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Clinical and cognitive symptoms domain-based subtyping in schizophrenia (Sz) has 
been critiqued due to the lack of neurobiological correlates and heterogeneity in symp-
tom scores. We, therefore, present a novel data-driven framework using biclustered 
independent component analysis to detect subtypes from the reliable and stable gray 
matter concentration (GMC) of patients with Sz. The developed methodology consists 
of the following steps: source-based morphometry (SBM) decomposition, selection and 
sorting of two component loadings, subtype component reconstruction using group 
information-guided ICA (GIG-ICA). This framework was applied to the top two group 
discriminative components namely the insula/superior temporal gyrus/inferior frontal 
gyrus (I-STG-IFG component) and the superior frontal gyrus/middle frontal gyrus/medial 
frontal gyrus (SFG-MiFG-MFG component) from our previous SBM study, which showed 
diagnostic group difference and had the highest effect sizes. The aggregated multisite 
dataset consisted of 382 patients with Sz regressed of age, gender, and site voxelwise. 
We observed two subtypes (i.e., two different subsets of subjects) each heavily weighted 
on these two components, respectively. These subsets of subjects were characterized 
by significant differences in positive and negative syndrome scale (PANSS) positive 
clinical symptoms (p  =  0.005). We also observed an overlapping subtype weighing 
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heavily on both of these components. The PANSS general clinical symptom of this 
subtype was trend level correlated with the loading coefficients of the SFG-MiFG-MFG 
component (r = 0.25; p = 0.07). The reconstructed subtype-specific component using 
GIG-ICA showed variations in voxel regions, when compared to the group component. 
We observed deviations from mean GMC along with conjunction of features from two 
components characterizing each deciphered subtype. These inherent variations in GMC 
among patients with Sz could possibly indicate the need for personalized treatment 
and targeted drug development.

Keywords: gray matter concentration, biclustering, independent component analysis, subtypes, positive and 
negative syndrome scale symptoms, group information-guided independent component analysis

INtRodUCtIoN

Subtype staging using clinical features (1, 2), cognitive factors 
(3–5), and brain morphometry measures (6) have been attempted 
to characterize the heterogeneity in patients with schizophrenia 
(Sz) with mixed views in the research community. Univariate 
voxel-based morphometry (VBM) (7–10) and multivariate 
source-based morphometry (SBM) (11–13) are two widely used 
techniques to analyze structural magnetic resonance images 
(sMRI) differences between healthy controls (Ct) and Sz. Studies 
in Sz using both these techniques have reported largest (in terms 
of effect size) gray matter concentration (GMC) deficits for 
regions of left insular cortex, left inferior frontal gyrus, superior 
temporal gyrus, and precentral gyrus. VBM does not utilize any 
information about the relationships among voxels, while the SBM 
framework which uses an independent component analysis (ICA) 
module (14) provides a way to pool information across different 
voxels, thereby identifying common components of variation (13).

Voxel-based morphometry studies (15, 16) have used fac-
tor analysis on clinical features to divide their Sz samples into 
three subtypes with predominantly negative, disorganization, 
and paranoid symptom profiles. These studies then go on to 
illustrate, the considerable heterogeneity of spatial distribution 
and extent of structural deficits across the three Sz subtypes. 
This three-factor subtyping based on clinical features was also 
reported in chronic and old-age populations (17). From a differ-
ent viewpoint, factor analysis of psychopathology ratings were 
found to be related to different patterns of cerebral blood flow 
(18). However, usage of clinical symptoms in these studies has 
been criticized for temporal instability and lack of neurobiologi-
cal correlates (4, 19, 20). Cognitive measures in contrast may be 
more stable (4, 21–24) but are not the determining characteristics 
of the disorder. Most of the above studies first perform factor 
analysis on clinical or cognitive symptoms to decipher subtypes 
and then do VBM analysis on sMRI data having obtained the 
subtype grouping. Our work takes a different approach and 
obtains subtype grouping from the stable and reliable sMRI data 
and then moves to clinical symptom domain to confirm these 
observed subtype differences.

