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ABSTRACT

Models of stimulus-response functions have been used for decades in an
attempt to understand the complex relationship between a sensory stimu-
lus and the neural response that it elicits. A popular model for character-
ising auditory function is the spectrotemporal receptive field (STRF), orig-
inally due to Aertsen and Johannesma (1980); Aertsen et al. (1980, 1981).
However, the STRF model predicts auditory cortical responses to complex
sounds very poorly, presumably because the model is linear in the stimulus
spectrogram and thus incapable of capturing spectrotemporal nonlineari-
ties in auditory responses.

Ahrens et al. (2008a) introduced a multilinear framework, which captures
neuron-specific nonlinear effects of stimulus context on spiking responses
to complex sounds. In such a framework, contextual effects are interpreted
as nonlinear stimulus interactions that modulate the input to a subsequent
STRF-like linear filter. We derive various extensions to this framework, and
demonstrate that the nonlinear effects of stimulus context are largely in-
separable, and fundamentally different for near-simultaneous and delayed
non-simultaneous sound energy. In two populations of neurons, recorded
from the mouse auditory cortex and thalamus, we show that simultane-
ous sound energy provides a nonlinear positive (amplifying) gain to the
subsequent linear filter, while non-simultaneous sound energy provides a
negative (dampening) gain. We demonstrate that this structure is largely
responsible for providing a significant increase in the predicitve capabili-
ties of the model.

Using this framework, we show that nonlinear context dependence dif-
fers between cortical fields, consistent with previous studies (Linden et al.,
2003). Furthermore, we illustrate how such a model can be used to probe
the nonlinear mechanisms that underly the ability of the auditory system
to operate in diverse acoustic environements. These results provide a novel
extension to the study of receptive fields in multiple brain areas, and ex-
tend existing understanding of the way in which stimulus context drives
complex auditory responses.

3



CONTENTS

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1 Introduction 17

1.1 Neural Encoding in Sensory Neuroscience . . . . . . . . . . . . . . . . . . . 17

1.2 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Neural Encoding in the Mammalian Auditory System 20

2.1 Anatomy and Physiology of the Mammalian Auditory System . . . . . . . 21

2.1.1 Peripheral Auditory Processing . . . . . . . . . . . . . . . . . . . . . 21

2.1.2 Central Auditory Processing . . . . . . . . . . . . . . . . . . . . . . 23

2.1.2.1 The Brainstem . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.2.2 The Midbrain . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.2.3 The Thalamus . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.2.4 The Auditory Cortex . . . . . . . . . . . . . . . . . . . . . 26

2.1.2.5 Processing of Complex Sounds . . . . . . . . . . . . . . . 27

2.2 Spike-Triggered Neural Characterisation . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Neural Dimensionality Reduction . . . . . . . . . . . . . . . . . . . 28

2.2.2 Linear Stimulus-Response Functions . . . . . . . . . . . . . . . . . 28

2.2.2.1 The Spectrotemporal Receptive Field . . . . . . . . . . . . 28

2.2.2.2 Stimulus Dependence of STRFs . . . . . . . . . . . . . . . 30

2.2.2.3 A Geometric Perspective, and Nonlinear Extensions . . . 32

2.2.3 Generalised Linear Models . . . . . . . . . . . . . . . . . . . . . . . 34

3 Mathematical Aspects of Modelling Neural Responses to Sound 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 An Introduction to Multilinear Models . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Bilinear Spectrotemporal Receptive Fields . . . . . . . . . . . . . . . 39



3.2.2 Multilinear Models for Capturing Input Nonlinearities . . . . . . . 41

3.3 Multilinear Models for Capturing Acoustic Context . . . . . . . . . . . . . 43

3.3.1 The Fully-Separated Context Model . . . . . . . . . . . . . . . . . . 43

3.3.2 The Extended Context Model . . . . . . . . . . . . . . . . . . . . . . 45

3.3.3 The Split Context Model . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Parameter Estimation in Multilinear Models . . . . . . . . . . . . . . . . . 47

3.4.1 Alternating Least Squares . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.2 Update Equations - Standard Model . . . . . . . . . . . . . . . . . . 48

3.4.2.1 Update for wtf . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.2.2 Update for wτφ . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.3 Update Equations - Split Model . . . . . . . . . . . . . . . . . . . . . 50

3.4.3.1 Update for wtf . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.3.2 Update for wτφ
1 and wτφ

2 . . . . . . . . . . . . . . . . . . . 51

3.4.4 Control of Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.5 Variational Approximations to Bilinear Systems . . . . . . . . . . . 53

3.4.5.1 Automatic Regularisation . . . . . . . . . . . . . . . . . . . 54

3.4.5.2 Evidence Optimisation via Variational Approximation . . 55

3.4.5.3 E Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.5.4 M Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.6 Full Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Appendix A: Variational EM for Bilinear Systems . . . . . . . . . . . . . . 58

3.5.1 E Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5.2 M Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Near-Simultaneous and Delayed Contextual Effects in the Mouse Thalmocor-

tical Pathway 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.2 Surgical Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.3 Recording Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.4 Histological Procedures . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.5 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.5.1 Simple Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.5.2 Complex Stimuli . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.6 Modelling Neural Responses to Sound . . . . . . . . . . . . . . . . 68

4.2.7 Predictive Capability of Neural Encoding Models . . . . . . . . . . 69

4.2.8 Neuronal Populations . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Modelling Neural Responses in the Auditory Cortex and Thalamus 70

4.3.2 Uniformity of Contextual Interactions . . . . . . . . . . . . . . . . . 72

5



4.3.2.1 Structural Similarity . . . . . . . . . . . . . . . . . . . . . . 75

4.3.2.2 Predictive Capability of Multi-CGF Context Models . . . 78

4.3.3 Contextual Gain Fields in Cortex and Thalamus . . . . . . . . . . . 80

4.3.3.1 Model Interpretation . . . . . . . . . . . . . . . . . . . . . 80

4.3.3.2 Structural Aspects of CGFs . . . . . . . . . . . . . . . . . . 81

4.3.3.3 Assessing CGF Population Variability . . . . . . . . . . . 83

4.3.3.4 CGF Population Averages . . . . . . . . . . . . . . . . . . 87

4.3.4 Predictive Capability of the Single-CGF Context Model . . . . . . . 88

4.3.5 Selective Impairment of CGF Structure . . . . . . . . . . . . . . . . 90

4.3.6 Nonlinear Processing Characteristics of Cortical and Thalamic Sub-

divisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.6.1 A1 and AAF . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.6.2 Subdivisions of the Medial Geniculate Body . . . . . . . . 98

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4.1 Nonlinear Modeling of Neural Responses . . . . . . . . . . . . . . . 102

4.4.2 Mechanisms of Stimulus Context . . . . . . . . . . . . . . . . . . . . 104

4.4.3 Implications for Past and Future Linear Analyses . . . . . . . . . . 104

5 Nonlinear Sensitivities to Stimulus Context in Diverse Acoustic Environments

of Increasing Complexity 106

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.1 Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.2 Experimental Procedures . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.3 Stimulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.4 Modelling Neural Responses to Sound . . . . . . . . . . . . . . . . 109

5.2.5 Neuronal Populations . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.1 Reliability of Neural Responses to Different Densities . . . . . . . . 109

5.3.2 No Contextual Dependence on Stimulus Density . . . . . . . . . . 113

5.3.3 Modelling Nonlinear Sensitivities to Stimulus Context . . . . . . . 116

5.3.3.1 Changes of STRFs with Sound Density . . . . . . . . . . . 116

5.3.3.2 Predictive Capability of Linear and Multilinear Models . 120

5.3.3.3 CGF Structure in Cortex and Thalamus . . . . . . . . . . . 123

5.3.3.4 CGF Structure Under Alternative Anaesthesia . . . . . . . 128

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4.1 Response Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4.2 Contextual Dependence . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.4.3 Nonlinear Sensitivities to Stimulus Context of Increasing Com-

plexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6



6 Conclusions 134

6.1 Stimulus-Response Functions in Audition . . . . . . . . . . . . . . . . . . . 134

6.2 Insights into Auditory Function . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3 Future Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Bibliography 138

7



LIST OF FIGURES

2.1 Peripheral auditory system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Thalamic anatomy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Cortical anatomy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 STA/STC geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Extended context model schematic. . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Split context model schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Population two-CGF model fits. . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Excitatory/inhibitory split model: single cell examples. . . . . . . . . . . . 77

4.5 Predictive capability of multi-CGF models. . . . . . . . . . . . . . . . . . . 79

4.6 CGF single cell examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.7 CGF population variability. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8 Population CGFs in the cortex and thalamus. . . . . . . . . . . . . . . . . . 85

4.9 Cortex/thalamus CGF statistics summary. . . . . . . . . . . . . . . . . . . . 86

4.10 Predictive capability of the single-CGF context model. . . . . . . . . . . . . 89

4.11 Selective impairment of CGF structure. . . . . . . . . . . . . . . . . . . . . 91

4.12 A1/AAF comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.13 Receptive field statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.14 Comparing PRFs and STRFs: spectral and temporal profile measures. . . . 97

4.15 Comparing PRFs and STRFs: relative suppression. . . . . . . . . . . . . . . 99

4.16 An example of thalamic histology. . . . . . . . . . . . . . . . . . . . . . . . 100

4.17 vMGB/mMGB/dMGB comparison. . . . . . . . . . . . . . . . . . . . . . . 102

5.1 Switching DRC stimulus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Reliability of neural responses. . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3 Signal power for different densities. . . . . . . . . . . . . . . . . . . . . . . 113

5.4 Contextual dependence on stimulus density. . . . . . . . . . . . . . . . . . 115

5.5 Population contextual dependence on stimulus density. . . . . . . . . . . . 117

5.6 Decrease in neural activity with increasing density. . . . . . . . . . . . . . . 118

5.7 Changes in spectral bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.8 Response nonlinearity increases with stimulus density. . . . . . . . . . . . 121



5.9 Context model predictive capability. . . . . . . . . . . . . . . . . . . . . . . 122

5.10 Population CGF structure in cortex. . . . . . . . . . . . . . . . . . . . . . . 124

5.11 Population CGF structure in thalamus. . . . . . . . . . . . . . . . . . . . . . 125

5.12 Density elicited relative suppression. . . . . . . . . . . . . . . . . . . . . . . 129

5.13 Population CGF structure in thalamus (alternate anaesthesia). . . . . . . . 130

9



PREFACE

ACKNOWLEDGEMENTS

I feel privileged to have been supervised by two spectacular academics throughout the

course of my graduate studies. In addition to being involved in every aspect of my

doctoral work, Maneesh Sahani and Jennifer Linden have both been instrumental in

shaping my scientific thinking and development as a young scientist. I am completely

indebted to them for the support and encouragement that they have provided me with

over the years. Maneesh is clearly capable of thinking in a far higher dimensional space

than I am, and he has always been able to astound and amaze me with his rigorous

technical knowledge, and deep scientific intuition. Jennifer was kind enough to provide

me with experimental training in her lab at the UCL Ear Institute. For this, I am eternally

grateful. Such an opportunity changed the course of my PhD, and allowed me to engage

in true interdisciplinary science. On a personal level, both Maneesh and Jennifer have

always been there whenever I’ve had a problem, academic or otherwise. I could not

have wished for a better pair of supervisors, and I hope we can continue to collaborate

in the future.

The Gatsby Computational Neuroscience Unit has been a very special home for the last

four years, and I will miss it dearly. I have made a number of great friends since I’ve

been here, and a lot of the enjoyment of my PhD has been due to them. The quality of

the Unit owes much to its director, Peter Dayan, a consummate researcher, who ensures

that Gatsby remains a stimulating research environment.

In Office 505, Phillipp Hehrmann and David Barrett have become close friends. They

have been present for all my failures, and all my little successes. They have always been

there to help out whenever I’ve had a problem. I hope we can all stay in touch.

Misha Ahrens has been a great collaborator, and a great friend. I’m incredibly grateful

10



that he was happy for me to carry on his torch, and continue to work on the multilinear

framework that he developed during his time at the Gatsby Unit. Were it not for his

expert advice and guidance in times of crisis, this thesis would not be what it is today.

Bjorn Christianson and Lucy Anderson have become wonderful friends over the years.

They were both instrumental in providing me with training as an experimentalist, and

teaching me much of what I now know of the auditory system. Lucy introduced me to

the wonders of the thalamus, and made me realise how much better it is than cortex.

Jan Gasthaus has not only become a great friend, but a great cycling partner. I’ll fondly

remember the number of times that we near killed ourselves sprinting over the English

countryside. Our trips to Majorca were stuff of legend.

I have met so many wonderful people during my time at UCL. Loic, Charles, Vinayak,

Lars, Andriy, Biljana, Jannis, Roland: it’s been an absolute pleasure. Thanks also go to

the rest of my Gatsby/Ear Institute friends.

Finally, I would like to thank my parents. Throughout my every endeavour, they have

never ceased to provide me with anything but their constant love and support. For this,

and everything, I thank you. I hope this thesis does you proud.

COLLABORATIONS AND CONTRIBUTIONS

Maneesh and Jennifer have been involved with every aspect of this thesis. Without

them, it would not exist.

Electrophysiological Data. The mouse cortical data used in chapter 4 was collected by

Jennifer whilst she was at the University of California, San Francisco. All thalamic data

in chapter 4, and all cortical and thalamic data in chapter 5, was collected by myself

at the UCL Ear Institute. I am indebted to both Lucy Anderson and Bjorn Christianson

for providing electrophysiological and histological assistance during these experimental

sessions.

Theory. In chapter 3, material up to section 3.3.1 is a review of previous work. The

remainder of the chapter (with the exception of the discussion of the ASD algorithm,

which is due to Sahani and Linden (2003a)) was carried out in collaboration with Misha

Ahrens. This includes the development of the extended context model, and the deriva-

tion and implementation of the variational approximation to bilinear systems.

Modelling. The observation of the contextual structure present within the multilinear

11



framework was originally observed in cortex, and is due to Misha Ahrens (and briefly

discussed in Ahrens et al. (2008a)). I helped to develop the ideas further and applied

the framework to data recorded from the thalamus. All of the data analysis presented

in chapter 4 was carried out by myself. The work in chapter 5 is my largely my own.

OTHER WORK DURING THE PHD

Over my four years at the Gatbsy Unit, I have worked on a number of different projects

all related the overarching theme of neural encoding. In order to provide a cohesive

thesis with one specific theme, some of my PhD research has been omitted. The thesis

itself will largely focus on work carried out during my final eighteen months in the Unit.

EXPERIENCE DEPENDENT PLASTICITY IN RAT AUDITORY CORTEX

Prior to starting my PhD proper, I gained an MRes in which my thesis project was car-

ried out with Maneesh and Jennifer. I investigated the role of experience dependent

plasticity in the cortical responses of the rat, using both linear and multilinear methods.

This project was extended, and became the research focus of the first year of my PhD. It

resulted in the following four conference proceedings:

J.F. Linden, I. Orduna, R.S. Williamson, M.B. Ahrens, E. Mercado, M.M.

Merzenich, M. Sahani (2009). Experience dependent shaping of complex re-

sponse properties in adult auditory cortex. British Society for Audiology, Short

Papers Meeting.

J.F. Linden, I. Orduna, R.S. Williamson, M.B. Ahrens, E. Mercado, M.M.

Merzenich, M. Sahani (2009). Experience dependent shaping of complex re-

sponse properties in adult auditory cortex. Auditory Cortex Meeting.

J.F. Linden, I. Orduna, R.S. Williamson, M.B. Ahrens, E. Mercado, M.M.

Merzenich, M. Sahani (2009). Auditory learning involving complex sounds

affects nonlinear integration within cortical responses. Computational and

Systems Neuroscience.

J.F. Linden, I. Orduna, R.S. Williamson, M.B. Ahrens, E. Mercado, M.M.

Merzenich, M. Sahani (2009). Auditory learning involving complex sounds

affects nonlinear integration within cortical responses. Association for Re-

search in Otolaryngology.

12



RELATING INFORMATION-THEORETIC AND LIKELIHOOD-BASED METHODS FOR SPIKE-

TRIGGERED NEURAL CHARACTERISATION

I have also engaged in a more theoretical project in collaboration with Maneesh Sahani

and Jonathan Pillow (at the University of Texas at Austin). This project focussed on

understanding the mathematical links between two popular neural encoding methods;

that of maximally informative dimensions and linear nonlinear Poisson cascades. This work

resulted in the following conference proceeding, and is currently being prepared for

journal submission:

R.S. Williamson, M. Sahani, J.W. Pillow (2011).

On information theoretic and likelihood based methods for spike-triggered

neural characterisation. Computational and Systems Neuroscience.

13



GLOSSARY OF ACRONYMS

AAF Anterior Auditory Field

A1 Primary Auditory Cortex

AII Secondary Auditory Cortex

ALS Alternating Least Squares

AN Auditory Nerve

ARD Automatic Relevance Determination

ASD Automatic Smoothness Determination

BF Best Frequency

CF Characteristic Frequency

CGF Contextual Gain Field

CNC Cochlear Nucleus Complex

DCN Dorsal Cochlear Nucleus

DRC Dynamic Random Chord

GLM Generalised Linear Model

IC Inferior Colliculus

LNP Linear-Nonlinear-Poisson

LSO Lateral Superior Olive

MAP Maximum A-Posteriori

MGB Medial Geniculate Body

dMGB Dorsal Division of the Medial Geniculate Body

mMGB Medial Division of the Medial Geniculate Body

vMGB Ventral Division of the Medial Geniculate Body

ML Maximum Likelihood

MNTB Medial Nucleus of the Trapezoid Body

MSO Medial Superior Olive

NLL Nucleus of the Lateral Lemniscus

NRC Normalised Reverse Correlation

PRF Principal Receptive Field

PSTH Peri Stimulus Time Histogram

SOC Superior Olivary Complex

STA Spike Triggered Average

STC Spike Triggered Covariance

14



STRF Spectrotemporal Receptive Field

SVD Singular Value Decomposition

UF Ultrasonic Field

VCN Ventral Cochlear Nucleus

15



For my parents,

for not making me get a real job.

I’ll be forever grateful.



I

INTRODUCTION

1.1 NEURAL ENCODING IN SENSORY NEUROSCIENCE

One of the fundamental goals within sensory neuroscience is the ability to successfully

characterise the relationship between a sensory input, and its corresponding neural rep-

resentation. This is known as neural encoding.

Over many decades much effort has been devoted to establishing the best neural

encoding model to use in order glean insight into the elusive relationship between stim-

ulus and response. Arguably, the simplest possible model to use for this purpose is a

linear one and, as a result, they have been widely used throughout multiple sensory

systems (e.g., Eggermont et al. (1983); Wu et al. (2006)). In the auditory domain, such

models are known as spectrotemporal receptive fields (STRFs) and are linear in the spec-

trogram of the stimulus.1 These have been applied to various stages in the auditory

pathway, from the cochlear nucleus (Nelken et al., 1997; Steinberg and Peña, 2011), to

the inferior colliculus (Escabi and Schreiner, 2002), thalamus (Miller et al., 2002), and

auditory cortex (Depireux et al., 2001; Linden et al., 2003). However, other studies have

explicitly looked to quantify just how much variability within the neural response such

models are actually able to capture (Sahani and Linden, 2003b; Machens et al., 2004),

with the result being, in cortex at least, that a linear model can typically account for no

more than 20-40% of the stimulus-dependent variability in neural responses to complex

1The original development of STRF models is due to Aertsen et al. (1980); Aertsen and Johannesma (1980);
Aertsen et al. (1981). Prior to this, de Boer and de Jongh (1978) introduced models which were linear in the
sound pressure waveform, as opposed to the stimulus spectrogram which is more common these days.



sounds.

This failing of the linear model is largely due to the fact that the true relationship

between the sensory stimulus, and its corresponding neural response is a highly non-

linear one. In the auditory cortex for example, neural responses have been shown to

be strongly and nonlinearly modulated by stimulus context (Brosch et al., 1999; Brosch

and Schreiner, 2000; Bartlett and Wang, 2005; Calford and Semple, 1995; Sadagopan and

Wang, 2009; Bar-Yosef et al., 2002; Bar-Yosef and Nelken, 2007). One way to potentially

deal with such nonlinearities is to increase the complexity of the model by, say, allowing

second-order interactions to be captured, through the use of a Volterra series expansion

(Marmarelis and Marmarelis, 1978). However, this flavour of nonlinear model suffers

from the curse of dimensionality, as the amount of data needed to fit the model rises

exponentially with the model order.

One way to approach this issue with dimensionality is to reduce the number of

model parameters by tailoring a model to the observed properties of auditory neurons.

Ahrens et al. (2008a) introduced multilinear “context” models, which capture neuron-

specific nonlinear effects of stimulus context on spiking responses to complex sounds. In

such a framework, contextual effects are interpreted as non-linear stimulus interactions

that modulate the input to a subsequent STRF-like linear filter.

We show that, with various extensions to this framework, we can successfully esti-

mate nonlinear interactions from the neural responses to complex sounds in both the

auditory cortex and thalamus. This provides a novel extension to the study of receptive

fields in multiple brain areas, and extends existing understanding of the way in which

nonlinear stimulus context drives complex auditory responses.

1.2 OUTLINE OF THE THESIS

This thesis proceeds as follows:

Chapter 2 provides a general introduction to neural encoding in the mammalian audi-

tory system. We first briefly discuss some general auditory physiology and anatomy,

before moving on to a discussion of spike-triggered neural characterisation, and the use

of stimulus-response functions in auditory neuroscience.

Chapter 3 introduces the multilinear framework for modelling neural responses to sound.

This chapter contains a combination of both background material and original work.

We first summarise the earlier work of Ahrens et al. (2008a,b), who were responsible
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for introducing this framework. We then proceed to develop the framework further,

by presenting an extended model that captures inseparable contextual effects. We also

provide details about how to perform parameter estimation in such a model. This work

was carried out in collaboration with Misha B. Ahrens, Maneesh Sahani, and Jennifer F.

Linden.

Chapter 4 is the first of two primary results chapters within the thesis. We apply the

extended context model to data from the mouse auditory cortex and thalamus, and

show that we can successfully estimate nonlinear inseparable contextual interactions,

that contain biological relevance. The predictive capabilities of such a model are also

higher than what has been described previously. This work was carried out in collabo-

ration with Misha B. Ahrens, Maneesh Sahani, and Jennifer F. Linden, and is currently

in preparation for journal submission.

Chapter 5 is the second of two primary results chapters within the thesis. We record ex-

tracellular responses from mouse auditory cortex and thalamus, using a spectrotemporally-

rich stimulus that varies in spectrotemporal density. We quantify various aspects of the

neural responses themselves, before showing that the use of the extended context model

can shed light on the nonlinear interactions present within the stimulus. This yields in-

sight into how contextual processing plays a role in complex acoustic environments.

This work was carried out in collaboration with Lucy A. Anderson, Maneesh Sahani,

and Jennifer F. Linden, and is currently in preparation for journal submission. This work

has also appeared, in various incarnations, in the following conference proceedings:

R.S. Williamson, L.A. Anderson, G.B. Christianson, M. Sahani, J.F. Linden

(2011). Auditory thalamic neurons show nonlinear sensitivity to stimulus

context. Society for Neuroscience.

R.S. Williamson, L.A. Anderson, G.B. Christianson, M. Sahani, J.F. Linden

(2011). Auditory thalamic neurons show nonlinear sensitivity to stimulus

context. Advances and Perspective in Auditory Neurophysiology.

R.S. Williamson, L.A. Anderson, G.B. Christianson, M. Sahani, J.F. Linden

(2011). Stimulus density dependence in the auditory thalamus. Computa-

tional and Systems Neuroscience.

R.S. Williamson, L.A. Anderson, G.B. Christianson, M. Sahani, J.F. Linden

(2011). Stimulus density dependence in the auditory thalamus. Association

for Reasearch in Otolaryngology.

Chapter 6 concludes the thesis.
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II

NEURAL ENCODING IN THE
MAMMALIAN AUDITORY SYSTEM

OUTLINE

This chapter provides an overview of material relevant to the thesis.
It starts off by briefly discussing the anatomy and physiology of the
mammalian auditory system, with a focus on the flow of auditory in-
formation from the periphery to the cortex. From there, the chapter
moves into a more mathematical direction and presents some previ-
ous work on mathematical and computational approaches to neural
encoding (with a focus on the auditory system), more of which will be
discussed in the coming chapters.



2.1 ANATOMY AND PHYSIOLOGY OF THE MAMMALIAN AU-

DITORY SYSTEM

The sense of hearing provides us with information about the world around us. In order

to make sense of this information, the mammalian auditory system has the ability to ac-

curately encode incoming acoustic information as trains of action potentials (or spikes)

that propagate through multiple brain areas before reaching the neocortex.

This thesis is largely concerned with two such brain areas. The first of these, the me-

dial geniculate body (MGB), is an obilgatory thalamic relay station that is responsible

for transmitting information onto cortex. The second of these areas, the auditory cortex,

is one of the final stages in the early auditory pathway and is thought to be responsi-

ble for more complicated tasks such as the processing of information conveyed within

complex sounds.

This background section will first provide a brief overview of peripheral and cen-

tral auditory processing, before providing a more detailed description of the auditory

thalamus and cortex, around which this thesis is centered.

2.1.1 PERIPHERAL AUDITORY PROCESSING

The auditory pathway is inherently complex. It includes a large number of different

processing stages, occurring both sequentially and in parallel, that serve to both modify

and augment neural firing patterns until they reach their final processing stations in the

auditory cortex.

When something makes a sound, oscillations of pressure (or sound waves) are sent

through the air. These oscillations are collected by the visible part of the ear (known

as the pinna). They are then funneled along the auditory canal towards the tympanic

membrane (more commonly known as the ear drum) to which are connected the small-

est bones in the body; ossicles. These ossicles act as a lever system, transferring the

low-pressure movements of the eardrum into higher-pressure movements of a second

membrane (the oval window) which, in turn, causes a movement of fluid within the

cochlea.

The cochlea itself takes on a spiralled shape within which lies a hollow tube with

walls made of bone. Interestingly, the only functional significance of this spiralled shape

is to keep the space occupied by the relatively long structure to a minimum. This hol-
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Figure 2.1: Peripheral auditory system (adapted from Flanagan (1972)). Illustration of
the structure of the peripheral auditory system showing the outer, middle, and inner
ear.

low tube contains three fluid filled chambers, known as scalae, which are separated by

Reissner’s membrane and the basilar membrane. The basilar membrane is a structure

of great importance in the auditory system. It has two particularly important struc-

tural properties that mould its response to sound. Firstly, its dimensions vary along the

length of the cochlea, becoming wider on moving from the base to the apex. Secondly,

the basal end is incredibly rigid in contrast to the floppy apex. These structural prop-

erties have several repercussions for the way in which sound waves travel across the

membrane (Von Békésy, 1980). In general, high frequency sound waves cause the rigid

base to vibrate a great deal causing the sound energy to dissipate and, as a result, not

travel very far along the membrane. In contrast to this, a low frequency sound wave

will cause less vibration at the base and will allow the wave to travel further towards

the apex.

Sitting atop the basilar membrane is the construct that contains the auditory recep-

tors, the organ of Corti. These auditory receptors are known as hair cells, deriving their

name from the bundle of projections (stereocilia) which protrude from their apical sur-

face. There are two types of hair cells (inner and outer), which differ in size, shape,

and function. The inner hair cells are the primary receptor cells, whose frequency se-

lectivity is largely determined by their position on the basilar membrane. Deflection of

these cells allows mechanically gated ion channels to be opened, resulting in a recep-

tor potential due to the influx of positive ions (primarily potassium and calcium). In

turn, this receptor potential opens voltage gated calcium channels, causing the release
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of neurotransmitters and the innervation of a set of spiral ganglion cells that surround

the auditory nerve (AN). These spiral ganglion cells propagate action potentials along

the AN and into the central auditory system.

