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Gaze-independent brain computer interfaces (BCIs) are a potential communication tool

for persons with paralysis. This study applies affective auditory stimuli to investigate

their effects using a P300 BCI. Fifteen able-bodied participants operated the P300

BCI, with positive and negative affective sounds (PA: a meowing cat sound, NA: a

screaming cat sound). Permuted stimuli of the positive and negative affective sounds

(permuted-PA, permuted-NA) were also used for comparison. Electroencephalography

data was collected, and offline classification accuracies were compared. We used a

visual analog scale (VAS) to measure positive and negative affective feelings in the

participants. The mean classification accuracies were 84.7% for PA and 67.3% for

permuted-PA, while the VAS scores were 58.5 for PA and −12.1 for permuted-PA. The

positive affective stimulus showed significantly higher accuracy and VAS scores than the

negative affective stimulus. In contrast, mean classification accuracies were 77.3% for

NA and 76.0% for permuted-NA, while the VAS scores were −50.0 for NA and −39.2

for permuted NA, which are not significantly different. We determined that a positive

affective stimulus with accompanying positive affective feelings significantly improved BCI

accuracy. Additionally, an ALS patient achieved 90% online classification accuracy. These

results suggest that affective stimuli may be useful for preparing a practical auditory BCI

system for patients with disabilities.

Keywords: BCI, BMI, P300, EEG, affective stimulus

INTRODUCTION

The brain-computer interface (BCI), also referred to as the brain-machine interface (BMI),
translates brain signals into control signals for computers or machines (Wolpaw et al., 2002).
Because the BCI is independent of muscle activity, it enables individuals with disabilities to control
assistive devices or communicate with others. Brain signals acquired from invasive or non-invasive
measurements have been used in the BCI research (Pfurtscheller et al., 2008). The primary approach
for a non-invasive BCI is electroencephalography (EEG), where neurophysiological signals are
recorded by an array of scalp electrodes.

In EEG-based non-invasive BCIs, sensory evoked signals that can be modulated by intention
have been used. A popular system is the visual P300 BCI (Farwell and Donchin, 1988). This BCI
provides both frequent and infrequent stimuli, and detects the EEG responses to the infrequent
stimuli. These responses are called event-related potential (ERP), and contain a positive peak
∼300 ms after the stimulus occurs, i.e., the P300. The visual P300 BCI has been used widely
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(Piccione et al., 2006; Salvaris and Sepulveda, 2009; Townsend
et al., 2010). The visual P300 BCI has been proven applicable
for persons with various types of paralysis, such as amyotrophic
lateral sclerosis (ALS) (Nijboer et al., 2008; Ikegami et al., 2014).

For persons who have difficulty to control the gaze-dependent
BCIs, various gaze-independent BCI techniques have also
been proposed. For example, a gaze-independent visual speller
(Blankertz et al., 2011), a gaze-independent steady-state visual-
evoked-potential (SSVEP) based BCI (Lesenfants et al., 2014),
a motor imagery based BCI (Pfurtscheller et al., 2006), a tactile
P300 BCI (Brouwer and Van Erp, 2010), and an auditory P300
BCI (Halder et al., 2010; Höhne et al., 2011) have all been
proposed. These options may be helpful for individuals with
various disabilities and symptoms.

Among the gaze-independent BCIs, the auditory P300 BCI
applications were proposed and evaluated in clinical studies.
Sellers and Donchin employed word-based stimuli (“Yes,” “No,”
“Pass,” and “End”) presented in visual and auditory modalities
(Sellers and Donchin, 2006). The analysis showed that the offline
classification accuracies of two out of three ALS patients were
as high as those of able-bodied participants. Lulé et al. (2013)
also evaluated the auditory P300 BCI with word-based stimuli
(“yes,” “no,” “stop,” and “go”). Thirteen healthy subjects and one
locked-in patient were able to communicate using their system.
An auditory P300 speller using acoustically presented numbers
was proposed (Furdea et al., 2009) and clinically evaluated for
ALS patients online (Kübler et al., 2009).

