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Over the past decade, the detection of gene-gene interactions has become more and more popular in the field of 
genome-wide association studies (GWASs). The goal of the GWAS is to identify genetic susceptibility to complex diseases by 
assaying and analyzing hundreds of thousands of single-nucleotide polymorphisms. However, such tests are computationally 
demanding and methodologically challenging. Recently, a simple but powerful method, named “BOolean Operation-based 
Screening and Testing” (BOOST), was proposed for genome-wide gene-gene interaction analyses. BOOST was designed with 
a Boolean representation of genotype data and is approximately equivalent to the log-linear model. It is extremely fast, and 
genome-wide gene-gene interaction analyses can be completed within a few hours. However, BOOST can not adjust for 
covariate effects, and its type-1 error control is not correct. Thus, we considered two-step approaches for gene-gene 
interaction analyses. First, we selected gene-gene interactions with BOOST and applied logistic regression with covariate 
adjustments to select gene-gene interactions. We applied the two-step approach to type 2 diabetes (T2D) in the Korea 
Association Resource (KARE) cohort and identified some promising pairs of single-nucleotide polymorphisms associated with 
T2D.

Keywords: epistasis, gene-gene interaction, genome-wide association study, type 2 diabetes mellitus

Introduction

The concept of epistasis, generally defined as interactions 
among different genes, was first introduced in 1909 by 
William Bateson to describe the latent effect of one locus 
over another locus. A quantitative definition to the inte-
raction was proposed in 1918 by R.A. Fisher as a statistical 
deviation from the additive effects of two loci on a phe-
notype. This definition enabled interaction analyses by 
testing whether products of multiple genotypes are stati-
stically associated with phenotypes. More definitions about 
the gene-gene interaction have been proposed, but some are 
still not clearly understood. The statistical gene-gene intera-
ction has often been confused with a biological gene-gene 
interaction. Particularly, the inference on a biological mech-
anism is complicated because of the lack of direct corre-
spondence between statistical and biological interactions 
[1]. In general, statisticians define a statistical interaction as 

a departure from additivity in a linear model using a selected 
measurement scale [2]. However, as was pointed by Wang et 
al. [3], if one aims to infer biological interactions, statisti-
cally modeled interactions and main effect terms should not 
be interpreted separately [2]. In this paper, we detected 
gene-gene interactions with a likelihood ratio test. Genotype 
scores for single-nucleotide polymorphism (SNP) pairs were 
considered nominal variables, and nine different levels were 
assumed for a full model. For a reduced model, we con-
sidered three levels for each SNP, and thus, our likelihood 
ratio tests followed a chi-square distribution with 4 degrees 
of freedom. Therefore, the proposed method can detect 
biological interactions. It should be noted that biological 
interactions include statistical interactions. 

The method of detecting gene-gene interactions has 
attracted much attention in genome-wide association 
studies (GWASs). Including logistic regression analysis for 
detecting gene-gene interactions, new methods, like com-
paring linkage disequilibrium (LD) in case and control 
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groups, have been recently proposed [4]. However, analyzing 
a large number of SNPs in a GWAS is computationally very 
intensive, and various approaches, such as MDR [5], 
BEAM [6], Random Jungle [7], PLINK [8], and BOolean 
Operation-based Screening and Testing (BOOST), have been 
proposed to enable gene-gene interactions on a genome-wide 
scale.

In this paper, we considered BOOST method, proposed by 
Wan et al. [9]. BOOST uses a non-iteratively estimated 
measure that is approximately equal to the maximum 
likelihood estimators for a log-linear model, and it is used to 
select pairs of SNPs with a specified threshold. There is an 
updated method, graphical processing units BOOST 
(GBOOST), which is a BOOST method implemented for a 
graphical processing units framework for enabling parallel 
computing to achieve massive assignment in a fast manner 
[10]. GBOOST achieves a 40-fold speedup compared with 
BOOST. However, in the algorithm of BOOST, covariates 
other than SNPs can not be considered. We need a more 
flexible approach to improve the power of the model. 

Here, we propose an efficient strategy that combines the 
BOOST screening stage and logistic regression method. 
Logistic regression generally shows good statistical power 
for a wide spectrum of epistasis. Screening with BOOST is a 
computationally efficient screening method, and a genome- 
wide search can be completed within a few hours. A 
follow-up stage of logistic regression with covariates would 
improve the statistical power of the model. In this paper, we 
first review the BOOST method and apply the proposed 
two-stage approach to type 2 diabetes (T2D) in a Korean 
population. This analysis of gene-gene interactions on a 
genome-wide scale with BOOST was completed within 42 
hours, and we also identified several pairs of SNPs associated 
with T2D.

