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Summary 

The larval zebrafish has emerged as a vertebrate model system amenable to small molecule 

screens for probing diverse biological pathways.  Two large-scale small molecule screens 

examined the effects of thousands of drugs on larval zebrafish sleep/wake and photomotor 

response behaviors.  Both screens identified hundreds of molecules that altered zebrafish 

behavior in distinct ways. The behavioral profiles induced by these small molecules enabled the 

clustering of compounds according to shared phenotypes. This approach identified regulators of 

sleep/wake behavior and revealed the biological targets for poorly characterized compounds.  

Behavioral screening for neuroactive small molecules in zebrafish is an attractive complement 

to in vitro screening efforts, because the complex interactions in the vertebrate brain can only be 

revealed in vivo.  

 

The problem of psychotropic drug discovery  

It is estimated that more than 60 million Americans and 450 million people worldwide suffer from 

some form of mental illness, but the search for new drugs to alleviate psychiatric and central 
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nervous system (CNS) disorders is in crisis (Agid et al., 2007; Miller, 2010).  Compared to drugs 

in other therapy categories, the development of CNS drugs costs more (US $849 million per 

compound), and their approval takes longer (an average of 8.8 years) and is more difficult 

(approval rate of 8.2%) (Pangalos et al., 2007; Miller, 2010).  Even more problematic is the 

dearth of innovative ideas to discover new drugs. Many compounds currently in clinical trials 

merely repurpose approved structures for slightly different therapeutic indications.  Other leads 

provide slightly greater efficacy on well-trodden single disease targets with questionable 

therapeutic relevance. The lack of progress is not surprising, considering that tools for high-

throughput in vivo drug discovery and characterization are not available. In vitro screening 

assays have identified compounds with improved binding efficacy on specific targets, but in vitro 

studies do not reliably predict therapeutic outcomes in vivo (Geddes et al., 2000; Fischer-

Barnicol et al., 2008). Indeed, most effective psychoactive compounds were serendipitously 

discovered decades ago in whole-animal behavioral contexts (Wong et al., 2005; Ban, 2006; 

Kokel and Peterson, 2008). 

 

An alternative to in vitro target-based screens is phenotype-based, whole organism 

screening.  Whole organism screens keep intact the complex architecture of the brain’s 

signaling networks.  Equally important, whole-organism screens do not require well-validated 

targets to discover compounds that give desirable phenotypic outcomes. Although the benefit of 

systematic in vivo screens is well recognized, it is cost- and time- prohibitive to implement such 

screens in mammals.  For example, the Squibb anti-tuberculosis screen that discovered 

isoniazid required the phenotyping of more than 5000 compounds in mice (reviewed in (Zon and 

Peterson, 2005; Kokel and Peterson, 2008)).  Recent studies in zebrafish suggest that this 

model organism can be used for the high-throughput behavioral screening for neuroactive 
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molecules and complement in vitro and mammalian systems. 

 

Small Molecule Screening in Zebrafish 

Long recognized for their powerful genetics, the zebrafish has emerged in recent years as a 

cost-effective model system for whole organism small molecule screening.  Several features of 

zebrafish biology that enable genetic studies are also valuable for small molecule screens.  

Zebrafish are cheap to grow in the laboratory.  A single breeding pair can produce hundreds of 

fertilized embryos per week.  These embryos develop rapidly into a free-swimming larva with 

complex behaviors as early as 4 days post-fertilization.  The embryos and larvae are small and 

can easily be transferred into 96-well plates for high-throughput developmental and behavioral 

assays.  Each step of a zebrafish screen can now be fully automated, from loading, orienting, 

imaging, and laser-dissection (Pardo-Martin et al., 2010).  In addition, small molecules can be 

added directly to the water and readily taken up by the fish through the gills or skin.  This 

straightforward delivery of bioactive compounds not only facilitates high-throughput automation 

of assays but also provides exquisite control over experimental timing to avoid developmental 

effects.   

 

Since Peterson and colleague’s proof of principle study on developmental perturbagens 

(Peterson et al., 2000), many small molecule screens have been conducted in zebrafish, 

especially in the context of developmental processes.  Because these screens have recently 

been thoroughly reviewed elsewhere (MacRae and Peterson, 2003; Peterson et al., 2004; Zon 

and Peterson, 2005; Wheeler and Brandli, 2009; Peal et al., 2010; Strahle and Grabher, 2010; 

Taylor et al., 2010), we will only highlight a few important examples here.  In one striking early 

success, a small molecule screen identified two chemical suppressors of the zebrafish gridlock 

mutation (in the transcriptional repressor hey2 gene), which disrupts normal aorta development 
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and leads to a lack of circulation to the trunk and tail (Peterson et al., 2004).  The suppressors 

did not directly affect the gridlock disease gene but instead acted to upregulate vascular 

endothelial growth factor (VEGF), which promotes blood vessel formation.  Thus, not only can 

whole organism screens identify small molecules that can rescue a genetic disease, but they 

can also highlight novel disease-relevant molecular pathways that in vitro assays would likely 

miss.   

 

In another study, a zebrafish small molecule screen identified the prostaglandin pathway as a 

regulator of hematopoietic stem cell (HSC) number in vivo, an effect that is conserved in mice 

and may have clinical applications to enhance HSC number in cord blood transplants (Lord et 

al., 2007; North et al., 2007).  This screen also identified nitric oxide signaling as an important 

regulator of HSC number in zebrafish and revealed the importance of blood flow in promoting 

HSC numbers (North et al., 2009). These experiments demonstrate another power of small 

molecule screens—the parallel nature of chemical screens allows for the simultaneous 

manipulation and study of numerous biological pathways. 

 

Other developmental events that have been investigated by small molecule screens in zebrafish 

include cell cycle regulation (Murphey et al., 2006), FGF signaling (Molina et al., 2009),  BMP 

signaling  (Yu et al., 2008), hair cell death (Owens et al., 2008; Ou et al., 2009), retinal blood 

vessel growth (Kitambi et al., 2009), melanocyte biology (Budi et al., 2008; Hultman et al., 

2008), cancer biology (Yeh et al., 2009), heart rhythms (Peal et al., 2011), dietary lipid 

absorption (Clifton et al., 2010) and tissue and fin regeneration (Mathew et al., 2007; Oppedal 

and Goldsmith, 2010).  Clearly, many biological processes in zebrafish are amenable to high 

throughput small molecule screens.  
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Probing Zebrafish Behavior with Small Molecules 

Recent experiments in both larval and adult zebrafish have tested the behavioral effects of 

psychotropic compounds, including drugs of abuse (Gerlai et al., 2000; Darland and Dowling, 

2001; Bilotta et al., 2002; Dlugos and Rabin, 2003; Lockwood et al., 2004; Gerlai et al., 2006; 

Lau et al., 2006; Gerlai et al., 2008; Kily et al., 2008; Lopez-Patino et al., 2008; Lopez Patino et 

al., 2008; Egan et al., 2009; Fernandes and Gerlai, 2009; Gerlai et al., 2009; MacPhail et al., 

2009; Webb et al., 2009; Blaser et al., 2010; Cachat et al., 2010; Irons et al., 2010; Sackerman 

et al., 2010; Wong et al., 2010; Dlugos et al., 2011; Mathur and Guo, 2011; Maximino et al., 

2011), anxiolytics and anxiogenics (Levin et al., 2007; Bencan and Levin, 2008; Bencan et al., 

2009; Egan et al., 2009; Lau et al., 2011; Maximino et al., 2011), anti-psychotics (Giacomini et 

al., 2006; Boehmler et al., 2007), hallucinogens (Swain et al., 2004; Blank et al., 2009; 

Grossman et al., 2010; Seibt et al., 2010), and sedatives (Zhdanova et al., 2001; Ruuskanen et 

al., 2005; Renier et al., 2007).  Conditioned placed preference testing in adults has been used to 

identify zebrafish mutants with defects in cocaine (Darland and Dowling, 2001) or amphetamine 

(Webb et al., 2009) reward pathways.  The effects of both acute and chronic exposure of 

ethanol have been extensively studied in adult locomotion (Gerlai et al., 2000; Gerlai et al., 

2008), reward (Kily et al., 2008), tolerance (Dlugos and Rabin, 2003; Blaser et al., 2010; Dlugos 

et al., 2011), withdrawal (Gerlai et al., 2009; Cachat et al., 2010), aggression (Gerlai et al., 

2000), and anxiety tests (Gerlai et al., 2006; Fernandes and Gerlai, 2009; Sackerman et al., 

