
Pricing and Repurchasing for Big Data
Processing in Multi-Clouds

著者 LI He, DONG Mianxiong, OTA Kaoru, GUO Minyi
journal or
publication title

 IEEE Transactions on Emerging Topics in
Computing

volume 4
number 2
page range 266-277
year 2016-01-14
URL http://hdl.handle.net/10258/00009438

doi: info:10.1109/TETC.2016.2517930

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Muroran-IT Academic Resource Archive

https://core.ac.uk/display/87756819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Pricing and Repurchasing for Big Data
Processing in Multi-clouds

He Li,∗ Mianxiong Dong,∗ Kaoru Ota,∗ Minyi Guo†

∗ Department of Information and Electronic Engineering, Muroran Institute of Technology, Muroran,

Hokkaido, Japan.

E-mail: {heli, mxdong, ota}@mmm.muroran-it.ac.jp
† Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.

E-mail: guo-my@cs.sjtu.edu.cn

Abstract—Processing streaming big data becomes critical as new divers Internet of Tings (IoT) applications begin to emerge. Existing

cloud pricing strategy is unfriendly for processing streaming big data with varying load. Multiple cloud environment is a potential solution

with an efficient pay-on-demand pricing strategy for processing streaming big data. In this paper, we propose a intermediary framework

with multiple cloud environment to provide streaming big data computing service with lower cost per load, in which a cloud service

intermediary rents the cloud service from multiple cloud providers and provides streaming processing service to the users with multiple

service interfaces. In this framework, we also propose a pricing strategy to maximize the revenue of the multiple cloud intermediary.

With extensive simulations, our pricing strategy brings higher revenue than other pricing methods.

Index Terms—Streaming Big Data, Cloud Computing, Multiple Cloud

✦

1 INTRODUCTION

Streaming big data processing is becoming a very im-
portant part of Internet of Things (IoT) in recent years.
Usually, for lower maintenance cost, users often use
cloud services for processing big data [1] [2] [3]. With
cloud services, it is no need to maintain a large scale
cluster and consider the details of big data comput-
ing. Furthermore, some cloud providers also provide
computing services based on some popular distributed
systems (e.g., Hadoop, etc.). With these services, users
conveniently put their data and processing programs on
the cloud platform then wait for the result [4].

Usually, cloud provides give users reasonable price
for their services, especially for some long-term users
[5]. However, for most streaming big data computing
scenarios, their price, especially the rate per load, seems
too expensive [6]. To reduce the cost for streaming big
data computing, an optional method is choose some
small cloud providers with lower rate per load. How-
ever, small cloud providers have not enough capacity to
support large scale work loads [7] [8]. Meanwhile, their
services are short of support for big data computing.
Multiple cloud service mode is a better solution that
users can deploy their computing in multiple cloud
providers [9]. However, with multiple cloud providers,
users have to considerate about the difficulty of man-
agement and the deployment of big data computing
systems. Thus, it needs multiple cloud intermediaries to
provide flexible services for these users to conveniently
deploy data and processing programs.

Another problem is that the rate with long-term rent

is much lower than the rate of pay-as-use while users
choose long-term rent can get a lower rate. Usually, in
many scenarios of streaming computing, the scale of the
workload will vary in different periods drastically. If
the users want to meet the requirement from the peak
load, they need to rent many computing resources from
cloud providers while most of rented resources will be
idle with off-peak workloads. In this case, we consider
a potential solution that intermediaries repurchase this
part of computing capacity to recover a part of the user
cost if possible.

Therefore, as shown in Fig. 1, we propose a multiple
cloud intermediary concept combining multiple cloud
providers and user subletting. This intermediary frame-
work has compatibility with different cloud services and
provides on-demand streaming processing services for
users. Meanwhile, we present a well-designed pricing
strategy names Pricing-Repurchasing for this intermedi-
ary framework. First, the intermediary can repurchase
the sparse capacity with dynamic rate per load which
depends on the duration time and the amount of sparse
resources that the users hold. Second, the intermediary
can choose different prices to users for different users
according to the amount and time of computing re-
sources rented. For this framework, we want to design
the optimal pricing and subletting strategy for the in-
termediary that maximizes its total revenue, considering
the necessary refunds to the users. Notice that changing
the price or changing the repurchase rate has different
impacts on renting decisions from users, hence on the
intermediaries revenue. Thus, this pricing model brings
new challenges in the design of the revenue maximizing

2

policy for intermediary.
We employ a game-theoretic analysis, and model the

interaction between the intermediary and the users as a
two-stage leader-follower (Stackelberg) game. In the first
stage, the intermediary decides the long-term rate, pay-
as-use rate and the repurchase rate plan. Accordingly, in
the second stage, every user decides how many units of
computing capacity with long-term rate and how many
units with pay-as-use rate. We analyze the best decisions
of both the users and intermediary, and find the game
equilibrium. The game model with equilibrium analysis
uses a variety of system characteristics, including the
computing style and scale of users, and the capacity
of the intermediary. As a result, it is possible to apply
the derivation of the optimal decisions to other cloud
computing scenarios. The main contributions of our
work are summaries as follows.

We first introduce an multiple cloud intermediary
framework to provide streaming big data computing
services. Based on this framework, we propose a pricing
strategy with the Pricing-Repurchasing plan. To the best
of our knowledge, this is the first work that studies such
a Pricing-Repurchasing cloud service.

We then design the optimal Pricing-Repurchasing plan
that maximizes the intermediary’s revenue. It is a chal-
lenging problem which needs to understand thoroughly
the impact of pricing and repurchasing strategies on the
hosts renting decisions.

We model the interaction of the intermediary and the
users as a two-stage Stackelberg game, and analyze the
game equilibrium [10]. The analysis is generic and use a
variety of system characteristics, and thus is applicable
to various cloud computing scenarios.

Last, we take the performance evaluation of the strat-
egy with extensive simulations, and discuss the revenue
with different settings. We also compare our pricing
strategy with some other pricing methods and the results
shows our strategy performs better.

The rest of the paper is organized as follows. In section
2, we discuss the related work. In Section 3, we discuss
the design concepts and brief the main structure in the
framework. In Section 4, we state the system model.
Then we analyze the optimal pricing and repurchasing
policies in Section 5. In Section 5.2, we present the
simulations. Last, we conclude our work in Section.

2 RELATED WORKS

In this section, we first try to introduce the state of
art and the tread of streaming big data computing. We
also introduce some works which focused on the cloud
based streaming big data processing. Finally, we discuss
the some typical systems and scheduling algorithms in
multiple cloud environment.

2.1 Streaming Big Data Computing

In rent years, researchers and companies developed
some successful systems focus on streaming big data
computing.

Intermediary

Cloud providers

users

Fig. 1. Illustration of the multiple cloud intermediary

scheme: Cloud users rent cloud computing resources
from the intermediary.

Earlier steaming processing systems are usually de-
ployed on single computer. Aurora [11] is a streaming
management system developed by the cooperation of
Brown, Brandis, and MIT University. It is a single in-
frastructure which can efficiently and seamlessly support
real-time monitoring applications, archival applications
and spanning applications.

Borealis [12] is a distributed extension of Aurora which
can process streaming data through multiple processors
and computers. For support distributed architecture, Bo-
realis presents an efficient algorithm for the distribution
of jobs between nodes.

