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Abstract 
 

 The synthesis of new solid-state materials is often a laborious task due to the 

low speed of diffusion in bulk solids, meaning each reaction requires high-

temperatures and multiple steps. Shortening diffusion distances has been shown to 

increase reaction rates and lower reaction temperatures.  

 This thesis addresses the need to increase the rate of solid-state materials 

discovery, by heat-treatment of nanosized precursors. The nano-precursors were 

synthesised using continuous hydrothermal flow synthesis, CHFS. In CHFS a flow 

of metal nitrate salts are brought into contact with a flow of supercritical water to 

precipitate metal oxides and/or hydroxides. The reaction between La(OH)3 and 

Ni(OH)2 co-precipitated using CHFS was investigated using in-situ X-ray 

diffraction. This resulted in the formation of La2NiO4 in 78 minutes, an order of 

magnitude faster than when using more traditional routes, highlighting the 

effectiveness of this approach.  

 A high-throughput CHFS reactor was then used to synthesise 

La4Ni2.7M0.3O10-δ (where M = V, Cr, Mn, Fe, Co, Cu and Al). By calcining the nano-

precursors for these compositions in parallel it was possible to reduce the synthesis 

time to make twenty-four solid-state compounds to 12 hours. Structure and 

properties were screened and, La4Ni2.7V0.3O10-δ, La4Ni2.7Cr0.3O10-δ, La4Ni2.7Mn0.3O10-δ 

and La4Ni2.7Al0.3O10-δ were characterised. Subsequently this process was carried out 

using automation to increase the number of compositions synthesised. Firstly, for the 

La4Ni3-xFexO10-δ system (x = 0.0 – 3.0 and Δx = 0.1), 62 samples were synthesised, 

resulting in identifying a greatly increased phase boundary, up to a maximum Fe 

content of La4Ni2.06Fe0.94O10. Secondly for the La4Ni3-xMxO10-δ and La3Ni2-xMxO7-δ 

systems (x = 0.0 – 2.0. Δx = 0.2 and M = Mn, Al, Pd, Ga) in which 240 samples were 

synthesised. La4Ni3-xGaxO10-δ was isolated up to a maximum Ga content of x = 0.6, 

and La2Ni1-xPdxO4 could be synthesised with a maximum Pd content of x = 0.4. 
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Chapter 1 

 

Introduction and Literature Review 
1.1. Solid Oxide Fuel Cells 
 Solid oxide fuel cells (SOFCs) are electrochemical devices that operate at 

high temperatures (973 – 1273 K) and typically run on a fuel containing H2 and CO, 

which are formed by steam reformation of hydrocarbons on the anode side of the 

cell. Air is used as an oxidant to produce H2O, CO2 and energy. SOFCs are usually 

constructed from three principle components, an anode, a solid oxide electrolyte and 

a cathode. The anode is an electrically and ionically conductive cermet, which must 

be porous in order to allow the fuel gasses to reach the reaction interface. The 

Electrolyte is an ionically conductive electrical insulator which conducts O2- ions 

across the to the cathode side of the cell. In order to obtain an O2-conductivity high 

enough to have a practical cell the operating temperature must be high often in 

excess of 973 K. The cathode material in an SOFC is a mixed electrical and ionic 

conductor which must be porous to allow the fuel gas to reach the reaction surface 

and must have high catalytic activity for the reduction of O2. A schematic 

representation of the construction of a SOFC and the reactions at each component is 

represented in figure 1.1 below.  

 Figure 1.1. A schematic representation of a SOFC. Figure adapted from 

(Ormerod 2002) 
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 Energy is generated from a fuel containing H2 and CO, which reacts with O2- 

to produce CO2, H2O and 4e- as in equation 1.1 and 1.2. 

 

 (1.1) 

 

 (1.2) 

 

The electrons produced travel through an external circuit (where they can do work) 

to the cathode where they are used in the reduction of oxygen, shown in equation 1.3. 

 

 (1.3) 

 

The O2- anions produced pass back through the solid electrolyte to be used in 

reaction 1.2. The equation for the process is represented in equation 1.4. 

 

  (1.4) 

 

 

1.1.1. Anodes 
 Anode materials in SOFCs should be porous and be both electrically and 

ionically conductive. They are generally cermets (a ceramic and metal mixture) with 

the metal being used as a conducting phase. The fuel gases are reducing in nature, 

however these metals cannot oxidise at operating temperature (973 – 1273 K) 

therefore the metals used are generally limited to Ni and Co.(Ormerod 2002) The 

most widely used anode is a Ni-(ZrO2)0.9(Y2O3)0.1 (Ni-YSZ) because it has a high 

stability and thermal compatibility with yttria stabilised zirconia (YSZ) (a commonly 

used solid electrolyte), and good electrocatalytic activity.(Lashtabeg et al. 2006) The 

thermal compatibility relates to the similar thermal expansion that both materials 

undergo on heating. If the thermal expansion values are not compatible it can lead to 

mechanical failure of the fuel cell. 

 Reactions at the anode occur at the triple-phase boundary (TPB), which is the 

junction between the electrolyte, the metal and the gaseous fuel. The TPB is 

represented schematically in figure 1.2.  
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 Figure 1.2. Schematic diagram of the triple phase boundary. Figure adapted 

from (McIntosh et al. 2004). 

 

 Given the rate of reaction is dictated by the area of the TPB, it is therefore 

desirable to increase the surface area of the TPB, often by using nanosized materials. 

It is also therefore important to have a good dispersion of Ni metal within the YSZ to 

maximise conductivity.(McIntosh et al. 2004) It was shown using CHFS that a good 

dispersion of Ni in nanosized YSZ could be achieved. Also, reduced sintering of Ni 

metal was observed after heat-treatment (via spark plasma sintering) as characterised 

by a Ni particle size range of 150 – 300 nm, compared with 500 – 2000 nm in 

commercial powders, representing a potentially large increase in the size of the 

TPB.(Weng et al. 2010) 

 

1.1.2. Electrolytes 
 The electrolyte material for an SOFC must be electrically insulating but have 

high oxygen ion conductivity. They must also be fully dense to prevent mixing of the 

fuel and oxidant gas flows. The most commonly used material is yttria stabilised 

zirconia, YSZ (8 mol. % Y in ZrO2). This material has high oxide ion mobility, a 

good stability in both oxidising and reducing atmospheres and is made of cheap 

abundant oxides. However, in order to achieve an oxide ion conductivity high 

enough for the fuel cell to work efficiently, temperatures of 973 – 1273 K are 

required. Many other materials have consequently been investigated in an attempt to 

achieve high oxide ion conductivities at lower temperatures. Ceria doped gadolina 
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(CGO) and La1-xSrxGa1-yMgyO3-(x/2)-(y/2) (LSGM) in particular have been identified as 

potential alternatives to YSZ.(Lashtabeg et al. 2006) A range of solid electrolytes 

and their measured conductivities are presented in figure 1.3. 

 Figure 1.3. Ionic conductivities of selected SOFC electrolyte materials. 

Figure adapted from (Azad et al. 1994). 

 

1.1.3. Cathodes 

 The cathode material in an SOFC is a mixed electrical and ionic conductor 

which must be porous to allow the fuel gas to reach the reaction surface and must 

have high catalytic activity for the reduction of O2. Cathode materials are generally a 

form of perovskite with the structure LnMO3, (where Ln = lanthanide and 

M = transition metal) as these materials display high electrical and oxide ion 

conductivities within the temperature region of SOFC operation.(Skinner 2001) Two 

popular perovskite based SOFC cathode materials are La1-xSrxMnO3 (LSM) and   

La1-xSrxCo1-yFeyO3 (LSCF). LSM is favoured as a cathode material as it has a high 

electrical conductivity and high activity for the electrochemical reduction of 

O2.(Jacobson 2010) It also displays good chemical compatibility with YSZ and 

LSGM.(Jacobson 2010) LSM has been shown to react with YSZ when sintering 
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temperatures greater than 1373 K are used, however at an operating temperature 

between 973 – 1173 K no reaction was observed between LSM and YSZ after 

heating for 15 hours.(Yamamoto et al. 1987) LSCF has a superior conductivity to 

LSM however it also possesses a greater reactivity towards zirconia based electrolyte 

materials. Therefore LSCF is used in fuel cells using ceria electrolytes.(Ormerod 

2002) 

 Whilst perovskites have been traditionally investigated as SOFC cathodes, 

more recently variations of perovskite, namely layered perovskites have been 

identified as demonstrating rapid oxygen ion diffusion and high electrical 

conductivity.(Tarancón et al. 2010; Taskin et al. 2007) Two main types of layered 

perovskite have been identified, Ruddlesden-Popper type lanthanum nickelates, and 

double perovskites. The former are discussed in detail below. The latter have the 

formula A'A''B2O5+δ (where A' = lanthanide cation, A'' = alkali metal, and 

B = transition metal), and are formed from simple ABO3 perovskite units as shown 

in figure 1.4 below. 

 
 Figure 1.4. a) A simple A'0.5A''0.5O3 where B is a transition metal, showing 

no A-site ordering. b) A layered A'A''BO6 structure, formed by doubling the unit cell, 

this is only possible to form if the difference in A3+:A'2+ ratio is large enough. c) The 

layered A'A''BO5+δ (0.0 < δ > 1.0) structure where O anions can be removed from the 

lanthanide A3+ layers to form O2- diffusion channels. Figure adapted from (Taskin et 

al. 2007). 

 



Chapter 1 — Introduction and Literature Review 
 

 28 

 To form AA'BO5+δ structures a large enough size ratio between the atomic 

radius of the A3+ and A'2+ cation is required. A range of these structures have been 

discovered which display high electrical conductivities at intermediate 

temperatures.(Kim et al. 2007) When the alternating alkali earth, and lanthanide 

planes are formed, large amounts of oxygen are removed from the LnOx planes 

leaving a high O2- vacancy concentration and high O2- mobility as a result.(Maignan 

et al. 1999; Taskin et al. 2007) When electrical characterisation tests were performed 

on GdBaCo2O5+δ in a cell with CGO electrolytes these materials were found to be 

suitable at intermediate-temperature solid oxide fuel cell (IT-SOFC) operating 

temperatures between 873 – 973 K,(Tarancón et al. 2007) a result that was further 

corroborated by Kim et al.(Kim et al. 2009) 

 

1.2. Lanthanum Nickelates 
 Lanthanum nickelates are mixed ionic and electronic conductors, and have 

shown potential as an IT-SOFC cathode material.(Takahashi et al. 2010) 

Ruddlesden-Popper type lanthanum nickelates have the formula Lan+1NinO3n+1 where 

n = 1, 2, and 3, La2NiO4+δ, La3Ni2O7-δ and La4Ni3O10-δ, respectively, and are 

represented in figure 1.5. 1.6 and 1.7.(Ruddlesden et al. 1957; Ruddlesden et al. 

1958) They are formed of LaNiO3 perovskite layers which extend infinitely in the ab 

plane and are connected by corner sharing NiO6 octahedra. The perovskite layers are 

stacked in the c plane in n layers, with every n perovskite layers separated by 

rocksalt-type LaO layers. The average Ni valence increases from 2, to 2.5 to 2.67 

through the series n = 1 - 3, the lanthanum cations are always 3+. The mixed Ni 

valency in the n = 2 and 3 compounds causes the oxygen stoichiometry to become 

deficient to stabilise the structure. By introducing dopants with increasing valence 

onto the Ni sites, the oxygen stoichiometry can be made more deficient. Equally by 

lowering the valence on the Ni site the opposite is true. The n = 1 structure where Ni 

is only in the 2+ state requires and oxygen excess to create a mixed valency to 

stabilise the tetragonal structure.(Zhang et al. 1995)  
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 Figure 1.5. Crystal structure of La2NiO4+δ viewed close to the (010) 

direction. Lanthanum cations are represented by green spheres, oxygen anions are 

represented by red spheres and NiO6 octahedra are represented by the grey 

octahedra. 

 
 Figure 1.6. Crystal structure of La3Ni2O7-δ viewed close to the (010) 

direction. Lanthanum cations are represented by green spheres, oxygen anions are 

represented by red spheres and NiO6 octahedra are represented by the grey 

octahedra. 
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 Figure 1.7. Crystal structure of La4Ni3O10-δ viewed close to the (010) 

direction. Lanthanum cations are represented by green spheres, oxygen anions are 

represented by red spheres and NiO6 octahedra are represented by the grey 

octahedra. 

 

 The n = 1 compound crystallises into the ideal tetragonal compound in the 

I4/mmm space group with cell dimensions of approximately a = 3.87 Å and 

c = 12.60 Å. Both n = 2 and 3 compounds have orthorhombic symmetry and are 

reported to crystallise in the Fmmm and Bmab space groups, respectively. The cell 

dimensions of the n = 2 and 3 compounds are a = 5.40, b = 5.45, c = 20.52 Å and 

a = 5.41, b = 5.46, c = 27.96 Å, respectively.(Ling et al. 1999)  

 Ruddlesden-Popper lanthanum nickelates were first reported by Wold and 

Arnott in 1959,(Wold et al. 1959) however it was not possible to isolate the n = 2 and 

n = 3 compounds as phase pure materials until the early 90s.(Sreedhar et al. 1994; 

Zhang et al. 1994; Zhang et al. 1995) Both La3Ni2O7-δ and La4Ni3O10-δ required 

lengthy heat-treatments of 4 days at 1573 K and 1373 K, respectively, and multiple 

regrinding stages to isolate as phase pure compound when using a traditional heat 

and grind approach.(Zhang et al. 1994; Zhang et al. 1995). Table 1.1 below compares 

the different reaction conditions for varying methods of synthesis for each compound 

in the Lan+1NinO3n+1 [(LnO)(LnNiO3)n] series (where n = 1, 2 and 3). 
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Table 1.1. Synthesis conditions for the Lan+1NinO3n+1 series reported in the literature 

(where n = 1, 2, and 3). 

n Method Heat-
Treatment 

Temperature 
/ K 

Time / 
hours 

Grinding 
Required 

Impurities Notes Ref. 
 

1 Heat & grind 1470 24 y n — 1 
1 Heat & Grind 1623 4 y y a 2 
1 Heat & Grind 1123 – 1373 20 × 3 y n b 3 
1 Sol-gel 1623 4 n n  4 
1 CHFS 1273 6 n n f 5 
2 Heat & Grind 1420 10 y n — 1 
2 Heat & Grind 1423 – 1473 96 – 

120 
y n c 6 

2 Heat & Grind 1423 192 y y — 8 
2 Heat & Grind 1373 48 y y a 2 
2 Sol-gel 1373 70 n n d 3 
2 Sol-gel 1373 48 n n  4 
2 CHFS 1423 12 n n f 5 
3 Heat & Grind 1373 96 – 

120 
y n c 7 

3 Heat & Grind 1273 288 y y — 8 
3 Heat & Grind 1323 144 y y a 2 
3 Sol-gel 1373 70 n n d 3 
3 Sol-gel 1323 144 y n — 4 
3 Coprecipitation 1350 5 n n e 1 
3 CHFS 1348 6 n n f 5 

Notes: 
a Before the reaction, the starting materials were fired at 973 K and had been milled for 48 hours. 
b Heated for 20 hours at each of three temperatures between 1123 and 1373 K. 
c Precursors were preheated at 1273 K and dissolved in nitric acid.  
d Oxides were dissolved in nitric acid and converted to nitrates or citrates prior to heat-treatment. 
e Nitrates added to con. NaOH with bubbling Cl- gas. The resulting precipitate was then heat-treated. 
f CHFS indicates that the precursors were synthesised by CHFS then heat-treated.  

References: 
1 (Mohan Ram et al. 1986); 2 (Takahashi et al. 2010); 3 (Voronin et al. 2001); 4 (Amow et al. 2006b); 
5 (Weng et al. 2008); 6 (Zhang et al. 1994); 7 (Zhang et al. 1995); 8 (Ling et al. 1999). 

 

 From table 1.1 it is clear that there are a number of different routes to form 

Lan+1NinO3n+1 compounds, the heat and grind approaches taking the longest, up to 

many days in some cases with multiple regrinding stages required. Often after these 

long heat-treatments some impurity phases are still observed. These phases are 

mainly NiO and La2NiO4+δ and represent an incomplete reaction. By forming 
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precursors from aqueous solutions it is possible to reduce synthesis times to a matter 

of hours and often without regrinding stages (as shown by a reduction from 

400 hours using heat and grind, to just 6 hours using a direct reaction of CHFS 

coprecipitates).(Weng et al. 2008; Zhang et al. 1995) 

 Electronic conduction occurs through the Ni-O bonds orthogonal to the basal 

plane and increases through the series La2NiO4+δ < La3Ni2O7-δ < La4Ni3O10-δ.(Zhang 

et al. 1994; Zhang et al. 1995) La2NiO4+δ is a semiconductor at room temperature 

with a conductivity of ca. 60 S.cm-1 at 923 K (approximate IT-SOFC operating 

temperature). Both La3Ni2O7-δ and La4Ni3O10-δ are metallic conductors at room 

temperature and have conductivities at 923 K of ca. 70 S.cm-1 and 100 S.cm-1, 

respectively as shown in figure 1.8.(Amow et al. 2006b)  

 Figure 1.8. Electrical conductivity vs. temperature for La2NiO4.15, 

La3Ni2O6.95 and La4Ni3O9.78. Figure adapted from (Amow et al. 2006b). 

 

The measurements reported in figure 1.8 were made with pellets of 85 % maximum 

theoretical density for La2NiO4+δ and ca. 58 % maximum theoretical density for both 

La3Ni2O7-δ and La4Ni3O10-δ. This density is the highest reported for these two 

compounds, however as they are not fully dense, their 'true' conductivities therefore 

are most likely to be greater than the values reported. 

 The effect of the increase in conductivity through the series is proportional to 

the increase in Ni3+ content as n becomes greater, however, the compound LaSrNiO4, 
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in which the Ni is in a 3+ state does not have a greater conductivity than La4Ni3O10-δ 

where the average Ni valence is 2.67.(Mohan Ram et al. 1986) It could be implied 

therefore that the differences in conductivity were associated with an increase in 

perovskite layers.(Mohan Ram et al. 1986) Greenblatt et al. report that as the number 

of Ni-O bonds in the c plane increases with n, the expected increase in the c cell 

length due to multiplication of the standard Ni-O bond length is not produced.(Zhang 

et al. 1995) This was attributed to hybridisation of the Ni 3d and O 2p orbital 

increasing electron delocalisation in the c direction.(Zhang et al. 1995) The Ni 3d 

and O 2p hybridisation increased along the crystallographic (001) direction with 

increasing Ni (greater n) valence resulting in greater Ni-O-Ni orbital overlap, as 

shown in figure 1.9. This increase in electronic coordination results in electrons 

delocalising in the conduction band and causing the n = 2 and n = 3 compounds to 

display metallic-type conductivity.(Zhang et al. 1995) 

 
 Figure 1.9. Band structure diagrams for La2NiO4+δ, La3Ni2O7- δ, La4Ni3O10- δ 

and LaNiO3 near the Fermi energy, Ef. Figure adapted from (Sreedhar et al. 1994). 

 

 A decrease in the ionic radius of the B site cation causes structural distortions 

from the ideal perovskite structure in the NiO6 octahedra.(Zhang et al. 1995) The 
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effect therefore of doping the B-site of the Ruddlesden-Popper phases is to alter the 

Ni 3d and O 2p orbital overlap, resulting in an alteration of the conductivity. This 

was demonstrated by Amow et al. who synthesised the compounds La4Ni3-xCoxO10-δ 

(where x = 0.0 – 3.0, and Δx = 0.2) and showed that the conductivity decreased with 

increasing Co3+ content, as a result of hole doping the conduction band. This trend 

was reversed when x > 2.0 as a result of band filling due to increased presence of 

Co2+.(Amow et al. 2006a) There have also been some studies investigating the 

substitution of Ni by Fe in La4Ni3O10-δ.(Carvalho et al. 2009; Kiselev et al. 2007; 

Tsipis et al. 2007) However no comprehensive characterisation of the electrical 

conductivity has been conducted on these samples to investigate the effect of the Fe 

cation on the Ni sites. 

 Oxygen non-stoichiometry plays a large part in the properties of the 

Lan+1NinO3n+1±δ series. The n = 1 compound is hyperstoichiometric and the n = 2 and 

n = 3 compounds are hypostoichiometric.(Bannikov et al. 2006) In both the n = 2 and 

n = 3 compounds an increase in oxygen content, δ, was observed with increasing 

temperature.(Bannikov et al. 2006) Kharton et al. found that in La2NiO4+δ there were 

two oxygen transport mechanisms, the first being oxygen interstitial migration 

through the LaO rocksalt layers. The second being oxygen diffusion through 

vacancies in the LaNiO3 perovskite layers.(Kharton et al. 2001) 
 

1.3. Overview of Solid-Solid Reactions  
 Using traditional solid-state techniques, layered metal oxides can be produced 

as thermodynamic compounds at temperatures of ca. 1273 K with comminution 

stages being required to complete mass transfer in reactions. The formation of these 

compounds occurs with little knowledge of the mechanism or insight into the nature 

of reaction intermediates. The rate of reaction is often limited by the velocity of 

solid-state diffusion, with the energy required for diffusion usually meaning that 

high-temperatures and long reaction times are required. As a result, many 

thermodynamically stable phases are inaccessible or decompose due to the high-

energies required for diffusion.(Stein et al. 1993) The consequence of slow diffusion 

is that discovery of new polycrystalline heterometallic compounds is often slow and 

laborious or not possible via conventional routes. Faster reaction rates and some 

control over the reaction mechanism and the resulting product can be achieved by 
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utilising precursors which have inherently shorter diffusion distances such as using 

aqueous or intimately mixed precursors. By doing this, the rate limiting step for the 

reaction becomes nucleation of the new crystallites, which is a considerably faster 

process.(Novet et al. 1991)  

 

1.3.1. Kinetic Description of Solid-Solid Reactions 
 Diffusion between two substances can be described by Fick's laws of the 

diffusion. The first law can be written as: 

 

 (1.5) 

 

Where J = the flux of matter (mol.m-2.s-1), D = diffusion coefficient (m2.s-1), 

c = concentration per unit area (mol.m-3), and x = the length (m). Fick's first law 

describes that the particle flux, J, is proportional to the concentration gradient, and 

matter therefore travels from high to low concentration. Fick's second law can be 

written as: 

 

 (1.6) 

 

Where c = concentration per unit area (mol.m-3), x = diffusion distance (m), t = time 

(s), D = diffusion coefficient (m2.s-1). Fick's second law relates the change in 

concentration over time to the concentration gradient. It shows that the rate of the 

change of concentration is proportional to the concentration with respect to distance. 

Fick's laws can therefore be used to describe diffusion of metal ions between two 

solids.  

 The diffusion couple between two solids was described by Wagner,(Wagner 

1969) one-dimensional diffusion between two solids is described in terms of the 

relationship between the velocity of the reactants, νn, and their molar fluxes, Jn, 

through equations 1.7 and 1.8, where subscript 1 and 2 relate to reactant 1 and 2 

respectively.  
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 (1.7) 

 (1.8) 

 

Vm = molar volume an Nn = mole fraction of component n. These velocities are 

dependant on the position of the interface between the two reactants. ν1 - ν2 is 

invariant, therefore it was an appropriate basis for a diffusion coefficient, D.(Wagner 

1969) 

 Both velocities ν1 and ν2 are proportional to N2 over diffusion distance x, 

giving equation 1.9: 

 

 (1.9) 

 

In order to obtain a diffusion coefficient that can be related to Fick's law of diffusion 

Wagner multiplies by N1N2 to give equation 1.10: 

 

 (1.10) 

 

The relationship between the diffusion velocity and molar flux has been shown 

experimentally using interdiffusion reactions of Ni/Zr diffusion couples, finding that 

an amorphous NiZr compound is formed that grows to a critical thickness, before the 

nucleation of an ordered solid occurs. The amorphous layer shrinks leaving a single 

layer of ordered solid between the two reactants.(Gösele et al. 1989) This is shown 

schematically in figure 1.10.  
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 Figure 1.10. Diagram to show the formation of an amorphous layer, α-AB, 

between two reactant layers, A and B (top). As the critical length of the amorphous 

phase is reached, nucleation of a crystalline phase AB occurs (middle). Diffusion 

continues between A and B to form the crystalline phase AB (bottom). 