T2D is the most common form of diabetes, and unlike 
people with type 1 diabetes, T2D patients make insulin. 
However, either their pancreas does not make enough 
insulin or the body cannot use the insulin well enough. The 
prevalence of T2D has increased rapidly in recent years. The 
prevalence of T2D in Korea was estimated to be 7.3% (in 
people over 20 years of age) in 2005, and the rate of patients 
with T2D is expected to increase dramatically from 7.08% in 
2010 to about 10.85% by 2030 [11]. Even more and more 
children are being diagnosed with T2D. Environmental 
effects, like obesity and lack of physical activity, are two of 
the most common causes of T2D, and the increasing pre-
valence may be related with them. It is also known that T2D 
has considerable heritability, which indicates a genetic 
effect. Until now, genetic variants in nearly 70 loci have been 
identified for T2D. Some variants from genes, such as 
KCNQ1 [12], KCNJ11, PPARG, NRF1, IDE, TCF7L2, 

CDKAL1, HHEX, IGF2BP2, CDKN2A/B, and SLC30A8 
[13], were reported as significant susceptible genes to T2D 
in the East Asian population. To detect the relation between 
gene-gene interactions and T2D phenotype, we performed a 
gene-gene interaction analysis with the proposed two-stage 
analysis. We analyzed 8,842 participants (4,183 males and 
4,659 females) with 352,228 autosomal SNPs collected from 
the Korea Association Resource project (KARE). We found 
some promising gene-gene interactions with the proposed 
method, and they will be investigated further in our future 
follow-up studies.

Methods
The KARE cohort

The KARE project started in 2007 and recruited 10,000 
participants aged between 49 to 60 years from Ansung and 
Ansan, in the Gyeonggi Province of South Korea. About 50 
million autosomal SNPs were genotyped with the Affy-
metrix Genome-Wide Human SNP arrary 5.0 [14]. In total, 
8,842 individuals with 352,228 SNPs are available. In our 
GWASs, we discarded SNPs for which the Hardy-Weinberg 
equilibrium p-values were less than 10–5, the genotype 
calling rates were less than 95%, and the minor allele 
frequencies were less than 0.05. We also eliminated subjects 
with gender inconsistencies, those whose identity by state 
was more than 0.8, and those whose calling rates were less 
than 95%. As a result, we analyzed 8,773 participants (4,117 
males and 4,656 females) with 304,245 SNPs. 

Definition of T2D 

An individual was coded as a T2D patient if the condition 
satisfied the World Health Organization (WHO) diabetes 
diagnostic criteria: fasting plasma glucose (glu0) ≥ 126 
mg/dL, plasma glucose (glu120) ≥ 200 mg/dL 2 h after an 
oral dose, or glycated hemoglobin (HbA1c) ≥ 6.5%. A total 
of 1,169 subjects were diagnosed as cases, and the other 
individuals were considered controls.

Notations

We assume that there are L SNPs and n subjects. Geno-
types at SNP l are denoted by Xl, where l = 1, …, L, and Y 
indicates the disease status: 1 for case and 2 for control. We 
assume that SNPs are bi-allelic, and capital and lowercase 
letters always indicate the major and minor alleles, res-
pectively. For instance, AA indicates a homozygous refe-
rence genotype, Aa indicates the heterozygous genotype, 
and aa indicates the homozygous variant genotype. For 
simplicity, we denote the homozygous reference genotype, 
heterozygous genotype, and homozygous variant genotype 
as 1, 2, and 3, respectively.
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Review of BOOST

The logistic regression model with only a main effect for 
two SNPs, p and q, can be modeled by the following form: 

     

      
   

  


and denote its log-likelihood as LM. The logistic regression 
model with main effects and interaction terms is

     

       
   

  
  



We denote it log-likelihood value by LF. Then, the in-
teraction effects can be detected by the difference of the 
maximum log-likelihoods (MLEs) of these two models—i.e., 
  
 .

However, the difference in the log-likelihood needs very 
intensive computation for hundreds of billions of pairs of 
SNPs. Alternatively, there exists a one-to-one correspondence 
between a logistic regression model and a log-linear model in 
categorical data analysis [15], and BOOST considers inte-
raction models based on log-linear models [9].

