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Drugs that block mechanically-evoked pain would be useful for

many common pain conditions, but appropriate drug

development targets have yet to be defined. There is increasing

evidence that both peripheral sensory neuron wiring patterns

as well as the expression of transducing molecules are

important for modality specific pain sensations. Progress in

identifying the cell types, candidate transducing molecules and

wiring patterns involved in mechanosensation has been

dramatic over the past few years. Here we focus on potential

mechano-transducing channels, and the relevant cell types

and wiring patterns that provide clues for new analgesic drug

development strategies.
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Introduction
Mechanically-evoked pain occurs in large numbers of

people who often suffer ongoing poorly treated pain.

The figures for osteoarthritis alone are staggering – most

people over the age of 55 are inhibited in their move-

ments to some extent by mechanically-evoked pain

resulting from joint wear and tear [1]. The mechanisms

of mechanotransduction and the cell types involved in

mechanosensation are thus worthy of study and this has

necessarily been carried out in animal models. A major

problem in the field of mechanically-evoked pain is the

precision of the terminology. Mechanical hyperalgesia –
sensitisation to noxious stimuli – is distinct from allodynia

where innocuous stimuli like the touch of a feather can

become painful. The cells and mechanisms involved in

these two events are probably different but there are

difficulties in modelling these events in animals. There is

agreement that squeezing the feet or tail of rodents with a

Randall–Sellito apparatus provides a noxious stimulus.

The withdrawal response from von Frey hairs is more

problematic. Some groups define von Frey withdrawal
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thresholds of a few millinewtons as noxious, even though

these stimuli are clearly not tissue damaging. As von Frey

withdrawal thresholds are reduced in conditions of

inflammatory pain, a situation of mechanical hypersensi-

tivity, the ability to distinguish allodynia from mechanical

hyperalgesia in animal behavioural models remains pro-

blematic (Figure 1).

Despite these difficulties, enormous progress has been

made in understanding aspects of mechanosensation The

specialised cell types found in the skin that are involved

in sensing touch and vibration, as well as the evidence for

subsets of sensory neurons that respond to different

mechanical stimuli has been recently reviewed [2�].

First attempts to understand how sensory neurons were

activated by mechanical stimuli came from Jon Levine’s

laboratory, where mechanical stimulation of cell somata

was shown to result in inward currents [3��]. The great

advantage of this system is that the cells can be voltage-

clamped so that the characteristics of mechanically gated

channels could be defined without recruiting voltage-

gated channels as a consequence of depolarisation. In

addition, the cells can be classified on the basis of their

expression of various cellular markers associated with a

particular function – for example expression of neuro-

peptides implicated in pain pathways.

In 2002 Drew et al. demonstrated that three different

types of mechanically-gated channel could be identified

in the cell bodies of sensory neurons in vitro [4]. All

neurons associated with touch and proprioreception

express low threshold rapidly adapting mechanically-

gated currents, whilst a mixed repertoire of high threshold

intermediately adapting or slowly adapting currents and

some rapidly adapting currents are associated with sen-

sory neurons that express nociceptive markers. About a

third of these neurons are mechanically insensitive using

in vitro assays. These data were later confirmed [5] in a

study of the terminals of sensory neurons in culture,

where the channels normally reside in vivo. Whether

the rapidly adapting currents in presumptive nociceptors

are the same as those in low threshold mechanoreceptors

associated with touch and proprioception is unknown.

Mechanotransducer candidates
Attempts to define the molecular nature of mechanosen-

sitive channels have used two approaches. Firstly the

behavioural and electrophysiological consequences of

deleting candidate channels in mice have been investi-

gated [6]. Secondly drug screening in an attempt to define

selective blockers that may provide tools for purification
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Figure 1
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Mechanically activated currents in sensory neurons. Three different type of mechanically activated (MA) currents have been identified in cell bodies of

sensory neurons [4]. The MA currents differ in the rate of adaptation and have distinct pharmacological profiles. The decay kinetics of rapidly adapting

currents are best described by a bi-exponential fit, whilst intermediately adapting currents were best described by a mono-exponential fit. Activation of

slowly adapting currents is slow in comparison to the other and is described by a mono-exponential fit. Small to medium cell diameter (<45 mm)

neurons with broad action potentials that are associated with the detection of noxious stimuli display all three MA currents that have relatively high

threshold for activation. Large diameter (>45 mm) neurons with narrow action potentials are associated with touch and proprioception as display

predominantly rapidly adapting MA currents that have relatively low thresholds for activation. Displayed MA currents are representative for mouse

sensory neurons at a holding potential of �70 mV.
or cloning has been carried out [7��]. Genetic studies of

flies and worms have identified proteins that are bona fide

mechanically gated ion channels. Transducing ‘Mec’

channels that are members of the epithelial sodium

channel (ENaC) family have been described in C. elegans

[8]. The mammalian homologues of these channels have

been extensively investigated; none of the DRG ENac

family members have provided a compelling case as

mechanotransducers in sensory neurons [8,9]. Analysis

of single or multiple ASIC knock-out mice shows that the

mechanotransducing currents present on sensory neurons

are not diminished [6].