Cougar [13] is a streaming processing system that
works with small-scale sensors, actuators, and embed-
ded systems. Unlike general sensor networks use offline
querying and analysis, Cougar project distributes queries
to nodes and as a result only the desired data collected
by the central processing nodes.

To meet the demands from the big data comput-
ing, large companies also developed some commercial
streaming processing system. For example, IBM InfoS-
phere [14] Streams is an advanced analytic platform that
allows users develop applications for analyzing and cor-
relating information from thousands of real-time sources.
InfoSphere is a distributed runtime platform which can
be scaled from a single server to an unlimited number of
nodes to process millions of events per second. Microsoft
StreamInsight [15] is another platform for developing
and deploying complex event processing applications,
which analyses and correlates data incrementally with-
out storing data with low latency.

3

2.2 Streaming Big Data Computing in Cloud

While distributed and scalable cloud environment is
very suitable for deploying streaming big data comput-
ing, existing cloud provides offers many solutions.

Meanwhile, some existing stream processing frame-
works (e.g., Apache S4, Storm, IBM InfoSphere Streams,
etc), which are designed for distributed systems, can be
easily deployed to existing cloud environment [16].

Storm [17] is a clojure procject based on Pallet9, which
aims to simplify the development of Storm topologies on
cloud platforms including AWS EC2.

Apache Kafka [18] is a real-time publish-subscribe
infrastructure aiming to address the requirements from
streaming big data processing, in which data streams are
partitioned and spread over a cluster of machines.

Meanwhile, since the cloud environment is different
from the general distributed environment, more and
more works focus on development of original cloud
systems for processing streaming big data. Samze [19] is
a streaming big data processing framework that blends
Kafka and Hadoop YARN, which provides a model that
YARN completely handle the execution where streams
are the input and output ot jobs.

AWS Kinesis [20]is an cloud service provided from
Amazon, which process stream data with the capacity
to handl multiple sources. Kinesis is an efficient service
especially on handling and generating alerts and allows
for integration with other AWS services.

2.3 Multiple Cloud Computing

Some existing works focus on integrate computing re-
sources from multiple cloud providers.

Apache CloudStack [21] is a software to integrate
cloud computing resources with resource management,
user management, API and graphical user interface.
Eucalyptus is also a similar software which focuses on
building Amazon AWS-compatible private and hybrid
clouds.

OpenNebula [22] is a multiple cloud software aiming
at providing an industry standard solution for creating
and managing virtual data centers across multiple cloud
provides.

OpenStack [23] is the most famous cloud management
system which provides an API and a dashboard to man-
age pools of computing, storage, and network resources
from single or multiple cloud environment.

VMware vCloud [24] is a multiple cloud infrastructure
that allowing to organize cloud computing at three levels
including infrastructure level, platform level and service
level.

fog [25] is a Ruby API for providing access to com-
puting and storage resources across multiple cloud pro-
vides. It also provides an in-memory cloud resource
representation to help developers to test and simulate
their deployment.

jcloud [26] is also an API for delivering an abstraction
layer over the APIs from cloud providers, which facili-
tates users using means of templates to describe generic

virtual machines and allows deploying and grouping of
multiple virtual machines.

Cloud4SOA [27] is a multi-cloud PaaS management
which enables software developers to create, deploy, ex-
ecute, and mange business applications through multiple
cloud providers.

The multicloud based evacuation services architecture
[28] maintains basic monitoring and maintenance ser-
cices during of normal activity but quickly scales up
service capacity during an emergency.

Furthermore, besides multi-cloud frameworks and
systems, there are several research works focused on the
scheduling strategies between multiple cloud scenarios
for optimization cost or performance.

An optimal virtual machine placement algorithm is
proposed to minimize the total cost due to purchasing
reserved and on-demand resources from multiple cloud
providers [29]. In this research, an optimal strategy is ex-
plored to avoid the resources over/under-provisioning
problem to cope with uncertainly demands. The goal of
this algorithm is archived by adjusting the trade-off be-
tween resources and pay for the on-demand requirement
of load peaks.

A management algorithm is presented to reallocate the
placement of virtual machines for better performance in
multiple cloud environment and optimize the resource
utilization [30]. To archive this goal, the algorithm con-
siders the host load profile and the guest load trend
behavior instead of thresholds.

A modular broker architecture is proposed for op-
timal deployment for virtual services across multiple
clouds with different scheduling strategies [31]. This op-
timization of this research is based on different criteria,
different user constraints, and different environmental
conditions.

A hybrid decision support is proposed for automat-
ing the migration of web application clusters to pub-
lic clouds [32]. In this research, a selection algorithm
based on analytic hierarchy process is designed for the
migration decision over multiple clouds with several
criteria. Further, a genetic algorithm-based approach is
developed to cope with computational complexities in a
growing market.

3 FRAMEWORK DESIGN

In this section, we first discuss the design concepts of the
multiple cloud intermediary framework for streaming
big data computing. Then, we brief the framework struc-
ture and introduce the main modules in the framework.

3.1 Design Concepts

3.1.1 Multiple Cloud Compatibility

Multiple cloud compatibility means the intermediary can
rent computer resources from different cloud providers
with different services, which means there are two levels
of compatibility including platform compatibility and
service compatibility.

4

Platform compatibility is that the intermediary applies
the computer resources from multiple cloud platforms
with different interfaces. This is the first design con-
cept of the multiple cloud services that the users can
deploy their applications to multiple cloud platforms
transparently. The benefit of this compatibility is that
the intermediary can schedule the resource requirement
between multiple cloud providers to increase the service
capacity and decrease the cost of the computer resources.

Service compatibility is that the intermediary applies
the computer resources at different service levels. Usu-
ally, there are three levels of services from existing
cloud providers, which including the Infrastructure as
a Service (IaaS) level, MapReduce level and Streaming
computing level. IaaS level means the cloud providers
encapsulate their services as compute instances and the
users use these instances as general servers. MapReduce
level means the computing resources are provided as
general MapReduce computing systems and users de-
ploy their tasks as MapReduce applications. Streaming
computing level is that the streaming computing applica-
tions can be executed in this cloud platform. Considering
the intermediary focuses on the streaming computing, it
can apply more flexible scheduling strategies due to the
service compatibility.

3.1.2 On-demand Services

On-demand services mean the intermediary can provide
different service types to satisfy the user requirements.
As well as the multiple cloud compatibility, there are also
two levels of on-demand services including on-demand
service levels and on-demand interfaces.

On-demand service levels mean the intermediary
framework can provide the specific service level needed
by users. In the discussion of the service compatibility,
there are three service levels in general cloud providers.
For the service levels, different users will adopt different
levels for their tasks. For example, if users want to
deploy their specific processing systems in the cloud
platforms, they will choose IaaS level while if users want
to execute their tasks on general streaming processing
system, they will choose the streaming computing level.
Thus, to satisfy the requirement of different users, the
intermediary framework needs to provide these three
service levels at least.

On-demand interfaces mean the intermediary frame-
work can provide the specific service interface needed
by users. Service interfaces are usually including the
interfaces of the computing systems (e.g., POSIX [33],
etc.), MapReduce systems (e.g., hadoop [34], etc.) and
the streaming processing systems (e.g., SPARK [35], etc.).
Before using the intermediary service, users usually have
developed some applications or systems to execute their
streaming processing tasks with specific interfaces. For
example, if user developed their streaming processing
applications on the Apache SPARK, they will prefer
the cloud service through the same interfaces with the

SPARK. Therefore, the intermediary framework needs to
integrate general interfaces into the service levels.

