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Abstract

Spectral efficiency is a key design issue for all wireless communication systems. Orthogonal frequency

division multiplexing (OFDM) is a very well-known technique for efficient data transmission over many

carriers overlapped in frequency. Recently, several papers have appeared which describe spectrally ef-

ficient variations of multi-carrier systems where the condition of orthogonality is dropped. Proposed

techniques suffer from two weaknesses: Firstly, the complexity of generating the signal is increased.

Secondly, the signal detection is computationally demanding. Known methods suffer either unusably

high complexity or high error rates because of the inter-carrier interference. This work addresses both

problems by proposing new transmitter and receiver architectures whose design is based on using the

simplification that a rational Spectrally Efficient Frequency Division Multiplexing (SEFDM) system can

be treated as a set of overlapped and interleaving OFDM systems.

The efficacy of the proposed designs is shown through detailed simulation of systems with different

signal types and carrier dimensions. The decoder is heuristic but in practice produces very good results

which are close to the theoretical best performance in a variety of settings. The system is able to produce

efficiency gains of up to 20% with negligible impact on the required signal to noise ratio.
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1 Introduction

Orthogonal Frequency Division Multiplexing (OFDM) is a well-known technique for efficient data trans-

mission. OFDM is at the core of communications technologies such as Digital Audio Broadcasting (DAB)

and Digital Video Broadcast (DVB), wireless broadband networks such as Worldwide Interoperability for

Microwave Access (WiMAX) and long term evolution (LTE) systems. In OFDM, data is transmitted using a

number of orthogonal carrier frequencies. Recently many authors have proposed non-orthogonal systems or

Spectrally Efficient Frequency Division Multiplexing (SEFDM) systems. OFDM symbols are sent on carrier

frequencies separated by F and the symbols remain constant for time T (the symbol period) with TF = 1.

This ensures no sub-channel interference. For SEFDM, TF = α < 1 and, while there will necessarily be

sub-channel interference, the key advantage is that the available spectrum can be used more efficiently.

This paper suggests design for a simple to implement transmitter and receiver/decoder for SEFDM

systems. The transmitter design and the decoder design are interlinked. The key insight is to see SEFDM

as a small number of interleaved OFDM systems. The design can increase spectral efficiency by 20% using

similar techniques to traditional OFDM and with little compromise to the required signal to noise ratio for

the system. The designs require only slightly more complexity in the receiver and transmitter. The decoder

design is not optimal but is, instead, designed to be fixed (and low) complexity heuristic with “good enough”

performance. It is shown in simulation that gains significantly above 20% are unlikely without a more radical

redesign of SEFDM systems since even optimal decoding begins to suffer large increases in bit error rate

relative to OFDM.

Section 1.1 describes other research and the background. The structure of the paper is as follows. Section

2 provides a brief introduction to SEFDM. Section 3 derives the main theorem necessary for our receiver and

decoder design. Section 4 describes the receiver and decoder design. Section 5 shows the designs perform

well in simulation and section 6 gives conclusions and further work.

1.1 Spectrally Efficient FDM approaches

The idea of non orthogonal and spectrally efficient systems occurs in the 1975 work of Mazo et al [1]. More

recently, the idea of multi-carrier spectrally efficient systems was introduced in [2] and termed SEFDM.
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Similar systems use the names high compaction multi-carrier modulation (HC-MCM) [3, 4] or overlapped

FDM (OvFDM) [5]. Related systems are fast OFDM (FOFDM) [6] and the M -ary amplitude shift keying

OFDM [7], both proposing reducing the spectrum to the half of an equivalent OFDM but subject to the

limitation that the information symbols are only one-dimensional (e.g. BPSK or ASK). In addition, offset

QAM proposed in [8] succeeded in eliminating guard bands and hence supported higher spectral efficiency.

Recently the concept of non-orthogonal carriers has found its way into the very high bit rate optical

communications field. The applicability of Fast OFDM concept of [6] has been demonstrated in [9] in a system

termed Optical Fast OFDM that provides attractive error performance for one dimensional modulation

schemes. Furthermore, [10] proposed the so called optical Dense OFDM (DOFDM) which can accommodate

higher order modulations. Simulation and experimental tests confirmed almost the same error performance

as conventional OFDM. By orthogonally polarizing the sub-carriers it is possible to enhance immunity to the

chromatic dispersion for both conventional OFDM and DOFDM. A related system termed non-orthogonal

FDM (NOFDM) proposed restoration of orthogonality from the view point of the input symbols by employing

orthogonal pulse-shaping [11], where details of appropriate pulse shapes and power and bit loading provided

in [12, 13] and [14].

There are two problems with SEFDM systems: efficiently generating such a signal (the transmitter prob-

lem) and efficiently detecting and decoding such a signal. For the transmitter problem, a known method (first

proposed by the authors) is to use the inverse fractional Fourier transform [15]. The HC-MCM system short-

ens the symbol transmission time and hence transmits by using OFDM techniques with zero-padded input

and truncated output [3]. Recently several techniques to generate SEFDM signals using the Inverse Discrete

Fourier Transform (IDFT) have been proposed by the authors [16, 17, 18] and have been implemented in

hardware [19].