2.1.2 CENTRAL AUDITORY PROCESSING

2.1.2.1 THE BRAINSTEM

All AN fibers terminate at the cochlear nucleus complex (CNC), the first relay station

of the ascending auditory pathway (Cant and Benson, 2003). The CNC also inherits the

rich tonotopic structure generated by the systematic variation in mechanical properties

of the basilar membrane, and the orderly arrangement of auditory nerve fibre dendrites

along the length of this membrane (Arnesen and Osen, 1978). Such tonotopy is largely

replicated throughout the auditory pathway (Clopton et al., 1974).

The CNC can be further subdivided into a ventral component; the ventral cochlear

nucleus (VCN), and a dorsal component; the dorsal cochlear nucleus (DCN). The VCN

is important for the temporal processing of sound. Several of its cell types are capable

of transmitting precise temporal information, thus implicating the area in tasks such

as sound localisation (Rhode et al., 1983). In addition, the VCN also contains so-called

octopus cells, that are capable of encoding the pitch period of periodic sounds like vow-

els in their temporal firing patterns (Oertel, 1999). The majority of neurons in this area

project to the superior olivary complex (SOC). The DCN is also involved in sound local-

isation in the vertical plane due to the apparent sensitivity of its neurons to spectral cues

generated by the pinna (May, 2000). The area has also been implicated in the analysis

of complex sounds (Young et al., 1992), and its neurons project to the inferior colliculus

(IC) via the nuclei of the lateral lemniscus (NLL).

The CNC projects to the superior olivary complex (SOC), which is divided into three

primary nuclei; the medial superior olive (MSO), the lateral superior olive (LSO), and

the medial nucleus of the trapezoid body (MNTB). The MSO is the first area in the as-

cending auditory system that receives binaural input and, as such, MSO neurons are

ideally suited for the measurement of interaural phase, or time, differences (Joris et al.,

1998). By comparison, the LSO is primarily involved in interaural level difference de-

tection, due to the input it receives from the MNTB (Tollin, 2003). These are both very

important cues for sound localisation (McAlpine and Grothe, 2003; Grothe et al., 2010).
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2.1.2.2 THE MIDBRAIN

The next stage in the ascending auditory pathway is the inferior colliculus (IC), located

within the midbrain. The vast majority of ascending neural pathways synapse in this

area (Aitkin and Phillips, 1984; Casseday et al., 2002). The IC itself is typically sub-

divided into a central core and several belt areas. The central core of the IC is a site

of convergence for projections from more than twenty identified neurone types (Irvine,

1992). These different cell types have different functional properties, yet all terminate in

a consistent, highly organised manner, providing the tonotopic structure within the cen-

tral nucleus. In addition to tonotopy, other organisational arrangements have been sug-

gested that include sound intensity, sound duration, frequency sweep direction, modu-

lation rate, and other complex sound patterns (Langner and Schreiner, 1988; Schreiner

and Langner, 1988). The IC is responsible for integrating information from the projec-

tions it receives, and therefore also has a role to play in sound localisation (e.g., Kuwada

et al. (1979); Aitkin et al. (1985)). Strong adaptation to the distribution of sound level

has also been observed (Dean et al., 2005).

Importantly, the IC also represents the principal source of information that ascends

to the auditory thalamus. These projections are numerous, and have been established

based on both functional properties and anatomical evidence (Morest, 1965; Andersen

et al., 1980; Calford and Aitkin, 1983). Combined, these projections form the origin

of parallel pathways which run through the auditory thalamus, and terminate in the

auditory cortex.

2.1.2.3 THE THALAMUS

The principal nucleus of the auditory thalamus is known as the medial geniculate body

(MGB), the other two areas being the lateral aspect of the posterior thalamic nucleus

(PoL), and the auditory division of the reticular nucleus (Jones, 1985). The MGB itself

can be futher subdivided into three divisions (ventral, medial, dorsal) on the basis of

anatomy, histochemistry, and physiological responses, in a number of different species

(e.g. mouse (Anderson et al., 2009a; Anderson and Linden, 2011), guinea pig (Anderson

et al., 2007), cat (Calford, 1983), and monkey (Hackett et al., 1998)).

Classically, these three subdivisions have been attributed to either a primary (lem-

niscal) pathway, or a secondary (non-lemniscal) pathway, where the terms “lemniscal”

and “non-lemniscal” are used to acknowledge whether or not the pathway includes the
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Figure 2.2: Thalamic anatomy (adapted from Anderson and Linden (2011). Line draw-
ings of four coronal sections through a typical mouse thalamus to show the relative po-
sitions of the mouse MGB subdivisions and the POL. Borders were ascertained on the
basis of histological delineation. Auditory areas are outlined in black dashed lines, and
non-auditory areas in grey. Areas thought to belong to the lemniscal pathway are high-
lighted in dark grey, with areas areas thought to belong to the non-lemniscal pathway
highlighted in light grey. Lettering colour also denotes pathway membership. Sections
have a thickness of 40 µm, numbers at the top of each section indicate approximate
distance (in mm) behind Bregma.

lateral lemniscus. The ventral division of the MGB (vMGB) is considered part of the pri-

mary pathway, and receives strong projections from the central nucleus of the inferior

colliculus before projecting to layers III and IV of the auditory cortex (Winer et al., 2005).

Both medial and dorsal subdivisions (mMGB and dMGB) are thought to be part of the

secondary pathway, with both receiving input from all parts of the inferior colliculus

(and other brain areas) before projecting to the non-primary (secondary) auditory cor-

tices (Kimura et al., 2003; Winer et al., 2005). These different subdivisions and pathways

are shown graphically in figure 2.2.

These multiple pathways have been traditionally thought to engage in different au-

ditory functions. In fact, these pathways are sometimes referred to as being either

“drivers”, or “modulators”, terms derived from pathways that carry (or drive) informa-

tion, and pathways that modulate these principal information streams (Lee and Sherman,

2010).

Ultimately, it is the non-lemniscal pathways that prove the most interesting, from

the perspective of understanding the processing of complex sounds. The lemniscal

pathway provides a very “primary-like” representation of sound, in that tonotopy is
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Figure 2.3: Cortical anatomy (adapted from Stiebler et al. (1997)). Line drawing of a
typical mouse auditory cortex. A1, primary auditory cortex; AAF, anterior auditory
field; UF, ultrasonic field; AII, secondary auditory field; DP; dorso-posterior field. Note
the characteristic reversal in tonotopy along the rostral-caudal axis between A1 and
AAF.

present throughout the pathway, and neurons respond well to classic auditory stim-

uli (clicks, modulated noise, frequency-modulated sweeps, etc) (de Ribaupierre, 1997).

In contrast to this, the non-lemniscal pathways has been recently implicated in more

context-dependent like responses, with neurons that show the ability to detect change

(Ulanovsky et al., 2003, 2004; Anderson et al., 2009b; Malmierca et al., 2009).

2.1.2.4 THE AUDITORY CORTEX

The auditory cortex can be divided into a number of different subfields, that can be

defined both tonotopically (Stiebler et al., 1997) and anatomically (Lee et al., 2004). Mice

have five different cortical fields (Stiebler et al., 1997). Of these, two are considered to be

core; the primary auditory cortex (A1) and anterior auditory field (AAF). Both of these

core fields are tonotopically organised and share a high frequency reversal point at their

separation boundary. A typical mouse auditory cortex is shown in figure 2.3.

Other species also have multiple cortical fields, including tonotopically organised

core areas like A1 and AAF. For example, monkeys have a core region that includes three

primary fields, surrounded by two different belt areas (de La Mothe et al., 2006). Rats

are also similar to mice in so far as they have both an A1 and AAF, plus an additional

four cortical fields (Polley et al., 2007).
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The contribution of different cortical fields to auditory processing has been studied

extensively in the literature. Previous studies have successfully mapped, across cortical

fields, the neural sensitivity to a variety of different sounds, ranging from pure tones

to complex structures varying in perceptual attributes such as pitch and timbre (Bizley

et al., 2009; Bizley and Walker, 2009). It is also relatively well established that the con-

tributions of such auditory fields are particularly important for perception. Behavioural

relevance can be readily studied by employing inactivation techniques, either through

permanent cortical lesions, or reversible inactivation using cooling methods (Lomber

et al., 1999). Both techniques have demonstrated (for example) the importance of au-

ditory cortex in sound localisation (e.g. Smith et al. (2004); Bizley et al. (2007); Lomber

and Malhotra (2008)). More recently, the ability to reversibly inactivate cortical fields

has provided insight into how cross-modal reorganisation of deaf auditory cortex can

lead to enhanced visual performance (Lomber et al., 2010).

2.1.2.5 PROCESSING OF COMPLEX SOUNDS

In some sense, the early stages in the pathway can be thought of as carrying out a form

of cue detection, with rudimentary frequency and temporal coding being handled at

the level of the AN and CN. The encoding of temporal information, in terms of phase

locking at least, is maintained to some degree throughout all levels of the pathway, but

degrades as it ascends. In a similar vein, ascending structures in the auditory system

have increasingly poor frequency response specificity. As an example of this, the tuning

curves of neurons at the level of the IC are typically far broader than those found in

the CN, suggesting that an additional “recoding” of frequency information occurs dur-

ing transmission. Of course, as soon as binaural convergence takes place, the situation

becomes more complex still, due to the feature extracting properties of the SOC and

its important role in sound localisation. The IC clearly has a complex and multiplexed

function, with neurons that respond to a large variety of different auditory stimulus

features. At the level of the auditory cortex itself, comparatively little is known. It is

typically regarded as a “high” sensory area, with a vast array of complex functions.

It is my intent that chapters 4 and 5 of this thesis provide a significant step towards

further understanding the auditory processing capabilities and functionality of both the

auditory cortex and thalamus.
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2.2 SPIKE-TRIGGERED NEURAL CHARACTERISATION

2.2.1 NEURAL DIMENSIONALITY REDUCTION

There exists a large body of literature in computational neuroscience that focusses on

methods for characterising the relationship between a sensory stimulus and the neural

spike train that it elicits. Although this problem has been studied extensively in a vari-

ety of different sensory systems, the problem remains somewhat intractable due to the

high-dimensional nature of the stimuli used in these kind of experiments. In an audi-

tory experiment for example, even though an acoustic waveform is one-dimensional,

it is then converted to some form of time-frequency representation (via an appropriate

linear/nonlinear transform), which is inherently high-dimensional, containing sound

energy at various points in both time and frequency. As a result of this, the vast major-

ity of effort has focused on “neural dimensionality reduction” techniques as a means of

estimating a low-dimensional subspace in which a neuron computes its response. The

primary assumption underlying such an approach is that although the possible space of

all stimuli is incredibly vast, the neural response will almost certainly not rely on all at-

tributes of the stimuli. Thus, if a low-dimensional subspace in which a neuron computes

its response can be identified, then the neural code can be characterised by describing

responses only within that subspace.

2.2.2 LINEAR STIMULUS-RESPONSE FUNCTIONS

2.2.2.1 THE SPECTROTEMPORAL RECEPTIVE FIELD

The simplest model that one can use to relate a sensory stimulus to a neural response

is a linear one. In the auditory domain, this is known as a spectrotemporal receptive

field (STRF) model, first described by Aertsen et al. (1980); Aertsen and Johannesma

(1980); Aertsen et al. (1981). Such linear models have been widely used to characterise

neurons within the auditory system (Nelken et al., 1997; Steinberg and Peña, 2011; Es-

cabi and Schreiner, 2002; Miller et al., 2002; Depireux et al., 2001; Linden et al., 2003).

Mathematically, an STRF model is given by

r̂(i) = c+
∑
jk

wtf
jks(i− j + 1, k) (2.1)
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where r̂(i) is the firing rate at time i, wtf is the STRF itself, and s is the stimulus.

This equation describes a convolution in time (j is used to indicate time-lag indices)

and a correlation in frequency (frequency being indexed by k) between the STRF and

the time-frequency representation of the stimulus.

In the discrete-time framework, STRF estimation corresponds to a linear regression.

The least-squares solution to such a regression problem is identical to the maximum

likelihood (ML) value of wtf for a probabilistic regression model

ri|xi ∼ N (wtfxi, σ
2) (2.2)

where xi denotes a vector of stimulus intensities over some preceding time window

that affects the spike response at time bin i. For a complete dataset with n stimulus-

response pairs, the likelihood is given by

P (r|X,wtf ) =
1

(
√

2πσ)n
exp

(
− 1

2σ2
(r−Xwtf )T (r−Xwtf )

)
(2.3)

where r is a column vector of neural responses r = [r1, r2, · · · , rt]T , and X is a stim-

ulus lag matrix X = [x1,x2, · · · ,xt]T , with the ith row equal to xTi .

The ML STRF estimate is then readily given by

ŵtf = arg max
wtf

P (r|X,wtf ) = (XTX)−1XT r (2.4)

where the RHS of equation 2.4 can be recognised as the ordinary least squares solu-

tion to a linear regression problem.

It is worth noting that, as in linear regression, this solution can also be regularised

(this will be discussed at greater depth in chapter 3). This regularisation is typically

carried out by adding a penalty term to the function being minimised; (r− r̂)T (r− r̂) +

wtf TDwtf , where D is a matrix that contains coefficients for penalising terms in wtf (if

D = λI, this is simply ridge regression).

The STRF estimator given above is similar to the notion of a spike-triggered average, a

common technique whereby the STRF of a neuron is estimated by averaging all of the

stimulus components that precede spikes over the course of an experimental session.

Mathematically,

STA ∝
∑
tspk

xtspk = XT r (2.5)
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where xtspk is the stimulus segment preceding a spike at time tspk. In practice, these

times tspk are binned. If there is more than one spike in a bin, then the stimulus vector

for that time bin is multiplied by the number of spikes that occurred.

Thus, we can see that (under certain conditions), an STRF wtf is identical to an STA

in the case where (XTX) ∝ I , which is what happens if the stimulus is “white” (devoid

of second-order correlations). This issue of correlations will be discussed in the next

section.

2.2.2.2 STIMULUS DEPENDENCE OF STRFS

In recent decades STRFs have gradually attracted significant interest as a candidate

framework for characterising auditory function (Kowalski et al., 1996a,b; deCharms

et al., 1998; Linden et al., 2003). Despite their simplicity and interpretability however,

they are not without problems. It has become well known that STRFs are stimulus de-

pendent; that is, the nonlinearities present within neural response functions can lead to

differences in STRFs estimated using different stimuli. Such problems have long been

acknowledged in the literature (Marmarelis and Marmarelis, 1978; Aertsen and Johan-

nesma, 1981; Theunissen et al., 2000; Escabi and Schreiner, 2002).

As a result of this, a lot of early work typically utilised white noise as a driving

stimulus (Marmarelis and Marmarelis, 1978). This is a significant issue at higher lev-

els in the auditory system however, where white noise tends to elicit very poor neural

responses (Wang et al., 2005). This provoked the use of two primary types of stimuli,

largely uncorrelated by design, in dynamic random chords (DRCs) (deCharms et al.,

1998; Rutkowski et al., 2002; Linden et al., 2003), and temporally orthogonal ripple com-

binations (TORCs) (Kowalski et al., 1996a,b; Klein et al., 2000; Fritz et al., 2003). The

uncorrelated nature of these stimulus designs typically allows for simple estimation of

the STRF.

There has also been interest in STRF estimation with natural sounds (e.g., Theunissen

et al. (2000); Sen et al. (2001); Woolley et al. (2005)). This can be challenging however,

since natural stimuli typically contain a large amount of autocorrelation. Because of

this, some dimensions have much lower variance than others (a natural sound will only

probe a small region of the full stimulus space) (Theunissen et al., 2000, 2001). Such

low variance dimensions provide very little modulating energy and thus make it very

difficult to measure correlations between those dimensions and the response.

In equation 2.4, the general ordinary least squares solution for a linear STRF problem
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was shown. There, the inverse autocorralation matrix (XTX)−1 acts to normalise the

variance along each dimension to be the same, therefore bringing the effect of the stim-

ulus close to that of white noise. When variance is low however, normalisation requires

division by a small number which can lead to an amplification of noise in parameter

estimates. In short; inverting the stimulus autocorrelation matrix of natural sounds can

be difficult and can lead to ill-conditioned matrices. Theunissen et al. (2001) proposed

a solution to this, by using a pseudo-inverse to compute the stimulus autocorrelation

inverse, and then setting dimensions below some noise threshold to zero. This has be-

come known as the normalised reverse correlation (NRC) algorithm and has been used

successfully to describe the receptive fields of auditory neurons in response to natural

sounds (e.g., Woolley et al. (2005); Greene et al. (2009)).

First, an eigendecomposition is applied to the autocorrelation matrix

(XTX) = C = UΣUT (2.6)

where the columns of U contain the eigenvectors of C and the diagonal elements of

Σ, (diag(λ1, λ2, · · · , λy)), contain the corresponding eigenvalues, ordered by size. The

number of dimensions to retain, less than some threshold τ (typically set by some cross-

validation procedure) is given by

d = arg max
λ1 + λ2 + · · ·+ λd

λ1 + λ2 + · · ·+ λd + · · ·+ λy
< τ (2.7)

The pseudoinverse can then be calculated as

C−1
approx = UΣ−1

approxU
T = Udiag

(
1

λ1
,

1

λ2
, · · · , 1

λy
, 0, · · · , 0

)
UT (2.8)

and the final estimate of the STRF is given by

wtf = C−1
approxX

T r (2.9)

In addition to the NRC approach, variants based on the statistical technique of “boost-

ing” (Friedman et al., 2000; Zhang and Yu, 2005) have also been used. These approaches

were compared by David et al. (2007).

Unfortunately however, even though these techniques allow for efficient estimation

of STRFs, they are still not able to alleviate the problem of stimulus dependence. The
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issue is that such an approach, whereby the correlational structure of the stimulus is

whitened, is only able to eliminate second-order moments from within the stimulus.

Christianson et al. (2008), in a series of simulations, illustrate that the presence of non-

zero third, or higher, order correlations between elements in spectrotemporal space can

produce elements within the STRF structure to which the neuron is actually insensitive.

This certainly does not discount STRF analysis as a valuable resource for studying

auditory function. Even if there is correlational structure within the stimulus that cannot

be discounted, provided the experimental design is adequate, this does not have to be a

problem. An example of this is the work of Fritz et al. (2003, 2007); Elhilali et al. (2007),

where they use TORCs to estimate STRFs under a selection of different behavioural

conditions. Even though TORCs contain higher-order structure that will cause stimulus

dependence, the stimuli are fixed for the different behaving and non-behaving condi-

tions, so any difference between the linear STRF fits is still indicative of a real functional

change.

2.2.2.3 A GEOMETRIC PERSPECTIVE, AND NONLINEAR EXTENSIONS

This class of models is particularly elegant when considered from a geometric perspec-

tive, and is related to the notion of neural dimensionality reduction that was introduced

earlier. Figure 2.4 (a) shows the geometric interpretation of the afore mentioned STA.

Each of the blue dots represent a particular stimulus segment that was presented at

some point during the experiment (obviously, the true stimulus segment will be high-

dimensional, so only the two-dimensional representation is shown here for simplicity).

Combined, the blue dots yield the empirical stimulus distribution p(stim). The red dots

correspond to those stimulus segments that elicited a spike and yield the empirical con-

ditional stimulus distribution p(stim|spike). The STA represents the average stimulus

preceding a spike and thus, the STA denotes a direction within this space (indicated by

the black line in the diagram) that corresponds to the difference in mean between the

two distributions.

This kind of moment-based estimation is common in the literature as a way of identi-

fying a low-dimensional subspace (in the above example; the STA) in which the neuron

computes its response Chichilinsky (2001); de Ruyter van Steveninck and Bialek (1988);

Schwartz et al. (2006). Of course, the mean is not the only moment that one can utilise.

Another well-known technique, spike-triggered covariance (STC), works by maximising

the difference in second moment. This technique was first conceived by de Ruyter van
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Steveninck and Bialek (1988); Brenner et al. (2000), and has since been used extensively

in many different sensory systems (see, for example Rust et al. (2004)).

We can define both the stimulus covariance and spike-triggered covariance matrix

as follows. Defining xsta = 1
N

∑
tspk

x(tspk) and xstim = 1
T

∑
t x(t), where N is the total

number of spikes and T is the number of time bins, the covariances are denoted 1

Cspk =
1

N

∑
tspk

(x(tspk)− xsta) (x(tspk)− xsta)
T (2.10)

Cstim =
1

T

∑
t

(x(t)− xstim) (x(t)− xstim)
T (2.11)

One is typically interested in identifying a set of directions whereby the variance

of the spike-triggered stimuli differs maximally from that of the raw stimuli. Thus, a

difference matrix based on the difference in second order structure can be defined as

Cdiff = C
− 1

2

stim

(
Cspk − Cstim

)
C
− 1

2

stim (2.12)

By performing an eigendecomposition on this difference matrix, the resultant eigen-

vectors can be used to define a low-dimensional subspace of interest. Here, eigenvectors

associated with positive eigenvalues tend to correspond to stimulus features that make

the neuron spike, while eigenvectors associated with negative eigenvalues correspond

to stimulus features that suppress neuronal firing. This is shown graphically in figure

2.4 (b).

Another possibility is to use a divergence measure that is grounded in information

theory. One such method seeks to find maximally informative dimensions (Sharpee et al.,

2004; Paninski, 2003) whereby dimensions are found such that the information between

stimulus and response is maximal (this amounts to maximising a Kullback-Liebler di-

vergence between the two stimulus ensembles). This seems like a particularly attractive

possibility since, in principle, such a technique is sensitive to statistical changes of any

order (rather than just looking for differences in either mean or variance). Such a method

has seen recent use within the auditory literature, in an attempt to identify nonlinearities

over different cortical laminae (Atencio et al., 2008, 2009).

1Again, the tspk here are typically binned in practice, and this means that each term should be multiplied
by the number of spikes occurring in the associated time bin
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STA

(a) STA.

STC
(principal eigenvector)

(b) STC.

Figure 2.4: STA/STC geometry. (a): A geometric representation of a spike triggered av-
erage. The blue dots each represent one of the many stimulus segments that were pre-
sented throughout the course of an experiment (projected into a two-dimensional space
for visualisation). The red dots correspond to those stimulus segments that elicited a
neural response. The STA yields the average of these red dots and thus represents a lin-
ear subspace within this space, illustrated by the black line. (b): Blue and red dots are as
in (a). The elipses represent the covariance of each ensemble. The black line illustrates
the direction in which the variance of each ensemble differs most.

2.2.3 GENERALISED LINEAR MODELS

In the linear models discussed earlier, minimising the squared error is an appropriate

objective function to use. If one is dealing with an actual spike train however, as op-

posed to a PSTH, then a different objective function has to be used (it is easy to see that

a Gaussian distribution is not a particularly good model of a binary variable).

Linear-nonlinear cascade models have become a popular way to approach spike-

triggered neural characterisation in recent years. These models define the response in

terms of a cascade of linear and nonlinear stages, followed by a probabilistic spiking

process. The linear stage in the cascade is identical to what has been previously dis-

cussed, whereby a linear receptive field wtf acts to reduce the dimensionality of the

high-dimensional stimulus S. After this dimensionality reduction step however, the

aim is to find some function that relates the stimulus projection in this low-dimensional

space to the actual probability of response. This is typically realised in the form of

a static nonlinearity which, when applied to the filtered stimulus, is used to generate

some form of probabilistic spiking.
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The general form for a linear-nonlinear-Poisson model is given by

P (r|λ(X)) =
λ(X)r

r!
exp (−λ(X)) (2.13)

where λ(X) = f(wtf TX), the intensity function of an inhomogeneous Poisson process.

Here, the output of the cascade is Poisson, and thus the dimensionality reduction and

static nonlinearity steps act as the intensity function for the Poisson process. One of

the reasons for the popularity of this cascade framework is the existence of simple and

computationally efficient fitting algorithms. The simplest of these involves using the

STA as an estimate for wtf , and a simple density estimation procedure for estimating

the nonlinearity f (see Chichilinsky (2001) for details). Alternatively, one can express

the likelihood of the model, which is relatively straightforward due to the fact that the

PSTH bins are conditionally independent of one another given the stimulus, an essential

feature of Poisson processes. Fixing the static nonlinearity to be some convex function

results in the log-likelihood being concave, ensuring that the likelihood has no non-

global local maxima (Paninski, 2004).

Another particularly appealing feature of such models, is that a variety of more

general covariates can be included within the intensity function. In the standard LNP

model, the intensity function takes the form

λ(t) = λstim = wtf TX (2.14)

Typical extensions of this framework include the addition of terms to account for

stimulus history and cross-neuron couplings

λ(t) = λstim + λhistory + λcoupling

= wtf TX + hTy +
∑
i

(
lTi yi

)
+ µ (2.15)

where S is the stimulus, y is the cell’s own spike-train history, µ is a baseline firing rate,

and i is used to index over other neurons with a population, such that {yi} are the spike-

train histories of the other cells. Importantly, even with this additional information, the

resultant likelihood is still concave, and thus it is easy to find the maximum likelihood

solution to the parameters. More complicated extensions to this framework have also

been proposed; for example, models that contain stochastic, stimulus-dependent transi-

tions (Escola et al., 2011) and models that contain more realistic single neuron dynamics

(Paninski et al., 2004).
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These kind of generalised linear models are particularly powerful and, as a result

of their flexibility, they have been used extensively in the literature for a multitude of

different tasks. These include studying the effect of correlations in retinal ganglion cells

(Pillow et al., 2008), online decoding for motor prosthetics (Shoham et al., 2005), popu-

lation dynamics and theta rhythms in the hippocampus (Harris et al., 2003), analysing

functional connectivity (Okatan et al., 2005), and many more. Such a model has also

seen recent attention in the auditory literature where it has been used as an alternative

to the NRC algorithm discussed earlier (Calabrese et al., 2011).
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III

MATHEMATICAL ASPECTS OF
MODELLING NEURAL RESPONSES
TO SOUND

OUTLINE

This chapter consists of a combination of both background material
and original work. We start by summarising the work of Ahrens et al.
(2008a,b) who were the first to introduce a multilinear framework for
modelling neural responses. The material presented up to section 3.3.1
follows that of Ahrens et al. (2008a). In section 3.3.2, we proceed to de-
velop this framework further, by presenting extended variants along
with details of how to perform parameter estimation. This work was
carried out in collaboration with Misha B. Ahrens (as well as Ma-
neesh Sahani and Jennifer F. Linden). This chapter will largely treat
the mathematical aspects of multilinear modelling. The biological rel-
evance of the models, and applications to neural data will be provided
in the later chapters of the thesis.



3.1 INTRODUCTION

The notion of neural encoding (at least from a functional perspective) is about under-

standing the complex relationship between a neural response and the sensory stimulus

that drives it. From a theoretical standpoint, this amounts to modelling a “stimulus-

response function”; the functional mapping from a sensory stimulus S to a vector of

instantaneous firing rates r. The simplest model of neural encoding is a linear one. As

discussed in chapter 2, this is known in the auditory domain as a spectrotemporal re-

ceptive field (STRF). Such a model is computationally very simple, and easy to estimate,

but it does have problems. The main problem, inherent within the model definition, is

that it is linear. As a result of this, such a model is incapable of including effects such as

history dependence or interactions amongst neurons. The linear model tells us that the

contribution of a particular frequency is always the same irrespective of whether there

were preceding or simultaneously presented frequencies. That is, given a combination

of tones, a linear model states that the response to the combination can be predicted

from the responses to the individual constituents of the combination. This is not nec-

essarily the case. Here we present a framework of neural encoding models that are

capable of capturing such nonlinear effects, present within neural responses through-

out the auditory system. Formally, this framework is similar to a Hammerstein cascade

(Hunter and Korenberg, 1986; Narendra and Gallman, 1966); however, its development

in the multilinear setting, and its application to neural data, is more recent (Ahrens et al.,

2008a,b).