Few neuroimaging studies in Sz have ignored these variations 
in clinical and cognitive symptoms among Sz cohort, looking only 
at the differences in average effects between Ct and Sz (9–13, 25).  
Numerous review studies have pointed to varying regions of 

aberrations or inconsistencies in terms of gray matter, whole 
brain volume, and white matter differences (12, 26–28). Recent 
studies seem to suggest that this underlying clinical heterogene-
ity in Sz could be deciphered from the more reliable and stable 
genetic (29) and neuroimaging data (30) rather than clinical and 
cognitive features. These studies suggested that regional hidden 
local components, linked to specific clinical symptoms could 
exist in a subject by voxel matrix (i.e., voxel representing either 
GMC, fractional anisotropy (FA), or gray matter volume) or in 
a subject by single nucleotide polymorphism matrix depending 
on the spectrum of Sz participants recruited in a given study. The 
idea of finding complex biomarkers (lower or higher GMC in 
multiple regions) for subtypes of subjects in neuroimaging and 
the inability of univariate methods to find the underlying differ-
ences was clearly illustrated in a review article (31). It, therefore, 
becomes imperative to develop data-driven frameworks that 
can reliably decipher these complex hidden local components 
corresponding to various subtypes. Non-negative matrix-based 
biclustering methods (32, 33) have been applied to obtain multi-
ple local components in a dataset having healthy controls (Ct) and 
Sz, leading to the speculation that Sz may represent a set of eight 
distinct clinical disorders. The same methods were applied for 
the first time to imaging FA data to decipher subtypes in Sz (30).

Source-based morphometry is now an established multivari-
ate technique which combines information across different voxels 
for imaging modalities to give spatial components (i.e., spatially 
connected regions) that differ between two groups rather than 
region of voxels (13). It is known sMRI varies to a lesser degree 
over time than clinical/cognitive symptoms. Hence, through this 
work, we propose a new methodology for subtyping patients 
with Sz from the reliable/stable GMC rather than doing a fac-
tor analysis on symptom scores as in most previous studies. To 
the best of our knowledge, this is the very first work which does 
not use healthy controls sMRI data during clinical subtyping. 
Recently, reliable replication of GMC components showing  
(Ct/Sz) diagnostic differences were assessed in the largest aggre-
gated structural imaging dataset to date for Sz (11). We reported 
nine reliable components that showed diagnostic differences; 
seven had greater GMC and two had lower GMC in Sz than Ct 
(11). These components did not show relationship with clinical 
symptoms, when considered individually. We, therefore, decided 
to evaluate the relationship between symptoms and SBM loadings 
in subsets of subjects. These subsets were obtained by considering 
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FIgURe 1 | Biclustered Independent Component Analysis (B-ICA) framework illustrating the various steps to decipher subtypes.

tABle 1 | Demographic information by study.

study name schizophrenia (sz) sample size schizoaffective disorder Male/female Age (mean ± sd) Age (min–max) sites

FBIRN 3 179 Not available 136/43 39.22 ± 11.60 18–62 7
TOP 128 18 76/52 31.80 ± 08.90 18–62 1
COBRE 75 7 62/13 37.56 ± 13.50 18–64 1
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loadings from two components comprising regions of insula/
superior temporal gyrus/inferior frontal gyrus (I-STG-IFG 
component) and superior/medial/middle frontal gyrus (SFG-
MiFG-MFG component) which had high effect size and showed 
diagnostic differences from our previous work (11). Our method 
is outlined in Figure  1: following ICA/SBM, we hypothesized 
there exist subsets of Sz participants linked to specific symptoms 
with different neuroanatomical alterations on these components. 
Joint distribution of loadings from two components was exploited 
to obtain subsets which were then tested for association with 
clinical symptoms (steps 2 and 3 of Figure 1). This method can 
also be applied to other neuroimaging modalities and this accu-
rate subtyping could provide reliable endophenotype (34, 35)  
for personalized drug development in Sz (36).