Obtaining optimal solutions for the decoding problem is non polynomial (NP) hard. Various techniques

are suggested: some of the better known solutions to the decoding problem are zero forcing (ZF) [20, 21],

minimum mean squared error (MMSE) [22], the sphere decoder [23, 15] and semi-definite relaxation (SDR)

[24, 25]. Maximum likelihood methods have extremely high complexity and cannot be used in practice for

anything other than the smallest systems. Methods such as SDR, MMSE and ZF have lower complexity but
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introduce a significant error penalty, particularly when noise levels are high or the number of carriers large

[21]. They are therefore unlikely to prove useful in systems with many carriers or practical noise levels.

By contrast, the sphere decoder (SD) is a method of dynamic programming that can handle the NP hard-

ness of overlapped optimisation problems achieving the optimal solution — SD techniques are investigated

by Kanaras et al in [15, 26]. Much promising research has taken place on the use of SD for SEFDM. Further-

more, [27] developed a new sub-optimal SD based detector that uses semi-definite programming to reduce

the complexity of the SD, whereas [28] and [29] proposed the use of a fixed complexity sphere decoders (FSD)

and then a combination of FSD and the truncated singular value decomposition (SVD) to solve the problem

of the variable complexity of the SD whilst still providing attractive error performance. SD suffers from

two basic drawbacks which have only been partially overcome. It requires the inversion of ill-conditioned

matrices (regularisation helps this problem at the expense of introducing noise) and its complexity is not

fixed but is, in general, worse than polynomial [30, 31]. The execution time of SD can worsen considerably

with many carriers, in high noise or with low α. Consequently, a practical implementation could be possible

only under very specific conditions, for relatively small signal dimensions (N ≤ 32) and in high signal to

noise ratio (SNR) regimes. Therefore, the need remains for a detector technique which can recover signals

well and in a short fixed time.

In SEFDM, the channel equalisation problem needs consideration. Work has been done on the problem

of accounting for channel effects in SEFDM systems and [32] shows that joint detection and equalisation are

possible.

An open question remains to what extent it is even theoretically possible to recover signals. For sampled

SEFDM systems the Bit Error Rate (BER) as a function of energy per bit to noise power spectral density

ratio (Eb/N0) is not known although Mazo and Landau famously made pioneering work in this area for single

carrier systems [33]. A later result by Rusek et al [34, 35] demonstrates that for α > 0.802 and 4-QAM for

optimal detection the BER should be exactly that of OFDM (although technical differences in the system

mean that this result may not precisely carry over to SEFDM systems as considered in this work). It also

demonstrates that this is the “best possible” value of α in this setting and for lower α this the performance

will diverge (see [34] for full details). However, it would be expected the BER for a “good enough” decoding

3



system to be “close” to the BER for OFDM for α ∈ (5/6, 1) and diverge for smaller α (especially when

α < 0.802).

2 The Spectrally Efficient Frequency Division Multiplexing scheme

If spectral efficiency is defined as the bitrate transmitted divided by the amount of spectrum used (bits/s/Hz)

then it can be seen that multiplying the symbol period T by a factor α < 1 but keeping the frequency separa-

tion F the same will increase the spectral efficiency (by increasing the bitrate) by a factor of approximately

1/α for a large number of carriers. Here then we take the spectral efficiency of the new system as being 1/α

and hence α = 5/6 means spectral efficiency of 120% or a 20% gain. The result is the same (and the system

mathematically identical) if T is kept constant and F reduced.

Assume that the system has N carrier frequencies each separated by a frequency separation F . Let

Si (with i ∈ {0, 1, . . . , N − 1}) be the symbol (a complex number chosen from an “alphabet”) on carrier

i for time [0, t). Now, ignoring the frequency offset of the initial carrier for simplicity, the transmitted

signal (B(t) for broadcast signal) in the period [0, T ] is given by B(t) =
∑N−1

k=0 Sk exp[2πikt/T ]. For OFDM,

the interference between frequencies is zero when the signal is integrated over the symbol period. The

discrete version of this can be considered instead where B(t) is sampled at M discrete times in the set

{0, T/M, 2T/M, . . . , (M − 1)T/M}. This new series is Um (with m ∈ {0, 1, . . . ,M − 1}) where Um =

B(Tm/M) and (1) becomes Um =
∑N−1

k=0 Sk exp[2πik(mT/M)T ] =
∑N−1

k=0 Sk exp[2πikm/M ]. It is this

discrete version which is traditionally used in OFDM transmitters as it can be easily generated using FFT

techniques and then the continuous signal approximated from this.

