and λ is a function of θY |X , we have θX ‡ λ, so that the first term is
constant for all λ, giving

L joint
p (λ)∝ max

θY |X :λ(θY |X )=λ
p(y | x, θY |X )= Lpro

p (λ),

where Lpro
p denotes the profile likelihood of the prospective model. An identical argument shows

that L joint
p (λ)∝ L ret

p (λ). This argument can be extended to any function of λ. �

From this we obtain the following result, generalizing that of Prentice & Pyke (1979).

COROLLARY 1. Suppose that � is a strong meta Markov model parameterized by a finite-
dimensional parameter. Then, for data observed under retrospective sampling, the maximum
likelihood estimator of any function of the parameter λ, as well as its asymptotic covariance
matrix, can be computed as if the data were observed prospectively.

Proof. The maximum likelihood estimator is a function of the profile likelihood, as is its
asymptotic covariance matrix when θ is finite-dimensional (Patefield, 1985). �

We emphasize that it is necessary for this result that the parameter of interest be a function of
λ; it is not sufficient that the parameter be variation independent of the marginals. In the bivariate
normal example, the correlation coefficient ρ = σXY /(σX XσY Y )

1/2 is variation independent of
both θX and θY , but it cannot be expressed as a function of either θY |X or θX |Y and cannot be
estimated from a regression.

The above argument can also be applied to the value, but not the covariance matrix, of
a penalized maximum likelihood estimator of λ, when the penalty term is a function of λ
only, for example in the case of estimating β in a logistic regression by maximizing log p(y |
x, α, β)− φ(β) over α and β. Examples of such estimators include ridge regression, where
φ(β)∝ ‖β‖2, and lasso, where φ(β)∝ ‖β‖1. Such methods have proven successful in genome-
wide association studies, which involve case-control data with extremely high-dimensional
covariates (Park & Hastie, 2008; Wu et al., 2009).

4. BAYESIAN ANALYSIS OF RETROSPECTIVE STUDIES

We now extend the results of the previous section to Bayesian analysis. Let L be a prior law for
the parameter variable θ̃ ∈�, and let Lpro and Lret denote the induced marginal priors for θ̃Y |X
and θ̃X |Y , respectively. For observations (X (n), Y (n))= (x (n), y(n)), denote by Ljoint the posterior
law for θ̃ , based on prior L and the joint likelihood p(x (n), y(n) | θ); denote by Lpro the posterior
law for θ̃Y |X , based on the prior law Lpro and the prospective likelihood p(y(n) | x (n), θY |X );
and denote by Lret the posterior law for θ̃X |Y , based on the prior law Lret and the retrospective
likelihood p(x (n) | y(n), θX |Y ).

We now present the key result of this section.

THEOREM 2. Let L be a strong hyper Markov prior law over the joint model � for (X, Y ).
Then the posterior marginal law of λ̃= λ(θ̃) is the same whether it is computed from Ljoint, from
Lpro, or from Lret.
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Bayesian analysis of case-control studies 195

Proof. The posterior law for λ̃ under the joint analysis is determined by its Radon–Nikodym
derivative with respect to the prior law:

dLjoint

dL (λ)∝
∫ n∏

i=1

p(yi | xi , θY |X )p(xi | θX ) dL(θ | λ). (5)

By the strong hyper Markov property, θ̃Y |X ⊥⊥ θ̃X | λ̃, so the right-hand side of (5) factorizes as

∫ n∏
i=1

p(yi | xi , θY |X ) dL(θY |X | λ)
∫ n∏

i=1

p(xi | θX ) dL(θX | λ).

Also, θ̃X ⊥⊥ λ̃, so only the first of these terms is a function of λ. Therefore

dLjoint

dL (λ)∝
∫ n∏

i=1

p(yi | xi , θY |X ) dL(θY |X | λ)∝ dLpro

dLpro
(λ).

Since the distribution of λ̃ is the same under the priors L and Lpro, the posteriors for λ̃ under
Ljoint and Lpro are proportional and hence identical. A parallel argument shows the identity of
the joint and the retrospective analyses. �

Several authors have obtained similar results. Müller & Roeder (1997) almost identified these
conditions for the logistic regression model, but then incorrectly claimed that the ‘argument about
the retrospective likelihood only carries over to posterior inference on β if α and β are indepen-
dent and θX is not otherwise constrained’. This misconception appears to be due to the fact that,
although there is a one-to-one mapping between α and θY , this mapping is itself dependent on β.
Unfortunately, this means that Müller and Roeder’s proposed Dirichlet process mixture law does
not satisfy the required properties.