Methods

Participant demographics and Clinical 
Measures
This work involved aggregating multisite datasets. Each dataset 
including diagnosis, age at time of scan, gender, symptom scores, 
duration of illness, and chlorpromazine equivalents (Cpz eqvt) 
medications when available, were shared by each participating 
group according to the sites protocol. Study-wise demographic 
info is presented in Table 1 and clinical information in Table 2. 
The majority of Sz were on antipsychotic medications, either 
typical, atypical, or a combination. All Sz were clinically stable 
at the time of scanning. The positive and negative syndrome 
scale (PANSS) is a clinical symptom scale used for measuring 

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive


tABle 3 | Scanner information by study.

study 
name

Manufacturer, model, 
and field strength (T)

sequence Voxel size 
(mm)

scanning 
orientation

FBIRN 3 Siemens Tim Trio (3) MPRAGE 1.1 × 0.9 × 1.2 Sagittal
TOP Siemens (1.5) MPRAGE 1.33 × 0.94 × 1 Sagittal
COBRE Siemens Tim Trio (3) MPRAGE 1 × 1 × 1 Sagittal

tABle 2 | Clinical information by study.

study name PANss positive 
mean ± sd

PANss negative 
mean ± sd

PANss general 
mean ± sd

duration of illness  
(doI) mean ± sd

% Reporting  
(doI)

Cpz eqvt  
mean ± sd

% Reporting  
(Cpz eqvt)

FBIRN 3 15.55 ± 5.11 14.44 ± 5.50 27.90 ± 7.26 17.77 ± 11.30 98.30 1,068.3 ± 6,266.2 84.36%
TOP 14.60 ± 5.23 15.0 ± 6.78 27.80 ± 8.15 6.58 ± 5.63 97.54 Not available Not available
COBRE 15.42 ± 4.86 14.76 ± 4.94 27.90 ± 8.63 15.42 ± 11.72 98.70 1,023.7 ± 1,422.2 98.67%

PANSS, positive and negative syndrome scale; Cpz eqvt, chlorpromazine equivalents.
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symptom severity of patients with Sz (37). It provides balanced 
representation of positive and negative symptoms and gauges 
their relationship to one another and to global psychopathology 
(37). A total of 382 Sz (mean age = 36.4, SD = 11.65, range: 18–64, 
274 males/108 females) having PANSS information from three 
independent studies (one being multisite) formed the aggregated 
dataset, which totaled to nine scanning sites. As these are legacy 
data, the studies were collected separately in space and time, 
therefore inter-rater reliability across studies is also not available. 
However, the inter-rater reliability within multisite study was 
maintained [i.e., for FBIRN3 data: collection, training, and annual 
certification of the raters on standard patient interviews was done 
(38)]. More details regarding the datasets and their publications 
are available in the supplemental material (appendix 1) of our 
previous publication (11).

All studies were collected under local IRB oversight and 
participants provided informed consent. The structured clinical 
interview for diagnosis for DSM-IV or DSM-IV-TR was used 
to confirm a diagnosis of Sz or schizoaffective disorder (SzAff) 
in few datasets. We do not consider inclusion of SzAff to be a 
significant source of variation since recent work has identified 
that structural differences between Sz and Szaff are similar (39). 
We regressed out site on PANSS general scores as it showed an 
effect, with other scores not exhibiting a site effect.

Image Preprocessing
The scanning sites included 1.5 and 3 T scanners from various 
makes/models, collecting T1-weighted images using sagittal 
orientation and MPRAGE sequences as in Table  3. Using the 
methods presented in Ref. (11–13) images were normalized 
using a 12-parameter affine model to the 152 average T1 Montreal 
Neurological Institute template, resliced to 2 mm × 2 mm × 2 mm, 
and segmented into gray, white, and CSF images using the uni-
fied segmentation algorithm (7) of SPM5 (http://www.fil.ion.
ucl.ac.uk/spm/software/spm5/). We used the same standard 
preprocessing pipeline from our previous studies (11–13). Outlier 
GMC images were identified based on correlations to both a 
study-specific template and an averaged GMC map. They were 
then visually checked, corrected, and re-segmented where pos-
sible, and removed in cases where correction was not possible. 