Now, consider the SEFDM system where TF = α < 1. Further we assume that α is rational α = b/c

with b, c ∈ N (the set of natural numbers). The equivalent equation for the transmitted signal is given by

B(t) =

N−1∑

k=0

Sk exp[2πiktb/cT ], (1)

where B(t) is the broadcast signal at time t ∈ [0, T ). The discretely sampled version where Um = B(Tm/M)
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becomes

Um =

N−1∑

k=0

Sk exp[2πikmb/cM ]. (2)

Because of the b/c factor FFT techniques cannot be used in a straightforward manner to generate the

transmitted wave. However, section 3.1 shows one way this can be done and section 4 shows one workable

design for a transmitter and decoder based on the insight that the SEFDM system with rational α consists

of interleaved OFDM systems.

A working SEFDM system will generate and receive a continuous waveform. (If the transmission is

digitally generated as in this case the continuous wave form would be from a smoothed version of the digital

samples). A computer simulation is by its nature discrete. It can be shown that for the continuous wave

form, the interchannel interference impacting the mth channel from the nth channel in an SEFDM system

(for n 6= m) is given by:

I(n,m) = Sn (sinc[(n−m)α]/π) exp[πi(n−m)α],

where sinc(x) is the normalised sinc function sin(πx)/x. For the discrete simulation the interference term is

I ′(n,m) =
Snsinc[(n−m)α]

sinc[(n−m)α/M ]
exp[πi(n−m)α(M − 1)/M ].

This can be thought of as the original I(n,m) corrupted by a rotation factor (M − 1)/M (the origin of this

is the non-centred sampling times) and a magnification factor (n−m)α/M sin[(n−m)α/M ]. Both tend to

1 as M → ∞ (as would be expected). In short, the discrete simulation will exaggerate (sometimes greatly)

the interfering effects of the SEFDM carriers.

3 Mathematics of SEFDM systems

A core insight of this paper is the viewing of SEFDM as interleaved OFDM systems. This is illustrated in Fig.

1. Here the large vertical double arrows represent an OFDM system with symbol period T and frequency

separation F . (Remember that an OFDM system has TF = 1 and an SEFDM system has TF = α < 1.)

The smaller single arrows represent an SEFDM system with the same symbol period T and a frequency
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Figure 1: A representative diagram of SEFDM with α = 3/4 compared to an OFDM system.

separation 3
4F (α = 3/4).

It can be seen that those SEFDM frequencies labelled 1 (below the x-axis) always align exactly with

OFDM frequencies (separated by 3F ). In other words, those SEFDM frequencies are an OFDM system

which happens only to send symbols on every third carrier. The frequencies labelled 2 also form an OFDM

system offset in frequency from the first by 3
4F . In general, if α is some rational α = b/c with b < c ∈ N

(where N is the set of natural numbers) this can be viewed as c interleaved OFDM systems each sending

symbols on every bth carrier and offset from each other by F . This insight will be used both in transmitter

and decoder design, a formal proof follows.

3.1 Proof of the equivalence of SEFDM and interleaved OFDM

For notational convenience, assume here and throughout this paper that an N ×M matrix C = [cnm] has its

indices running from zero (not one as is more usual). That is n ∈ {0, 1, . . . , N−1} and m ∈ {0, 1, . . . ,M−1}.

Equation (2) can now be written as U = SC, where U = [U0, U1, . . . , UM−1], S = [S0, S1, . . . , SN−1] and

C = [cnm] is the N×M carrier matrix given by cnm = exp[2πinmb/cM ]. The equationU = SC does generate

the sequence to be transmitted but the multiplication by anN×M matrix could be computationally intensive

for large N . Assume N is some multiple of c (this is not a necessary assumption but makes the notation

easier) so N = cd with d ∈ N.

Theorem 1. Consider an SEFDM system with N carrier frequencies sampled M ≥ N times in the symbol

period and with rational α = b/c as described in equation (2). The system can be decomposed into the sum

of c separate OFDM systems each with b⌈N/c⌉ carrier frequencies and a frequency offset applied to each of
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these (where ⌈·⌉ is the ceiling function). Of these frequencies, a maximum of ⌈N/c⌉ actually carry symbols.

Proof. Assume without loss of generality that N is a multiple of c. For a system where N is not a multiple

of c the same proof applies on the expanded system with N ′ > N carriers such that N ′ is a multiple of c

and no symbols are broadcast on the final carriers (SN = SN+1 = · · · = SN ′−1 = 0).

Let D be the Nb/c × M matrix for an OFDM system with Nb/c carriers and M samples given by

D = [dnm] and dnm = exp[2πinm/M ]. Let R(k) be the M ×M rotation matrix: R(k) = diag[r(k)m] where

r(k)m = exp[2πimkb/cM ] and diag is the matrix with all elements zero apart from the diagonal which has

its kth element as r(k)m.