Several techniques and stimulus types have been proposed
to improve the auditory BCI accuracy. Klobassa et al. (2009)
employed environmental sounds (bell, bass, ring, thud, chord,
and buzz). Schreuder et al. (2010) developed a BCI that provided
spatial auditory stimuli from five speakers located around a
participant, providing better classification accuracy than the
single-speaker condition. They also proposed the Auditory
Multi-class Spatial ERP paradigm that enabled users to spell
letters by taking advantage of spatial cues (Schreuder et al., 2011).
Hill and Schölkopf (2012) proposed streaming stimuli that were
intended to elicit ERP and auditory steady-state response. Höhne
et al. (2012) found that “natural” auditory stimuli, such as short,
spoken syllables, improved the classification accuracy of the BCI.
Simon et al. (2015) proposed a BCI that used spatial auditory cues
with animal voices.

Affective stimuli may be effective at improving the
performance of EEG-based auditory P300 BCIs. Although
affective auditory stimuli have not been applied to auditory P300
BCIs before, affective facial images were used as stimuli for a
visual P300 BCI, and did improve classification accuracy (Zhao
et al., 2011). Additionally, affective visual stimuli have been
shown to enhance the P300 (Polich and Kok, 1995; Delplanque
et al., 2004). A musical emotion study revealed that a violation of
harmony increased emotion and enhanced the late component
of the P300 (Steinbeis et al., 2006). Based on these studies, we
hypothesized that affective auditory stimuli should also improve
classification accuracy.

In this research, we used positive and negative affective sounds
(PA: a meowing cat sound, NA: a screaming cat sound) as stimuli
for an auditory P300 BCI. We expected that the two affective

stimuli would modulate ERPs and improve the classification
accuracy of the BCI. Permuted stimuli of the positive and
negative affective sounds (permuted-PA, permuted-NA) were
also used for comparison by keeping the features hidden in
affective sounds, except those in the time series. We used a
visual analog scale (VAS) to measure positive and negative
affective feelings in the participants. Offline analysis was applied
to investigate the effects of affective stimuli in detail. We also
conducted an online experiment with an ALS patient to validate
the methods proposed in this study.

MATERIALS AND METHODS

This study was approved by the institutional ethics committee at
the National Rehabilitation Center for Persons with Disabilities,
and all participants provided written informed consent according
to institutional guidelines. All experiments were performed in
accordance with the approved guidelines.

Experiment 1: Effect of Affective Stimuli
with Able-Bodied Participants
Participants
Fifteen participants (aged 29 ± 7.2 y.o.; 7 women) took part in
this experiment. Fourteen participants were right-handed and
one participant was ambidextrous, according to the Japanese
version of the Edinburgh Handedness Inventory (Oldfield, 1971).

Experimental Design
The P300 BCI system used provides auditory stimuli. Participants
were required to perform an oddball task, as shown in Figure 1A

(Farwell and Donchin, 1988; Polich, 2007). First, the BCI system
provides a yes/no question from earphones, such as “Is the neck
of a giraffe long?” Next, three auditory stimuli, a positive affective
sound attributed to “yes,” a negative affective sound associated
with “no,” and a 1,000-Hz sinusoidal waveform, were presented
pseudo-randomly. The sound that was the correct answer to the
question was the target sound. Participants were asked to count
the target sound 10 times in total, while ignoring the non-target
sounds. The duration of the sounds was 500ms and the stimulus
onset asynchrony (SOA) was 1,000 ms. Because the SOA was
longer than the duration of the sounds, the effects of ERP overlap
could be reduced. The experiment was designed to be conducted
within 3 h, in order to avoid fatigue.

Positive affective (PA) and negative affective (NA) sounds
were associated with the answers “yes” and “no,” respectively.
A meowing cat sound was used as the PA sound, while a
screaming cat sound was used as the NA sound. The meowing
cat sound is available at the Sound Effect Lab (cat-cry2.mp3
on http://soundeffect-lab.info/), and the screaming cat sound
is available at SoundBible.com (Angry Cat-SoundBible.com-
1050364296.wav on http://soundbible.com/). These stimuli were
manually trimmed to 500 ms and sound pressure levels were
equalized. In addition to the PA and NA sounds, a 1,000-Hz
sinusoidal waveform was prepared as a beep sound. The stimuli
were sampled at 44,100Hz. The sinusoidal waveform (1,000Hz)
was mixed with the stimuli. The sinusoidal waves were rounded
with a 50-ms linear slope at the beginning and end of the sounds.
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FIGURE 1 | Task and experimental design. (A) Participants were asked to

perform the oddball task in response to the sounds played through the

earphones. First, a question to be answered “yes” or “no” was provided. If the

answer was “yes,” the participants counted the positive affective sounds (PA).