3.1.3 Specific Long-term Renting

This design concept focuses on the revenue and the
risk of the intermediary framework. Specific Long-term
renting means the users subscribe the services from the
intermediary framework with long-term contracts with
specific prices. Similarly, there are also two levels in this
concept including long-term renting and specific pricing.

Long-term renting means each user needs to rent a
fix amount of computer resources with a long period. It
is a little unacceptable that most of the cloud providers
use pay-as-use mode which means users only need to
pay the part of units they used. However, since the
computing resources in the intermediary are also rented
from the cloud providers, it is hard to decrease the
cost of the pay-as-use mode. Thus, the intermediary
need to rent the computer resources from multiple cloud
providers with long-term contracts. Considering it is
hard to predict user behaviors, long-term renting mode
brings higher risk than pay-as-use mode that the revenue
and cost are determined.

Specific pricing means the intermediary provide differ-
ent price for users with their workloads or other factors
of the processing tasks. The benefit of specific pricing
is the intermediary can increase the revenue with better
strategy and promote the cloud service to those users
with more workloads or low cost processing mode.

We will discuss the first two concepts by introducing
the framework structure first. Then, we will state the
problem of the third concept and give a well-designed
pricing strategy in the rest of this paper.

3.2 Framework Structure

As the structure shown in Figure 2, the multiple cloud in-
termediary framework for streaming computing consists
of several modules to meet the design concepts. There
are seven main modules in the framework including the
cloud instance management, streaming node manage-
ment, MapReduce node management, streaming service,
MapReduce service, IaaS service and user management
modules.

Cloud instance management module manages all com-
pute instances at the IaaS service level. This module
records all status of the instances and assigns appropri-
ate instances to other modules.

Streaming node management module manages the
computing resources which are provided to users at
streaming computing service level. The streaming com-
puting resources are generated in three types of methods.
First type is that the intermediary rents resources from
the streaming processing cloud services. Second type
is that the module deploys the streaming processing
systems on the MapReduce nodes. Third type is that the
module deploys the streaming processing systems in the
compute instances directly.

5

AWS EC2

Azure

AWS S3

Azure HDInsight

AWS Kinesis

IaaS ServiceMapReduce Service
Streaming Processing

Service

Cloud Instance

Management

User Management Streaming Service MapReduce Service IaaS Service

Streaming Node

Management

MapReduce Node

Management

Streaming User MapReduce User IaaS User

Mutiple Cloud Intermediary Framework

...

...

...

Fig. 2. Multiple Cloud Intermediary Framework Structure

MapReduce node management module manages the
computing resources provided at MapReduce service
level. Similarly with the streaming computing resources,
the MapReduce computing resources are generated from
two types: the resources rented from the cloud MapRe-
duce services, and the module deploys the MapReduce
systems in the compute instances.

Streaming service module provides streaming com-
puting services to the users. To provide the required ser-
vice interface from users, the streaming service module
integrates general streaming processing systems.

MapReduce service module provides MapReduce ser-
vices to the users. Similarly, the MapReduce service
module integrates general MapReduce implementations
to provide the compatible interfaces to support the
streaming systems from users.

IaaS service module provides IaaS services to the
users. Usually, users can get compute instances from
this module with the required version of the operating
systems and some necessary software.

User management module manages all users in the
intermediary framework including access control, usage
history, billing, etc.

4 SYSTEM MODEL

The intermediary model is as shown in Figure 1. We
consider users purchase cloud computing resources from
the intermediary with enough capacity and low cost
than large cloud providers. The intermediary get dis-
count prices from multiple cloud provider with long-
term contracts. The intermediary usually combines these
computing resources into different big data computing
systems as the service units for cloud users. We use set

N = {u1, u2, ..., u|N |} to denote the cloud users who
use computing resources from the intermediary. Since
in processing streaming big data, the scale of workloads
will vary with the time period, we assume a time-slotted
system, and study the system for one time period and
use T = {t1, t2, t3, ...t|T |} to denote the T time slots.

The intermediary pays the cloud providers (e.g., Ama-
zone EC2) a pay-as-use price p ≥ 0 per one computing
unit. Meanwhile, the intermediary charges the cloud
users with long-term renting. As the intermediary pro-
vide rates for users according to the usage of cloud
services, we use rli to denote these different rates for user
ui. If users want pay-as-use rate, according to their usage
and application style, they should pay r

p
i to bought

additional computer resource from the market.
The intermediary repurchases the users computing

capacity when the rented computer resources are more
than the requirements. The repurchasing rate is not fixed,
but depends on the amount of the over-rented capacity
from the intermediary. We use ηi ∈ [0, 0.9] to denote
the repurchasing ratio to user ui. When the intermediary
repurchases one unit of computing capacity from user ui,
user ui can get a refund of ηi · r

l
i from the intermediary.

Similar with the rate strategies, we consider the interme-
diary can provide different repurchasing rates for users
according to the computing scale and style.

The strategy of the intermediary includes the long-
term renting price rli and the repurchasing ratio ηi.
The objective of the intermediary is to decide the best
strategy to maximize the revenue. As we

For user ui, we define a utility function Ui(·) to denote
the certain computing needs. The utility function is
defined to computes the utility of assignment resources
to user i. As we seek a elastic model of the pricing
strategy and the user utility function is compatible with
multiple previous models [36] [37].

We also use wij to denote the consumed computing
resources during slot tj , and wi = (wij tj ∈ T) as the
computing resource consumption vector over the entire
time period.

Each user ui can rent computing resources with two
different ways including long-term renting from the
intermediary and pay-as-use from other cloud providers.
Since the long-term renting price is much lower than
pay-as-use price, each user needs to make a contract
with the intermediary to get the long-term renting sale.
As a result, in the entire time period, the amount of
rented computing resources is fixed to each user ui.
We use cli ≥ 0 to denote fixed part of computing
resources. Some users will choose pay-as-use mode to
rent computing resources from other cloud providers as
supplementary of long-term renting. We use c

p
ij ≥ 0 to

denote the part that user ui choose pay-as-use mode to
rent computing resources in time slot tj . Considering the
required amount of computing resources is different in
each time slot tj , the part with pay-as-use mode is also
different. The total computing resources of these two
part are equal to the requirements of the workloads in

6

TABLE 1

Notations in the multiple cloud intermediary model

Notation Description
N Set of all cloud users
ui Cloud user
T Set of all time slots
tj Time slot
p Price of Intermediary paid to cloud providers

rli Price of long-term renting for user ui

r
p
i

Price of additional usage for user ui

ηi Repurchasing ratio for user ui

wij Computing resources consumed by user ui in
time slot tj

wi Computing resource consumption vector of user ui

in the entire time period

cli Long-term renting amount of user ui

c
p
i Rented amount within pay-as-use of user ui

cri Repurchasing amount of user ui

cti Total rented amount of user ui

time slot tj as follows.

c
p
ij =

{

wij − cl, wij ≥ cli

0, cli > wij

(1)

If the computing resources rented by user ui within
long-term renting mode exceed the requirement from the
workloads, the intermediary will repurchase this part
of the computing resources. Therefore, we use crij ≥ 0
to denote the part of computing resources repurchased
by the intermediary. That is, the repurchased computing
resources during slot t can be calculated as follows.

crij =

{

cli − wij , cli > wij

0, wij ≥ cli
(2)

We use ctij ≥ 0 to denote the total amount of the
computing resources rented from the intermediary by
user ui in time slot tj . With three parts of the computing
resources, in time slot tj , the total amount of the com-
puting resources rented from the intermediary by user
ui should satisfy following equation.

ctij =

{

clij + c
p
ij = wij , wij ≥ cli

clij − crij , cli > wij

(3)

We list all notations used in the pricing strategy of
the multiple cloud intermediary model in Table 1. The
system is assumed to be quasi-static, as some vari-
ables(i.e., those marked with the subscript j) may change
in different time slot tj ∈ T , while others are fixed in the
entire time period.