 

 The formation of the ordered AB nucleus is dictated by two competing 

timescales. The first timescale, τint, is the time taken for the atoms to rearrange to 

form the target nucleus AB, at each given interface. The length of the interface is L 

and diffusion velocity of A through α-AB or B through α-AB is υint. Then the 

interface timescale is given by equation 1.11: 

 

 (1.11) 

 

In this timescale τint, the amorphous layer grows a distance of L. The second 

timescale that of nucleation of the ordered AB phase is given by equation 1.12: 
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 (1.12) 

 

Where, k is the rate constant, Q is the activation energy for diffusion through the 

interface and ΔG* is the barrier to nucleation of the AB phase. The inequality 

between the two timescales dictates if α-AB can continue to grow, which occurs 

when equation 1.13 is true: 

 

 (1.13) 

 

The lower critical velocity of A or B travelling over the interface is therefore: 

 

 (1.14) 

 

Below this value of υint the nucleation of AB is favoured to the growth of the α-AB 

layer. (Meng et al. 1988) This work showed that by reducing the layer thickness, the 

time taken for the ordered AB phase to form at the interface, τint is reduced. Equation 

1.13 shows that if τint ≥ τnuc, the rate of formation of the nucleus AB will be greater, 

therefore increasing the rate of the solid-state diffusion. The experimental kinetics of 

the reaction would also depend on crystal imperfections such as dislocations, grain 

boundaries and internal surfaces.(Frischat 1974)  

 The effect of a reduced diffusion distance on the reaction and diffusion 

mechanism has been described by Novet et al. When using ultrathin (ca. 2 – 5 nm) 

layers of alternating Fe and Si, the elements diffused to the interfaces where an 

amorphous intermediate was formed that contained a concentration gradient. At this 

point interfaces no longer existed and the diffusion stage was complete. Once the 

interfaces were removed, nucleation of the ordered product became the rate limiting 

step (an inherently faster process). As the concentration gradient began to decrease, 

structures with short-range order in the amorphous intermediate started to form that 

could act as nucleation sites for the new crystallite.(Novet et al. 1992) This process is 

described schematically in figure 1.11. 
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 Figure 1.11. The mechanism of diffusion between thin layers of two solids. 

Applied heat or pressure causes diffusion to occur in ultra-thin layers of two 

reactants, A and B (top). Interfacial diffusion is completed relatively quickly, 

forming an amorphous intermediate (middle). Nucleation of the crystalline solid AB 

is then the rate limiting step (bottom). 

 

 The diffusion reaction between La2O3 and CoO to form the perovskite 

LaCoO3-δ and the Ruddlesden-Popper type layered oxide La2CoO4, both of which are 

similar to the phases in this thesis, has been investigated by Palcut et al.(Palcut et al. 

2007) The diffusion behaviour of the reactants was investigated using a Pt tracer 

experiment. Pt markers were used to indicate the position of the interface as the 

reaction proceeded as shown in figure 1.12.  
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 Figure 1.12. Schematic diagram and SEM image of the La2O3-CoO diffusion 

couple. The small circles indicate the Pt markers. Phases are indicated by: 1 = La2O3, 

2 = CoO and 3 = LaCoO3. Figure adapted from (Palcut et al. 2007) 

 

 Figure 1.12 shows the position of the Pt markers and that growth of the 

LaCoO3-δ layer occurred at the La2O3/LaCoO3-δ interface. Co3+ must therefore have 

diffused through the product layer to the La2O3/LaCoO3-δ interface. This result 

suggested that diffusion of Co3+ is greater than diffusion of La3+, DCo>>DLa and 

occurred through a vacancy mechanism.(Palcut et al. 2007) Palcut et al. determined 

that a parabolic increase in the rate constant was proportional to the partial pressure 

of oxygen pO2 and to the number of cobalt vacancies.(Palcut et al. 2007) The 

formation of La2CoO4 was also found to be diffusion based and occurred through a 

Co vacancy mechanism. The reaction rate was similar to the formation of LaCoO3-

δ.(Palcut et al. 2007) 

 In summary when diffusion distances were long, an interfacial amorphous 

layer was formed, and then nucleation of a crystallite occurred at the same interface. 
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Both phases were then competition and the crystalline phase continued to grow as 

diffusion progresses until the reactants were consumed, as shown in figure 1.10. 

When diffusion distances were shorter, interfacial diffusion was completed relatively 

quickly, and an amorphous intermediate was formed, at which point nucleation of the 

crystalline phase became the rate limiting step. 

 

1.4. Overview of the Synthesis of Layered Heterometallic Oxides 

 The synthesis of heterometallic oxides in the solid-state can be achieved 

through the reaction of stoichiometric mixtures of metal precursors with the addition 

of energy (which aids diffusion) that can come from a change in conditions such as 

temperature or pressure. Due to the slow rate of diffusion between two solids, large 

amounts of energy are often required to obtain a thermodynamic product. As 

described above in section 1.3, the chemistry that occurs between solid reactants is 

largely governed by the diffusion between them. The diffusion distances between 

two solids can be reduced by altering the physical properties of the reactants, such 

as: size, morphology, crystallinity, and intimacy of mixing. In doing this, the energy 

required for the subsequent transformation can be reduced. This was shown 

experimentally by Fister et al. who artificially reduced diffusion distances by 

layering ultrathin films of Se and Mo and found that the reactants diffused initially to 

form an amorphous alloy before crystallising to form MoSe2.(Fister et al. 1992) This 

route differs from that between particles or layers of longer length scale described by 

Gösele et al., in which an amorphous layer was formed initially between the two 

reactants. Subsequently a crystalline phase nucleated and competed with the 

amorphous phase until just the crystalline product phase remained at the interface as 

shown in figure 1.10.(Gösele et al. 1989) There are a number of techniques that are 

used in laboratories to synthesise the complex layered heterometallic oxides which 

are the subject of this thesis, the ones most widely used are described below. 
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1.4.1 Solid precursor route 

 Traditional solid-state synthesis involves the reaction of a stoichiometric 

mixture of solid micron-sized metal oxide precursors to form the required compound. 

The metal oxide precursors are mixed, milled to decrease particle size, and then 

calcined at high-temperature. The milling and calcining procedure must be repeated 

often in order to complete the reactions due to the large energy barrier to diffusion. 

Frequent milling increases the reaction speed by presenting more unreacted surfaces 

to each other. Due to the high-temperatures required, decomposition products are 

often observed as well as undesirable by-products, also syntheses are often long and 

a high energy cost is required to reach completion. However the solid precursor route 

is versatile, a large range of chemistries are available and highly crystalline 

compounds can be formed. Ruddlesden-Popper type lanthanum nickelate compounds 

have been made extensively using this type of processing. La4Ni3O10-δ was made 

from a 4 – 5 day heat treatment of La2O3 and NiO at 1373 K with 2 – 3 intermediate 

regrinding stages.(Zhang et al. 1995) The synthesis of La4Ni3O10-δ was also repeated 

by Ling et al. who reacted the stoichiometric mixture of La2O3 and NiO at 1273 K 

overnight and reground for 30 minutes, then reacted for 2 days at 1273 K and 

reground for 10 minutes, this process had to be repeated 12 times in order to 

complete mass transfer and obtain phase pure material.(Ling et al. 1999) 

 

1.4.2. Mechanochemical Reactions 

 Mechanochemical routes to complex oxides use high-energy milling to grind 

simple metal oxides to bring about chemical change.(Zhang 2004) During the milling 

process the homogeneity of the oxide mixture is increased by fragmentation of the 

particles, as this occurs new unreacted surfaces constantly come into contact. The 

fragmentation leads to the formation of high defect densities at the surfaces of the 

particles. Nucleation of a new crystalline phase occurs at particle-particle interfaces 

after sufficient activation. If no crystalline phase has been formed, amorphisation can 

occur.(Zhang 2004) The amorphous phase is intimately mixed and if calcined can 

lead to fast reaction times at low temperatures due to short diffusion distances. 

However the complete process is very high energy due to the long milling times 

required prior to heat-treatment and contamination of the sample can occur. 
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 Using mechanochemical synthesis it has been possible to isolate Ruddlesden-

Popper type metal oxide Sr3Ti2O7, where it was found that mechanochemical 

activation of SrO and TiO2 leads to an increased defect concentration and 

subsequently a higher internal energy in the oxides. This shortened diffusion 

distances and meant that the temperature of the final calcination step could be 

reduced by 450 K.(Hungría et al. 2002)  

 

1.4.3. Coprecipitation 

 When making heterogeneous metal oxides the aim of a coprecipitation 

reaction is to form a homogeneous mixture of metal precursors. This mixture can 

then be calcined to bring about solid state transformations without the need for 

grinding. When performing a coprecipitation reaction for this purpose, control of 

reaction conditions such as: reactant concentration, pH and temperature is important 

to ensure complete precipitation of all metals and to obtain an intimate mixture with 

the correct stoichiometry. The coprecipitation of metal oxides can be performed at 

room temperature using a base such as NaOH or KOH to precipitate directly from a 

metal salt solution. The products which are usually amorphous often need to be heat-

treated to form metal oxides or solid solutions.(Cushing et al. 2004) 

 Coprecipitation has been used as a preliminary technique to form intimate 

mixtures of metal oxides in order to reduce diffusion distances between reactants and 

subsequently the energy barrier to reaction. This was shown clearly by Zhu et al. 

who synthesise CaCu3Ti4O12 from a coprecipitate at 973 K in 1 hour, in comparison 

to 1273 K for 20 hours when using a traditional solid-state synthesis.(Zhu et al. 

2009) 

 

1.4.4. Sol-Gel 
 The sol-gel process is a multi-stage process which begins by forming a sol 

from colloidal metal particles in water. The colloidal particles interact through 

polycondensation reactions until a network is formed. The solution is left to age for a 

period of hours or days to allow the polycondensation reactions continue and form a 

gel. The gel is then dried to form an aerogel, which is densified at high temperature 

to form an intimate mixture of metal oxide particles.(Gopalakrishnan 1995; Hench et 

al. 1990) The main advantage of using sol-gel chemistry is that complex 
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compositions can be formed due to the good homogeneity of the metal mixture that 

is achieved by initially mixing the precursors in solution. 

The Pechini method is a widely used form of sol-gel reaction which varies in 

that the initial metal-chelates are formed using a complexing agent such as citric 

acid, and then a polyalcohol such a ethylene glycol is added, in order to link the 

chelates the polyesterification reaction subsequently occurs to form the gel.(Cushing 

et al. 2004)  

 Sol-gel and Pechini reactions have been used in the synthesis of 

polycrystalline complex heterogeneous layered metal oxides, such as lanthanum 

nickelates and their doped derivatives.(Amow et al. 2006a; Poltavets et al. 2006). In 

these studies, an intimate mixture of metal oxides are formed in the sol-gel process, 

which are then further heat-treatment to bring about the final solid-state 

transformation. 

 

1.4.5. Molten Salt Flux Synthesis 
 Molten-salt fluxes have been primarily used for the synthesis of 

heterometallic chalcogenides at intermediate temperatures of 473 –

 773 K.(Kanatzidis 1997) By using a molten-salt mixture, the reactants are mixed in 

the liquid phase and therefore at an atomic level to ultimately reduce diffusion 

distances.(Gopalakrishnan 1995) This method has been extended to the synthesis of 

complex layered metal oxides by reacting simple metal oxide precursors in an alkali 

hydroxide that melts at temperatures between 473 – 773 K, for example KOH and 

NaOH. La1-xMxCuO4 (where M = K, Na) has been synthesised by melting a KOH 

and NaOH mixture at 573 K, which is made acidic by careful control of the water 

content. Stoichiometric amounts of La2O3 and CuO were then added and dissolved. 

The melt was kept at 573 K for 100 hours, resulting in a slow loss of water and 

gradual increase in pH, as a result, La1-xMxCuO4was collected as a precipitate.(Ham 

et al. 1988) This technique has also been used to synthesise layered oxides such as 

Bi5Ti3FeO15 and LaBi4Ti3FeO15 from a N2SO4/K2SO4 molten salt flux.(Porob et al. 

2006) As a result of decreased diffusion distances afforded by this technique, both 

phases could be formed in 1 hour at 1073 – 1173 K, when they would normally take 

2 – 4 days by traditional solid-state heating and grinding at temperatures greater than 

1273 K. 
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1.4.6. Physical Vapour Deposition 

 Physical vapour deposition (PVD) uses a physical process to convert particles 

into a gaseous state whereupon they can be deposited as thin films on a 

target.(Reichelt et al. 1990) In particular two forms of PVD, molecular beam epitaxy 

(MBE) and pulsed laser deposition (PLD) can be used to synthesise layered 

compounds on a layer by layer basis, and in doing so access metastable states.  

 

1.4.6.1. Molecular Beam Epitaxy 

 Molecular beam epitaxy (MBE) is a method of MBE in which epitaxial thin 

films can be grown on a crystalline substrate from molecular beams.(Joyce et al. 

2004) The molecular beam is formed in a Knudson cell which is a heated evaporator. 

By using a molecular beam it is possible to obtain layer by layer control over the 

deposition, and as such MBE has been used to form layered compounds. For 

example the formation of LaFeO3-LaCrO3 superlattices, in which LaFeO3 and 

LaCrO3 were deposited layer by layer onto a SrTiO3 single crystal target.(Ueda et al. 

1998) By using this method, a lattice was formed that was not thermodynamically 

stable when made using a more traditional method.(Ueda et al. 1998) Also the 

Ruddlesden-Popper type structure Srn+1TinO3n+1 (where n = 1, 2, 3, 4 and 5) has been 

formed using this technique.(Haeni et al. 2001)  

 

1.4.6.2. Pulsed Laser Deposition 
 Pulsed Laser Deposition (PLD) is a related method to MBE in which a pulsed 

laser is used to excite molecules into a gaseous state whereupon they can be 

deposited onto a target. Similarly to MBE it is possible to obtain layer by layer 

control of the deposition to form layered metal oxides. This method has been used to 

form the Ruddlesden-Popper type compound Can+1MnnO3n+1 series, (where n = 1, 2, 

3, 4, 5, and 6) the n = 4, 5, and 6 compounds all being unobtainable by other 

methods.(Yan et al. 2007) 

 

1.4.7. Continuous Hydrothermal Flow Synthesis 

 Continuous hydrothermal flow synthesis (CHFS) utilises a continuous flow 

of supercritical or subcritical water to precipitate metal oxides and hydroxides from 

the respective aqueous metal salts in flow. The precipitates formed can then be 
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cooled and collected as a slurry after passing through a back-pressure regulator. A 

version of CHFS was first developed in the 1990s by the Arai group in Japan who 

managed to synthesise a range of simple nanosized metal oxides.(Adschiri et al. 

1992) CHFS utilises the properties of supercritical water in order to produce well-

dispersed nanosized metal oxides and hydroxides in seconds. 

 

1.4.7.1. Properties of Supercritical Water 

 A fluid is considered supercritical when it raises above its critical temperature 

(Tc) and critical pressure (Pc), the critical point of water is 647.1 K, and 

22.1 MPa.(Weingärtner et al. 2005) As water approaches its critical point, a number 

of changes occur. The phase diagram of water is presented in figure 1.13 below. 

 Figure 1.13. The phase diagram of water, TP = triple point solid-liquid-gas 

phase boundary. CP = critical point at liquid gas interface. Figure adapted from 

(Weingärtner et al. 2005). 

 

 The density of water is about 1000 kg.m-3 under ambient conditions, this falls 

to 712 kg.m-3 at 573 K following a saturation curve (the curve by which the pressure 

is just great enough to maintain the liquid state). At the critical point the density 

drops further to 322 kg.m-3.  
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 Figure 1.14. Variation in the dielectric constant of water with pressure and 

temperature. Figure adapted from (Fukushima 2000). 

 

 The dielectric constant is a dimensionless constant that is used to demonstrate 

the polarity of a solvent. The dielectric constant of water decreases from 80 at 

ambient conditions to 33 at 483 K (similar to methanol), and then to 5 at the critical 

point (similar to ethyl acetate). This value can fall further to 2 at 773 K (similar to 

hexane), meaning that water becomes a non-polar solvent when in the supercritical 

state. The implication of the changing dielectric constant and the density is that when 

polar inorganic salts are mixed with supercritical water they are far less soluble than 

when in water at ambient temperature and pressure. This property results in 

supersaturation of the dissolved metal salts when in supercritical water. When 

producing nanoparticles the key factor is to increase nucleation rates, this can be 

achieved through supersaturation. Supersaturation is the ratio of the concentration of 

the species in a solution to the saturation concentration, therefore the lower the 

saturation concentration, the greater the supersaturation will be. By mixing metal salt 

solutions with a flow of scH2O, supersaturation can be very large resulting in high 

nucleation rates.  

 A further change is in the behaviour of ions, which is very different in scH2O 

than in water at ambient conditions. This behaviour can be described in terms of the 
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ionic product, K, which is the product of the concentrations of the dissociated H+ and 

OH- ions and is given by equation 1.16 and is described schematically in figure 1.15. 

 

 

 Figure 1.15. Ionic product logK vs. temperature of water at various pressures 

between 10 and 100 MPa. Figure adapted from (Fukushima 2000). 

 

 In H2O at ambient temperature and pressure the ionic product is                  

10-14 mol2.dm-6, at 573 K a maximum of 10-11 mol2.dm-6 is reached. This equates to a 

30 times increase in the concentration of both H+ and OH- in solution, and means that 

near-critical water can be both strongly acidic and alkaline. At the critical point a 

rapid change is observed as is highlighted in figure 1.15, meaning the ionic product 

of supercritical water can be finely tuned using variations in temperature and 

pressure. The resulting effect is that supercritical water is both strongly hydrolysing 

and strongly dehydrating. This leads to the formation of metal oxides through 

equations 1.17 and 1.18: 

 

 (1.17) 

 

 (1.18) 
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 In summary, when metal salts under ambient conditions are exposed to near 

or supercritical water conditions, the many changes in properties of water are 

favourable for rapid hydrolysis of the metal salts to hydroxides, subsequent 

dehydration to oxides and rapid precipitation (in seconds) and/or crystallisation of 

well defined nanomaterials. 

 

1.4.7.2. Continuous Hydrothermal Flow Synthesis 
 Continuous hydrothermal flow synthesis is a method of producing metal 

oxides or hydroxides in a continuous flow of supercritical water. A schematic 

diagram of the standard CHFS equipment in use at UCL is presented in figure 1.16.  

 
 Figure 1.16. A schematic diagram of the CHFS process. P = HPLC pump. 

 

 In this system a continuous feed of metal salt solution is mixed in flow with a 

stream of supercritical water at 723 K at 24.1 MPa. The equipment was set up with 

three HPLC pumps. The water feed (pump 1 in figure 1.16) is pumped into a heater 

to heat the water to 723 K. The precursor feed (pump 2 in figure 1.16) was made up 

of an aqueous solution of various dissolved metal nitrate salts, whilst auxiliary 

solutions such as base (KOH) or a reducing agent such as hydrogen peroxide could 

be delivered by pump 3. The metal salt and auxiliary flows premixed in a T-piece 

mixer after which they met the flow of scH2O at 723 K and 24.1 MPa from pump 1. 
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Rapid precipitation (in fractions of a second) of metal oxides or hydroxides then took 

place through the simultaneous hydrolysis and dehydration reactions described in 

section 1.4.7.1. The resulting slurry subsequently cooled in-line and passed through a 

back-pressure regulator, (which was used to maintain pressure) to be collected. The 

collected slurries were washed and freeze dried to produce a dry powder.  

 In this process, independent reaction parameters, such as: pH, metal salt 

concentration, pressure and temperature can be varied to maintain control of particle 

properties.(Darr et al. 1999) Hakuta et al. found that the particle size of γ-AlO(OH) 

could be controlled between ca. 70 and 300 nm by varying the reaction pH.(Hakuta 

et al. 2005) In the same work they also found that particle size of the same material 

could be further modified between ca. 170 and 300 nm by changing the reaction 

pressure.(Hakuta et al. 2005) Adschiri et al. found that control of morphology was 

possible through manipulation of the reaction temperature and pressure.(Adschiri et 

al. 2000) 

 The mixing geometry was important to ensure homogeneous mixing and 

prevent blockages or build up of pressure. The geometry was developed in-house 

jointly by Prof. J Darr, Dr. Chris Tighe and Robert Gruar and was a confined jet 

mixer which is shown in figure 1.17. 

 
 Figure 1.17. Schematic diagram of the mixing zone within the reactor.  

 

 In the confined jet mixer, the flow of scH2O entered the mixer through a 

central pipe at 723 K, as the flow entered the larger mixing zone a jet of scH2O was 

formed. The stoichiometric mixture of aqueous metal salts entered the mixing zone 
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at room temperature around the scH2O pipe and was mixed with the scH2O in the jet. 

Mixing this way ensured good mixing and also ensured that the conditions in the 

mixing zone, which were 657 K and 24.1 MPa, were above the critical point of 

water. 

 

1.4.7.3. Materials Synthesised Using CHFS 
 CHFS has been mainly used to synthesise nanosized metal oxides and 

hydroxides. The resulting products often display high-surface areas and nano-

crystallite sizes, with a small particle size distribution.(Kellici et al. 2010; Zhang et 

al. 2009) When first used by Adschiri et al., simple Fe, Co, Ni, Zi and Ti oxides were 

synthesised and the effect of varying the reaction conditions on the resulting 

properties was investigated.(Adschiri et al. 1992) 

 In the right conditions, solid solutions can form directly, e.g. Ce1-xZnxO2 solid 

solutions were formed and showed extended phase boundaries from that previously 

reported.(Kellici et al. 2010) A high-throughput synthesis adaptation was used to 

make 66 solid solutions of CexZryYzO2 that again showed extended phase 

boundaries.(Weng et al. 2009). The synthesis of bioceramics such as hydroxyapatite, 

[Ca10(PO4)6(OH)2], an artificial bone material has also been successful. The 

nanosized compound was successfully synthesised without the usually required long 

ageing step.(Chaudhry et al. 2006) Energy materials such as Ni-YSZ (yttria 

stabilised zirconia) cermets for solid oxide fuel cells,(Weng et al. 2010) and LiFePO4 

a cathode materials in lithium ion batteries have also been synthesised directly.(Xu et 

al. 2008) 

 With respect to the synthesis of complex metal oxides CHFS has been used 

as a method of coprecipitation to produce intimately mixed metal oxides and 

hydroxides in stoichiometric amounts that can then be used as precursors for solid-

state reactions. By doing this, solid-solid diffusion distances could be reduced for the 

subsequent solid-state reaction thereby lowering the energy barrier to conversion and 

removing the requirement for comminution stages. For example high-surface area 

La2CuO4 was synthesised at 873 K in 5 hours,(Galkin et al. 2000) rather than 12 

hours at 1273 – 1473 K required when performing a conventional solid state 

synthesis.(Doshi et al. 1993) When produced using CHFS, this material had a 

considerably greater surface area, and hence showed a catalytic improvement in the 

reduction of CO compared to the same material made using a heat and grind 
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approach.(Galkin et al. 2000) Lanthanum nickelates, which are the subject of this 

thesis, have also been synthesised in a similar manner. By coprecipitating an intimate 

mixture of La2O3 and NiO in the correct stoichiometry, it was possible to reduce the 

synthesis time for La4Ni3O10-δ from 96 – 120 hours (when made via traditional solid-

state technique)(Zhang et al. 1995) to just 6 hours without the need for any 

intermittent grinding.(Weng et al. 2008) 

 

1.5. High-Throughput Materials Discovery 
 High-throughput and combinatorial chemical synthesis methods have been in 

development for a number of years, particularly in the field of organic chemistry and 

drug discovery where large searches are performed to find new lead 

structures.(Balkenhohl et al. 1996; Drews 2000) Combinatorial methods in inorganic 

and materials science are however lagging behind. Some combinatorial adaptations 

have been made to a number of inorganic materials synthesis techniques,(Choi et al. 