If the answer was “no,” the participants counted the negative affective sounds

(NA). Note that the PA stimuli and NA stimuli were mixed with a 1,000Hz

sinusoidal waveform (beep sound). In the control experiment, PA and NA were

replaced by permuted-PA and permuted-NA, respectively. (B) This experiment

consisted of four parts (part A × 2, part B × 2), five sessions, and two runs.

Part B was designed as a control experiment. In part A, PA, NA, and beep

sounds (BE) were provided, while permuted-PA, permuted-NA, and B were

provided in part B. Participants were asked to rest between sessions, At the

beginning of a run, a yes/no question (Q) was provided. EEG measurements

were taken during the tasks for PA, NA, permuted-PA, and permuted-NA.

Permuted stimuli of the positive and negative affective
(permuted-PA and permuted-NA) sounds were also prepared for
comparison. Time-domain scrambling (http://www.ee.columbia.
edu/ln/rosa/matlab/scramble/) was used for the permuted
stimuli. The sound was chopped into a 50%-overlap short
window set, then Hanning-windowed and shuffled. The window
length for scrambling was 10 ms and the radius of window
shuffling was set to 250 ms. The permuted sounds were mixed
with the non-permuted sinusoidal waveform.

As shown in Figure 1B, the experiment consisted of four
parts (part A × 2, part B × 2). In part A, PA and NA sounds
were provided as positive and negative stimuli. In part B, the
permuted-PA and permuted-NA sounds were used instead. The
experiment was conducted in the order ABBA or BAAB, pseudo-
randomly. Prior to starting each part, the positive, negative, and
beep sounds were played once. Then, the positive (PA in part
A, or permuted-PA in part B) and negative (NA in part A or

permuted-NA in part B) stimuli were associated with the answers
yes and no. Each part consisted of five sessions. In each session,
participants were required to perform an oddball task for two
runs. At the beginning of the run, a question to be answered yes or
no was played from the earphones. The participants were asked to
rest for a fewminutes between sessions. In each part, questions to
be answered yes or no were provided five times (10 times in total),
respectively. The sequence of the stimuli was repeated 10 times.
No feedback was provided during the experiment.

EEG Recording
The BCI system consisted of a laptop computer, a digital
sound interface, earphones, a display, and an EEG amplifier.
The instructions and BCI stimuli were presented through
earphones (Etymotic ER4 microPro; Etymotic Research, Elk
Grove Village, IL). The sounds were processed with an external
sound card (RME Fireface UC; Audio AG, Haimhausen,
Germany). All stimuli were controlled via the laptop computer
using MATLAB/Simulink (Mathworks Inc., Novi, MI) and the
Psychophysics Toolbox. Using g.USBamp (Guger Technologies,
Graz, Austria), EEG signals were recorded from C3, Cz, C4,
P3, Pz, P4, O1, and O2, according to the “10–20” system. The
sampling rate for the EEG recording was 128Hz. All channels
were referenced to the left mastoid and grounded to the right
mastoid. These electrode locations are based on past P300 EEG
studies (Comerchero and Polich, 1999; Takano et al., 2009; Chang
et al., 2013). A hardware bandpass filter (0.1–60Hz) and notch
filter (50Hz) were applied. Non-adhesive solid-gel electrodes
were used (Toyama et al., 2012). Fixation of eye gaze and images
for the task instructions were presented via a display (Acer
XB270H, Acer Inc., New Taipei City, Taiwan).

EEG Analyses
Offline classification accuracies for positive and negative stimuli
were computed using 10-fold cross-validation. ERPs were
obtained when auditory stimuli were presented. This data was
processed separately in target and non-target trials. When
positive affective stimuli were used, a binary classifier was trained
on the positive target (PA sounds) trials and non-target (NA and
beep sounds) trials. In this case, 9 sessions of data were used
for training while the rest was used for test data in the cross-
validation. Thus, a classifier was trained on 90 target ERPs and
360 non-target ERPs. The test data containing positive target
trials and non-target trials was then classified. Similarly, when
negative affective stimuli were used, a binary classifier was trained
on the negative target (NA sounds) trials and non-target (PA and
beep sounds) trials, and then the test data containing negative
target trials and non-target trials was classified. This analysis
was applied to the data obtained from parts A and B. In this
manner, the classification accuracies of PA, NA, permuted-PA,
and permuted-NA were calculated.