We focus on the interaction of the intermediary and
the users, and formulate is as a two-stage leader-follower
(Stackelberg) game. A stacklberg game is leadership
model in economics in which the leader firm moves
before the follower. In the game terms, the game play-
ers are a leader and a follower and they compete on
quantity. Thus, in our model, the game players are
the intermediary and the cloud user. In the first stage,
the intermediary (leader) decides the long-term renting

price, the pay-as-use price and the repurchasing ratio
for maximizing its payoff. The object of the intermediary
is to maximize its payoff, which consist of the revenue
from the long-term renting, pay-as-use renting,and the
cost for repurchasing from the cloud users, and the
payment(negative) to the cloud providers. In the second
stage, under the decisions from the leader, the user ui de-
cides the long-term renting amount. The payoff of each
user ui depends on the utility Ui from the computing
requirement, the payment on the long-term renting, the
payment on the pay-as-use cost, and the refund from
repurchasing of over rented computing resources.

Specifically, given the strategy (rl, η) of the intermedi-
ary, the payoff of user ui, when choosing a strategy (cl),
is as follows.

Ji(c
l
i; r

l
i, ηi) =Ui(wi)− rli · c

l
i · |T |

−

|T |
∑

j=1

r
p
i · c

p
ij +

|T |
∑

j=1

ηi · r
l
i · c

r
ij

(4)

From equation (1) and (2), the payoff of user ui can be
denoted as follows.

Ji(c
l
i; r

l
i, ηi) =

Ui(wi)− rli · c
l
i · |T |

−

|T |
∑

j=1

r
p
i · (wij − cli),wij ≥ cli,

Ui(wi)− rli · c
l
i · |T |

+

|T |
∑

j=1

ηi · r
l
i · (c

l
i − wij),wij < cli

(5)

Formally, the intermediary’s payoff can be defined as
follows.

V (rl, η; (cli)ui∈U) =

|U|
∑

i=1

|T |
∑

j=1

rli · c
l
i − ηi · r

l · crij − p · clij

(6)

Similar with the payoff of cloud users, the payoff of the
intermediary can be denoted as follows.

V (rl, η; (cli)ui∈U) =

l

|U|
∑

i=1

rli · (c
l
i − p) · |T |, wij ≥ cli

|U|
∑

i=1

rli · (c
l
i − p) · |T |

−

|U|
∑

i=1

|T |
∑

j=1

ηi · r
l
i · (c

l
i − wij), wij < cli

(7)

Considering users will choose cheaper price from the
other cloud service, we assume that the intermediary
provide a lower price than general cloud service. Mean-
while, we also assume the long-term price is lower
the pay-as-use price. Therefore, we can get following
constraints.

rli < r
p
i , i ∈ [1, |U |] (8)

7

5 OPTIMAL PRICING-REIMBURSING STRAT-
EGY

In this section, we study the intermediary-user game un-
der complete information, where both the intermediary
and the users know all system parameters mentioned
above. We solve the game by backward induction. First,
we solve the user’s best renting strategy in the second
stage. Then, we study the intermediary’s best pricing
strategy in the first stage.

5.1 Best Decision of Users in the Second Stage

We assume that computing tasks of the user are elas-
tic that the analysis can be easily extended to other
scenarios. Specifically, give the intermediary’s pricing
and repurchasing strategy (cli, c

p
i , ηi), user ui can derive

the optimal scheduling strategy (cl∗i) by solving the
following problem.

max
cli

Ji(c
l
i; r

l
i, ηi)

s.t.,cli ≥ 0, rli < r
p
i , 0 ≤ ηi ≤ 0.9, i ∈ [1, |U |] (9)

It is easy to check that (9) is a convex optimization.
Meanwhile, there is no constraint for the value of cli.
Hence, usually it admits an optimal solution that can
be characterized by the Fermat’s theorem. However,
considering the function Ji(c

l
i; r

l
i, ηi) derived from a step

function, we first study the characters of the payoff
function.

First, we sort the wi into numerical order and denote
it by w∗

i in which w∗
i1 ≤ w∗

i2 ≤ ... ≤ w∗
i|T |. To cli ≤ w∗

i1,

the function Ji(c
l
i; r

l
i, ηi) can be written as follows.

Ji(c
l
i; r

l
i, ηi) =Ui(w

∗
i) + (rpi − rli) · |T | · c

l
i

− r
p
i ·

T
∑

1

w∗
ij , 0 ≤ cli ≤ w∗

i1 (10)

It is easy to see it is a continuous and monotonic
function where 0 ≤ cli ≤ w∗

i1.
Then we study the function where cli ≥ w∗

i|T | as
follows.

Ji(c
l
i; r

l
i, ηi) =Ui(w

∗
i)− (1− ηi) · r

l
i · |T | · c

l
i

+ ηi · r
l
i ·

|T |
∑

j=1

w∗
ij , cli ≥ w∗

i|T | (11)

Obviously, the payoff function is continuous and mono-
tonic where cli ≥ w∗

i|T |.

Then, given an interval (w∗
ik, w

∗
i(k+1)) where w∗

ik < cli <

w∗
i(k+1), the payoff function of user ui can be written as

follows.

Ji(c
l
i; r

l
i, ηi) =Ui(w

∗
i)− [(rli − r

p
i) · |T |

− (ηi · r
l
i − r

p
i) · k] · c

l
i

+ ηi · r
l
i ·

k
∑

j=1

w∗
ij − r

p
i ·

|T |
∑

j=k+1

w∗
ij ,

w∗
ik < cli < w∗

i(k+1)

(12)

Therefore, the payoff function is continuous where w∗
ik <

cli < w∗
i(k+1). Then, to the interval (w∗

ik, w
∗
i(k+1)), we

denote the function J ′
i(c

l
i; r

l
i, ηi) to denote the derivative

of the payoff function as follows.

J ′
i(c

l
i; r

l
i, ηi) =

dJi(c
l
i; r

l
i, ηi)

dcli

=(rli − r
p
i) · |T | − (ηi · r

l
i − r

p
i) · k

w∗
ik < cli < w∗

i(k+1)

(13)

We can get the value of k∗ after setting the J ′
i(c

l
i; r

l
i, ηi) =

0 as follows.

k∗ =
(rli − r

p
i) · |T |

ηi · rli − r
p
i

(14)

As a result, to each interval (wik, wi(k+1)) between wi1

and wi|T |, the payoff function is continuous and mono-
tonic except when k = k∗.

Lemma 1: The function Ji(c
l
i; r

l
i, ηi) is a continuous

function where cli ≥ 0.
Proof: As discussed above, the function Ji(c

l
i; r

l
i, ηi)

is continuous except clt = wik for each tk ∈ T . Therefore,
for a give k ∈ (0, |T |), the value Ji(wik +∆c; rli, ηi) is as
follows.