2010; Ding et al. 2009; Guerin et al. 2006a; Hyett et al. 2007; Klein et al. 1998; 

Thorne et al. 2010) however, none appear to match the current size and scope 

achieved in the drug discovery field.  

 Many of these high-throughput approaches are essentially batch process 

where n amount of samples are synthesised in parallel. For example Klein et al. 

describe a hydrothermal batch reactor with thirty-seven "reaction chambers" that can 

be filled with individual precursor compositions, shown in figure 1.18.(Klein et al. 

1998) This method was used to synthesise a range of titanium containing silicate 

zeolite structures in microgram quantities, which were screened using X-ray 

diffraction to obtain information on crystallinity and structural type.(Klein et al. 

1998) Ding et al. prepared perovskite type ABO3 compounds using an adapted 

parallel solution combustion synthesis technique, in which, stoichiometric solutions 

were metered into microwells in a ceramic reaction plate which was then placed into 

a furnace and heated to bring about the combustion reaction. In this manner 16 

samples were synthesised in parallel, and then tested for their photocatalytic 

performance.(Ding et al. 2009) Lee et al. describe a solid-state method in which 

manually ground powders were automatically mixed and placed into an eighteen 

well sample holder. Subsequent reactions could then be performed in parallel.(Lee et 

al. 2011) 
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 Figure 1.18. Schematic diagram (top) and photograph (bottom) of the 37 

well hydrothermal reactor used by Klein et al.(Klein et al. 1998) 

 

 Perhaps more successful high-throughput methods involve chemical and 

physical vapour deposition techniques where many hundreds of samples can be 

synthesised at once over a gradient. Hyett et al. used an adapted atmospheric-

pressure CVD apparatus that incorporated two separate mixing chambers to mix 

reactant gas flows. Molar flow rates could be altered to adjust the stoichiometric 

composition creating a thickness and composition gradient over the substrate, as 

shown in figure 1.19. The resulting phases could then be investigated using X-ray 

diffraction mapping.(Hyett et al. 2006) This approach potentially allowed access to 

over one thousand compounds in a single experiment.(Hyett et al. 2007)  
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 Figure 1.19. Photograph of Ti3-δO4N deposited combinatorially on a glass 

substrate. The variation in composition and thickness over a substrate is highlighted 

by the change in colour.  

 

 Geurin et al. described a method of high-throughput PVD in which mixed 

metal oxides, hydroxides and nitrides with up to six components could be co-

deposited on a target across a large compositional range.(Guerin et al. 2006a) Metals 

were deposited across compositional gradients in predetermined thicknesses on a 

silicon substrate, using three electron beams. Control of the deposition was provided 

by a number of shutters and a variable source temperature.(Guerin et al. 2006a) This 

method has been used to produce a wide range of materials including PtPdAu 

alloys,(Guerin et al. 2006b) Mg1-xNixHy hydrogen storage materials,(Guerin et al. 

2008) and Pb(Zr1-xTix)O3 solid solutions.(Anderson et al. 2009) 

 High-throughput adaptations to other techniques include sol-gel, in which 

doping reactions of TiO2 were performed in parallel. (Choi et al. 2010) Also pulsed 

laser ablation equipment has been adapted to have 30 rotating targets in order to 

allow high-throughput synthesis capabilities.(Kahn et al. 2010) 

 An adaptation to CHFS was made called high-throughput continuous 

hydrothermal, HiTCH, flow synthesis, that was able synthesise a large number of 

compositions consecutively without contamination between samples. This is 

achieved by manually operating a switch valve that could divert an additional 

cleaning water feed into the reaction point between samples in order to clean the 

mixing point whilst maintaining reaction conditions. A schematic diagram is shown 

in figure 1.20 below.  
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 Figure 1.20. a) Schematic diagram of the HiTCH flow synthesis equipment. 

Each metal salt solution was filled into the injector and pumped into the system. 

Each solution met a flow of 1.0 M KOH solution at a T-piece mixer, marked T. The 

solution then passed into the mixer whereupon it met a flow of supercritical water 

(723 K, 22.8 MPa). The resulting slurries were cooled in-line (marked c) and 

collected at room temperature through a back-pressure regulator. b) Compositions 

after heat-treatment at 1273 K were placed into a PTFE holder.(Weng et al. 2009) 

 

 Using HiTCH flow synthesis stoichiometric compositions with the formula 

CexYyZrzO2, (x + y + z = 1) were synthesised that were collected as either solid-

solutions or phase mixtures. Sixty-six samples were synthesised in total in just 12 

hours.(Weng et al. 2009) The heat-treated (1 hour at 1273 K) samples were screened 

using high-throughput powder X-ray diffraction at the Diamond Light Source 

synchrotron, scanning electron microscopy and energy dispersive X-ray 

spectroscopy in order to gain an insight into the structural changes in the series, 

which are shown in figure 1.21. 
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Figure 1.21. a) Representation of compositional space. Each hexagon 

represents a different sample, the colour is proportional to the molar concentration of 

Ce (red), Zr (green), and Y (Blue). b) Phase diagram, showing fluorite structure 

(white), monoclinic ZrO2 (yellow), tetragonal ZrO2 (red), bixbyite (blue) and 

2 × 2 × 2 oxygen vacancy ordered pseudo fluorite (green). The dots indicate when a 

binary mixture is present and the stripes show a smooth transition between phases. c) 

Lattice parameter information. Each value has been calculated from Rietveld 

refinement of powder diffraction data to a mean volume per MO2-δ unit. d) Relative 

crystallite sizes calculated from the Scherrer equation. The diameter of the blue 

circle indicates the size with respect to each sample.  

 

It is clear from figure 1.21 above that by using HiTCH flow synthesis, a large 

quantity of structural information from powder X-ray diffraction about the metal 

oxide tertiary system could be obtained rapidly, and which could then provide 

information to plan further experiments.(Cockcroft et al. 2011) 
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1.5.1. Automation of High-Throughput Materials Discovery 

Automation has been shown to greatly increase the number of organic 

compounds that can be screened, particularly in the drug discovery sector. An 

internet search using Google Scholar of the terms "automated drug discovery" 

produces 118000 results. A good review of the history of automation and high-

throughput techniques in the drug discovery process can be found in Science.(Drews 

2000) Conversely due to the long reaction times and the multi-step processes 

required when forming new heterometallic materials automated materials synthesis 

methods do not have the same scope. As discussed previously the issue lies in the 

inhomogeneity of mixing of the precursors, and subsequent long diffusion distances, 

which occur when using conventional heat and grind synthesis. This results in the 

need for multiple stage reactions to achieve complete mass transfer which are 

unsuitable for automated high-throughput processes. Several techniques are now 

available that can shorten diffusion distances and reduce the number of reaction 

steps, subsequently some attempts to produce fully automated materials synthesis 

robots based on these techniques have been made.(Carey et al. 2011; Fujimoto et al. 

2004; Pullar et al. 2007a). These robots involved the mixing of pre-prepared slurries 

or metal salt solutions, which are subsequently heat-treated to bring about chemical 

change with varying functionality. Pullar et al. had a five stage process which is 

shown in figure 1.22. The stages were: 1) mixing of premade metal oxide slurries in 

all possible combinations, 2) printing of slurries as dots using an ink-jet printer, 3) 

heat-treatment in a multi-zone furnace, 4) sample measurement, 5) data storage. This 

robot was named the London University Search Instrument, LUSI and the approach 

had the potential to make up to 10000 samples a day.(Pullar et al. 2007a; Pullar et al. 

2007b). 
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 Figure 1.22. Schematic diagram of the combinatorial printing and firing 

process of the LUSI robot. Figure adapted from (Pullar et al. 2007a). 

 

The Carey et al. approach was similar, using a micro-litre scale solution 

processing robot to mix ceramic slurries in varying compositions that were then 

printed to produce combinatorial arrays of sample libraries. The libraries could be 

heat-treated to bring about further solid-state transformations if neccessary. 

Structural analysis was conducted using an X-ray diffractometer with an xyz 

translational stage, allowing collection of multiple patterns in-line.(Carey et al. 2011) 

 Figure 1.23. A photograph of the Li-Al-Mn-O library printed robotically 

from stabilised premixed slurries. Figure adapted from (Carey et al. 2011). 

 

 Fujimoto et al. reported a robot that automatically mixed aqueous metal salts 

and slurries of nano-sized Li2O, Fe2O3 and TiO2 in water, and subsequently heat-

treated them at three different temperatures. Heating at three different temperatures 

allowed a much greater area of phase space to be investigated. An automated X-ray 

diffractometer was also developed for data collection and subsequent structural 

analysis.(Fujimoto et al. 2004)  

 The HiTCH flow synthesis process described in section 1.5 was adapted into 

an automated robotic platform by Darr and co-workers and called the rapid 

automated materials synthesis instrument, RAMSI. RAMSI incorporated a modified 
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HiTCH flow synthesis reactor which was controlled by a PC with GUI interface to 

control flow-rates, temperature and pressure. Automated liquid handling functions 

were able to conduct sample clean-up and printing. The synthesis section of RAMSI 

is shown in figure 1.24. 

 Figure 1.24. Schematic diagram of the RAMSI synthesis section. P = HPLC 

pump, Isco = ISCO syringe pump, RSV = Rheodyne switch valve, H = heater, R = 

reactor, BPR = backpressure regulator, SV = switch valve, LLS = liquid level sensor. 

Figure adapted from (Lin et al. 2010). 

 

 Samples had to then be manually heat-treated and embedded into wellplate 

libraries. RAMSI was previously used to synthesise a range of europium doped 

yttrium hydroxide (Eu3+:Y(OH)3) red nanophosphors.(Lin et al. 2010) Eight 

compositionally unique samples were generated at a rate of ~ 5 samples per hour; 

subsequently, these were cleaned and printed as ceramic dots. The ceramic dots for 

each composition could then be heat-treated at different temperatures to produce a 

library of samples, which were tested for fluorescence colour and intensity, as shown 

in figure 1.25. The system was limited by the speed of mixing of each precursor 

composition and the washing of the reactor between samples. These limitations could 

be reduced firstly by reducing any unnecessary length of pipe, lowering the overall 

residence time within the apparatus, and secondly by ordering the compositions in 

such a way that contamination between samples could be reduced. By doing this the 

washing times between samples could be reduced and thus the total throughput could 
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be increased. This report showed that RAMSI could perform and entire CHFS 

process from mixing to synthesis and production of dots, ready for heat-treatment.  

 Figure 1.25. a) A photograph under UV light (λ = 254 nm) showing the 

changes in fluorescence intensity with Eu3+ content (x-axis) heat-treatment 

temperature (y-axis). b) Contour plot of the extracted image intensities as a function 

of heat-treatment temperature and Eu3+ content. Figure adapted from (Lin et al. 

2010). 
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1.6. Hypothesis 
1.) Firstly can intimate mixtures of nano-sized metal oxides or hydroxides made via 

continuous hydrothermal flow synthesis (CHFS) be used as precursors for direct and 

efficient solid-state reactions? The aim being to reduce the time taken to directly 

form complex (difficult to make) layered heterometallic oxides by using short 

diffusion distances (of a couple of nm or so) in the precursors, so the two reactants 

can fully react. By virtue of being nano-sized, the energy barrier to diffusion may 

also be lowered as a greater amount of the atoms are on the surface and therefore 

able to react at a lower temperature. 

 

2.) Secondly, if the first hypothesis is possible, can this route be extended to doped 

variants of the same compounds, which may normally be laborious to make. Ideally 

in order to make this efficient, a high-throughput continuous hydrothermal flow 

reactor (a variant of CHFS) might be used to make a nano-precursor library which 

differs in composition. Can I split this library into daughter libraries which can each 

be heat-treated in parallel at a different temperature to allow rapid optimisation of 

reaction conditions and composition for the mapping of phase diagrams of "difficult 

to make" heterometallic oxides which do not require any grinding in order to 

complete mass transfer.  

 

3.) Can full automation be used in hypothesis 2 to increase the number of samples it 

is possible to synthesise practically in a single experiment? Further to this would 

automation allow the increase in the number of libraries that can be heat-treated, 

therefore getting an even better idea of the phase stability of a target phase and find 

the "true" phase boundary under a given set of conditions? 
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Chapter 2 
 

Materials and Methods 
 

2.1. Continuous Hydrothermal Flow Synthesis 

2.1.1. System 1 – Manual Reactor 
 All precursors were synthesised using continuous hydrothermal flow 

synthesis (CHFS); the basic concept for which was described in chapter 1. In detail 

the system used in this thesis was based on the reactor described originally by 

Adschiri et al.(Adschiri et al. 1992) the basic design of system 1 is shown 

schematically in figure 2.1. 

 
 Figure 2.1. Schematic diagram of system 1. PRV = pressure release valve, 

PG = pressure gauge, BPR = back-pressure regulator. 

 

 System conditions were 723 K and 24.1 MPa unless otherwise stated. All 

pumps were fitted with stainless steel (SS) piston pump heads (Gilson 305 model). 

The first pump head was used to pump deionised (DI) water to a heater. Metal salt 

and auxiliary feeds were pumped using the other two pumps. Each pump feed 

consisted of a check valve (Swagelok™ SS-CHS2-1) to prevent back flow, and a 
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pressure release valve (Swagelok™ SS-4R3A-EP) set to 27.6 MPa, which are shown 

schematically in figure 2.2 and 2.3, respectively, and a pressure gauge (RS Cl 1.6). 

Feed line components were connected using 1/8" outside diameter (OD) stainless 

steel (316SS) tubing.  

 Figure 2.2. Components of the CH series Swagelok™ check valve. (Image 

adapted from Swagelok™ check valve catalogue). 

 Figure 2.3. Components of the R3A series Swagelok™ release valve. (Image 

adapted from Swagelok™ release valve catalogue).  

 

 The water feed, having passed through the valves, flows into a custom heater, 

which is shown schematically in figure 2.4 below. 
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 Figure 2.4. Schematic diagram of the heater assembly (not to scale). 

 

 The heater is constructed from a coil of 6 m of 316SS pipe ¼ " OD which is 

coiled around an aluminium core. The aluminium core was heated using a 1 kW 

cartridge heater (Watlow, Firerod) inserted into a drilled hole in the centre, further 

heating was provided by two 750 W heater jackets which were wrapped around the 

pipe coil. The whole assembly was insulated using a RS Microtherm® flexible 

insulating quilt and further ceramic blanket insulation. The temperature was 

monitored using a J-type thermocouple inserted into the top of the aluminium core, 

for safety a further J-type thermocouple was inserted into the bottom of the 

aluminium core to be used as an alarm. The assembly was held together between two 

steel end plates which were attached to each other with brass studding. 

 The metal salt and auxiliary feeds, once passed through the safety valves 

were mixed in flow in a 1/8 " OD T-piece (Swagelok™, part no.: SS-200-33). The 

resulting mixed flow passed into a confined jet mixer, whereupon it met the flow of 

scH2O. 

 The confined jet mixing geometry is represented schematically in figure 2.5 

below and an annotated photograph is presented in figure 2.6.  
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 Figure 2.5. Schematic diagram of the co-current mixing geometry used in all 

reactors (not to scale). 

 
 Figure 2.6. Annotated photograph of the co-current mixing point.  

 

 The confined jet mixer was constructed around a 1/4 " cross (Swagelok™, 

part no.: SS-400-4). The scH2O (723 K) entered the cross through the bottom arm in 

a 1/16 " OD 316SS pipe, which was attached to the 1/4 " cross using a bored-through 

reducing union (Swagelok™ part no.: SS-100-R-4). The scH2O formed a jet as it 

entered the larger diameter pipe. The mixture of metal salt and auxiliary feeds 

(299 K) entered the cross through the left and right arms in an 1/8 " OD SS316 pipe 
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which was connected to the cross by a reducing union (Swagelok™ part no.: SS-200-

R-4). Precipitation of nanoparticles occurred (in fractions of a second) on mixing of 

the nitrate salt and auxiliary feeds in the jet of scH2O. The resulting slurry exited the 

mixer through the top arm in a 220 mm 1/4 " OD 316SS pipe.  

 The slurry was then cooled in a pipe-in-pipe cooler, which is represented 

schematically in figure 2.7., and was constructed from straight 500 mm 1/4 " OD 

316SS tubing fed through a 3/4 " OD 316SS tube connected to a continuous cooling 

water supply. The slurry then exited the system through a back pressure regulator 

(Tescom model: 26-1762-24-194). 

 

 
 Figure 2.7. Schematic diagram of the pipe-in-pipe cooler (not to scale). 

 

2.1.2. System 2 – High-Throughput Continuous Hydrothermal (HiTCH) 

Flow Synthesis 

 System 2 was designed for high-throughput synthesis of nanomaterials. 

Named high-throughput continuous hydrothermal (HiTCH) flow synthesis, system 2 

differed slightly from system 1, and is represented schematically in figure 2.8. 
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 Figure 2.8. Schematic diagram of the HiTCH flow synthesis reactor. SV = 

switch valve, PRV = pressure release valve, PG = pressure gauge, BPR = back 

pressure regulator. 

 

 An extra cleaning water feed was included to prevent contamination between 

samples. A Rheodyne™(model 7010) switch valve that was used to control the 

direction of the metal nitrate and cleaning water flows. An ISCO (model 260d) 

syringe pump was used to inject premixed metal salt solutions through the switch 

valve and into the reactor sequentially. The switch valve had 2 inputs and 2 outputs. 

Input 1 was clean DI water and input 2 was the metal salt solutions from the ISCO 

syringe pump. Output 1 was to the reactor T-piece and output 2 was to a waste BPR. 

All inputs and outputs were linked with an internal 2 mL loop and could be in one of 

two positions as described in table 2.1. 
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Table 2.1. Destinations of both metal salt and cleaning water feeds based on switch 

valve position. SV = switch valve. 

SV Position Metal Salt Destination Cleaning Water Destination 
1 Reactor Waste BPR 
2 Waste BPR Reactor 

 

The valve was switched manually using an ‘inject’ button. Using this method of 

switching between metal salt and clean DI water feeds, it was possible to ‘clean’ the 

reactor between samples whilst maintaining reaction conditions. The sequence for 

cleaning between samples is shown in table 2.2. 

 

Table 2.2. Cleaning sequence for high-throughput reactions. SV = switch valve 

SV 
position 

Process Pump Purpose Time / s 

1 Pre-run ISCO 10 – 20 mL 
of the next metal salt 

10 – 20 

2 System wash Gilson H2O rinse 120 
1 Real run ISCO Metal salt 

solution for collection 
Sample size 
dependant 

2 System wash Gilson H2O rinse 180 
 

 Once injected into the system the metal salts flowed through the reactor and 

were precipitated in the same manner as that described for system 1.  

 

2.1.3. System 3 – Rapid Automated Materials Synthesis Instrument, 

RAMSI 
 System 3 was a HiTCH flow synthesis reactor that was attached to an 

automated robot called the Rapid Automated Materials Synthesis Instrument, 

RAMSI. The robot had three functionalities, synthesis, clean-up and printing 

(described below) and was designed for high-throughput combinatorial synthesis of 

nanomaterials. Samples were moved around and through the three functionalities 

using a xyz robot arm. RAMSI was constructed by Labman Automation LTD, 

Stokesley UK. The control of RAMSI was achieved through a GUI interface. All 

programming was performed by Dr. Tian Lin. Full blueprints, photographs, images 

and part lists of RAMSI and the GUI system, which may help understanding, are 

presented in appendix 1. 
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2.1.3.1. Synthesis 

 The synthesis section of RAMSI utilised a modified HiTCH reactor, the setup 

was close to system 2 a schematic diagram of which is shown in figure 2.8. System 3 

differed from system 2 by the inclusion of an automated metal salt mixing station 

that was used to mix each metal salt composition prior to delivery into the reactor. 

The automated metal salt mixing section is shown schematically in figure 2.9 below. 

 
 Figure 2.9. Schematic diagram of the automated metal salt mixing section of 

RAMSI. 

 

 All aspects of the synthesis are controlled by the RAMSI program through a 

graphical user interface, (GUI) and by the synthesis "RAN" form which designates 

parameters for each sample (e.g. metal salt mixtures, reactor temperature and 

pressure). The synthesis section starts with 6 × 25 mL Tecan syringe pumps with a 

dispersing resolution of 100 µL which metered the quantity of each metal salt 

designated by the starting parameters to a mixing pot. The mixing point had a stirrer, 

a drain and a feed to the ISCO syringe pump that could draw the mixed metal 

solution and then dispense it through the switch valve to the reactor. As the ISCO 

pump delivers metal salt to the reactor the switch valve diverts the cleaning water 

feed from Gilson pump 3 to the waste BPR (BPR 2).  

 Samples entered the HiTCH reactor in the same manner as system 2. 

Following the reaction slurries were collected in 50 mL falcon tubes in a collection 

carousel. Where they were collected by the robot arm and placed into tube racks in 

sequence.  
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2.1.3.2. Clean-up 
 The cleanup section of RAMSI consisted of two Sigma 4K-15R robotic 

centrifuges with capacity of 28 × 50 mL falcon tubes each, and a motor-driven clean-

up carousel with stations for supernatant scanning and removal, deionised water 

addition and slurry redispersion. A fixed turbidimetry station was also used as a 

quick check to ensure each 50 mL falcon tube was clear at a particular level just after 

it was removed from the centrifuge. An eight station cleanup carousel shifted the 

sequence of sample tubes around, while the tubes at these stations could be processed 

in parallel. 

 

(i) Centrifugation of Samples Tubes. 

 The robot arm sent tubes from the tube rack to a centrifuge where sample 

centrifuging was conducted for 1 minute at 4500 rpm. If at any point in the entire 

clean-up process, an odd number of tubes were being processed, the robot placed 

dummy tubes (filled with 50 mL of water) in the centrifuge in order to ensure the 

balance. When a centrifuge finished running a cycle, the robot arm sent all samples 

to the fixed turbidimetry station in sequence. 

 

(ii) Fixed Turbidimetry Station. 

 At the fixed turbidimetry station each the sample passed across a fibre-optic 

sensor, which was used to determine whether the slurry was above or below a critical 

threshold of turbidity at a certain height of the falcon tube (corresponding to a 

volume level of 40 mL in the tube). This determined whether tubes were worth 

sending to the cleaning carousel or not, since part-settled tubes would still be turbid 

at this height due to suspended matter. Tubes that failed this test could immediately 

be returned to the centrifuge for further centrifugation. 

 

(iii) The Clean Up Carousel. 

 The clean up carousel had eight stations, which allowed parallel operations to 

be carried out. The carousel had the following positions and functionalities: (1) tube 

loading position, (2) supernatant scan and removal, (3) DI water refill, (4) 

homogenisation, (5) DI water refill, (6) empty station, (7) empty station, and (8) tube 

pick-up position. At station 2, a second fibre-optic turbidimetry sensor (which was 
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motor-driven and scanned the z-axis), scanned the slurry filled tube vertically. A 

threshold value was set on the fibre-optic amplifier allowing calculation of the 

amount of supernatant which would have been removed according to the 

turbidimetry threshold. Then a z-axis movement needle (linked to a withdrawal 

pump) at the same station, removed water down to the calculated threshold height 

(thus a known amount of liquid was removed). The needle was withdrawn from the 

tube and rotated 90 degrees to be lowered and washed in an adjacent flowing water 

wash. The tubes then passed onto station 3 which was a DI water refill station. 

According to the parameters set by the original program, the tube was then refilled 

with clean deionised water (by a 25 mL Tecan syringe pump) up to usually 40 mL. 