2010; Wong et al., 2010; Mathur and Guo, 2011; Maximino et al., 2011).  Anxiolytics, including 

nicotine (Levin et al., 2007; Bencan and Levin, 2008), buspirone, diazepam, and fluoxetine 

(Bencan et al., 2009; Maximino et al., 2011), and anxiogenics such as caffeine (Egan et al., 

2009) alter adult zebrafish anxiety-related behavioral responses as assessed by either a novel 

tank or light/dark preference paradigms.  Drugs that affect adult zebrafish learning and memory 

tests include nicotine (Levin and Chen, 2004; Levin et al., 2006), the anti-cholinergic 
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scopolamine (Kim et al., 2010; Richetti et al., 2011), the anti-histaminerigc α-

fluoromethylhistidine (Peitsaro et al., 2003), the NMDA receptor antagonist MK-801 (Swain et 

al., 2004; Blank et al., 2009), environmental neurotoxins (Smith et al., 2010), and melatonin 

(Rawashdeh et al., 2007).  Some work has also been done on the effects of neuroactive drugs 

on larval zebrafish locomotor behavior.  Ethanol and amphetamine increase locomotor activity 

at low doses but inhibit locomotion at high doses (Lockwood et al., 2004; MacPhail et al., 2009; 

Irons et al., 2010). The anti-psychotics fluphenazine, haloperidol, and clozapine cause larval 

movement defects (Giacomini et al., 2006; Boehmler et al., 2007).  Finally, several sedatives, 

including melatonin, benzodiazepines, barbiturates, histamine receptor H1 antagonists, and α-2 

adrenergic agonists also reduce larval locomotion (Zhdanova et al., 2001; Ruuskanen et al., 

2005; Renier et al., 2007). These studies collectively demonstrate the power of probing complex 

zebrafish behaviors with neuroactive small molecules. 

           

Behavioral Small Molecule Screens 

The first two large-scale screens for small molecules that modulate behavior have demonstrated 

the potential of zebrafish for psychotropic drug discovery (Kokel et al., 2010; Rihel et al., 

2010a). Rihel et al. (2010) screened the effects of nearly 4000 small molecules on zebrafish 

sleep/wake behaviors, while Kokel et al. (2010) tested how 14000 drugs altered larval 

responses to a high intensity light pulse.  Both studies leveraged the 96-well plate format to 

study behavior at high throughput and introduced the concept of clustering active compounds by 

their behavioral profiles. The quantitative, multi-dimensional behavioral profiles of each small 

molecule were used to identify unexpected relationships among molecules with similar 

behavioral outputs (Figure 1).  
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Sleep/Wake Screen 

Zebrafish larvae and adults have behavioral, pharmacological, anatomical, molecular, and 

genetic correlates of mammalian sleep (Zhdanova et al., 2001; Kaslin et al., 2004; Faraco et al., 

2006; Prober et al., 2006; Zhdanova, 2006; Yokogawa et al., 2007; Appelbaum et al., 2009; 

Rihel et al., 2010b).  First, zebrafish exhibit locomotor patterns characteristics of sleep-like 

states.  Larvae rest predominantly at night, under endogenous circadian control (Hirayama et 

al., 2005). During these rest bouts, they have increased arousal thresholds, an important 

criterion for behaviorally defined sleep-like states (Zhdanova et al., 2001; Prober et al., 2006; 

Yokogawa et al., 2007). Furthermore, zebrafish larvae exhibit rest rebound and increased 

arousal thresholds following rest deprivation, another important criterion of sleep-like states 

(Zhdanova et al., 2001; Yokogawa et al., 2007).  Second, mammalian anatomical and molecular 

aspects of sleep are conserved in zebrafish.  In particular, the zebrafish hypocretin/orexin (Hcrt) 

system, a neuropeptide regulator of sleep and arousal in mammals, is conserved (Kaslin et al., 

2004; Faraco et al., 2006; Prober et al., 2006; Yokogawa et al., 2007).  Consistent with 

mammalian studies, overexpression of Hcrt in zebrafish dramatically decreases sleep (Prober et 

al., 2006), and mutations in the Hcrt receptor lead to sleep fragmentation at night (Yokogawa et 

al., 2007). Third, small molecules that modulate rest in mammals, including melatonin, 

benzodiazepines, barbiturates, histamine receptor H1 antagonists, and α-2 adrenergic agonists 

have similar sedative effects in zebrafish larvae (Zhdanova et al., 2001; Ruuskanen et al., 2005; 

Renier et al., 2007).  Together, these studies establish zebrafish as a good model system for 

the dissection of vertebrate sleep-like states through the use of both genetics and small 

molecules. 

 

The short-term, small-scale pharmacological studies were extended by a long-term, high-

throughput screen of the sleep/wake effects of nearly 4000 small molecules (Rihel et al., 



This is the pre-peer reviewed version of the following article: Rihel J and Schier AF (2012).  Behavioral 
screening for neuroactive drugs in zebrafish.  Developmental Neurobiology, 72(3):373-385., which has 

been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/dneu.20910/full 
 

2010a).  Single larvae were placed into each of 80 wells of a 96-well plate, and groups of ten 

larvae were exposed to a small molecule dissolved directly in the water (and <0.3% DMSO) at 

four days post-fertilization.    Automated tracking software then monitored the long term effects 

of each compound on multiple parameters of sleep/wake behavior, including the number and 

duration of sleep bouts, the length of sleep latency (i.e. the time from lights off/on to the first rest 

bout), and the average locomotor activity during both the day and the night (Figure 1A). Rihel et 

al. screened 5648 small molecules, representing nearly 4000 unique structures known to 

modulate a variety of biological functions and molecular pathways.  Of these, more than 450 

unique structures significantly altered sleep/wake behavior compared to DMSO-treated vehicle 

controls. 

 

To help reduce the complexity of this large dataset, hierarchical clustering methods were used 

to organize the compounds by their multi-dimensional phenotypic output. These behavioral 

profiles (Figure 1A) organized compounds broadly into arousing and sedating compounds, but 

also identified compounds with selective effects on behavior. Behavioral profiles included 

increased locomotor activity only during the day or night, seizure-like responses, and effects on 

sleep latency.  Notably, compounds that shared biological targets were more likely to cluster 

together, indicating that modulation of the same molecular pathway by diverse compounds 

produced similar phenotypic outputs.  For example, selective serotonin reuptake inhibitors 

(SSRIs), including the structurally diverse 6-nitroquipazine, zimelidine, chlorpheniramine, and 

fluvoxamine, all increased total rest across the experiment.  Given that these compounds are 

structurally diverse but have the same biological target further highlights the power of the 

dataset to group compounds specifically by molecular target and phenotype and not by virtue of 

their structural similarity.  Moreover, agonists and antagonists often gave opposite phenotypic 

outcomes; for example, ß-adrenergic agonists (e.g. clenbuterol) increased waking activity while 
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ß-adrenergic antagonists (e.g. carvedilol) induced sedation.  These observations further 

validated the links forged between the modulation of specific molecular pathway targets and 

behavioral outcomes, as opposed to non-specific and off-target effects. 

 

A systematic analysis of behavior-altering compounds and their targets revealed a broad 

conservation of sleep/wake pharmacology between zebrafish and mammals and also revealed 

several modulated pathways that had been under- or unappreciated in sleep/wake biology.  

First, many modulators of neurotransmitter systems, including the noradrenaline, serotonin, 

dopamine, GABA, glutamate, histamine, adenosine, and melatonin systems, induced similar 

sleep/wake phenotypes in zebrafish as observed in mammals (Rihel et al., 2010a). Verapamil-

like L-type calcium channel inhibitors selectively increased rest with no effect on waking activity, 

ether-a-go-go related gene (ERG) potassium channel inhibitors selectively increased 

wakefulness at night, and a structural variety of anti-inflammatory compounds selectively 

increased daytime waking activity.  Finally, Rihel et al. identified structurally related 

podocarpatrien-3-ones that specifically increased rest latency.  The molecular pathway that 

these compounds modulate is currently unknown, but, given the clinical significance of sleep 

latency to insomnia (Culebras, 1996), modulation of this pathway could represent a novel 

therapeutic target for the treatment of sleep disorders.  Clinical relevance aside, the small 

molecule screen was an effective way to rapidly expand the small molecule toolkit for future 

experiments in zebrafish sleep/wake biology and identify many potentially interesting targets to 

explore. 