Ji(wik +∆c; rli, ηi) = Ji(wik; r
l
i, ηi)

+ [(rli − r
p
i) · |T | − (ηi · −r

p
i) · k] ·∆c

(15)

For a given k ∈ (0, |T |), the value Ji(wik − ∆c; rli, ηi) is
as follows.

Ji(wik +∆c; rli, ηi) = Ji(wik; r
l
i, ηi)

− [(rli − r
p
i) · |T | − (ηi · −r

p
i) · (k − 1)] ·∆c

(16)

When ∆c ← 0, since lim
∆c→0

Ji(wik + ∆c; rli, ηi) =

Ji(wik ; r
l
i, ηi) and lim

∆c→0
Ji(wik−∆c; rli, ηi) = Ji(wik; r

l
i, ηi),

the function is continuous where clt = wik, k ∈ (0, |T |).
Similarly, we can prove the function Ji(wik; r

l
i, ηi) is

continuous where clt = wi1 and clt = wi|K|. Thus, we
conclude that this function is continuous where cli ≥ 0.

Lemma 2: The optimal solution of function Ji(c
l
i; r

l
i, ηi)

is cli = wi⌈k∗⌉, where |T | ≥ k∗ > 0
Proof: For the value where clp < wi⌈k∗⌉, we set k =

⌈k∗⌉ − δ < k∗, the value of the function Ji(c
l
i; r

l
i, ηi) is as

follows.

Ji(c
l
i; r

l
i, ηi) =Ui(w

∗
i)

− [(rli − r
p
i) · |T |+ (ηi · r

l
i − r

p
i) · δ] · c

l
i

+ ηi · r
l
i ·

k
∑

j=1

w∗
ij − r

p
i ·

|T |
∑

j=k+1

w∗
ij ,

w∗
ik < cli < w∗

i(k+1)

(17)
Obviously, since −[(rli−r

p
i)·|T |+(ηi ·r

l
i−r

p
i)·δ] < 0 where

k∗ > 0, the function is monotonically decreasing. Simi-
larly, when cli > wi(⌈k∗⌉+1), the function is monotonically
increasing.

Considering k is an integer, we study two conditions
of k∗ that k∗ is an integer or not. First, when k∗ is an

8

integer, we can get a interval [wik∗ , wi(k∗+1)] in which
the value of the payoff function is a constant. There-
fore, when cli ∈ [wik∗ , wi(k∗+1)], the value of function
Ji(c

l
i; r

l
i, ηi) is minimum. When k∗ is not an integer, we

can get a interval [wi⌈k∗⌉, wi(⌈k∗⌉+1)] in while the payoff
function is monotonically increasing. That is, when cli =
wi⌈k∗⌉, the value of function Ji(c

l
i; r

l
i, ηi) is minimum.

Finally, we can conduct that The optimal solution of
function Ji(c

l
i; r

l
i, ηi) is cli = wi⌈k∗⌉ where |T | ≥ k∗ > 0

5.2 Best Decision of the intermediary in the First
Stage

Based on the users’ best strategy in the second stage, the
intermediary determines the best pricing and repurchas-
ing strategy (rl∗, η∗) that maximum the payoff defined in
(7). Specifically, the intermediary’s optimization problem
is as follows.

max
rl,η V (rl, η; (cl∗i)ui∈U)

s.t., cl∗i is solved in (9), cli ≥ 0,

rli < r
p
i , 0 ≤ ηi ≤ 1 ∀i ∈ [0, |U |]

(18)

Since (cl∗i) is the user ui’s best strategy under rli, r
p
i

and ηi, and cl∗i is functions of rli, r
p
i and ηi. That is, we

can rewrite the intermediary’s payoff as follows.

V (rl, η; (cl∗i)) =

|U|
∑

i=1

Vi(r
l
i, ηi; (c

l∗
i)) (19)

With equation (14), the payoff function Vi(r
l
i, ηi; (c

l∗
i))

can be written as follows.

Vi(r
l
i, ηi; (c

l∗
i)) =[(rli − p) · |T | − ηi · r

l
i · ⌈k

∗⌉] · w∗
i⌈k∗⌉

+ ηi · r
l
i ·

⌈k∗⌉
∑

j=1

w∗
ij

(20)
From the value of k∗ in (14), we can get the payoff

function as follows.

Vi(r
l
i, k

∗; (w∗
ik∗)) =[(rli − p) · |T | −

⌈k∗⌉ · (rli − r
p
i) · |T |

k∗

− r
p
i · ⌈k

∗⌉] · w∗
i⌈k∗⌉

+ [
(rli − r

p
i) · |T |

k∗
+ r

p
i] ·

⌈k∗⌉
∑

j=1

w∗
ij

(21)
To simplify this problem, we choose an approximation

that k∗ = ⌈k∗⌉ which means k∗ is an integer. With this
approximation, the problem can be simplified as follows.

Vi(r
l
i, k

∗; (w∗
ik∗)) = [rpi · (|T | − k∗)− p · |T |] · w∗

ik∗

+ [
(rli − r

p
i) · |T |

k∗
+ r

p
i] ·

k∗

∑

j=1

w∗
ij , k∗ ∈ [1, |T |]

(22)

Considering k∗ in an integer which is no more than T ,
we first maintain k∗ is constant and study the optimal

Fig. 3. Value of the payoff function with different distribu-
tion function of the workload

solution of rli with a given k∗. That is, we can get the
solution as follows.

V ′
i (r

l
i, k

∗; (w∗
ik∗)) =

dVi(r
l
i, k

∗; (w∗
ik∗))

drli

=
|T |

∑k∗

j=1 w
∗
ij

k∗

(23)

Since the derivative of the payoff function is always
negative, this function is monotonically increasing with
a given k∗. Therefore, the optimal solution is using a
long-term renting price as max as possible. With a give
k∗, we can get rli as follows.

rli =
r
p
i · (|T | − k∗)

|T | − k∗ · ηi
(24)

It is easily find the maximum value of rl∗i is
r
p

i
·(|T |−k∗)

|T |−0.9k∗

where η∗i = 0.9. Therefore, with a given k∗, we can get
the maximum value of V ∗

i (k∗; (w
∗
ik∗)) as follows.

Vi(k
∗, 0.9; (w∗

ik∗)) =[(rl∗i − p) · |T | − 0.9 · rl∗i · k
∗] · w∗

ik∗

+ 0.9 · rl∗i ·

k∗

∑

j=1

w∗
ij

(25)
After that, we study the optimal solution of k∗ with

a give cli. Now we study the value of the payoff func-
tion with different given k∗. The incremental value that
Vi(k

∗ + 1; (w∗
i(k∗+1)))− Vi(k

∗; (w∗
ik∗)) is as follows.

∆Vi = Vi(k
∗ + 1; (w∗

i(k∗+1)))− Vi(r
l
i, k

∗; (w∗
ik∗))

= [rpi · (|T | − k∗)− p · |T |] · (w∗
i(k∗+1) − w∗

ik∗)

− r
p
i · w

∗
i(k∗+1) + 0.9∆(rl∗ ·

k∗

∑

j=1

w∗
ij)

(26)

Unfortunately, since the varying value ∆Vi is related
to the workload in each slot of user ui, it is hard to

9

describe the payoff function without detail workload. To
illustrate the value of the payoff function, we calculate
some distribution functions of the workload as shown
in Figure 3.