At station 4, the slurry was redispersed in the clean supernatant using a high shear 

mixer (homogenizer) for a period of 30 seconds. The mixer was able to be lowered 

into the tube, run, stop, lift away and then be washed in a dedicated flowing water 

wash. At station 5, the tube was then topped up to a total of 50 mL (+10 mL) clean 

supernatant ready for further centrifugation. Each tube in the carousel eventually 

reached station 8 (unloading station) where the robot arm could take it back to the 

centrifuge if required. When all tubes had been cleaned (135 mL of DI water 

exchanged total), the supernatant was manually checked to ensure pH 7 had been 

reached before being concentrated for printing. 

 

2.1.3.3. Printing 

 Cleaned slurries were prepared for printing by manually adding 600 – 

1000 µL of DI water to wet slurry to achieve a concentration of ca. 1.0 ± 0.2 g.mL-1 

(per gram of wet slurry, actual DI water content was higher). The printing device of 

RAMSI was a customised pipette tip (on the robot arm) which was connected to a 

5.0 mL Tecan syringe pump. The customised pipette tip could auto aspirate and 

dispense slurries and load/discard 5000 µL Eppendorf tips from a fixed tip rack. The 

robot arm moved to each slurry in turn and aspirated a set amount of the concentrated 

slurry given by the amount and volume of dots entered into the GUI originally. The 

robot arm then moved to the printing area where dots of slurry were dispensed from a 

height of 10 mm onto silicon release paper. Pipette tips were discarded in a pipette 

bin before collection of a new one for the following samples. Dots were left to dry in 

air overnight. 
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2.2. Synthesis Methodology 

2.2.1. Synthesis of Lanthanum Nickelate – La4Ni3O10-δ 
a) Synthesis of La4Ni3O10-δ (Effect of base concentration) 

 8.660 g of [La(NO3)3.6H2O] was dissolved in 200 mL of DI water to form a 

0.1 M solution. 4.362 g of [Ni(NO3)2.6H2O] was dissolved in 150 mL of DI water to 

form a 0.1 M solution. These precursors were pumped into system 1 described in 

section 2.1. Pump rates were 20 mL.min-1 for the scH2O feed, and 10 mL.min-1 for 

both metal nitrate mixture and KOH auxiliary solution. KOH concentration was 

varied between samples as described in table 2.3. 

 

Table 2.3. Precipitation conditions for each La4Ni3O10-δ sample. 

Heater Temperature 
/ K 

La:Ni Ratio KOH Concentration / M 

723 4:3 0.2 
723 4:3 0.4 
723 4:3 0.6 
723 4:3 0.8 
723 4:3 1.0 

 

 The resulting slurries were collected in 50 mL falcon tubes and washed 4 

times by centrifuging at 4500 rpm for 1 minute. The supernatant was poured off and 

replaced with clean deionised water and redispersed using a vortex mixer each cycle. 

Following 4 washes the supernatant pH was 7. The slurries were then dried in a 

freeze dryer for 18 hours. All the dry powders were heat-treated at 1348 K for 12 

hours using a ramp rate of 10 K.min-1. 

 

b) Effect of coprecipitation method on the formation of La4Ni3O10-δ. 

 The first coprecipitation method was by CHFS using system 1. 2.47 g of 

[La(NO3)3.6H2O] was dissolved in DI water (57 mL) and 1.25 g of [Ni(NO3)2.6H2O] 

was dissolved in DI water (43 mL). Both solutions were mixed to create a 0.1 M 

solution in a 4La:3Ni ratio. 1.0 M KOH was used throughput to aid precipitation. 

System 1 was used at 723 K and 24.1 MPa to co-precipitate green slurry that was 

cleaned using the method described above. Pump rates were 20 mL.min-1 for the 

scH2O feed, and 10 mL.min-1 for both metal nitrate mixture and KOH auxiliary 

solution. The slurry was then freeze dried for 18 hours. 
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 The second coprecipitation method was a direct coprecipitation method. 

[La(NO3)3.6H2O] (28.57 mL, 1.237 g, 0.1 M) was added to [Ni(NO3)2.6H2O] 

(21.43 mL 0.623 g, 0.1 M) and stirred whilst adding KOH (50 mL 2.805 g, 1.0 M) 

dropwise into the solution. Precipitation of a green slurry occurred, which was dried 

in air on a hotplate to produce a green powder (1.089 g, yield = 58.6 %). 

 Heat-treatments on both powders were conducted in air at 1348 K for 

12 hours using a ramp rate of 10 K.min-1. 

 

c) Synthesis of 4La(OH)3:3Ni(OH)2 for In Situ Powder Diffraction. 

 System 1 was used with a heater temperature of 723 K and pressure of 

24.1 MPa. 2.47 g of [La(NO3)3.6H2O] was dissolved in DI water (57 mL) and 1.25 g 

of [Ni(NO3)2.6H2O] was dissolved in DI water (43 mL) to form a 4La:3Ni 0.1 M 

solution. 1.0 M KOH was used to aid precipitation of the mixture. Pump rates were 

20 mL.min-1 for the scH2O feed, and 10 mL.min-1 for both metal nitrate mixture and 

KOH auxiliary solution. Solutions were co-precipitated, cleaned using 4 

centrifugation clean DI water and re-dispersion cycles until pH 7 was achieved. The 

resulting wet green powder was freeze dried for 18 hours. 

 

2.2.2. High-Throughput Synthesis of La4Ni2.7M0.3O10-δ (Where M = V, Cr, 

Mn, Fe, Co, Ni, Cu, Al). 

 Samples were synthesised on system 2, reactor temperature and pressure were 

set to 723 K and 24.1 MPa respectively. Pump rates were 20 mL.min-1 for the scH2O 

feed, and 10 mL.min-1 for both metal nitrate mixture and KOH auxiliary solution. 

100 mL sample sizes which were made up of 57 mL of [La(NO3)3.6H2O] (2.47 g, 

0.1 M), 39 mL of [Ni(NO3)2.6H2O] (1.12g, 0.1 M) and 4 mL of [M(NO3)x.xH2O] 

(0.1 M) (where M = V, Cr, Mn, Fe, Co, Ni, Cu, Al and masses are given in table 2.4). 
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Table 2.4. Masses of the metal salt used in each solution. 

Metal Salt Mass / g 
[V(SO5).5H2O] 0.101 

[Cr(NO3)3.9H2O] 0.160 
[Mn(NO3)2.4H2O] 0.100 
[Fe(NO3)3.9H2O] 0.162 
[Co(NO3)2.6H2O] 0.116 
[Ni(NO3)2.6H2O] 0.117 
[Cu(SO4).5H2O] 0.099 
[Al(NO3)3.9H2O] 0.150 

 

 Each aqueous precursor was metered into the hydrothermal apparatus using 

an ISCO syringe pump. The cleaning cycle between each sample is described in table 

2.2. Slurries were collected in 50 mL falcon tubes and cleaned manually as was 

described in section 2.2.1 and freeze dried for 18 hours. The resulting powders were 

split into 3 and heat-treated at 1348, 1448 or 1548 K for 12 hours, respectively, in air 

using a ramp rate of 10 K.min-1. 

 

2.2.3. High-Throughput Synthesis of La4Ni3-xFexO10-δ. 

 Samples were synthesised on system 3, the HiTCH synthesis module of 

RAMSI. Reaction conditions entered into the RAMSI GUI are shown in table 2.5 

and 2.6. 

 

Table 2.5. Reaction conditions entered into RAMSI GUI. 

Action  
Pressure Set Point 3600 psi 

Temperature Set Point 450 °C 
Collection Lag Time 50 s 

Pre-Run Time 90 s 
Flushing After Pre-Run 120 s 

Flushing Time Via Waste 120 s 
Flushing Time Via Collection 30 s 

Sample Volume 42 mL 
 

Table 2.6. Flushing conditions for ISCO and TECAN syringe pumps.  

Pump Flushing No. Flushing Volume 
ISCO 1 50 
ISCO 2 30 
ISCO 3 30 

TECAN 1 10 
TECAN 2 10 
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 Samples were collected in 50 mL falcon tubes on the collection carousel and 

placed into tube racks ready for cleaning. The parameters for the clean-up were 

entered into the GUI using the following values in table 2.7. 

 

Table 2.7.Clean-up conditions entered into GUI. 

Action  
Centrifuge Time 20 mins. 

Fixed Point 40 mL 
Min. Supernatant For Washing 10 mL 

Min. Summed Exchange 135 mL 
Max. Continual Rejections 3 

Final Volume 5 mL 
Centrifuge Speed 4500 rpm 

 All samples were cleaned using the cleaning carousel section of RAMSI, the 

running order of which is explained in section 2.1.3.2. Once the cleaning cycle was 

completed, the supernatant pH was 7 (measured manually), and 5 mL of 

concentrated slurry remained in each tube. 

The resulting concentrated slurries were diluted manually to 1.0 ± 0.2 g.mL-1 

(DI water was added to wet slurry therefore actual concentration was lower) using DI 

water in order to produce ceramic dots that would dry without cracking. 6 × 100 µL 

and 6 × 125 µL dots were printed on silicon release paper using RAMSI; and dried in 

air overnight. 

 Heat-treatments were conducted on a Pt plate at 1348 K and 1573 K for 

12 hours. In each case the temperature was increased at 2 K.min-1 to 353 K for 

6 hours, before being ramped at 2 K.min-1 to a holding temperature of either 1348 K 

or 1573 K for 12 hours. The ramp rate was kept low in order to prevent cracking of 

the dots. The heat-treated dots were mounted onto a custom 96 well aluminium 

wellplate (86 × 123 mm with 4mm wide, 1.5 mm deep wells which were 9 mm 

apart). 

 

2.2.4. High-Throughput Synthesis of La4Ni3-xMxO10-δ and La3Ni2-xMxO7-δ 

(Where M = Mn, Pd, Al and Ga x = 0.0 – 2.0 and Δx = 0.2)  

 Samples were synthesised on system 3 in the HiTCH flow synthesis of 

RAMSI. Starting materials, [La(NO3)3.6H2O], [Ni(NO3)2.6H2O], [Mn(NO3)2.4H2O], 

[Pd(NO3)2.2H2O], [Al(NO3)3.9H2O] and [Ga(NO3).6H2O] all ≥ 99.9 % purity were 

purchased from the Sigma-Aldrich Chemical Company (Dorset, UK). 1.0 M KOH 
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≥ 85 % was purchased from VWR (Leicestershire, UK). 0.1 M Stock solutions of 

each metal nitrate salt were made by dissolving in DI water. The resulting La, Ni, 

Mn, Pd, Al and Ga nitrate solutions were attached to the 1st, 2nd, 3rd, 4th, 5th and 6th 

Tecan syringe pump feed lines respectively. Reactions conditions were then set as in 

table 2.8 and 2.9 in the RAMSI GUI. 

 

Table 2.8. Reactions conditions entered into the RAMSI GUI for the synthesis of 

La4Ni3-xMxO10-δ and La3Ni2-xMxO7-δ. 

Action  
Pressure Set Point 3600 psi 

Temperature Set Point 450 °C 
Collection Lag Time 75 s 

Pre-Run Time 60 s 
Flushing After Pre-Run 60 s 

Flushing Time Via Waste 60 s 
Flushing Time Via Collection 30 s 

Sample Volume 25 mL 
 

Table 2.9. Flushing conditions for ISCO and TECAN syringe pumps.  

Pump Flushing No. Flushing Volume / mL 
ISCO 1 30 
ISCO 2 30 

TECAN 1 10 
TECAN 2 10 

 

Pump rates were 20 mL.min-1 for scH2O and 10 mL.min-1 for both KOH and metal 

salt solutions. Samples were collected in 50 mL flacon tubes in the collection 

carousel and moved by robot arm to the tube racks. Samples clean-up was performed 

on RAMSI using the configuration described in table 2.10. 

 

Table 2.10.Clean-up conditions entered into GUI for the synthesis of               

La4Ni3-xMxO10-δ and La3Ni2-xMxO7-δ. 

Action  
Centrifuge Time 1 min. 

Fixed Point 40 mL 
Min. Supernatant For Washing 10 mL 

Min. Summed Exchange 135 mL 
Max. Continual Rejections 1 

Final Volume 5 mL 
Centrifuge Speed 4500 rpm 
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 Once pH 7 was reached, (checked manually) samples were freeze dried for 18 

hours. Each sample was split into 3 and heat-treated at 1348 K, 1448 K and 1548 K, 

respectively, for 12 hours in air, on a platinum plate. 

 

2.3. Furnaces 
 Heat-treatments were conducted in a CWF/1300 muffler furnace from 

Carbolite, UK. This furnace had a Eurotherm 3216 programmable controller 

allowing control of heat rate (0.1 K resolution) dwell time, and temperature 

(max = 1573 K). 

 

2.4. Powder X-ray Diffraction 

2.4.1 Bruker – D4 
 This diffractometer was in Bragg-Brentano geometry and equipped with auto-

robotic arm sample changer and used CuKα(I + II) radiation. Samples were loaded into 

plastic samples holders. Unless stated otherwise, data were collected between      

20 – 70 2θ, in 0.05° steps at 4 s.step-1. Divergence and anti-scattering slits were both 

set at 0.5 mm. 

 

2.4.2. Bruker – D500 
 Bragg-Brentano Diffractometer equipped with a pre-sample monochromator 

and scintillation detector. This diffractometer was used for accurate cell 

measurements and data was collected in 2 summed ranges of 10 – 80 °2θ, 

0.02 ° steps, 10 s.step-1, slits were set at 0.3 mm.  

 

2.4.3. Bruker – D8 – GADDS 
 High-throughput powder X-ray diffraction (PXRD) of wellplate libraries was 

conducted using a Bruker-AXS D8 (GADDS) diffractometer. This instrument 

utilises a large 2D area detector to record large sections of multiple Debye-Scherrer 

cones simultaneously. The setup with a mounted wellplate is shown in figure 2.10. 

Both θ and ω can be measured with 0.01 ° resolution using a Cu (Kα1 and Kα2) 

radiation source. After collection, the data across the Debye-Scherrer cones can be 

integrated across ω to produce a standard one-dimensional, 2θ against intensity plot. 

This diffractometer is equipped with an x-y-z translational stage that can be 
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programmed to adjust the position of the wellplate after each scan allowing data for 

each sample to be collected in turn. In high-throughput mode up to 36 patterns, could 

be collected in 12 hours. 

 

 
 Figure 2.10. Annotated photograph of a wellplate mounted onto the xyz 

translational stage of the Bruker D8 diffractometer. 



Chapter 2 — Materials and Methods 
 

 79 

2.4.4. I11 Beamline  

 
 Figure 2.11. Photograph of the I11 Beamline at Diamond Light Source 

(Harwell, UK). MAC = multi-analyser crystal, PSD = position sensitive detector. 

Red arrow indicates direction of the beam. Photo courtesy of Dr. Chiu Tang, 

Diamond Light Source.  

 

 
 Figure 2.12. Photograph of the I11 Beamline at Diamond Light Source 

(Harwell, UK). Red arrow indicates direction of the beam. Photo courtesy of Dr. 

Chiu Tang, Diamond Light Source. 
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 High-resolution powder diffraction data was collected on the I11 beamline at 

Diamond Light Source, (Harwell U.K.). This beamline had a 90 pole in-vacuum 

undulator insertion device and a Si(111) monochromator. The beamline had two 

types of detectors: 

i) Multi-analyser crystal (MAC) detectors with 45-channels that allowed for a 

scanning range of 0 -160 °2θ with a step size of 0.0001 °. This detector was used in 

Chapter 3 for in situ monitoring of reactions involving CHFS coprecipitates.  

ii) Position sensitive detector (PSD) with a 90 ° aperture that allowed collection of a 

powder pattern in ms, for time resolved studies. This detector was used in Chapter 6 

for rapid data collection for high-throughput screening of lanthanum nickelate 

compounds. 

 Beamline sample cells and stages, including the furnace described below ere 

mounted onto a translational x–y–z stage that could be moved in and out of the beam. 

A robot arm was used for automatically changing samples. Loaded capillaries were 

placed onto the sample carousel and then picked up individually in turn by the robot 

arm and placed onto the beamline. 

 

2.4.4.1. STOE Capillary Furnace 

 
 Figure 2.13. STOE capillary furnace mounted onto the I11 beamline. 

 

 In situ reactions in Chapter 3 were conducted on the beamline in 0.5 ID 

quartz glass capillaries (Hilgenberg, Malsfeld, GER) which were mounted into a 
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STOE capillary furnace. The furnace was mounted onto the x–y–z stage and moved 

into the beam for data collection. In order to prevent the heating element burning out, 

it was necessary to evacuate the furnace and backfill with nitrogen. The capillary end 

was left open to maximise pO2 content. 
 

2.4.4.2. Data collection – Chapter 3. 
 In situ data were recorded using a 45 channel multi-analyser crystal (MAC) 

detector in 120 s scans. A further 60 s was required for the detectors to return to their 

start position meaning that scans took 180 s in total including dead time. Data were 

collected over a range of 0 – 90 °2θ which was the maximum allowed by the 

beryllium window of the furnace, step size was 0.0001 °2θ. In all cases this data 

were rebinned to a 0.05 °2θ step size allowing correction for the detector crystal 

orientation. Wavelength (λ = 0.826931(1) Å) and zero point (-0.0039(1) °) were 

calculated using a silicon standard, (NIST srm640c). 

 Reactions were conducted in 0.5 mm ID quartz glass capillaries and inserted 

into a STOE capillary furnace with a heating rate of 10 K.min-1 to a holding 

temperature of 1448 K. 

 

2.4.4.3. Data Collection –Chapter 6. 
 High-throughput screening data were collected using the PSD detector, 

collection time was 2 seconds per pattern. A further 30 seconds were required to 

change samples. All 240 patterns were collected in 2.1 hours. Samples were changed 

using the robot arm and carousel.  

 Data for further refinement of 'interesting' structures were collected at room 

temperature using the MAC detectors. Collection time was 30 minutes of the 2θ 

range 0 – 160 °2θ. Wavelength (λ = 0.825582(2) Å) and zero point (0.006679(2) °) 

were calculated using a silicon standard, (NIST srm640c). 

 

2.5. Energy Dispersive X-ray Spectroscopy (EDX) 
 Elemental ratios were calculated using EDX, on a Hitachi S-3400N SEM 

with a JEOL 8100 Superprobe energy dispersive X-ray spectrometer.  
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2.6. Extended X-ray Absorption Fine Structure (EXAFS) 
 EXAFS data were collected in the B18 instrument at Diamond Light Source, 

(Harwell, UK). A Si(111) monochromator was used. All Fe K-edges were recorded 

at room temperature. Each data set was truncated to 8 Å and analysed using the 

Excurve software package. Data were collected by Andrew Smith and analysis was 

conducted by Prof. G. Sankar. 

 

2.7. DC Electrical Testing 

 The DC conductivity of pressed pellets was measured using the Van der 

Pauw method.(Van der Pauw 1958a; Van der Pauw 1958b) Pellets were pressed in a 

13 mm KBr die, and sintered at 1473 K. For sintering, pellets were place onto a 

platinum plate and preheated at 353 K for 6 hours before increasing to 1573 K at a 

ramp rate of 1 K.min-1 for 12 hours. 

 The pellet was mounted into a custom built 4-point probe. The pellet 

assembly was constructed from MACOR machinable ceramic. The design is shown 

schematically in figure 2.14 below and in an annotated photograph in figure 2.15. 

 

 
 Figure 2.14. Schematic diagram of the pellet assembly of the 4-point probe. 

a) Bottom section. b) Top section. 
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 Figure 2.15. Annotated photograph of the DC 4-point probe. SS = stainless 

steel. 

 

 The pellet was placed in a 1 mm deep, 13 mm diameter well that formed the 

lower half of the assembly. Contacts 1, 2, 3 and 4 were 0.1 mm diameter platinum 

wire fed through 0.3 mm holes that were placed around the periphery of the pellet. 

The platinum wires were then fed through 4 × 500 mm ceramic tubes, (thickness = 

2 mm OD) one for each wire, which were held in place by a neoprene bung that 

fitted inside the entrance to the work tube of the furnace. A central supporting 500 

mm, 4 mm OD ceramic tube was fed through the centre of the bung and into the 

pellet assembly, which as well as acting as a support contained a 600 mm K-type 

thermocouple to monitor the pellet temperature. The whole assembly was held 

together by 4 × 600 mm inconal wires, which were equally spaced around the 

perimeter of the lower section of the pellet assembly. The other end was attached to 

the neoprene bung using steel springs (RS 751-691, 5.0 × 25.0 mm), which helped 

keep the pellet assembly under pressure.  

 To make the measurement, the probe assembly was placed inside a 72 mm 

OD ceramic work tube that was inside a tube furnace (Carbolite MTF/1000 model) 

the conductivity was then measured using equation 2.1: 
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 (2.1) 

 
Where ρ = conductivity in S.cm-1, l = pellet thickness in cm, I = constant applied 

current in amps, and V = measured voltage in volts. A 0.5 amp current was passed 

through points 1 and 2, and the voltage measure through 3, and 4. This was repeated 

for V34,12, V23,41, and V41,23 to give the total conductivity at each temperature interval. 
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Chapter 3 
 

Direct Synthesis of La4Ni3O10-δ and In Situ Study of the 

Diffusion Reaction Between La(OH)3 and Ni(OH)2 
 

3.1 Aims 
Hypothesis one claims that co-precipitated nano-sized precursors could be 

used to form the layered lanthanum nickelate, La4Ni3O10-δ directly via a single heat-

treatment and without the need for comminution due to reduced diffusion distances 

between the reactants. In this chapter, the direct formation of La4Ni3O10-δ from CHFS 

nano-precursors in a single heat-treatment and without the need for any comminution 

stages was investigated. Subsequently the reaction route between 4La(OH)3 and 

3Ni(OH)2 coprecipitated using CHFS was studied using in situ synchrotron X-ray 

diffraction.  

 

3.2. Experimental Details 

 Two methods of synthesis were attempted in order to form La4Ni3O10-δ. The 

first method used continuous hydrothermal flow synthesis (which is described in 

chapter two) to synthesise black co-precipitated slurries of Ni and La oxide. System 

1 was used and reaction conditions were 723 K and 24.1 MPa, with 0.2, 0.4, 0.6, 0.8 

and 1.0 M KOH being used as the auxiliary reagent. To investigate the effect of 

using a CHFS coprecipitated metal hydroxide precursor (rather than oxide), the 

CHFS reaction temperature was set to 673 K, in this case a green slurry was 

collected indicating Ni(OH)2 was formed. The second method was a direct 

coprecipitation from nitrate salts. [La(NO3)3.6H2O] (57 mL, 2.46 g, 0.1 M) was 

stirred with [Ni(NO3)2.6H2O] (43 mL, 1.25 g, 0.1 M), KOH (100 mL, 5.6 g, 1.0 M) 

was added drop wise. The solution was stirred for 10 minutes then filtered using 

filter paper (Fisher Scientific, QL100), the resulting green precipitate was dried on a 

hot-plate. Heat-treatments of the coprecipitated precursors were conducted in a 

CWF/1300 Carbolite muffle furnace in air, at 1348 K for 12 hours. Elemental ratios 

of 4.16 La and 2.84 Ni were confirmed using EDX. 
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 Laboratory X-ray analysis was conducted using the D4 diffractometer in 

Bragg-Brentano geometry described in detail in chapter 2. Samples were loaded into 

a plastic holder, and scans were conducted in the range 20 – 70 °2θ with a 0.05° step 

size, 4 s.step-1, divergence and anti-scattering slits were set to 0.5 mm.  

 

3.2.1. In situ synchrotron measurements 
The in situ studies were conducted at Diamond Light Source, UK, on the I11 

beamline. The main set-up of the beamline and detectors is described in chapter 2. 

The metal hydroxide mixture with a 4La:3Ni ratio (described in the previous section) 

was loaded into a 0.5 mm internal diameter (ID) quartz capillary and inserted into a 

STOE capillary furnace which was mounted onto the xyz table on the beamline. In 

order to prevent the heating element burning out, it was necessary to evacuate the 

furnace and backfill with nitrogen. To maximise pO2 content in the capillary 

environment the capillary end was left uncovered. The data collection strategy is 

described in section 2.4.4.2. The reaction was conducted using a ramp rate of 

10 K.min-1 to a holding temperature of 1448 K and data were collected continuously 

throughout from 0 – 474 minutes.  