In the offline classification, 700 ms epochs of EEG were
extracted, smoothed (4 sample points), bandpass-filtered
(Butterworth, 0.1–25Hz), downsampled to 25Hz, and
vectorized. Stepwise linear discriminant analysis (SWLDA;
pin = 0.1, pout = 0.15) was then used (Krusienski et al., 2008).
The classifier was used to calculate the outputs corresponding
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to positive and negative stimuli (1: positive, 2: negative). Given
the weight vector of SWLDA, w, the outputs for positive and
negative stimuli were computed as:

î = argmaxi

10∑

r=1

w · xr,i, (1)

where xr,i is the preprocessed data of the rth intensification
sequence of the ith stimulus (i ∈ {1, 2}). Thus, the classifier was
trained on 90 target ERPs (9 sessions × 1 trial × 10 sequences)
and 360 non-target ERPs (9 sessions× 4 trials× 10 sequences).

We also analyzed the offline classification accuracy for each
part, meaning the accuracy for part A (PA + NA) and part
B (permuted-PA + permuted-NA). In this case, the SWLDA
classifier was trained on target ERPs and non-target ERPs without
discriminating between PA and NA (also permuted-PA and
permuted-NA). The parameters used in this analysis were the
same as those used in the offline analysis for PA, permuted-PA,
NA, and permuted-NA.

For data visualization, averaged waveforms were preprocessed
in the same manner, except for changes in artifact removal and
downsampling. Waveforms with artifacts exceeding ±100µV
were removed. In order to analyze the ERPs, the waveforms were
not downsampled.

In order to clarify the differences between target and non-
target ERPs at each time point and in each channel, squared
point-biserial correlation coefficients (r2 values) were computed
(Blankertz et al., 2011). For each time point and each channel,
the mean values of class 2 (target) µ2 were subtracted from
those of class 1 (non-target) µ1, and the values were divided
by the standard deviation σ of all samples in order to compute
point-biserial correlation coefficient r as follows:

r: =
√
N2 · N1

N2 + N1

µ2 − µ1

σ
, (2)

where N2 and N1 denote the numbers of data points in class
2 (target) and class 1 (non-target), respectively. The r2 value,
meaning the square of r, was then computed. The higher the r2

value obtained, the larger the difference between the target and
non-target is, or the smaller the standard deviation is.

Psychological Evaluation of Affective Feelings
In order to measure positive or negative affective feelings, all
participants were asked how much they felt each stimulus was
positive or negative using a VAS after the experiments. The
VAS scores ranged from –100 (most negative) to +100 (most
positive), where 0 indicates neutral. PA, permuted-PA, NA, and
permuted-NA were played once in pseudo-random order for
each participant.

Statistical Analysis
Differences between classification accuracies and between VAS
scores was assessed by means of a two-way repeated-measures
ANOVA with factor permutation (the original sound or its
permuted sound) and types of affect (positive or negative). We
then performed a t-test with Bonferroni correction. In order

to ensure that each VAS score was positive or negative (not
neutral), each VAS score was assessed using a one-sample t-test.
The classification accuracy for each part was compared under
two-permutation conditions by using a paired t-test. The point-
biserial correlation (Tate, 1954) was evaluated with a test of no
correlation, where the p-value was corrected using the Bonferroni
method. The biserial correlation coefficients were visualized if
they were significant.

Experiment 2: Online Performance with an
ALS patient
Participant
A male patient with ALS aged 61 y.o. participated in this
study. His ALS Functional Rating Scale-Revised (ALSFRS-R)
(Cedarbaum et al., 1999) was zero. This experiment was
conducted in his home. He was artificially ventilated via
tracheostomy. A transparent letter board for selecting letters with
his eyes was used for his daily communication.

Online Experiment
The online experiment consisted of five training sessions and five
test sessions. The participant was asked to rest between sessions.
Each session contained two runs, meaning the participant
answered two questions per session. In the online experiment,
PA, NA, and beep sounds were provided as well as in part A of the
previous experiment. The participant was asked to silently count
PA stimuli to answer “Yes” and NA stimuli to answer “No.” Each
stimulus was provided for 10 sequences, meaning the participant
had to count the target sound 10 times per run. A feedback sound
was provided in the online experiment.