 

The clustering analysis not only identified small molecules that induce similar phenotypes but 

revealed that the targets of less-well characterized compounds could be predicted in a “guilt-by-

association” fashion by examining the cluster neighborhood of these poorly understood drugs.  
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The use of multi-dimensional dataset clustering to identify the targets or functional outputs of 

related compounds had been previously explored in other contexts, especially as applied to 

small molecule perturbation of gene expression (assessed by microarray).  One pioneering 

study constructed a Connectivity Map and made predictions about drug targets by using gene 

expression analysis of cell culture lines exposed to small molecule perturbagens (Lamb et al., 

2006).  Other studies have made small molecule target predictions based on other gene 

expression datasets (Mori et al., 2009), anti-malarial mechanisms of action (Plouffe et al., 2008), 

and human side effect profiles (Campillos et al., 2008).  Inspired by these studies, Rihel et al. 

used the behavioral profiles to make predictions about the targets of poorly characterized small 

molecules.  For example, the adenosine A3 antagonist, MRS-1220, co-clustered with 

monoamine oxidase (MAO) inhibitors and turned out to inhibit MAO in vitro (Rihel et al., 2010a).      

          

Photomotor Response (PMR) Screen 

Although zebrafish larvae do not exhibit robust sleep/wake behaviors until five days post 

fertilization, they do exhibit many complex responses to various stimuli as early as 24 hours 

post fertilization. Seeking a reproducible, developmentally early, and short duration embryonic 

behavior to further enhance screening throughput, Kokel and colleagues discovered that in 

response to an intense light stimulus embryonic zebrafish exhibit a stereotypical motor behavior 

called the photomotor response (PMR; Figure 1B), (Kokel et al., 2010).  During the background 

phase very few spontaneous movements are observed.  A high-intensity light pulse elicits, after 

a latency phase of about one second, a prolonged (five to seven seconds) excitation phase, 

during which the larvae move vigorously.  Following the excitation phase, larvae are refractory 

to additional light pulses for an extended time, and baseline activity is even lower than during 

the background phase.  Initial tests of select psychoactive compounds, including stimulants and 

anxiolytics, altered the PMR behavioral output. Thus, while the behavior is relatively simple, it is 
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nevertheless under the control of multiple neurotransmitter systems and suitable for neuroactive 

small molecule screening. 

 

Using an automated stage to deliver the light flash and tracking software to automatically 

observe behavioral responses in a 96-well plate format, Kokel and colleagues screened the 

effects of 14,000 small molecules on the PMR response and identified 982 unique structures 

that altered specific aspects of the PMR.  This approach identified compounds that broadly 

increased activity (e.g. the stimulant isoproterenol), broadly increased sedation (e.g. the 

anxiolytic diazepam), increased response latency (e.g. the dopamine agonist apomorphine), or 

altered the refractory period (e.g. the SSRI 6-nitroquipazine) (Kokel et al., 2010).  To organize 

this complex dataset, they further divided the PMR response into 14 behavioral parameters to 

generate a multi-dimensional profile that represents the behavioral phenotype elicited by each 

compound.  They then used hierarchical clustering to organize small molecules by profile and 

examined the behavioral associations among compounds (Figure 1B).  Importantly, the 

phenoclusters were often enriched with compounds that share mechanism of action.  For 

example, Kokel et al. identified a hyperactive phenocluster of ß-adenergic receptor agonists, a 

latency phenocluster of dopamine agonists, and a dampened excitation phenocluster enriched 

for adenosine receptor antagonists.   

 

The PMR clustergram was used to identify the molecular targets for novel compounds using the 

“guilt by association” method.  One “slow to relax” phenocluster (characterized by prolonged tail 

flexion) was enriched for known acetylcholinesterase (AchE) inhibitors but also contained 

several uncharacterized and structurally unrelated compounds (named STR-1 and STR-2; 

“slow-to relax” = STR).  Predicting that STR-1 and STR-2 were AchE inhibitors, Kokel et al. 

tested each in vitro and identified STR-1 as a bona fide structurally novel AchE inhibitor.  
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Intriguingly, STR-2 did not have AchE blocking activity in vitro, but when tested in vivo using 

larval lysates, STR-2 was a strong inhibitor.  STR-2 requires activation by an in vivo biological 

process, an important finding that highlights another advantage of in vivo, whole animal screens 

– a classical in vitro screen would likely have missed this compound.  Conversely, compounds 

with known in vitro activity can have dramatically altered or additional activities in vivo that 

cannot be predicted in advance. Taken together with the successful small molecule target 

prediction in Rihel et al. (2010a), these results suggest that behavioral profiling will be useful to 

identify previously unknown activities of small molecules. Going forward, larger studies will be 

needed to determine how reliably this approach can successfully identify targets.         

 

Conceptual and Practical Lessons 

The two small molecule behavioral screens provide the proof of principle that zebrafish screens 

can be used to uncover novel or unexpected neuroactive molecules.  However, in order for 

whole animal behavioral profiling to become a major component of psychotropic drug discovery, 

several important issues must be addressed.  As we will discuss, for some issues, these initial 

studies already hint at solutions; other issues will need to be addressed by on-going and future 

experiments.  

Dose 

All small molecule screens must deal with the issue of dose. In any sufficiently large cell-based 

or whole animal screen, compromises must be made-- there are simply too many variables in 

play that will affect the appropriate dose for any given compound. This especially involves 

questions of absorption, distribution, metabolism, excretion, and toxicity (ADMET), which can be 

different for each small molecule.  Ideally, with sufficiently high throughput (e.g. the rapid PMR 

screen), multiple doses for each compound can be tested.  For both the sleep/wake and the 

PMR screens, pilot experiments tested known psychoactive compounds across a range of 
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concentrations; typically, high doses (> 30-100 µM) were toxic while low doses (< 300 nM) 

elicited no behavioral effects (Kokel et al., 2010; Rihel et al., 2010a).  Importantly, within the 

effective concentration range, the behavioral profiles were relatively stable for most compounds, 

suggesting that similar phenotypic outputs will be identified for a range of doses.  Inevitably, 

both screens contain false negatives that arise either from high-dose toxicity or low-dose 

ineffectiveness. 

 

Blood-Brain Barrier 

One issue related to dose is how the zebrafish blood-brain barrier may affect the ability of the 

screening compounds to reach the zebrafish brain.  The blood-brain barrier is a protective layer 

of endothelial cells connected by tight junctions that can prevent transfer of molecules from the 

blood to the brain (Eliceiri et al., 2011). Recent evidence based on dye injections and 

expression of the tight junction proteins Zonula Occludens-1 and Claudin-1 indicates that the 

zebrafish blood-brain barrier begins to develop at 3 days post fertilization (Jeong et al., 2008; 

Xie et al., 2010; Zhang et al., 2010).  What this means for the bio-availability of small molecules 

(opposed to larger dye molecules) is unknown, especially since the circumventricular organ 

vessels lack a barrier at this age and leakage of vessels was still observed as late as 9 days 

post fertilization (Jeong et al., 2008; Xie et al., 2010).  The initial behavioral screens were able 

to identify psychotropic compounds even at five to seven days post fertilization, indicating their 

ability to reach molecular targets within the larval zebrafish brain, but it is unknown what fraction 

of small compounds does not reach the brain. 

 

Poly-pharmacology   

One challenge to the discovery of novel neuroactive compounds for the treatment of CNS 

disorders is poly-pharmacology.  Psychotropic drugs often affect multiple targets, and this broad 
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pharmacological activity may underlie the efficacy of many CNS drugs (Agid et al., 2007; 

Hopkins, 2008).  The nature of single-target, in vitro screens makes it impossible to identify 

therapeutic compounds whose mechanism of action requires activity on multiple biological 

pathways.  Whole animal behavioral screens, however, can uncover these promiscuous small 

molecules because the endpoint is a behavioral output that is dependent on the network 

interaction of multiple pathways.  For example, in the sleep/wake screen, compounds with 

inhibitory activity on both dopamine reuptake and muscarinic acetylcholine receptors generated 

behavioral profiles distinct from small molecules that inhibited only one of these targets (Rihel et 

al., 2010a). Thus, anomalous phenoclusters within the behavioral dataset may motivate a 

deeper investigation of potential poly-pharmacological effects.  

 

Mapping of Small Molecules to Zebrafish Receptors    

The interpretation of zebrafish small molecule assays often rests on the assumption that the 

annotated activity of a small molecule, which is usually based on mammalian receptor data, will 

accurately reflect the activity on the zebrafish target.  This need not be the case, however, as 

there can be dramatic inter-species activity differences, even among mammals.  For example, 

the pharmacological profile of histamine receptors varies so widely between species that some 

compounds (e.g. FUB-322) are agonists on human histamine H3 receptors and inverse agonists 

on the rat receptor (Lovenberg et al., 2000; Seifert et al., 2003; Esbenshade et al., 2007).   