For the case of the logistic regression model where the covariate space X is finite, conditions
equivalent to the strong hyper Markov property were shown to be sufficient in a 2007 University
of Bristol technical report by A.-M. Staicu.

The converse result to Theorem 2 does not strictly hold. For instance, if λ̃ is almost surely
constant under the prior law, then so must it be under any of the posterior laws, irrespective of
whether or not the strong hyper Markov property holds. However, we conjecture that, with the
addition of suitable technical conditions to exclude such special cases, the identity of the joint,
prospective and retrospective analyses for λ̃will hold only when the joint prior law for θ̃ is strong
hyper Markov.

It follows immediately from Theorem 2 that, with the stated conditions and definitions, the
posterior for λ̃ that we would obtain by combining the true retrospective likelihood with prior
law Lret for its parameter θ̃X |Y could also be obtained by combining the incorrect prospective
likelihood with prior law Lpro for its parameter θ̃Y |X . Here we wish to emphasize a constraint
that previous authors have not always made clear: in order to invoke this result, we must be using
a prior law Lret for the retrospective parameter θ̃X |Y that can arise as the marginal of some strong
hyper Markov law L for θ̃ . Only then is one justified in using instead the prospective likelihood
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in conjunction with a suitable prior law for its parameter θ̃Y |X , which law we can take to be that
derived from L.

The problem of model comparison for case-control studies has received relatively little atten-
tion in the literature, particularly for Bayesian analyses. However, we can approach it through a
result similar to Theorem 2.

THEOREM 3. Let L1(θ̃) and L2(θ̃) be strong hyper Markov laws whose marginal laws for θ̃X

are identical, as are those for θ̃Y . Then the Bayes factors between L1 and L2 computed under
the prospective, retrospective and joint likelihoods are all equal.

Proof. Define a joint law L∗ for (M̃, θ̃ ) such that M̃ takes values 1 and 2 each with probability
1/2 and, given M̃ = j , the conditional law of θ̃ is L j . The strong hyper Markov condition implies
that θ̃X ⊥⊥ θ̃Y |X | M̃ [L∗], while the condition of the equality of marginals can be expressed as
θ̃X ⊥⊥ M̃ [L∗]. These properties are together equivalent to θ̃X ⊥⊥ (θ̃Y |X , M̃) [L∗], and similarly
θ̃Y ⊥⊥ (θ̃X |Y , M̃) [L∗]. An argument similar to that of Theorem 2 now shows that the posterior
distributions for M̃ , and hence the Bayes factors, must be the same, whether they are computed
using the joint, prospective or retrospective analyses. �

5. STRONG HYPER MARKOV LAWS

We now investigate known families of strong hyper Markov laws, as well as methods for deriv-
ing new families. As noted in § 2, strong hyper Markov laws exist only for strong meta Markov
models, so we shall focus on the same models discussed in § 3.

Dawid & Lauritzen (1993) identified two strong hyper Markov laws.

Example 7. For discrete X and Y , the saturated model comprises all multinomial distribu-
tions, which can be parameterized by their joint probabilities θ = (θx,y : x ∈X , y ∈Y). The
standard conjugate prior is a Dirichlet law, L(θ̃)=D(axy : x ∈X , y ∈Y), with hyperparameters
axy > 0, having density proportional to

∏
x∈X ,y∈Y

θ
axy−1
xy .

The posterior is of the same form, with updated hyperparameters a∗
xy = axy + nxy , where nxy is

the number of cases having X = x and Y = y.
By the aggregation properties of Dirichlet laws (see, e.g., Dawid & Lauritzen, 1993,

Lemma 7.2),

θ̃X ∼D(ax+ : x ∈X ), θ̃Y |X=x∗ ∼D(ax∗y : y ∈Y) (x∗ ∈X ),

all independently, where ax+ = ∑
y axy ; similarly for θ̃Y and θ̃X |Y . Thus this law is strong hyper

Markov. Because it is continuous, it also works for the restricted model without structural zeros
of Example 1.

The Dirichlet law has been widely used for the analysis of case-control studies with a single
binary covariate, corresponding to a 2 × 2 table (Zelen & Parker, 1986; Nurminen & Mutanen,
1987; Marshall, 1988; Ashby et al., 1993). The distribution of the odds ratio parameter λ̃ has
been explored by Altham (1969).
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Example 8. Consider the bivariate normal model of Example 2, restricted for simplicity to
have zero means. The standard conjugate prior is the inverse Wishart distribution for the disper-
sion matrix �, having density proportional to

|�|a exp
{−1

2 tr(A�)
}
.