EEG Recording
The online BCI system consisted of a laptop computer, digital
sound interface, speaker, and EEG amplifier. The instructions
and BCI stimuli were presented through the speaker (SoundLink
Mini II, Bose Inc., FraminghamMA). EEG signals were recorded
from C3, Cz, C4, P3, Pz, P4, O1, and O2, according to the
“10–20” system. The sampling rate for the EEG recording was
128Hz. All channels were referenced at Fpz and grounded at
AFz. Non-adhesive solid-gel electrodes were used (Toyama et al.,
2012). Fixation and visual instruction were not provided so that
all the manipulation and instructions of the online BCI were
completely independent of gaze control. A hardware bandpass
filter (0.1–30Hz) and notch filter (50Hz) were applied.

EEG Analysis
We employed a SWLDA classifier using transfer learning as
both online and offline classifiers. The data from 10 healthy
participants obtained in experiment 1 (subjects 1–10) was
employed to estimate the classifier for the new subject. The
analysis window was 1,000ms. Prior to training the classifier,
ERP data that exceed ±100 µV was eliminated from the healthy
participant data and the patient training data. Additionally, a
Savitzky–Golay filter (3rd order, 61 samples) was applied and
the EEG signal was downsampled to 26Hz. First, the stepwise
method was applied to the data obtained from the 10 healthy
participants. The training data was not divided into positive and
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negative, so the training labels were only target and non-target
ERPs. Second, the healthy participant data and patient training
data were preprocessed using the stepwise method (pin = 0.1,
pout = 0.15). Third, two different classifiers were trained: one
was trained on the patient data w and the other was trained on
the healthy participant data wt. Then the two classifiers were
combined to calculate the score for decision making as follows:

î = argmaxi

10∑

r=1

(w · xr,i + wt · xr,i). (3)

Binomial testing was applied to the classification accuracy, in
order to verify that the achieved accuracy was significantly
higher than the chance level (50%). The offline analysis was also
performed to identify the required number of sequences.

RESULTS

Experiment 1: Effect of Affective Stimuli
with Able-Bodied Participants
Classification Accuracy and VAS
An auditory P300 BCI with positive and negative affective sounds
(PA: a meowing cat sound, NA: a screaming cat sound) was
tested on 15 healthy participants. Permuted stimuli of the positive
and negative affective sounds (permuted-PA, permuted-NA)
were also used for comparison. Figure 2A presents the results
of classification accuracy when applying PA and permuted-
PA sounds. The mean classification accuracies for PA and
permuted-PAwere 84.7 and 67.3%, respectively. Figure 2B shows
the results of classification accuracy when applying NA and
permuted-NA sounds. The mean classification accuracies for
NA and permuted-NA were 77.3 and 76.0%, respectively. The
classification accuracy for each individual subject under each
condition is also presented in Table S1. Performing two-way
repeated-measures ANOVA on classification accuracy revealed
significant main effect on permutation [F(1, 14) = 5.55, p <

0.05]. There were no significant main effects on types of affect
(positive or negative) [F(1, 14) = 0.02 p = 0.888] and interaction
[F(1, 14) = 2.90, p= 0.111]. The post-hoc t-test revealed significant
differences for positive sounds [t(14) = 2.94, p < 0.025]. No
significant difference was found for negative sounds [t(14) =
0.21, p = 0.838]. The classification accuracies for each part (see
Table S2) were not significantly different between permutation
conditions [t(14) =−1.22, p= 0.243].

We used a VAS to measure positive and negative affective
feelings for each participant. Figure 2C presents the VAS results
when using PA and permuted-PA sounds. The mean VAS
scores were 58.5 for PA and −12.1 for permuted-PA. Figure 2D
presents the VAS results when applying NA and permuted-NA
sounds (individual results are provided in Table S3). The mean
VAS scores were −50.0 for NA and −39.2 for permuted-NA,
respectively. The VAS score for PA was significantly above zero
(p< 0.01, one-sample t-test) and the VAS score for permuted-PA
was not significantly above zero (p = 0.072). The VAS scores for
NA and permuted-NA were significantly below zero (p < 0.01,
one-sample t-test). Therefore, in terms of VAS scores, PA was

positive, permuted-PA was neutral, and NA and permuted-NA
were negative. Performing two-way repeated-measures ANOVA
on the VAS revealed significant main effect on permutation
[F(1, 14) = 18.46, p < 0.001], types of affect [F(1, 14) = 115.47,
p < 0.001], and their interactions [F(1, 14) = 28.18, p < 0.001].
The post-hoc t-test revealed significant differences for positive
sounds [t(14) = 6.68, p < 0.025]. No significant difference was
found for negative sounds [t(14) = –1.07, p= 0.304].