Discrepancies between zebrafish and mammalian receptor pharmacology could account for 

disparities in observed sleep/wake phenotypes in the small molecule screen. For example, 

dopamine D1 receptor agonists give opposite phenotypes in larval fish (sedation) and mammals 

(arousal) (Ongini et al., 1987; Bo et al., 1988; Trampus et al., 1993; Rihel et al., 2010a).  It 

remains an open question whether this difference is due to altered activity of molecules on 

dopamine receptors or other differences in zebrafish dopamine system biology.  The situation is 
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further complicated because of differences between the number of neurotransmitter receptor 

subtypes between humans and zebrafish.  To take one example, there are five dopamine 

receptors in mammals, while there are eight in zebrafish (Panula et al., 2010). How small 

molecule activity maps to each of the zebrafish receptors in most cases is unknown.        

 

Both the sleep/wake and the PMR screen partially mitigate the zebrafish annotation problem.  

First, confidence in the appropriate molecular interpretation is bolstered when multiple 

structurally diverse compounds give the same phenotype, especially when the small molecules 

target different components of the same signaling pathway.  Second, the presence of 

agonist/antagonist pairs that yield opposite phenotypes is encouraging.  Nevertheless, the 

systematic analysis of the binding activities of small molecules on zebrafish receptor subtypes 

will be needed to enhance the quality of drug library annotation for zebrafish small molecule 

screens.  Such efforts include recent in vitro analyses that show conserved pharmacology of 

zebrafish opioid receptors (Gonzalez-Nunez et al., 2007; de Velasco et al., 2009), the nociceptin 

receptor (Rivas-Boyero et al., 2011), the zebrafish M2 muscarinic receptor (Hsieh and Liao, 

2002), melanocortin receptors (Ringholm et al., 2002), the androgen receptor (Hossain et al., 

2008) and bradykinnin receptors (Duner et al., 2002; Bromee et al., 2005). Radiolabel-binding 

studies of small molecule agonists/antagonists in zebrafish brain membranes or slices are also 

useful, especially when coupled with competitive binding assays, as shown in studies on 

muscarinic acetylcholine receptors (Williams and Messer, 2004), GABA-A and GABA-B 

receptors (Renier et al., 2007), H2 and H3 histamine receptors (Peitsaro et al., 2000; Peitsaro et 

al., 2007), and adrenergic receptors (Ruuskanen et al., 2005).  While these studies paint an 

overall picture of conservation between zebrafish and mammalian neural signaling systems, 

more detailed characterization will greatly assist the proper interpretation of small molecule 

behavioral screening efforts. 
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Expansion of the Behavioral Assays 

In principle, as long as a behavior is modulated by multiple major neuronal signaling systems, 

that behavior can be used to discover novel psychotropic compounds.  However, this approach 

effectively limits the scope of the neuroactive screen to only those molecular signaling pathways 

involved in the screened behavior, leaving potentially important systems unexplored.  One way 

to combat this issue is to systematically increase the behavioral search space and expand the 

multidimensional behavioral profile to include many more behavioral parameters.  There is an 

ever-expanding list of larval zebrafish behaviors that are amenable to high-throughput screens 

and that can be included as part of an automated behavioral screening repertoire (Kokel and 

Peterson, 2008; Mathur and Guo, 2010; Tierney, 2011).  These include a range of visual 

behaviors such as eye saccade responses to a rotating drum (the optokinetic reflex, or OKR) 

(Brockerhoff et al., 1995), motor responses to a moving grating (optomotor response, or OMR) 

(Neuhauss et al., 1999), or locomotor responses to changes in light intensity (the visual-motor 

response, VMR) (Emran et al., 2007; Emran et al., 2010).  Zebrafish larvae also have complex 

behavioral startle responses to acoustic stimuli (Burgess and Granato, 2007), and these 

responses habituate over time as a form of non-associative learning (Best et al., 2008). 

Additionally, the zebrafish startle response to a high intensity stimulus can be inhibited by a 

lower intensity pulse (pre-pulse inhibition, PPI) (Burgess and Granato, 2007).  Since change in 

PPI is an endophenotype associated with human schizophrenia (Braff et al., 2001), the 

zebrafish acoustic startle and PPI phenotypes are an exciting assay for further study and have 

already yielded a PPI impaired mutant, Ophelia (Burgess and Granato, 2007).  Larval zebrafish 

also exhibit locomotor responses to changes in temperature and noxious chemicals (Prober et 

al., 2008).  Finally, assays to study more integrated behaviors, such as prey capture, are also 

established in zebrafish larvae (Budick and O'Malley, 2000; Borla et al., 2002; Gahtan et al., 
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2005).  Combining several of these behavioral responses together into a single assay to 

generate a larger behavioral profile will be an attractive way to increase the resolving power and 

the search space of neuroactive screens.                           

 

Clinical Relevance of  Behavioral Assays 

Although direct human clinical relevance is not essential for fruitful neuroactive screening, 

disease-relevant behavioral models are also important, especially to identify the most promising 

candidate molecules for mammalian follow-up studies.  No animal model can perfectly 

recapitulate complex human psychiatric and CNS diseases, but the closer an animal model can 

mimic critical aspects of disease, the more likely the search for disease-ameliorating small 

molecules will be successful.  One way to create more disease relevant zebrafish models is to 

identify small molecule pre-treatments that recapitulate important clinical aspects of disease.  

For example, the sleep/wake screen found that MK-801 and other NMDA receptor antagonists 

used in drug-induced schizophrenia animal models (Olney et al., 1999) similarly increased 

locomotor behavior (Adriani et al., 1998; Rihel et al., 2010a), a result confirmed in other adult 

and larval zebrafish experiments (Swain et al., 2004; Chen et al., 2010; Seibt et al., 2010). The 

PMR screen identified paralysis in zebrafish treated with organophosphates (Kokel et al., 2010), 

a phenotype that was reversed by antidotes used to treat human organophosphate toxicity 

(Bajgar, 2004).  Pentylenetetrazole (PTZ) treatment, which causes seizures in zebrafish larvae 

(Baraban et al., 2005), was used to identify potential seizure resistance genes (Baraban et al., 

2007) and would be amenable to small molecule screens for novel anti-convulsants.  Other 

drug-induced larval phenotypes with promising clinical relevance include ethanol intoxication 

(Lockwood et al., 2004; MacPhail et al., 2009), nicotine dependence (Petzold et al., 2009), and 

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced ablation of dopamine neurons as 

a model for Parkinson’s disease (Bretaud et al., 2004; Lam et al., 2005; McKinley et al., 2005; 
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Thirumalai and Cline, 2008).  Finally, zebrafish mutant models of human psychiatric diseases 

can serve as chemical screening start points.  The development of relevant zebrafish behavioral 

and CNS mutants is still in its infancy but rapidly expanding to include neurodegenerative 

disorders, autism, schizophrenia, and Huntington’s disease (see recent reviews by Best and 

Alderton, 2008; Kabashi et al., 2010; Mathur and Guo, 2010; Tierney, 2011).  Small molecule 

suppressor/enhancer screens on the relevant mutant backgrounds will be a rapid way to identify 

molecular pathways that interact with disease genes.               

 

Conclusions 

Small molecule behavioral screening can now be performed with sufficient throughput to be 

useful in the discovery of neuroactive compounds.  Where might such zebrafish screens fit in 

the neuroactive drug pipeline?  They could be used as a testing ground for previously curated 

small molecule leads at a stage before more expensive testing is performed in rodents.  For 

example, much effort has recently been put into the identification of potent hypocretin receptor 

antagonists such as almorexant (Brisbare-Roch et al., 2007; Neubauer, 2010).  Screening 

candidate compounds in zebrafish behavioral models of hypocretin-induced hyperactivity 

(Prober et al., 2006) could serve as a cheap way to identify the most promising non-toxic 

molecules with good in vivo pharmacological activity before testing in mammals.  As even 

higher throughput is achieved, zebrafish screens could also serve as a primary and early 

screening stage for novel neuroactives that would then be further optimized for increased 

potency by medicinal chemists.  By testing a larger and more diverse set of chemical structures 

with unknown pharmacological properties, zebrafish behavioral assays could identify wholly 

novel neuroactive compounds.  Unlike in vitro assays designed around single targets, these 

newly identified compounds would already be shown to have promising in vivo properties.       
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Finally, one should not ignore another powerful use of the small molecule screening paradigm—

to gain novel insights in the mechanistic underpinnings of behavior.  Using well annotated 

chemical libraries, these molecules become tools to rapidly test the functional importance of 

many neuro-modulatory pathways in specific behaviors.  Once critical neural signaling events 

have been implicated as modulators of behavior by pathway agonists and antagonists, more 

targeted experiments can be designed to more deeply test how the pathway modulates 

behavior and where in the brain that modulation takes place.  Thus, the small molecule screens 

provide a bridge between molecular targets and behavioral outputs.  A future challenge will be 

to carefully dissect the underlying neuronal circuits that underpin this behavioral control. 