Then the posterior is of the same form, with updated hyperparameters a∗ and A∗. The inverse
Wishart distribution determines a strong hyper Markov law, with similar marginalization proper-
ties to those of the Dirichlet law (Dawid & Lauritzen, 1993, Lemma 7.4). Similar results hold for
the nonzero means model, where the conjugate normal-inverse Wishart distribution determines
a strong hyper Markov law.

The independence of the odds ratio λ̃ from each of the marginal distributions θ̃X and θ̃Y allows
us to construct further families of strong hyper Markov laws from existing ones.

THEOREM 4. If L is a strong hyper Markov law, then any law L′ having Radon–Nikodym
derivative of the form

dL′

dL (θ)= h(λ)

is also strong hyper Markov. Furthermore, the marginal laws for θ̃X and θ̃Y are the same under
L′ as under L.

Proof. Let A be an element of the σ -algebra generated by θ̃Y |X . Since θ̃Y |X ⊥⊥ θ̃X under L,

L′(A | θ̃X )= EL
[
h{λ(θ̃Y |X )} 1A(θ̃Y |X ) | θ̃X

] = EL
{

h(λ̃) 1A(θ̃Y |X )
} =L′(A),

and hence θ̃Y |X ⊥⊥ θ̃X under L′. Similarly, θ̃X |Y ⊥⊥ θ̃Y under L′.
Now let B be an element of the σ -algebra generated by θ̃X . Then

L′(B)= EL
[
h{λ(θ̃Y |X )}1B(θ̃X )

] = EL
[
h{λ(θ̃Y |X )}

]
EL

{
1B(θ̃X )

} =L(B),

and similarly for θ̃Y . �

We can also extend the constraint procedure of Lemma 3 to construct strong hyper Markov
laws on the resulting submodel �′.

THEOREM 5. Let L(θ̃) be a strong hyper Markov law, and let f be a function of λ. Then
the law L′(θ̃)=L(θ̃ | f̃ = 0) is strong hyper Markov for the submodel �′ specified by f = 0.
Furthermore, the marginal laws for θ̃X and θ̃Y are the same under L′ as under L.

Proof. As θ̃X ⊥⊥ θ̃Y |X and f̃ is a function of θ̃Y |X , we have

θ̃X ⊥⊥ θ̃Y |X | f̃ [L], (6)

θ̃X ⊥⊥ f̃ [L]. (7)

Parallel results hold with X and Y interchanged. Then (6) shows that L(θ̃) remains strong hyper
Markov under conditioning on f̃ = 0, while (7) shows that this conditioning does not affect the
marginal laws. �

Remark 1. Together, Theorems 4 and 5 can be paraphrased as saying that if L is a strong
hyper Markov law for θ̃ and the law L′ has the same conditional distribution for θ̃ given λ̃ as L
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does, then L′ is strong hyper Markov, with unchanged marginal laws for θ̃X and θ̃Y . In particular,
this construction allows λ̃ to be assigned any distribution whatsoever under L′.

Example 9. For a two-way contingency table, any law with density of the form

h

(
θxyθx ′y′

θxy′θx ′y

)
x,y,x ′,y′

∏
(x,y)

θ
axy−1
xy

will be strong hyper Markov. Geiger & Heckerman (1997, Equation (10)) noted that all strong
hyper Markov laws for 2 × 2 tables must have a density of this form.

Example 10. For the zero-means bivariate normal model, any law with density of the form

h

(
σXY

σX XσY Y − σ 2
XY

)
|�|a exp

{−1
2 tr(A�)

}

will be strong hyper Markov. Geiger & Heckerman (2002, Theorem 12) showed that all strong
hyper Markov laws for the bivariate normal model must have a density of this form.

The construction of laws for nested models by conditioning on specific parameters has been
proposed in Dawid & Lauritzen (2001, § 4). Laws constructed by this procedure will also satisfy
the conditions of Theorem 3.

Example 11. Consider a logistic model for finite covariate space X , as generated by the con-
ditioning procedure of Example 3.

We start with a generalized Dirichlet law L(θ̃) for the saturated model. Then the law for θ̃Y |X
has density of the form

h(λ)
∏
x∈X

θ
ax0−1
0|x θ

ax1−1
1|x .