On the basis of the equivalence between the log-linear 
model and its corresponding logistic regression model, 
BOOST constructed its test statistic using the homo-
geneous association model MH and saturated model MS and 
denotes their log-likelihood as LH and LS, respectively. 
Then, we denote the observed genotype count of disease 
status k with Xp = i and Xq = j by nijk and the expected 
genotype count by μijk, where k = 1 or 2, i = 1, 2, or 3, and 
j = 1, 2, or 3. Then, the maximum log-likelihood of both 
models will be

    


    

If we let 
  be the MLE of μijk for MH, we have 


  


 

  

The interaction effects based on the likelihood ratio test can 
be calculated by the following forms: 

  
  



 



  

 

If we let n be the total sample size,    


 and 

  




  it can be further simplified as




   

 


and it can also be denoted by Kullback-Leibler’s [9] form as

∙ ║
  

This provides another interpretation of interactions, in that 
the difference of two log-likelihoods is proportional to the 
Kullback-Leibler divergence of the joint distribution obtained 
under the saturated model MS and the distribution obtained 
under homogeneous association model MH.

In particular, there is no closed form solution for homo-
genous association model MH, and iterative methods are 
needed to calculate the likelihood ratio tests. Likelihood 
ratio tests are computationally intensive when facing hund-
reds of billions of SNP pairs in the interaction analysis.

To address this issue, BOOST uses Kirkwood superposition 
approximation (KSA) [16] to estimate under MH as

 
  





  where   







Therefore, it can be utilized to approximate LH. If we let 
LKSA be the likelihood based on KSA, then we get following 
equation:

  
   ∙ ║ 

 

and it can be calculated easily on the basis of the contingency 
table. Through simulation analysis by Wan et al. [9], 
  

   is known to be an upper bound of 
  

   and they are almost identical if they are larger 
than 25. The default value of the threshold τ in BOOST is 
30, and its corresponding p-value is 4.89 × 10−6 [9]. 

In the screening stage of BOOST, all pairwise interactions 
will be evaluated by using KSA. If         the 
interaction will be considered in the next testing stage; 
otherwise, it will be discarded from the analyses. All of the 
non-significant SNP pairs would be filtered out in this 
manner in the screening stage.

Two-stage gene-gene interaction analyses 

We first apply the BOOST approach to select the pro-
mising pairs of SNPs with the a priori chosen τ. τ can be 
selected based on the available computing facility, and we set 
τ = 30 for our analyses. After filtering SNP pairs from the 
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Table 2. The association genes of the SNPs of the top 10 highest p-value interaction pairs 

SNP Gene Associated genes

rs1402142 - HTRA3, AREG, TEC, NRAS
rs1463367 - HTRA3, AREG, TEC, NRAS
rs872234 BTBD9 BTBD9, DHFRP2, SEMA3D, PHTF2PKD1L1, C7orf44, CAP2, NRAS, CALN1
rs1864433 - FAM82A, CLIP4,VIT, AFF3, TPO
rs8012584 - ANG, ABCB1
rs2183235 - ANG, ABCB1
rs980010 - ANG, ABCB1
rs1958459 - ANG, ABCB1
rs224110 - ANK3, ZNF32, RRET
rs7145965 - ANG, ABCB1
rs1475516 - ANG, ABCB1
rs10899912 - ZNF32, RET
rs10816769 TMEM245 C9orf5
rs1110144 CNTNAP2 CNTNAP2, MLL3

SNP, single-nucleotide polymorphism.

Table 1. Results for top 10 highest interaction p-values between two SNPs in the KARE dataset 

SNP 1 Gene 2 CHR 1 Position 1 Minor
allele 1

Major
allele 1 SNP 2 Gene 2 CHR 2 Position 2 Minor

allele 2
Major

allele 2
Interaction
logistic R p-value

rs1402142 - 4 64970948 C A rs8012584 - 14 38826243 A G 55.09085092 3.11E-11
rs1402142 - 4 64970948 C A rs2183235 - 14 38828344 G C 54.914105 3.39E-11
rs1402142 - 4 64970948 C A rs980010 - 14 38822190 A G 54.89919559 3.41E-11
rs1402142 - 4 64970948 C A rs1958459 - 14 38811157 G A 54.78768732 3.60E-11
rs7652843 - 3 194554885 A C rs224110 - 10 64551577 A T 54.43510545 4.27E-11
rs1402142 - 4 64970948 C A rs7145965 - 14 38804433 G A 53.5692555 6.48E-11
rs1402142 - 4 64970948 C A rs1475516 - 14 38799740 G A 53.17278157 7.84E-11
rs1463367 - 4 48968037 T C rs10899912 - 10 44296893 G A 51.89018414 1.45E-10
rs872234 BTBD9 6 38289804 C T rs10816769 TMEM245 9 111857440 C G 51.60050802 1.67E-10
rs1864433 - 2 38007984 T A rs1110144 CNTNAP2, 