In this example, we set the c
p
i = 30, |T | = 720 and

p = 2 then use four distribution functions of the work-
load including normal distribution, Poisson distribution,
Binomial distribution and random (average) distribu-
tion. The parameters of those distribution functions are
dimensioned in the figure. From the value of these four
distribution, the maximum value of the payoff function
is related to the workload distribution. For example,
with the random(average) distribution, we can get the
maximum value of the payoff function when k∗ = 314
while with the Poisson distribution, the maximum value
can be get when k∗ = 14.

Therefore, it needs to enumeration all values of the
payoff function with k∗ ∈ [1, |T |] and find the maximum
value of (25) with related k′ as follows.

k′ =
argmax

k∗∈[1,|T |](Vi(k
∗; (w∗

ik∗)) (27)

The time complexity of this enumeration is O(|T |)
which is an acceptable overhead to calculate the optimal
solution.

With the result of k′, we can get the optimal pricing rli
of the long-term renting to the user ui is

r
p

i
·(|T |−k′)

|T |−k′·0.9 with
a repurchasing ratio of ηi = 0.9

6 PERFORMANCE EVALUATION

In this section, we execute extensive simulations to eval-
uate the pricing strategy. We first describe the setting
of the simulations then discuss the result of the perfor-
mance evaluation.

We use a workstation computer as the simulation
platform which equips a Core™ i7 4770 (8M Cache, up
to 3.90GHz) CPU, 16GByte RAM and 2TByte HDD. We
use Python 2.7.3 as the script tools with networkx and
numpy library. We test each simulation 20 times and
record the average result.

In all simulations, we use 40 to 200 users as the
N in the simulations and the time period T has 240
to 720 time slots. For comparison, we use two simple
pricing strategies include pay-as-use mode and long-
term renting mode as following.

(1) The pay-as-use mode pricing strategy uses a dis-
count price of general pay-as-use mode price r

p
i per

each user ui from cloud providers. In the simula-
tions, we use different discount ratio with 80%, 70%
and 60%. Considering additional risks, the cost of
this mode is 1.5 times of the cost of the long-term
mode.

(2) The long-term mode pricing strategy uses a in-
creased price on the cost for the intermediary rent-
ing computer resources from cloud providers. The
incremental prices are set 5 cents and 10 cents
per unit. To simplify the simulation, we assume

users will rent average workload with the long-term
mode.

We first take two simulations to study the general
performance of our pricing strategy. We study the rev-
enue of the proposed pricing strategy under different
scales of users. We increase the number of users from 40
and 200 and in each step, the number of users increases
40. The cost p per units for renting computer resources
from cloud providers is set 15 cents per unit. We set the
workload amount wij per time slot tj of each user ui

uniformly distributed in range [10, 1000]. The price c
p
i

for each user ui is uniformly distribute in range [35, 112]
which is accepted price range according to existing cloud
providers. As shown in Figure 4(a), the revenue of all
pricing strategy increases with the user number scales
up. When the number of users is 40, the revenue of the
pricing-repurchase is near the pay-as-use mode of 80%
while the number of users increases to 200, the difference
between modes becomes larger.

We also study the revenue of the proposed pricing
strategy under different service periods. We increase the
number of time slots from 240 to 720 and in each step, the
number of time slots increases 120. The number of user
is set to 100 and other settings remain the same with
previous. As shown in Figure 4(b), the revenue of the
pricing-purchasing strategy is near to other modes when
the number of time slot is set to 240. With longer service
period, obviously, the revenue of our method performs
better than other solutions. When the number of time
slots increases to 720, the revenue of our strategy is near
to 1 million dollars while pay-as-use 60 % is near to the
500000.

After testing the overall performance, we study the
revenue under different settings of the parameters of the
pricing problem. We study the revenue of the proposed
pricing strategy under different cost p per unit for rent-
ing computer resources from the cloud providers. The
cost p per units increases from 5 cents per unit to 30 cents
and in each step, the cost increases 5 cents. The number
of users is set to 100. As shown in Figure 4(c), compared
to other modes, the revenue of the Pricing-Repurchasing
mode perform better with the increasing cost. The rev-
enue of the long-term renting mode remains the same
with the increasing cost. When the cost increases to 30
cents per unit, 60 % discount price with the pay-as-use
mode has less revenue than the p + 10 cents price with
the long-term renting mode.

Then, we try to adjust the price c
p
i of the additional

usage for each user. The price c
p
i for each user ui

increases from 40 cents to 120 cents and in each step,
the price r

p
i , increases 20 cents. We still set the workload

amount wij per time slot tj of each user ui uniformly
distributed in range [10, 1000]. The cost p per unit for
renting computer resources from cloud providers is set
to 15 cents per unit. As shown in Figure 4(d), with the
price in the cloud market increases, the revenue with
the Pricing-Repurchasing and the pay-as-use mode is
increased while the revenue of the long-term renting

10

40 80 120 160 200
Number of users

0

500000

1000000

1500000

2000000

2500000

3000000

R
e
v
e
n
u
e
 o
f
In
te
rm

e
d
ia
ry
 (
$
)

Pricing-Repurchasing
pay-as-use 80%
pay-as-use 70%
pay-as-use 60%
long-term 5 cents
long-term 10 cents

(a) Revenue with different number of

users

240 360 480 600 720
Number of time slots

0

200000

400000

600000

800000

1000000

R
e
v
e
n
u
e
 o
f
In
te
rm

e
d
ia
ry
 (
$
)

Pricing-Repurchasing
pay-as-use 80%
pay-as-use 70%
pay-as-use 60%
long-term 5 cents
long-term 10 cents

(b) Revenue with different number of

time slots

(c) Revenue with different price p from

cloud providers.

(d) Revenue with different price r
p
i of

the additional usage

(e) Revenue with different average

workload w̄ij

(f) Revenue with different maximum
repurchasing ratio ηi

Fig. 4. Revenue results with different user scales, service periods, and different settings

mode still remains the same. When the price r
p
i , is less

than 60 cents, the p+ 10 cents price with the long-term
renting mode has more revenue than the 80% discount
price with pay-as-use mode and the p + 5 cents price
with long-term renting mode has more revenue than the
60% discount price with pay-as-use mode.

Third, we study the revenue of each pricing strategies
with different workload of each user ui. We set the
average workload amount wij per time slot of user ui

increases from 100 to 500 and the average workload
amount increases 100 in each step. We set the cost
p per units to 15 and the price r

p
i for each user ui

uniformly distributed in range [35, 112]. As shown in
Figure 4(e), the revenue with the Pricing-Repurchasing
is still more than other pricing strategy. The rate of
increasing revenue with the increasing workload with
the Pricing-Repurchasing is higher than other pricing
strategies. Differently from the previous simulations, the
revenue of the long-term renting mode increases with the
increasing workload event it is lowest in the all pricing
strategies.

Since the repurchasing is very important to our pricing
strategy, we test the revenue of different maximum
repurchasing ratio ηi for studying the influence from
repurchasing strategy. We set the workload amount wij

uniformly distributed in range [10, 1000], the cost p per
units to 15, and the price r

p
i , for each user ui is uni-

formly distributed in range [35, 112]. As shown in Figure

4(f), obviously, the revenue of the Pricing-Repurchasing
strategy increases with the increasing repurchasing ratio.
With a repurchasing ratio of 0.9, the revenue increases
33% than the revenue of 0.5.