The Jacobian determinant of the transformation to the logistic parameterization is
∣∣∣∣ dθY |X
d(α, β, η)

∣∣∣∣ ∝
∏
x∈X

exp(α + βTx + ηx )

{1 + exp(α + βTx + ηx )}2
,

and hence the density for L(α̃, β̃, η̃) is of the form

g(β, η)
∏
x∈X

exp{(α + βTx + ηx )ax1}
{1 + exp(α + βTx + ηx )}ax+

,

where ax+ = ax0 + ax1. By conditioning on η̃= 0, we obtain the density of L′(α̃, β̃), which is
of the form

g(β)
∏
x∈X

exp{(α + βTx)ax1}
{1 + exp(α + βTx)}ax+

. (8)

The Jacobian of the transformation in terms of the retrospective parameters is

∣∣∣∣ d(α, β, θX )

d(θX |0, β, θY=1)

∣∣∣∣ = (1 − θY=1)
|X |−1

θY=1

∏
x∈X

{
1 + exp(α + βTx)

}
.
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Therefore, using a prior law with density (8) for the prospective analysis of retrospective data is
justified when the true retrospective prior law is

g(β)

∏
x∈X θ

ax+−1
x |0 exp(ax1β

Tx){∑
x∈X θx |0 exp(βTx)

}a+1
.

Priors of this form have previously appeared in the literature. The prior of Staicu (2010, Exam-
ple 2) is obtained by rewriting (8) as

g∗(β) exp(αa+1)
∏
x∈X

{
1 + exp(α + βTx)

}−ax+,

where g∗(β)= g(β) exp(
∑

x∈X ax1β
Tx). The improper prior of Seaman & Richardson (2004)

and Staicu (2010, Example 1) can be obtained by further taking the limit as a+1 → 0. However,
we argue that the form of (8) is more easily interpreted: it can be thought of as the product of an
improper prior with density element g(β) dβ dα and a logistic likelihood function, where the axy

represent pseudo-counts. This has the further benefit of being easily adaptable to existing com-
putational methods; for example, a Laplace approximation can be found using standard logistic
regression software.

Although x appears in the density (8), we disagree with Staicu (2010) that this constitutes a
covariate-dependent prior, like the g-priors of Zellner (1986); it is only dependent on the a priori
expected frequencies of the covariates, not on their observed frequencies in the data.

The logistic generalized Dirichlet law can similarly be extended to the multinomial model of
Example 4, yielding a density of the form

g(β)
∏
x∈X

∏
y |= y∗ exp{(αy + βT

y x)axy}{
1 + ∑

y |= y∗ exp(αy + βT
y x)

}ax+ . (9)

By further conditioning, this can be applied to the stereotype model of Example 5, using a prior
density of the form

g(β, γ )
∏
x∈X

∏
y |= y∗ exp{(αy + γyβ

Tx)axy}{
1 + ∑

y |= y∗ exp(αy + γyβTx)
}ax+ . (10)

An analogous construction for the multiplicative intercept model of Example 6 uses a prior den-
sity of the form

g(β)
∏
x∈X

exp[{α + f (x, β)}ax1][
1 + exp{α + f (x, β)}]ax+ . (11)

The improper priors of Ghosh et al. (2012, Theorem 1) can be obtained from (9), (10) and
(11) by taking the limit as ax+ → 0. However, their claim that these priors can also be used for
link functions other than the logistic one, such as the probit, skew-symmetric or cumulative logit
cases, is incorrect, as these models are not strong meta Markov and hence cannot support strong
hyper Markov laws.

The form of the generalized logistic Dirichlet law allows for easy implementation in generic
Bayesian Markov chain Monte Carlo packages such as WinBUGS, OpenBUGS and JAGS, which
accept noninteger values for binomial counts. Furthermore, arbitrary functions g can be included
by use of the zero Poisson trick; see Lunn et al. (2013, § 9.5). Unfortunately, this method is some-
what impractical for large numbers of covariates, since the size of X increases exponentially with
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its dimensionality k. Furthermore, as X increases, β̃ will tend to concentrate around 0. To com-
pensate for this, the values of the axy can be chosen closer to 0, but the above software packages
do not work well for very small values.

6. STRATIFIED MODELS

A more complicated analysis is that of stratified or matched case-control studies, in which
participants are selected by both the outcome Y and an additional stratum variable S, taking val-
ues in S. Such a design can often estimate the odds ratio of interest with much greater efficiency
than an unstratified study.

