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A Study on Topology Optimization of Optical
Circuits Consisting of Multi-Materials

Kota Fujimoto, Yasuhide Tsuji, Member, IEEE, Koichi Hirayama, Senior Member, IEEE, Takashi Yasui,
Member, IEEE, Shingo Sato, Member, IEEE, and Ryosuke Kijima

Abstract—A topology optimization method can be used
to find out the optical waveguide structures which have the
desired transmission characteristics. Using the function ex-
pansion method, we can avoid the problem of a gray area,
which means that some areas having intermediate refractive
index between those of usable materials appear in a design
region. However, so far, topology optimization has mainly been
studied for structures consisting of two isotropic materials. In
this paper, we study the applicability of topology optimization
to structures which include three or more materials, and
demonstrate the optimal design of a waveguide crossing.

Index Terms—Topology optimization method, optical
waveguide circuit, finite element method.

I. Introduction

ALONG with a recent increase in communication
traffic, the demand for high speed and flexible

photonic network has been increasing. In order to realize
the high speed and large-capacity photonic network, high-
performance optical circuit devices are required to be used
in the photonic network system. The design of optical
devices using computer simulation is known to be effective.
Furthermore, recently, a lot of researches on automatic
generation of optimum optical device structures which can
realize the desired properties have been reported. Opti-
mization methods using numerical simulation techniques,
such as genetic algorithms [1], [2], wavefront matching
method [3], [4], and topology optimization [5]–[10], have
been reported. Sizing optimization has also been reported
for the optimal design of optical devices, for example
in [11], where for a spot-size converter of a segmented
waveguide, widths of the segments were optimized using
an evolutionary algorithm. An optimization method which
optimizes the refractive index distribution in a design
region may require more computational time than a sizing
optimization method, but we may find out a novel and
more compact structure than an optimum one obtained
using sizing optimization, in which the shape in a design
region is fixed except for size throughout the optimization
process. In this study, we consider the topology optimiza-
tion based on the function expansion method that can
avoid the fundamental problem of a gray area, which
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Fig. 1. Setup of optimization problem.

has intermediate refractive index between those of usable
materials, and can design several devices.

In topology optimization, the optimal structure can be
obtained by replacing the structure design optimization
problem with the material distribution problem in the
design region. The density method is widely used to
represent the material distribution. However, the density
method has the potential to cause an intermediate gray
area that takes a value between 0 and 1 in optimizing
the value of the density. In recent years, the topology
optimization based on the function expansion method,
which sets some function in a design region to determine
the refractive index distribution, has been proposed [10].
In this approach, the refractive index at a certain point is
set to be one of the two given values, which is chosen by
comparison of the function value with a threshold value, so
that no gray area appears. However, the discussion in [10]
was limited to optimize the structures consisting of two
isotropic materials. In this paper, the applicability of this
approach to the optimization problems including three or
more materials is examined and the optimal design of a
waveguide crossing is demonstrated.

II. Topology Optimization

A. Representation of refractive index distribution in de-
sign region

Considering an optical waveguide device as shown in
Fig. 1, and assuming the light is launched into the port
1, we consider the problem to optimize the refractive
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index profile that can realize the desired transmission
characteristics. In the topology optimization based on the
function expansion method, the refractive index profile in
the design region is expressed using a function with some
unknown coefficients and those coefficients are iteratively
updated so that the characteristics may be improved based
on a sensitivity analysis. Now, if the device is designed
using only two kinds of materials, dielectric constant can
be defined as follows by using some analytical functions
w(x, y) [10]:

εr(x, y) = εra + (εrb − εra)H(w(x, y)) (1)

Here, εra and εrb are the dielectric constants of the two
considered materials. The function H(w(x, y)) takes the
value of 0 or 1 depending on the value of w(x, y) and
εr(x, y) at any points is the dielectric constant of either
εra or εrb depending on the value of w(x, y). In order to
make it possible to take differential of H(w(x, y)) in the
sensitivity analysis described in Subsection II.C, we define
H(w(x, y)) as follows:

H(w) =



0 (w ≤ −h)

1

2

(
w + h

h

)2

(−h < w < 0)

1− 1

2

(
w − h

h

)2

(0 < w < h)

1 (w ≥ h)

(2)

In this paper, in order to treat three or more materials
in the optimization, (1) is extended to the following
expression:

εr(x, y) = εr,1 +
M∑
i=1

(εr,i+1 − εr,i)H(w(x, y)− ti) (3)

where M is the number of materials considered in the
optimization, εr,i(i = 1, 2, · · ·M) are the dielectric con-
stants of those materials, and ti is the threshold for each
material. In the region where the function w(x, y) takes
the value between ti and ti+1, the dielectric constant is
defined to be εr,i+1.
Here, w(x, y) is expressed in the form of the superposi-

tion of some analytical function fi(x, y) as

w(x, y) =
N∑
i=1

cifi(x, y) (4)

By optimizing the value of the coefficient ci based on
sensitivity analysis, the optimal structure will be obtained.
As the function w(x, y), several kinds of functions can
be used. In this paper, Fourier series represented by the
following equation is used:

w(x, y) =

Nx−1∑
i=−Nx

Ny−1∑
j=−Ny

(aijcosθij + bijsinθij) (5)

θij =
2πi

Lx
x+

2πj

Ly
y (6)

where Nx and Ny are the number of expansion terms in
the x and the y directions, respectively. Fourier series is

intended to represent a periodic function. However, the
addition of structural constraints of periodicity is not
desirable. In order to remove such constraints, Lx and Ly

have to be greater than the design region sizes along the
x and y directions, respectively. (2) shows the dielectric
constant takes intermediate values in |w| < h. However,
gray area can be removed by setting h to be 0 after the
optimization process.

B. Formulation by the Finite Element Method

In topology optimization, it is necessary to evaluate
the characteristics of a given optical device. Here, we
employ the finite element method (FEM) to evaluate the
transmission characteristics.

We consider a two-dimensional optical waveguide struc-
ture as shown in Fig. 1, where boundary Γn (n =
1, 2, · · · , N) represents the port of the n-th waveguide.
Dividing an analysis region into a number of second order
triangular elements and applying FEM described in [12],
we obtain a final matrix equation as follows:

[P ]{Φ} = {u} (7)

with

{u} = [Q]{Ψ}Γ (8)

where [P ] and [Q] are matrices generated by FEM, {u} is
a vector related to an incident wave on Γ1, and Φ = Ez

or Hz (Ez and Hz being the z component of electric and
magnetic field, respectively) for TE or TM mode. These
matrices and vectors are presented in detail in [12].

C. Sensitivity Analysis

When using the function expansion method in the
topology optimization, we need to know the dependence of
the scattering parameter Sn1 on the expansion coefficient
ci of (4). If Fourier series of (5) is employed as in this
paper, ci in the formulation of this subsection should be
interpreted as aij and bij .

After solving the propagating field in the given optical
waveguide devices by FEM and using the field vector on
the n-th waveguide {Φn}, the scattering parameter Sn1

can be written as follows:

Sn1 = −δn1 +
1

A1
{gn}T {Φn} (9)

with

{gn}T =

√
βn

β1
{Ψn}T [Q] (10)

where {Ψn} is the vector which consists of the values
of Ψn at the nodal points on the boundary Γn and Ψn

is the mode profile of the fundamental mode of the n-
th waveguide. Also, βn is the propagation constant of
the fundamental mode of the n-th waveguide, A1 is the
amplitude of the incident fundamental mode at port 1, δn1
represents the Kronecker delta, and T denotes a transpose.
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Fig. 2. Optimization model of waveguide crossing.
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Fig. 3. Equivalent index distribution of three dimensional waveg-
uide.