 

Figure 1.  Converting Quantitative Behavioral Data into Behavioral Profiles for Clustering.  A) In 

the sleep/wake screen, larval activity data is collected over several days (left).  The data for 

each small molecule gets broken into multiple parameters and converted into a behavioral 

profile for hierarchical clustering (right).  The clustering organizes the drugs (rows) based on 

phenotype.  In this example, the top three drugs cluster because they increase average sleep 

bout lengths.  The lower cluster contains three drugs that increase daytime waking activity.  B) 

In the PMR screen, 30 seconds of larval activity data in response to an intense light pulse is 

collected (left).  This data is also converted into behavioral profiles and clustered based on 

phenotype (right).  In the top cluster, three drugs increase activity during the refractory period, 

whereas in the lower cluster, three drugs shorten the latency period. Modified from Rihel et al., 

(2010) and Kokel et al., (2010). 

 

References   



This is the pre-peer reviewed version of the following article: Rihel J and Schier AF (2012).  Behavioral 
screening for neuroactive drugs in zebrafish.  Developmental Neurobiology, 72(3):373-385., which has 

been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/dneu.20910/full 
 

Adriani, W., Felici, A., Sargolini, F., Roullet, P., Usiello, A., Oliverio, A., and Mele, A. (1998). N-
methyl-D-aspartate and dopamine receptor involvement in the modulation of locomotor activity 
and memory processes. Exp Brain Res 123, 52-59. 

Agid, Y., Buzsaki, G., Diamond, D.M., Frackowiak, R., Giedd, J., Girault, J.A., Grace, A., 
Lambert, J.J., Manji, H., Mayberg, H., et al. (2007). How can drug discovery for psychiatric 
disorders be improved? Nat Rev Drug Discov 6, 189-201. 

Appelbaum, L., Wang, G.X., Maro, G.S., Mori, R., Tovin, A., Marin, W., Yokogawa, T., 
Kawakami, K., Smith, S.J., Gothilf, Y., et al. (2009). Sleep-wake regulation and hypocretin-
melatonin interaction in zebrafish. Proc Natl Acad Sci U S A 106, 21942-21947. 

Bajgar, J. (2004). Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, 
prophylaxis, and treatment. Adv Clin Chem 38, 151-216. 

Ban, T.A. (2006). The role of serendipity in drug discovery. Dialogues Clin Neurosci 8, 335-344. 

Baraban, S.C., Dinday, M.T., Castro, P.A., Chege, S., Guyenet, S., and Taylor, M.R. (2007). A 
large-scale mutagenesis screen to identify seizure-resistant zebrafish. Epilepsia 48, 1151-1157. 

Baraban, S.C., Taylor, M.R., Castro, P.A., and Baier, H. (2005). Pentylenetetrazole induced 
changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 131, 759-
768. 

Bencan, Z., and Levin, E.D. (2008). The role of alpha7 and alpha4beta2 nicotinic receptors in 
the nicotine-induced anxiolytic effect in zebrafish. Physiol Behav 95, 408-412. 

Bencan, Z., Sledge, D., and Levin, E.D. (2009). Buspirone, chlordiazepoxide and diazepam 
effects in a zebrafish model of anxiety. Pharmacol Biochem Behav 94, 75-80. 

Best, J.D., and Alderton, W.K. (2008). Zebrafish: An in vivo model for the study of neurological 
diseases. Neuropsychiatr Dis Treat 4, 567-576. 

Best, J.D., Berghmans, S., Hunt, J.J., Clarke, S.C., Fleming, A., Goldsmith, P., and Roach, A.G. 
(2008). Non-associative learning in larval zebrafish. Neuropsychopharmacology 33, 1206-1215. 

Bilotta, J., Saszik, S., Givin, C.M., Hardesty, H.R., and Sutherland, S.E. (2002). Effects of 
embryonic exposure to ethanol on zebrafish visual function. Neurotoxicol Teratol 24, 759-766. 

Blank, M., Guerim, L.D., Cordeiro, R.F., and Vianna, M.R. (2009). A one-trial inhibitory 
avoidance task to zebrafish: rapid acquisition of an NMDA-dependent long-term memory. 
Neurobiol Learn Mem 92, 529-534. 

Blaser, R.E., Koid, A., and Poliner, R.M. (2010). Context-dependent sensitization to ethanol in 
zebrafish (Danio rerio). Pharmacol Biochem Behav 95, 278-284. 

Bo, P., Ongini, E., Giorgetti, A., and Savoldi, F. (1988). Synchronization of the EEG and 
sedation induced by neuroleptics depend upon blockade of both D1 and D2 dopamine 
receptors. Neuropharmacology 27, 799-805. 



This is the pre-peer reviewed version of the following article: Rihel J and Schier AF (2012).  Behavioral 
screening for neuroactive drugs in zebrafish.  Developmental Neurobiology, 72(3):373-385., which has 

been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/dneu.20910/full 
 

Boehmler, W., Carr, T., Thisse, C., Thisse, B., Canfield, V.A., and Levenson, R. (2007). D4 
Dopamine receptor genes of zebrafish and effects of the antipsychotic clozapine on larval 
swimming behaviour. Genes Brain Behav 6, 155-166. 

Borla, M.A., Palecek, B., Budick, S., and O'Malley, D.M. (2002). Prey capture by larval 
zebrafish: evidence for fine axial motor control. Brain Behav Evol 60, 207-229. 

Braff, D.L., Geyer, M.A., Light, G.A., Sprock, J., Perry, W., Cadenhead, K.S., and Swerdlow, 
N.R. (2001). Impact of prepulse characteristics on the detection of sensorimotor gating deficits 
in schizophrenia. Schizophr Res 49, 171-178. 

Bretaud, S., Lee, S., and Guo, S. (2004). Sensitivity of zebrafish to environmental toxins 
implicated in Parkinson's disease. Neurotoxicol Teratol 26, 857-864. 

Brisbare-Roch, C., Dingemanse, J., Koberstein, R., Hoever, P., Aissaoui, H., Flores, S., Mueller, 
C., Nayler, O., van Gerven, J., de Haas, S.L., et al. (2007). Promotion of sleep by targeting the 
orexin system in rats, dogs and humans. Nat Med 13, 150-155. 
 

Brockerhoff, S.E., Hurley, J.B., Janssen-Bienhold, U., Neuhauss, S.C., Driever, W., and 
Dowling, J.E. (1995). A behavioral screen for isolating zebrafish mutants with visual system 
defects. Proc Natl Acad Sci U S A 92, 10545-10549. 

Bromee, T., Kukkonen, J.P., Andersson, P., Conlon, J.M., and Larhammar, D. (2005). 
Pharmacological characterization of ligand-receptor interactions at the zebrafish bradykinin 
receptor. Br J Pharmacol 144, 11-16. 

Budi, E.H., Patterson, L.B., and Parichy, D.M. (2008). Embryonic requirements for ErbB 
signaling in neural crest development and adult pigment pattern formation. Development 135, 
2603-2614. 

Budick, S.A., and O'Malley, D.M. (2000). Locomotor repertoire of the larval zebrafish: swimming, 
turning and prey capture. J Exp Biol 203, 2565-2579. 

Burgess, H.A., and Granato, M. (2007). Sensorimotor gating in larval zebrafish. J Neurosci 27, 
4984-4994. 

Cachat, J., Canavello, P., Elegante, M., Bartels, B., Hart, P., Bergner, C., Egan, R., Duncan, A., 
Tien, D., Chung, A., et al. (2010). Modeling withdrawal syndrome in zebrafish. Behav Brain Res 
208, 371-376. 

Campillos, M., Kuhn, M., Gavin, A.C., Jensen, L.J., and Bork, P. (2008). Drug target 
identification using side-effect similarity. Science 321, 263-266. 

