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Rezumat. Articolul prezintă o procedură de dezvoltare a sistemelor de control 

implementate pe procese neliniare cu variabile dinamice. Strategia de control propusă 

este una adaptiv-robustă, ce ia în considerare atât avantajele controlului adaptiv cât si 

ale controlului robust şi foloseşte acelaşi criteriu integral pentru identificarea procesor şi 

pentru algoritmii de control. Un criteriu de optimalitate integrală şi o măsură 

corespunzătoare a degradării performanţelor sistemului, datorită variaţiilor modelului 

dinamic, sunt introduse. Acest criteriu integral este exprimat într-o formă directă, printr-

o funcţie cost, definită în spaţiul parametrilor modelului şi controlerului. Pentru 

minimizarea funcţiei neliniare, este folosită o metodă numerică de programare neliniară. 

Abordarea teoretică prezentată in această lucrare este validată într-un sistem în buclă 

închisă, aplicaţia fiind dezvoltată în Visual C#5. 

Abstract. This paper presents a design procedure for control systems implemented on 

dynamic variable and nonlinear processes. The proposed adaptive-robust control 

strategy is taking into account both adaptive control advantages and robust control 

benefits and is using the same integral criterion for the identification of the process and 

for the control algorithm design. An optimality integral criterion and an appropriate 

measure for degradation of the system performances due to variation of the dynamic 

model are introduced. This inteogral criterion is expressed in a direct form, through a 

cost function, defined in the model and the controller parameters’ space. For the 

minimization of this nonlinear function, a numerical mathematic nonlinear programming 

method is used. The theoretical approach presented in this paper is validated on a close 

loop control system, the application being developed in Visual C#5. 
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1. Introduction 

The identification of the process and the control algorithm design are two 

important steps in the implementation of any control system solution. 

The computer control system design consists in the effort of identifying the 

process P through the dynamic model M and in computing the control algorithm, 

C.  

The pair (C, M) defines the nominal system (NS), illustrated in fig. 1. 
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Fig. 1. Nominal System (NS). 

The mathematical model M is obtained by solving the optimization problem: 

 min JI (C,M) (1) 

with JI, an identification criterion built with the help of the prediction error. The 

control algorithm C, based on the identified model, is obtained as the solution of a 

second optimization problem, 

 min JC (C, M) (2) 

The optimal criterion JC is built with the help of the regulation error of the closed 

loop system. The design of the control algorithm for the nominal system (NS) may 

therefore endeavour to solve these two different optimization problems. 

Our main objective is to ensure the real system (RS) represented by the pair 

(µC,P) from fig.2, with the realized performances (RP) close to the nominal 

performances (NP) obtained in simulation over the system (NS). 

 

Fig. 2. Real System (RS). 

For the system (RS) with variable evolution of P, estimated through a model M, it 

is recommended to be implemented either an adaptive strategy or a robust 

strategy. 

The adaptive control is efficient for the case where the processes have variable 

parameters and implies the (re)identification of the process model and the 

(re)design of the control algorithm at every sampling time; for a new model, only 

with a new controller will the performances of the system be conserved. The 

expression that is showing the adaptive control strategy from the moment (k) to 

the moment (k + 1) is as follows: 

 (C(k),M(k)) -> (C(k+1),M(k+1)) (3) 

The robust control is recommended for nonlinear processes with parametric or 

structural disturbances, and proposes a single controller that ensures the desired 

performances for a class of candidate models of the process, including process P 
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itself. The robustness of the controller is expressed formally by equation (4), with 

the distance d, small enough: 

 |PC/(1+PC)-MC/(1+MC)|< d (4) 

Our research work proposes an integrated adaptive-robust design, built on the 

advantages of the two strategies that also eliminate their individual disadvantages. 

Compared to the classical adaptive strategy, the adaptive-robust procedure 

preserves nominal performances for the implemented physical system by 

(re)identification, at the point where a significant degradation of the current model 

occurs and not at each sampling time. This is clearly reducing the numerical effort 

and the difficulties of the closed-loop identification procedure. 

The robust strategy calculates a single (robust) control algorithm, tolerant to the 

nonlinearities and parametric or structural disturbances of the process; in this case, 

the performances required are for all the different operating points of the process 

(set of models).  

The control algorithm remains unchanged as long as the robustness criterion that 

is measuring the degradation is respected. Only in the case of an observed 

excessive degradation of the model, will the controller be (re)calculated after the 

(re)identification of the dynamic model is finished. This procedure eliminates the 

relatively difficult calculation of the correction of the control algorithm, by means 

of imposing a reserve of robustness [9], [10]. 

2. Adaptive-Robust Control 

We forget for instance the identification criterion and we consider a single optimal 

criterion (integral criteria for optimal control), thus we propose a recursive 

numerical procedure, where the two problems of identification and control are 

both integrated. 

The two interconnected problems in a recursive way can be solved in a unified 

manner, based on their dual character.  

 For the process P, model M and the associated controller C, the next inequality is 

respected: 

 
, , , ,

, , ,

J M C M J P C M J M C M J P C M

J M C M J P C M J M C M
 (7) 

The terms of the inequality (7) have the meaning:  

| ,J M C M |, the measurement of the nominal system’s performances (SN);  
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| ,J P C M |, the measurement of the real system’s performances (SR); 

, ,J P C M J M C M , the measurement of the degradation of the 

performances due to changes in the model, or due to the measurement of the 

degradation of the system robustness.  