3.1.1 NOTATION

For consistency, we will utilise the same notation as introduced by Ahrens et al. (2008a)

(and also Englitz et al. (2010)). The models that will be discussed throughout this chap-

ter are typically described through the use of multi-dimensional arrays (denoted by

bold-faced letters such as Q). Bold superscripts are used to specify the physical dimen-

sions of such an array, and italicised subscripts to denote specific elements within the

array. As it is auditory data that will be primarily dealt with, these physical dimensions

typically correspond to time and/or frequency (although the modelling ideas can be

easily extended to other sensory systems). Such a time-frequency array (essentially, an

STRF) can thus be denoted as wtf , (or separably as a time vector wt or a frequency vec-

tor wf ). Component notation can also be utilised to specify a single entry from within

38



one of these arrays; wtf
jk is the jkth element in the array wtf .

Using this notation, the symbol⊗ is used to generalise the vector outer product, such

that, for vectors b, c, and d

a = b⊗ c⊗ d (3.1)

is a three-dimensional array, with the elements

aijk = bicjdk (3.2)

In a similar vein, the symbol • is used to generalise the vector inner product, so that

indices shared on the left and right hand sides of the operator are contracted. As an

example, if we have a three-dimensional array aijk, and a two-dimensional array bjk,

then

c = a • b (3.3)

is a vector (one-dimensional array) with

ci =
∑
jk

aijkbjk (3.4)

3.2 AN INTRODUCTION TO MULTILINEAR MODELS

3.2.1 BILINEAR SPECTROTEMPORAL RECEPTIVE FIELDS

As discussed in chapter 2, the simplest model that can be used to describe the functional

relationship between stimulus and response is a linear one. In the auditory literature,

this is typically known as the spectrotemporal receptive field (STRF), and is based upon

the notion of reverse correlation. Such a model can be denoted as

r̂(i) =

J∑
j=1

K∑
k=1

wtf
jks(i− j + 1, k) (3.5)

where r̂(i) is the estimated instantaneous firing rate at time i, wtf
jk is the jkth element of

the time-frequency STRF, and s(i− j + 1, k) denotes an element from the stimulus spec-

trogram s at time-lag j + 1, and frequency k. The summation limits run from 1 to some

maximal value of time-lag J and frequency K. For simplicity, we will suppress summa-

tion limits throughout the rest of the chapter. Unless stated otherwise, all summations
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run from 1 to some maximum value of that particular variable.

Equation 3.5 assumes an inseparable (or full-rank) representation of the receptive

field wtf . Assuming separability in both time and frequency, an alternative model can

also be written as

r̂(i) =
∑
jk

wt
jw

f
ks(i− j + 1, k) (3.6)

where the (now separable) receptive field wtf is written as the outer product of a

time vector and a frequency vector, wtf = wt ⊗wf . From a functional perspective, this

notion of separability is useful since it implies that the response of the neuron to tones

of different frequencies is preserved across time. Separability has been investigated fre-

quently within the literature (Depireux et al., 2001; Klein et al., 2006), and is particularly

useful statistically since it is associated with a substantial reduction in free parameters

(from (J×K) to (J+K)). In addition, it is also a relatively biologically plausible approx-

imation to make, since many core auditory cortical cells can be adequately classified as

separable (Linden et al., 2003).

The model described by equation 3.6 is bilinear; it is linear in either of the given pa-

rameter vectors. It is this model which will provide the basic framework for discussing

the multilinear models to come.

Here, we will make a slight simplification to notation. We define an expanded three-

dimensional stimulus array, augmented by the addition of a time-lag dimension

M itf
ijk =

s(i− j + 1, k), i ≤ I, j ≤ J, i− j ≥ 0, k ≤ K

0, otherwise
(3.7)

which allows us to rewrite the bilinear system of equation 3.6 as

r̂(i) =
∑
jk

wt
jw

f
kM

itf
ijk (3.8)

Using the generalised outer and inner products that were defined in section 3.1.1 the

bilinear system can be written in the simplified form

r̂ = (wt ⊗wf ) •Mitf (3.9)

For completeness, we can also define a simple extension of the linear model by deal-
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ing with the case of a neuron being spontaneously active in the absence of a sensory

stimulus. We can thus incorporate a constant offset, c, which can be thought of as such

a spontaneous rate. The model above becomes

r̂ = c+ (wt ⊗wf ) •Mitf (3.10)

This constant offset c can be incorporated cleanly into the bilinear framework via an

appropriate augmentation of the stimulus array. Thus, we consider a new array Qitf

such that

Qitf
ijk =


M itf
ijk i ≤ I, j ≤ J, i− j ≥ 0, k ≤ K

1 i ≤ I, j = J + 1, k = K + 1

0 otherwise

(3.11)

where the stimulus array has been extended by one additional dimension.

This allows us to remove the explicit spontaneous rate term from equation 3.10 and

gives us our final bilinear model

r̂ = (wt ⊗wf ) •Qitf (3.12)

Augmenting wt and wf to contain J+1 andK+1 elements respectively, the models

defined by equations 3.10 and 3.12 become equivalent with c = wt
J+1w

f
K+1.

3.2.2 MULTILINEAR MODELS FOR CAPTURING INPUT NONLINEARI-

TIES

Section 3.2.1 showed that a separable STRF can be cast in a multilinear framework. Such

a bilinear model can be seen as the simplest, non-trivial multilinear model. As we will

see as this chapter progresses, this multilinear framework can become far more complex,

and capable of capturing realistic nonlinearities.

The general form for a multilinear model can be written as

r̂ = (a⊗ b⊗ · · · ⊗ z) •Q (3.13)

where a,b, · · · , z are arbitrary vectors of free parameters and Q is a fixed multidimen-

sional array.
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The time-frequency representation of a sound requires some form of linear/nonlinear

operation on the sound pressure waveform (Gill et al., 2006). Thus, the scaling of the

stimulus representation can severely influence the match between a given model and the

data. Rather than assuming some fixed scaling, Ahrens et al. (2008b) use the multilinear

framework to define an input nonlinearity model which aims to infer such a nonlinear

transform directly from the data.

Building on the separable STRF model of equation 3.6, such a model takes the form

r̂(i) = c+
∑
jk

wt
jw

f
kg(s(i− j + 1, k)) (3.14)

Here, the mapping g is this input nonlinearity, which acts to transform the represen-

tation of a sound level in the spectrogram prior to it being spectro-temporally filtered

by the STRF. To allow for estimation, the mapping g has to be parametrised. A suit-

able choice is simply a linear combination of a fixed set of basis functions {gl}, so that

g(x) =
∑
l w

l
lgl(x), for some parameter vector wl. This yields

r̂(i) = c+
∑
jkl

wt
jw

f
kw

l
lgl(s(i− j + 1, k)) (3.15)

The use of such a representation essentially reduces the problem of inferring this

nonlinear stimulus transform to estimating the coefficients wl of the basis function set

{gl}.

As before, this model can be written in multilinear form. If we define a four-dimensional

stimulus array M itfl
ijkl = gl(s(i− j + 1, k)), we can then write

r̂(i) = c+
∑
jkl

wt
jw

f
kw

l
lM

itfl
ijkl or r̂ = (wt ⊗wf ⊗wl) •Qitfl (3.16)

with a four-dimensional array Qitfl defined by augmenting Mitfl in a manner anal-

ogous to equation 3.11.
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3.3 MULTILINEAR MODELS FOR CAPTURING ACOUSTIC CON-

TEXT

3.3.1 THE FULLY-SEPARATED CONTEXT MODEL

The input nonlinearity model defined in equation 3.15 describes a way in which the

multilinear framework can be used to extend a simple linear neural encoding model,

such that it is capable of incorporating an arbitrary nonlinear transformation of the sen-

sory input. However, as attractive as this is, in both the STRF and the input nonlinearity

model, stimulus features at different times or frequency are only ever combined linearly.

That is, multiple features are never combined in anything other than a weighted, addi-

tive fashion. The vast majority of neural response nonlinearities are non-additive, and

thus the biological plausibility of this model needs to be examined in more detail.

To address this issue Ahrens et al. (2008a) present an extension to this input nonlin-

earity model, wherein the multilinear framework is utilised to capture nonlinear “con-

textual” interactions. This extension is known as the context model, and will form the

basis for the work presented within this thesis.

In its essence, the context model extends the previous models by additionally al-

lowing a limited set of second order interactions. Intuitively, these interactions can be

thought of as a short-term acoustic context; a contextual neighborhood surrounding

each tone pulse within the stimulus. A contextual value is computed by weighting the

tone pulses within such a small neighborhood, and then multiplying each value in the

stimulus spectrogram by this sum. Finally, an STRF-like array is applied in order to pro-

duce the response in the form of an instantaneous firing rate. Specifically, the stimulus

at time i with frequency k is given a strength denoted by

g(s(i, k)) • (c2 + Context(i, k)) (3.17)

where the first term g(s(i, k)) is that of the input nonlinearity model discussed ear-

lier, that will infer the effective level of a given tone pulse within the stimulus. This

inferred level is then multiplicatively modulated by a context term given by

Context(i, k) =
∑
mnp

(m,n) 6=(1,Φ)

wτ
mw

φ
nw

λ
p hp(s(i−m+ 1, k − Φ− 1 + n)) (3.18)

43



where Φ = (N − 1)/2 dictates the maximum difference in frequency between the

contextual and modulated time-frequency elements. The condition that (m,n) 6= (1,Φ)

is to ensure that a tone does not appear within its own context.

Again, this contextual modulation can be succinctly expressed in multilinear nota-

tion. We can define a contextual subunit

[Mτφλ(i, k)]mnp =

0 if (m,n) = (1,Φ)

M itfl
im(k−Φ−1+n)p (otherwise)

(3.19)

whereMτφλ(i, k) is a stimulus array which depends on the ikth position of the time-

frequency element being modulated. Using this stimulus representation, we can now

denote the contextual modulation of equation 3.18 as

Context(i, k) = (wτ ⊗wφ ⊗wλ) •Mτφλ(i, k) (3.20)

This contextual term can be viewed as a second input nonlinearity model with the

model parameters wτ and wφ representative of relative differences in time and fre-

quency respectively. In a similar vein to wl in equation 3.15, wλ transforms the contex-

tual sound energy in terms of a set of P basis functions hp(s) (identical to gl(s) described

earlier 1).

Putting everything together, this fully separated context model can be expressed (in

component notation) as

r̂(i) = c+
∑
jkl

wt
jw

f
kw

l
lM

itfl
ijkl

(
c2 +

∑
mnp

wτ
mw

φ
nw

λ
p [Mτφλ(i− j + 1, k)]mnp

)
(3.21)

And again, this fully separated model can be written in multilinear form. To do so,

1This need not be the case in general.

44



we can define a final, now seven-dimensional array Qitflτφλ as follows

Qitflτφ
ijklmnp =



M itfl
ijkl[M

τφλ(i− j + 1, k)]mnp (j, k, l,m, n, p) ≤ (J,K,L,M,N, P )

1 (j, k, l) = (J + 1,K + 1, L+ 1),

(m,n, p) = (M + 1, N + 1, P + 1)

M itfl
ijkl (j, k, l) ≤ (J,K,L),

(m,n, p) = (M + 2, N + 2, P + 2)

0 otherwise

(3.22)

Finally, with appropriate augmentation of the parameter vectors, the model can be

written in its full multilinear form

r̂ = (wt ⊗wf ⊗wl ⊗wτ ⊗wφ ⊗wλ) •Qitflτφλ (3.23)

At this point, it is also worth noting that since this model framework is quite gener-

ously parametrised, several choices of parameters can lead to the same global mapping.

This can become somewhat problematic since the parameters within this model repre-

sent structures of particular interest that have to be interpreted. The primary degeneracy

is one of scaling. That is, scaling one parameter vector by a factor n can be compensated

by scaling another parameter vector by 1
n . This is discussed in detail by (?). Typically,

such a degeneracy can be handled by rescaling the constant c2 to 1, and then rescaling

each of the parameter vectors internally.

3.3.2 THE EXTENDED CONTEXT MODEL

Throughout the rest of this thesis, we will (almost exclusively) be working with a par-

ticular version of the context model that is slightly simpler than what has just been

presented. Thus far, all contextual modulations have been modelled via the multilinear

terms of wτ and wφ, resulting in fully separable contextual interactions. Here, we will

generalise this such that we have a full-rank contextual field wτφ. This, now insepa-

rable, field, we will refer to as the contextual gain field or CGF. Functionally, this now

implies that frequency-difference-dependent contextual modulations can now be time-

difference-dependent. Similarly, we will also utilise a full-rank principal field wtf . This,

we will refer to as the principal receptive field or PRF. One final simplification that we will

make is to disregard the original input nonlinearity flavour of the model, and restrict
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amplitude transformations to be linear. This will serve to further simplify analysis and

to aid model estimation due to potential elimination of local optima in the objective

function. The reduction in parameter count is also likely to help reduce the amount of

overfitting when the model is fit (this will be discussed in more depth later).

Such an extended context model (with a fixed input nonlinearity) takes on a bilinear

form, denoted by

r̂ = (wtf ⊗wτφ) •Qitfτφ (3.24)

This model is shown schematically (later) in figure 4.1.

The stimulus array Qitfτφ is similar in flavour to what was defined in equation 3.22

but it now lacks the sound level components. It is fully defined as

Qitfτφ
ijkmn =



M itf
ijk[Mτφ(i, k)]mn (j, k,m, n) ≤ (J,K,M,N)

1 (j, k,m, n) = (J + 1,K + 1,M + 1, N + 1)

M itf
ijk (j, k) ≤ (J,K), (m,n) = (M + 2, N + 2)

0 otherwise

(3.25)

Here, Mitf is identical to the stimulus representation used in STRF estimation. This

forms the basis for the contextual part of the stimulus representation that is defined as

[Mτφ(i, k)]mn =

0 if(m,n) = (1,Φ)

M itf
im(k−Φ−1+n) (otherwise)

(3.26)

3.3.3 THE SPLIT CONTEXT MODEL

In intuiting how the context model works, we have previously described the CGF com-

ponent acting to modulate the sound levels within the spectrogram, prior to spectrotem-

poral summation through the use of the PRF. This is highly dependent upon the sign of

the underlying PRF, in the sense that a positive CGF weight (for example) will always

provide enhancement of whatever is present in the PRF. That is, positive (excitatory)

components will be made more positive, and negative (inhibitory) components will be

made more negative. Thus, for intuitive purposes, we can think of the CGF as actually

modulating the values of the PRF itself. In this sense, the single CGF acts upon every in-

dividual weight within the PRF, whether it be excitatory or inhibitory, loud or soft. This
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leads us to define subtle variants of the context model, such that we have a multi-CGF

model, whereby each CGF acts upon a different component in the PRF.

Mathematically, in order to achieve this, we want to hold wtf constant, and fit sepa-

rate wτφs to different subsets of this underlying PRF. From a computational perspective,

the PRF just consists of a set of (J ×K) time-frequency pairs {t, f}, where each of these

pairs denotes a different value within the field. Thus, we can write down a new rate

equation for a split context model, whereby we sum over S terms, where S denotes the

number of {t, f} sets being used (which also dictates the number of CGFs). Mathemati-

cally, this can be denoted as

r̂(i) = c+∑
{jk}∈ρ1

wtf
jkM

itf
ijk

(
1 +

∑
mn

w τφ
1mn[Mτφ(i− j + 1, k)]mn

)
+

∑
{jk}∈ρ2

wtf
jkM

itf
ijk

(
1 +

∑
mn

w τφ
2mn[Mτφ(i− j + 1, k)]mn

)
+

...∑
{jk}∈ρs

wtf
jkM

itf
ijk

(
1 +

∑
mn

w τφ
Smn[Mτφ(i− j + 1, k)]mn

)
(3.27)

where ρ1 · · · ρs are sets that contain the time-frequency {j, k} pairs of interest.

This model is shown schematically (later) in figure 4.2.

3.4 PARAMETER ESTIMATION IN MULTILINEAR MODELS

Thus far, we have specified several different models that can be cast within a multilinear

framework, but we have not discussed how the parameters within these models can be

estimated. This section details how one can perform estimation within this framework.

3.4.1 ALTERNATING LEAST SQUARES

In order to carry out estimation, we have to define a cost function (or error) and find

parameters that minimise this function. A suitable choice is the squared error between

the true response r and the response predicted under the model r̂. For the general form
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of a multilinear model

E = ||r− r̂||2

= ||r− ((a⊗ b⊗ · · · ⊗ z) •Q) ||2 (3.28)

Ahrens et al. (2008a) show that such a squared error can be minimised by cycling

through a set of update equations, each of which resembles the solution to a classical

linear regression problem (the ordinary least squares solution). This we refer to as Al-

ternating Least Squares, or ALS. A set of such update equations corresponding to the

bilinear reduced form of the context model will be derived later, in section 3.4.2. The

following set of equations

A = (b⊗ c · · · ⊗ z) •Q a = (ATA)−1AT r

B = (a⊗ c · · · ⊗ z) •Q b = (BTB)−1BT r

...
...

Z = (a⊗ b · · · ⊗ y) •Q z = (ZTZ)−1ZT r (3.29)

can be derived by differentiating equation 3.28 with respect to each parameter vec-

tor. These equations are applied iteratively, alternating between the different updates.

Since each iteration of the algorithm will decrease the squared error and since E is non-

negative, the iterations are guaranteed to converge to an optimum within the parameter

space.

3.4.2 UPDATE EQUATIONS - STANDARD MODEL

Although the multilinear notation (through the use of high-dimensional stimulus ar-

rays) allows us to formulate these models in a particularly elegant way, there are, of

course, some computational issues. In practice, storing even a five-dimensional stimu-

lus tensor can be particularly memory intensive. Consider, for example, the extended

context model detailed in equation 3.24. If we were to consider 3000 data points (I =

3000), a PRF of dimension (J = 15) × (K = 48), and a CGF of dimension (M =

13) × (N = 25), which would be a standard set of units, then the full five-dimensional

stimulus tensor Qitfτφ would have to contain (3000× 15× 48× 13× 25 = 702, 000, 000)

elements. This could be somewhat computationally difficult. There are, of course, ways

around this problem. The stimulus that we typically utilise in our experiments is largely
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sparse. As a result of this, one can use a sparse representation of the stimulus spectro-

gram, wherein only the non-zero elements of the high-dimensional stimulus array are

actually stored. This significantly reduces computational load. If one is dealing with

a very dense stimulus however (such as a temporally orthogonal ripple combination

(TORC; Klein et al. (2000)), or a natural sound), then a sparse representation is not ap-

propriate since the stimulus spectrograms do not typically contain many (if any) zero

entries. In these kind of cases, equivalent calculations can be carried out directly from

the spectrogram itself, such that a full stimulus tensor does not have to be constructed

and stored. Next, we derive the update equations to allow for estimation of wtf and

wτφ in the extended context model of equation 3.24.

3.4.2.1 UPDATE FOR wtf

In component notation, the rate equation of the reduced context model is given by

r̂(i) = c1 +

J∑
j=1

K∑
k=1

wtf
jks(i−j+1, k)

(
1 +

M∑
m=0

N∑
n=−N

wτφ
mns(i− j + 1−m, k + n)

)
(3.30)

Note that here, we have slightly altered the summation limits. This is purely for

algebraic simplicity. The j and k summations are identical to before. The summations

over m and n are subtly different. The m summation begins at 0 (rather than 1), in order

to incorporate a contextual time-lag of 0 into the model (thus the CGF τ dimensionality

will be (M + 1)). The subscript n corresponds to frequency deviation and thus can be

either positive or negative, with N denoting the maximum allowed deviation, leading

to a CGF φ dimensionality of (2×N + 1).

We then multiply out the brackets to construct a new three-dimensional array Aijk

such that

Aijk = s(i− j + 1, k) + s(i− j + 1, k)
∑
mn

wτφ
mns(i− j + 1−m, k + n) (3.31)

This reduces equation 3.30 to

r̂(i) = c1 +
∑
jk

wtf
jkAijk (3.32)
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Thus, in order to update wtf , we hold wτφ fixed and regress using

r̂ = c1 + wtf •Aitf (3.33)

3.4.2.2 UPDATE FOR wτφ

In order to derive the update equation for wτφ we start by rewriting equation 3.30 as

r̂(i) = c1+
∑
jk

wtf
jks(i−j+1, k)+

∑
mn

wτφ
mn

∑
jk

wtf
jks(i−j+1, k)s(i−j+1−m, k+n) (3.34)

We then simply bring one term across, such that we can then regress against an

augmented firing rate vector

r̂(i)−
∑
jk

wtf
jks(i− j + 1, k) = c1 +

∑
mn

wτφ
mn ×∑

jk

wtf
jks(i− j + 1, k)s(i− j + 1−m, k + n)

r̂(i)−
∑
jk

wtf
jks(i− j + 1, k) = c1 +

∑
mn

wτφ
mnBimn (3.35)

Thus, in order to update wτφ, we hold wtf fixed and regress using

r̂−wtf •Mitf = wτφ •Biτφ (3.36)

where M itf
ijk = s(i− j + 1, k).

3.4.3 UPDATE EQUATIONS - SPLIT MODEL

For completeness, we also provide the update equations for the split model that was

discussed in section 3.3.3. Here, for simplicity, we focus on a model with two CGFs.

3.4.3.1 UPDATE FOR wtf

We can expand the brackets in the same way as in section 3.4.2.1, in order to construct

the stimulus tensors A1 and A2. That is

r̂(i) = c1 +
∑
jk

11w
tf
jkA1 ijk +

∑
jk

12w
tf
jkA2 ijk (3.37)
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Here, we utilise indicator variables that will act to set {t, f} elements in wtf , Aitf
1

and Aitf
2 to 0 if they are not present within the correct set:

1s =

1 if {j, k} ∈ ρs

0 otherwise

(3.38)

Thus, we can write

r̂ = c1 + wtf •
(
Aitf

1 + Aitf
2

)
(3.39)

which we can regress in the usual way to estimate wtf .

3.4.3.2 UPDATE FOR wτφ
1 AND wτφ

2

We can also update wτφ
1 and wτφ

2 in a similar way. Following equation 3.35, we end up

with

r̂(i)−
∑
jk

wtf
jks(i− j + 1, k) = c1 +

∑
mn

w τφ
1mnB1 imn +

∑
mn

w τφ
2mnB2 imn (3.40)

Holding wtf fixed, we can then simply regress in the usual way to update wτφ
1 and

wτφ
2 .

3.4.4 CONTROL OF OVERFITTING

A particular concern when dealing with such a large number of parameters is the prob-

lem of overfitting. Some of the models that we wish to estimate contain upwards of

1000 parameters, which can result in the incorrect “explanation” of noise within the

data. This kind of behaviour can be discouraged by utilising some form of statistical

regularisation.

Here, we will adopt a Bayesian perspective which provides a particularly useful

way of performing such regularisation by supplying prior information (in the form of

regularisation parameters) about the model parameters themselves. The least squares

solution for a regularised linear regression problem takes the form

a = (ATA + σ2C)−1AT r (3.41)

where the covariance matrix C contains information regarding our prior beliefs about
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the parameters.

In order to obtain appropriate regularisation matrices, we follow the work of Sahani

and Linden (2003a) who develop a method to adapt the covariance structure of the pa-

rameters to the evidence given by the data. The method that they propose effectively

controls the spectral and temporal smoothness between parameters and was therefore

termed Automatic Smoothness Determination (ASD).

We first develop how evidence is defined in this context, and then specify details

of the covariance matrix. The following derivation follows that of Sahani and Linden

(2003a).

From a probabilistic perspective, the squared-error term E (equation 3.28) corre-

sponds to a Gaussian likelihood. Specifically, the least-squares solution to any regres-

sion problem is identical to the maximum likelihood (ML) value of the parameter vector

w for a probabilistic regression model with Gaussian noise of constant variance σ2

rt|xt ∼ N (wTxt, σ
2) (3.42)

For consistency with Sahani and Linden (2003a), we now describe the input as a

matrix X , the tth column of which is the input lag-vector xt (a lagged representation of

the stimulus spectrogram). The outputs are denoted as a row vector r, the tth element

of which is rt.

We can write down the Gaussian likelihood as

P (r|X,w, σ2) ≈ exp

(
−1

2

(r−wTX)(r−wTX)T

σ2

)
(3.43)

We can then obtain the joint density of r and w by multiplication with a Gaussian

prior of zero mean (since we have no prior reason to favour either positive or negative

weights) and a covariance matrix C

P (r,w|X,C, σ2) ≈ exp

(
−1

2

(
(r−wTX)(r−wTX)T

σ2
−wTC−1w

))
(3.44)

Since the likelihood and the prior are conjugate, the posterior distribution on w is

also Gaussian with variance Σ =
(
XXT

σ2 + C−1
)−1

and mean µ = ΣXrT

σ2 . Integrating out

the parameters w then gives us an expression for the evidence (or marginal likelihood)
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of the data

P (r|X,C, σ2) ≈ exp

(
−r

2

(
I

σ2
− XTΣX

σ4

)
rT
)

(3.45)

Finally, differentiating this expression with respect to a parameter θ that parametrises

the covariance matrix C we get

∂

∂θ
logP (r|X,C, σ2) =

1

2
Tr

(
(C − Σ− µµT )

∂

∂θ
C−1

)
(3.46)

This powerful framework for performing evidence optimisation allows one to carry

out hyperparameter optimisation on the parameters within any chosen covariance ma-

trix. One such covariance matrix underlies the ASD algorithm of Sahani and Linden

(2003a). They define

C = exp

(
−ρ− 1

2

(
Ms
δ2
s

+
Mt
δ2
t

))
(3.47)

where Ms and Mt are distance matrices, wherein the (i, j)th element of each gives the

squared distance between the weights wi and wj in terms frequency and time respec-

tively. As a result of these squared distances, the free parameters within the covariance

matrix (δs and δt) set the correlation distances for the weights along the spectral and

temporal dimensions. Thus, large values of either of these hyperparameters will favour

smoothness in the relevant dimension. Estimation of these parameters simply amounts

to gradient descent through the use of equation 3.46.

This ASD algorithm can be easily (but sub-optimally) integrated into the ALS frame-

work for parameter estimation in multilinear models. Care must be taken however, to

not use ASD updates at every iteration of the algorithm. This is simply because the co-

variance hyperparameters (that govern the smoothness) will change between iterations,

which means that convergence of the fitting procedure is no longer guaranteed. As a re-

sult, ASD updates are best utilised for a small number of iterations, in order to achieve

a reasonable estimate of the spectrotemporal smoothness of a given unit. Once the hy-

perparameters are fixed, the remaining iterations are again guaranteed to converge.

3.4.5 VARIATIONAL APPROXIMATIONS TO BILINEAR SYSTEMS

Alternating least squares (although guaranteed to converge) can, on occasion, lead to

erroneous receptive field structure, especially when used in combination with ASD. Un-

fortunately, this is not a principled way of handling estimation in the multilinear setting

due to the fact that the smoothness parameters are estimated separately per parameter
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vector, as opposed to jointly for the entire system. From a Bayesian standpoint this is

somewhat less than ideal, since uncertainty about one parameter vector is not taken into

account in the estimation of another.