Physiological Data
Physiological data analyses were applied to the ERPs. Figure 3A
presents the averaged waveforms of target and non-target ERPs
observed from Pz. When applying positive affective sounds,
the target averaged waveforms of PA in Pz showed peaks at
∼400 ms, which can be considered asa late component of the
P300. The target waveforms of permuted-PA showed early and
late components of the P300 at∼280 and 400 ms, respectively.

Figure 3B presents the averaged waveforms of all channels
in PA, permuted-PA, NA, and permuted-NA. The P300 ERP
responses, especially the early components, were observed
around Cz, and the late components were observed around
Pz. Figure 3C presents the biserial correlation coefficient
results. The late component of the P300 showed high biserial
correlation coefficients for the PA stimulus, suggesting that
the late component contributed to the classification. Similar
coefficients were also observed with NA and permuted-NA
stimuli. However, the early component of the P300 showed no
significant correlation.

Experiment 2: Online Performance with an
ALS patient
Figure 4 presents the online and offline classification accuracies
of an ALS patient. The online classification accuracy was 90%,
which was same as the offline classification accuracy at sequence
10. The online classification accuracy was significantly higher
than the chance level (binomial test, p < 0.025). According to
the offline analysis, six sequences of stimulus presentations were
required to achieve over 70% accuracy.

DISCUSSION

We applied positive and negative affective sounds (PA: a
meowing cat sound, NA: a screaming cat sound) with a P300 BCI.
Permuted stimuli of the positive and negative affective sounds
(permuted-PA, permuted-NA) were also used for comparison.
A VAS was used to measure positive and negative affective
feelings. We showed that a positive affective stimulus, with
accompanying positive affective feelings, improved BCI accuracy.
We also demonstrated that the proposed BCI was applicable for
an ALS patient.

Effects of Affective Stimuli on Offline BCI
Performance
Our study revealed that the PA stimulus improved the offline
classification accuracy of an auditory BCI. A previous visual
BCI study found that affective facial images improved the
classification accuracy of a BCI (Zhao et al., 2011). An fMRI BCI

Frontiers in Neuroscience | www.frontiersin.org 5 September 2017 | Volume 11 | Article 522

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Onishi et al. Affective Stimuli for Auditory P300 BCI

FIGURE 2 | Classification accuracies and VAS scores. (A) Classification accuracies of PA and permuted-PA. (B) VAS scores of PA and permuted-PA.

(C) Classification accuracies of NA and permuted-NA. (D) VAS scores of NA and permuted-NA. The bar represents the mean classification accuracy or VAS score.

The line and dot represent individual classification accuracies or VAS scores. Asterisks indicate significant differences revealed by the post-hoc test (p < 0.025).

study used click-like tones associated with affective sounds using
semantic classical conditioning, and found significant activation
in the insula and the inferior frontal triangularis (VanDerHeiden
et al., 2014). Our study supports that affective stimuli improve the
classification accuracy of an auditory BCI.

We demonstrated the significant differences between the
classification accuracies of PA and permuted-PA, and between the
VAS scores of PA and permuted PA. In contrast, when applying
negative affective sounds, although both NA and permuted-NA
showed decreased VAS scores, no significant differences were
observed between them in either classification accuracy or VAS.
This lack of change between NA and permuted-NA VAS scores
may be caused by the scrambling. When scrambling the stimuli,
the sounds were cut every 10 ms and the cut sounds were
concatenated in pseudo-random order. This procedure removes
continuous and frequency features below 100Hz, but retains
frequency features above 100Hz. The meowing cat sound, used
as the PA stimulus, showed decreased VAS scores in the permuted
stimulus, suggesting that the features of the cat meowing
sound disappeared. The screaming cat sound, used as the NA
stimulus, did not show changed VAS scores in the permuted
stimulus, suggesting that the features of the screaming cat sound
remained. Although past psychological studies using affective
stimuli have used two-dimensional evaluations of arousal and

valence (Bradley and Lang, 2000; Gerber et al., 2008), the simple
one-dimensional VAS used here worked well as a method for
psychological measurements.