The SEFDM transmission can be considered as the sum of c interleaved OFDM systems. Let U′(k) be

the signal generated by the kth such system. Let S′(k) be the symbols in S that are transmitted on the kth

system. That is S′(0) = (S0, Sc, S2c, . . .) and S
′(1) = (S1, Sc+1, S2c+1, . . .) and so on. Formally, define the c

symbol vectors (each of length Nb/c) S′(k), for k = 1, 2, . . . , c− 1

S′(k)n =





Snc/b+k n mod b = 0,

0 otherwise,

where n ∈ (0, 1, . . . , Nb/c). Note that each of the original symbols Sn appears in exactly one of the new

symbol vectors S′(k). This also means that the reverse map can be constructed Sn = S′(n mod c)b(n−k)/c.

Consider the matrix equation U
′ =

∑c−1
k=0 S

′(k)DR(k). This is the sum of the k new symbol vectors

transformed by an OFDM system and rotated. It remains to show that U′ = U. Define each element of this

sum as U′(k) = S
′(k)DR(k) and therefore U′ =

∑c−1
k=0 U

′(k). For any k the mth element of U′(k) (referred

to here as U ′(k)m) is given by

U ′(k)m = exp[2πimkb/cM ]

Nb/c−1∑

n=0

S′(k)n exp[2πinm/M ]. (3)

Since S′(k)n = 0 if n mod b 6= 0 then the sum index n can be transformed using l = n/b to give U ′(k)m =

exp[2πimkb/cM ]
∑N/c−1

l=0 S′(k)lb exp[2πimlb/M ]. Since S′(k)lb = Slc+k for all l ∈ {0, 1, . . . , N/c − 1} then

U ′(k)m = exp[2πimkb/cM ]
∑N/c−1

l=0 Slc+k exp[2πimlb/M ]. The sum must be transformed again using p =
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lc+k and hence l = (p−k)/c to U ′(k)m = exp[2πimkb/cM ]
∑Nc−c+k

p=k Spδ(p mod c) exp[2πim(pb−kb)/cM ],

where δ(n) is the delta function which is equal to 1 if n = 0 and 0 otherwise. A final sum transformation

gives U ′(k)m =
∑N−1

n=0 Snδ(n+ k mod c) exp[2πinmb/cM ]. Clearly then the final proof arises

U
′ =

c−1∑

k=0

N−1∑

n=0

Snδ(n+ k mod c) exp[2πinmb/cM ] =

N−1∑

n=0

Sn exp[2πinmb/cM ] = U,

where the removal of the sum over k at the second equality sign occurs because n+ k mod c = 0 is always

true for exactly one value of k for any given value of n.

4 Transmitter and receiver design

The transmitter and receiver designs outlined in this section have several advantages over those in the

SEFDM literature. The receiver and transmitter designs also have much in common which would help with

the cost of building them.

4.1 Transmitter design

The generation of SEFDM signals using the Inverse Discrete Fourier Transform (IDFT) has been proposed

by the authors in [16] and this has led to a recent hardware implementation [19]. As the SEFDM signal can

be described as a sum of overlapped independent rotated OFDM signals, it can be shown that the SEFDM

transmitters can be built using OFDM generation techniques. An OFDM signal is efficiently generated using

the Inverse Discrete Fourier Transform (IDFT) [36].

From Theorem 1 it can be shown that adding c rotated OFDM systems can create the same signal as

an SEFDM system. This can be utilised to build an SEFDM transmitter as illustrated in Fig. 2. The

transmitter starts by reordering the input symbols and insert zeros at appropriate locations to generate the

c symbol vectors. The symbols reorder block generates the S
′(k) vectors. These vectors are then fed into

the c IDFT modules. The outputs of the IDFTs are then rotated using the rotation matrices R(k) and

combined to generate the time sampled sequence U, which can be fed into a digital to analogue converter

(D/A) to finally generate the continuous time signal B(t).
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Figure 2: The IDFT implementation for SEFDM transmitter.

Generation of SEFDM with the IDFT offers many advantages. The IDFT based system is ready for

digital implementation providing all the digital over analogue advantages. The structure of the SEFDM

system is based on similar building blocks to the widely available OFDM system which will facilitate a smooth

changeover. In addition, as will be shown later the receiver and transmitter have the same structure which

can enable dual operation of the same equipment and consequently reduce the design and implementation

costs.

4.2 Receiver/decoder design

Once the SEFDM signals for one symbol period have been received they must then be decoded to return the

original symbol. The receiver therefore attempts to recover the original symbols by decoding the interleaved

OFDM systems individually by subtracting the estimated interference from the other OFDM systems (for

this reason we term this the “stripe” decoder). Note that the design here is heuristic, no proof of convergence

is given (and one may not be possible). The justification for the design is that it is intuitive and it works in

software tests. The receiver/decoder is shown diagrammatically as a data flow diagram in Fig. 3.