Here we will present a principled empirical Bayesian approach such that propaga-

tion of uncertainty can be correctly handled.

As before, the full-rank bilinear model is given by

r̂ = (wtf ⊗wτφ) •Qitfτφ (3.48)

For convenience, we will make another small change to notation. As it stands,

the stimulus array (Qitfτφ) is five-dimensional. After concatenation of indices in the

different fields however, the array becomes three-dimensional; (j, k) → a = 1..amax,

(m,n)→ b = 1..bmax. Thus we use wtf
a , wτφ

b , and Qiab.

3.4.5.1 AUTOMATIC REGULARISATION

Rather than specifying an algorithm to perform ASD for the bilinear system, we present

a slightly different type of regularisation for reasons of stability (fewer ill-conditioned

matrix inversions). The crucial difference with this approach is that rather than speci-

fying prior covariance matrices, we will specify the regularisation through the use of the

inverse covariance (or precision) matrix. Precision matrices can be directly interpreted as

a cost on the parameter vectors, because of the way in which they appear within the

squared-error cost function. For a linear system we have

E =
1

2σ2
||r− r̂||2 + wTDw (3.49)

How does one choose a suitable D? A common choice is to penalise derivatives.

For example, if one wanted to penalise the first derivative, a D could be chosen such

that wTDw = α
∑
j(wj+1 − wj)2 (with α being the parameter controlling the degree of

regularisation). This is satisfied by choosing D to be a matrix with 2’s on the diagonal
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and -1’s just off the diagonal. In general, choosing Z to be a differentiating matrix

Z =


1 −1 0 0

0 1 −1 0

0 0 1 −1

0 0 0 0

 (3.50)

to penalise the first derivative,D1 = ZTZ. In order to penalise the second derivative,

one would choose D2 = DT
1 D1. Moreover, to penalize large values of w, D0 = I could

be chosen (which is equivalent to ridge regression). For our purposes, however, we

choose to use a linear combination of ridge, first and second derivatives, such that our

precision matrix is denoted thus

D = α0D0 + α1D1 + α2D2 (3.51)

Finally, in order to make this applicable for two-dimensional receptive fields, we

must use separate smoothing in both dimensions, which yields five parts to the sum

above.

3.4.5.2 EVIDENCE OPTIMISATION VIA VARIATIONAL APPROXIMATION

Disclaimer. What follows is an algorithm for a rigorous treatment of evidence approx-

imation in a bilinear model. It is, however, incredibly computationally intensive. As

a result, it is presented here for mathematical completeness. The estimation algorithm

we utilise in the coming chapters, is essentially a simplified version of the ALS algo-

rithm. From a qualitative perspective, the differences between the two approaches are

relatively minimal (in regards to the structure of the estimated receptive fields).

In section 3.4.4, we discussed how the ASD algorithm was based upon optimising

the evidence of the model. In the simple linear case that we presented, everything was

conjugate and thus the evidence (the probability of the data given the regularisation pa-

rameters, with the model parameters integrated out) was tractable. The ultimate goal

is to be able to maximise this evidence with respect to a given regularisation parame-

ter (such as a smoothness parameter) in order to establish the optimal smoothness of

the corresponding model parameter. Due to the tractability of the linear example, the

evidence could be written down explicitly in closed form, and the maximisation could

be carried out numerically by taking the relevant derivatives and performing gradient
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ascent. The full bilinear (or multilinear) evidence optimisation is intractable. Thus, here

we develop a method such the evidence can be adequately approximated, and correct

uncertainty propagation can be handled.

We choose to use a variational approximation (Jordan et al., 1999; Beal, 2003), util-

ising a factorised distribution qtf (wtf )qτφ(wτφ) over the parameters to obtain a lower

bound on the evidence to which a standard expectation maximisation (EM; Dempster

et al. (1977)) optimisation can be applied. For brevity, only the gist of the algorithm is

presented here. The full derivation can be found in the appendix, in section 3.5.

The (log) evidence of the bilinear model is given by

logP (r|σ̂2,αtf ,ατφ) = log

∫
dwtfdwτφP (r|wtf ,wτφ, σ̂2)P (wtf |αtf )P (wτφ|ατφ)

(3.52)

We then make use of the factorised distribution above, in order to lower bound this

evidence

logP (r|σ̂2,αtf ,ατφ)

= log

∫
dwtfdwτφ q

tf (wtf )qτφ(wτφ)

qtf (wtf )qτφ(wτφ)
P (r|wtf ,wτφ, σ̂2)P (wtf |αtf )P (wτφ|ατφ)

≥
∫
dwtfdwτφqtf (wtf )qτφ(wτφ) log

(
P (r|wtf ,wτφ, σ̂2)P (wtf |αtf )P (wτφ|ατφ)

)
−
∫
dwtf qtf (wtf ) log

(
qtf (wtf )

)
−
∫
dwτφqτφ(wτφ) log

(
qτφ(wτφ)

)
=

∫
dwtfdwτφqtf (wtf )qτφ(wτφ) log

(
P (r|wtf ,wτφ, σ̂2)P (wtf |αtf )P (wτφ|ατφ)

)
+H(qtf ) +H(qτφ)

≡ F(qtf , qτφ, σ̂2,αtf ,ατφ) (3.53)

Here F is the free energy, and the two H terms are entropies. We use the EM algo-

rithm to optimise the former quantity.

3.4.5.3 E STEP

Goal: optimise F w.r.t. qtf and qτφ (by taking variational derivatives w.r.t. qtf and qτφ

and setting these to zero).

Differentiating and setting equal to zero yields

qtf (wtf ) = exp(λ− 1) exp
〈
log
(
P (r̂|wtf ,wτφ, σ̂2)

)〉
qτφ P (wtf |αtf ) (3.54)
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with the update for qτφ being found in a similar fashion.

It should be reasonably easy to see that logP (r̂|wtf ,wτφ, σ̂2) is quadratic in wtf (and

this gets preserved in the average 〈· · · 〉qτφ). Thus, if the prior P (wtf |αtf ) is Gaussian,

then qtf is also Gaussian. We can give the parameters of these Gaussians a name: let

qtf = N (µtf ,Σtf ), and qτφ = N (µτφ,Στφ). The important thing to note here is that µtf

and Σtf depend on µτφ and Στφ (and vice-versa). As such, updating these parameters

allows for the correct propagation of uncertainty. Deriving these update equations is

not trivial, and thus the details can be found within the appendix, in section 3.5.

3.4.5.4 M STEP

Goal: with qtf and qτφ held fixed, F is maximised with respect to the hyperparameters

αtf ,ατφ, and the noise scale σ̂2. The noise scale σ̂2 has an exact update, but the hyper-

parameter optimisation needs to be done through the use of gradient ascent, since there

is no closed-form solution. The gradient is obtained by differentiating F w.r.t. αtf and

ατφ.

3.4.6 FULL ALGORITHM

With the key elements in place, the full algorithm can then be defined as:

1. The algorithm is iterative, so first assume that we have values for µτφ and Στφ.

2. Update the values of µtf and Σtf .

3. Update the values of µτφ and Στφ.

4. Update the noise scale σ̂2 exactly, as a closed-form solution exists.

5. Perform gradient ascent on the function F , with respect to the parameters αtf and

ατφ, as no closed-form solution exists.

6. Repeat steps 2-5 until all parameters have converged.
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3.5 APPENDIX A: VARIATIONAL EM FOR BILINEAR SYS-

TEMS

In section 3.4.5.2 we detailed an empirical Bayesian algorithm for performing approxi-

mate evidence optimisation in a bilinear system. For brevity, only the key results were

presented. The full derivation of the variational EM algorithm follows in this appendix.

The (log) evidence of the bilinear model is

logP (r|σ̂2,αtf ,ατφ) = log

∫
dwtfdwτφP (r|wtf ,wτφ, σ̂2)P (wtf |αtf )P (wτφ|ατφ)

(3.55)

We then make use of a factorised distribution qtf (wtf )qτφ(wτφ), in order to lower

bound this evidence

logP (r|σ̂2,αtf ,ατφ)

= log

∫
dwtfdwτφP (r|wtf ,wτφ, σ̂2)P (wtf |αtf )P (wτφ|ατφ)

= log

∫
dwtfdwτφ q

tf (wtf )qτφ(wτφ)

qtf (wtf )qτφ(wτφ)
P (r|wtf ,wτφ, σ̂2)P (wtf |αtf )P (wτφ|ατφ)

≥
∫
dwtfdwτφqtf (wtf )qτφ(wτφ) log

(
P (r|wtf ,wτφ, σ̂2)P (wtf |αtf )P (wτφ|ατφ)

qtf (wtf )qτφ
(wτφ)

)
=

∫
dwtfdwτφqtf (wtf )qτφ(wτφ) log

(
P (r|wtf ,wτφ, σ̂2)P (wtf |αtf )P (wτφ|ατφ)

)
−
∫
dwtfdwτφqtf (wtf )qτφ(wτφ) log

(
qtf (wtf )qτφ(wτφ)

)
=

∫
dwtfdwτφqtf (wtf )qτφ(wτφ) log

(
P (r|wtf ,wτφ, σ̂2)P (wtf |αtf )P (wτφ|ατφ)

)
−
∫
dwtf qtf (wtf ) log

(
qtf (wtf )

)
−
∫
dwτφqτφ(wτφ) log

(
qτφ(wτφ)

)
=

∫
dwtfdwτφqtf (wtf )qτφ(wτφ) log

(
P (r|wtf ,wτφ, σ̂2)P (wtf |αtf )P (wτφ|ατφ)

)
+H(qtf ) +H(qτφ)

≡ F(qtf , qτφ, σ̂2,αtf ,ατφ) (3.56)

Here F is the free energy, and the two H terms are entropies. We use the EM algo-

rithm to optimise the former quantity.
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3.5.1 E STEP

Goal: optimise F w.r.t. qtf and qτφ (by taking variational derivatives w.r.t. qtf and qτφ

and setting these to zero).

The derivation that follows will focus on qtf only. qτφ follows in a very similar

fashion. We start by adding a Lagrange multiplier to F to constrain qtf to be normalised

δ
(
F + λ(

∫
dwtf qtf (wtf )− 1)

)
δqtf

=

∫
dwτφqτφ(wτφ) log

(
P (r̂|wtf ,wτφ, σ̂2)P (wtf |αtf )P (wτφ|ατφ)

)
− log(qtf (wtf )− 1 + λ (3.57)

Setting this to zero yields

qtf (wtf ) = exp(λ− 1) exp
〈
log
(
P (r̂|wtf ,wτφ, σ̂2)

)〉
qτφ P (wtf |αtf ) (3.58)

(note the P (wtf |αtf ) is also inside an exp〈log(...)〉qτφ but since it’s independent of

wτφ this just becomes P (wtf |αtf ).) Here λ is a constant that serves to normalize qtf .

Now logP (r̂|wtf ,wτφ, σ̂2) is quadratic in wtf and this gets preserved in the average

〈. . .〉qτφ , so that if the prior P (wtf |αtf ) is Gaussian, then qtf is also Gaussian. We can

now give the parameters of these Gaussians a name: let qtf = N (µtf ,Σtf ) and qτφ =

N (µτφ,Στφ). The algorithm is iterative, so we can assume we have values for µτφ and

Στφ and use these to update the values of µtf and Σtf . To find these, we first ignore the

prior and look at the likelihood term (absorbing the log-determinant in the constant),

〈
log
(
P (r|wtf ,wτφ, σ̂2)

)〉
qτφ

= const− 1

2σ̂2

〈
(r− (wtf ⊗wτφ) •Q)2

〉
qτφ

= const− 1

2σ̂2
〈r2 − 2rT

(
(wtf ⊗wτφ) •Q

)
+
(
(wtf ⊗wτφ) •Q

)T (
(wtf ⊗wτφ) •Q

)
〉qτφ (3.59)

We can now simplify the quadratic term. Ignoring the 1
2σ̂2 for the moment and writ-

ing in component notation, the quadratic term is

〈 ∑
iaa′bb′

wtf
a w

tf
a′w

τφ
b wτφ

b′ QiabQia′b′

〉
qτφ

=
∑
iaa′bb′

wtf
a w

tf
a′

〈
wτφ
b wτφ

b′

〉
qτφ

QiabQia′b′ (3.60)
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The term in angle brackets is the (b, b′)th element of
〈
wτφwτφT

〉
qτφ

, which equals

µτφµτφT + Στφ. We shrink this expression, and reintroduce 1
σ̂2 , by setting

Ctf
aa′ =

1

σ̂2

∑
ibb′

(
µτφ
b µτφ

b′ + Στφ
bb′

)
QiabQia′b′ (3.61)

to get the quadratic term

∑
aa′

wtf
a w

tf
a′C

tf
aa′ = wtfTCtfwtf (3.62)

In order to establish the covariance of qtf , we simply need to multiply by the prior,

or equivalently, add the log-prior to the above expression. The log-prior is

logP (wtf |αtf ) = −1

2
wtfTDtfwtf (3.63)

therefore the entire quadratic term is− 1
2wtfT

(
Ctf +Dtf

)
wtf and so the covariance

of qtf is

Σtf =
(
Ctf +Dtf

)−1
(3.64)

The mean of qtf is found similarly and is defined via the vector

vtf
a =

∑
i

riQiabµ
τφ
b (3.65)

and equals

µtf =
1

σ̂2
Σtfvtf (3.66)

This is the E-step update for qtf . The update for qτφ is exactly the same except the

averaging is over qtf , and µτφ and Στφ get defined in terms of µtf and Σtf .

3.5.2 M STEP

Goal: with qtf and qτφ held fixed, F is maximised with respect to the hyperparameters

αtf ,ατφ, and the noise scale σ̂2. The noise scale σ̂2 has an exact update, but the hyper-

parameter optimisation needs to be done through the use of gradient ascent, since there

is no closed-form solution. The gradient is obtained by differentiating F w.r.t. αtf and

ατφ.
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Since we are differentiating with respect to the hyperparameters, only the terms in F

that depend on αtf and ατφ need to be considered; namely, the log-priors averaged over

the qtf and qτφ. Note that the hyperparameters also appear implicitly in the distribu-

tions qtf and qτφ, but since these are considered fixed in the M step of the EM algorithm,

they do not contribute here. For notational purposes, we call the α-dependent terms F̄

and thus

F̄ =

∫
dwtfdwτφqtf (wtf )qτφ(wτφ) log

(
P (wtf |αtf )P (wτφ|ατφ)

)
=

〈
logP (wtf |αtf )

〉
qtf

+
〈
logP (wτφ|ατφ)

〉
qτφ

=
1

2
log detDtf +

1

2
log detDτφ − 1

2
trace

(
(µtfµtfT + Σtf )Dtf

)
−1

2
trace

(
(µτφµτφT + Στφ)Dτφ

)
(3.67)

(using detX−1 = 1
detX for the first two terms.) Now we differentiate w.r.t. the

parameters that specify the D’s, e.g. αtf
i . The derivative can be taken inside the trace,

and for the log terms, we use ∂
∂θ log detX(θ) = Tr

(
X−1 ∂

∂θX
)
. Thus

∂

∂αtf
i

F̄ =
1

2
Tr

(
Dtf−1 ∂

∂αtf
i

Dtf

)
− 1

2
Tr

(
(µτφµτφT + Στφ)

∂

∂αtf
i

Dtf

)
(3.68)

With the form of Dtf above, i.e. Dtf (αtf ) =
∑
i α

tf
i D

tf
i , this becomes

∂

∂αtf
i

F̄ =
1

2
Tr
(
Dtf
i

(
Dtf−1 − (µτφµτφT + Στφ)

))
(3.69)

The gradients over all αtf
i’s and all ατφ

i’s can then be used in a gradient ascent to

maximize F̄ (equivalently to maximize F).

The noise scale σ̂2 is also considered a hyperparameter, and must be optimized dur-

ing the M step. This parameter is found in the likelihood term, and implicitly in the Σ’s

and µ’s. Again we consider the Σ’s and µ’s fixed because qtf and qτφ are fixed during

the M step of EM. Thus, only the likelihood term contributes here, and we define F̂ to

be the part of F containing σ̂2. Thus

F̂ =

∫
dwtfdwτφqtf (wtf )qτφ(wτφ) logP (r|wtf ,wτφ}, σ̂2)

= const− T

2
log(σ̂2)− 1

2σ̂2

〈(
r− (wtf ⊗wτφ) •Q

)2〉
qtf ,qτφ

(3.70)
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Differentiating w.r.t. σ̂2 yields

∂

∂σ̂2
F̂ = − T

2σ̂2
+

1

2σ̂4

〈(
r− (wtf ⊗wτφ) •Q

)2〉
qtf ,qτφ

(3.71)

The optimum lies at ∂
∂σ̂2 F̂ = 0, which can be solved as

σ̂2 =
1

T

〈(
r− (wtf ⊗wτφ) •Q

)2〉
qtf ,qτφ

=
1

T

(
rT r− 2t1 + t2

)
(3.72)

where T is the number of time points and

t1 = rT
(
µtf ⊗ µτφ

)
•Q =

∑
iab

riµ
tf
a µ

τφ
b Qiab

t2 =
∑
iaa′bb′

(
µtf
a µ

tf
a′ + Σaa′

) (
µτφ
b µτφ

b′ + Στφ
bb′

)
QiabQia′b′ (3.73)
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IV

NEAR-SIMULTANEOUS AND
DELAYED CONTEXTUAL EFFECTS
IN THE MOUSE
THALMOCORTICAL PATHWAY

OUTLINE

This chapter is the first of two primary results chapters within this the-
sis. It provides an application of the multilinear context model frame-
work to neural responses in the auditory cortex and thalamus. We
show that such a framework is capable of the successful estimation of
nonlinear interactions from the neural responses to complex sounds,
thus extending our existing knowledge of sound processing within the
thalamocortical pathway. Although this chapter relies heavily on the
modelling framework discussed at length in the previous chapter, it is
written as a standalone piece of work, and can be read without prior
knowledge of the detailed mathematics.



4.1 INTRODUCTION

Neuronal responses in the auditory cortex can be strongly and non-linearly modulated

by stimulus context (Brosch et al., 1999; Brosch and Schreiner, 2000; Bartlett and Wang,

2005; Calford and Semple, 1995; Sadagopan and Wang, 2009; Bar-Yosef et al., 2002;

Bar-Yosef and Nelken, 2007). As a result of this, standard linear descriptions of neu-

ronal stimulus-response functions (i.e., spectrotemporal receptive fields (STRFs)), are

not sufficient to explain auditory cortical responses to spectrally rich, temporally com-

plex sounds. The effect of (short-term) stimulus context in the auditory thalamus (one

synapse upstream of the auditory cortex) is currently not well understood (but see Wehr

and Zador (2005) for an intracellular example). Ahrens et al. (2008a) introduced mul-

tilinear “context” models, which capture neuron-specific nonlinear effects of stimulus

context on spiking responses to complex sounds. In such a framework, contextual ef-

fects are interpreted as non-linear stimulus interactions that modulate the input to a

subsequent STRF-like linear filter. It was previously demonstrated that such context

models predict rodent auditory cortical responses to complex sounds more accurately

than do standard STRF models, leading to the conclusion that nonlinear contextual in-

teractions play an important role in the cortical processing of complex sounds. The form

of these contextual interactions will constitute the primary focus of this chapter.

The analysis of Ahrens et al. (2008a) assumed that the effects of stimulus context were

fully separable (i.e., independent in frequency and time). Here, we use an extended

context model to test this assumption, and we demonstrate that the non-linear effects

of stimulus context are, in fact, largely inseparable, and fundamentally different for

near-simultaneous and delayed non-simultaneous sound energy. In two populations

of neurons, recorded from the mouse auditory cortex and from the auditory thalamus,

we show that simultaneous sound energy provides a nonlinear positive (amplifying)

gain to the subsequent linear filter, while non-simultaneous sound energy provides a

negative (dampening) gain.

We also demonstrate that while there is considerable heterogeneity in the details of

context dependence for individual cells in both cortex and thalamus, on average the

effects are similar across subdivisions of the thalamus. In contrast, nonlinear context

dependence of auditory cortical responses differs between A1 and AAF, with greater

simultaneous enhancement in A1 and faster delayed suppression in AAF.
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4.2 MATERIALS AND METHODS

These experimental methods were similar to those described by Linden et al. (2003).

4.2.1 ANIMALS

Twelve adult CBA/Ca mice (6-15 weeks old) were used to gather cortical data, and six

adult CBA/Ca mice (6-8 weeks old) were used to gather the thalamic data.

4.2.2 SURGICAL PROCEDURES

Cortical surgical procedures conformed to protocols approved by the University of Cal-

ifornia at San Francisco’s Committee on Animal Research and were in accordance with

federal guidelines for care and use of animals in research. Thalamic surgical procedures

were similar and were performed in accordance with the United Kingdom Animal (Sci-

entific Procedures) Act of 1986.

Mice were anaesthetised and maintained at a surgical plane of anesthesia through

the use of ketamine and medetomodine. An initial intraperitoneal bolus injection of

anesthetic was given to sedate the animal. Following this, a canula was placed into

the animal’s peritoneum so that further boluses or continuous infusion of anaesthetic

could be provided. Dexamethasone was administered to control brain oedema, atropine

to minimise bronchial secretions, and Ringer solution to ensure adequate hydration.

The animal was kept on a homeothermic blanket (Harvard Instruments) to ensure that

the body temperature was maintained at approximately 37.5◦C (monitored via a rectal

probe). Once fully anaesthetised and prepared for surgery, the animal was placed onto

a bite bar in order to immobilise its head after which the skin was transected along the

midline to expose the skull.

For cortical recordings, a small craniotomy was performed on the left-hand side of

the skull, above the known location of auditory cortex (bordered rostrally by the lamb-

doid suture, caudally and ventro-laterally by the squamosal suture, and dorso-medially

by the temporal ridge). For thalamic experiments, a craniotomy approximately 2.5mm

in diameter, centred 2.75mm lateral to midline and 2.75mm caudal to bregma, was per-

formed on the right-hand side of the skull, enabling vertical access to the thalamus. In

both cases, the cortical surface was kept moist by the regular application of warmed

saline.
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4.2.3 RECORDING PROCEDURES

All experiments, cortical and thalamic, were conducted in a sound-shielded anechoic

chamber (Industrial Acoustics).

Auditory stimuli were directed towards the animal’s ear contralateral to the cran-

iotomy via a free-field speaker, and a sound-attenuating plug was placed in the ipsilat-

eral ear. Prior to the start of each experiment, acoustic stimuli were calibrated with a

Bruel and Kjaer microphone positioned near the opening of the animal’s auditory canal.

Typically, this ensured that the sound system’s frequency response was flat to within ±

1dB from 2-90 kHz.

For cortical experiments, extracellular recordings were made using epoxylite-coated

tungsten electrodes (1-4 MΩ impedance). These were introduced into the left auditory

cortex in penetrations orthogonal to the cortical surface. Recordings targeted the thala-

morecipient layers III/IV (Smith and Populin, 2001) by cortical depth (350-600 µm below

the dural surface). Cortical areas were found and identified as described by Linden et al.

(2003).

For thalamic experiments, extracellular recordings were made across all thalamic

subdivisions using custom-made linear arrays consisting of eight WPI tungsten elec-

trodes (impedance typically 1-2 MΩ). The array was placed perpendicular to the mid-

line with the first penetration targeting a position approximately 2 mm from midline

and 3 mm from bregma, as this position was deemed most likely to yield responses

from all three major thalamic subdivisions (Anderson and Linden, 2011). The electrode

was first moved down to 2200µm below the cortical surface, and then left to stabilise (to

allow electrode induced brain movement to cease) for ~10 min. Neurons responsive to

auditory stimuli were located through the use of a 50 µs click presented at ~60 dB SPL.

Once an auditory response had been established (typically at 2900 µm), further sites

were located by progressing the electrode 100 µm at a time, until auditory activity was

lost.

4.2.4 HISTOLOGICAL PROCEDURES

Histological delineation was carried out for all thalamic recordings. Procedures were

similar to those described by Anderson et al. (2009a).

Electrolytic lesions were created by passing current through the desired electrode on
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the array (5µA for 7 secs). Such lesions were typically created at the most medial and

lateral electrodes on the array that yielded auditory activity. This was replicated at both

the top and bottom of the electrode track. Ideally, this procedure yielded four lesions

(two at the top of the track, and two at the bottom), bracketing the area over which

auditory activity was located. This allowed for estimation of shrinkage and histological

reconstruction of most recording sites.

Once lesioning had taken place, animals were given an overdose of barbiturate anaes-

thesia (sodium pentobarbital) and perfused transcardially with 4% paraformaldehyde

in 0.1 M phosphate buffer. Following perfusion, the brain was removed and placed in

the paraformaldehyde solution for 1-2 days. Blocks containing the full auditory thala-

mus were then cut into 50µm slices using a vibrotome. The sections were then stained

for the metabolic marker, cytochrome oxidase (CYO). To demonstrate expression, slides

were incubated for 3-7 hours at 37◦ in a solution containing 20 mg of diaminobenzidine

hydrochloride in 10 ml of distilled water and 30 mg of cytochrome c with 3 g of sucrose

in 30 ml of 0.1 M phosphate buffer.

Electrolytic lesions were visualised in the stained brain sections using a Zeiss Axio-

Plan 2 Imaging microscope (magnification x25-x200). The position of each neuron was

assigned to the appropriate subdivision as defined by the CYO distribution. Ambiguous

recording sites were not included in the subdivided data.

4.2.5 STIMULI

4.2.5.1 SIMPLE STIMULI

Simple tonal stimuli consisting of 50 ms tone pulses, ramped up and down with 5 ms

cosine gates, were used to characterise the frequency response area (FRA) of the neu-

ral sites. The frequency and intensity of each tone were varied pseudorandomly over

the range of possible values in the stimulus set. In cortical experiments, frequencies

spanned either the range 2-32 kHz (low frequency stimulus set), or the range 25-100

kHz (high frequency stimulus set). In thalamic experiments, only the low frequency

stimulus set was used. Intensities ranged from 0-70 dB SPL in 5 dB increments. Each

of the possible frequency-intensity combinations was presented only once per stimulus

set.

In addition to the use of tonal stimuli to characterise frequency-intensity sensitivities,

a selection of other simple stimuli, including clicks, broadband noise, and frequency-

67



modulated sweeps, were utilised to identify sites where auditory activity was present.

4.2.5.2 COMPLEX STIMULI

For both cortical and thalamic experiments, dynamic random chord (DRC) stimuli (de-

scribed previously by Linden et al. (2003)) was utilised. This complex stimulus consists

of a series of spectrotemporally-rich random chords. The stimulus is clocked, such that

every 20 ms, a combination of 20 ms cosine-gated tone pulses with randomly chosen

frequencies is generated. The centre frequencies of the tone pulses were chosen from

24 or 48 different possibilities (25-100 kHz or 2-32 kHz, respectively; cortical data) or

48 different possibilities (2-32 kHz; thalamic data). The number of tones that made up

a chord was random, with an average spectrotemporal density of two tone pulses per

octave. The peak level of each pulse was chosen randomly from 10 different intensity

levels, 5 dB-SPL apart in the range 25-70 dB-SPL. A single trial of such a stimulus lasted

60 seconds. Full presentation of the stimulus lasted for 20 minutes, allowing for 20 con-

tinuous trials.

Spike times collected during presentation of such stimuli were analyzed off-line us-

ing Bayesian spike-sorting techniques (Sahani, 1999; Lewicki, 1998), to extract responses

from either small clusters of neurons (for the most part) or, occasionally, single-units.