 Data were analysed using the GSAS and EXPGUI programs.(Larson et al. 

1994; Toby 2001) Quantitative refinement was performed by refining lattice 

parameters, background, atomic coordinates, profile parameters (for a pseudo-Vogt 

peak shape) and phase quantities. Zero point was set to an instrumental value using 

Si NIST standard reference material (srm640c). 

 

3.3. Results and Discussion 

3.3.1. Synthesis using Jet Mixer and Muffle Furnace 
 The synthesis of La4Ni3O10-δ was attempted in two different ways. The first 

method used continuous hydrothermal flow synthesis. An aqueous mixture of 0.1 M 

[La(NO3)3.6H2O] and [Ni(NO3)2.6H2O] in a 4:3 ratio was pumped into the CHFS 

reactor and precipitated in a T-piece upon mixing with 1.0 M KOH. The 

concentration of KOH was varied to investigate the effect; concentrations were 0.2, 

0.4, 0.6, 0.8 and 1.0 M. Subsequently the reaction mixture met a flow of scH2O at 

723 K and 24.1 MPa whereupon rapid nucleation and crystallisation occurred. The 

product was cooled in-line and collected as black slurry at ca. 293 K after passing 
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through a back pressure regulator. The total yield of La2O3 and NiO per 50 mL of 

collected slurry increased with increasing base concentration to a maximum of 

63.9 % when 0.8 M KOH was used, the yield then remained approximately constant, 

as shown in figure 3.1. The yields observed were lower than expected, due to some 

loss of product during the cleaning process. 

 
 Figure 3.1. Yields of coprecipitated La2O3 and NiO as a function of KOH 

concentration. Dotted blue line is a guide to the line only.  

 

 The coprecipitates were subsequently heat-treated in air at 1348 K for 

12 hours. Where KOH concentration was greater than 0.2 M, phase-pure La4Ni3O10-δ 

was formed upon heat-treatment as shown in figure 3.2.  
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 Figure 3.2. Powder X-ray diffraction patterns of the product from CHFS 

La2O3 and NiO nano-coprecipitates heat-treated at 1348 K for 12 hours. 

Orthorhombic peaks of the Bmab space group are marked with ■, NiO secondary 

phase indicated by *. KOH concentrations were a) 0.2 M b) 0.4 M c) 0.6 M d) 0.8 M 

and e) 1.0 M. 

 

 Figure 3.2 shows that some unreacted NiO was observed when 0.2 M base 

concentration was used. The NiO (200) peak at ~37 °2θ overlaps the (119) 

La4Ni3O10-δ peak, which accounted for the increased intensity observed in this Bragg 

reflection. The low yield in this reaction (0.2 M KOH) of 41.7 % suggested that 

incomplete precipitation led to a non-stoichiometry in the reactants and so NiO was 

observed. This was confirmed using EDX spectroscopy, where the La:Ni ratio of this 

nano-coprecipitate was approximately 1:1. When the base concentration was greater 

than 0.2 M, La4Ni3O10-δ was identified as a single phase in each case. The La and Ni 

content of each set of nano-coprecipitates (measured using EDX spectroscopy) is 

shown in table 3.1. 
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Table 3.1. Lanthanum and Nickel ratio, calculated using EDX spectroscopy. 

[KOH] / M La content / at% Ni content / at% 
0.2 52.53 47.47 
0.4 58.61 41.38 
0.6 58.43 41.59 
0.8 58.01 41.99 
1.0 57.86 42.14 

 

Le Bail refinements of powder XRD data confirmed that in each case (KOH 

conc. > 0.2 M) La4Ni3O10-δ crystallised in the Bmab space group. Lattice parameters 

were a close match to ICSD pattern 91143.(Ling et al. 1999) Figure 3.3 shows the Le 

Bail refinement of La4Ni3O10-δ made using CHFS nano-coprecipitate and a 1.0 M 

KOH auxiliary solution. Selected refined parameters are displayed in table 3.2.  

 
 Figure 3.3. Le Bail refinement of La4Ni3O10-δ formed from coprecipitated 

CHFS nano-precursors using 1.0 M KOH. Experimental data are marked with red 

crosses, the calculated model is given by the continuous green line, and the 

difference is displayed in purple. Tick marks are for the Bmab space group. 

χ2 = 1.308. 
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Table 3.2. Selected refined parameters for La4Ni3O10-δ made using 1.0 M KOH from 

CHFS coprecipitated lanthanum and nickel oxides and hydroxides. Literature data is 

taken from (Ling et al. 1999), values are calculated from Reitveld refinement of 

powder neutron diffraction data.  

— Oxide 
Precursors 

Hydroxide 
Precursors 

Ling et al. 

Space group Bmab Bmab Bmab 
a 5.4097(9) Å 5.4094(9) Å 5.41327(11) Å 
b 5.4718(8) Å 5.4597(8) Å 5.46233(11) Å 
c 27.988(4) Å 28.021(6) Å 27.9605(7) Å 

Volume 828.5(3) Å3 827.6(4) Å3 826.77 Å3 

Crystallite size ┴ 78(3) nm 149(12) nm — 
Crystallite size ║ 35(2) nm     17(1) nm — 

 

 The model was significantly improved by introducing an anisotropic 

crystallite size, [χ2 = 1.768 (isotropic) → χ2 =1.308 (anisotropic)] giving a 

perpendicular size dimension of 78 nm and a parallel size dimension 35 nm. This 

size anisotropy suggested a needle-like crystallite.  

 CHFS reactor temperature was reduced to 673 K to produce lanthanum and 

nickel hydroxides in a 4:3 ratio. Heat-treatment of these precursors at 1348 K for 

12 hours also produced La4Ni3O10-δ the results of which are also presented in 

table 3.2 for comparison. SEM images of La4Ni3O10-δ synthesised from oxides, figure 

3.4a and synthesised from hydroxides, figure 3.4b show no large differences. Both 

compounds appear to be formed of micron-sized agglomerated particles. Due to the 

agglomeration no evidence of the proposed needle-shaped crystallites was observed. 

 
 Figure 3.4. SEM image of La4Ni3O10-δ synthesised from a 12 hour heat-

treatment of CHFS nano-coprecipitates. A.) La4Ni3O10-δ from oxide nano-precursors. 

B.) La4Ni3O10-δ from hydroxide nano-precursors. 
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 The anisotropy in La4Ni3O10-δ synthesised from hydroxide nano-precursor 

was greater than when using oxide nano-precursors. This was highlighted by the 

large difference between the ┴ and ║ crystallite size of 132 nm compared to just 

43 nm in the oxide nano-precursor sample. The difference in anisotropy suggested 

the mass transfer was incomplete after 12 hours when using hydroxide nano-

precursors and a longer reaction time was needed to create a well ordered crystallite.

 The second method attempted was a direct coprecipitation method of metal 

hydroxides from their respective nitrate salts. An aqueous mixture of 

[La(NO3)3.6H2O] and [Ni(NO3)2.6H2O] in a 4:3 ratio (0.1 M) was mixed and added 

to an equal volume of 1.0 M KOH. The mixture was stirred for 10 minutes during 

which time precipitation of a green solid was observed which was an amorphous 

mixture of La(OH)3 and Ni(OH)2. The precipitate was filtered and oven dried at 

373 K for 12 hours to give a total yield of 58.5 %. Following heat-treatment at 

1348 K for 12 hours in air, a black power was obtained that was identified as a 

mixture of La4Ni3O10-δ, NiO and an unidentified phase using powder XRD, shown in 

figure 3.5. A precipitation time of 10 minutes was not sufficient to ensure complete 

precipitation of the all of precursor; the 58.5 % yield supported this hypothesis.  

 
 Figure 3.5. PXRD pattern of La4Ni3O10-δ synthesised at 1348 K for 12 hours 

from metal nitrate precursors made using the direct coprecipitation method. * = NiO 

reflections, + = unidentified reflections.  
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3.3.2. In-situ synthesis of La4Ni3O10-δ 

3.3.2.1. 0 – 78 minutes 

 Lanthanum and nickel hydroxide precursors in a 4La:3Ni ratio, were made 

using manual CHFS reactor one (described in chapter 2) using 1.0 M base to ensure 

complete precipitation and the correct stoichiometry in the nano-precursor. The 

nano-precursors were green in colour, visually confirming that metal hydroxides had 

been formed. The metal ratio was confirmed using EDX spectroscopy as 

4.16 La : 2.84 Ni, and SEM indicated that very small grains had been formed as 

shown in figure 3.6. 

 
 Figure 3.6. SEM image of a mixture of La(OH)3 and Ni(OH)2 synthesised 

using CHFS . 

 

 The La(OH)3 crystallite size was approximately 9 nm estimated using the 

Scherrer equation, no Bragg peaks for Ni(OH)2 were observed at this point 

suggesting that it was amorphous. Large broad background features in the X-ray 

powder diffraction pattern supported this hypothesis. The nano-precursors were 

loaded into a quartz capillary (0.5 mm I.D.) and placed into a capillary furnace. 

 120 second scans were collected using the MAC detector on the I11 beamline 

at Diamond Light Source, a further 60 seconds was required for the MAC detector to 

return to its original position. Therefore each scan was 180 seconds total. Scans were 
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collected continuously for the duration of the experiment. The ramp rate was set a 

10 K.min-1 meaning each scan amounted to a 30 K difference from start to finish.  

 
 Figure 3.7. Diffraction patterns collected in the range 0 – 78 minutes, and 

315 – 1133 K. Stages 1, 2 and 3 are described in the text below and represent the 

different stages of the reaction. ■ = La(OH)3 reflections, ▼ = La2NiO4+δ reflections. 

 

 Figure 3.7 represents the region of the reaction in which the reactants were 

nanosized, which is in the range 0 – 78 minutes and 315 – 1133 K. During stage one 

(range 0 – 33 minutes, 315 – 660 K) the diffraction patterns appeared to be La(OH)3 

alone. Broad features in the background suggested that Ni(OH)2 was amorphous at 

this stage.  

 Stage two, which was in the range 33 mins. – 51 mins. and 660 – 850 K, saw 

the gradual dehydration of the hydroxide precursors; mixtures of nanosized La2O3, 

LaOOH, and NiO were identified. The presence of the LaOOH species suggests 

dehydration of the hydroxides to oxides. Bragg reflections of all components were 

broad during this stage indicating a nano crystallite size, or amorphous mixture. This 

suggested that the mechanism was similar to that described in figure 1.11 (section 

1.3.1) described by Novet et al. and Fister et al. in which the reaction proceeds 

through an amorphous intermediate and nucleation becomes the rate limiting 

step.(Fister et al. 1992; Novet et al. 1991) Some Bragg reflections were still observed 

however, which showed some interfacial diffusion was still occurring.  
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 During stage three (range: 51 mins. – 78 mins., 850 K – 1133 K) , nucleation 

and growth of the La2NiO4+δ crystallite occurred. La2NiO4+δ was first observed at 51 

minutes and continued to grow until 78 minutes (1133 K). By 78 minutes the La2O3 

Bragg reflections had disappeared leaving a mixture of La2NiO4+δ and NiO as shown 

in figure 3.8 indicating that interfacial diffusion of the Ni and La species was 

complete.  

La2NiO4 78 mins 860 oC                                    Hist  1 Lambda 0.8269 A, L-S cycle  329          Obsd. and Diff. Profiles                                                                   2-Theta, deg        Counts               0.0    10.0    20.0    30.0    40.0    50.0    60.0    X10E  3  0.0     0.5     1.0    

 
 Figure 3.8. Rietveld refinement of the diffraction pattern recorded at 78 

minutes and 1133 K. Experimental data is given by red crosses, green line is the 

model and the purple line is the difference curve. Tick marks are for NiO (upper) and 

La2NiO4+δ (lower). χ2 = 1.621, Rwp = 0.2766 Rp = 0.2068. 

 

 This route to La2NiO4+δ was in agreement with a previous investigation using 

CHFS precipitated hydroxides that was studied using laboratory X-ray 

diffraction.(Weng et al. 2011) The same study however found that La2NiO4+δ was 

not an intermediate phase in the formation of La4Ni3O10-δ in disagreement with this 

work. (Weng et al. 2011) The presence of a small amount of NiO that remained was 

due to the stoichiometry of the precursor which was 4La:3Ni as shown in equation 

3.1. 
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 (3.1) 

 

 Refined values of La2NiO4+δ identified at 78 minutes (1133 K) are listed in 

table 3.3. Quantitative analysis of the X-ray data suggested that the wt% of the 

La2NiO4+δ and the NiO phases at this point were ca. 90 and 10 wt% respectively. 

This refined value approximately equated to a mass ratio of 2La2NiO4+δ:NiO 

(801.0:74.7 g.mol-1, 90.6:9.3 wt%) further confirming the hypothesis that the 

presence of NiO was stoichiometric. 

 

Table 3.3. Crystallographic parameters for obtained from Rietveld refinement of the 

powder diffraction pattern collected at 78 minutes, 1133 K. 

Space Group I/4mmm 
a 3.91373(7) Å 
c 12.8177(4) Å 

volume 196.334(7) Å3 

La 00z 0.3602(1) 
100*Uiso 1.20(7) 

La2NiO4+δ fraction 89.8(1) wt% 
NiO fraction 10.2(7) wt%  

La2NiO4+δ Crystallite Size 66 nm 
 

 Crystallite size was measured using the Scherrer equation via measurement of 

the Gaussian peak width of the (010) reflection of La(OH)3 and the (103) reflection 

of La2NiO4+δ during stage three. The sample contribution to the Gaussian peak width 

was found by equation 3.2: 

 

  (3.2) 

 

Where G is the Gaussian full width half maximum (FWHM), the instrumental 

Gaussian broadening was calculated using a Si standard (NIST srm640c) (111) 

reflection. Due to the multiphase and amorphous nature during stage two, a single 

peak with no overlapping reflections was not found. The crystallite size of La(OH)3 

did not grow during stage one and remained constant between 10 and 15 nm. From 

the amorphous intermediate, (ca. 35 – 50 mins.) nucleation of the La2NiO4+δ 

crystallite occurred. The crystallite size of La2NiO4+δ grew linearly through stage 
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three as shown in figure 3.9, as a result of the diffusion of La2O3 and NiO. 

 
 Figure 3.9. Graph showing evolution of crystallite size over time calculated 

using the Scherrer equation. The blue dotted line represents the values calculated 

from measurements of (010) reflection of La(OH)3 during stage one. The green 

dotted line is fitted to values calculated from the (103) reflection of La2NiO4+δ during 

stage 3.  

 

 It was inferred that the energy required for nucleation of La2NiO4+δ was given 

by the point at which the green line in figure 3.9 intercepts the x axis, which equated 

to a temperature of 640 K. To test this hypothesis, 2La(OH)3 and Ni(OH)2 co-

precipitates using CHFS were reacted at 673 K for 240 hours in an electric muffle 

furnace. The resulting powder X-ray diffraction pattern showed low crystallinity 

mixture of reactants that could not be identified due to the broad low intensity peaks 

present (figure 3.10). Given the low intensity and quantity of broad reflections it was 

not possible to identify the reaction mixture using powder X-ray diffraction alone. 

Far greater than 240 hours was required to complete the reaction at 673 K if it could 

be completed at this temperature.  
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 Figure 3.10. Powder X-ray diffraction pattern of products formed from 

240 hour reaction of 2La(OH)3 and Ni(OH)2 at 673 K. 

 

3.3.2.2. 78 – 108 minutes 

 
 Figure 3.11. Powder X-ray diffraction patterns collected between 108 and 

162 minutes at 1348 K. ▼ = La2NiO4+δ, ● = UnK1 phase, ♦ = La2O3. 
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After 141 minutes, 1448 K, a rapid phase change occurred as shown in figure 

3.11. The La2NiO4+δ phase decomposed to leave a mixture of La2O3, and NiO and an 

unknown phase (UnK1). This unknown phase had been observed before the phase 

decomposition from 87 minutes and 1227 K, showing that its formation was via 

diffusion based first order phase transition. Diffusion between La2NiO4+δ crystallites 

resulted in nucleation and then growth of the UnK1 at the interfaces. 

 

3.3.2.3. 108 – 474 minutes 

 The heat-treatment was stopped after 474 minutes when no further change in 

the structure appeared to be occurring. However, subsequent analysis revealed that 

over the period of 345 – 462 minutes the intensity of the UnK1 Bragg peaks 

increased and the intensity of the La2O3 and NiO Bragg peaks declined which 

suggested that the reaction was in fact continuing as shown by figure 3.12. 

 
 Figure 3.12. ΔIhkl between 345 – 462 minutes. Red circles and dotted red line 

indicates the UnK1 phase. Blue triangles and dotted blue line indicates NiO, and 

green squares and dotted green line indicate La2O3. 

 

 The final scan (474 minutes, 1448 K) was a mixture of La2O3, NiO and 

UnK1, the UnK1 reflections were indexed using the TREOR90 program. The result 

produced a hexagonal cell in which the first 20 reflections were indexed to: 

a = 9.8393 Å, b = 9.8393 Å, c = 7.2690 Å, GOF = 80. Given the largely 
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orthorhombic nature of the Ruddlesden-Popper Lan+1NinO3n+1 phases, it was 

assumed that this was a pseudo-hexagonal cell, which was converted to 

orthorhombic by equation 3.3: 

 

 3.3 

 

Giving an orthorhombic cell of: a = 9.8393 Å, b = 17.0422 Å, c = 7.2690 Å. The 

space group was found to be Fcna from systematic absences. Le Bail refinement 

demonstrated that this space group was a good fit to the data, shown in figure 3.13.  

 
 Figure 3.13. Le Bail refinement of collected after 474 minutes and at 1448 K. 

Red crosses indicate observed data, the continuous green line indicates the model, 

and the purple line indicates the difference. Blue tickmarks are rhombohedral NiO, 

red tickmarks are La2O3, black tickmarks are the Fcna phase. χ2 = 3.761, 

Rwp = 0.2510, Rp = 0.1798. Inset: Highlighted high-angle data, 30 – 60 °2θ. 

 

 Rietveld refinement was attempted using potential isostructural compounds, 

however no match was found. The high symmetry meant that simulated annealing 

was inappropriate for this structure, as a result the atomic structure was not found. 

Unit cell information for the Fcna phase extracted from the Le Bail refinement is 

displayed in table 3.4. 
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Table 3.4. Refined unit cell values for the Fcna phase. 

Space Group Fcna 
a 9.8383(3) 
b 17.0304(3) 
c 7.2667(2) 

Volume 1217.53(4) 
χ2 3.761 

 

 The long c axis of the Fcna phase was approximately that of La3Ni2O7-δ 

20.5 Å. It was therefore assumed that the Fcna phase was an intermediate lanthanum 

nickelate that had a similar structure to La3Ni2O7-δ without the defined layered 

structure of the Ruddlesden-Popper type oxides. Further reaction with La2O3 and 

NiO was therefore required to produce La4Ni3O10-δ. 

 The inability to form La4Ni3O10-δ in the duration of the experiment can be 

explained by work of Palcut et al. who calculated the diffusion coefficient in the 

formation of LaCoO3 and La2CoO4. (Palcut et al. 2007) They found that the diffusion 

coefficientt of Co was proportional to the partial pressure of oxygen, pO2. It was 

assumed therefore that the low pO2 in the capillary reduced the diffusion rate of 

nickel and hence increased reaction time. The changing intensities between La2O3, 

NiO and the unknown orthorhombic phase suggested that the reaction was 

continuing at 1448 K and therefore may not have been complete after 7 hours 54 

minutes in this case. By increasing pO2, perhaps by using a gas-flow cell it may have 

been possible to complete the reaction. 

 The total sets of equations for the entire reaction were as follows: 

 

 (3.4) 

 

Equation 3.4 represents the gradual formation of the amorphous intermediate and 

completion of the majority of interfacial diffusion occurring during 0 – 51 minutes 

and 315 – 850 K. 

 

 (3.5) 

 

Equation 3.5 represents the nucleation and growth of the La2NiO4+δ from the largely 

amorphous intermediate. Nucleation of the unknown orthorhombic phase (UnK1) 
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occurred as a result of diffusion between La2NiO4+δ crystallites shown in equation 

3.6. 

 

 (3.6) 

 

At 141 minutes at 1448 K a rapid decomposition of La2NiO4+δ was observed that can 

be described by equation 3.7. 

 

 (3.7) 

 

It is assumed that the reaction then proceeded via equation 3.8. 

 

 (3.8) 

 

If continuation of the reaction were to lead to La4Ni3O10-δ this result would represent 

an alternative route than has been previously observed.(Weng et al. 2011) 



Chapter 3 — Direct Synthesis of La4Ni3O10-δ and In Situ Study of the Diffusion Reaction Between 
La(OH)3 and Ni(OH)2 

 

 102 

3.4. Conclusions 
 In conclusion,  anisotropic crystallites of La4Ni3O10-δ could be formed from a 

single 12-hour heat-treatment of co-precipitated CHFS precursors, which is an order 

of magnitude faster than a heat and grind synthesis supporting hypothesis 1. It is 

believed that this increased reaction rate was due to shorter diffusion distances as a 

result of using a coprecipitated nano-precursor. When the reaction was followed in 

situ using synchrotron diffraction it was found that La4Ni3O10-δ could not be formed 

after a 7 hour 54 minute heat-treatment. This was assumed to be due to slower Ni 

diffusion as a result of the low partial pressure of oxygen in the capillary. However it 

was possible to synthesise La2NiO4+δ in 78 minutes at 1133 K, which was 4.6 times 

faster and at a 140 K lower temperature than when using a traditional heat and grind 

approach, in which a 6-hour heat treatment is required at 1273 K often with 

regrinding stages. This result demonstrated the potential for the formation of 

heterometallic layered metal oxides from CHFS nano-precursors, in which lower 

energy syntheses could be achieved and confirmed hypothesis 1.  
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Chapter 4 

 

High-Throughput Synthesis of Doped La4Ni2.7M0.3O10-δ 

(where M = V, Cr, Mn, Fe, Co, Cu, and Al) 
 

4.1. Aims 
 Hypothesis two predicted firstly that by using CHFS nano-precursors, the 

time taken to synthesise doped lanthanum nickelates might be shortened, and 

secondly that this might be achieved more efficiently by using high-throughput 

continuous hydrothermal (HiTCH) flow synthesis. In this chapter the use of a 

HiTCH flow synthesis reactor was investigated in an effort to synthesise a range of 

metal doped lanthanum nickelates (La4Ni2.7M0.3O10-δ where M = V, Cr, Mn, Fe, Co, 

Cu and Al). Also the feasibility of splitting precursor libraries into daughter libraries 

that could then be heat-treated at different temperatures in parallel was explored. The 

aim was to optimise reaction conditions and compositions quickly for the mapping of 

phase diagrams.  

 

4.2. Experimental Details 

4.2.1. Source Materials 
  The source materials: [La(NO3)3.6H2O] (99.9 %), [Ni(NO3)3.6H2O] 

(99.9 %) [V(SO5).5H2O] (99.9 %), [Cr(NO3)3.9H2O] (99.9 %), [Mn(NO3)2.4H2O] 

(99.9 %), [Fe(NO3)3.9H2O] (99.9 %), [Co(NO3)2.6H2O] (99.9 %), 

[Cu(SO4).5H2O] (99.9 %), and [Al(NO3)3.9H2O] (99.9 %) were supplied by 

Sigma-Aldrich Chemical Company (Dorset, UK). KOH pellets (≥85 %) were 

supplied by Fisher Scientific Chemical Company (Loughbourough, UK). All 

experiments were conducted using deionised water (10 MΩ) throughout. 