Begin with a received signal (box A in diagram) and an initial estimate that all symbols are 0 + 0i (box

B in diagram) and iteratively improve the estimates by isolating the signal arising from each of sub OFDM

systems (see Fig. 1). After several iterations the estimates converge to the correct input symbol and are

eventually rounded to the closest symbol in the symbol alphabet in use.
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A) Original 
received signal

B) Estimated symbols 
for all c components

(initially zero)

C) Zero component i

D) Estimated received 
signal from all but

component i

E) Subtract original
to get received signal
from compenent i only

F) Improved estimate for
symbols from
component i

G) Gravitational
weighting toward 

true symbol
alphabet

H) Improved estimate of
symbols for all
c components

I) Sufficient 
iterations?

J) Round to nearest 
alphabet symbols

for final result

NoYes

Repeat for all c components

Figure 3: Receiver/decoder dataflow diagram.

Consider, again, the SEFDM system with N carriers and α = b/c. Let U (as in section 3.1) be the

received signal (for now assume it is not corrupted by noise). If the system is OFDM, decoding is simple.

The received frequencies are orthogonal and a simple IDFT recovers the symbols on each carrier. Now, it

follows that if the symbols for c − 1 of the interleaved OFDM systems were known then the symbols on

the remaining OFDM system could be obtained. This is achieved by firstly subtracting that portion of U

which arises from the c− 1 OFDM systems with known symbols and secondly, performing the inverse DFT.

Using the notation of section 3.1, if U(k) is the signal arising from the kth interleaved OFDM system then

U −
∑c−1

k=1 U(k) is the signal arising from the zeroth OFDM system U(0). An IDFT of U(0) recovers the

symbols. A similar process would be required if U(0),U(2),U(3), . . . ,U(c− 1) were known and U(1) were

to be recovered. In that case a frequency shift R(1) (again as in section 3.1) would need to be applied before

the inverse DFT. It should be noted that even if U is corrupted by AWGN, the above process can be used

to produce a maximum likelihood estimate of the original broadcast symbols by rounding it to the nearest

letter in the “symbol alphabet” being used.

Given estimates of the correct symbols for the c interleaved OFDM systems then improved estimates can
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be produced (inner dotted box in diagram). The estimates are produced by, for each OFDM system in turn:

first subtract the signal from the c − 1 other OFDM systems (box C, D and E in diagram) and secondly

perform an inverse DFT with frequency shift to get an improved estimate for that OFDM subsystem (box

F in diagram). To improve performance a “gravitational” model is added to pull estimates towards symbols

in the symbol alphabet (box G in diagram). This is repeated for J iterations (box I in diagram). Note that

estimates are “soft estimates” (complex numbers which are not necessarily members of the symbol alphabet)

until the final stage of processing the estimates are mapped to the nearest member of the symbol alphabet

(box J in diagram).

1. Set Ŝ the estimated symbols to 0 + 0i (box B).

2. Let j := 1 (j counts iterations – there are J iterations).

3. Let Ŝ(0), Ŝ(1), . . . be the estimates for the symbols of the c interleaved OFDM systems. The Ŝ(k)

together make Ŝ as in section 2.

(a) For each of the c systems in turn, remove that part of the signal generated by all symbols in Ŝ

apart from Ŝ(k) (box C and D). Use this to estimate a new Ŝ(k) and hence a new Ŝ (box E and

F).

(b) For each of the N symbols calculate a “gravitationally weighted” version of Ŝ, G(Ŝ) (box G).

4. Ŝ := Ŝ(J − j)/J + (j/J)G(Ŝ) (box H).

5. If j < J then j := j + 1 and go to step 3 (box I).

6. Finally, Ŝ is “sliced” to the nearest alphabet symbol for each estimated symbol Ŝi (box J).

The two central steps of the algorithm (a) and (b) above require slightly more explanation. If r is

the received signal corrupted by noise then, to estimate the kth OFDM system first calculate C(k) =

r−
∑c−1

j=0,j 6=k Û(j) where Û(j) is the estimated signal transmitted by just the estimated symbols in the jth

OFDM system Ŝ(j) (box D). C(k) can then be shifted in frequency by multiplication R(k) to produce an

estimate of the signal (plus noise) arising solely from the kth OFDM system (box E). This can be decoded
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in the usual OFDM manner (using IDFT) as if it were an OFDM system transmitting on every bth carrier.

This produces a new estimate for the symbols on the kth OFDM system Û(k).

These estimate symbols are truncated to ensure that no symbol has a real or imaginary part outside the

range of the signalling alphabet (for example, if the system is 4-QAM estimates are rounded so all real and

imaginary parts are in the range [−1, 1]. The new estimate for Û(j) can immediately be used to update Ŝ

(box F). This takes place for each of the c OFDM systems in turn (dotted large box) to produce a new Ŝ.

Note that while this part of the decoder design seems complicated, in fact, the decoder can be implemented

using the transmitter. To calculate C(k) from r the received signal and Û(j) (the estimated symbols on all

carriers j 6= k) simply feed the estimated symbol set Ŝ with symbols k, k + c, k + 2c, . . . set to zero to the

transmitter. This produces an estimate of the signal which would be transmitted by all but the kth OFDM

system (corrupted by noise). This signal can be decoded using IDFT as in standard OFDM to produce an

improved estimate for Ŝ(k) the symbols of the kth OFDM system.