4.2.6 MODELLING NEURAL RESPONSES TO SOUND

Much of the modelling that is utilised was discussed at length in chapter 3.

Briefly, we fit both linear and multilinear models to the DRC-evoked neural re-

sponses. The STRF model was discussed in section 2.2.2, and the stimulus-response

function (the function relating the stimulus spectrogram to the neural response) was

given by equation (2.1). Estimation of the STRFs was carried out using the automatic

smoothness determination algorithm (ASD) algorithm (Sahani and Linden, 2003a). This

technique was discussed in section 3.4.4. Conceptually, this estimation procedure amounts

to estimating the optimal amount of spectrotemporal smoothing to apply to the STRF

during a regularised linear regression.

The mathematical details of the multilinear framework that we utilise here was the

focus of chapter 3. We use the models described by equations 3.24 and 3.27. Estimation

was carried out using the alternating least squares (ALS) procedure, discussed in section

3.4.1. These models will be treated in more detail later in this chapter.
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4.2.7 PREDICTIVE CAPABILITY OF NEURAL ENCODING MODELS

In order to evaluate the predictive power of a neural encoding model, a standard ap-

proach is to use some measure of explainable variance; that is, some statistic that tells us

how much variability within the observed signal we are able to capture with our model

prediction. A standard statistic for such a purpose is the coefficient of determination

(or R2), given by R2 = (P (total)− P (error)) /P (total), where P is used here to denote

power (variance over time). P (total) refers to the power in the observed signal, and

P (error) refers to the power in the error (or residual). Normalising this difference by

the total power yields a value between 0 and 1, where 1 dictates that all of the variance

has been captured.

Neural data are noisy and perfect prediction of a noisy signal is, by definition, im-

possible. Thus, a statistic such as R2 is ill-suited for neural data. Here, we exploit the

fact that we are using multi-trial data, and utilise the signal power statistic (Sahani and

Linden, 2003b), which provides an estimate of the stimulus-related variability within

the observed signal (the component of the signal which we should, in theory, be able

to predict). We use this statistic as an alternative denominator in a pseudo-R2 statistic;

this, we will refer to as predictive power.

4.2.8 NEURONAL POPULATIONS

We used the signal power metric of Sahani and Linden (2003b) to establish which of our

neuronal recordings exhibited a significant amount of stimulus-related variability and

were worth utilising for further analysis. We discarded all recordings that did not have

a signal power at least 1 standard deviation away from zero.

This left us with populations of neuronal responses to dynamic random chord stim-

uli recorded in 82 cortical sites and 122 thalamic sites. The cortical sites can be further

subdivided into 39 sites located in A1, and 43 in AAF. The thalamic sites can be further

subdivided into 11 from the dorsal subdivision, 34 from the medial subdivision, and 51

from the ventral subdivision. Note here that not all 122 thalamic sites were able to be

attributed to a particular subdivision, due to histological ambiguity.
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4.3 RESULTS

4.3.1 MODELLING NEURAL RESPONSES IN THE AUDITORY CORTEX AND

THALAMUS

For decades, the STRF model has been used as a standard tool for modelling the stimulus-

response function of neurons within the auditory system (e.g., Aertsen et al. (1981);

Aertsen and Johannesma (1980); Aertsen et al. (1980); deCharms et al. (1998); Fritz et al.

(2007); Depireux et al. (2001); Woolley et al. (2005)). The STRF represents a linear esti-

mate of a neuron’s selectivity for the spectrotemporal features of a sound stimulus. If the

true stimulus-response function of the neuron is nonlinear, then such a linear estimate

will be inherently stimulus-dependent (Theunissen et al., 2000; Christianson et al., 2008).

This flavour of stimulus-response analysis has its roots in the classic Volterra/Wiener se-

ries expansion (Volterra, 1930; Wiener, 1958). Briefly, such a Volterra series expansion

(in the discrete setting) provides an estimate of the time varying firing rate r as

r = k0 + k1.x + xTK2x + · · · (4.1)

An STRF (or Wiener filter, given white noise input) provides an estimate of the first

order kernel k1. Higher order kernels can also readily be estimated using linear regres-

sion (with inputs augmented to reflect the kernel order; a second-order kernel would

require all quadratic combinations of the input, for example). Typically, gathering ade-

quate data to go beyond second-order is difficult however, due to the dramatic increase

in parameter count. As a result of this, an ideal solution could be to define a second

order model, but to restrict the second order interactions in some way, such that it can

become easier to estimate using limited data.

Here, we focus on a extended version of the context model, originally described by

Ahrens et al. (2008a). This model has been shown to be capable of capturing nonlinear

stimulus interactions such as combination sensitivity and forward suppression. Previ-

ously, the model included fully separable contextual interactions, and two input non-

linearities. Here, we remove both input nonlinearities, and allow both receptive field

components within the model to be inseparable. The stimulus-response function of the
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Figure 4.1: Extended context model. The diagram shows a contextual gain field (wτφ),
a stimulus (dynamic random chord, discretised in time and frequency), and a primary
receptive field (wtf ; an STRF-like field). The CGF acts to multiplicatively modulate
the effective sound level of each target tone within the stimulus (blue arrow) before the
primary receptive field linearly transforms the effective sound levels (green arrow) to an
estimate of the firing rate.

model is given by

r̂(i) = c1 +

J∑
j=1

K∑
k=1

wtf
jks(i− j + 1, k)

(
1 +

M∑
m=0

N∑
n=−N

wτφ
mns(i− j + 1−m, k + n)

)
(4.2)

This equation yields a prediction of a neural firing rate r̂ at some time i. The model

consists of a linear component, with a principal receptive field (PRF; analogous to an

STRF) denoted by wtf , and a contextual gain field (CGF) denoted by wτφ, which acts to

multiplicatively modulate the stimulus spectrogram prior to spectrotemporal summa-

tion by the PRF (shown schematically in figure 4.1).

The superscripts (in bold) of the receptive field components correspond to their

physical dimensions, with the italicised subscripts denoting their corresponding index.

The superscripts t and f correspond to the PRF dimensions of time-lag and frequency,

and are indexed by j and k, respectively. The superscripts τ and φ correspond to the

CGF dimensions of relative time-lag and relative frequency (with respect to a given tone
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within the stimulus), and are indexed by m and n. The upper limits of the j and k sum-

mations simply denote the maximum dimensions of the PRF (the maximum time-lag

(J), and frequency extent (K) of the receptive field). The summations over m and n are

subtly different. The m summation begins at 0 (rather than 1), in order to incorporate a

contextual time-lag of 0 into the model (thus the CGF τ dimension will be (M +1)). The

subscript n corresponds to frequency deviation and thus can be either positive or nega-

tive, with N denoting the maximum allowed deviation, leading to a CGF φ dimension

of (2×N + 1).

The intuition behind the model is that the CGF essentially defines an acoustic neigh-

bourhood (a local context) around each tone within the stimulus spectrogram. The

weighting of this neighbourhood is then used to multiplicatively modulate the inten-

sity of the given tone. This operation is carried out for every tone within the stimulus,

before a linear (STRF-like) prediction is generated. Thus, the predicted response of the

neuron at time i will be influenced by the local acoustic context present within the stim-

ulus.

Being linear in only first and second order multiplicative interactions, such a con-

text model has to be similar to a second order Volterra model, as given by equation

(4.1). The key difference however, is in the parametrisation of the context model. The

parametrisation that we use imposes specific structural limitations on the range of pos-

sible second-order interactions. These structural limitations are designed in such a way

that they mimic the nonlinear effect of stimulus context.

4.3.2 UNIFORMITY OF CONTEXTUAL INTERACTIONS

We previously discussed how our goal was to work with a model framework, similar in

flavour to a full second-order Volterra model, but where we have structurally limited the

range of possible second-order interactions to allow for easier estimation given limited

data.

A specific assumption of the context model as we have defined it in equation (4.2)

is that the context field is completely invariant with respect to different time-frequency

positions within the PRF. Specifically, we assume that contextual effects are equal at all

frequencies and time lags, i.e. a single CGF operates over the entire domain of the PRF.

This is not necessarily a valid assumption to make however, and we wish to directly test

this hypothesis of contextual uniformity before proceeding to further analysis.
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In order to achieve this, we extended the context model further, such that multiple

CGFs can be used, and that each has the scope to act on a different subset of the PRF.

In theory, this allows for contextual effects to be different for different combinations of

frequency and time-lag within the PRF.

Equation (4.2) is augmented as follows

r̂(i) = c1 +∑
{j,k}∈ρ1

wtf
jks(i− j + 1, k)

(
1 +

∑
mn

w τφ
1mns(i− j + 1−m, k + n)

)
+

∑
{j,k}∈ρ2

wtf
jks(i− j + 1, k)

(
1 +

∑
mn

w τφ
2mns(i− j + 1−m, k + n)

)
+

...∑
{j,k}∈ρs

wtf
jks(i− j + 1, k)

(
1 +

∑
mn

w τφ
Smns(i− j + 1−m, k + n)

)
(4.3)

where ρ1 · · · ρs are sets that contain different time-frequency ({j, k}) pairs of interest.

Here, the original stimulus-response function has been split into a sum of S terms,

where S dictates the number of CGFs present within the model. This equation has some

particularly interesting parallels to the Volterra approach that has been previously dis-

cussed. Specifically, if S is equivalent to the actual number of {J,K} elements within

the PRF (each time/frequency element has its own CGF associated with it), then such

a split context model is equivalent to a second order Volterra model, in that all second

order interactions will be captured. Of course, the number of parameters involved in a

such an estimation is huge (we have J ×K time-frequency elements, and each of these

has an associated M ×N CGF). With a such a large parameter count, we also need to be

particularly careful when evaluating the predictive capabilities of such a model, since

estimating such a large number of parameters leads to the problem of overfitting (which

essentially amounts to the “explanation” of noise). As a result of this, we chose to exam-

ine a number of simpler split models, where we segregated the PRF into two divisions,

and allowed a CGF to be associated with each of them. Even though such a split is

a clearly a large distance away (in modelling terms) from associating a separate CGF

with every time-frequency element, this model still allows us to test specific hypotheses

about whether the CGFs might differ when associated with different parts of the PRF.

Importantly however, the parameter count is such that it becomes far more manageable.
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Figure 4.2: Split context model. This diagram illustrates schematically, the model given
by equation (4.3). Here, the model consists of two CGFs (wτφ

1 and wτφ
2 ), and a PRF

(wtf ). Each CGF acts on a different subset of the underlying PRF (in this illustration,
the subsets correspond to the presence of excitation and inhibition). Although only two
CGFs are shown here for simplicity, in principle one can specify a model with a far
larger number (although this will increase the model parameter count dramatically, and
illustrates the need for large amounts of data to prevent overfitting).

In testing for contextual uniformity in such a way, there are a number of different

results that one could observe. Ultimately, the most obvious of these is to do with the

parameters themselves. If, for example, a model is fit with (say) twenty CGFs, and it

turns out that every CGF contains similar parameters, then this would serve to suggest

that the model was more complex than needed, and a simpler representation would be

the correct one. A similar argument could also be made with predictive power in that,

if one adds additional parameters to a statistical model, if those parameters are actually

useful, then the cross-validated predictive power should increase. There are, of course,

some potential issues here in regards to overfitting (some of these issues, and how they

can be handled were discussed in section 3.4.4).
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4.3.2.1 STRUCTURAL SIMILARITY

We fit a variety of different two-CGF context models to both our cortical and thalamic

populations of data. For the vast majority of the models that we fit, we noticed a re-

markable similarity in the structure present between pairs of CGFs. To illustrate this,

figure 4.3 (a) and (b) show cortical population averages of two two-CGF models. The

first of these (in (a)) is a model where one CGF (top row) has been applied to purely

the excitatory portion of the underlying PRF, while the second CGF acts upon the entire

range of the PRF. In this example, aside from a change in magnitude, the structure seems

to be qualitatively similar, with this population average exhibiting a large delayed sup-

pressive region, and two noticeable regions of near-simultaneous (τ = 0) enhancement.

This qualitative similarity also seems to persist in another split that was tried, shown in

(b). Here, the top CGF was applied only to the low-frequency half of the PRF, and the

bottom CGF only to the high-frequency half. Again, both a delayed suppressive region,

and a region of near-simultaneous enhancement can be observed.

We were particularly interested however, in directly testing whether contextual ef-

fects that act upon the excitatory and inhibitory components of the PRF are similar. This

was one of the only splits that we tried in which we actually seemed to observe a qual-

itative difference in the population average structure. This is illustrated in figure 4.3

(c). Here, there are certainly some aspects of similarity. There is a delayed suppressive

region present in both CGFs for example, although the timescale is somewhat different

in the CGF fit to the inhibitory part of the PRF (bottom row). The near-simultaneous en-

hancement clearly observable in the excitatory CGF (top row) is also not clearly present

within the inhibitory CGF.

To probe these differences further we carried out a detailed cell-by-cell analysis of

the excitatory/inhibitory split model, in order to further test our hypothesis of contex-

tual uniformity. Even though, on average, some differences in structure were observed,

we were interested in assessing whether or not the similarity between two CGFs belong-

ing to a single cell was comparable to the similarity between two random CGFs drawn

from the population. In order to quantify similarity, an uncentered correlation coeffi-

cient was used, which yields the cosine of the angle between the two CGFs. A value

of 1 indicates perfect correlation, whilst a value of -1 indicates perfect anti-correlation.

Figure 4.4 (a) shows the distributions of these correlation coefficients for random pairs

of CGFs within the population (in dotted black) and the correlation coefficients between

pairs of CGFs for the same cell (in black). The background distribution here is largely

75



 

 

−1

0

1

−0.1

−0.05

0

0.05

0.1

τ(ms)

φ
(o

c
ta

v
e

s
)

240 160 80 0
−1

0

1

(a) Excitatory/Background split.

 

 

−1

0

1

−0.2

−0.1

0

0.1

0.2

τ(ms)

φ
(o

c
ta

v
e

s
)

240 160 80 0
−1

0

1

(b) Low/high frequency split.
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(c) Excitatory/inhibitory split.

Figure 4.3: Population two-CGF model fits. This figure illustrates the qualitative similar-
ity between the population averages of some two-CGF model fits. (a): A model where
CGF1 (top) acts upon the excitatory portion of the PRF and CGF2 (bottom) acts on the
entire PRF. (b): A model where CGF1 (top) acts upon the low-frequency half of the PRF
and CGF2 (bottom) acts upon the high-frequency half. Notice that in both (a) and (b), the
structure between CGFs is qualitatively similar (up to a change in magnitude, notice-
able due to the same scale being used on both pairs). (c): A model where CGF1 (top) acts
on the excitatory part of the PRF, and CGF2 (bottom) acts on the inhibitory part. These
population averages share a similar suppressive region (with a temporal difference), but
the enhancement present at τ = 0 in CGF1 is not present in CGF2.

concentrated around 0, indicating that if a random pair of CGFs from the population

is chosen, they are most likely to have very little similarity to one another. Conversely,

the true distribution, representing CGF pairs from the same cell, is clearly skewed in

a positive direction away from 0. This quite clearly indicates that CGF pairs from the

same cell are likely to be highly correlated to one another.

Figure 4.4 (b) - (e) demonstrate that this similarity depends heavily upon the pre-

dictive capability of the model fit. In (b) we show the predictive power of the model

plotted against the correlation coefficient. Although outliers do exist, the general trend

within the data is that as the predictive power increases, so does the degree of similarity

between CGFs. In (c), we have included the CGF pairs for three model fits yielding a

high predictive power (0.69, 0.40, 0.47, from left-right). In (d), the fits yielded far lower

predictive powers (0.0005, 0.0199, 0.0153, from left-right). What should be obvious from

the representative pairs in (c) and (d), is that clear structure seems to exist in the CGFs

of models that can predict well, and no discernible structure within the CGFs in mod-
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(e) Temporal/spectral slices of the above CGF pairs.

Figure 4.4: Excitatory/inhibitory split model - single cell examples. (a): Distributions
of correlation coefficients indicating the level of similarity between two CGFs chosen
at random from the population (in dotted black), and the level of similarity between
two CGFs belonging to a single cell (in black). Clearly, the black distribution is skewed
in the positive direction indicating that CGF pairs from the same cells are likely to be
highly correlated, more so than a random pair from the population. (b): CGFs are more
likely to be similar if the predictive power is high. (c): Three CGF pairs for model fits
yielding high predictive powers (0.69, 0.40, 0.47, from left-right). (d): Three CGF pairs
for model fits yielding low predictive powers (0.0005, 0.0199, 0.0153, from left-right).
(e): Characteristic structure extracted from the CGFs located above. Top row: A spectral
strip at τ = 0, for all φ, the near-simultaneous region corresponding to a time-lag of
0-20 ms. Bottom row: A temporal strip at φ = 0, for all τ . Notice that these features are
remarkably consistent within the high predictive power pairs, but significantly less so
in the negative predictive power pairs.
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els that cannot predict well. Figure 4.4 (e) clarifies this further by showing some of

the characteristic structure from the corresponding CGFs in the rows above. The top

row details the structure present at τ = 0, the vertical strip corresponding to a near-

simultaneous time-lag of 0-20 ms, at all relative frequencies. The bottom row shows a

temporal strip, centered at φ = 0, and extending through all values of τ . It should be

relatively clear that these particular features are remarkably consistent within the high

predictive power CGF pairs. Consistent structure in the negative predictive power pairs

is far less obvious.

4.3.2.2 PREDICTIVE CAPABILITY OF MULTI-CGF CONTEXT MODELS

Having established a certain amount of similarity in the structure of the CGF pairs, we

were curious to establish how predictive these models were, especially when compared

to a single CGF model, with its assumption of contextual uniformity.

To investigate this, we replicated the analysis of Sahani and Linden (2003b) (also

Ahrens et al. (2008a)) and extrapolated both cross-validated (test-set) predictive pow-

ers and training-set predictive powers to zero noise power (where the noise power is

computed similarly to the signal power estimator discussed earlier, and provides an es-

timate of the temporal variability due to noise). These predictive powers can be treated

as lower and upper bounds on what can possibly be achieved by each model (for details,

see Sahani and Linden (2003b)). Figure 4.5 (a) shows schematically the different pre-

dictive power bounds achieved by fitting a standard linear STRF model, a single-CGF

context model, and the three two-CGF context models presented earlier, to a population

of cells within the auditory cortex.

From the perspective of overfitting, as the number of parameters increases in a sta-

tistical model, the predictive power on the training set alone should increase (due to

a reduction in training error attributable to the parameter increase). This is certainly

the case here, as the extrapolated training-set predictive power is at its lowest for an

STRF model, and gradually increases as one, and then two, CGFs are added. Perhaps

unsurprisingly, the extrapolated training-set predictive powers are almost identical for

all three two-CGF models. Even though the models are specified differently, they all

contain an identical number of parameters.

Conversely, cross-validated predictive power should only increase with the number

of model parameters, if the parameters are actually useful (since cross-validation can

be thought of as a measure of how well the model is capable of generalising). Thus,
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(b) Predictive power comparison for three split models.

Figure 4.5: Predictive capability of multi-CGF models. (a): Extrapolated predictive
power ranges. The upper bounds here are provided by extrapolation of the training-
set predictive powers, whilst the lower bounds are provided by extrapolation of the
cross-validated (test-set) predictive powers. The upper bounds increase as a function
of parameter count, as is expected. The lower bounds for the four context models are
greater than that of an STRF model, indicating that they all provide an increase in quality
over a simple linear fit. The lower bounds of all three multiple-CGF models are lower
than that of the single-CGF model, further emphasising the point that an additional
CGF does not seem to provide an increase in model quality. (b): A direct comparison
of the cross-validated predictive powers achieved through fitting a single-CGF context
model, or a two-CGF context model. Colours denote the different splits. Red: Excita-
tory/inhibitory. Green: Excitatory/background. Blue: Low frequency/high frequency.
For a large number of cells within the population, the predictive power lies either on or
below the y = x line, indicating that the increase in complexity provided by an addi-
tional CGF does not improve the quality of the model fit.
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both single, and two, CGF context models provide a (perhaps subtle) increase over a

simple STRF model. Of particular interest however, is the fact that the extrapolated

cross-validated predictive power actually goes down very slightly when a second CGF

is added (in all three cases). This indicates that the significant increase in complexity

does not add much to the quality of the overall model fit. This is probably due, in

large part, to the amount of similarity between both CGFs in this split formulation of

the context model. Figure 4.5 (b) serves to emphasise this point by directly plotting the

cross-validated predictive powers of the different context models against one another.

For all three split models, a large number of the points lie either on or beneath the y = x

dotted line, indicating that, for most cells, the addition of a second CGF does not provide

an increase in predictive capability.

Ultimately, these analyses have all been carried out in order to determine whether

or not the assumption of contextual uniformity within the single CGF context model

is a valid one. Can we use a model where we have the assumption that contextual

interactions are identical over multiple frequencies and time-lags? For the most part,

this certainly seems to be the case, and this particular structural limitation on second-

order interactions is a valid modelling assumption to make. As a result of this, all of the

following analyses will focus on the single-CGF model, as denoted by equation (4.2).

4.3.3 CONTEXTUAL GAIN FIELDS IN CORTEX AND THALAMUS

We proceeded to fit single-CGF context models to populations of data recorded from

both the auditory cortex and thalamus.

Aside from exclusion of the input nonlinearity part of the model, the crucial exten-

sion in this version of the context model is that we allow receptive field components to

be inseparable. As a result of this, we were particularly interested in carrying out a de-

tailed structural analysis on the estimated CGFs, since they can, in principle, provide us

with significant insight into how combination sensitivities manifest themselves within

the stimulus evoked neural response.

4.3.3.1 MODEL INTERPRETATION

Interpretation of any structure present within a CGF is particularly important if one

wishes to make claims about underlying biological mechanisms. In the previous section

we detailed why the assumption of contextual uniformity present within the single-CGF
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model was a valid assumption. Here, we will revisit this point, as it is important for an

accurate interpretation of model structure. The values within a CGF are best thought of

as providing a relative gain, since the modulated stimulus values still have to be linearly

filtered, and the resultant prediction depends on the sign of the underlying linear filter.

For example, suppose a CGF has a positive value at τ = 0, some half octave in frequency

above the current tone of interest. This means that if we have a tone in our stimulus,

and a second tone is played simultaneously, a half-octave above, then the weighting of

this tone in the convolution with the spectrogram should be increased. This will then

result in a facilitatory effect on predicted firing rate if the underlying PRF contains a

positive weight, or a suppressive effect on predicted firing rate if the underlying PRF

contains a negative weight. Basically, positive values will be made more positive, and

negative values will be made more negative. Of course, the opposite is true if the value

within the CGF is negative; this would lead to a decrease in excitation, or a decrease in

inhibition, depending on the sign of the PRF. Thus, the positive and negative weights

in the CGF indicate enhancement or suppression of the linearly filtered response, not

excitation or inhibition.

4.3.3.2 STRUCTURAL ASPECTS OF CGFS

One of the fundamental results that we would like to present is that the CGF structure,

observed in both cortex and thalamus, indicates that contextual interactions are heavily

dependent on the precise relative spectrotemporal arrangement of sound energy within

a complex stimulus. Specifically, both near-simultaneous and delayed sound energy

seems to play an important role in sound processing in both the auditory cortex and

thalamus. This structure will be analysed in greater detail throughout the rest of this

chapter.

We initially carried out a cell-by-cell analysis of the single-CGF model fits. Several

examples of this are provided in figure 4.6. Figure 4.6 (a) shows five PRF/CGF pairs

from the cortical population. As is to be expected, the PRF component of the model

closely resembles STRF structure previously reported in the mouse auditory cortex (Lin-

den et al., 2003). PRF and STRF properties will be directly compared later in this chap-

ter. One of the most noticeable aspects of the CGF examples in (a) (and also in (b), from

the thalamic population), is that similar structure appears consistently throughout both

populations. This is the same structure that was observed in the split model fits ear-

lier, and consists of a delayed suppressive region and some form of near-simultaneous

enhancement at τ = 0.
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(a) PRF/CGF pairs in cortex.
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(b) PRF/CGF pairs in thalamus.

Figure 4.6: CGF single cell examples. (a) and (b): Five examples chosen from the cor-
tical and thalamic populations. Notice that the inhibitory subfield widths tend to be
shorter in thalamus than in cortex. For the most part, the structure present within the
CGFs, even at the single cell level, is remarkably consistent across the population. In
the cortical examples presented in (a), almost all of the CGFs show some form of de-
layed suppression and near-simultaneous enhancement. This is typically similar in the
thalamic examples (b), although the structure seems less consistent.

An important point is that these two structural features are by no means the only sig-

nificant structure that appears within individual CGFs (as can be quite clearly observed

in both (a) and (b)). Our primary reasoning for focussing on the delayed suppression

and the near-simultaneous enhancement, is purely due to its remarkable consistency

across different cells. This will also become particularly evident when population CGF

structure is presented, later in this section. It is certainly the case that perhaps all of the

structure evident within each individual CGF could be relevant, and indicative of the

individual spectrotemporal response properties of particular cells. This is at least some-

what consistent with the ideas of Sadagopan and Wang (2009), who show that neurons

within the marmoset auditory cortex can be particularly sensitive to the precise spec-

trotemporal combination of tone pips.
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4.3.3.3 ASSESSING CGF POPULATION VARIABILITY

In order to get some indication of how variable this structure was, we applied a prin-

cipal components analysis (PCA) to all CGFs within both populations. Briefly, a data

matrix was constructed for each population, where each row within the data matrices

represents an individual CGF. We then centered the data prior to calculating its covari-

ance matrix. The principal component analysis itself amounts to performing an eigen-

decomposition on the covariance matrix, in order to yield a set of eigenvectors that are

representative of the directions in which the CGFs differ from the mean CGF. The first

five of these directions, for each population, are shown in figure 4.7 (a) and (b). The cu-

mulative amount of variance explained can be simply calculated as the cumulative sum

of the eigenvalue spectrum, normalised by its sum. This is shown in 4.7 (c) and (d). In

both cortex and thalamus, the first five principal components (as shown) are responsible

for explaining 72% and 77% of the variance, respectively.

The structure present within these principal components is of particular importance

in understanding where, within a CGF, variability is likely to occur. The first principal

component in the cortical population actually shows structure similar to what we have

observed in the population CGF examples thus far (in figure 4.3). This implies that it

is this structure that is also the most variable over the population. This does actually

correspond somewhat, to the differences we observe when analysing the CGFs of single

cells. Although there is consistent structure over multiple cells, one of the most notice-

able differences is a large diversity in the magnitude of the CGF weights (see figure 4.6

for specific examples of this). In the thalamus, the results are somewhat similar, in that

the first principal component indicates that the greatest variability occurs within the

delayed suppressive and near-simultaneous regions of the CGF. Interestingly though,

the first few principal components actually account for more variability within thala-

mus than they do in cortex, suggesting that the variability across the population may be

more constrained (dimensionally at least) in thalamus than in cortex. This could perhaps

be indicative of the level of complexity present within cortical, as opposed to thalamic,

responses. Such an increase in accountable variability might be explained by individ-

ual cells within the cortical population having more varied spectrotemporal preferences

than observed in the thalamic population.
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(c) Cortical spectrum and explained variance.
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(d) Thalamic spectrum and explained variance.