The sample sizes presented in Table  1 are those images which 
passed the quality assurance methods. Age, gender, and site were 
regressed out on the images voxelwise as these variables were not 
of interest (11). A full width half maximum Gaussian kernel of 
10 mm was used to smooth the images prior to the VBM and 
SBM analyses as suggested in Ref. (10, 40).

Biclustered Independent Component 
Analysis (B-ICA) Framework for subtype 
detection
We present the B-ICA framework pictorially and explain the 
method with reference to Figure 1. This framework is tuned for 
sMRI, but it can be applied to other neuroimaging modalities as 
well. It consists of:

 (1) SBM decomposition on GMC matrix from patients with Sz 
only as in Eq. 1 (13)

 X A A C A CN N= +1 1 2 2C ..... +  (1)

where X stands for observed source matrix. C1, C2, …, CN 
are the underlying original sources or natural groupings and 
A1, A2,  …  AN are the corresponding loadings. We selected 
two components (C1 and C2) corresponding to I-STG-IFG 
and SFG-MiFG-MFG components (step 1 of Figure 1) from 
our previous work (11), which had the highest effect sizes.

 (2) Loadings for the two selected components (A1 and A2) 
were sorted by absolute value as indicated by the gradient 
color change in (step 2 of Figure 1). Loadings greater than 
a statistical threshold (mean  ±  SD) for both components 
were found. Subject names passing this threshold from both 
components were then intersected to obtain subtype Sinter.

 (3) Subtypes were found as below (step 3 of Figure 1).
Sinter—subjects who are highly weighted on both C1 and C2;
S1—subjects who are exclusively highly weighted on C1;
S2—subjects who are exclusively highly weighted on C2;

 (4) Subtype-specific components (step 4 of Figure  1) were 
then reconstructed with the subtype loadings using group 
information-guided ICA (GIG-ICA) algorithm, as it pre-
serves independence of the components at subtype level (41).

 (5) Subtypes along the subject dimension in the subject by 
voxel sMRI matrix after application of B-ICA is illustrated 
(step 5 of Figure 1).

This algorithm first finds subtypes using two component 
loadings (along the subject dimension). Then using the deci-
phered subtype loadings, a GIG-ICA step is performed to find 
subtype-specific components (along the voxel dimension). Since 
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tABle 4 | Correlations between component loadings across all participants.

Component/PANss Positive (R, p) Negative (R, p) general (R, p)

I-STG-IFG R(380) = 0.02, p = 0.59 R(380) = −0.07, p = 0.13 R(380) = 0.02, p = 0.58
SFG-MiFG-MFG R(380) = 0.06, p = 0.23 R(380) = −0.08, p = 0.09 R(380) = 0.05, p = 0.29

PANSS, positive and negative syndrome scale.
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we achieve clustering in both subject and voxel dimensions, this 
is considered as biclustering. The algorithm effectively rearranges 
voxels inside a huge subject by voxel matrix (step 1 of Figure 1) 
to decipher overlapping biclusters (illustrated as red and blue 
squares in step 5 of Figure 1).

Non-Parametric testing of Clinical 
symptoms between deciphered subtypes
The PANSS was considered and the positive (PP), negative (PN), 
and general (PG) clinical scores were summed. Being multisite 
data, we regressed out site effects on the summed scores, where 
present. For the identified subtypes S1. S2, we performed a Mann–
Whitney test (U) (42) between their corresponding PP, PN, and 
PG scores as the distributions were not normal and due to their 
small sample sizes. Correlations between the ICA loadings of 
each subtype and the PP, PN, and PG scores were also calculated.

structural Network Connectivity (sNC)
To further elucidate the subtyping we also performed SNC 
analysis (43) for the identified groups. SNC is measured via the 
correlations obtained between the loadings of the two compo-
nents in the inferred subtypes.

ResUlts

Independent of clinical subtyping, we first tested the association 
of loadings from both components with PANSS positive, nega-
tive, and general scores observing no significant association as 
presented in Table 4.