 

4.2.2. Syntheses of Nanosized Precursor Co-precipitates Using a HiTCH 
Flow Synthesis Reactor 
 All nanosized precursors were made using CHFS system 2 (described in 

section 2.1.2) with pump rates of 20.0, 10.0 and 10.0 mL.min-1 for the scH2O, metal 

nitrate and KOH feed, respectively. Each composition was made at 450 °C and 

24.1 MPa. Once synthesised, each nano-precursor composition was centrifuged, 
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washed and freeze dried as explained in chapter 2. The method of cleaning the 

reactor between samples to prevent contamination is described in chapter 2. Each 

nano-precursor sample was split into three to create three daughter libraries. 

Daughter libraries were then heat-treated in a Carbolite CWF 13/5 muffle furnace at 

1348 K, 1448 K and 1548 K in air with a ramp rate of 10 K.min-1, and a holding time 

of 12 hours. 

 

4.2.3. Analytical Techniques 

 Structural characterisation data were collected using the D4 diffractometer 

described in chapter two. This diffractometer had an automated sample changer that 

was used to increase throughput and allow multiple data sets to be collected in turn. 

For selected samples, data were collected on the D500 diffractometer using 

monochromatic CuKαI radiation (step size was 0.02° and count time was 10 s.step-1). 

GSAS and EXPGUI programs were used for unit cell refinement and microstructural 

analysis.(Larson et al. 1994; Toby 2001)  

 DC conductivity was measured using an in-house built 4-point DC probe. 

Data were collected at 50 K steps in the temperature range 295 – 1173 K. 

 

4.3. Results and Discussion 

4.3.1. High-Throughput Synthesis 
 Increase in metal valence towards M(III) on the Lnn+1MnO3n+1 B-site has been 

shown to increase M 3d and O 2p orbital hybridisation and subsequently increase DC 

conductivity as a result.(Sreedhar et al. 1994; Zhang et al. 1995) Dopants were 

selected therefore to introduce a small increase in M(III) content on the La4Ni3O10-δ 

Ni-site. Dopant concentration was kept at 10 at% dopant on the Ni site to prevent 

large amounts of hole doping in the valence band. Eight nano-precursor slurries were 

synthesised using a manual HiTCH flow synthesis reactor (described in section 

2.1.2) to form a library. The library was then split into three to form three identical 

daughter libraries. Each daughter library was then heat-treated in parallel at 1348 K, 

1448 K, and 1548 K, respectively for 12 hours in air to bring about solid-state 

transformations from the nano-precursors. The stages that formed the high-

throughput methodology are displayed in figure 4.1.  
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 Figure 4.1. Work-flow diagram representing the stages involved in the high-

throughput process. 

 

4.3.2. Structural Screening using X-Ray Diffraction 
 An automated sample changer was used to rapidly collect all the powder X-

ray diffraction (PXRD) data. The phases formed in each case are shown in a phase 

diagram in figure 4.2.  
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 Figure 4.2. Phase diagram at atmospheric temperature and pressure for doped 

lanthanum nickelates synthesised at 1348, 1448, and 1548 K. Each point along the x-

axis represents a different composition, and each point along the y-axis represents a 

different heat-treatment.  

 

 It was possible to quickly identify that the Ruddlesden-Popper phase 

La4Ni2.7M0.3O10-δ could be synthesised for all dopants except Cu at 10 at% M on Ni 

sites and in the temperature range 1348 – 1548 K. The strong La2Ni1-xCuxO4+δ 

reflections suggested that it had formed favourably and Cu was in a +2 oxidation 

state, La4Ni3O10-δ therefore could not electronically accommodate a M(II) dopant. 

 The most readily formed and stable La4Ni2.7M0.3O10-δ compounds were when 

M = Cr and Co, which were observed over the entire temperature range1348 –

 1548 K. Where M = V, Fe and Al, La4Ni2.7M0.3O10-δ was only formed at either 

1348 K or 1448 K and decomposed to mixtures containing La2Ni1-xMxO4+δ when the 

heat-treatment temperature was raised. At this stage all the phase pure 
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La4Ni2.7M0.3O10-δ materials were synthesised again manually using system 1 under 

the same conditions used previously, to create larger quantities for analysis. 

In each case where La4Ni2.7M0.3O10-δ was phase pure X-ray powder 

diffraction patterns were analysed using Le Bail refinement. An anisotropic 

crystallite size had to be used in each case due to evident anisotropy in the (001) 

direction. The results of the Le Bail refinement are presented in table 4.1. 

La4Ni2.7M0.3O10-δ (nominal composition) where M = V, Cr, Mn, and Al, which were 

all hitherto unreported in the literature, are presented in figure 4.3, 4.4, 4.5, and 4.6 

respectively. 

 

Table 4.1. Selected lattice parameters in all cases of phase pure La4Ni2.7M0.3O10-δ. 

Where the dopant is Ni, indicates the undoped structure. All materials were refined 

using the Bmab orthorhombic space group. HT = heat-treatment. 

HT 
/ K 

Dopant 
/ M a / Å b / Å c / Å vol / Å 

P┴ 
/ nm 

P║ 
/ nm χ2 

Cr 5.4346(5) 5.4928(5) 27.966(5) 834.8(1) 52(2) 24(1) 2.737 
Fe 5.4346(4) 5.4819(4) 28.271(6) 842.3(2) 79(3) 14(1) 8.490 
Co 5.4143(5) 5.4669(4) 27.919(4) 826.4(2) 118(4) 26(1) 1.842 
Ni 5.4132(4) 5.4567(4) 28.109(4) 830.3(1) 143(9) 20(1) 2.539 

1348 

Al 5.4182(4) 5.4656(4) 27.999(3) 829.16(8) 89(3) 32(1) 2.620 
V 5.4390(4) 5.4860(4) 28.189(6) 841.1(2) 91(4) 18(1) 3.067 
Cr 5.4334(2) 5.4890(2) 28.020(1) 835.7(1) 126(5) 52(3) 1.509 
Mn 5.4271(1) 5.4801(5) 27.993(4) 832.5(2) 110(4) 37(2) 1.642 

1448 

Co 5.4146(3) 5.4688(3) 27.976(2) 828.4(1) 164(9) 47(2) 1.899 
Cr 5.4348(4) 5.4886(4) 28.057(4) 836.9(1) 115(6) 25(1) 2.075 1548 
Mn 5.4349(2) 5.4875(6) 28.082(3) 837.5(1) 165(8) 31(1) 2.210 
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 Figure 4.3. Le Bail refinement of La4Ni2.7V0.3O10-δ. Red crosses indicate 

experimental data, continuous green line indicates model, and purple line is 

difference. Tick marks are for the Bmab space group. Rp = 12.78 %, χ2 = 3.067. 

 
Figure 4.4. Le Bail refinement of La4Ni2.7Cr0.3O10-δ. Red crosses indicate 

experimental data, continuous green line indicates model, and purple line is 

difference. Tick marks are for the Bmab space group. Rp = 9.81 %, χ2 = 1.509. 
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Figure 4.5. Le Bail refinement of La4Ni2.7Mn0.3O10-δ. Red crosses indicate 

experimental data, continuous green line indicates model, and purple line is 

difference. Tick marks are for the Bmab space group. Rp = 11.05 %, χ2 = 2.210. 

 
Figure 4.6. Le Bail refinement of La4Ni2.7Al0.3O10-δ. Red crosses indicate 

experimental data, continuous green line indicates model, and purple line is 

difference. Tick marks are for the Bmab space group. Rp = 11.39 %, χ2 = 2.620. 
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Unit cell volumes increased approximately linearly with increasing ionic 

radius, r3+, as predicted by Vegard's law, shown in figure 4.7. 

 
 Figure 4.7. Plot of refined volume against ionic radius, r3+. Values of r3+ are 

taken from Shannon ionic radii.(Shannon et al. 1969) Blue line was in keeping with 

Vegard's law. Squares = heat-treatment 1348 K, 12 hours, Circles = heat-treatment 

1448 K, 12 hours. Triangles = heat-treatment 1548 K, 12 hours. Error bars are 

smaller than the symbols in all cases. 

 

 The observed anisotropy was in the (001) direction and therefore suggested a 

needle-like crystallite. The anisotropy was fitted using an anisotropic crystallite size 

which gave two values, P┴ and P║. The degree of anisotropy was plotted as the 

difference between the two values, and is shown in figure 4.8. It was assumed that by 

replacing Ni on the B-site with metals of both increased and decreased ionic radius, 

the O-M-O bond angles may move away from the ideal 180° and crystallinity may 

have been altered. As no correlation between the ionic radius of the dopant and the 

degree of anisotropy in figure 4.8 was observed, this hypothesis proved incorrect.  
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 Figure 4.8. Plot of (P┴ - P║) against ionic radius. r3+. Values of r3+ as taken 

from Shannon ionic radii.(Shannon et al. 1969) Squares = heat-treatment at 1348 K, 

12 hours, Circles = heat-treatment at 1448 K, 12 hours. Triangles = heat-treatment at 

1548 K, 12 hours. 

 

4.3.3. DC. Conductivity 

 Phase pure Ruddlesden-Popper, La4Ni2.7M0.3O10-δ, samples were pressed in a 

13 mm KBr die, and the pellets were subsequently sintered at 1573 K for 12 hours in 

air with a low heating rate of 1 K.min-1 to prevent cracking. This method produced 

sintered discs of 57 – 63 % of maximum theoretical density with no visible cracking 

on the surface. The maximum density of sintered discs in doped La4Ni3-xMxO10-δ was 

ca. 40 % of maximum theoretical density observed by Amow et al.(Amow et al. 

2006a) The increased density observed in this study was thought to be as a result of 

producing smaller La4Ni3-xMxO10-δ crystallites when synthesising from nano-

precursors. DC conductivity was then measured as a function of temperature in air 

using an in-house built 4-point probe. The variation in DC conductivity with 

temperature for each La4Ni2.7M0.3O10-δ sample is plotted in figure 4.9. 
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 Figure 4.9. DC conductivity against temperature of each La4Ni2.7M0.3O10-δ 

sample, where M = V, Cr, Mn, Fe, Co, Ni and Al. Where the dopant is Ni, this 

indicates the undoped sample. 

 

 The undoped La4Ni3O10-δ (density = 69 %) was the most conductive at 

241 S.cm-1 at 523 K. All doped samples were less conductive, most likely due to hole 

doping of the valence band as a result of too high an M(III) content. An anomaly was 

observed in all samples at ~550 K, this has been observed previously by Amow et al. 

who found that it was be correlated with a non-linearity in the thermal expansion at 

the same temperature.(Amow et al. 2006b) High-temperature X-ray diffraction of 

La4Ni3O10-δ shows an increase in symmetry from orthorhombic to tetragonal at 

approximately 750 K,(Amow et al. 2006b) it was believed therefore that this 

anomaly was not structural in origin and was related to the loss of oxygen at 550 K. 

Detailed thermogravimetric analysis of each composition would be required to 

confirm this hypothesis, also by repeating the experiment and looking for the same 

response on cooling as well as heating would give some further indication as to the 

nature of this anomaly. The greatest conductivity of the doped samples was observed 

in La4Ni2.7Fe0.3O10-δ (density = 61 %) with a maximum conductivity of 100 S.cm-1 at 

573 K, and the least conductive was La4Ni2.7Mn0.3O10-δ (density = 65 %) which had a 

maximum conductivity of 51 S.cm-1 at 573 K. Where dopants were: V, Cr, Mn, Co, 

Al, each were semi-conductors until 523 – 573 K at which point they became 
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metallic conductors. Both La4Ni2.7Fe0.3O10-δ and La4Ni3O10-δ were metallic 

conductors at room temperature becoming semi conductors between 523 and 573 K. 

All semi-conducting samples were metallic conductors above 573 K which suggested 

promotion of valence electrons into the conduction band at increased temperatures. 

Figure 4.10 shows the comparison of conductivities at IT-SOFC operating 

temperature (ca. 973 K), 

 
 Figure 4.10. Conductivity of phase pure La4Ni2.7M0.3O10-δ at 973 K. (Where 

M = V, Cr, Mn, Fe, Co, Ni and Al). Where M = Ni indicates the undoped sample.  

 

4.3.3.1. Anomaly in Conductivity Measurement 

 An anomaly was observed in each pellet which manifested itself through a 

loss of resistance to an equilibrium position on application of a DC bias. After the 

DC bias was removed the resistance increased to its starting position. This effect was 

present in each measurement. To test this effect, measurements were taken using the 

La4Ni2.7Co0.3O10-δ pellet in which, at each temperature the resistance was recorded 

immediately upon application of the voltage. Subsequently the samples were allowed 

to equilibriate for 10 minutes, and a second measurement was taken after no further 

drop in resistance was observed. A thermocouple was placed in close proximity to 

the sample to observe any fluctuations in temperature. The measured increase in 

conductivity at each temperature is plotted in figure 4.11.  
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 Figure 4.11. Change in conductivity of La4Ni2.7Co0.3O10-δ on application of 

DC bias against temperature. Squares indicate repeat 1, circles repeat 2. 

 

When the change in conductivity was recorded the repeatable difference had a 

maximum increase in conductivity of 3.1 S.cm-1 at 523 K. This effect was observed 

in all samples. This phenomenon demonstrated a maxima at ~550 K, similar to the 

effect seen in the change in total conductivity with temperature (shown in figure 4.8). 

Therefore this anomaly may have also been caused by the loss of oxygen through 

heating. The reversibility of this measurement was not conducted in this study, 

however this measurement could provide important insight into the cause of this loss 

of resistance and whether it is related to a loss of oxygen.  

 

4.4. Conclusions 
 A manual high-throughput continuous hydrothermal flow synthesis technique 

has been employed to form nano-precursors for a number of doped lanthanum 

nickelates. Each set of precursors was divided into three to produce three cloned 

libraries of samples. Each library was heat-treated at 1348, 1448, or 1548 K, 

respectively, for 12 hours to bring about solid state transformations, the results of 

which were investigated using PXRD. By using this approach it was possible to 

investigate the phase space and optimise reaction conditions quickly supporting 

hypothesis two (page 61). From a total of twenty-four samples, La4Ni2.7M0.3O10-δ 
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(where M = V, Cr, Mn, Fe, Co, Ni, and Al) was identified in twelve cases. In total 

four compositions previously unknown to the literature were identified. 

 In the case of phase pure La4Ni2.7M0.3O10-δ (where M = V, Cr, Mn, Fe, Co, 

Ni, and Al) the DC conductivity was tested. It was found that in general 10 at % 

M(III) on the Ni-site caused hole doping in the valence band resulting in a lowering 

of conductivity. Both La4Ni2.7Co0.3O10-δ and La4Ni2.7Fe0.3O10-δ however, 

demonstrated promising properties that could identify them as potential IT-SOFC 

cathode materials.  
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Chapter 5 

High–Throughput Synthesis and Discovery of New Iron 
Doped Lanthanum Nickelates 
 

5.1. Aims 
 Hypothesis 2 predicted that using a high-throughput approach could make the 

optimisation of reaction conditions and composition more efficient. Hypothesis 3 

suggested that automation of the high-throughput process could increase the number 

of samples synthesised and therefore get a clearer idea of the phase stability of a 

target phase. In chapter 4 La4Ni2.7Fe0.3O10-δ was identified as a potential IT-SOFC 

cathode material. This chapter demonstrates a fully automated synthesis strategy 

with screening for the discovery La4Ni3-xFexO10-δ (where x = 0.0 – 3.0 and Δx = 0.1). 

By using automation the aim was to increase the quantity of samples it was possible 

to synthesise in a single experiment and therefore identify 'true' phase boundaries as 

a result. 

5.2. Experimental Details 

5.2.1. Source Materials 
The source materials [La(NO3)3.6H2O] (99.9 %), [Ni(NO3)2.6H2O] (99.9 %) 

and [Fe(NO3)3.9H2O] (99.9 %) were supplied by Sigma-Aldrich Chemical Company 

(Dorset, UK). KOH pellets (≥85 %) were supplied by Fisher Scientific Chemical 

Company (Loughborough, UK). All experiments were conducted using deionised 

water (10 MΩ) throughout. 

5.2.2. Syntheses of Nano-sized Precursor Co-precipitates via RAMSI  
 A set of co-precipitated, nano-sized precursors were synthesised using the 

rapid automated synthesis instrument, RAMSI (system 3) with pump rates of 20.0, 

10.0 and 10.0 mL.min-1 for the scH2O, metal nitrate and KOH feed, respectively. 

Each composition was made at 450 °C and 24.1 MPa. Full details and running order 

of the RAMSI synthesis, clean-up and printing process can be seen in section 2.1.3. 

Information entered into the RAMSI GUI can be seen in section 2.2.3. Once 

synthesised, each nano-precursor composition was centrifuged, washed and printed 

as ceramic dots using the liquid handling functions of RAMSI. Ceramic dots of each 
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nano-precursor composition were split into two to produce two cloned daughter 

libraries which were heat-treated at 1348 K and 1573 K, respectively for 12 hours in 

air. The heat-treated dots were then mounted into a wellplate for high-throughput 

analysis. Larger quantities of phase pure samples used to form pellets were 

synthesised manually using system 1 under the same conditions.  

 

5.2.3. Analytical Measurements 
Powder X-ray diffraction (PXRD) data were collected using a Bruker-AXS 

D8 (GADDS) diffractometer (described in section 2.4.3.). Analysis (around phase 

boundaries) was collected on the Bruker D4 diffractometer using Cu (Kα1 and Kα2) 

radiation in reflection geometry. Data were collected over the 2θ range 20 - 70 º with 

a step size of 0.05 º and a count time of 4 s.step-1. Whole profile fitting was 

conducted using GSAS and the EXPGUI interface.(Larson et al. 1994; Toby 2001) 

Backgrounds were fitted using a shifted Chebyschev function with six refined 

parameters. Instrumental peak profile parameters, U, V, and W were calculated using 

a crystalline CeO2 standard that had been heat-treated in at 1473 K for 3 days. 

Anisotropic strain was calculated using profile function 4 in the EXPGUI program, 

U, V, and W were fixed to instrumental values and S004 and η functions refined. 

Phase-pure samples were prepared as round pellets typically ø = 12.5 mm and 

thickness = 1 mm which were sintered in air at 1473 K for 12 hours. A ramp rate of 1 

K.min-1 was used to prevent surface cracking. DC conductivity was calculated using 

an in-house built 4-point probe (described in section 2.7.). Room temperature Fe K-

edge EXAFS data were collected at the B18 beamline at Diamond Light Source, the 

set-up and data processing strategy are (described in section 2.6.). 

5.3. Results and Discussion 

5.3.1. Phase identification and X-ray diffraction 

5.3.1.1. High-Throughput Screening Stage 1 
 Iron was selected as a dopant after being identified in chapter 4 as having 

potential as an IT-SOFC material. La4Ni3-xFexO10-δ was doped across the full range of 

x (0.0 – 3.0) as Amow et al. found that when metal dopant content was greater than 

x = 2.0, increased amounts of M(II) were observed resulting in a more conductive 

compound.(Amow et al. 2006a) Using the HiTCH module of RAMSI, 31 nano-
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precursor slurries for the system La4Ni3-xFexO10-δ (range x = 0.0 – 3.0, Δx = 0.1) were 

synthesised at a rate of 7.5 samples per hour. A colour change from green, x = 0.0, to 

brown, x = 3.0 was observed, visually indicating an increase in Fe(III) content in 

each coprecipitated slurry, shown in figure 5.1. 

 
 Figure 5.1. Photograph of as-prepared slurries visually indicating increasing 

Fe(III) content. 

 

 Following synthesis, the collected sample tubes were automatically placed 

into tube racks by RAMSI for ‘clean-up’ (centrifugation and supernatant replacement 

in sequence). Centrifugation was performed at 4500 rpm for 1 minute, a throughput 

of 9 samples per hour was achieved. Following clean-up all supernatant was 

removed to leave concentrated slurries and all samples were replaced into tube racks. 

Prior to printing, DI water was added to each sample to adjust the concentration and 

aid printing. Each combined tube contained approximately 5 mL of slurry to which 

600 – 1000 µL of DI water was added to leave a slurry concentration of ca. 1.0 ± 0.2 

g.mL-1. Dots were printed in 100 µL and 125 µL sizes and dried in air. The library 

was then split into two daughter libraries. The daughter libraries dots were placed 

manually in a muffle furnace and heat-treated at 1348 K or 1573 K for 12 h on a 

solid 2 mm thick platinum plate. In order to minimise cracking of the ceramic dots 

during heat-treatment, all library dots were pre-heated at 353 K for 6 hours, also the 

ramp rate was kept low, at 2 K.min-1. Even when following this method cracking of 

dots was observed. The samples were then manually fixed flat side up into a custom 

made 96 well aluminium wellplate. The wellplate was placed onto the xyz 
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diffractometer stage for PXRD screening. The complete combinatorial strategy is 

shown schematically in figure 5.2. 

 
 Figure 5.2. A schematic representation of the combinatorial synthesis and 

screening strategy. 

 

The first screening round of both daughter libraries produced 62 diffraction 

patterns (31 × 2 temperatures), which highlighted that a possible phase boundary 

region for La4Ni3-xFexO10-δ was ca. x = 0.3 – 0.5 for samples heat-treated at 1348 K 

for 12 hours (precise identification was difficult due to the short collection times, and 

low data resolution). Above this upper limit of solubility for Fe in samples heat-

treated at 1348 K, mixtures of La4Ni3-xFexO10-δ and La2Ni1-yFeyO4+δ were observed 

until x = 1.5. In the range x = 1.5 – 3.0, mixtures of LaNi1-zFezO3 and La2O3 were 

formed. The daughter library heat-treated at 1573 K for 12 h, suggested the phase 

boundary for La4Ni3-xFexO10-δ could be extended as high as x = 1.0. Beyond this limit 

mixtures of La4Ni3-xFexO10-δ and La2Ni1-yFeyO4+δ were observed as in the case of the 

1348 K daughter library. In contrast, previous attempts in the literature to make 

phase pure La4Ni3-xFexO10-δ obtained an upper limit of x = 0.3 using polymerisation 

synthesis based methods taking either 60 or 22 hours at 1353 – 1373 K, with several 

intermittent regrinding stages.(Carvalho et al. 2009; Tsipis et al. 2007) Samples 

where La4Ni3-xFexO10-δ had not formed were discarded at this point in order to 

investigate the phase pure Fe-doped compounds and their structure-property 

relationships. 

 PXRD data resolution was low for the initial screens due to the difficulties in 

sample preparation. Surface cracking of dots was seen in most cases, coupled with 
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short collection times and small quantities of sample, resulted in a less than perfect 

diffraction conditions. Unit cell refinement was not possible from this data due to 

large errors in the sample height as a result of imperfect flatness. However the 

purpose of this initial screen was phase identification only, so it was sufficient for 

purpose. To obtain more detailed data on structural changes, better quality sample 

preparation and data collection was then required for selected samples. 

 

5.3.1.2. Manual Screening Stage 2 
 Once the initial X-ray screening data had been evaluated, eight selected larger 

samples sizes (ca. 0.5 g each) were remade using system 1 described in chapter 2 

(using identical reaction conditions to those used during the initial RAMSI 

synthesis).  

 PXRD data confirmed that for samples heat-treated at 1348 K, a nominal Fe 

content as high as x = 0.3 (La4Ni3-xFexO10-δ), in agreement with previously reported 

results in which a heat and grind method was used from micron-sized oxide 

precursors at 1370 K.(Kiselev et al. 2007) A La2O3 secondary phase was observed in 

the x = 0.1. Compositions where x = 0.4 and 0.5 (following heat-treatment either 

1348 K and 1573 K) were not very crystalline and appeared to be mixed phases of 

La4Ni3-xFexO10-δ and La2Ni1-xFexO4+δ. Following heat-treatment at 1573 K for 12 

hours in air it was possible to extend the La4Ni3-xFexO10-δ phase boundary to a 

nominal Fe content of x = 1.0 (confirmed as x = 0.94 using EDX) as shown in figure 

5.3. 
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 Figure 5.3. La4Ni2.06Fe0.94O10-δ synthesised from CHFS precursors at 1548 K 

for 12 hours. Red crosses indicate experimental data, continuous green line is the 

model and purple line is the difference. Tick marks are for the Bmab space group. 