Figure 4.7: CGF population variability. Variability across the populations was quanti-
fied using principal component analysis. This amounts to performing an eigendeompo-
sition on the covariance matrix of the data (where each row in the data matrix is a sepa-
rate CGF). The resultant eigenvectors (the principal components) can be interpreted as
directions in which the CGFs vary from the mean CGF. (a) and (b): The eigenvectors
corresponding to the five largest eigenvalues from each spectrum. The spectrum itself,
along with the amount of variance explained (cumulatively) via the addition of each
principal component, is shown in (c) and (d). In cortex, from left to right, the amount
of variance explained as each component is added is 26%, 48%, 60%, 67%, and 72%. In
thalamus, the variance explained is 32%, 56%, 65%, 72%, and 77%.
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(a) Cortical population CGF.
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(b) Thalamic population CGF.

Figure 4.8: Population CGFs in the cortex and thalamus. (a) and (b): Cortex and thala-
mus, respectively. The main component of each figure is the population average CGF.
Averaging over either the temporal (τ ) or spectral (φ) dimensions, yields the line plots
situated on the immediate right, or below the CGF. Error bars correspond to 2 standard
errors.

85



240 160 80 0
−0.1

−0.05

0

τ (ms)

C
o

n
te

x
t 

S
tr

e
n

g
th

 

 

Cortex

Thalamus

(a) Average over all values of φ.

−1 0 1
−0.1

−0.05

0

φ (octaves)

C
o

n
te

x
t 

S
tr

e
n

g
th

(b) Average over all values of τ .
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(c) τ = 0.

Figure 4.9: CGF statistics in cortex and thalamus. (a): The population CGFs have been
averaged across all values of φ to yield these time-varying plots. Notice that the pri-
mary difference between the cortical and thalamic populations is evident here, in the
extent of the delayed suppressive region within the CGF. (b): Here, an average has been
taken across all values of τ to yield frequency-varying plots. Both the depth of the sup-
pression, and the spectral extent, seem to be similar between brain areas. (c): The near-
simultaneous region at τ = 0. Another difference is somewhat evident here, in that the
enhancement is restricted to only negative deviations in frequency within the thalamus,
and both positive and negative deviations within cortex. This may simply be an aver-
aging issue however (due to an under-representation in this particular dataset), since
4.6 (b) includes individual examples from the thalamic population where enhancement
occurs at both deviations.
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4.3.3.4 CGF POPULATION AVERAGES

In the context model, the dimensions of the CGF (given by τ and φ) are both relative.

Thus, we can average the CGFs over an entire population of neurons in order to observe

any contextual effects that are present on a grand scale (examples of such averaging

were presented earlier, in figure 4.3). Figure 4.8 shows the average CGF structure in

both cortical (a) and thalmic (b) populations. Averaging over either the temporal (τ ) or

frequency (φ) dimensions yields the line plots (provided with two standard error bars)

located on the immediate right, and below, the averaged CGFs. The magnitude of these

error bars further indicates that CGF structure is remarkably consistent throughout both

populations of cells. For further comparison between the two areas, figure 4.9 provides

the overlaid line plots for both the temporal and spectral averages (a) and (b), and the

near-simultaneous region at τ = 0 (c). Here, the effect of the near-simultaneity at τ = 0

is not present within the temporal averages, purely because it is being averaged out

with suppression at τ > 0.

The delayed contextual suppression manifests itself as a large negative bump for

values of τ < 0, and seems to be present in both cortex and thalamus (albeit it on

slightly different timescales). Such a region is likely to reflect aspects of the temporal

analysis of sound; specifically, reported contextual effects such as forward suppression.

Forward suppression has been detailed in the literature for decades (e.g. Calford and

Semple (1995); Brosch and Schreiner (1997); Fitzpatrick et al. (1999); Bartlett and Wang

(2005)) and is thought to relate to the psychophysically observed phenomenon of for-

ward masking, an effect which is often ascribed to a cochlear mechanism (Moore, 1980;

Jesteadt et al., 1982). One of the crucial differences however, is that forward suppres-

sion is typically associated with a reduction of excitation, in that a preceding sound will

reduce the response to a future sound. The effect that we observe within the context

model is more general than this. The delayed suppression here is more of a suppressive

gain control. As a result of this, as well as reducing the effect of excitation (like forward

suppression), it will also act to reduce the effect of inhibition.

One of the most notable differences between the CGF structure in cortex and thala-

mus is the temporal extent of this suppressive region. In the thalamus, the suppression

reaches its minimum at 40-60 ms, before gradually lessening in impact (the suppressive

effect is completely finished by 120-140 ms). Conversely, in cortex the suppressive re-

gion reaches its minimum at around 80-100 ms, and persists for a lot longer, not crossing

zero until almost 200 ms.
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The second of the contextual effects that was consistently observed is the presence

of a near-simultaneous facilitatory band at τ = 0. The functional significance of such

a band is that contextual interactions between near-simultaneous tones seem to be dif-

ferent from non-simultaneous tones. Such a nonlinear simultaneous enhancement is

something that has not been reported in the literature to any significant extent (but see

Sadagopan and Wang (2009)). As a result of this, it may be a feature of complex sound

processing (perhaps underlying harmonic analysis) that simply does not show under

simple stimulus conditions, or simple analyses.

In the following section, we will evaluate the predictive capabilities of the single-

CGF model, and demonstrate the significance of these structural regions.

4.3.4 PREDICTIVE CAPABILITY OF THE SINGLE-CGF CONTEXT MODEL

The predictive power of this version of the context model is higher than reported pre-

viously for the fully-separated model with input nonlinearity (Ahrens et al., 2008a). In

cortex, we extrapolated a lower bound predictive power of 0.35 (previously 0.32) and

an upper bound predictive power of 0.83. This is in comparison to a linear model fit to

the same data which yields an extrapolated lower bound of 0.27, and an upper bound of

0.44. The context model had greater predictive power in thalamus, with a lower bound

of 0.50 and an upper bound of 0.83. In comparison, a linear model was able to achieve a

lower bound of 0.44 and an upper bound of 0.64. These predictive power extrapolations

are shown graphically in figure 4.10.

It is also worth noting that in calculating these lower bound values, a concious choice

has to made in regards to what sort of function best describes the data to be extrapo-

lated. In Ahrens et al. (2008a) a quadratic fit was utilised (yielding the aforementioned

lower-bound predictive power of 0.32). Here, we have utilised a linear fit, yielding an

extrapolation of 0.35, due to the fact that it is not clear in the current populations of

data, whether a quadratic provides an accurate fit. Had a quadratic extrapolation been

utilised for consistency, then the reported value of 0.35 actually increases to almost 0.4.

To further visualise the improvement that the context model provides, figure 4.10 (a)

plots the cross-validated predictive power for both the context model and STRF model,

in both cortex and thalamus. In both populations, the context model clearly provides

the greatest predictive capability, indicated by the majority of points lying above the

y = x line.
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Figure 4.10: Predictive capability of the single-CGF context model. (a): Cross-validated
predictive powers for both the single-CGF context model and an STRF model are plot-
ted against one another, for both cortex (red) and thalamus (blue). In thalamus, all but
8 cells lie above the y = x line, indicating that the context model provides an improve-
ment in the vast majority of thalamic recordings. There are slightly more cortical cells
for which the context model does not provide a good fit. The distribution is skewed
such that if an STRF model yields a poor predictive power, the context model typically
performs worse. (b) and (c): Predictive power extrapolations for both cortex and thala-
mus. Context model fits are coloured blue, and STRF model fits are coloured red. Lower
bound extrapolations are denoted by filled circles, and upper bound extrapolations are
denoted by empty circles. The insets detail the point at which the extrapolation to zero
noise power occurs, and the bounds themselves are provided.
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There are several particularly interesting features here, that we wish to draw atten-

tion to.

• Thalamus seems to be more linear than cortex. The extrapolated lower bound pre-

dictive power for an STRF model in thalamus is ~20% greater than that of cortex,

indicating that a simple linear model is capable of capturing more stimulus-related

variability in this sub-cortical structure.

• The gain from the context model is more significant in cortex than in thalamus.

In cortex, we see a ~8% improvement over the linear model estimate whereas in

thalamus this improvement shrinks to around ~4%.

• Almost all thalamic cells show an improvement through the use of the context

model (for only 8 cells is it not the case). Interestingly, the cortical predictive

power distribution takes on an interesting shape. It is somewhat skewed, such

that if a simple linear model provides a poor fit to the cell, then the context model

does even worse. If, on the other hand, a linear model provides a good fit to the

cell, the context model always improves it. It seems that there are just some corti-

cal cells that, even though they have a significant stimulus-related component in

their neural response, are poorly fit by either a simple linear model or the context

model. (It is worth noting, that a similar trend is also noticeable in the predictive

power plots of Ahrens et al. (2008a), through the use of the fully separated context

model).

We hypothesised that a primary reason for the context model to provide an increase

in predictive power could be due to the fundamental nature of the structure present

within the CGFs, and the contextual interactions that such structure represents. This is

something that we specifically test in the next section.

4.3.5 SELECTIVE IMPAIRMENT OF CGF STRUCTURE

We were particularly interested in establishing what aspects of the context model were

responsible for providing the improvement in predictive power. To that end, we chose to

fit constrained (or “impaired”) versions of the context model, in which different ranges

of parameters within the CGF were not included within the estimation. We chose to

focus on three specific cases. We wanted to

• Eliminate the simultaneous facilitatory structure at τ = 0
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(b) Thalamic impairment.

Figure 4.11: Selective impairment of CGF structure. (a) and (b): Cortex and thalamus,
respectively. In both cases, the top row shows the population CGF, where the blacked
out regions have been impaired (not included within the estimation). Columns 1 and 3
directly represent impairing the simultaneous and delayed structure, respectively, that
is present in the vast majority of context model fits. Impairing this structure has a detri-
mental impact on predictive power (bottom two rows). Columns 2 and 4 represent
controls, whereby the same number of parameters have been impaired as their struc-
tural counterparts. There is very little impact on predictive power in both control cases,
indicating the importance of both simultaneous enhancement and delayed suppression
in providing a predictive boost.
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• Eliminate the delayed suppressive structure

• As two controls, eliminate regions devoid of “interesting” structure, where the

regions were of the same size and shape as the previously defined impairments.

The results of this selective impairment of structure serve to highlight the fact that

the structure we have presented within the population CGFs is what drives the predic-

tive increase of the model. These results are shown in figure 4.11.

We started by impairing the first two columns of the CGF (corresponding to τ =

0 and 1, at all relative frequencies φ (figure 4.11 (a)). The bottom two rows of (a) show the

noticeable effect that this had on predictive power, causing a marked decrease in almost

every cell, when the predictive powers of an unimpaired model are plotted against those

of the impaired model. Additionally, the bottom row shows the difference between

the unimpaired and impaired predictive powers, plotted as a function of noise power.

Here, a positive number implies that impairing the given structure results in a loss of

predictive ability.

Impairing the delayed region had a similar effect. The delayed region was defined

to consist of a small window (running from τ = 2 · · · 9 and φ = −4 · · · 4, or 40-120 ms

and 1/3 octaves around the current tone). Importantly, the number of parameters con-

strained in this impairment was almost identical to the previous simultaneous case. As

with the previous impairment, the loss of this structure resulted in a drop in predictive

power for almost every cell. This is true in both cortical and thalamic populations, and

serves to indicate the potential importance of the structure that we observe.

However, in order to ensure that we were observing a genuine effect and to further

validate that it was, in fact, the structure of interest that was responsible for the boost

in predictive power, we carried out two controls. We chose to constrain areas of the

CGF that were largely devoid of structure. In both cortex and thalamus, the delayed

suppression tends to die out at ~160 ms, and thus we decided to “shift” the impairment

zones into this region (shown in the second and fourth columns of figure 4.11. Both

impairments had very little effect on predictive power. This is quite clearly indicated

by the fact that the unimpaired predictive powers and impaired predictive powers are

largely identical (falling onto the y = x) line in both cases).

These results serve to highlight the importance of precise combinations of spec-

trotemporal energy in proving the observable increase in predictive capability over a

simple linear model.
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4.3.6 NONLINEAR PROCESSING CHARACTERISTICS OF CORTICAL AND

THALAMIC SUBDIVISIONS

With the knowledge that the structure we observed within the CGFs was capable of

providing a significant increase in predictive power, we wondered if these nonlinear

contextual effects might differ between cortical areas or thalamic subdivisions.

4.3.6.1 A1 AND AAF

Background material on cortical fields was provided in section 2.1.2.4.

Linden et al. (2003) described, in detail, differences in the STRFs fit to neurons in

mouse A1 and AAF. One of the primary findings of this work is of a significant differ-

ence in temporal response properties between A1 and AAF. Peak latencies and recep-

tive field durations of STRFs, and first spike latencies for responses to tone bursts were

significantly longer in A1 than in AAF. In addition to this, there was significant over-

lap in the spectral properties of the two areas, but STRF bandwidths in A1 were very

slightly broader than in AAF. Ultimately, these results serve to suggest that AAF may

be specialised for faster temporal processing. Inspired by these findings, we wondered

whether we could use the context model in an effort to identify differences in the way

that these two auditory cortical fields process stimulus context, and how any differences

relate to those discovered through the simpler STRF analyses. To this end, we analysed

the CGFs that had been fit to neurons in the separate populations.

Figure 4.12 shows the population results of such an analysis. One of the most strik-

ing observations here is that the structure shared between the two cortical fields seems

remarkably consistent. Both population CGFs include the delayed suppressive region,

and the facilitatory strip at τ = 0. Figure 4.12 (c) and (d) show the two key differences

between the context model fits to these different cortical fields. In (d), we can observe

that the magnitude of the simultaneous enhancement is slightly greater and also, the

spectral extent of the interactions is very slightly broader in A1 than in AAF. In (c), we

can clearly see that the timecourse of the temporal contextual interactions is faster in

AAF than in A1. In AAF, the delayed suppression seems to reach a minimum at ~80

ms, whilst it takes A1 an additional 20-40 ms in order to reach the same suppressive

depth. Once this minimum has been reached, AAF recovers quickly, and the effect of

delayed suppression is largely over by ~180 ms. In A1 however, the extent of delayed

suppression lasts until ~220 ms.
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Figure 4.12: Nonlinear processing characteristics of areas A1 and AAF in the primary
auditory cortex. (a) and (b): These figures show the CGF population averages in both
A1 (left) and AAF (right). The structure looks remarkably consistent over both of these
areas. (c): This shows the average temporal profile (averaged over φ). Notice that AAF
exhibits a noticeably faster timecourse than A1. (d): This shows the spectral profile of
the near-simultaneous region at τ = 0. The profile in both areas are similar, although
A1 seems slightly more spectrally broad.

We also analysed the PRFs from the context models, and compared them to STRFs in

order to assess the effects of including the CGF component within the model. Following

Linden et al. (2003), we extracted a number of different statistics from both the STRF and

PRF population (summarised in figure 4.13. The peak latency was the time to the center

of the peak in the first subfield of the receptive field (this was usually an excitatory

subfield, but occasionally an inhibitory subfield). Receptive field duration was defined

to be the time from the beginning of the first subfield to the end of the last subfield.

Excitatory subfield width was defined to be the width at half-maximum of the positive

peak in the temporal profile of the receptive field, whilst the inhibitory subfield width was

defined to be the width at half-minimum of the negative peak in the temporal profile.
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A1 AAF
STRF Peak Latency (ms) 43.85± 1.03 24.88± 0.50
STRF Receptive Field Duration (ms) 159.49± 2.94 125.12± 2.10
STRF Excitatory Subfield Width (ms) 51.28± 1.20 36.74± 1.35
STRF Inhibitory Subfield Width (ms) 94.87± 1.64 82.79± 0.92
STRF Excitatory Bandwidth (kHz) 20.92± 0.47 17.18± 0.74
STRF Inhibitory Bandwidth (kHz) 16.90± 0.36 15.25± 0.46
STRF Normalised Excitatory Bandwidth 1.19± 0.03 0.92± 0.02
STRF Normalised Inhibitory Bandwidth 1.02± 0.02 0.91± 0.02
PRF Peak Latency (ms) 40.77± 0.77 29.07± 0.91
PRF Receptive Field Duration (ms) 163.08± 3.28 146.98± 2.28
PRF Excitatory Subfield Width (ms) 50.77± 1.07 39.53± 1.24
PRF Inhibitory Subfield Width (ms) 105.64± 2.24 100.47± 1.43
PRF Excitatory Bandwidth (kHz) 19.75± 0.40 16.38± 0.65
PRF Inhibitory Bandwidth (kHz) 15.38± 0.45 15.11± 0.47
PRF Normalised Excitatory Bandwidth 1.18± 0.03 0.91± 0.02
PRF Normalised Inhibitory Bandwidth 0.95± 0.03 0.91± 0.02

Table 4.1: Spectral/temporal profile differences between A1 and AAF.

The excitatory and inhibitory bandwidth was defined to be the width at half-maximum (or

half-minimum) of the positive (or negative) peak in the spectral profile. The normalised

bandwidth was achieved by normalising either excitatory or inhibitory bandwidths by

the best frequency of the receptive field (defined to be the frequency corresponding to

the maximum in the spectral profile). Table 4.1 summarises these statistics for both the

STRF and PRF populations within A1 and AAF. Moreover, figure 4.14 summarises these

statistics graphically over the entire cortical and thalamic populations.

The first thing to immediately note is that the STRF statistics confirm what was re-

ported by Linden et al. (2003). Namely, that the inhibitory subfield width is shorter in

AAF that in A1, and the spectral bandwidth is slightly greater in A1. Interestingly, there

is one particular statistic in which there exists a significant difference between the PRF

and STRF populations. The inhibitory subfield widths in the PRFs are slightly longer

than observed in the STRFs. As a result of this, the overall receptive field durations are

typically a little longer. This is best observed in figure 4.14, where inhibitory subfield

width, and receptive field duration, are the only statistics can be seen to deviate away

from y = x.
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Figure 4.13: Receptive field statistics (adapted from Linden et al. (2003)). The peak latency
was the time to the center of the peak in the first subfield of the receptive field (this
was usually an excitatory subfield, but occasionally an inhibitory subfield). Receptive
field duration was defined to be the time from the beginning of the first subfield to the
end of the last subfield. Excitatory subfield width was defined to be the width at half-
maximum of the positive peak in the temporal profile of the receptive field, whilst the
inhibitory subfield width was defined to be the width at half-minimum of the negative
peak in the temporal profile. The excitatory and inhibitory bandwidth was defined to be
the width at half-maximum (or half-minimum) of the positive (or negative) peak in the
spectral profile. The normalised bandwidth was achieved by normalising either excitatory
or inhibitory bandwidths by the best frequency of the receptive field (defined to be the
frequency corresponding to the maximum in the spectral profile).
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Linear models are capable of capturing suppressive stimulus effects through neg-

ative regions within their spectrotemporal profiles. The addition of the CGF to a lin-

ear framework provides an additional way to create such effects. Ahrens et al. (2008a)

showed that, in comparing the amount of relative suppression between two multilinear

models, that a model devoid of context had significantly more relative suppression in

its linear component that a model with contextual information. This suggests that the

contextual component of the context model can be used to explain some of the suppres-

sion present within simpler linear estimates (attributing such suppression to the nonlin-

ear effects of stimulus context). We replicated this analysis, and directly compared the

amount of relative suppression (given by min(filter)/max(filter) −min(filter)), in both

the STRF and PRF populations. The results are presented in figure 4.15.

Figure 4.15 clearly shows that the amount of relative suppression is greater within

the STRF population, for both cortex and thalamus. This in an important insight, and

provides us with interpretation as to why the temporal structure of the CGFs is different

between A1 and AAF.

Linden et al. (2003) showed that the inhibitory subfield width in A1 was significantly

different from AAF. This is also shown here, in table 4.1. An interesting observation

however is that this temporal difference does not seem to be as obvious within the PRF

population (a difference of ~5 ms, as opposed to ~14 ms in the STRFs). This is actually

quite an important distinction, since it shows that the temporal difference originally ob-

served within the STRF population is better captured by the contextual component of

the mutilinear framework. This indicates that the difference in temporal processing be-

tween A1 and AAF can be attributed (in part, at least) to the effects of stimulus context.

Ultimately, these results show that differences in the temporal processing abilities of

A1 and AAF may reflect, in part, multiplicative stimulus interactions, such as forward

suppression.

4.3.6.2 SUBDIVISIONS OF THE MEDIAL GENICULATE BODY

Given that we were able to use the context model to shed light on nonlinear differ-

ences between cortical fields, we were curious as to whether we could also identify any

similar differences within the auditory thalamus. Although the properties of lemnis-

cal thalamic receptive fields have been studied (Miller et al., 2002), the responses of the

MGB subdivisions to complex sounds, and the effect of (short-term) acoustic context re-

mains elusive (although see Wehr and Zador (2005), for thalamic intracellular forward
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(b) Thalamus

Figure 4.15: Comparing PRFs and STRFs: relative suppression. We directly compared
the amount of relative suppression (given by min(filter)/max(filter) − min(filter)) in
both cortex and thalamus. The trend in results was similar in both areas, whereby in
almost all cells, the amount of relative suppression is greater within the STRF than the
corresponding PRF. This suggests that the CGF component of the context model is better
able to account for the suppressive effects of stimulus context.

suppression). Given this, we chose to subdivide our thalamic population (using histo-

logical delineation (see figure 4.16)), and analysed the context model fits to the resultant

cells.

Background material on the subdivisions of the thalamus was provided in section

2.1.2.3.

We first analysed the differences between the STRF and PRF populations, which

were shown earlier in figure 4.14. The same trends present within the cortical recordings

are also present within the thalamus, in that the primary difference between populations

is in the inhibitory subfield width and, as a result, receptive field duration (differences

between the populations can be seen in any off-diagonal elements within figure 4.14).

The difference in relative suppression that was discussed earlier, also holds (figure 4.15).

Table 4.2 shows the thalamic statistics, broken down by the different subdivisions.

The first thing to note is that the main way in which these statistics vary from cortex is

temporally. Peak latency, receptive field duration, and subfield widths are all shorter in

thalamus than in cortex (these temporal differences also conform to trends observed by

Miller et al. (2002)).

Figure 4.17 (top row) shows the population averaged CGFs, for the different sub-

divisions. They all share similar structure, indicating that there does not seem to be a

significant difference in the nonlinear processing characteristics of the different subdi-
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LGN

vMGB

mMGB

Electrode Tracks

dMGB

Figure 4.16: An example of thalamic histology. This representative 50 µm slice shows
a cytochrome oxidase stained MGB, with the relevant subdivisions clearly marked. In
addition to the auditory part of the thalamus, the lateral geniculate nucleus (LGN), part
of the visual thalamus, can also be observed. At the top of the slice, damage left by the
electrode array as it was pushed through cortex can be observed.

vMGB mMGB dMGB
STRF Peak Latency (ms) 13.14± 0.29 14.71± 0.51 15.45± 1.70
STRF Receptive Field Duration (ms) 129.41± 2.37 114.12± 3.19 110.91± 4.98
STRF Excitatory Subfield Width (ms) 34.51± 0.74 35.29± 0.96 23.64± 2.19
STRF Inhibitory Subfield Width (ms) 81.57± 1.12 73.53± 1.58 69.09± 2.98
STRF Excitatory Bandwidth (kHz) 12.84± 0.42 11.27± 0.57 5.96± 0.78
STRF Inhibitory Bandwidth (kHz) 13.85± 0.33 12.31± 0.45 11.03± 0.36
STRF Normalised Excitatory Bandwidth 1.17± 0.05 0.78± 0.04 0.41± 0.05
STRF Normalised Inhibitory Bandwidth 1.09± 0.02 0.89± 0.03 0.83± 0.05
PRF Peak Latency (ms) 13.14± 0.29 14.71± 0.51 15.45± 1.70
PRF Receptive Field Duration (ms) 140.78± 2.37 125.29± 3.70 156.36± 11.13
PRF Excitatory Subfield Width (ms) 33.73± 0.53 37.65± 1.29 23.64± 2.19
PRF Inhibitory Subfield Width (ms) 84.71± 1.43 76.47± 1.89 89.09± 3.40
PRF Excitatory Bandwidth (kHz) 13.35± 0.41 12.41± 0.56 5.96± 0.78
PRF Inhibitory Bandwidth (kHz) 14.72± 0.32 13.31± 0.42 15.37± 1.04
PRF Normalised Excitatory Bandwidth 1.22± 0.04 0.83± 0.04 0.41± 0.05
PRF Normalised Inhibitory Bandwidth 1.23± 0.03 0.93± 0.03 1.18± 0.10

Table 4.2: Spectral/temporal profile differences between thalamic subdivsions.
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visions. The bottom row of the figure shows temporal and spectral averages, and the

near-simultaneous region, from each of the population CGFs. Again, the overlap is sig-

nificant.

An important point to remember is that even though there is great overlap between

these different divisions, the context model still provides an increase in predictive power,

for almost every cell in the population, over an STRF model. This increase does not take

place if the structure within the CGF is impaired in some way (see section 4.3.5). Thus,

it seems likely that the delayed suppression and near-simultaneous enhancement is still

providing insight into biological mechanisms present within all three subdivisions.

One important point here is to do with data set size. The number of cells that were

able to be accurately assigned to the dorsal subdivision is small, consisting of only 11 (as

opposed to 34 in mMGB, and 51 in vMGB). This is likely due to recording bias, in that

vMGB is the largest (and thus, easiest) subdivision to target experimentally. Although

dMGB is likely to be targeted in all penetrations (since it lies directly above vMGB),

it proved difficult to elicit responses from. It has, however, been previously reported

that dMGB does not respond particularly well to simple acoustic stimuli, such as clicks,

which we used as search stimuli in our experiments (Buchwald et al., 1988). This is also

a contributing factor to the size of the dMGB error bars that are provided in table 4.2.

The fact that no differences were observed between the ventral and medial subdivi-

sions is puzzling however, especially given the fact that mMGB has been implicated in

long-term acoustic adaptation, through a variety of stimulus-specific adaptation studies

(Anderson et al., 2009b; Antunes et al., 2010). One potential explanation is simply that

of definition. Here, stimulus context is explicitly defined to be a short-term window that

surrounds each tone within the stimulus spectrogram. This is different from the more

long-term context that is typically associated with the aforementioned change detection

studies. With this in mind, it may genuinely be the case that biological mechanisms,

such as forward suppression, are in fact similar across thalamic subdivisions, and the

context model is correct in its invariant structure. This however, is a hypothesis that

remains to be tested.
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(f) Near-simultaneous region (τ =
0).

Figure 4.17: Comparison between the three thalamic subdivisions. (a), (b), and (c): These
plots show the population CGFs for the different thalamic subdivisions. All three CGFs
are incredibly similar in structure. (d), (e), and (f): These plots show the averaged tem-
poral and spectral profiles, and the near-simultaneous region, present within the above
CGFs. The level of overlap between the different subdivisions is clear.

4.4 DISCUSSION

4.4.1 NONLINEAR MODELING OF NEURAL RESPONSES

We have presented a variant of the context model (Ahrens et al., 2008a), that does not

utilise an input nonlinearity, and includes two inseparable receptive fields. One of the

primary assumptions that underlies the context model is the notion of contextual in-

variance; that is, the contextual effects in the model are identical for all frequencies and

time-lags. Before proceeding to analyse such a model, we wished to establish whether

this was a valid assumption to make. In order to do this, we described a framework

for “splitting” the context model, where multiple CGFs can be associated with different

underlying elements within the PRF. For the vast majority of splits that we tried, struc-

ture across CGFs was typically similar, and predictive power decreased when compared
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directly to the single CGF model. The only split in which this was not entirely obvious,

was when contextual effects were split across the excitatory and inhibitory components

of the PRF. In this case however, the similarities clearly outweighed the dissimilarities,

especially for cells with a high predictive capability. Ultimately, our results indicated

that contextual invariance was a valid assumption to make, and we proceeded with

analysis of the single CGF model accordingly.