A stronger case can be made for TRP channels as poten-

tial mammalian mechanosensors. The worm TRP family
www.sciencedirect.com 
members OSM-9 and TRPA1 are involved in osmosensa-

tion and touch sensation and a role for TRP channels as

direct mechanotransducers was demonstrated in muta-

genesis studies of the TRP-4 channel, a member of the

TRPN set that is not expressed in mammals [10��].
TRPV4 deletion in mice is associated with defective

responses to noxious mechanical pressure and late-onset

deafness [11]. TRPA1 is characterised by six transmem-

brane domains and has 14 N-terminal ankyrin repeats.

TRPA1 is expressed in dorsal root ganglion, trigeminal

ganglion neurons and hair cells. However hearing and

touch are apparently normal in the null mutant [12].

Interestingly however, there is increasing evidence of a

role for TRPA1 in noxious mechanosensation. The prin-

cipal sensation associated with a gain of function TRPA1
Current Opinion in Pharmacology 2012, 12:4–8
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mutation in man that leads to episodic pain syndrome

(FEPS) is heavy unbearable pain conveying a feeling of

pressure [13]. Deletion of TRPA1 in mice leads to the

silencing of a set of small peptidergic sensory neurons that

mainly express slowly adapting mechanosensitive cur-

rents on mechanical stimulation, and the same mice have

behavioural deficits in response to the Randall–Sellito

apparatus that provides noxious mechanical stimulation

[14�,15]. A selective blocker of TRPA1 also inhibits

mechanosensory currents in sensory neurons, and has

useful analgesic effects in terms of inhibiting mechanical

hypersensitivity in various models of pain associated with

tissue damage [16]. TRPA1 is also required for normal

mechano- and chemosensory function in specific subsets

of vagal, splanchnic, and pelvic afferents [17]. All of these

data are consistent with a role for TRPA1 as a mechani-

cally-gated ion channel, but expression of such an activity

has not yet been demonstrated using heterologous

expression of TRPA1. This may reflect either loss of

necessary accessory subunits to form the mechanotrans-

ducing complex, or the loss of a signalling molecule that is

found in sensory neurons.

Other TRP channels have also been implicated in

mechanosensation. TRPC1, C6 and TRPV4 have been

linked with mechanical hyperalgesia associated with

inflammation. Use of antisense oligonucleotides showed

that TRPC1 and TRPV4 are required for mechanical

hyperalgesia but not baseline mechanical thresholds,

whilst TRPC6 plays a role in both mechanical and ther-

mal hyperalgesia [18].

Recently two transmembrane proteins named FAM38a

and b have been shown to confer mechanosensitivity

when expressed in various cell lines [19��]. These

proteins are additional candidates to mediate the stretch

activated channel activity described in many cell types

because Fam38a is blocked by GSMTX4, a tarantula

toxin that is a stretch-activated channel blocker [20].

Fam38b re-named piezo-2 is also found in sensory

neurons, where rapid inactivation kinetics make it a

candidate for a mechanosensory role in non-nociceptive

sensory neurons. In neonatal rat sensory neurons neither

rapidly nor slowly adapting mechanosensitive currents are

blocked by GSMTX4 [4], but there remains the possib-

ility that a subset of rapidly adapting currents are blocked

by the peptide in adult animals.

The behavioural consequence of deleting voltage-gated

sodium channels has suggested that they may play se-

lective role in noxious mechanosensation. The most

obvious phenotype in mice where the voltage-gated

sodium channels Nav1.7 or Nav1.8 have been deleted in

sensory neurons is insensitivity to noxious mechanical

pressure, whilst light touch is unaffected. Global deletion

of Nav1.7 leads to a loss of all pain modalities and olfaction

in both mice and men [21]. Does this suggest that these
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sodium channels are involved in mechanotransduction? In

fact, these observations provide an insight into the wiring

patterns that are key to distinguishing different types of

pain sensation, as the mechanosensitive currents present in

sensory neurons are unaffected by sodium channel

deletion. It seems that these particular sodium channel

isoforms are specifically associated with action potential

generation in neurons that respond to mechanical damage.

Similarities between hearing and
mechanosensation
The mechanically gated channels present in sensory

neurons and cochlear hair cells both depend upon the

integrity of the actin cytoskeleton for function, suggesting

that channel tethering to the cytoskeleton occurs in both

systems [4]. Interestingly, FM1–43, a permeant inhibitor

of all sensory neuron mechanosensory currents is also a

selective blocker of cochlear hair cell mechanically-

evoked currents, suggesting that some common elements

are involved in hearing touch and pain transduction

[22,23]. In behavioural studies this compound blocks both

light touch and noxious mechanosensation, linking the

channels described in sensory neurons in culture with

mechanosensation. Fixable FM1–43 dye derivatives stain

up mechanosensitive cells in both the DRG and cochlea,

again highlighting potential similarities in mechanism in

these 2 sets of mechanosensitive cells [24].