It is enough to consider sampling schemes that condition on S, so that the parameter of the
joint likelihood is θXY |S . The prospective parameter of interest is θY |X S , but data may be observed
under the retrospective regime, only allowing estimation of θX |Y S . In this case the parameter λ
that is a function of both θY |X S and θX |Y S is the set of all odds ratios of the form

p(x, y | s, θ) p(x ′, y′ | s, θ)

p(x, y′ | s, θ) p(x ′, y | s, θ)
(x, x ′ ∈X ; y, y′ ∈Y; s ∈ S).

Example 12. The stratified logistic model is similar to Example 3 but with an intercept param-
eter that varies by stratum, so that the prospective model is

p(y | x, s, α, β)= exp(αs + βTx)

1 + exp(αs + βTx)
.

As in the unstratified case, λ� β.

This additional complication can make estimation more difficult. The number of strata will
typically increase with sample size, with the result that the maximum likelihood estimator is
inconsistent. An alternative under the classical approach is to maximize the conditional likelihood

Lc(β)=
∏
s∈S

∏
i∈Is

exp(yiβ
Txx )∑

ρ

∏
i∈Is

exp(yρ(i)βTxx )
,

where Is = {i : si = s} and the summation in the denominator is over all possible permutations of
(yi )i∈Is . If there are a cases and b controls in each stratum, called a:b matching, the sum in the
denominator will have (a + b)!/(a! b!) terms. In order to keep this computationally tractable,
most studies use 1:1 or 1:m matching.

The conditional likelihood does not have a direct Bayesian interpretation. Rice (2004,
Theorem 1) showed that there exists a law such that the marginal retrospective likelihood
p̄(x | y, s, β) is proportional to the conditional likelihood. However, this law depends on the
matching scheme; for example, a 1:1 matched design and a 1:2 matched design will require dif-
ferent laws.

Alternatively, Theorem 2 can be extended to support use of the prospective likelihood.

THEOREM 6. Let L be a prior law for the parameter θ̃XY |S of a stratified model, with the
property that

θ̃Y |X S ⊥⊥ θ̃X |S, θ̃X |Y S ⊥⊥ θ̃Y |S [L].

Then the posterior marginal law for the odds ratios λ̃ is the same under the prospective, the
retrospective and the joint likelihoods.

 at U
C

L
 L

ibrary Services on June 27, 2014
http://biom

et.oxfordjournals.org/
D

ow
nloaded from

 

http://biomet.oxfordjournals.org/


Bayesian analysis of case-control studies 201

The argument is essentially the same as that for Theorem 2.
Laws satisfying Theorem 6 can be constructed from a collection of strong hyper Markov laws

Ls(θ̃XY |S=s) on the individual strata. A simple example is the product law

L(θ̃XY |S)=
∏
s∈S

Ls(θ̃XY |S=s),

which is equivalent to fitting a separate model for each stratum, each having its individual odds
ratio parameter. The opposite case is that of a law L that constrains θ̃XY |S=s = θ̃XY |S=s′ almost
surely, thus ignoring stratification altogether. However, neither of these extreme cases is able to
exploit the key advantage of stratification, namely that it allows for fitting a model with both
common and stratum-specific parameters, such as the logistic model in Example 12, where all
strata share a common odds ratio. This can be effected as follows.

THEOREM 7. Let {Ls(θ̃XY |S=s) : s ∈ S} be a collection of strong hyper Markov laws such that
the marginal laws for the odds ratios are equal; that is,

Ls(λ̃s)=Ls′(λ̃s′)

for all s, s′ ∈ S. Then there exists a unique joint law L(θ̃XY |S) such that L(θ̃XY |S=s)=
Ls(θ̃XY |S=s), λ̃s = λ̃s′ almost surely, and the θ̃XY |S=s(s ∈ S) are conditionally independent given
λ̃. Moreover, this law satisfies the conditions of Theorem 6.

Proof. The existence and uniqueness of L are given by the Markov combination construction
of Dawid & Lauritzen (1993, Lemma 2.5). It remains to show that the conditions of Theorem 6
are satisfied for L.