To efficiently calculate the derivative of Sn1 with respect
to ci, adjoint variable method (AVM) can be used. First,
we represent ∂Sn1/∂ci as follows:

∂Sn1

∂ci
=

∑
k

∂Sn1

∂Φk

∂Φk

∂ci
=

{
∂Sn1

∂Φ

}T
∂{Φ}
∂ci

(11)

Here, the final equation of FEM is given in (7). Taking the
derivative of (7) with respect to ci, we obtain the following
expression:

∂[P ]

∂ci
{Φ}+ [P ]

∂{Φ}
∂ci

= {0} (12)

Substituting this equation to (11), we can get the following
equation:

∂Sn1

∂ci
= −{λn}T

∂[P ]

∂ci
{Φ} (13)

with

[P ]T {λn} =

{
∂Sn1

∂Φ

}
(14)

Once we can get {λn} by solving (14), we can efficiently
estimate ∂Sn1/∂ci for all the ci by the product of the
known vectors.

(a) optimized structure (b) propagating field

Fig. 4. Optimization results of waveguide crossing at wavelength
of 1.55 µm.
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Fig. 5. Wavelength dependence of the normalized transmitted power
of the optimized structure in the single-wavelength optimization.

III. Optimal Design Example of an Optical Waveguide

In this section, we demonstrate the optimal design of
optical waveguide devices using the optimization method
described in the previous section. As an example of the
topology optimization, we consider the waveguide crossing
as shown in Fig. 2 and find out the device structure
which can suppress the cross talk. In this problem, we
consider the fundamental TE mode incidence and find
out the structure in which the incident light into port 1
transmits into port 3 with minimized cross talk. In this
optimization, we impose a symmetry condition in the x
and y directions and also impose a 90 degree rotational
symmetry condition. Therefore, if the incident light into
port 1 can transmit to port 3 without any cross talk, the
light into port 2 can also transmit to port 4 without any
cross talk.

In this example, we assume that three materials can
be used in the design region. The indices of these three
materials are n1 = 2.73, n2 = 2.1, and n3 = 1.0, where
the materials of n1 and n3 are the same as the core and
cladding of the waveguide. Since these three materials may
be considered as equivalent materials with the effective
index of the three-dimensional waveguide, as shown in
Fig. 3, where the region with the different waveguide
height is represented by the different effective index, it
may be a case in which it is necessary to optimize struc-
tures including three materials. It is of much interest to
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(a) initial structure (b) Nx = Ny = 4

(c) Nx = Ny = 8 (d) Nx = Ny = 16

Fig. 6. Initial structure of waveguide crossing and optimized ones
for different numbers of expansion terms in the multi-wavelength
optimization.
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Fig. 7. Dependence of the minimized value of the objective
function on the number of expansion terms in the multi-wavelength
optimization.

investigate the optimization on three-dimensional optical
waveguides, but that is beyond this paper. The purpose of
this paper is to present topology optimization to structures
including three or more materials, and we focus on the
optimization of the two-dimensional waveguide crossing
shown in Fig. 2. The waveguide width is w = 0.5 µm,
the width of the design region is W = 6 µm, and the
thickness of the PML is 0.5 µm to absorb the transmitted
and radiated field.
First, we consider the optimization problem at a single

wavelength λ = 1.55 µm and employ the following
objective function to be minimized:

Minimize C = 1− |S21|2 (15)

Fig. 4 shows the optimized structure and propagating
field at λ = 1.55 µm. We can see that the incident light
into port 1 transmits to port 3 with little cross talk.
The obtained structure has a clear material boundary.
However, the structure around the crossing region is a little
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Fig. 8. Convergence behavior for optimization of waveguide crossing
in the multi-wavelength optimization.

bit complicated. Fig. 5 shows the wavelength dependence
of the transmission property. Because of the complicated
structure around the crossing region, the relatively strong
wavelength dependence is observed.

Next, in order to suppress the wavelength dependence,
considering the 100 nm wavelength band width around
1.55 µm, we employ the following objective function to be
minimized:

Minimize C =

K∑
i=1

(1− |S21(λi)|2) (16)

where K = 5 and λi for i = 1, 2, 3, 4, 5 is 1.5, 1.525, 1.55,
1.575, 1.6 µm, respectively.