One of the most striking results of this study is that the single CGF context model

consistently exhibits structure within the CGF weights, indicative of a near-simultaneous

enhancement (facilitatory interactions at τ = 0), and a delayed dampening effect. As a

result of this structure, the model outperforms standard linear estimates of neural fir-

ing in both cortex and thalamus. Interestingly, through this analysis we were also able

to show that the thalamus (as one might expect) is somewhat more linear than cortex.

Through the use of a simple linear model, we were able to capture between 40% and

60% of the stimulus-related variability.

As a final point, we were interested to see whether we could use the context model

to identify differences in nonlinear processing characteristics within different cortical

and thalamic subdivisions. In the cortical data, this was certainly the case; the delayed

suppression present within the CGFs when the model was fit to data from either A1 or

AAF differed in time course. There was no significant difference in inhibitory subfield

width within the linear component of the context model, whereas there was a significant

difference within STRF fits to the same data. Ultimately, this suggests that the context

model has been successfully able to attribute inhibitory changes within a simple linear

model to the nonlinear effects of stimulus context. There were no significant differences

between context model fits to multiple subdivisions of the thalamus. This result actually

provides testable predictions for future experiments. To our knowledge, even classical

two-tone paradigms have not been carried out in the thalamus (although see the intra-

cellular work of Wehr and Zador (2005)), and what results have been established have

not been attributed to a particular subdivision. In short, the mechanisms underlying

contextual interactions within the multiple subdivisions of the auditory thalamus re-

main an open question.

It is certainly worth noting however, that the approach taken within this thesis is

primarily “black-box”. That is, the modelling framework only acts upon an input (a

spectrogram) and an output (a spike train). Everything in between is treated as a un-

known. Such a level of abstraction provides limitations on how best to interpret results.

Here, contextual effects are interpreted as nonlinear stimulus interactions. Where these
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contextual effects arise however, be it at the level of the periphery, or further down-

stream, is a question that still needs to be addressed.

4.4.2 MECHANISMS OF STIMULUS CONTEXT

The inclusion of an inseparable local context has not only allowed us to predict both cor-

tical and thalamic responses more accurately than previously reported, but has allowed

us an insight into the potential mechanisms underlying the nonlinear effect of stimulus

context. Stimulus context is something that has been studied for decades in the liter-

ature. Early work was primarily focussed on studying extracellular responses to two

successive simple sound stimuli. Typically, such an experiment would study the influ-

ence of a preceding stimulus on a subsequent stimulus; essentially, a neural equivalent

of the tone-masker paradigms used frequently in psychoacoustics. Stimulus context is

capable of eliciting two primary effects on the neural response. The first effect is a facil-

itatory interaction, whereby the second stimulus in a pair elicits enhanced firing. Such

facilitatory responses have been found in a variety of species including anesthetised cats

(Brosch and Schreiner, 2000), birds (Margoliash and Fortune, 1992), macaque (Brosch

et al., 1999), and awake marmoset (Bartlett and Wang, 2005). The second effect is a sup-

pressive interaction, whereby the second stimulus in a pair acts to actively suppress

the neural response. Such suppressive effects have also been observed in a variety of

species including anesthetised cats (Calford and Semple, 1995; Brosch and Schreiner,

1997), awake rabbits (Fitzpatrick et al., 1999), and marmosets (Bartlett and Wang, 2005).

More recently, several studies have directly address the synaptic and cellular mecha-

nisms that give rise to such contextual effects (Wehr and Zador, 2003, 2005; Tan et al.,

2004). The nature of the contextual effects that we present are largely consistent with

these studies. Moreover, the context model is explicitly able to show how such contex-

tual effects impact upon neural responses to complex sounds.

4.4.3 IMPLICATIONS FOR PAST AND FUTURE LINEAR ANALYSES

A standard linear model is not capable of capturing a large amount of the stimulus-

related variability in either cortex or thalamus, suggesting that a different approach

is needed. The addition of contextual terms to such a model provides an increase in

predictive capability, but also allows for a novel interpretation of previous STRF analy-

ses. We showed that the linear component of the context model typically contains less

relative suppression than that of the corresponding STRF. Since the CGF provides an
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additional way to model suppressive effects, this suggests that some of the suppressive

regions observed through traditional STRF analyses can be better explained through

the use of the context model. This is an important point because it provides a means of

establishing which suppressive effects observed in the traditional linear analysis are ac-

tually directly attributable to the multiplicative effects of stimulus context. We showed

that this seems to be the case for data recorded in A1/AAF, and that the difference in

STRF inhibitory timecourse reported by Linden et al. (2003) seems to be due to differ-

ences in the timescale of delayed nonlinear suppression. As a result of this, we would

hope that such a multilinear analysis could be successfully applied to a multitude of

other STRF studies, in an attempt to explicitly tease out differences that can be attributed

to nonlinear contextual interactions.

Ultimately, we have provided a model framework whose ability lies in the successful

estimation of nonlinear interactions from the neural responses to complex sounds. Such

a framework provides a novel extension to the study of receptive fields in multiple brain

areas, and extends existing understanding of the way in which stimulus context drives

complex auditory responses.
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V

NONLINEAR SENSITIVITIES TO
STIMULUS CONTEXT IN DIVERSE
ACOUSTIC ENVIRONMENTS OF
INCREASING COMPLEXITY

OUTLINE

This chapter is the second of two primary results chapters within this
thesis. Previously, we showed that we could use the multilinear frame-
work to successfully estimate nonlinear interactions from the neural
responses to complex sounds. Here, we use a stimulus that varies in
spectrotemporal density, in order to mimic a range of diverse acoustic
conditions. We analyse the neural responses to such complex stim-
uli, and use the context model to investigate the underlying linear and
nonlinear mechanisms.



5.1 INTRODUCTION

The mammalian auditory system has a remarkable capacity to operate in widely diverse

acoustic environments, from the relative silence of a quiet library to the dense acoustic

ambience of a Pearl Jam concert. How the auditory system is capable of achieving such a

daunting task is not well understood. We wish to investigate the nonlinear mechanisms

that contribute to such behaviour.

In order to address this question, we recorded extracellularly from the auditory cor-

tex and thalamus of anaesthetised mice during presentations of spectrotemporally-rich

dynamic random chord (DRC) stimuli. In contrast to the version of the DRC stimulus

used in experiments described in chapter 4, here we used a DRC with a switching struc-

ture, whereby the spectrotemporal density (defined in terms of number of tone pulses

per octave) regularly changes, thus mimicking a range of diverse acoustic conditions.

We first present an analysis of the neural responses themselves, and quantify how the

variability within the responses changes as a function of the stimulus environment. We

then proceed to analyse the effects of contextual dependence; that is, we specifically ex-

amine whether or not the neural response to a specific stimulus can be influenced by the

stimulus preceding it.

Finally, we show how we can use both linear spectrotemporal receptive field (STRF)

models, and the extended context model framework (discussed at length in the pre-

vious chapter) to both predict responses to complex sounds, and elucidate the role of

nonlinear contextual interactions in diverse acoustic environments.

5.2 MATERIALS AND METHODS

5.2.1 ANIMALS

Four adult CBA/Ca mice were used to collect the cortical data and five adult CBA/Ca

mice (6-8 weeks old) were used to collect the thalamic data. In addition, five CBA/Ca

mice from an earlier control study were also used to collect thalamic data under a dif-

ferent anaesthetic.
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5.2.2 EXPERIMENTAL PROCEDURES

Surgical, histological, and electrophysiological procedures were as described in the pre-

vious chapter. The previous control data were recorded from mice that had been anaes-

thetised with a cocktail of urethane and bupranorphine, rather than the ketamine and

medetomidine protocol described previously. All other procedures were identical.

5.2.3 STIMULUS

In the previous chapter, we utilised a spectrotemporally-rich complex sound, known

as a dynamic random chord (DRC). Such a stimulus consists of multiple cosine-gated

20ms tone pulses that make up a random chord at each point in time. Here, we use a

DRC with a variety of modifications. A single trial of this modified DRC lasts for 90

seconds (30 seconds longer than the previous version of the stimulus). Importantly, this

modified DRC consists of three different spectrotemporal densities (given constraints

on the amount of data required to adequately estimate statistical models, more than

three densities would have proved difficult); sparse (0.5 tone pulses/bin/octave), mid (1

tone pulses/bin/octave), and dense (2 tone pulses/bin/octave). The centre frequencies

of the tone pulses were drawn from 24 different possibilities, ranging from 8-32 kHz.

Thus, the spectrotemporal densities can also be given per chord, with the sparse density

yielding (on average) 1 tone pulse/bin/chord, mid yielding 2 tone pulses/bin/chord,

and dense yielding 4 tone pulses/bin/chord. Each tone pulse is played at 55 dB SPL.

A 20 ms tone pulse length was used, with a 5 ms clock. This has the effect of “jitter-

ing” the tones, such that the onset of a new tone can occur whilst other tones are still

being presented. In order to prevent overlap within frequency bands, each tone was

given a pseudo-refractory period, such that at a given frequency, multiple tones cannot

be played simultaneously.

A specific switching structure was also imposed onto the stimulus. Over the course

of the 90 second trial, the density switches every 3 seconds. The switching order was

designed in such a way that every density is preceded by every other density (including

its own) at least once. The stimulus was repeated for 20 trials leading to a presentation

time of 30 minutes. Examples of these different densities, and the switching structure,

are provided in figure 5.1.
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5.2.4 MODELLING NEURAL RESPONSES TO SOUND

Much of the modelling that is utilised here was discussed at length in chapter 3 and

utilised in chapter 4.

Briefly, we fit both linear and multilinear models to the DRC-evoked neural re-

sponses. The STRF model was discussed in section 2.2.2, and the stimulus-response

function (the function relating the stimulus spectrogram to the neural response) was

given by equation (2.1). Estimation of the STRFs was carried out using the automatic

smoothness determination algorithm (ASD) algorithm, due to Sahani and Linden (2003a).

This technique was discussed in section 3.4.4.

The mathematical details of the multilinear framework that we utilise here was the

focus of chapter 3. We use the model described by equation 3.24. Estimation was carried

out using the alternating least squares (ALS) procedure, discussed in section 3.4.1.

5.2.5 NEURONAL POPULATIONS

We used the signal power metric of (Sahani and Linden, 2003b) to establish which of

our neuronal recordings exhibited a significant amount of stimulus-related variability,

and were worth further analysis. We discarded all recordings that did not have a sig-

nal power at least 1 standard deviation away from zero. This left us with populations

of neuronal responses to the switching dynamic random chord stimuli recorded in 46

cortical sites and 83 thalamic sites.

The data are pooled over multiple cortical fields, and different thalamic subdivisions.

For this particular study, we were interested in evaluating differences over multiple

stimulus conditions, and splitting the data up into subgroups would result in a loss of

statistical power within each group.

5.3 RESULTS

5.3.1 RELIABILITY OF NEURAL RESPONSES TO DIFFERENT DENSITIES

The DRC stimulus is specifically tailored towards estimating statistical models of neural

responses. However, we were particularly curious to establish what changes (if any)

were present within the neural responses themselves as the spectrotemporal density
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(d) Switching structure.

Figure 5.1: Switching DRC stimulus. (a), (b), (c): 500 ms samples of the different DRC
densities used to construct the full stimulus. The density of the sparse stimulus is (on
average) 0.5 pulses/bin/octave, the mid stimulus is 1 pulse/bin/octave, and the dense
stimulus is 2 pulses/bin/octave. Our bin width is 5 ms. (d): The switching structure of
the stimulus. Here, colour is used to denote density, with the lightest shade represent-
ing sparse, and the darkest shade representing dense. Every stimulus block lasts for 3
seconds, and the full duration of the stimulus is 90 seconds. The switching structure is
specifically designed such that every density is preceded by every other density (includ-
ing its own) at least once. The stimulus is also designed to contain repetition in stimulus
blocks, such that multiple presentations of an identical stimulus can be gathered. The
red dots placed at at stimulus blocks 10 and 20, denote a change in the “token” used.
This means that, until block 10, all sparse stimulus blocks are identical (as are the other
densities). This repeats every 10 blocks such that there are three different presentations
of each density.

of the stimulus changed. Interestingly, simply by looking at the data themselves, one

can notice specific changes in the way that the individual neurons in the populations

respond. It seems to be quite clear that the most notable difference is in regards to

the inherent variability across multiple presentations of the same stimulus. A specific

example is presented in figure 5.2. Here, for a representative thalamic neuron, we show

the responses to three, 3 second segments of the different densities included within the

stimulus. The colour code is set up such that as the stimulus density increases, the

colour darkens.

In figure 5.2 top row, we can see the raster plots for twenty presentations of the sparse

DRC. Clearly, this stimulus seems to evoke a particularly reliable response, indicated by

the vertical striping within the rasters. That is; this neuron responds in a similar fash-

ion to the same features within the stimulus on each trial. It seems to have quite low

trial-to-trial variability. As we move to the mid stimulus on the row below however, we

can observe that the variability seems to have increased slightly in response to a slightly
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denser stimulus. There is still some vertical striping, indicating that neuron is still re-

sponding at least somewhat reliably to the stimulus, but it is certainly not as pronounced

as before. The same trend is present as we move onto the third row. In response to the

densest of the three stimuli, the trial-to-trial variability of the neural response seems to

have increased dramatically, and there is no longer any clear indication that the neuron

is responding reliably to particular features within the stimulus.

This trend, that trial-to-trial variability increases as a function of density, is some-

thing that seems to persist over the entire population of both cortical and thalamic re-

sponses to the same stimulus. In order to try and quantify this change in neural relia-

bility, we chose to utilise a statistical approach, and calculate explicitly, the amount of

stimulus-related variability within the data. To do this, we used the signal power esti-

mator, proposed by Sahani and Linden (2003b). This technique was designed around

the principle that neural responses are noisy, and difficulties can arise from the fact that

repeated presentations of the same stimulus can elicit variable responses. The estima-

tor itself is based around the segregation of response power (where we use the term

power here, to denote variance over time) into a stimulus-dependent signal component

and a noise component. This stimulus-dependent component, the signal power, can be

estimated as

P̂ (µ) =
1

N − 1
(NP (r(n))− P (r(n))) (5.1)

where P (r(n)) and P (r(n)) are both trial averaged quantities denoting the power of

the average response, and the average power per response, respectively. Subtracting

this expression from P (r(n)) yields an expression for the averaged noise power

P̂ (η) = P (r(n))− P̂ (µ) (5.2)

This signal power measure enables us to both quantify the observed change in reli-

ability and ask if the observation made from individual neuron examples is true across

the entire population.

Reliability over trials can be directly related to stimulus-related variability over time,

in the sense that the more repeatable a neural response is (the more vertical striping is

present within the raster plots), the more variability will be present over time. This

is simply due to the large deviation from the mean firing rate, caused by the reliable

spiking activity. Conversely, if the reliability across trials is relatively low, then this

will result in low variability over time, due to the lack of large deviations from the
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Figure 5.2: Reliability of neural responses to different densities. Here, we show 3 second
responses (one complete stimulus block) from a representative thalamic recording. The
colours of the raster plots are as defined previously, and correspond to the different
densities (light - dark, sparse - dense). The PSTHs of each raster are overlaid at the
bottom. The primary result to note, is that trial-to-trial variability increases as a function
of density.

112



sparse mid dense
0

0.002

0.004

0.006

0.008

0.01

0.012

P<0.001

P<0.001

S
ig

n
a

l 
P

o
w

e
r 

(s
p

ik
e

s2
 p

e
r 

b
in

)

 

 

Cortex

Thalamus

(a) Signal power.

sparse mid dense
0.06

0.08

0.1

0.12

0.14

0.16
P=0.87

P=0.49

N
o

is
e

 P
o

w
e

r 
(s

p
ik

e
s2

 p
e

r 
b

in
)

(b) Noise power.

Figure 5.3: Signal power for different densities. (a): Here, we show the population av-
eraged signal power for both cortex (in red) and thalamus (in blue). The signal power
clearly decreases as the stimulus density increases (Krukal-Wallis test; P<0.001). (b):
Whilst the signal power clearly shows a density driven decrease, the noise power re-
mains relatively constant.

mean. Thus, given our observations of the raw data, we would predict that signal power

should decrease as a function of increasing density.

In figure 5.3 (a), we explicitly calculate the signal power for the responses to the

different densities, and average over both cortical and thalamic populations. A de-

crease can be quite clearly observed, in both populations, indicating a large drop in

stimulus-related variability as the stimulus density increases. These changes are statisti-

cally significant (Kruskal-Wallis test; P<0.001). This serves to quantify the observations

we made in figure 5.2. Interestingly, as the signal power decreases, the noise power

stays relatively constant (the difference in noise power as a function of density is not

statistically significant). This implies that the amount of variability within the noise is

not changing as the density increases, it is purely the amount of variability elicited by

the stimulus which shows a decrease.

5.3.2 NO CONTEXTUAL DEPENDENCE ON STIMULUS DENSITY

We specifically chose to design the stimulus with a particular switching structure. Rather

than allowing the density to switch at random however, we imposed a constraint such

that every density had to be preceded by every other density, including its own (this is

detailed graphically in figure 5.1 (d)). What this means is that we can explicitly analyse

the neural responses to a given density in context; that is, we can treat the response to a

particular density as a probe stimulus, and observe how responses to the probe change

when they are preceded by either the same, or a different, density. This particular exper-

113



imental design was inspired by the work of Asari and Zador (2009), who used a similar

paradigm (with a selection of different stimuli) in order to show long lasting contextual

dependence in intracellular traces recorded from rat auditory cortex. We wondered if

we would be able to observe similar behaviour using our extracellular recordings, when

just the spectrotemporal density of a complex stimulus was changed.

Figure 5.4 shows what is essentially a representative example of contextual depen-

dence, the same trend of which is prevalent throughout both cortical and thalamic pop-

ulations. This particular example focusses on the use of one of the sparse density tokens

as a probe stimulus, but similar results are achieved regardless of the identity of the

probe. In reference to the particular example shown in figure 5.4, we were interested

in establishing if the neural response to this sparse stimulus was affected in some way,

by the density of the stimulus which preceded it. Figure 5.4 (a) shows the stimulus

spectrogram over a two second period, one second before and after a density transition

point (time is denoted relative to probe, so the onset of the sparse stimulus is given

at time zero). The preceding stimulus (before time zero) can be either sparse, mid, or

dense, and the colour of the lettering indicates the relevant identity of the responses be-

low. Thus, we have three different transitions here; from sparse to sparse, from mid to

sparse, and from dense to sparse. In (b) we explicitly show the PSTHs (trial averaged

neural responses) to these three density transitions. If we focus purely on the responses

to the preceding stimuli, then it seems relatively clear that the different densities evoke

somewhat different responses, as one would expect. In contrast to this, the responses to

the sparse stimulus, regardless of which density they were preceded by, tend to elicit a

stereotyped response, suggesting that the spectrotemporal density of a preceding stim-

ulus does not have a significant effect upon the response to a probe.

This is further quantified in (c), whereby we followed Asari and Zador (2009) and

performed a nonparametric Kruskal-Wallis test to assess statistical significance at each

point in time. This amounts to performing multiple statistical tests, one for each 5 ms

time bin. In each of these 5 ms bins, each response has 20 spike counts associated with

it, where 20 is number of trials within the DRC presentation. Thus, the null-hypothesis

of the statistical test is simply that the neural responses within the three groups are

the same. The resultant P-values are shown in (c). Here, we are showing the log P-

values, purely for ease of visualisation. The red line denotes a threshold corresponding

to P=0.01.

In the responses to the preceding stimuli, where we would expect the neural re-

sponses to be different, we can see extended regions of statistical significance (where
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Figure 5.4: Contextual dependence on stimulus density. Here, we show a representa-
tive example of contextual dependence in cortex, the same trend of which is prevalent
throughout both cortex and thalamus. (a): Here, we show the stimulus spectrogram
over a two second period, one second before and after a density transition point. The
stimulus after this transition point (probe) is sparse. The preceding stimulus, can be ei-
ther sparse, mid, or dense, and the colour of the lettering indicates the relevant identity
of the responses below. (b): Neural responses to the stimuli included above. These are
all PSTHs, averaged over 20 presentations of DRC. The black line situated at 0 s denotes
the transition point to a probe stimulus. Thus, everything that lies on the right of this
line is in response to the sparse segment of stimulus shown above. On the left of this
line are the responses to the preceding density, be it sparse (red), mid (green), or dense
(blue). (c): Statistical significance. We tested for statistical significance between the three
groups, using a nonparametric Kruskal-Wallis test. The y-axis here shows log P-values,
so that significant values can be readily identified. The red line denotes a threshold
of P=0.01. In response to different densities, the neural response is typically different,
leading to extended regions of statistical significance. In response to a sparse density,
regardless of which density preceded it, the neural response is largely stereotyped, with
very few regions of statistically significant difference.
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the P-value drops below threshold). These dips correspond directly to regions within

the neural responses that are most different. In contrast to this however, there are no ex-

tended regions of statistical significance between probe responses (in fact, at only three

points in this example did the P-value drop below threshold, which, due to the prob-

lem of multiple comparisons, was not enough to yield statistical significance). This is

indicative of the probe stimulus eliciting a stereotyped neural response, regardless of

the identity of the stimulus that precedes it. Of course, this is purely for one example

from the cortical population, and we were particularly curious to establish whether this

trend was present throughout the rest of the cortical and thalamic populations. To this

end, we computed temporal vectors of P-values (analogous to (c)), for every cell in the

population, and every sparse probe stimulus token (of which there are three). Figure

5.5 shows these P-values for both cortex and thalamus (different rows), and each sparse

stimulus token (different columns). Note that here, the plotted P-values have been cor-

rected for multiple comparisons. Each row in these plots corresponds to 600 different

statistical tests (3 seconds in 5 ms bins) and thus, it likely that at the 0.01 level, some of

these results will be due to chance. The P-value has been adjusted to reflect this. As can

be observed, there are no regions of statistical significance within cortex. In thalamus,

only five cells showed some context dependence, within the first 200 ms after probe on-

set, but the rest of the population showed nothing. This result was consistent across the

use of every density as a probe stimulus (figures not shown).

As a result of this, we were curious whether either linear or nonlinear modelling

techniques could be utilised to shed light on any contextual processing that may be

taking place, latent within the neural responses.

5.3.3 MODELLING NONLINEAR SENSITIVITIES TO STIMULUS CONTEXT

5.3.3.1 CHANGES OF STRFS WITH SOUND DENSITY

The changes of linear receptive field estimates with sound density is something that was

first detailed by Blake and Merzenich (2002) in the auditory cortex of the owl monkey. In

this study they reported systematic changes in receptive field structure as a function of

the stimulus environment. These structural changes amounted to both a spectrotempo-

ral sharpening and a decrease in the amount of excitation present within the receptive

fields as the stimulus became increasingly dense. Ultimately, they concluded that the

auditory system represents a single tone pip with increased specificity, and by fewer ac-

tion potentials, as the sound density increases. Similar results have also been obtained
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Figure 5.5: Population context dependence on stimulus density. (a) and (b): Cortex and
thalamus. Here, we show P-value rasters from every cell in both populations, sorted
by maximum temporal extent of dependence. The probe stimulus here is the spars-
est density, and the columns show the three different tokens of this density within the
stimulus. P-values have been corrected for multiple comparisons. There is no context
dependence within cortex. Five cells within the thalamic population show limited con-
text dependence at ~200 ms after probe onset.

by Valentine and Eggermont (2004); Noreña et al. (2008) in cat.

Our experimental design is very different to what has been previously used to study

changes in stimulus density (Blake and Merzenich, 2002; Valentine and Eggermont,

2004; Noreña et al., 2008). In addition to the use of both a different animal model, and

different anaesthetic protocol, our DRC stimulus contains different densities. The dens-

est stimuli utilised by Blake and Merzenich (2002) is 1 tone pulse/8 ms/octave. By

comparison, our sparsest stimuli is 0.5 tone pulses/5 ms/octave, and our densest stim-

uli is 2 tone pulses/5 ms/octave. Thus, for the most part, our spectrotemporal densities

are denser that what has been utilised in the literature before. Frequency ranges were

also different between studies, which has an impact on the overall density of the sound.

Given these differences however, we were curious to what extent these previously doc-

umented effects were present within our cortical recordings, and how they differ in the

thalamus.

For each cell in the cortical and thalamic populations, we fit linear STRF models to

the different densities within the switching stimulus (since the stimulus switches every

three seconds, we extracted the stimulus segments corresponding to each density, and

the corresponding spike times, and concatenated them together). We were ultimately
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Figure 5.6: Decrease in neural activity with increasing density. Top row: Here, we show
the population change in maximum (peak) excitation and minimum (trough) inhibi-
tion, in both cortex and thalamus. The trends are consistent, and statistically significant
(Kruskal-Wallis test, P¡0.001). As stimulus density increases, the amount of excitation
and inhibition present within the receptive fields systematically decreases. Bottom row:
Here, we show the population change in response strength. Again, a systematic and
statistically significant decrease in both excitatory and inhibitory response strength can
be observed in both areas.

interested in assessing three key things:

• We computed the maximum and minimum values of each STRF, in order to look

at how the maximum levels of excitation and inhibition varied across the popula-

tions.

• We thresholded the STRFs at half-maximum (for excitation) and half-minimum

(for inhibition), and proceeded to sum all of the positive (or negative) time-frequency

elements. This gives a measure of excitatory/inhibitory response strength.

• We calculated spectral bandwidths, to establish if any spectral sharpening oc-

curred over the populations.
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One of the most notable differences in the STRFs, is that as the stimulus density

increases, the amount of excitation and inhibition within the receptive field drops quite

dramatically. This result is consistent across both cortical and thalamic populations, and

is detailed in figure 5.6. We quantified this decrease in terms of both maximum (peak)

excitation and minimum (trough) inhibition, and also excitatory and inhibitory response

strength.

Both of these measures yield the same, statistically significant, trends indicative

of a higher stimulus density eliciting a weaker neural response (shown in figure 5.6).

One interesting point to note however, is that even though the decrease in max excita-

tion/inhibition is statistically significant, the excitatory drop (from ~0.025 to ~0.005) is

larger than the corresponding decrease in inhibition (from ~-0.01 to ~-0.005). This trend

is visible in both cortex and thalamus (figure 5.6 (a) and (b)).

We also assessed the extent to which spectral sharpening was present across both

populations (assessed by spectral width at half maximum (for excitatory bandwidths)

or half minimum (for inhibitory bandwidths)). In the cortical population, we observed

a decrease in excitatory spectral bandwidth between the sparse and mid densities (fig-

ure 5.7), consistent with the idea that sounds in dense acoustic environments are rep-

resented with increased specificity in cortex. We did not observe a corresponding drop

in bandwidth between the mid and dense stimuli however. We also observed a signif-

icant decrease in inhibitory spectral bandwidth, something that has not been reported

previously.

In the thalamic STRF population, bandwidths were more similar over the different

densities. We observed a significant change in inhibitory spectral bandwidth but the

excitatory spectral bandwidth remained relatively constant (figure 5.7 (b)).

It is notable that the primary difference in our observations with what has been re-

ported previously (Blake and Merzenich, 2002), is a reduction in the amount of inhibi-

tion present within the receptive fields. Aside from the use of different densities within

the stimulus, one of the fundamental differences with our study is our rigorous use of

regularisation whilst estimating the statistical models (this was treated in chapter 3).