Physiological Considerations
In order to clarify which components of ERPs contributed to
classification, we computed the squared point-biserial correlation
coefficients (r2 values). The peaks of the biserial correlation
coefficients were seen at 300–400 ms, which may correspond
to the late component of the P300 (Comerchero and Polich,
1999). The averaged waveform analysis indicated that the P300,
particularly its late component, contributed to the classification.

This study revealed high biserial correlation coefficients for
the late component of the P300 in response to auditory affective
stimuli. Modulation of the late component of the P300 has
been reported in past studies by using visual or auditory
affective stimuli. Cuthbert et al. (2000) provided pictures from
the International Affective Picture System to participants in
order to evaluate emotional reactions, and reported that highly
arousing affective stimuli enhanced the late component of the
P300. The valence of visual affective stimuli also enhanced
the late component of the P300 (Delplanque et al., 2004).
A musical emotion study showed that violations of harmony
increased emotions and enhanced the late component of the
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FIGURE 3 | Averaged waveforms and biserial correlation coefficients (r2 value). (A) Target and non-target averaged waveform of PA, permuted-PA, NA, and

permuted-NA at Pz. Solid and broken lines represent the target and non-target ERPs, respectively. The blue lines represent PA or NA, and the red lines represent

permuted-PA or permuted-NA. (B) Averaged waveforms in PA, permuted-PA, NA, and permuted-NA observed from eight channels. (C) Biserial correlation coefficients

in PA, permuted-PA, NA, and permuted-NA. The biserial correlation coefficients were visualized as zero if the point-biserial correlation was determined to be

insignificant through a test of no correlation.

P300 (Steinbeis et al., 2006). These results indicate that positive
affective stimuli modulate the late component of the P300 and
contribute to increased classification accuracy with the auditory
P300 BCI.

Online BCI Performance
In the online experiment, an ALS patient achieved 90%
classification accuracy. Our BCI is a totally vision-free system;
all questions, stimuli, and feedback were provided only from the

speaker. Thus, this system may be worth applying to patients
who cannot see. The arbitrary yes/no questions can be provided
orally by replacing the questions provided from the speaker.
Our BCI system can only ask yes/no binary questions, but the
affective soundsmay be applied to auditorymultiple-choice BCIs.
Auditory multiple-choice BCIs have previously been proposed
and evaluated. Halder et al. (2016a) evaluated a 25-command
auditory BCI system with and without a visual support matrix,
and two subjects achieved 92% classification accuracy online after
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FIGURE 4 | Online and offline classification accuracies achieved by an ALS

patient. The online and offline classification accuracies were calculated under

same classifier with same data. The online classification accuracy was 90%,

which is the same as the offline classification accuracy at sequence 10. Offline

classification accuracy was computed by varying the number of sequences

from 1 to 10. Also 70% classification accuracy is indicated by the horizontal

dotted line.

training. Halder et al. (2016b) also proposed an auditory BCI
that enables one to spell the Japanese Hiragana syllabary (50
commands), and four out of six healthy subjects achieved over
70% classification accuracy. A patient with the spinal cord injury
also controlled the BCI and achieved 56% classification accuracy
after training. The effects of affective stimuli on multi-command
auditory BCI systems may be better evaluated in future studies.

Limitations and Future Perspectives
This study demonstrated that positive affective stimuli improve
classification accuracy. However, further studies are required to
determine if affective stimuli generally improve BCI classification

accuracy. Moreover, classification accuracy for each part did not
show the significant difference between part A and part B. The
result may be caused by the increased variance of the two class
data since responses obtained by positive and negative stimuli
were combined. The effect of affect in part B may also influenced
because permuted-NA was negative. Additionally, we applied
transfer learning in the online system, but the effects of the
algorithm should be evaluated and the parameters should be
optimized in future studies. The affective stimuli evaluated in this
studymay also be applied to amulti-command BCI as a next step.

CONCLUSION

In conclusion, we demonstrated that a positive affective stimulus,
accompanied by positive affective feelings, improved BCI
accuracy. These results suggest that affective stimuli may be
useful in developing a practical auditory BCI system for patients
with physical disabilities.
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