We consider the initial structure as shown in Fig. 6(a),
and the obtained optimized structures are shown in
Figs. 6(b), (c), and (d) for Nx = Ny = 4, 8, and 16,
respectively, where Nx = Ny is assumed because of
the symmetry of the waveguide crossing. In the single
wavelength problem, there are several structures which
can realize the desired property and the obtained structure
in Fig. 4 is the one of those structures. In the multi-
wavelength optimization, the structure originated at a
specific wavelength is avoided and the simpler structures
are obtained. Fig. 7 shows the dependence of the mini-
mized value of the objective function on the number of
expansion terms in the multi-wavelength optimization. We
notice that the objective function is most minimized when
Nx = Ny = 16, so we use Nx = Ny = 16 in the following
computation.

The convergence behavior of the normalized transmitted
power in the iteration process is shown in Fig. 8. The
average transmitted power of five wavelengths increases in
the iteration process, and finally the average transmitted
power reaches 0.998. Fig. 9 shows the wavelength depen-
dence of the normalized transmitted power of the non-
optimized structure, i.e. the initial structure of Fig. 6(a),
and optimized one. For comparison, the results for the
non-optimized and optimized waveguide crossings with
two materials, in which refractive indices of its core and
cladding are, respectively, n1 = 2.73 and n3 = 1.0, are also
shown in Fig. 9. We can see that the optimized waveguide
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Fig. 9. Wavelength dependence of the normalized transmitted
power of the non-optimized and optimized structures in the multi-
wavelength optimization.

(a) λ = 1.50 µm (b) λ = 1.55 µm (c) λ = 1.60 µm

Fig. 10. Propagating field in waveguide crossing with three
materials.

(a) λ = 1.50 µm (b) λ = 1.55 µm (c) λ = 1.60 µm

Fig. 11. Propagating field in waveguide crossing with two materials.

crossing with two materials shows stronger wavelength
dependence because of its higher refractive index difference
than that of the optimized waveguide crossing with three
materials, in which refractive indices of its core and first
cladding are, respectively, n1 = 2.73 and n2 = 2.1. Since
it is hard to process four tiny holes in the optimized
structure of Fig.6(d), we also show in Fig. 9 the result
for the optimized structure with the tiny holes filled with
the material of n2 = 2.1. We find that it is almost the
same as that for the optimized structure of Fig. 6(d).

The propagating fields in the optimized structure are
shown in Figs. 10 and 11. In the structure obtained
with two materials, the relatively large radiated fields are
observed because of high refractive index contrast. On the
other hand, in the structure obtained with three materials,
we can see that the radiated fields are suppressed by two
material boundaries and the light is concentrated by lens-
like effect around crossing region.

Finally, in order to compare waveguide crossings in the
function expansion method and the density method, we

with gray area without gray area
(a) two materials

with gray area without gray area
(b) three materials
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Fig. 12. Results of topology optimization based on the den-
sity method. (a) and (b) Optimized structures. (c) Wavelength
dependence of the normalized transmitted power of the optimized
structures.

show the optimized structure based on the density method
with two materials in Fig. 12(a) and that with three ma-
terials in Fig. 12(b). Since the optimized structure in the
density method has gray areas, we also show the optimized
structure without gray area in those figures. Fig. 12(c)
shows the wavelength dependence of the transmitted
power of the optimized structures with/without gray area.
The transmitted power of the optimized structure with
gray area is almost unity over the wavelength of 1.5 to
1.6 µm, but the optimized structure without gray area
in the density method has many tiny structures which it
may be hard to process, and its transmitted power is lower
than that shown in Fig. 9 for the optimized structure in
the function expansion method.

IV. Conclusion

In this study, we proposed the optimization using the
multi-materials in the topology optimization based on the
function expansion method. We actually demonstrated
the optimization examples for waveguide crossing and
confirmed its effectiveness.
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