Such regularisation was not utilised in any of the previous STRF density studies. Due

to the fact that we observe such a significant reduction in stimulus-related variability as

the density increases, it is likely that the regularisation will act to “shrink” the parame-

ters somewhat, due to a poorer model fit. This could potentially account for some of the

additional differences between studies that we observe.
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Figure 5.7: Changes in spectral bandwidth. Spectral bandwidth was assessed by calcu-
lating the spectral width at either half maximum (for excitation) or half minimum (for
inhibition). In cortex, a decrease in excitatory bandwidth can be observed between the
sparse and mid stimuli, in addition to a systematic decrease in inhibitory bandwidth.
The decrease in excitatory spectral bandwidth over the range of densities in cortex is not
statistically significant however (Kruskal-Wallis; P=0.05), but the decrease in inhibitory
spectral bandwidth is (Kruskal-Wallis; P<0.001). In thalamus, the excitatory bandwidth
remains relatively constant (Kruskal-Wallis; P=0.48), whilst the inhibitory bandwidth
decreases (Kruskal-Wallis; P<0.01).

5.3.3.2 PREDICTIVE CAPABILITY OF LINEAR AND MULTILINEAR MODELS

Since we actually had a measure of the stimulus-related variability for each of the cells

in response to the different stimulus densities, we were able use this information to eval-

uate the predictive capability of the learnt STRFs. As in the previous chapter (section

4.2.7, we used a definition of predictive power, which is essentially a measure of ex-

plainable variance, but whereby we use the signal power to give us an estimate of how

much stimulus-related variability can be explained by a given model.

In cortex, the fraction of signal power successfully predicted by the linear STRF mod-

els clearly decreased as the stimulus density increased. This is shown in figure 5.8 (a),

where density estimates of the STRF predictive powers have been provided. Linear

predictions of responses to the sparse stimulus in cortex yielded a cross-validated ex-

trapolated predictive power of around 34%. This number decreases to 28% and then

15% as the stimulus becomes increasingly dense. This is evident in the leftward shift of

the density estimates in figure (a). Interestingly, it can also be observed that, at higher

densities, there are a far larger number of predictive powers that fall below zero, indi-

cating a poor model fit. In the thalamus, this trend is similar, but not as pronounced

(in (b)). Noticeably, the thalamic responses were easier to predict using a linear model,
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Figure 5.8: Response nonlinearity increases with stimulus density. Here, density es-
timates of the STRF predictive power distributions in both cortex (left) and thalamus
(right) have been provided. The leftward shift that is particularly evident in cortex is in-
dicative of encoding nonlinearities playing a more important role in particularly dense
acoustic environments.

indicating (as in the previous chapter) that thalamic responses are somewhat more lin-

ear than cortex. The sparse stimulus yielded a cross-validated predictive power of 50%,

which dropped to 42% and then 40%, as the density increased. In (b), this leftward shift

can be observed.

Such a result has implications for how we can think about the role of nonlinearities

in diverse acoustic environments. The fact that a linear model’s predictive capability de-

creases as the stimulus density increases is indicative of the fact that such nonlinearities

play a more significant role as an acoustic stimulus becomes denser and more complex.

We were particularly curious as to how much of a role stimulus context played in shap-

ing the neural responses to what are essentially stimuli of increasing complexity. To this

end, we fit multilinear context models (as described in the previous chapter) to each cell

within the population.
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Before we proceed to discuss the structure observed within the context model, we

will first summarise the predictive benefit that it yields. Ultimately, the context model

provided a substantial gain in predictive ability over a simple linear model at all den-

sities, and for both cortex and thalamus. Figure 5.9 summarises several key elements

of this analysis. In (a) and (b), the predictive power density estimates of the context

model have been shown. Although the predictive power decreases as a function of den-

sity (as does the linear model), the predictive increase of the context model over the

corresponding STRF estimates is particularly noticeable ((c) and (d)).

A linear model provided a particularly poor fit to the cortical data, especially at

higher densities (as was evident from the large number of negative predictive powers

in 5.9 (a)). The context model has improved on this dramatically, providing quite a

substantial gain. In the sparse case, the lower bound has risen from 34% to 61%, almost

doubling the predictive power of the model. Similar gains can also be observed the

higher densities with mid rising from 28% to 42%, and dense rising from 15% to 32%.

These are summarised in figure 5.9 (e).

The thalamus also saw substantial gain through the use of the context model, al-

though this gain was not as large as seen in cortex. In the sparse case, the rise in predic-

tive power was from 50% to 63%, in mid, from 42% to 48%, from 40% to 53%. Interest-

ingly, even though the lower bound extrapolation does yield a larger predictive power

in the dense case than the mid case, the actual density estimates of the predictive power

distribution (shown in figure 5.9 (b)) still clearly shows a downward shift as the density

increases. It may be that the slight deviation in extrapolated value is due to the linear fit

being somewhat biased by outlier values. As before, these statistics are summarised in

figure 5.9 (f).

5.3.3.3 CGF STRUCTURE IN CORTEX AND THALAMUS

Given that the context model provided a substantial gain in predictive power over a

simple linear model, it is quite clear that stimulus context must play an important role

in shaping the neural response in complex sound environments. As a result of this,

we proceeded to analyse the structure of the learnt context models, in an attempt to

establish the nature of the nonlinear interactions at work.

In the previous chapter, we showed that such a context model, when fit to both cor-

tical and thalamic responses to DRC stimuli, yields CGFs that contain particularly rich

spectrotemporal structure. This structure becomes particularly apparent when popula-
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Figure 5.10: Population CGF structure in cortex. This plot summarises the CGF analy-
sis that was carried out in cortex. (a): Population CGFs. (b): The average timecourse
of delayed suppression for each density. Here we have averaged across an 1 octave
window surrounding the current tone. In doing this, we can observe the minimum
of the suppressive trough shifting to the right as the stimulus density increases. (c):
Spectral average. Here, we can see the magnitude of the weights changing, and more
importantly a decrease in spectral bandwidth (in the sparse and mid cases). (d) and (e):
Suppressive temporal width and suppressive spectral bandwidth. There is a systematic
decrease in the suppressive temporal width at all densities, and a decrease in spectral
bandwidth between the sparse and mid stimulus (the dense stimulus does not contain
much average spectral structure in cortex).
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Figure 5.11: Population CGF structure in thalamus. This plot summarises the CGF anal-
ysis that was carried out in thalamus. (a): Population CGFs. (b): The average timecourse
of delayed suppression for each density. Here we have averaged across an 1 octave win-
dow surrounding the current tone. In doing this, we can observe the minimum of the
suppressive trough shifting to the right as the stimulus density increases. (c): Spectral
average. Here, we can see the magnitude of the weights changing, and more impor-
tantly a decrease in spectral bandwidth. (d) and (e): Suppressive temporal width and
suppressive spectral bandwidth. There is a systematic decrease in both the suppressive
temporal width and spectral bandwidth at all densities.
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tion averages are considered, and largely consists of a region of delayed suppression,

and a near-simultaneous region of enhancement.

The CGF structure that we observe in the current data changes in a systematic way as

the stimulus density increases. The results of this CGF analysis are shown in figure 5.10

and 5.11. In the sparse CGFs within both cortex and thalamus, the primary discernible

feature seems to be a large region of delayed suppression. The temporal extent of this

region is similar to what we reported in the previous chapter. Here, the temporal extent

in cortex is the full 150 ms range of the CGF. In thalamus, the delayed suppression does

still last for the full duration of the CGF (150 ms), but significantly decreases in efficacy

after around 100 ms. Interestingly, although the full temporal extent of the suppression

is somewhat lengthy, the minimum suppression is reached after only 75 ms in cortex,

and 40 ms in thalamus. These statistics are highlighted in 5.10 and 5.11.

In addition to this delayed region, there is also a region of simultaneous enhance-

ment, present in both areas. In this particular version of the stimulus however, the tem-

poral resolution has been increased to 5ms, due to the jittered nature of the tones within

the spectrogram. In the reports of simultaneous enhancement in the previous chapter,

the resolution was fixed at the lengthier 20 ms and thus simultaneous in that context

was sound energy occurring simultaneously within a 0-20 ms bin. The finer resolution

here allows greater specificty.

In cortex, this simultaneous enhancement is situated at either side of the current

tone, providing an enhancement in gain whenever sound energy is present above or

below the frequency a given tone. This gain seems to be somewhat asymmetric in this

particular dataset however, with the temporal extent of the enhancement lasting around

20 ms on the negative side, and almost 40 ms on the positive side. Given the resolution

of the simultaneity that we reported in the previous chapter, these timescales are still

consistent. In thalamus, this simultaneous enhancement occurs only on the positive

side of the current tone, and lasts for around 25 ms.

As the density of the stimulus increases however, there seems to be one primary sys-

tematic change in the CGFs that occurs in both cortex and thalamus. The spectrotempo-

ral range of the delayed nonlinear interactions shrinks as the stimulus becomes denser

and more complex. This is shown in 5.10 (b), and (c), and 5.11 (b), and (c). In both

cases, (b) and (c) show temporal averages over a 1 octave window around the current

tone. This shows the suppressive trough shifting to the right as a function of density, ex-

plicitly shortening the temporal extent of the nonlinear interactions. This is particularly
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evident in cortex, where the minimum of the suppressive region moves from 80 ms in

the sparse case, to 45 ms in the mid case, and only 10 ms in the dense case.

In thalamus, these timescales are somewhat shorter, with the minimum in the sparse

CGF at around 40 ms, and then shifting by approximately 5 ms each time the density

increases. Figures (c) and (d) show spectral averages across the entire CGF. Here, we

can see the clear spectral sharpening that occurs as the density of the stimulus increases.

In order to quantify this further, we explicitly calculated both the suppressive temporal

width and suppressive spectral bandwidth within the different populations (by calcu-

lating the relevant width at half minimum of either a temporal or spectral strip through

the trough in the CGF). These results are shown in figures (d) and (e). In both cortex

and thalamus, the suppressive temporal width shows a statistically significant, system-

atic decrease as a function of density (which is clearly observable from the structure

present within the population CGFs). In addition, the suppressive spectral bandwidth

decreases systematically within the thalamus. In cortex, the bandwidth decreases sig-

nificantly between the sparse and mid stimulus, but the change between mid and dense

is not significant (this is also relatively clear in (c), since the dense cortical CGF does not

contain much average spectral structure).

In addition to the delayed suppression that persists throughout the CGFs, the simul-

taneous enhancement also appears at higher densities. This is evident particularly in

the mid CGFs, and also, to a somewhat limited extent, in the dense CGFs.

As in the previous chapter, we were curious as to whether or not any potential dif-

ferences between the PRF component of the context model, and the STRF population,

could help to elucidate what could potentially be going on. A table of such spectrotem-

poral profile differences is shown in 5.1. We were particularly interested in the relative

amount of suppression contained within each population. If, as we saw in the previous

chapter, the STRF population contained more relative suppression than that of the PRF

population, we could potentially attribute this suppression to the nonlinear effects of

stimulus context.

For all densities and in both cortex and thalamus, the STRF population contains a

greater amount of relative suppression than the corresponding PRF population. This is

particularly interesting due to the rich suppressive structure that is present within the

CGFs. The fact that there is less suppression within the PRF population is indicative of

the fact that the context model has been able to attribute some of the STRF suppression

to the nonlinear effects of stimulus context. As an example of this, some of the inhibitory
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CORTEX LOW MID DENSE
STRF Receptive Field Duration (ms) 113.28± 1.39 112.59± 0.89 99.83± 1.87
STRF Excitatory Subfield Width (ms) 37.07± 0.79 41.38± 0.66 36.72± 1.25
STRF Inhibitory Subfield Width (ms) 48.45± 1.72 41.03± 1.30 51.03± 1.41
STRF Excitatory Bandwidth (octaves) 0.61± 0.03 0.40± 0.02 0.38± 0.02
STRF Inhibitory Bandwidth (octaves) 0.95± 0.04 0.52± 0.02 0.30± 0.01
PRF Receptive Field Duration (ms) 94.48± 2.14 106.38± 1.42 99.48± 1.86
PRF Excitatory Subfield Width (ms) 39.66± 1.06 46.90± 13.34 52.07± 2.07
PRF Inhibitory Subfield Width (ms) 49.31± 1.49 43.28± 1.38 58.10± 1.58
PRF Excitatory Bandwidth (octaves) 0.65± 0.02 0.54± 0.02 0.41± 0.02
PRF Inhibitory Bandwidth (octaves) 0.54± 0.02 0.40± 0.02 0.34± 0.01

THALAMUS
STRF Receptive Field Duration (ms) 102.22± 0.69 93.53± 0.87 87.47± 1.01
STRF Excitatory Subfield Width (ms) 18.86± 0.22 17.09± 0.23 15.06± 0.27
STRF Inhibitory Subfield Width (ms) 48.92± 0.64 45.70± 0.55 42.97± 0.59
STRF Excitatory Bandwidth (octaves) 0.78± 0.01 0.74± 0.01 0.71± 0.01
STRF Inhibitory Bandwidth (octaves) 0.74± 0.01 0.62± 0.01 0.52± 0.01
PRF Receptive Field Duration (ms) 81.84± 0.96 96.20± 0.78 83.92± 0.93
PRF Excitatory Subfield Width (ms) 19.68± 0.23 21.14± 0.33 19.49± 0.39
PRF Inhibitory Subfield Width (ms) 44.49± 0.59 49.30± 0.60 49.49± 0.70
PRF Excitatory Bandwidth (octaves) 0.88± 0.01 0.683± 0.01 0.68± 0.01
PRF Inhibitory Bandwidth (octaves) 0.70± 0.01 0.61± 0.01 0.52± 0.01

Table 5.1: Summary of spectrotemporal profile differences between stimulus densities.

profiles (subfield width and spectral bandwidth) within the STRF population show sys-

tematic changes as the density increases. The inhibitory spectral bandwidth decreases

as a function of density in both cortex and thalamus, and the inhibitory subfield width

also shows a decrease with increasing density (although this change is largely isolated

to the transition from sparse to mid). The fact that we such a clear spectral and temporal

sharpening within the delayed suppressive region of the CGFs indicates that some of the

observable changes within the STRF population could be attributable to the nonlinear

effects of stimulus context.

5.3.3.4 CGF STRUCTURE UNDER ALTERNATIVE ANAESTHESIA

Prior to carrying out the experiments that yielded the primary data that has been dis-

cussed in this chapter, we carried out a set of control experiments (largely to verify

the efficacy of the stimulus). These control experiments were only carried out in the

auditory thalamus, and utilised an identical stimulus to what has been described previ-

ously. The primary difference however, is that these control experiments were carried

out utilising urethane anesthesia (as opposed to the ketamine/medetomidine protocol

described earlier).
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(a) Cortex.
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(b) Thalamus.

Figure 5.12: Density elicited relative suppression. We directly compared the amount of
relative suppression (given by min(filter)/max(filter) −min(filter)) in both cortex and
thalamus, for all stimulus densities (sparse - dense, left -right). The trend in results is
uniform, whereby for the majority of cells, the amount of relative suppression is greater
within the STRF than the corresponding PRF. This suggests that the CGF component
of the context model is better able to account for the suppressive effects of stimulus
context.

This section merely exists to point out that all of the results presented thus far, that

have been presented utilising the ketamine data, also hold within the control dataset.

The CGF structure is shown in figure 5.13 for comparison.

5.4 DISCUSSION

Our main finding throughout the course of this study is that auditory cortical and thala-

mic processing involves significant nonlinear contextual interactions in both sparse and

dense acoustic environments.

5.4.1 RESPONSE RELIABILITY

We first showed that neural responses in both cortex and thalamus were more reliable

in sparse stimulus environments. As the stimulus density increased and became in-
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Figure 5.13: Population CGF structure in thalamus using alternate anaesthesia. Here,
we present the CGF structure for a set of control experiments that were carried out in
the auditory thalamus using urethane anaesthesia. For the most part, the structure is
incredibly similar to what has been observed using the ketamine/medetomidine proto-
col. Both the structure present within the population CGFs, and the timescales of the
delayed suppressive regions are similar to what was shown in figure 5.11.
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creasingly complex, this reliability dropped, resulting in a decrease in stimulus related

variability. We were able to quantify this change using the statistical tools developed by

Sahani and Linden (2003b). This obviously raises the question, why does the stimulus-

related variability decrease with stimulus density? One explanation is simply due to

the density of our sparsest stimulus component, averaging 0.5 tone pulses per bin per

octave. This means that there are numerous periods within the spectrogram where very

few (or even no) tones are playing. As a result of this, almost everything within the

sparse component of the DRC stimulus seems like an onset. It is well known that a

vast number of auditory neurons throughout the auditory pathway respond well to

such transients (Heil (1997a,b), specifically, in cortex (Eggermont, 1993), and in thala-

mus (Rouiller et al., 1981)). In fact, figure 5.4 shows such an example of this. Here, three

separate responses to such a sparse segment is shown. The responses themselves have

clear transient peaks (regions of high variability) which correspond directly to the on-

sets present within the spectrogram plotted above. As the density increases, such onsets

becomes less common, and the stimulus-related variability decreases as a result.

5.4.2 CONTEXTUAL DEPENDENCE

We were particularly enthusiastic about the inherent switching nature that we had placed

on the stimulus, such that we could study the effects of spectrotemporal density in con-

text. This was inspired by the paradigm of Asari and Zador (2009), who studied the

problem of context dependence in the rat auditory cortex, using intracellular means.

Here, they utilised a number of different natural and synthetic sounds, and were able to

show long lasting context dependence (of up to 4 s) within their subthreshold responses.

One immediate difference between our study and theirs (aside from the obvious intra-

celluar/extracellular difference) is the choice of stimuli. Here, we used one particu-

lar class of stimuli (the DRC), and systematically varied the parameter which controls

spectrotemporal density. In Asari and Zador (2009), multiple stimulus types were used

which could, in principle, lead to a difference in contextual dependence.

When dealing with extracellular recordings, at the resolution of 5 ms, statistical anal-

ysis becomes difficult. One of the major problems that we had was that, for every time

bin, a significance test had to be carried out. Given the fact that some of the densities

elicit such poor responses, in a small time window, this can lead to performing signifi-

cance tests between vectors consisting of mainly zero elements. This is not ideal. As a

result of this, we tried several approaches, including simply increasing the bin size, and
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also smoothing the data in increasingly elaborate ways. None of these approaches were

able to yield statistical significance.

5.4.3 NONLINEAR SENSITIVITIES TO STIMULUS CONTEXT OF INCREAS-

ING COMPLEXITY

Given that we were not able to see any significant amount of contextual dependence, we

proceeded to perform linear and multilinear analyses, to potentially identify nonlinear

contextual interactions, latent within the neural response.

We observed a significant decrease in the maximum excitation within the STRF pop-

ulation, and the overall excitatory response strength, as the stimulus density increased.

This decrease in neural responsiveness corroborates previous studies in this area (Blake

and Merzenich, 2002; Valentine and Eggermont, 2004; Noreña et al., 2008). Furthermore,

we extended the same analysis to STRFs within the auditory thalamus, and observed the

same statistically significant trends.

In cortex, we also showed that the shape of the STRF changed as a function of den-

sity, in terms of both excitatory and inhibitory spectral bandwidth. Such a change in

excitatory bandwidth was also reported by Blake and Merzenich (2002). The decrease

in inhibitory bandwidth is something that has not been reported before, but, as dis-

cussed earlier, this may be due to differences in statistical regularisation. In contrast

to the spectral sharpening observed in cortex, we did not see a change in excitatory

bandwidth within the thalamic population.

Blake and Merzenich (2002) attributed the changes that they observed to synaptic

depression. They speculated that if synaptic depression is variable across the different

inputs that compose the receptive field, then an increase in density should change the

relative contributions of those inputs, which will have the effect of altering the shape of

the STRF. Such a claim was further corroborated by David et al. (2009), who illustrated

that the stimulus dependence of spectrotemporal tuning can be explained by a model in

which the synaptic inputs to cortical neurons are susceptible to rapid nonlinear depres-

sion.

In their intracellular study, Wehr and Zador (2005) established that synaptic depres-

sion at the thalamocortical synapse was likely the cause of the long-lasting suppressive

effects observed in cortical neurons. Moreover, they also showed that such cortical sup-

pression was unlikely to be inherited from thalamic response properties, due to their
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quick recovery from suppression. This is perhaps indicative that the amount of synap-

tic depression that the thalamus itself receives as input (presumably from the inferior

colliculus), is not significant enough to instigate substantial changes in receptive field

structure. This hypothesis corroborates the fact that we do not observe any spectral

sharpening within the thalamic population.

Ultimately, the core finding of this study, is that we can successfully use the mul-

tilinear framework to estimate nonlinear contextual effects within the neural response,

that are not able to be identified using simple linear methods. The structure that we

observed within the CGFs at multiple densities in both cortex and thalamus is particu-

larly rich and informative, and the fact that we again observe that the STRF population

contains more relative suppression that the PRF population, for all densities, adds cre-

dence to the fact that the context model is capable of providing a better way to model

suppressive effects.

In the CGFs, we see a systematic decrease in both the suppressive temporal width

and suppressive spectral bandwidth as the stimulus density is increased. This sys-

tematic decrease occurs in both the cortical and thalamic populations, albeit on a far

faster timescale in thalamus. This provides insight into temporal integration for dif-

ferent acoustic conditions. Clearly, in a sparse environment, where there are very few

acoustic inputs, the auditory system can allow for longer temporal, and broader spec-

tral, integration. This allows for incoming acoustic information to be integrated over

a larger spectrotemporal window. As the stimulus environment becomes increasingly

complex however, in order to adequately integrate information, it makes intuitive sense

to shorten this window and become more spectrotemporally selective.

The fact that the STRF itself exhibits structural changes related to density has im-

portant behavioural consequences. In a dense, noisy environment, the neural response

is more spectrotemporally selective, and thus more capable of representing auditory

“edges”, which are highly prevalent in narrowband sounds. In contrast to this, in a

sparse, quiet environment, the neural response is far less selective, and will respond to

broadband features in both frequency and time. The context model provides a poten-

tially mechanistic viewpoint for understanding such processes, and our results suggest

that they can be attributed to nonlinear changes in stimulus context, or interpreted as a

form of contextual gain control, whereby the amount of influence an environment has

on the neural response is modulated based on its own acoustic context.
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VI

CONCLUSIONS

6.1 STIMULUS-RESPONSE FUNCTIONS IN AUDITION

Understanding how complex sounds elicit neural responses is a particularly important

goal within auditory neuroscience. It is because of this that the use of neural encoding

models has become especially popular in recent decades. Within the auditory-research

community especially, the STRF model has been used extensively to characterise audi-

tory function in a number of different brain areas.

Stimulus-response functions are always a simplification of reality. Dealing with a

function that simply maps a stimulus to a response is necessarily a “black-box” ap-

proach. As a result of this, if such a function can be tailored using knowledge about

the underlying biological system, then it may be particularly useful. This is the general

ethos of the modelling framework that we have attempted to provide throughout this

thesis.

As discussed on several occasions, one of the difficulties with using an STRF model

to describe auditory function is that it is inherently linear and neural responses are not.

Unfortunately, some of the standard approaches to nonlinear modelling quickly suc-

cumb to the curse of dimensionality, requiring large amounts of data to adequately es-

timate. An example of this is the Volterra series expansion, where the amount of data

required increases exponentially with the model order.

The modelling framework used throughout this thesis is an attempt to combine the



best of both worlds. The particular parameterisation that we utilise is inspired by bi-

ology, and the knowledge that neural responses can be modulated by their acoustic

context. Such a parametrisation is not only plausible but it defines explicit structural

constraints on interactions within the stimulus, which partially alleviates the need for

huge swathes of data in order to adequately estimate.

One of the core results, prevalent throughout, is that the model reveals that there are

indeed significantly predictive nonlinear interactions present within neural responses to

complex sounds. Chapter 4 illustrates this using data recorded from both auditory cor-

tex and thalamus. In addition to the successful identification of nonlinear interactions

within both populations of cells, by applying the model to different fields within the au-

ditory cortex, and different subdivisions within the thalamus, insights can be gleaned

as to the nonlinear processing characteristics of these different areas. Moreover, chapter

5 illustrates how such a model can also be used to probe the nonlinear mechanisms that

underlie the ability of the auditory system to operate in diverse acoustic environments.

Such a framework provides a novel extension to the study of receptive fields in multiple

brain areas, and extends existing understanding of the way in which stimulus context

drives complex auditory responses.

6.2 INSIGHTS INTO AUDITORY FUNCTION

One of the fundamental results to come from this thesis is the structure that is present

within the context model when it is fit to both cortical and thalamic data. This structure

is inseparable, and indicates that auditory responses are sensitive to specific spectrotem-

poral combinations of sound energy with a complex sound stimulus.

The contextual interactions that the model estimates can be thought of as a form of

contextual gain control, whereby suppression acts to reduce the effect of both excitation

and inhibition, and facilitatory effects act to enhance excitation and inhibition. The form

of the interactions that we typically observe (that are especially prevalent at the popula-

tion level) consist of a lengthy region of delayed suppression, and a near-simultaneous

region of enhancement. Such delayed suppression is likely to underlie the temporal

analysis of sound, and may be related to known neural mechanisms such as forward

suppression, which has been discussed at length in the literature (although the gain

control mechanism here is somewhat more general, in that it also allows for a decrease

in inhibition, as well as excitation). The simultaneous enhancement seems more likely

to reflect the spectral analysis of sound.
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Such contextual gain control could also have direct behavioural relevance, and may

play an important role in auditory scene analysis. The environment around us is acous-

tically diverse, consisting of both temporal and spectral complexities. The temporal

duration, or spectral extent of such complexities can lead to different acoustic events be-

ing perceived either in a single auditory stream, or being segregated into multiple. The

neural mechanisms underlying such stream segregation remains elusive. It may be the

case that the simultaneous enhancement that we observe is responsible for mediating

onset responses, and the grouping of acoustic events that occur at different frequencies

with a common temporal onset. The delayed suppression could perhaps mediate the

temporal effects of stream segregation, by reducing the efficacy of acoustic events over

a short window, thus enabling such events to stay within the same auditory stream.

The heterogeneity of our results is also consistent with previously reported studies

of nonlinear sensitivities in cortical neurons (Sadagopan and Wang, 2009). Even though

we observe structure on a population level, single cell model fits still show distinct spec-

trotemporal sensitivities. Thus, the context model seems capable of capturing global

nonlinear effects, that likely represent some underlying neural mechanism, present on

a grand scale, whilst still retaining the ability to capture individual neural sensitivities

to complex sounds.

6.3 FUTURE APPLICATIONS

The scope of such a multilinear framework is immense. Although this thesis has fo-

cussed on characterising responses within the auditory system, the framework itself is

applicable to any sensory area. Indeed, it would be fascinating to apply such a model to

the visual system, where the effects of stimulus context have been extensively studied

in the form of extra-classical receptive fields.

Another important direction would be the use of such a model in behaviour. An

example of a particularly relevant paradigm is the work of Fritz et al. (2003), where an

animal (in this case, a ferret) is actively engaged in a behavioural task, typically involv-

ing the detection of a tone, or a simple discrimination. Over the course of such an exper-

iment, receptive fields are typically estimated in “pre-behaviour”, “during-behaviour”,

and “post-behaviour” conditions. Indeed, it has been shown that the structure within

the receptive fields differs to reflect the task that the animal is engaged in. This kind

of adaptive, task-related plasticity is something that would be particularly amenable

to a multilinear analysis, in order to identify potential nonlinear mechanisms that may
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shape behaviour.

It is our hope that in the decades to come, such a multilinear approach to neural

characterisation becomes commonplace within the sensory community, and is utilised

to the same extent that the humble STRF model has been, over the years.
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