Finally, from the results of performance evaluation,
we can conclude that the Pricing-Repurchasing strategy
brings more revenue to the intermediary framework
than other pricing strategy especially with more work-
loads, higher cost of the cloud resources and lower
spreads between the cost and the price in the market.
Further, That is, the Pricing-Repurchasing strategy can
adapt the competitive cloud service market.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a multiple cloud interme-
diary framework for streaming big data computing to
provide streaming big data processing cloud services to
the users. The intermediary rents computer resources
from different cloud services and provides different
service interfaces to users. We also design a Pricing-
Repurchasing strategy to maximum the revenue of the
intermediary and decrease the risks by long-term rent-
ing contracts with users. We formulate the Pricing-
Repurchasing problem as a two-stage leader-follower
(Stackelberg) game, and analyze the game equilibrium.
We also evaluate our pricing strategy with extensive
simulations and compare the revenue with other pricing
strategies. From the result of performance evaluation,

11

the Pricing-Repurchasing strategy brings more revenue
to the intermediary than other methods.

In the future, we will plan to implement a com-
plete multiple cloud intermediary solution with modi-
fied OpenStack to support streaming big data process-
ing management. Meanwhile, it is signification to find
scheduling method to optimize the streaming comput-
ing performance in the multiple cloud environment. A
deeper experiment with the real word testbed is also
needed to evaluate the efficiency of the new multiple
cloud intermediary solution.

ACKNOWLEDGMENTS

This work is sponsored by the National Natural Science
Foundation of China (61261160502 and 61272099), the
National Basic Research (973 Program) Program of China
(2015CB352403), the Scientific Innovation Act of STCSM
(13511504200), JSPS KAKENHI Grant Number 15K15976,
26730056, JSPS A3 Foresight Program, and Research
Fund for Postdoctoral Program of Muroran Institute
of Technology. Mianxiong Dong is the corresponding
author.

REFERENCES

[1] L. Wang, Y. Ma, A. Zomaya, R. Ranjan, and D. Chen, “A par-
allel file system with application-aware data layout policies for
massive remote sensing image processing in digital earth,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 6, pp.
1497–1508, June 2015.

[2] Z. Deng, X. Wu, L. Wang, X. Chen, R. Ranjan, A. Zomaya, and
D. Chen, “Parallel processing of dynamic continuous queries over
streaming data flows,” IEEE Transactions on Parallel and Distributed
Systems, vol. 26, no. 3, pp. 834–846, March 2015.

[3] W. Xue, C. Yang, H. Fu, X. Wang, Y. Xu, J. Liao, L. Gan, Y. Lu,
R. Ranjan, and L. Wang, “Ultra-scalable cpu-mic acceleration of
mesoscale atmospheric modeling on tianhe-2,” IEEE Transactions
on Computers, vol. 64, no. 8, pp. 2382–2393, Aug 2015.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“A view of cloud computing,” ACM Commun., vol. 53, no. 4, pp.
50–58, Apr. 2010.

[5] A. Toosi, R. Calheiros, R. Thulasiram, and R. Buyya, “Resource
provisioning policies to increase iaas provider’s profit in a fed-
erated cloud environment,” in High Performance Computing and
Communications (HPCC), 2011 IEEE 13th International Conference
on, Sept 2011, pp. 279–287.

[6] Y.-J. Hong, J. Xue, and M. Thottethodi, “Dynamic server provi-
sioning to minimize cost in an iaas cloud,” in Proceedings of the
ACM SIGMETRICS Joint International Conference on Measurement
and Modeling of Computer Systems, ser. SIGMETRICS ’11. New
York, NY, USA: ACM, 2011, pp. 147–148.

[7] M. Dong, H. Lit, K. Ota, and H. Zhu, “Hvsto: Efficient privacy
preserving hybrid storage in cloud data center,” in Proceedings of
The 2014 IEEE INFOCOM Workshop on Security and Privacy in Big
Data (BigSecurity 2014), April 2014, pp. 529–534.

[8] H. Li, M. Dong, X. Liao, and H. Jin, “Deduplication-based energy
efficient storage system in cloud environment,” The Computer
Journal, 2014.

[9] A. Iordache, C. Morin, N. Parlavantzas, E. Feller, and P. Riteau,
“Resilin: Elastic mapreduce over multiple clouds,” in The 13th
IEEE/ACM International Symposium onCluster, Cloud and Grid Com-
puting (CCGrid 2013), May 2013, pp. 261–268.

[10] S. van Hoesel, “An overview of stackelberg pricing in networks,”
European Journal of Operational Research, vol. 189, no. 3, pp. 1393 –
1402, 2008.

[11] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: A new
model and architecture for data stream management,” The VLDB
Journal, vol. 12, no. 2, pp. 120–139, Aug. 2003.

[12] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. hyon
Hwang, W. Lindner, A. S. Maskey, E. Rasin, E. Ryvkina, N. Tatbul,
Y. Xing, and S. Zdonik, “The design of the borealis stream
processing engine,” in In CIDR, 2005, pp. 277–289.

[13] J. Gehrke and S. Madden, “Query processing in sensor networks,”
IEEE Pervasive Computing, vol. 3, no. 1, pp. 46–55, Jan 2004.

[14] P. Zikopoulos, C. Eaton et al., Understanding big data: Analytics for
enterprise class hadoop and streaming data. McGraw-Hill Osborne
Media, 2011.

[15] M. Ali, B. Chandramouli, B. Sethu, and R. Katibah, “Spatio-
temporal stream processing in microsoft streaminsight.”

[16] G. De Francisci Morales, “Samoa: A platform for mining big
data streams,” in Proceedings of the 22nd International Conference
on World Wide Web Companion. Republic and Canton of Geneva,
Switzerland: IW3C2, 2013, pp. 777–778.

[17] J. Leibiusky, G. Eisbruch, and D. Simonassi, Getting started with
storm. ” O’Reilly Media, Inc.”, 2012.

[18] N. Garg, Apache Kafka. Packt Publishing Ltd, 2013.
[19] “Apache samza,” http://samza.apache.org/, accessed: 2015-06-

01.
[20] R. Ranjan, “Streaming big data processing in datacenter clouds,”

IEEE Cloud Computing, vol. 1, no. 1, pp. 78–83, 2014.
[21] “Apache cloudstack,” https://cloudstack.apache.org/, accessed:

2015-06-01.
[22] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Ca-

pacity leasing in cloud systems using the opennebula engine,” in
in Workshop on Cloud Computing and its Applications, p. 2008.

[23] K. Pepple, Deploying openstack. ” O’Reilly Media, Inc.”, 2011.
[24] O. Krieger, P. McGachey, and A. Kanevsky, “Enabling a market-

place of clouds: Vmware’s vcloud director,” SIGOPS Oper. Syst.
Rev., vol. 44, no. 4, pp. 103–114, Dec. 2010.

[25] “fog - the ruby cloud services library,” http://fog.io/, accessed:
2015-06-01.

[26] M. Alrokayan and R. Buyya, “A web portal for management
of aneka-based multicloud environments,” in Proceedings of the
Eleventh Australasian Symposium on Parallel and Distributed Com-
puting - Volume 140, ser. AusPDC ’13. Darlinghurst, Australia,
Australia: Australian Computer Society, Inc., 2013, pp. 49–56.

[27] F. D’Andria, S. Bocconi, J. Cruz, J. Ahtes, and D. Zeginis,
“Cloud4soa: Multi-cloud application management across paas
offerings,” in 14th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC 2012), Sept 2012, pp.
407–414.