χ2 = 1.826. 

 

Both Fmmm and Bmab space groups were used in the fitting process, from 

previous structural studies.(Ling et al. 1999; Zhang et al. 1995) Bmab produced the 

best fit in all cases and was therefore chosen arbitrarily as the space group. All 

patterns were highly anisotropic in the (001) direction, figure 5.4 shows the variation 

in the cell volume with increasing Fe content. The large non-linear variations in the 

cell volume (particularly in samples heat-treated at 1348 K, 12 hours in air) were as a 

direct result of the anisotropy in the crystallites.  
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 Figure 5.4. Graph of unit cell volume against Fe content for all            

La4Ni3-xFexO10-δ compounds. Error bars are smaller than symbols in all cases. The 

quoted temperature represents the heat-treatment required to obtain the phases. 

 

 During the fitting process it was clear that the La4Ni2.9Fe0.1O10-δ sample was 

considerably less crystalline than the other samples and some La2O3 was present in 

the product. As a result a larger χ2 value was observed in the Le Bail refinement. 

This accounted for the anomalously low c parameter and volume, 27.73(1) Å and 

822.8(6) Å3, respectively. Selected unit cell parameters are described in table 5.1, 

where Fe content was calculated using EDX spectroscopy. The variation of unit cell 

parameters a, b, and c is shown in figures 5.5 and 5.6 respectively. A linear increase 

in all three parameters is observed as expected by Vegard's law, confirming that Fe 

ions are sitting on lattice sites.  
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Table 5.1. Selected unit cell values for the La4Ni3-xFexO10-δ system. Fe content has 

been calculated from EDX results. 

x / 
Fe content 

a / Å b / Å c / Å Volume / Å3 

0.00 5.4103(8) 5.4567(8) 28.104(7) 829.7(4) 
0.09 5.421(1)   5.473(1)   27.73(1)   822.8(6) 
0.22 5.4322(7) 5.4757(7) 28.180(6) 838.2(3) 
0.30 5.4331(9) 5.4794(8) 28.277(9) 841.8(4) 
0.39 — — — — 
0.49 — — — — 
0.56 5.4439(4) 5.5001(6) 28.097(4) 841.3(3) 
0.65 5.4430(8) 5.5016(8) 28.060(7) 840.3(3) 
0.75 5.4517(6) 5.5084(6) 28.127(4) 844.7(2) 
0.93 5.4591(9) 5.5119(9) 28.167(6) 847.5(4) 
0.94 5.4578(7) 5.5117(6) 28.233(8) 849.3(3) 

 

 

 
 Figure 5.5. Graph showing the increase of unit cell parameters a (squares) 

and b (circles) with increasing Fe content. The quoted temperature represents the 

heat-treatment required to obtain the phases. 

 



Chapter 5 — High–Throughput Synthesis and Discovery of New Iron Doped Lanthanum Nickelates 
 

 124 

 
 Figure 5.6. Graph of unit cell parameter c against Fe content. The line is as a 

guide for the eye only. Error bars are smaller than symbols in all cases. The quoted 

temperature represents the heat-treatment required to obtain the phases. 

5.3.1.2.1 Anisotropy 
As mentioned previously, broadening in the (001) direction was observed in 

all samples to some extent. The anisotropy in the (001) direction, was greatest in 

La4Ni2.7Fe0.3O10-δ, and characterised by broadening in any Bragg reflections where 

l ≠ 0 as shown in figure 5.7. 

 
 Figure 5.7. X-ray diffraction pattern of La4Ni2.7Fe0.3O10-δ. Inset: Expanded 

peak highlighting the strong anisotropic broadening in the (001) direction. 
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 The anisotropic broadening was quantified from the Le Bail refinements in 

GSAS, using an anisotropic strain function. From inspection, it was clear that 

anisotropy was in the (001) direction only. Therefore U, V, W parameters were set at 

instrumental levels, and the (001) strain was refined. When peak profiles were 

refined in this way, better fits were obtained in each case than when using 

conventional U, V, W, X, and Y profile parameters (as highlighted in figure 5.8 a 

and b).  

 
 Figure 5.8. Le Bail fits of La4Ni2.8Fe0.2O10-δ. Peaks are those highlighted 

(with Miller indices) in figure 5.6 inset above. Red crosses indicate experimental 

data, green line is model, and purple line is the difference plot. Reflections are 

marked with ticks. a) Fit using conventional U, V, W, X, and Y profile functions, 

χ2 = 17.44. b) Fit using anisotropic strain function, χ2 = 6.266.  

 

 The refined directional strain values are shown in figure 5.9, an approximate 

linear increase in the (001) broadening was observed in the range x = 0.0 – 0.3. At 

this point a phase boundary was reached and a higher heat-treatment temperature was 

required to increase Fe content in La4Ni3-xFexO10-δ. At the higher heat-treatment 

temperatures the (001) broadening was reduced and remained approximately 

constant, increasing again only when a further phase boundary was reached 

(x = 0.94). This suggested that a greater heat-treatment temperature had the effect of 

annealing out the microstructural effect.  

a b 
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 Figure 5.9. Refined percentage strain in the 001 direction for all           

La4Ni3-xFexO10-δ samples.  

 It is important to note at this stage, that although a strain broadening 

parameter was used to model the anisotropy, this could also be described using an 

anisotropic particle size (as in Chapter 4). The strain model was therefore just used to 

describe the extent of the anisotropic broadening of the diffraction peaks, and not 

necessarily as a direct result of microstructural strain in the crystallites. The 

anisotropic broadening could have been related to a loss of crystallinity, particle size 

effects or local strain within the NiO6 octahedra, particularly with the introduction of 

a dopant. Ling et al. found, using powder neutron diffraction that the refined 

anisotropic displacement of the O(1) atoms was much larger than any other atom, 

with the anisotropy lying along the (001) direction, perpendicular to the Ni(1)-O(1) 

bond.(Ling et al. 1999)  

5.3.2. EXAFS analysis 
Selected samples were chosen for Fe K-edge EXAFS analysis. For the 

analysis, the coordinated of La4Ni3O10-δ reported in the ICSD crystal structure data-

base were used.(Zhang et al. 1995) The starting model was generated in the 

EXCURVE program and the bond distances of various neighbours and their Debye-

Waller factor were refined to obtain the best fit, given in figure 5.10. A multiple-

scattering method was employed here to accurately model the structure. The 

structural parameters obtained from the best fit are given in table 5.2. 
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 Figure 5.10. EXAFS plots (top) and fitted Fourier transform (bottom) of 

a) La4Ni2.8Fe0.2O10-δ, b) La4Ni2.7Fe0.3O10-δ, c) La4Ni2.2Fe0.8O10-δ and 

d) La4Ni2.1Fe0.9O10-δ. The black line represents the experimental data, and the red line 

represents the fitted model. Data collection was performed by Andrew Smith, and 

data analysis was conducted by Prof. G. Sankar. 
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Table 5.2. Bond lengths and coordination numbers for selected samples in the series 

La4Ni3-xFexO10-δ. 

x / 
Fe content 

Fe-O Fe-La Fe-Ni REXAFS 

 N R 2σ2 N R 2σ2 N R 2σ2  
0.2 6 1.944 0.019 8 3.33 0.017 6 3.82 0.028 46.69 
0.3 6 1.944 0.011 8 3.34 0.017 6 3.82 0.026 43.38 
0.8 6 1.960 0.017 8 3.37 0.009 6 3.86 0.027 39.28 
0.9 6 1.940 0.012 8 3.34 0.015 6 3.81 0.028 54.34 

 

EXAFS results given in table 5.2, suggested that Fe(III) cations were located 

on the B (Ni) sites in all cases. In particular, all the distances obtained from the 

analysis using the type of near neighbour listed in the table matched that of the 

parent form La4Ni3O10-δ. An estimation of the iron oxidation state was made using 

the Fe-O bond lengths that were in the range 1.944 – 1.960 Å, which suggested the 

dopant was Fe3+ in all cases. In the undoped La4Ni3O10-δ, charge ordering in non-

equivalent NiO6 octahedra was suggested, with preferential occupation of Ni3+ on the 

Ni1 site and Ni2+ on the Ni2 site.(Voronin et al. 2001) Bond lengths estimating Fe2+ 

were not observed, suggesting that there was no charge ordering (i.e. no preference 

for Fe3+ on either Ni1 or Ni2 site). 

5.3.3. DC conductivity  
For seven of the samples (La4Ni3-xFexO10-δ  x = 0.0 – 0.3, 0.6 – 1.0, Δx = 0.1) 

which were shown to be phase pure and which had been scaled up using system 1, 

dense pressed pellets were formed by pressing powders at 660 MPa in a 13 mm 

diameter KBr die. The die was gently tapped before pressing, producing a green 

density in the range 53 – 57 % of theoretical maximum density (by measurement of 

dimensions). By trial and error it was found that a low heating rate of 1 K.min-1 and a 

sintering temperature of 1473 K for 12 hours, yielded pellets with sintered densities 

in the range 59 – 69 % of theoretical maximum density, with no visible cracking on 

the surface of pellets. As in chapter 4 the densities were greater than those achieved 

in the comparative La4Ni3-xCoxO10-δ system by Amow et al., which were 

approximately 40 % of theoretical maximum density.(Amow et al. 2006a) The 

conductivity as a function of temperature was measured for these pellets using the in-

house built 4-point DC probe (described in section 2.7). 
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 Figure 5.10. Conductivity of phase pure La4Ni3-xFexO10-δ as a function of 

temperature. All samples were 59 – 69 % of theoretical maximum density. 

 

 The conductivities of each composition are displayed in figure 5.10, when x = 

0.0 – 0.3, the samples were metallic conductors at room temperatures. All others 

were semi-conductors. A peak in conductivity occurred at ca. 573 K, this behaviour 

had been observed before in the undoped analogues (La4Ni3O12), and attributed to a 

structural phase transition from orthorhombic to tetragonal symmetry by Amow et 

al.(Amow et al. 2006b) however this phase transition occurs at 985 K.(Lavrova et al. 

1991)  

 
 Figure 5.11. Graph showing conductivity of at 923 K against iron content for 

the La4Ni3-xFexO10-δ series.  
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Figure 5.11 displays how the conductivity at 923 K steadily decreased from 

170 S.cm-1 (density 62 %) to 31 S.cm-1 (density = 58 %) in the x range of 0.0 – 0.8, 

most likely due to hole doping of the valence band as a result of increased M(III) 

content. These values compared with 50 S.cm-1 at 923 K for La4Ni2.8Co0.2O10-δ 

(density = 40 %),(Amow et al. 2006a) and 95 S.cm-1 at 950 K for undoped 

La4Ni3O10-δ (density = 58 %).  

 Interestingly, it was observed that at lower temperatures (< 773 K) upon 

application of a voltage to points 1 and 2 (of the 4-point DC conductivity testing 

apparatus where the numbering manner is clockwise and incremental from 1-4), the 

observed resistance through points 3 and 4 fell rapidly over 10 – 30 s, until an 

equilibrium value was reached. When the voltage was then removed across pins 1 

and 2, the resistance measured through points 3 and 4 slowly returned to the original 

value. This was an identical effect to that described in section 4.3.3.1., where it was 

described in more detail.  

 

5.4. Conclusions 
In conclusion, a fully automated nano-precursor coprecipitation and heat-

treatment route to direct combinatorial solid state synthesis has been described. 

Several “difficult to make” and hitherto unknown phase-pure heterometallic 

Ruddlesden Popper type (La4Ni3-xFexO10-δ) materials have been identified. The new 

approach used robotic automation (RAMSI) which incorporated a high-throughput 

reactor to rapidly synthesise a range of nanoparticle co-precipitate precursors in 

cloned libraries at a rate of 7.5 samples an hour. Each library could then be heat-

treated at a different temperature and an initial powder XRD screen was used to 

locate the approximate phase boundary. A more focussed second scaled-up synthesis 

and PXRD characterisation of selected larger heat-treated powders was then 

performed to reconfirm the locations of the phase boundaries with the highest dopant 

level being achieved for La4.13Ni2.06Fe0.94O10-δ which is significantly greater Fe 

doping than has been achieved by anyone previously (despite several efforts in this 

field). EXAFS data suggested that Fe3+ was located onto Ni sites in all cases and did 

not exist as a separate iron oxide phase. 

The DC conductivity of all the single phase materials obtained was then 

investigated; electronic conduction generally decreased with increasing Fe content. 
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In summary this fully automated combinatorial synthesis route for direct solid state 

chemistry coupled with rapid screening, has allowed faster access to samples that 

were previously unknown and inaccessible via more conventional “heat and grind” 

or similar approaches. It has also allowed rapid identification of the 'true' phase 

boundary and the conditions with which to obtain in going someway to answering 

hypothesis 2 and 3. 
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Chapter 6 

 

Automated High-Throughput Synthesis and Screening of 

La4Ni3-xMxO10-δ and La3Ni2-xO7-δ (where M = Mn, Pd, Al, 

Ga, x = 0.0 – 2.0 and Δx = 0.2) 

 

6.1 Aims 
 Chapter 5 described a fully automated approach to CHFS, producing a library 

of 62 samples which were heat-treated in parallel to bring about solid-state 

transformations. The resulting phases were then screened for suitable properties 

using X-ray diffraction and DC electrical testing. In the previous chapter X-ray 

diffraction quality was low and a further screening stage was required to confirm 

phase boundary regions. Hypothesis 3 (page 60) stated that if the automated 

synthesis using RAMSI were to be combined with an automated screening method 

such as X-ray diffraction, it should be possible to investigate hundreds of 

compositionally unique heterometallic oxides in one experiment. By doing this it 

would be possible to optimise synthesis conditions and get a clearer idea of 'true' 

phase boundaries. In order to test this hypothesis 80 compositionally unique 

precursors was synthesised for the La4Ni3-xMxO10-δ and La3Ni2-xMxO7-δ systems 

(where M = Mn, Pd, Al and Ga, x = 0.0 – 2.0 and Δx = 0.2). As in previous chapters, 

each composition was split into three and heat-treated at either 1348, 1448 or 

1548 K, to generate 3 daughter libraries (240 unique samples in total) which were 

then investigated structurally using automated powder X-ray diffraction in a single 

library. 

 

6.2 Experimental Details 

6.2.1. Source Materials 

 The source materials [La(NO3)3.6H2O] (99.9 %), [Ni(NO3)2.6H2O] (99.9 %), 

[Mn(NO3)2.6H2O] (99.9 %), [Pd(NO3)2.6H2O] (99.9 %), [Al(NO3)3.9H2O] (99.9 %) 

and [Ga(NO3)3.9H2O] (99.9 %) were supplied by Sigma-Aldrich Chemical Company 

(Dorset, UK). KOH pellets (≥85 %) were supplied by Fisher Scientific Chemical 
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Company (Loughborough, UK). All experiments were conducted using deionised 

water (10 MΩ) throughout. 

 

6.2.2. Syntheses of Nano-Precursor Co-precipitates using RAMSI  

 A set of 80 co-precipitated, nano-precursors were synthesised using the 

HiTCH flow synthesis module within RAMSI. Full details and running order of the 

RAMSI synthesis and clean-up process can be seen in section 2.2.4. Following 

automated clean-up using RAMSI, each composition was freeze dried for 18 hours 

and subsequently split into three equal parts to create three daughter libraries, each 

composition was then heat-treated at either 1348, 1448 or 1548 K for 12 hours in air 

to give a total of 240 samples.  

 

6.2.3. Analytical Measurements 

 High-throughput screening data were collected using a position sensitive 

detector, PSD. The PSD had a 90° aperture that allowed collection of a powder 

pattern in milliseconds. Data collection time was 2 seconds per pattern, a further 30 

seconds were required to change samples using the robot arm and carousel, therefore 

all 240 diffraction patterns were collected in 2.1 hours. Full details are presented in 

section 2.4.4.2. 

 Data for further refinement of selected structures of interest (that were phase 

pure) were collected at room temperature using the MAC detectors. Collection time 

was 30 minutes of the 2θ range 0 – 160 °2θ. Wavelength (λ = 0.825582(2) Å) and 

zero point (0.006679(2) °) were calculated using a silicon standard, (NIST 

SRM640c). Whole profile fitting was conducted using GSAS and the EXPGUI 

interface.(Larson et al. 1994; Toby 2001) Instrumental peak profile parameters, U, V, 

and W were calculated using a Si standard (NIST srm640c). Anisotropic strain was 

calculated using profile function 4 in the EXPGUI program, with U, V, and W fixed 

to instrumental values.  

 

6.3 Results and Discussion 
 Dopants Mn and Pd were selected to increase hybridisation of the M 3d and 

O 2p orbitals of the La4Ni3-xMxO10-δ and La3Ni2-xMxO7-δ structure and by doing so 

potentially increase DC conductivity.(Sreedhar et al. 1994) Al and Ga were selected 
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to explore the possibility of using main group metals as dopants in the CHFS system. 

Eighty compositionally unique nano-precursors for the attempted synthesis of doped 

materials La4Ni3-xMxO10-δ and La3Ni2-xMxO7-δ (where M = Pd, Mn, Al, and Ga) were 

synthesised using the RAMSI robot. Synthesis throughput was calculated at 

9 samples per hour. Each composition was split into three and heat-treated at 1348, 

1448, or 1548 K to produce a total of 240 samples. Screening was conducted using 

powder X-ray diffraction at Diamond Light Source, I11. Powders were loaded into 

capillaries and placed onto a carousel, whereupon they were collected in turn by 

robot arm for analysis. Data were collected using a PSD detector (described in 

chapter 2) for 2 seconds per pattern. Including time taken to change samples total 

time was 30 seconds per pattern; throughput at this stage was 120 samples per hour. 

The workflow diagram of the process is shown in figure 6.1. 

 
 Figure 6.1. Work-flow diagram representing the stages involved in the fully 

automated combinatorial process. 

 

6.3.1. High-Throughput Screening using PSD 

6.3.1.1. Pd structures 
 For the nano-precursor ratio La4:Ni3-xPdx in the range x = 0.2 – 2.0 and 

Δx = 0.2, the products formed in each case are presented in figure 6.2. Each point in 

figure 6.2 on the phase plot represents an individual composition, some of which 

were mixture and some of which were phase pure compounds (identified using 

powder XRD). 
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 Figure 6.2. Phase diagram at room temperature pressure for the phases 

formed from CHFS precursors for the compositions La4:Ni3-xPdx (where x = 0.2 – 0.0 

and Δx = 0.2) after heat-treatment for 12 hours in air. At% of dopant 

= nPd/(nLa+nNi+nPd). Each point represents a unique composition, some of which are 

mixtures and some of which are phase pure compounds. In each case the phase 

identified from powder XRD is given in the key. Samples marked with an asterisk 

were selected for further investigation.  

 

 La4Ni3-xPdxO10-δ could not be isolated at any dopant level of Pd. The 

thermodynamically more stable La2Ni1-xPdxO4+δ was formed as a secondary product 

in each case. This was possible due to the difference in ionic radius between Ni2+ and 

Pd2+ (0.69 and 0.86 Å), and Ni3+ and Pd3+ (0.6 and 0.76 Å).(Shannon et al. 1969) The 

larger ionic radius of Pd meant that only small quantities (< x = 0.2, ca. 6 at%) could 

be incorporated into either structure without the formation of a secondary phase. At 

high values of Pd (> 15 at% x = 1.2) La2Pd2O5 was formed at both 1448 and 1548 K 

(as part of a phase mixture) which further suggested that the ionic radius of Pd was 
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too large to be incorporated in to the Ruddlesden-Popper structure. What appeared to 

be phase-pure La2Ni1-xPdxO4+δ was synthesised at 1448 and 1548 K at nominal Pd 

concentrations of 14 at% and 17 at% at 1548 K only (representing nominal formulas 

La2Ni0.66Pd0.33O4+δ and La2Ni0.6Pd0.4O4+δ). These phases were selected for further 

investigation in detail using high-resolution powder X-ray diffraction later in section 

6.3.2.1. 

 For the nano-precursor ratio La3:Ni2-xPdx in the range x = 0.2 – 2.0 and 

Δx = 0.2, products formed from each heat-treatment are presented in figure 6.3. 

 
 Figure 6.3. Phase diagram at room temperature pressure for the phases 

formed from CHFS precursors for the compositions La3:Ni2-xPdx (where x = 0.2 – 0.0 

and Δx = 0.2) after heat-treatment for 12 hours in air. At% of Pd = nPd/(nLa+nNi+nPd). 

Each point represents a unique composition, some of which are mixtures and some of 

which are phase pure compounds. In each case the phase identified from powder 

XRD is given in the key. Samples marked with an asterisk were selected for further 

investigation.  

 



Chapter 6 — Automated High-Throughput Synthesis and Screening of La4Ni3-xMxO10-δ and        
La3Ni2-xO7-δ (where M = Mn, Pd, Al, Ga, x = 0.0 – 2.0 and Δx = 0.2)

 

 137 

 When the nano-precursors were in the ratio La3:Ni2-xPdx, (x = 0.0 – 2.0 and 

Δx = 0.2) phase-pure La3Ni2-xPdxO7-δ was not isolated. In each case where small 

amounts of the La3Ni2-xPdxO7-δ were observed, La2Ni1-xPdxO4+δ was seen as a 

secondary minor phase product. As in the 4:3 case La2Pd2O5 was formed at high 

values of dopant. This was most likely caused by the difference in ionic radius 

between Ni2/3+ and Pd2/3+ as described above. Phase pure material with the La2Ni1-

xPdxO4+δ structure (nominal formulas (La2Ni0.9Pd0.1O4+δ and La2Ni0.8Pd0.2O4+δ) could 

be identified at 1548 K and these structures were selected for further analysis in 

section 6.3.2.1. Data collected using the MAC detector again revealed small 

quantities of NiO which appeared to be inhomogeneous suggesting that some Pd had 

been incorporated into the NiO structure so the nominal value of x was not 

representative of the 'true' Pd content. 

 

6.3.1.2. Mn Structures 

 
 Figure 6.4. Phase diagram at room temperature pressure for the phases 

formed from CHFS precursors for the compositions La4:Ni3-xMnx (where x = 0.2 – 

0.0 and Δx = 0.2) after heat-treatment for 12 hours. At% of Mn = nMn/(nLa+nNi+nMn). 

Each point represents a unique composition, some of which are mixtures and some of 

which are phase pure compounds. In each case the phase identified from powder 

XRD is given in the key. 
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 Where the dopant was Mn and precursors were in the ratio La4:Ni3-xMnx (x = 

0.0 – 2.0 and Δx = 0.2) no single phase material could be synthesised. Only when x < 

0.8 could any lanthanum nickelate phases be isolated without a La2O3 decomposition 

phase due to LaNi1-xMnxO3 forming favourable and leaving a lanthanum excess. This 

could have been as a result of a combination of Mn3+ having a coordination number 

of both 5 and 6 and a larger ionic radius of 0.6, meaning that only the more flexible 

perovskite structure could form. 

 
 Figure 6.5. Phase diagram at room temperature pressure for the phases 

formed from CHFS precursors for the compositions La3:Mn2-xPdx (where x = 0.2 – 

0.0 and Δx = 0.2) after heat-treatment for 12 hours in air. At% of Mn 

= nMn/(nLa+nNi+nMn). Each point represents a unique composition, some of which are 

mixtures and some of which are phase pure compounds. In each case the phase 

identified from powder XRD is given in the key. 

 

 When the nano-precursor ratio was La3:Ni2-xMnx (where x = 0.2 – 0.0 and Δx 

= 0.2) no phase pure materials could be obtained, La2O3 was obtained in all cases, 

the lanthanum nickelates that were observed were in the La2NiO4+δ and LaNiO3 

forms and these materials were not therefore selected for further analysis. 
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6.3.1.3. Al Structures 

 
 Figure 6.6. Phase diagram at room temperature pressure for the phases 

formed from CHFS precursors for the compositions La4:Ni3-xAlx (where x = 0.2 – 0.0 

and Δx = 0.2) after heat-treatment for 12 hours in air. At% of Al = nAl/(nLa+nNi+nAl). 