The “gravitationally weighted” G(Ŝ) (box G) is calculated by examining each estimated symbol in turn

Ŝ0, Ŝ1 and so on and producing the weighted sum of each of the symbols in the alphabet weighted by the

inverse of the distance to them (as a gravity law). If A is the symbol alphabet (say, 1+0i −1+0i for BPSK)

then

G(Ŝi) = K
∑

a∈A

a/d(a, Si)
2,

where d(a, b) is the Euclidean distance between the two points in complex space and K is the normalising

constant 1/
∑

a∈A a/d(a, Si)
2. If for any a ∈ A, d(a, Si) = 0 then G(Si) = a, that is, if the estimated symbol

happens to be exactly on a point in the alphabet (to machine precision) then that point is returned. Many

similar weighting schemes could be tried but this one appears sufficiently effective and quick to calculate.

The complexity of the decoder system is tied to the complexity of the transmitter. (The “gravitational”

part is of negligible complexity). To subtract an estimated signal a signal is generated by the transmitter.

The final complexity of the decoder then is a fixed linear multiple of the transmitter complexity – this

multiple being a product of c (the number of interleaved OFDM systems) and J , the number of iterations

in step (a) above (experiment found 20 to be a reasonable value).
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4.3 Comments on Implementation

Numerical results modelling the work reported here demonstrate attractive error performance (as will be seen

in the next section) at a much reduced complexity when compared to optimal iterative detection algorithms

such as SD. Ultimately the aim is to realize the proposed designs in hardware. Examining the structure

of the proposed system reveals the support of an efficient implementation path. The transmitter design

relies on general purpose IDFT operations which can be efficiently evaluated with the Inverse Fast Fourier

Transform (IFFT). We have recently reported the implementation of such transmitter on a reconfigurable

field programmable gate array (FPGA) architecture [37] and demonstrated its operation, showing its ability

to perform real time tuning of α. Furthermore, design studies as very large scale integrated circuit (VLSI)

structures have also been reported in [38].

Examining the structure of the stripe decoder, shows that the main components are standard DFT

modules which can in turn be realized with the FFT algorithm. Implementations of DFT based demodulators

for SEFDM system have also been reported in [39]. A main difference in the design is that multiple DFT

blocks are needed for the stripe decoder while a single longer DFT is implemented in [39]. However, the DFT

blocks arrangements in the stripe decoder may follow the same pattern as those of the transmitter design.

5 Simulation results

Numerical simulation was carried out to determine the performance of the transmitter and decoder system

(as mentioned in the introduction the transmitter has been tested in hardware this work is ongoing for the

receiver/decoder). A sampled SEFDM system is characterised by N (the number of carriers in one symbol

period), the symbol alphabet (what allowable complex symbols are considered), M (the number of samples

obtained for decoding in one symbol period), α = b/c (the compression ratio) and Eb/N0 the energy per bit

to noise power spectral density ratio. As previously remarked, the spectral efficiency of an SEFDM system

compared with OFDM is 1/α. So, for α = 5/6 the spectral efficiency increases by 20% and for α = 4/5 by

25%.
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5.1 Simulation description

Code to simulate the system was written in python. The code implements transmission of SEFDM using the

FFT method described in section 4. Test signals are generated from random bits. Additive White Gaussian

Noise (AWGN) with a given Eb/N0 is then added. Channel effects such as fading and frequency and phase

offsets as well as system aspects such as channel estimation are not considered in this work. The assumption

of a simplified AWGN channel serves to illustrate the basic concepts of the work and its practicability. More

sophisticated channel models are the subject of ongoing work. It has been shown that joint detection and

equalisation using sphere decoder can provide attractive BER performance [32]. The authors believe that a

joint detection and equalisation technique based on the proposed detection algorithm from this paper could

be used to alleviate the problem.

The simulations described here are all performed with the assumption that data is arriving as fast as

the system can broadcast it (that is, the system is at maximum load and there is always a symbol on

every channel in every period). The results would not be altered if this load fell (a blank symbol could be

broadcast). The choice of symbols is random. As the relationship of symbol patterns to BER is unknown,

completely random choices of symbols is the best way to obtain the actual BER a working system would

have.

Three decoding schemes are implemented. The first is the “stripe” decoding technique from this paper

(section 4.2). The maximum likelihood (ML) method explicitly tests every possible combination of alphabet

symbols on each carrier and measures the difference between the time series generated and the received

signal. While this is in some sense “perfect” as a decoding scheme it is computationally intractable for

large N (assuming for simplicity that M = N). The number of tests requires increases as O(AN ) where

A is the number of symbols in the alphabet and N the number of carriers and assuming each test can be

performed with FFTs in parallel then each is of order O(N logN). By contrast the stripe decoder complexity

is O(N logN) (although this must be multiplied by the constant J the number of iterations performed). The

“sphere decoder” method attempts to more intelligently assess only the “nearly correct” symbol sequences.