The mutual independence of all the θ̃XY |S=s conditional on λ̃, combined with the strong hyper
Markov properties of the Ls , implies the mutual independence, given λ̃, of all terms of the form
θ̃Y |X,S=s , θ̃X |S=s′ . In particular,

θ̃Y |X S ⊥⊥ θ̃X |S | λ̃, (12)

⊥⊥
s∈S

{θ̃X |S=s}
∣∣ λ̃. (13)

Also, since Ls is strong hyper Markov, we have, for each s,

θ̃X |S=s ⊥⊥ λ̃. (14)

An easy application of the rules of conditional independence shows that (13) and (14) together
imply θ̃X |S ⊥⊥ λ̃, which combined with (12) gives θ̃Y |X S ⊥⊥ θ̃X |S , since λ̃ is a function of θ̃Y |X S .
Similarly, θ̃X |Y S ⊥⊥ θ̃Y |S . �

Example 13. For the stratified logistic model in Example 12, suppose that each law Ls is
specified by a density for (α̃s, β̃) of the form

gs(β)
∏
x∈X

exp{(αs + βTx)ax1s}
{1 + exp(αs + βTx)}ax+s

,
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such that the marginal density for β̃ is p(β) in each stratum s. By Theorem 5, this can be achieved
by choosing

gs(β)= p(β)∫
R

∏
x∈X

exp{(αs+βTx)ax1s}
{1+exp(αs+βTx)}ax+s dαs

.

The corresponding joint density for (α̃, β̃) is then

g(β)
∏

(x,s)∈X×S

exp{(αs + βTx)ax1s}
{1 + exp(αs + βTx)}ax+s

,

where g(β)= {∏s∈S gs(β)}/{p(β)|S|−1}.
This is of the same form as the density (8), where the strata are treated as an additional categor-

ical covariate in the model. As with the unmatched case, the improper laws of Ghosh et al. (2006,
2012) can be obtained by taking the limit as axys → 0, though again the claims in Ghosh et al.
(2012) regarding the use of different link functions are incorrect. Similar priors can be obtained
for the multinomial and stereotype models in the previous section.

Again, we emphasize that using such a law for the prospective analysis of retrospective data
requires that the prior law L(θ̃X |Y S) be the marginal of a joint law such that θ̃Y |X S ⊥⊥ θ̃X |S and
L(θ̃X |S=s)=D(axs).

We have not specified a model for the stratum variable S, as we have assumed that all data are
observed conditional on S. However, under the additional assumption that θ̃XY |S ⊥⊥ θ̃S [L], the
data can be treated as if they were randomly sampled from the population, as would be the case
for a cross-sectional study.

7. DISCUSSION

We have outlined a broad framework with necessary assumptions for the analysis of retrospec-
tive data using a prospective likelihood or Bayesian approach.

Our Bayesian analysis requires the existence of a joint strong hyper Markov law of which the
prospective and retrospective laws are its margins. Because of the difficulties in defining and
handling marginalization for improper priors (Dawid et al., 1973), our arguments do not readily
extend to improper priors, whose use in this context may require a different justification.

These results apply only to functions of the odds ratio. Other quantities such as an intercept
parameter α cannot be inferred using this approach, nor does it account for more recent devel-
opments such as case-cohort designs and incorporation of population incidence data.

Many analyses (e.g., de Vocht et al., 2012) have used multivariate normal prior laws for the
logistic log odds parameter β̃ � λ̃; but the overall laws used are not strong hyper Markov, and the
resulting prospective and retrospective posterior laws for β̃ are not equal. However, Remark 1
shows that it is indeed possible to construct a strong hyper Markov law such that β̃ is multivariate
normal, and the previously suggested prior laws might possibly be interpretable as approximating
such a strong hyper Markov law. There could nevertheless be considerable difficulty in determin-
ing the precise form of the implied law for the retrospective parameters.

Similar properties and techniques arise in other contexts. A recent example is the develop-
ment of inverse regression techniques used for dimension reduction (Cook & Li, 2009; Taddy,
2013). These methods exploit the existence of low-dimensional representations of the odds ratio
λ, termed a sufficient reduction, and utilize a similar method of obtaining estimates by fitting
the wrong inverse model to the data.

 at U
C

L
 L

ibrary Services on June 27, 2014
http://biom

et.oxfordjournals.org/
D

ow
nloaded from

 

http://biomet.oxfordjournals.org/


Bayesian analysis of case-control studies 203

Another example arises in the computation of graphical lasso estimators for high-dimensional
covariance matrices (Banerjee et al., 2008; Friedman et al., 2008). These are shrinkage estima-
tors which penalize off-diagonal elements of the precision matrix. Due to the strong meta Markov
property of the multivariate normal model and the penalized terms being functions of the odds
ratio, a similar argument to the proof of Theorem 1 can be used to show that the solution to the
optimization problem is equivalent to a set of penalized regression problems of each covariate
against all the others. As a result, the estimate can be computed by an iterative scheme of lasso
regressions.
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