With the help of the upper inequalities are established the conditions to be met for 

nominal performances to be reflected in the achieved performances by the 

physical (real) system, (RS). 

The measurement of the degradation will be verified by the inequation:  

 
, , ,J P C M J M C M J M C M  (8), 

where ,J M C M  takes small enough values, imposed by a specified limit, . 

The restriction (8) expresses the robust behaviour of the algorithm, since 

degradation is bordered by low values provided by | ,J M C M |. 

So, the recursive mechanism may proceed or not according to the assessment of 

the previous inequation.  

We consider the controller iC available for the actual model Mi but if the 

robustness performances are unsatisfied, it is necessary to calculate the next 

model using the following relation (not the standard identification algorithm): 

 
1 argmin , ,i i i

M

M J P C J M C  (9) 

For the model Mi+1 we build the next controller: 

 1 1argmin ,i i
C

C J M C  (10) 

For each step of calculation, we check the robustness constraints imposed by the 

size of the value δ. 

 1 1,i iJ M C ,  (11) 

and, 

 
1 1 1 1 1,C ,C ,i i i i iJ P J M J M C  (12) 

The next computation is not being performed at each sampling time; it becomes 

active when the degradation relationship (12) is not checked. The recursive 

computation ends with the fulfilment of the inequality (12) which measures 

performance (robustness) degradation and resume when inequality is violated.  

The connection between the two problems, of identification and control, is 

illustrated by the recursive mechanism expressed by the above figure 3.  
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Fig.3 Flow diagram for adaptive-robust control strategy. 

3. Validation of the theoretical approach and implementation aspects 

To validate the adaptive-robust mechanism, a simple numerical example is 

considered by the 1
st
 order process, 

  (5) 

 and by a standard PI controller: 

   (6) 

Let the integral criterion usually used in the optimal control theory: 

  (7) 

where the first part of the criterion is used to minimize the response time, while 

the second one is needed to control the speed of the closed loop dynamic system.  

The computational effort to minimize this integral criterion is very difficult. 

Therefore, we shall rewrite it in a direct form, using the algorithm from [8]. 
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Firstly, we separate the two terms of the integral,  

  (8) 

and we shall separately compute each term of the sum, in the direct form. 

We continue by applying the Laplace transform for J1 

  (9) 

  (10) 

  (11)  

The direct form result for J1 is, 

   (12) 

Based on the same methodology, we obtained the direct expression for the second 

part of the integral criterion J, 

   (13) 

In the end, the integral criterion J is equal to: 

  (14) 

The optimization problem will be: 

 

 min {J(K,T, Kr, Ti)} (15) 

in the space of the model and controller parameters, eventually with some 

constraints in the parameters.  

When the degradation condition is violated, the control algorithm parameters are 

preserved and an (re)identification procedure estimates the process model; a new 

controller will be computed corresponding to the new model, and the degradation 

performances condition will be respected.  
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The minimization of the nonlinear criterion (24) is accomplished using an 

appropriate nonlinear mathematical programming method. We chose the Nelder – 

Mead method, which is based on the SIMPLEX research algorithm [2], [3], this 

algorithm offering good performances for this class of problems. The SIMPLEX 

algorithm may converge to the minimum-point, solution for the nonlinear 

optimization problem (15). 

To test the adaptive – robust control system, a real time simulation mode was 

implemented based on the dedicated software. With a given input data: sampling 

period and the first identified model of the process, the application will simulate 

the evolution of the given process, starting from the initial process P (parameters).  

The first time the – mechanism runs with the controller Ci implemented on the 

process P , the controller Ci beeing calculated for the  identified model Mi and the 

following steps are introduced: 

 Generate new parameters for the process, by using a random number 

generator. 

 With the above generated values, and using the controller Ci, the value of the 

integral criterion, J is calculated for Mi model and for the process P. 

 The robustness test is run. This test consists in verifying the robustness 

degradation inequality. 

- if the inequality is respected, the test is passed and the current controller Ci is 

used to control the process. 

 - if the pair (Ci, Mi) fails the robustness test, the algorithm will estimate a new  

model Mi+1 which will be used to calculate the new controller, Ci+1 which is 

used to control the process. 

It is obvious that the computational effort for the implementation of this algorithm 

is significantly reduced when compared to the adaptive control or the robust 

control, respectively. 

Conclusions 

We proposed an adaptive – robust strategy for the design of a control system, 

combining the adaptive control and robust control theories taking into account the 

advantages of both adaptive and robust strategies. The standard model based 

control design procedure is ignored and a new strategy is developed, based on the 

measurement of the performance degradation for closed loop system.  The process 

identification problem is treated implicitly, using an indicator that measures the 

degradation of the performances of the system, due to the dynamic changes noted 

in the process evolution. The control algorithm design is based on an integral 

criterion of optimality expressed in the direct form in order to facilitate the 



 

 

52 Dumitru Popescu , Pierre Borne, Lavinius Gliga, Severus Olteanu  

computational effort. The optimal control algorithm’s parameters are obtained by 

minimizing the criterion function, using the SIMPLEX method. The theoretical 

approach presented in this work is validated by the implementation of the adaptive 

– robust algorithm for a closed loop control system, simulated in an application 

developed in C programming language. The mechanism of the adaptive - robust 

control system strategy can be implemented in different real time industrial 

applications. 
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