After applying the B-ICA algorithm as in Figure  1 on the 
GMC matrix of 382 Sz, we obtained two exclusive subtypes S1 
(65 subjects highly weighted on only I-STG-IFG component), 
S2 (62 subjects highly weighted on only the SFG-MiFG-MFG 
component), and one intersecting group Sinter (53 subjects highly 
weighted on both components). The group and subtype-specific 
reconstructed components obtained using GIG-ICA are shown 
in Figure 2. We observed variations in reconstructed components 
for different subtypes, when compared to the group component 
(considering all 382 Sz subjects). The reconstructed subtype-
specific components showed subtle variations in several regions, 
when compared with the group components as in Figure 3. For 
the I-STG-IFG component (column 1 of Figure 2) the subtypes 
(S2 and Sinter) components showed additional regions of precentral 
gyrus, anterior cingulate and medial frontal gyrus, while for the 
SFG-MiFG-MFG component (column 2 of Figure  2), s(inter) 
showed regions of cingulate gyrus, middle temporal gyrus and 
inferior frontal gyrus.

Association of subtypes S1, S2, and Sinter 
with PP, PN, and Pg
Scatter plots of subtype loadings S1, S2, Sinter in components A1, 
A2 Vs PP is depicted in Figures 3 and 4, respectively. PP scores 
in subtypes S1 (mean  =  13.68) and S2 (mean  =  16.74) showed 
a significant difference with a Wilcoxon rank sum test = 3,954 
(n1 = 65, n2 = 62, p = 0.006). We observed few subjects in subtype 
S2 capturing the high PP (circled in Figure  4). No significant 
differences in PN and PG scores were observed between these 
subtypes S1 and S2. Subtype demography/clinical information is 
included in Table 5.

We also examined the associations of Sinter loadings in both A1, 
A2 with PP, PN, and PG. We observed a trend level correlation 
of R(51) = 0.25, p = 0.07 for the loadings of Sinter in A2 with PG 
symptoms.

structural Network Connectivity
The SNC between I-STG-IFG and SFG-MiFG-MFG component 
loadings for the three subtypes showed varying strengths of 
connectivity as follows: S1 subtype [R(63) = 0.51, p = 1.36e-5],  
S2 subtype [R(60) = 0.67, p = 1.67e-9], and Sintergroup [R(51) = 0.93, 
p < 0.00001].

dIsCUssIoN

This work presents a novel data-driven framework called B-ICA  
to unearth subtypes having complex biomarkers from neuroim-
aging data, by considering patients with Sz only. B-ICA applied 
here on a GMC helps to map the hidden latent relationship 
between the subset regions of GMC for a subset number of sub-
jects and the clinical scores. This work tries to tackle the challeng-
ing task of subtyping patients with Sz without considering Ct. 
Our viewpoint is similar to the recent theory-driven systematic 
study, which identified two subtypes in patients with Sz using 
neuropsychological battery, assessment of clinical symptoms, 
neurological soft signs, morphogenetic anomalies, smell iden-
tification, and measurement of event-related potentials (44). 
The hypothesis that neuropsychiatric disorders are a result of 
combination of alterations with varying directionalities in dif-
ferent parts of the brain, is gaining acceptance (31). In support of 
this, numerous studies in Sz have reported GMC/GMV deficits 
throughout the brain with the areas of I-STG-IFG component 
(11, 35) being most severely and consistently affected in Sz. 
Larger basal ganglia volume (45), striatal gray matter density 
(35), GMC in cerebellum/brainstem and putamen (46) have also 
been reported in Sz, compared to Ct group. Most of these studies 
look at global differences between Ct and Sz, without consider-
ing the differences in clinical symptoms within the Sz cohort. 
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FIgURe 2 | First row: group components for 382 schizophrenia subjects (column one is insula/superior temporal gyrus/inferior frontal gyrus component while 
column two is superior frontal gyrus/middle frontal gyrus/medial frontal gyrus component). Subtype-specific components were reconstructed using 
biclustered independent component analysis and group information-guided ICA. Second row: S1 subtype components (65 subjects), third row: S2 subtype 
components (62 subjects), fourth row: Sinter subtype components (53 subjects). All components were thresholded at |z| > 2.5 and cross hairs indicate the 
maximum voxel.
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FIgURe 3 | Scatter plots for subtypes S1, S2, Sinter I-STG-IFG component loadings Vs PP.