Chen, J., Patel, R., Friedman, T.C., and Jones, K.S. (2010). The Behavioral and 
Pharmacological Actions of NMDA Receptor Antagonism are Conserved in Zebrafish Larvae. Int 
J Comp Psychol 23, 82-90. 

Clifton, J.D., Lucumi, E., Myers, M.C., Napper, A., Hama, K., Farber, S.A., Smith, A.B., 3rd, 
Huryn, D.M., Diamond, S.L., and Pack, M. (2010). Identification of novel inhibitors of dietary lipid 
absorption using zebrafish. PLoS One 5, e12386. 



This is the pre-peer reviewed version of the following article: Rihel J and Schier AF (2012).  Behavioral 
screening for neuroactive drugs in zebrafish.  Developmental Neurobiology, 72(3):373-385., which has 

been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/dneu.20910/full 
 

Culebras, A. (1996). Clinical handbook of sleep disorders (Boston, Butterworth-Heinemann). 

Darland, T., and Dowling, J.E. (2001). Behavioral screening for cocaine sensitivity in 
mutagenized zebrafish. Proc Natl Acad Sci U S A 98, 11691-11696. 

de Velasco, E.M., Law, P.Y., and Rodriguez, R.E. (2009). Mu opioid receptor from the zebrafish 
exhibits functional characteristics as those of mammalian mu opioid receptor. Zebrafish 6, 259-
268. 

Dlugos, C.A., Brown, S.J., and Rabin, R.A. (2011). Gender differences in ethanol-induced 
behavioral sensitivity in zebrafish. Alcohol 45, 11-18. 

Dlugos, C.A., and Rabin, R.A. (2003). Ethanol effects on three strains of zebrafish: model 
system for genetic investigations. Pharmacol Biochem Behav 74, 471-480. 

Duner, T., Conlon, J.M., Kukkonen, J.P., Akerman, K.E., Yan, Y.L., Postlethwait, J.H., and 
Larhammar, D. (2002). Cloning, structural characterization and functional expression of a 
zebrafish bradykinin B2-related receptor. Biochem J 364, 817-824. 

Egan, R.J., Bergner, C.L., Hart, P.C., Cachat, J.M., Canavello, P.R., Elegante, M.F., Elkhayat, 
S.I., Bartels, B.K., Tien, A.K., Tien, D.H., et al. (2009). Understanding behavioral and 
physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 205, 38-44. 

Eliceiri, B.P., Gonzalez, A.M., and Baird, A. (2011). Zebrafish model of the blood-brain barrier: 
morphological and permeability studies. Methods Mol Biol 686, 371-378. 

Emran, F., Rihel, J., Adolph, A.R., Wong, K.Y., Kraves, S., and Dowling, J.E. (2007). OFF 
ganglion cells cannot drive the optokinetic reflex in zebrafish. Proc Natl Acad Sci U S A 104, 
19126-19131. 

Emran, F., Rihel, J., Adolph, A.R., and Dowling, J.E. (2010). Larval zebrafish lose vision at 
night. Proc Natl Acad Sci U S A 107, 6034-6039 
 
Esbenshade, T.A., Estvander, B.R., Miller, T.R., Baranowski, J.L., Sharma, R., Hancock, A.A., 
and Krueger, K.M. (2007). Pharmacological classification of histamine H3 receptor agents 
across species is attributable to transmembrane 3 sequence differences. Inflamm Res 56 Suppl 
1, S45-46. 

Faraco, J.H., Appelbaum, L., Marin, W., Gaus, S.E., Mourrain, P., and Mignot, E. (2006). 
Regulation of hypocretin (orexin) expression in embryonic zebrafish. J Biol Chem 281, 29753-
29761. 

Fernandes, Y., and Gerlai, R. (2009). Long-term behavioral changes in response to early 
developmental exposure to ethanol in zebrafish. Alcohol Clin Exp Res 33, 601-609. 

Fischer-Barnicol, D., Lanquillon, S., Haen, E., Zofel, P., Koch, H.J., Dose, M., and Klein, H.E. 
(2008). Typical and atypical antipsychotics--the misleading dichotomy. Results from the Working 
Group 'Drugs in Psychiatry' (AGATE). Neuropsychobiology 57, 80-87. 

Gahtan, E., Tanger, P., and Baier, H. (2005). Visual prey capture in larval zebrafish is controlled 
by identified reticulospinal neurons downstream of the tectum. J Neurosci 25, 9294-9303. 



This is the pre-peer reviewed version of the following article: Rihel J and Schier AF (2012).  Behavioral 
screening for neuroactive drugs in zebrafish.  Developmental Neurobiology, 72(3):373-385., which has 

been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/dneu.20910/full 
 

Geddes, J., Freemantle, N., Harrison, P., and Bebbington, P. (2000). Atypical antipsychotics in 
the treatment of schizophrenia: systematic overview and meta-regression analysis. BMJ 321, 
1371-1376. 

Gerlai, R., Ahmad, F., and Prajapati, S. (2008). Differences in acute alcohol-induced behavioral 
responses among zebrafish populations. Alcohol Clin Exp Res 32, 1763-1773. 

Gerlai, R., Chatterjee, D., Pereira, T., Sawashima, T., and Krishnannair, R. (2009). Acute and 
chronic alcohol dose: population differences in behavior and neurochemistry of zebrafish. 
Genes Brain Behav 8, 586-599. 

Gerlai, R., Lahav, M., Guo, S., and Rosenthal, A. (2000). Drinks like a fish: zebra fish (Danio 
rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 67, 773-
782. 

Gerlai, R., Lee, V., and Blaser, R. (2006). Effects of acute and chronic ethanol exposure on the 
behavior of adult zebrafish (Danio rerio). Pharmacol Biochem Behav 85, 752-761. 

Giacomini, N.J., Rose, B., Kobayashi, K., and Guo, S. (2006). Antipsychotics produce locomotor 
impairment in larval zebrafish. Neurotoxicol Teratol 28, 245-250. 

Gonzalez-Nunez, V., Marron Fernandez de Velasco, E., Arsequell, G., Valencia, G., and 
Rodriguez, R.E. (2007). Identification of dynorphin a from zebrafish: a comparative study with 
mammalian dynorphin A. Neuroscience 144, 675-684. 

Grossman, L., Utterback, E., Stewart, A., Gaikwad, S., Chung, K.M., Suciu, C., Wong, K., 
Elegante, M., Elkhayat, S., Tan, J., et al. (2010). Characterization of behavioral and endocrine 
effects of LSD on zebrafish. Behav Brain Res 214, 277-284. 

Hirayama, J., Kaneko, M., Cardone, L., Cahill, G., and Sassone-Corsi, P. (2005). Analysis of 
circadian rhythms in zebrafish. Methods Enzymol 393, 186-204. 

Hopkins, A.L. (2008). Network pharmacology: the next paradigm in drug discovery. Nat Chem 
Biol 4, 682-690. 

Hossain, M.S., Larsson, A., Scherbak, N., Olsson, P.E., and Orban, L. (2008). Zebrafish 
androgen receptor: isolation, molecular, and biochemical characterization. Biol Reprod 78, 361-
369. 

Hsieh, D.J., and Liao, C.F. (2002). Zebrafish M2 muscarinic acetylcholine receptor: cloning, 
pharmacological characterization, expression patterns and roles in embryonic bradycardia. Br J 
Pharmacol 137, 782-792. 

Hultman, K.A., Scott, A.W., and Johnson, S.L. (2008). Small molecule modifier screen for kit-
dependent functions in zebrafish embryonic melanocytes. Zebrafish 5, 279-287. 

Irons, T.D., MacPhail, R.C., Hunter, D.L., and Padilla, S. (2010). Acute neuroactive drug 
exposures alter locomotor activity in larval zebrafish. Neurotoxicol Teratol 32, 84-90. 

Jeong, J.Y., Kwon, H.B., Ahn, J.C., Kang, D., Kwon, S.H., Park, J.A., and Kim, K.W. (2008). 
Functional and developmental analysis of the blood-brain barrier in zebrafish. Brain Res Bull 75, 
619-628. 



This is the pre-peer reviewed version of the following article: Rihel J and Schier AF (2012).  Behavioral 
screening for neuroactive drugs in zebrafish.  Developmental Neurobiology, 72(3):373-385., which has 

been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/dneu.20910/full 
 

Kabashi, E., Champagne, N., Brustein, E., and Drapeau, P. (2010). In the swim of things: recent 
insights to neurogenetic disorders from zebrafish. Trends Genet 26, 373-381. 