Each point represents a unique composition, some of which are mixtures and some of 

which are phase pure compounds. In each case the phase identified from powder 

XRD is given in the key.  

 

 It was found that when Al-doped structure was formed from the nano-

precursors in the ration La4:Ni3-xAlx the lanthanum nickelate, La4Ni3-xAlxO10-δ could 

not be isolated as a phase pure material from any composition. Where              

La4Ni3-xAlxO10-δ was formed, the more thermodynamically stable La2Ni1-xAlxO4+δ 

was observed as a secondary product in each case. The compounds 

La2Ni0.94Al0.06O4+δ, and La2Ni0.87Al0.13O4+δ (nominal compositions) although 

appeared phase pure were not selected for further characterisations due to obvious 

inhomogeneities meaning a range of different crystallites were present in each 

sample.  
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 Figure 6.7. Phase diagram at room temperature pressure for the phases 

formed from CHFS precursors for the compositions La3:Ni2-xAlx (where x = 0.2 – 0.0 

and Δx = 0.2) after heat-treatment for 12 hours in air. At% of Al = nAl/(nLa+nNi+nAl). 

Each point represents a unique composition, some of which are mixtures and some of 

which are phase pure compounds. In each case the phase identified from powder 

XRD is given in the key.  

 

 When precursors were in the ratio of La3:Ni2-xAlx (where x = 0.2 – 0.0 and Δx 

= 0.2) no phase pure materials were isolated from any of the nano-precursor 

compositions. Possibly as a result of the increased oxidation state of the B-site after 

the introduction increasing amounts of Al(III) When the Al content was >28 at % 

(x = 1.4) in the starting material, an unknown phase was observed that was 

characterised by strong broad reflections. This phase could not be identified from 

database patterns, and it was not possible to index the Bragg reflections, which are 

presented in table 6.1. It was most likely that this phase was related to an AlxOy 

phase due to the high Al content in the compositions where this phase was observed.  
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Table 6.1. Bragg reflection positions and intensities of the unknown phase. 

λ = 0.825441(3) Å 

2 θ / ° Ihkl / counts 
8.35 63616 
10.39 12566 
14.49 43206 
14.86 62001 
19.04   9764 
20.83 48965 
22.22 10083 
25.48 31010 
32.97 10021 
35.65   9346 
39.14 11391 
41.27   6188 
43.94   6928 

 

6.3.1.4. Ga Structures 

 
 Figure 6.8. Phase diagram at room temperature pressure for the phases 

formed from CHFS precursors for the compositions La4:Ni3-xGax (where x = 0.2 – 

0.0 and Δx = 0.2) after heat-treatment for 12 hours in air. At% of Ga 

= nGa/(nLa+nNi+nGa). Each point represents a unique composition, some of which are 

mixtures and some of which are phase pure compounds. In each case the phase 

identified from powder XRD is given in the key. Samples marked with an asterisk 

were selected for further investigation.  
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 Where Ga was used as a B-site dopant, La4Ni3-xGaxO10-δ was observed as a 

single phase product at three x values of 0.2, 0.4 and 0.6 at both 1348 and 1448 K. 

The maximum doping level achieved was ca. 9 at% (La4Ni2.4Ga0.6O10-δ, nominal 

formula) above this value of x, La2Ni1-xGaxO4+δ was identified as a second phase, 

possibly as a result of an increased M(III) content on the lanthanum nickelate B-site. 

The x = 0.7 composition that appeared to be phase-pure La2Ni0.3Ga0.7O4+δ was 

observed, (nominal formula) however on closer inspection a NiO secondary phase 

was observed after heat-treatment at 1548 K. All other heat-treated products were 

phase mixtures as shown in figure 6.8. 

 
 Figure 6.9. Phase diagram at room temperature pressure for the phases 

formed from CHFS precursors for the compositions La3:Ni2-xGax (where x = 0.2 – 

0.0 and Δx = 0.2) after heat-treatment for 12 hours in air. At% of Ga 

= nGa/(nLa+nNi+nGa). Each point represents a unique composition, some of which are 

mixtures and some of which are phase pure compounds. In each case the phase 

identified from powder XRD is given in the key.  

 

 When the CHFS precursors were in a La3:Ni2-xGax ratio (where x = 0.2 – 0.0 

and Δx = 0.2) no phase pure material was identified after heat-treatments. Some 

La3Ni2-xGaxO7-δ was observed, however, this always occurred with a La2Ni1-xGaxO4+δ 

secondary phase. It was not clear whether this was as a result of an incomplete 
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reaction or a decomposition phase at this stage. Given the 'rapid' reactions of CHFS 

nanoparticles and the stability of the La2NiO4+δ phase, it was more likely that the 

latter reason is correct.  

 

6.3.2. Further Characterisation 

 Samples which appeared to be phase pure following rapid analysis were 

selected for further structural investigation. Each selected sample was marked with 

an asterisk in the phase diagrams and is listed in table 6.2. Data suitable for Rietveld 

refinement were collected on the I11 beamline using the MAC detectors and a 

collection time of 30 minutes.  

 

Table 6.2. Samples identified for further characterisation following the initial screen.  

Heat-Treatment / K Nominal Formula 
1548 La2Ni0.9Pd0.1O4+δ 
1548 La2Ni0.8Pd0.2O4+δ 
1548 La2Ni066Pd0.33O4+δ 
1548 La2Ni0.6Pd0.4O4+δ 
1348 La4Ni2.8Ga0.2O10-δ 
1448 La4Ni2.8Ga0.2O10-δ 
1348 La4Ni2.6Ga0.4O10-δ 
1348 La4Ni2.4Ga0.6O10-δ 

 

6.3.2.1. La2Ni1-xPdxO4+δ structures  

 Structures where the nominal Pd content, x, was 0.1, 0.2, 0.33 and 0.4 were 

further investigated using higher resolution data collected from the MAC detectors. 

All hk0 reflections showed halved intensity that suggested an orthorhombic 

distortion of the tetragonal I4/mmm phase to the Fmmm sub-group. Le Bail 

refinements using the Fmmm space group were successful as shown in figure 6.10. 

Refined values for each phase are presented in table 6.3. 
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 Figure 6.10. Le Bail refinement of La2Ni0.67Pd0.33O4+δ (nominal 

composition). Rwp = 0.1163, Rp = 0.0796, χ2 = 2.781. Measured data points are 

shown in red, calculated profile is shown in green and the difference shown in 

purple. Vertical tickmarks show the calculated peak positions for orthorhombically 

distorted La2Ni0.67Pd0.33O4+δ phase (lower) and NiO (upper) respectively.  

 

Table 6.3. Refined values for La2Ni1-xPdxO4+δ structures. 

Nominal 
Pd 

content 

Space 
Group 

a / Å b / Å c / Å vol / Å3 Orthorhombic 
Strain / Å 

0.1 Fmmm 5.45881(7) 5.46851(7) 12.6842(1) 378.642(5) 0.0018 
0.2 Fmmm 5.45804(6) 5.46951(6) 12.6902(1) 378.836(5) 0.0021 

 0.33 Fmmm 5.45755(6) 5.46782(6) 12.6894(1) 378.664(8) 0.0019 
0.4 Fmmm 5.46259(4) 5.47466(4) 12.6906(1) 379.552(3) 0.0022 

 

  On closer examination some stoichiometric NiO was present in each of the 

structures. The NiO Bragg peaks were all asymmetric, which suggested that it was 

not homogeneous NiO as shown in figure 6.11.  
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 Figure 6.11. The NiO (111) reflection demonstrating the asymmetry, and 

hence the inhomogeneity. Measured data points are shown in red, calculated profile 

is shown in green and the difference shown in purple. The vertical tickmark shows 

the calculated peak position for NiO.  

 

 The implication of this was that some of the Pd had reacted with NiO to 

form an inhomogeneous solid solution (crystallites with varying unit cell sizes). The 

nominal Pd content was therefore not representative of the actual Pd content in the 

lanthanum nickelate compound. The consequence being that Vegard's law was not 

observed when relating cell volume to nominal Pd content, as shown in figure 6.12. 

Further to this, Rietveld refinement was not possible on any structures due to the 

uncertainty in the Pd content. 
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 Figure 6.12. Graph showing change in unit cell volume with nominal Pd 

content in La2Ni1-xPdxO4+δ. Error bars are smaller than symbols in all cases. 

 

 The orthorhombic strain, which is given by equation 6.1 was approximately 

0.002 Å in each case. 

 

 (6.1) 

 

This was most likely caused as a result of the increased ionic radius of Pd2+ in 

comparison to Ni2+, r2+ = 0.86 and 0.69 Å respectively.  

 

6.3.2.2. La4Ni3-xGaxO10-δ structures. 
 Le Bail refinements on data collected using the MAC detectors was used to 

confirm that La4Ni3-xGaxO10-δ had been formed in each case. Each La4Ni3-xGaxO10-δ 

phase crystallised in the orthorhombic Bmab space group.  
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 Figure 6.13. Le Bail refinement of La4Ni2.8Ga0.2O10-δ (nominal formula) 

using the Bmab space group. Rwp = 0.1281, Rp = 0.0894, χ2 = 6.806. 

 

 The phase boundary could be extended up to maximum nominal Ga content 

of x = 0.6 Ga on Ni sites, however this composition was confirmed using EDX 

spectroscopy as La4.35Ni2.39Ga0.36O10-δ. In order to find the reason for the low Ga 

content, SEM micrographs of the same area of the La4.35Ni2.39Ga0.36O10-δ composition 

were recorded using both a secondary electron detector and a back-scatter electron 

detector shown in figure 6.14. The back-scatter electron detector records electrons 

scattered back after irradiation of the electron beam. Since atoms with different 

atomic numbers have different scattering powers, separate phases would appear as 

they would scatter by a separate amount and therefore appear as a different contrast 

in the image. 
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 Figure 6.14. SEM micrograph of La4.35Ni2.39Ga0.36O10-δ recorded using: a) 

secondary electron detector, and b) back-scatter electron detector.  

 

 It is clear from the back-scatter image that only one phase was observed. It 

can be assumed that therefore the lower than expected Ga content was caused by an 

incomplete precipitation from the nitrate salt. It should also be noted that the total 

metal content on B-sites was 2.75, lower than the expected 3, suggesting that each 

material has a large concentration of B-site vacancies.  

 Inhomogeneities were observed in each sample, characterised by asymmetric 

Bragg peaks suggesting a range of crystallites. This is shown in figure 6.15., in 

which a magnified section of the La4Ni2.6Ga0.4O10-δ diffraction pattern shows clear 

peak asymmetry.  
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 Figure 6.15. Magnified section of the La4Ni2.6Ga0.4O10-δ diffraction pattern 

between 16.5 – 18 °2θ in which clear peak asymmetry can be observed. 

 

 As a result of the inhomogeneity Rietveld refinement was not possible. As in 

the case of doped lanthanum nickelates in chapter 4 and 5, anisotropic broadening 

was observed in the c direction. This was modelled using an anisotropic strain 

parameter, Γ2
S and varied with sample and heat-treatment, this value served to 

represent the extent of the anisotropy, not the amount of strain in the crystallite. The 

anisotropic broadening could have been caused by particle size or strain effects as 

previously discussed in chapters 4 and 5. Unit cell parameters extracted from the Le 

Bail refinements are presented in table 6.4. The values are plotted with increasing 

nominal Ga content in figure 6.16. Figure 6.16 shows that as nominal Ga content 

increased, the a and b parameters did not increase and the only increase in size was 

observed in the c direction. This contradicts the result seen in chapter 5 (page 123) 

where Fe3+ substitutions on the Ni site caused an increase in all three directions. This 

difference in behaviour could have been as a result of Ga3+ preferentially substituting 

onto La3+ sites. Given the increased ionic radius of Ga(III) in comparison to Ni(III) 

and Fe(III) this is a plausible explanation. Also the Ni sites in La4Ni3O10-δ have an 

average valence of approximately 2.67,(Zhang et al. 1995) Ga may have been more 

electronically stable on the La site which has a valence of 3+. 
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Table 6.4. Refined unit cell values for all La4Ni3-xGaxO10-δ compounds. 

Nominal 
Ga 

content / x 

Heat-
treatment 

/ K 

a / Å b / Å c / Å Vol / Å Γ2
s 

0.2 1348 5.42053(5) 5.47023(5) 28.084(1) 832.74(2) 76.8 
0.2 1448 5.42060(7) 5.46953(7) 28.189(1) 835.70(3) 118.76 
0.4 1448 5.42045(9) 5.47027(9) 28.151(1) 834.72(4) 290.57 
0.6 1448 5.41630(5) 5.46337(7) 28.328(2) 838.31(5) 141.40 

 

 
 Figure 6.16. Variation in unit cell parameters with increasing Ga content in 

La4Ni3-xGaxO10-δ compositions. Squares = a parameter, circles = b parameter, and 

triangles = c parameter. 

 

6.4. Conclusions 
 In conclusion, a rapid synthesis and structural screening method was used to 

investigate 240 different heterometallic oxides in a single experiment. Samples were 

synthesised at a rate of 9 samples per hour meaning 80 samples were synthesised in 9 

hours and all 240 compositions could be generated in a matter of a day or so. By 

splitting each composition into three large and heat-treating at three different 

temperatures, large area of compositional phase space could be investigated in a 

single experiment. This allowed reaction conditions to be optimised particularly in 

the case of the La2Ni1-xPdxO4+δ structures which could only be synthesised in a small 
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compositional and temperature range. The advantage of using synchrotron based 

diffraction is highlighted by demonstrating not only the speed of high-resolution data 

collection (120 samples per hour) but that once potentially interesting composition 

had been identified from a rapid screen, they were then further investigated using 

higher-resolution data collection as part of the same experiment. In this manner 16 

previously unknown in the literature compositions were identified from a total of 240 

compositions. If one were to repeat the experiment using a heat and grind technique 

given the 96 hour reaction time reported by Greenblatt et al.(Zhang et al. 1995) this 

would take 23040 hours or nearly 1000 days or about 3 years.  
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Chapter 7 — Further Work 
 
1.) In part of this thesis the possibility of creating a high-throughput materials 

discovery process was investigated. In chapter 6, 240 samples were made in a single 

experiment demonstrating the potential for this process for the discovery of complex 

metal oxides. To convert the high-throughput process to a combinatorial one, the 

data from this experiment must be used to direct further high-throughput 'screens'. 

This could be accomplished by using computer predictions of structure and 

properties to direct studies prior to synthesis. Subsequently the results should be 

analysed using a data-mining (chemometrics) approach, to direct the next study. By 

using an iterative method such as this, much larger areas of phase space and 

properties could be investigated and the potential to search many thousand 

compositions could be achieved. 

 

2.) If the above idea is to be achieved, a greater amount of information regarding 

each composition will be required in order to direct the next iteration. A high-

throughput method of measuring the properties of each composition will be required. 

Due to the large number of compositions possible, the number will have to be 

reduced following an initial structural screen to then allow screening of properties to 

progress. Some ideas regarding a multi-station 4-point probe to measure DC 

conductivity have been investigated this could be achieved through miniaturisation, 

of pellets. The multi-station probe would be constructed with about 20 – 25 stations 

that could accommodate pellets of about 2 – 3 mm diameter. The main issue which 

prevented the construction of this piece of equipment was creating an identical good 

contact on all pellets. However as of now no probe has yet been built that could test 

these ideas. When screening SOFC materials a wide range of properties are required 

in a good material. In this thesis electronic conductivity was used as a screening 

method, however a high electronic conductivity does not necessarily give a good 

SOFC material. In future work it would be important to look at other properties to 

screen. In relation to oxide materials, the most important property is perhaps the 

oxygen content, which would give an idea of the oxide ion mobility. Also it would 

give a greater idea of the vacancy structure which can have a large effect on the 

properties of these materials. The best way to measure the oxygen content is through 

thermogravimetric analysis in a reducing environment, which is a batch type process 
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and would be difficult to create a high-throughput version. In the future therefore 

thermogravimetric analysis in a reducing atmosphere should be used as part of a 

third screen. 

 

3.) In this thesis supercritical water (Tc = 647 K) was used as a solvent. 

Supercritical ethanol and methanol (Tc = 513 K) have a lower critical temperature, Tc 

than water. The reactions that occurred in this thesis could probably be achieved at 

lower temperatures if an ethanol or methanol plus water mix were used. 

Crystallisation would potentially be better at lower temperatures due to the increased 

mass transport in supercritical ethanol and methanol, allowing direct access to 

compounds such as perovskites which would normally require heating at 

temperatures > 873 K. The in situ reaction between La(OH)3 and Ni(OH)2 showed 

that during the first 30 minutes of this reaction hydroxides converted to oxides. If a 

more crystalline oxide starting material were used this reaction time could be 

reduced accordingly. At lower temperatures organic solvents and metal complexes 

could potentially survive the conditions, meaning that the high-throughput process 

may also be applied to a far wider range of materials.  

 

4.) This thesis concentrated on the synthesis of lanthanum nickelate Ruddlesden-

Popper phases. Other layered perovskites have been identified as potential SOFC 

cathode materials including layered double perovskites which have the formula 

AA'BB'O5±δ and are described in section 1.1.3. These materials have been identified 

as having a high electrical conductivity coupled with a large variable oxygen 

stoichiometry leading to high oxide ion mobility. These materials have a wide range 

of elemental combinations, meaning a lot of potential compositions, which would be 

laborious to search in a manual manner. In the future the possibility of exploring a 

wider range of materials should be pursued.  
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Chapter 8 — Conclusions 
 
1.) Heterometallic layered metal oxides have been traditionally made by heating and 

grinding metal oxide precursors until a thermodynamic product is isolated. Many 

new routes have been developed that reduce diffusion distances and allow the 

reaction to proceed faster. Previously CHFS was used to synthesise nano-precursors 

to the Ruddlesden-Popper series Lan+1NinO3n+1 (where n = 1, 2, and 3) which could 

then be reacted to make the desired phase in a considerably shorter time than could 

be done using heat and grind methods. This was achieved by reducing diffusion 

distances between the reactants therefore increasing mass transport. Solid-solid 

reactions at nano length scales have been shown to proceed through a largely 

amorphous intermediate making nucleation of the crystalline phase from the 

amorphous mixture the rate limiting step. In situ powder X-ray diffraction was used 

to observe the reaction between La(OH)3 and Ni(OH)2, which formed a largely 

amorphous intermediate (some interfacial diffusion still occurring) after ca. 30 

minutes. Nucleation and growth of La2NiO4+δ then occurred from this intermediate 

producing a phase pure compound in just 78 minutes, 4.5 times faster than when 

using a more traditional approach (6 hours). This was also achieved at a temperature 

140 K lower than previously observed. The Hypothesis 1 suggested that this route to 

layered heterometallic oxides could be used to synthesise doped variations of these 

materials rapidly and in a single step. It was thought that due to the low energy 

synthesis route, previously unidentified compositions may be discovered. The 

intimacy of mixing of the nano-precursors may have reduced the energy barrier to 

synthesis and as such resulted in increased phase boundaries. Doping studies carried 

out in chapters 4, 5, and 6 confirmed that doped layered heterometallic metal oxides 

can be rapidly formed from CHFS coprecipitates in 12 hours. Particularly, chapter 5 

and 6 demonstrated the ability to synthesise materials with increased phase 

boundaries than those that have been previously reported in the literature, for 

example La4Ni2FeO10-δ (chapter 5). 

 

2.) High-throughput synthesis of metal oxides is currently gaining interest; however 

is not as mature as in the drug discovery field. The main barrier to rapid materials 

discovery of ceramics are the high-energy multistep processes often required to 

synthesise new materials from parent oxides. CHFS can produce nano-ceramics with 
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reduced diffusion distances, and therefore increased mass transfer. The CHFS 

synthesis was adapted into a high-throughput process described in chapter 4. Chapter 

4 demonstrated a new methodology of high-throughput synthesis, using HiTCH flow 

synthesis. Manually a number of intimately mixed solid ceramic nano-precursors 

were synthesised, and then split into three daughter libraries. The libraries were heat-

treated at 1348, 1448, and 1548 K, respectively, in order to make and screen a wide 

range of compositional phase space in a single experiment. Four new to the literature 

compositions: La4Ni2.7V0.3O10-δ, La4Ni2.7Cr0.3O10-δ, La4Ni2.7Mn0.3O10-δ and 

La4Ni2.7Al0.3O10-δ were identified, and tested for DC conductivity. This work 

represented the first time a solid-state combinatorial approach had been applied to 

these kind of layered metal oxides. The approach allowed the rapid optimisation of 

reaction conditions (for example synthesis temperature) by synthesising the materials 

in parallel over a range of temperatures.  

 

3.) Chapter 4 demonstrated a new manual high-throughput approach to synthesise 

layered heterometallic oxides. In chapter 5 and 6, a combinatorial robot previously 

used for the synthesis of nanomaterials, was programmed to synthesise a range of 

nano-precursors for the La4Ni3-xFexO10-δ series using the same daughter library 

methodology seen in chapter 4. The automation represented a further increase in the 

speed of discovery with 80 nano-precursor samples being made in ca. 9 hours, which 

once split into daughter libraries enabled the synthesis of 240 samples in a matter of 

a day or so. The structural screening method used meant that two screening rounds 

were required to identify the compounds of most interest. Chapter 6 therefore 

demonstrates a high-resolution rapid screening method that can identify phase 

boundaries and optimise reaction conditions for layered metal oxides. It also shows 

the potential of the automated methodology by synthesising many hundreds of 

samples (240) in a single experiment.  

 
4.) In summary, fuel cells, batteries and other electrochemical devises all require a 

range of materials with different functionalities to run efficiently. A new range of 

complex heterometallic oxides have been identified recently that fulfil many of these 

roles. To date their synthesis has required many different multi-step processes that 

require high temperatures to complete. This thesis represents not only a new lower 
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energy route to these important new compounds, but the first demonstration of a 

high-throughput nanoceramics method to identify them. 
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Appendix — RAMSI Design 
 

Appendix figure 1.  Photograph of the pre-synthesis stage of RAMSI. The synthesis 
is controlled from the computer terminal. Figure adapted from the supplementary 
information from (Lin et al. 2011). 
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Appendix figure 2. Close-up photograph of the mixing pot shown in appendix 
figure 1. Aqueous metal nitrate salts were metered in stoichiometric quantities into 
the mixing point before being taken up by the ISCO syringe pump. Figure adapted 
from the supplementary information from (Lin et al. 2011). 
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Appendix figure 3. Photograph of the synthesis section of RAMSI. Metal salts are 
pumped from the ISCO syringe pump on the right, and into the reactor on the left. 
HC = heater controller CC = collection carousel and BPR = back-pressure regulator. 
Figure adapted from the supplementary information from (Lin et al. 2011). 
 

Appendix figure 4. Photograph of the collection carousel, where tubes are placed, 
filled and the collected. Figure adapted from the supplementary information from 
(Lin et al. 2011). 
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Appendix figure 5. Blueprint of the RAMSI layout, including synthesis, clean-up 
and printing sections. Figure adapted from the supplementary information from (Lin 
et al. 2011). 
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Appendix figure 6. Photograph of the layout of the clean-up and printing sections of 
RAMSI. Figure adapted from the supplementary information from (Lin et al. 2011). 
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Appendix figure 7. Photograph of the clean-up carousel of RAMSI. Figure adapted 
from the supplementary information from (Lin et al. 2011). 
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Appendix figure 8. Photograph of the printing section of RAMSI. Figure adapted 
from the supplementary information from (Lin et al. 2011). 
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Appendix figure 9. RAMSI GUI interface showing: a) experiment assignment 
status, b) experiment setting and result, c) sample tracking, d) synthesis procedure 
status and e) synthesis real-time measurement. Figure adapted from the 
supplementary information from (Lin et al. 2011). 
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