FIgURe 4 | Scatter plot for subtypes S1, S2, Sinter SFG-MiFG-MFG component loadings Vs PP.
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With such an analytic viewpoint, low discriminative components 
between patients with Sz are often missed in a high dimensional 
neuroimaging dataset, which we managed to decipher in this 

work. The ICA components analyzed in this work also showed 
maximum group difference between Ct and Sz in our previous 
work (11).
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tABle 5 | Demography/clinical information across all subjects and subtypes.

All 382 
schizophrenia 

(sz)

S1 (65 sz) S2 (62 sz) Sinter (53 sz)

PP 15.21 ± 5.11 13.68 ± 4.46 16.74 ± 6.21 15.47 ± 5.26
PN 14.69 ± 5.86 13.86 ± 5.67 14.74 ± 5.39 14.64 ± 5.43
PG 27.91 ± 7.83 27.64 ± 7.44 28.24 ± 7.25 27.79 ± 9.25
Age 36.4 ± 11.65 36.09 ± 12.24 35.25 ± 10.81 35.64 ± 12.15
Gender 274 Males/108 

females
49 Males/16 

females
38 Male/24 

females
40 Males/13 

females
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A bird’s eye view of the associations between various subtypes 
and the clinical symptoms obtained using B-ICA is shown in 
Figure  5. We observed a complex biomarker (i.e., in terms of 
deviations from mean GMC on two components) for subtypes S1 
and S2. The Sinter group had higher GMC on both the components. 
S2 included few Sz subjects with high positive symptom severity 
(Figure 4), driving the difference in PP between S1 and S2; this dif-
ference include both positive and negative loadings on the SFG-
MiFG-MFG component. It is not simply “more” or “less” of that 
GMC component that predicts the increased positive symptoms; 
but it is the deviation from the mean values, as shown in Figure 4. 
Taken together, this could effectively mean that distinct subtypes 
of Sz are characterized by varying trends of GMC abnormalities 
in different regions of the brain. Recently subgroups of Sz dif-
fering in PANSS symptoms was also reported in a resting state 
cerebral blood flow work (47).

These results also suggest that the group of subjects with 
more extreme weightings on SFG-MiFG-MFG component who 
also show a weaker weighting in the I-STG-IFG component, 
is likely to include subjects with greater positive symptoms. 
While structural interactions between these two GMC com-
ponents are highly speculative, these are also areas that have 
been related volumetrically to psychotic symptoms in the prior 
literature, particularly reduced superior frontal volume with 
positive symptoms across the psychosis spectrum (48) and in 
non-clinical samples (49). The insular cortex is both function-
ally and structurally affected in Sz, and as part of the salience 
network may be playing a fundamental role in the development 
of psychosis (50, 51). The particular component we find of 
not just decreased GMC in one area, but a deviation from the 
norm in the SFG-MiFG-MFG component, while having an 
average GMC expression in the I-STG-IFG component, makes 
these participants a promising group for future more clinically  
oriented study.

Our approach does not require any a  priori knowledge or 
assumption on the number of biclusters in the subject by voxel 
matrix, except for the simple statistical threshold to search for 
subtypes. In contrast to clustering techniques like k-means (52) 
and hierarchical clustering (53) that find global components 
based on clinical or cognitive symptoms which are character-
ized by heterogeneity, B-ICA’s unique data-driven approach 
enables detection of reliable hidden subtyping from the reli-
able neuroimaging data. It untangles both overlapping and 
non-overlapping biclusters based on the inherent properties of 

FIgURe 5 | Bird’s eye view of the subtype associations with positive and negative syndrome scale clinical symptoms obtained using biclustered independent 
component analysis.
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