That is it uses a dynamic programming technique over only a subset of the possible symbol space. However,

because it relies on numerical matrix inversion, it suffers problems with large numbers of channels or low
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values of Eb/N0 as the number of symbol combinations investigated becomes large. The three methods are

referred to in the results as ML, stripe and sphere. The ML should represent a “best possible” result and

the sphere decoder should also be optimal except in cases where the algorithm fails to find a solution – in

practice the result coincides almost exactly with the optimal solution where that is known.

To get statistically representative results, a high number of iterations must be performed with each

iteration representing one symbol period. 95% confidence intervals have been calculated for all experiments

which measure bit error rate on the assumption that each decoded bit is an independent trial (in fact, for

say a 128 carrier 4-QAM system the error rates on groups of 256 bits composing one symbol period will be

loosely correlated but between simulated symbol periods the bits are independent trials). For most of the

graphs plotted the 95% confidence intervals are too close together to show up and are omitted.

For space reasons runtime efficiency results are not shown here (and results of runtime for computer

simulation are not expected to translate directly to better performance when implemented on hardware).

The runtime results for transmitter and decoder were completely in line with the expected theoretical results

– the time taken to produce a signal for one symbol period using the transmitter code was O(M logMc)

where c is the number of OFDM systems to be added and M the number of samples per symbol period.

To get accurate experimental estimates for BER it was necessary to generate and decode tens of thousands

of symbol periods (since the BER was extremely low). In our software simulations the “stripe” decoder

could transmit and decode 128 symbols per period in an acceptable runtime whereas the ML decoder could

perform no more than 4 and the sphere decoder no more than 8. In short, the transmitter design and

receiver/decoder designs were, as predicted, a fixed, small multiple of the runtime of an FFT routine.

5.2 Decoder results, prediction accuracy

It should be emphasised throughout this section that the OFDM result (the theoretical BER line) represents

the best possible result obtainable in the case of an orthogonal system. The maximum likelihood (ML) result

represents (within the bounds of statistical errors) a best possible result for the simulation parameters used

(N , M , α and Eb/N0). The sphere decoding result will also be “near” optimal for the simulation parameters

used.
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Figure 4: Bit error rate for α = 5/6 (left) and for α = 4/5 (right) using 4-QAM.

Fig. 4 (left) shows results for the stripe decoder using 4-QAM for α = 5/6. The sphere decoder and

the ML decoder results are a good match with the theoretical best possible except for low Eb/N0 (where

they do not quite meet the optimal bound as we might expect). However, it is worth reiterating that the

theory applies to an idealised situation with complete knowledge of the whole time signal in analysis but the

simulation (and a real working system) only considers samples. The stripe decoder certainly shows worse

performance than the perfect theoretical performance. However, it is comparable to the sphere decoder in

low Eb/N0 and for Eb/N0 > 5.0dB the worsening of performance is equivalent to approximately an extra

1 dB of Eb/N0 (the BER for OFDM at 9.0dB is the same as is the BER for SEFDM at 8.0dB). Note that

it is this horizontal separation which is relevant since the design question is “how much more power (or

less noise) would be necessary to regain the lost performance?” This is certainly very good performance.

In low Eb/N0 environments the stripe decoder would certainly be as good in terms of BER as OFDM. In

high Eb/N0 environments (above 8dB) the stripe decoder is able to achieve an acceptable bit error rate for

wireless systems where BER below 0.0001 are entirely reasonable although an OFDM system would have

lower errors. In this case an SEFDM could either fall back to OFDM or transmit at a higher power to reduce

the Eb/N0 until the BER was acceptable.

Fig. 4 (right) shows results for the stripe decoder using 4-QAM for α = 4/5 – this is just below the limit

of α = 0.802 which is considered the “best possible” for idealised recovery of the signal. The stripe decoder
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again shows degraded performance. However, it is again comparable to the sphere decoder in low Eb/N0

and for 5.0dB < Eb/N0 < 9.0dB the worsening of performance is equivalent to an extra 1 or 1.5 dB of noise

(that is the BER for SEFDM at 9.0 dB is the same as the BER for OFDM at 7.5 dB). This is an acceptable

power penalty/price to pay given the advantage of bandwidth saving. In low Eb/N0 environments the stripe

decoder would certainly be as good in terms of BER and much preferable in terms of spectral efficiency.

However, it seems that the performance has worsened by going below the theoretical α = 0.802 limit even

slightly.

Fig. 5 shows the improvements which oversampling can bring. Recall from section 2 that the simulation in

fact over estimates interference when the number of samples is “low”. More samples will produce interference

levels closer to the real life (continuous) system.

Fig. 5(left) shows the results for 4-QAM with oversampling with α = 5/6. For 16 and 32 carriers an

oversampling rate such that M = 16N is tried — 16 samples per carrier in every symbol period. This should

be compared with Fig. 4 (left) which is the result for N = M — one sample per carrier in every symbol

period. For 16 and 32 carriers the BER has almost no worsening from the theory except in the highest signal

to noise ratio where the degradation still remains modest. Overall, then the performance of the algorithm is

extremely satisfactory with oversampling. Oversampling results for α = 4/5 are less successful however.