Kaslin, J., Nystedt, J.M., Ostergard, M., Peitsaro, N., and Panula, P. (2004). The 
orexin/hypocretin system in zebrafish is connected to the aminergic and cholinergic systems. J 
Neurosci 24, 2678-2689. 

Kily, L.J., Cowe, Y.C., Hussain, O., Patel, S., McElwaine, S., Cotter, F.E., and Brennan, C.H. 
(2008). Gene expression changes in a zebrafish model of drug dependency suggest 
conservation of neuro-adaptation pathways. J Exp Biol 211, 1623-1634. 

Kim, Y.H., Lee, Y., Kim, D., Jung, M.W., and Lee, C.J. (2010). Scopolamine-induced learning 
impairment reversed by physostigmine in zebrafish. Neurosci Res 67, 156-161. 

Kitambi, S.S., McCulloch, K.J., Peterson, R.T., and Malicki, J.J. (2009). Small molecule screen 
for compounds that affect vascular development in the zebrafish retina. Mech Dev 126, 464-
477. 

Kokel, D., Bryan, J., Laggner, C., White, R., Cheung, C.Y., Mateus, R., Healey, D., Kim, S., 
Werdich, A.A., Haggarty, S.J., et al. (2010). Rapid behavior-based identification of neuroactive 
small molecules in the zebrafish. Nat Chem Biol 6, 231-237. 

Kokel, D., and Peterson, R.T. (2008). Chemobehavioural phenomics and behaviour-based 
psychiatric drug discovery in the zebrafish. Brief Funct Genomic Proteomic 7, 483-490. 

Lam, C.S., Korzh, V., and Strahle, U. (2005). Zebrafish embryos are susceptible to the 
dopaminergic neurotoxin MPTP. Eur J Neurosci 21, 1758-1762. 

Lamb, J., Crawford, E.D., Peck, D., Modell, J.W., Blat, I.C., Wrobel, M.J., Lerner, J., Brunet, 
J.P., Subramanian, A., Ross, K.N., et al. (2006). The Connectivity Map: using gene-expression 
signatures to connect small molecules, genes, and disease. Science 313, 1929-1935. 

Lau, B., Bretaud, S., Huang, Y., Lin, E., and Guo, S. (2006). Dissociation of food and opiate 
preference by a genetic mutation in zebrafish. Genes Brain Behav 5, 497-505. 

Lau, B.Y., Mathur, P., Gould, G.G., and Guo, S. (2011). Identification of a brain center whose 
activity discriminates a choice behavior in zebrafish. Proc Natl Acad Sci U S A 108, 2581-2586. 

Levin, E.D., Bencan, Z., and Cerutti, D.T. (2007). Anxiolytic effects of nicotine in zebrafish. 
Physiol Behav 90, 54-58. 

Levin, E.D., and Chen, E. (2004). Nicotinic involvement in memory function in zebrafish. 
Neurotoxicol Teratol 26, 731-735. 

Levin, E.D., Limpuangthip, J., Rachakonda, T., and Peterson, M. (2006). Timing of nicotine 
effects on learning in zebrafish. Psychopharmacology (Berl) 184, 547-552. 

Lockwood, B., Bjerke, S., Kobayashi, K., and Guo, S. (2004). Acute effects of alcohol on larval 
zebrafish: a genetic system for large-scale screening. Pharmacol Biochem Behav 77, 647-654. 

Lopez-Patino, M.A., Yu, L., Cabral, H., and Zhdanova, I.V. (2008). Anxiogenic effects of cocaine 
withdrawal in zebrafish. Physiol Behav 93, 160-171. 



This is the pre-peer reviewed version of the following article: Rihel J and Schier AF (2012).  Behavioral 
screening for neuroactive drugs in zebrafish.  Developmental Neurobiology, 72(3):373-385., which has 

been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/dneu.20910/full 
 

Lopez Patino, M.A., Yu, L., Yamamoto, B.K., and Zhdanova, I.V. (2008). Gender differences in 
zebrafish responses to cocaine withdrawal. Physiol Behav 95, 36-47. 

Lord, A.M., North, T.E., and Zon, L.I. (2007). Prostaglandin E2: making more of your marrow. 
Cell Cycle 6, 3054-3057. 

Lovenberg, T.W., Pyati, J., Chang, H., Wilson, S.J., and Erlander, M.G. (2000). Cloning of rat 
histamine H(3) receptor reveals distinct species pharmacological profiles. J Pharmacol Exp Ther 
293, 771-778. 

MacPhail, R.C., Brooks, J., Hunter, D.L., Padnos, B., Irons, T.D., and Padilla, S. (2009). 
Locomotion in larval zebrafish: Influence of time of day, lighting and ethanol. Neurotoxicology 
30, 52-58. 

MacRae, C.A., and Peterson, R.T. (2003). Zebrafish-based small molecule discovery. Chem 
Biol 10, 901-908. 

Mathew, L.K., Sengupta, S., Kawakami, A., Andreasen, E.A., Lohr, C.V., Loynes, C.A., 
Renshaw, S.A., Peterson, R.T., and Tanguay, R.L. (2007). Unraveling tissue regeneration 
pathways using chemical genetics. J Biol Chem 282, 35202-35210. 

Mathur, P., and Guo, S. (2010). Use of zebrafish as a model to understand mechanisms of 
addiction and complex neurobehavioral phenotypes. Neurobiol Dis 40, 66-72. 

Mathur, P., and Guo, S. (2011). Differences of acute versus chronic ethanol exposure on 
anxiety-like behavioral responses in zebrafish. Behav Brain Res. 

Maximino, C., da Silva, A.W., Gouveia, A., Jr., and Herculano, A.M. (2011). Pharmacological 
analysis of zebrafish (Danio rerio) scototaxis. Prog Neuropsychopharmacol Biol Psychiatry. 

McKinley, E.T., Baranowski, T.C., Blavo, D.O., Cato, C., Doan, T.N., and Rubinstein, A.L. 
(2005). Neuroprotection of MPTP-induced toxicity in zebrafish dopaminergic neurons. Brain Res 
Mol Brain Res 141, 128-137. 

Miller, G. (2010). Is pharma running out of brainy ideas? Science 329, 502-504. 

Molina, G., Vogt, A., Bakan, A., Dai, W., Queiroz de Oliveira, P., Znosko, W., Smithgall, T.E., 
Bahar, I., Lazo, J.S., Day, B.W., et al. (2009). Zebrafish chemical screening reveals an inhibitor 
of Dusp6 that expands cardiac cell lineages. Nat Chem Biol 5, 680-687. 

Mori, S., Chang, J.T., Andrechek, E.R., Potti, A., and Nevins, J.R. (2009). Utilization of genomic 
signatures to identify phenotype-specific drugs. PLoS One 4, e6772. 

Murphey, R.D., Stern, H.M., Straub, C.T., and Zon, L.I. (2006). A chemical genetic screen for 
cell cycle inhibitors in zebrafish embryos. Chem Biol Drug Des 68, 213-219. 

Neubauer, D.N. (2010). Almorexant, a dual orexin receptor antagonist for the treatment of 
insomnia. Curr Opin Investig Drugs 11, 101-110. 
 



This is the pre-peer reviewed version of the following article: Rihel J and Schier AF (2012).  Behavioral 
screening for neuroactive drugs in zebrafish.  Developmental Neurobiology, 72(3):373-385., which has 

been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/dneu.20910/full 
 

Neuhauss, S.C., Biehlmaier, O., Seeliger, M.W., Das, T., Kohler, K., Harris, W.A., and Baier, H. 
(1999). Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in 
zebrafish. J Neurosci 19, 8603-8615. 

North, T.E., Goessling, W., Peeters, M., Li, P., Ceol, C., Lord, A.M., Weber, G.J., Harris, J., 
Cutting, C.C., Huang, P., et al. (2009). Hematopoietic stem cell development is dependent on 
blood flow. Cell 137, 736-748. 

North, T.E., Goessling, W., Walkley, C.R., Lengerke, C., Kopani, K.R., Lord, A.M., Weber, G.J., 
Bowman, T.V., Jang, I.H., Grosser, T., et al. (2007). Prostaglandin E2 regulates vertebrate 
haematopoietic stem cell homeostasis. Nature 447, 1007-1011. 

Olney, J.W., Newcomer, J.W., and Farber, N.B. (1999). NMDA receptor hypofunction model of 
schizophrenia. J Psychiatr Res 33, 523-533. 