Mediators that change mechanical pain
thresholds
Inflammatory mediators alter all pain thresholds in-

cluding those for mechanical stimuli. Dissecting mech-

anisms of mechanical sensitisation thus requires an

understanding of both general changes of excitability

as well as specific effects on mechanotransduction. It

appears that PKA mediated events act on neuronal excit-

ability rather than primary mechanotransduction, whilst

NGF and PKC mediated events can increase levels of

expression of mechanosensitive channels. NGF has

potent effects at the level of transcription on the expres-

sion of mechanosensitive ion channels in sensory neurons

in culture [25]. G-protein mediated enhancement of

mechanosensitivity by UTP and ATP that reduce

thresholds for mechanically induced action potential fir-

ing has also been described [26]. The clinically relevant

question in this area is how mechanical allodynia occurs,

and how it can be blocked, and as with many other aspects

of this area of study, the identification of the primary

mechanotransduction mechanisms is essential for this

question to be answered.

Towards mechanosensory wiring diagrams
A combination of neuronal silencing strategies, cell

depletion and gene deletion studies have provided us

with new insights into the particular cell types that

discriminate between different mechanical stimuli.

Deletion of vesicular glutamate receptors that are
www.sciencedirect.com
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required to pack synaptic vesicles with the neurotrans-

mitter blocks glutamate release and silences glutama-

tergic neurons. There are 3 vesicular glutamate

transporters that are expressed in neuronal subsets of

dorsal root ganglion (DRG) neurons that transmit sen-

sory information using the excitatory transmitter glu-

tamate. Kullander deleted VGLUT2 with a Cre

recombinase driven by the Nav1.8 promoter and found

that noxious mechanical pain was specifically abolished

whilst thermal pain was unaffected. Inflammatory

mechanical hyperalgesia also depended upon this sub-

set of sensory neurons [27]. Use of a tyrosine hydroxyl-

ase Cre that deletes the transporter in a different

population of sensory neurons caused deficits in ther-

mal pain, and lead to a dramatic increase in itching [28].

Seal et al. found that a subset of neurons in mouse DRG

express the low-abundance vesicular glutamate trans-

porter VGLUT3 and project to lamina I and lamina II

in the spinal cord [29]. The deletion of the VGLUT3

gene also impaired mechanical but not thermal pain

sensation and the mechanical hypersensitivity associ-

ated with tissue damage owing to a loss of signalling

from unmyelinated, low-threshold mechanoreceptors.

Diphtheria toxin-A subunit blocks translation and kills

neurons in which it is expressed and, when driven by a

global promoter, can be unmasked by cell specific expres-

sion of a Cre recombinase. Killing all post mitotic sensory

neurons that express the sodium channel Nav1.8 leads to

a loss of responsiveness to noxious mechanical pressure

and cold as well as the heightened sensitivity to thermal

or mechanic stimuli associated with inflammatory pain

[30]. Thus the neurons that respond to low threshold

mechanical or thermal stimuli are Nav1.8 negative, whilst

those that sensitise these responses during inflammatory

pain are Nav1.8+. Similarly, Nav1.7 deletion in the

Nav1.8 population abolishes inflammatory pain and nox-

ious mechanosensation, whilst Nav1.7 expression in other

Nav1.8-neuronal populations is required for thermal pain.

Total Nav1.7 ablation causes anosmia and a pain free

state without cell death, making this an interesting target

for mechanical as well as other types of pain.

Further clues about the properties of neurons involved in

noxious mechanosensation comes from the ablation of

neurons that express the G protein-coupled receptor

Mrgprd leading to reduced behavioural sensitivity to

noxious mechanical stimuli, but not to heat or cold [31].

Other genetic approaches have exploited the expression

of growth factor receptors, combined with mapping the

terminals of sets of sensory neurons. Those cells that

express the GDNF receptor c-ret early in development

seem to be particularly interesting from the point of view

of light touch and perhaps allodynia. These cells form

neurons with rapidly adapting mechanically gated cur-

rents associated with Meissner corpuscles, and Pacinian
www.sciencedirect.com 
corpuscles that terminate in layers III through V of the

spinal cord and the medulla [32]

Drugs and mechanosensation
Neutralising anti-NGF monoclonal antibodies are potent

analgesics for many types of mechanically-evoked pain.

Both osteoarthritis and back pain are well treated by

reducing levels of NGF, an inflammatory mediator as

well as trophic factor involved in the development of the

peripheral nervous system. However, these drugs are on

hold because of potential serious side effect issues

possibly caused by unwitting self harm to joints during

analgesia, as a result of removing circulating NGF [1].

Small peptide blockers of mechanosensitive channels

(GSMTX4 and NMB1) provide support for the view that

different molecules are involved in stretch-activated and

slowly adapting mechanosensitive currents respectively,

but high affinity selective ligands useful for cloning or

biochemical purification strategies have not been

described. Interestingly GSMTX4 blocks mechanical

hyperalgesia, whilst NMB1 is specific for noxious mech-

anical pain [4,17]. Given the fact that mechanical hyper-

algesia can be blocked by the usual repertoire of ant-

inflammatory drugs, the most fascinating topic remains

the mechanisms involved in the establishment of allody-

nia, and how allodynia can be addressed pharmacologi-

cally. Studies of Fam38b knock-mice will be particularly

interesting in this respect.
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