[28] M. Dong, H. Li, K. Ota, L. Yang, and H. Zhu, “Multicloud-based
evacuation services for emergency management,” IEEE Cloud
Computing, vol. 1, no. 4, pp. 50–59, Nov 2014.

[29] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimal virtual machine
placement across multiple cloud providers,” in IEEE Asia-Pacific
Services Computing Conference (APSCC 2009), Dec 2009, pp. 103–
110.

[30] M. Andreolini, S. Casolari, M. Colajanni, and M. Messori, “Dy-
namic load management of virtual machines in cloud architec-
tures,” in Cloud Computing, ser. Lecture Notes of the Institute for
Computer Sciences, Social-Informatics and Telecommunications
Engineering, D. Avresky, M. Diaz, A. Bode, B. Ciciani, and
E. Dekel, Eds. Springer Berlin Heidelberg, 2010, vol. 34, pp.
201–214.

[31] J. L. Lucas-Simarro, R. Moreno-Vozmediano, R. S. Montero, and
I. M. Llorente, “Scheduling strategies for optimal service deploy-
ment across multiple clouds,” Future Generation Computer Systems,
vol. 29, no. 6, pp. 1431 – 1441, 2013, including Special sections:
High Performance Computing in the Cloud & Resource
Discovery Mechanisms for {P2P} Systems.

[32] M. Menzel, R. Ranjan, L. Wang, S. Khan, and J. Chen, “Cloud-
genius: A hybrid decision support method for automating the
migration of web application clusters to public clouds,” IEEE
Transactions on Computers, vol. 64, no. 5, pp. 1336–1348, May 2015.

[33] D. R. Butenhof, Programming with POSIX threads. Addison-Wesley
Professional, 1997.

[34] T. White, Hadoop: The definitive guide. ” O’Reilly Media, Inc.”,
2012.

12

[35] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mccauley,
M. Franklin, S. Shenker, and I. Stoica, “Fast and interactive
analytics over hadoop data with spark,” USENIX ;login:, vol. 37,
no. 4, pp. 45–51, 2012.

[36] J. Kephart and R. Das, “Achieving self-management via utility
functions,” IEEE Internet Computing, vol. 11, no. 1, pp. 40–48, Jan
2007.

[37] N. Paton, M. A. De Aragão, K. Lee, A. A. Fernandes, and
R. Sakellariou, “Optimizing utility in cloud computing through
autonomic workload execution,” Bulletin of the Technical Committee
on Data Engineering, vol. 32, no. 1, pp. 51–58, 2009.

He Li received the B.S., M.S. degrees in Com-
puter Science and Engineering from Huazhong
University of Science and Technology in 2007
and 2009, respectively, and Ph.D. degree in
Computer Science and Engineering from The
University of Aizu in 2015. He is currently a
Postdoctoral Fellow with Department of Informa-
tion and Electronic Engineering, Muroran Insti-
tute of Technology, Japan. His research interests
include cloud computing and software defined
networking. Dr. Li serves as an guest associate

editor for IEICE Transactions on Information and Systems.

Mianxiong Dong received B.S., M.S. and Ph.D.
in Computer Science and Engineering from The
University of Aizu, Japan. He is currently an As-
sistant Professor in the Department of Informa-
tion and Electronic Engineering at the Muroran
Institute of Technology, Japan. Prior to joining
Muroran-IT, he was a Researcher at the Na-
tional Institute of Information and Communica-
tions Technology (NICT), Japan. He was a JSPS
Research Fellow with School of Computer Sci-
ence and Engineering, The University of Aizu,

Japan and was a visiting scholar with BBCR group at University of
Waterloo, Canada supported by JSPS Excellent Young Researcher
Overseas Visit Program from April 2010 to August 2011. Dr. Dong was
selected as a Foreigner Research Fellow (a total of 3 recipients all over
Japan) by NEC C&C Foundation in 2011. His research interests include
Wireless Networks, Cloud Computing, and Cyber-physical Systems.
His research results have been published in 120 research papers in
international journals, conferences and books. He has received best
paper awards from IEEE HPCC 2008, IEEE ICESS 2008, ICA3PP
2014, GPC 2015, and IEEE DASC 2015. Dr. Dong serves as an
associate editor for IEEE Communications Surveys and Tutorials, IEEE
Network, IEEE Access, and Cyber-Physical Systems (Taylor & Francis),
as well as a leading guest editor for ACM Transactions on Multimedia
Computing, Communications and Applications (TOMM), IEEE Trans-
actions on Emerging Topics in Computing (TETC), IEEE Transactions
on Computational Social Systems (TCSS), Peer-to-Peer Networking
and Applications (Springer) and Sensors, as well as a guest editor
for IEICE Transactions on Information and Systems, Mobile Information
Systems, and International Journal of Distributed Sensor Networks. He
has been serving as the Program Chair of IEEE SmartCity 2015 and
Symposium Chair of IEEE GLOBECOM 2016. Dr. Dong is currently a
research scientist with A3 Foresight Program (2011-2016) funded by
Japan Society for the Promotion of Sciences (JSPS), NSFC of China,
and NRF of Korea.

Kaoru Ota received M.S. degree in Computer
Science from Oklahoma State University, USA
in 2008 and B.S., Ph.D. degrees in Computer
Science and Engineering from The University
of Aizu, Japan in 2006, 2012, respectively. She
is currently an Assistant Professor with Depart-
ment of Information and Electronic Engineering,
Muroran Institute of Technology, Japan. From
March 2010 to March 2011, she was a visiting
scholar at University of Waterloo, Canada. Also
she was a Japan Society of the Promotion of

Science (JSPS) research fellow with Kato-Nishiyama Lab at Graduate
School of Information Sciences at Tohoku University, Japan from April
2012 to April 2013. Her research interests include Wireless Sensor
Networks, Vehicular Ad Hoc Networks, and Ubiquitous Computing.
She serves as an editor for Peer-to-Peer Networking and Applications
(Springer), Ad Hoc & Sensor Wireless Networks, International Journal
of Embedded Systems (Inderscience) and Journal of Cyber-Physical
Systems, as well as a guest editor for IEEE Wireless Communications,
IEICE Transactions on Information and Systems. Dr. Ota is currently a
research scientist with A3 Foresight Program (2011-2016) funded by
Japan Society for the Promotion of Sciences (JSPS), NSFC of China,
and NRF of Korea.

Minyi Guo received the BSc and ME degrees
in computer science from Nanjing University,
China, and the PhD degree in computer sci-
ence from the University of Tsukuba, Japan.
He is currently a Zhiyuan chair professor and
a chair of the Department of Computer Science
and Engineering,Shanghai Jiao Tong University
(SJTU),China. Before joined SJTU, he had been
a professor of the school of computer science
and engineering, University of Aizu, Japan. He
received the national science fund for distin-

guished young scholars from NSFC in 2007. His present research
interests include parallel/distributed computing, compiler optimizations,
embedded systems, pervasive computing, cloud computing and big
data. He has more than 250 publications in major journals and in-
ternational conferences in these areas. He received five Best Paper
Awards from international conferences. He served associate editor
of IEEE Transactions on Parallel and Distributed Systems and IEEE
Transactions on Computers.He is a senior member of the IEEE, member
of the ACM, IEICE IPSJ,and CCF.