Fig. 5(right) shows the results with Eb/N0 = 8.0 dB and α varied. The stripe detector is tried with
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4 and 8 carrier systems and heavy over sampling — in this experiment M = 128 when N = 4 or N = 8.

In this case the improvement is marked with a significant improvement in BER using oversampling. Since

the stripe detector can perfectly happily function with large channel numbers it can also work well with

smaller numbers of channels and oversampling. The oversampling also improves the performance of the ML

estimator, making it stay closer to the theoretical OFDM limit for smaller values of α. This figure, however,

shows an important theoretical limit to what can be gained by SEFDM type systems even with optimal

detection and an extremely small number of channels. When α < 2/3 the BER begins to increase markedly.

Therefore, even with perfect detection it could never be expected that spectral efficiency gains of more than

50% (1/α − 1 with α = 2/3) can be achieved even for the four carrier system. For more carriers the limit

of α ≃ 0.802 seems likely to apply. These oversampling results confirm the intuition from section 2 that

the discrete simulation exaggerates the interference effect and more samples will bring the interference (and

hence BER) down.

Finally, Fig. 6 shows results using the stripe decoder on BPSK for α = 1/2 (with α = 1/2 the system is

that of FOFDM [6]). The results are nearly “perfect” with little deviation from the theory line for OFDM

which represents the best possible BER for an OFDM system with that Eb/N0. The decoding using the

“stripe” method is ideal for this scenario. More than 128 carriers cannot be tested quickly enough to get

sufficiently accurate error prediction for the lower Eb/N0 values. However, there seems no reason to believe

that the bit error rate increases with the number of carriers in this scenario. It can be seen that the results

are near “perfect” for BPSK with α = 1/2. However, this is not as useful as it might appear since BPSK

with α = 1/2 only carries the same amount of data as 4-QAM OFDM.

In summary then, the results in this section show that the transmitter and decoder perform well for 4-

QAM with α = 5/6 but these good results fall off to be a less acceptable performance for α = 4/5 in tune with

the expectation from the theoretical results of Rusek et al [34, 35] suggesting a lowest possible value of α =

0.802 before interference cannot be compensated for. The system performed better with heavy over sampling

as suggested by section 2 and performed extremely well (indeed the results were indistinguishable from

optimal) for BPSK with α = 1/2. Although no channel model was used in this simulation, complementary

work in [32] shows that SEFDM detection and equalisation can give good BER performance in dispersive
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Figure 6: Bit error rate using BPSK, fixed α = 1/2 varying Eb/N0

channel environments when the receiver employs a regularised sphere detection mechanism.

It remains to be seen whether the system would be practical for modern systems with a very large number

of carriers (512 and beyond). Detailed investigation of the properties of SEFDM in [40] have shown that

the condition number of the matrix representing the carriers increases with the number of carriers and this

increases the complexity of the problem for any detection method which involves matrix inversion. However,

with the detection method proposed here, the error rate is not expected to be seriously compromised and we

are encouraged by the results shown in Fig. 4 where there is only a slight degradation of the error when the

number of carriers is increased from 16 to 128. Current software limitations for testing with larger number

are being addressed by implementing the transmitter and receiver in hardware and this is underway. The

building block for the system is the DFT as with ODFM and, hence, the speed of execution is not expected

to be an issue in a hardware implementation.

6 Conclusions

This paper describes the design of a simple system for transmitting, receiving and decoding Spectrally

Efficient FDM (SEFDM) signals. These signals can simply be generated by a transmitter mechanism very

similar to that of standard OFDM with little increase in complexity. The decoder is more difficult to

implement but the increase in complexity with the number of channels remains that of standard OFDM
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O(M logM) (where M is the number of samples).

Detailed modelling and simulations show that the decoder described in this paper can give an increase in

spectral efficiency of 20% (α = 5/6) with little noise penalty and even 25% (α = 4/5) in some circumstances

(with a noise penalty close to 2dB for a BER of 10−4). Oversampling can be used to compensate for almost

all of the noise penalty for α = 5/6. With oversampling this system is “almost perfect” producing the

expected gain in spectral efficiency, relative to OFDM, with minimal error degradation.

Naturally, work remains to be done in this area. The decoder proposed here is a simple heuristic chosen

because it gets a “good enough” solution in a very short time. It seems likely that similar heuristics could

close much of the small gap between the solution here and the “optimal” solution. The simulations here

do not account for channel fading, however, modelling using techniques similar to those of [32] to perform

channel equalisation in SEFDM are currently underway.

In conclusion, the system proposed and modelled here could produce gains in spectral efficiency compared

with an equivalent OFDM system. The system is only slightly more complex to implement than the OFDM

system and functions in environments with similar noise levels, particularly when oversampling is used.
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