MIR548T
7 148001291 A G 51.3563867 1.88E-10

SNP, single-nucleotide polymorphism; KARE, Korea Association Resource; CHR, chromosome.

first stage with BOOST, we apply the logistic regression. 
BOOST can not adjust for the effects of covariates, and we 
applied logistic regression analysis with adjustments for sex, 
age, body mass index (BMI), and the top 10 principal 
component (PC) scores to the selected pairs of SNPs with 
BOOST. The logistic regression analysis was performed by 
using the glm function in R software. To calculate the 
p-values of the interaction term, we used the ANOVA 
function by comparing two fitted models in R.

Results

We have carried out an interaction analysis on T2D in the 
KARE cohort on the genome-wide scale; 8,773 subjects with 
304,245 SNPs were considered for detecting gene-gene 
interactions. Missing genotypes were imputed with Impute2 
[17] software. 

We applied the proposed two-stage approach to identify 
the genome-wide significant gene-gene interactions. The 
analyses were completed within 42 h with an Intel Core 
i3-4130 CPU 3.40 GHz desktop. A total of 46,282,357,890 
interactions were executed, and the Bonferroni-adjusted 
0.05 genome-wide significance level is 1.08e-12. Promising 
pairs of SNPs were selected with BOOST, and 229,965 pairs 
of SNPs were selected with BOOST; then 229,965 pairs of 
SNPs were analyzed with logistic regression. 

To perform adjustments for the population substructure 
between individuals, we used the EIGENSTRAT [18] method. 
EIGENSTRAT calculates the genetic similarities among 
subjects by using a genetic relationship matrix and applies 
PC analysis. The generated PC scores are then utilized as 
covariates for genetic association analyses, and this approach 
guarantees robustness against a population substructure. 
Here, we calculated the first 10 PC scores, and they were 
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included as covariates for the logistic method in R. Sex, age, 
and BMI were also included as covariates in the analysis.

Most significant results for interaction analyses with 
KARE datasets are listed in Table 1. Only the top 10 sig-
nificant SNP pairs are listed. The most significant interaction 
effect with a p-value of 3.11E-11 was found for rs1402142 
and rs8012584. The former is associated with the genes 
HTRA3, AREG, TEC, and NRAS (Table 2), which are related 
to metabolic, immune, and hematological diseases, and the 
latter is associated with the genes ANG and ABCB1, related 
to neurological and metabolic diseases. Our results show 
that even the interactions are significant, but their marginal 
effects may not be. There are some interesting results that 
rs872234 is near DHFRP2, which is related to diabetes 
mellitus type 1 [19], and rs1110144 and rs1104853 are both 
in CNTNAP2 [20] and MIR548T, respectively; they are also 
known to be associated with diabetes.

Discussion

The analysis of gene-gene interactions on a genome-wide 
scale is computationally very intensive, and many compu-
tational and statistical approaches have been recently pro-
posed to minimize the computational burden. We found that 
BOOST is highly computationally efficient and can filter out 
non-significant interaction pairs in a fast manner. 

In this study, we proposed an efficient strategy to identify 
interactions in genome-wide SNP data. We first utilized the 
screening stage of BOOST to filter out non-significant pairs 
and then used logistic regression with several covariates, 
such as age, sex, BMI, and PC scores.

In real data analysis, we used the KARE cohort dataset to 
detect gene-gene interactions of T2D. The smallest p-value 
(3.11E-11) of interaction pairs in the KARE data was found 
for rs1402142 and rs8012584. The Bonferroni-adjusted 
genome-wide significance level is 1.08e-12, and this SNP 
pair is not significant genome-wide. This insignificance is 
partially attributable to the insufficient sample size. With 
advances in genotyping/sequencing technology, genotyping 
costs will be much lower, and therefore, in the near future, 
sufficiently large samples will become available for gene- 
gene interaction analyses, which may lead us to a better 
understanding of human diseases.
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