Ongini, E., Caporali, M.G., and Longo, V.G. (1987). Blockade of D-1 dopamine receptors by 
SCH 23390 prevents EEG and behavioral activation induced by L-dopa. Neurosci Lett 82, 206-
210. 

Oppedal, D., and Goldsmith, M.I. (2010). A chemical screen to identify novel inhibitors of fin 
regeneration in zebrafish. Zebrafish 7, 53-60. 

Ou, H.C., Cunningham, L.L., Francis, S.P., Brandon, C.S., Simon, J.A., Raible, D.W., and 
Rubel, E.W. (2009). Identification of FDA-approved drugs and bioactives that protect hair cells 
in the zebrafish (Danio rerio) lateral line and mouse (Mus musculus) utricle. J Assoc Res 
Otolaryngol 10, 191-203. 

Owens, K.N., Santos, F., Roberts, B., Linbo, T., Coffin, A.B., Knisely, A.J., Simon, J.A., Rubel, 
E.W., and Raible, D.W. (2008). Identification of genetic and chemical modulators of zebrafish 
mechanosensory hair cell death. PLoS Genet 4, e1000020. 

Pangalos, M.N., Schechter, L.E., and Hurko, O. (2007). Drug development for CNS disorders: 
strategies for balancing risk and reducing attrition. Nat Rev Drug Discov 6, 521-532. 

Panula, P., Chen, Y.C., Priyadarshini, M., Kudo, H., Semenova, S., Sundvik, M., and Sallinen, 
V. (2010). The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of 
relevance to human neuropsychiatric diseases. Neurobiol Dis 40, 46-57. 

Pardo-Martin, C., Chang, T.Y., Koo, B.K., Gilleland, C.L., Wasserman, S.C., and Yanik, M.F. 
(2010). High-throughput in vivo vertebrate screening. Nat Methods 7, 634-636. 

Peal, D.S., Mills, R.W., Lynch, S.N., Mosley, J.M., Lim, E., Ellinor, P.T., January, C.T., Peterson, 
R.T., and Milan, D.J. (2011). Novel chemical suppressors of long QT syndrome identified by an 
in vivo functional screen. Circulation 123, 23-30. 

Peal, D.S., Peterson, R.T., and Milan, D. (2010). Small molecule screening in zebrafish. J 
Cardiovasc Transl Res 3, 454-460. 

Peitsaro, N., Anichtchik, O.V., and Panula, P. (2000). Identification of a histamine H(3)-like 
receptor in the zebrafish (Danio rerio) brain. J Neurochem 75, 718-724. 



This is the pre-peer reviewed version of the following article: Rihel J and Schier AF (2012).  Behavioral 
screening for neuroactive drugs in zebrafish.  Developmental Neurobiology, 72(3):373-385., which has 

been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/dneu.20910/full 
 

Peitsaro, N., Kaslin, J., Anichtchik, O.V., and Panula, P. (2003). Modulation of the histaminergic 
system and behaviour by alpha-fluoromethylhistidine in zebrafish. J Neurochem 86, 432-441. 

Peitsaro, N., Sundvik, M., Anichtchik, O.V., Kaslin, J., and Panula, P. (2007). Identification of 
zebrafish histamine H1, H2 and H3 receptors and effects of histaminergic ligands on behavior. 
Biochem Pharmacol 73, 1205-1214. 

Peterson, R.T., Link, B.A., Dowling, J.E., and Schreiber, S.L. (2000). Small molecule 
developmental screens reveal the logic and timing of vertebrate development. Proc Natl Acad 
Sci U S A 97, 12965-12969. 

Peterson, R.T., Shaw, S.Y., Peterson, T.A., Milan, D.J., Zhong, T.P., Schreiber, S.L., MacRae, 
C.A., and Fishman, M.C. (2004). Chemical suppression of a genetic mutation in a zebrafish 
model of aortic coarctation. Nat Biotechnol 22, 595-599. 

Petzold, A.M., Balciunas, D., Sivasubbu, S., Clark, K.J., Bedell, V.M., Westcot, S.E., Myers, 
S.R., Moulder, G.L., Thomas, M.J., and Ekker, S.C. (2009). Nicotine response genetics in the 
zebrafish. Proc Natl Acad Sci U S A 106, 18662-18667. 

Plouffe, D., Brinker, A., McNamara, C., Henson, K., Kato, N., Kuhen, K., Nagle, A., Adrian, F., 
Matzen, J.T., Anderson, P., et al. (2008). In silico activity profiling reveals the mechanism of 
action of antimalarials discovered in a high-throughput screen. Proc Natl Acad Sci U S A 105, 
9059-9064. 

Prober, D.A., Rihel, J., Onah, A.A., Sung, R.J., and Schier, A.F. (2006). Hypocretin/orexin 
overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci 26, 13400-13410. 

Prober, D.A., Zimmerman, S., Myers, B.R., McDermott, B.M., Jr., Kim, S.H., Caron, S., Rihel, J., 
Solnica-Krezel, L., Julius, D., Hudspeth, A.J., et al. (2008). Zebrafish TRPA1 channels are 
required for chemosensation but not for thermosensation or mechanosensory hair cell function. 
J Neurosci 28, 10102-10110. 

Rawashdeh, O., de Borsetti, N.H., Roman, G., and Cahill, G.M. (2007). Melatonin suppresses 
nighttime memory formation in zebrafish. Science 318, 1144-1146. 

Renier, C., Faraco, J.H., Bourgin, P., Motley, T., Bonaventure, P., Rosa, F., and Mignot, E. 
(2007). Genomic and functional conservation of sedative-hypnotic targets in the zebrafish. 
Pharmacogenet Genomics 17, 237-253. 

Richetti, S.K., Blank, M., Capiotti, K.M., Piato, A.L., Bogo, M.R., Vianna, M.R., and Bonan, C.D. 
(2011). Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish. 
Behav Brain Res 217, 10-15. 

Rihel, J., Prober, D.A., Arvanites, A., Lam, K., Zimmerman, S., Jang, S., Haggarty, S.J., Kokel, 
D., Rubin, L.L., Peterson, R.T., et al. (2010a). Zebrafish behavioral profiling links drugs to 
biological targets and rest/wake regulation. Science 327, 348-351. 

Rihel, J., Prober, D.A., and Schier, A.F. (2010b). Monitoring sleep and arousal in zebrafish. 
Methods Cell Biol 100, 281-294. 



This is the pre-peer reviewed version of the following article: Rihel J and Schier AF (2012).  Behavioral 
screening for neuroactive drugs in zebrafish.  Developmental Neurobiology, 72(3):373-385., which has 

been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/dneu.20910/full 
 

Ringholm, A., Fredriksson, R., Poliakova, N., Yan, Y.L., Postlethwait, J.H., Larhammar, D., and 
Schioth, H.B. (2002). One melanocortin 4 and two melanocortin 5 receptors from zebrafish 
show remarkable conservation in structure and pharmacology. J Neurochem 82, 6-18. 

Rivas-Boyero, A.A., Herrero-Turrion, M.J., Gonzalez-Nunez, V., Sanchez-Simon, F.M., Barreto-
Valer, K., and Rodriguez, R.E. (2011). Pharmacological characterization of a nociceptin receptor 
from zebrafish (Danio rerio). J Mol Endocrinol. 

Ruuskanen, J.O., Peitsaro, N., Kaslin, J.V., Panula, P., and Scheinin, M. (2005). Expression 
and function of alpha-adrenoceptors in zebrafish: drug effects, mRNA and receptor distributions. 
J Neurochem 94, 1559-1569. 

Sackerman, J., Donegan, J.J., Cunningham, C.S., Nguyen, N.N., Lawless, K., Long, A., Benno, 
R.H., and Gould, G.G. (2010). Zebrafish Behavior in Novel Environments: Effects of Acute 
Exposure to Anxiolytic Compounds and Choice of Danio rerio Line. Int J Comp Psychol 23, 43-
61. 

Seibt, K.J., Oliveira Rda, L., Zimmermann, F.F., Capiotti, K.M., Bogo, M.R., Ghisleni, G., and 
Bonan, C.D. (2010). Antipsychotic drugs prevent the motor hyperactivity induced by 
psychotomimetic MK-801 in zebrafish (Danio rerio). Behav Brain Res 214, 417-422. 

Seifert, R., Wenzel-Seifert, K., Burckstummer, T., Pertz, H.H., Schunack, W., Dove, S., 
Buschauer, A., and Elz, S. (2003). Multiple differences in agonist and antagonist pharmacology 
between human and guinea pig histamine H1-receptor. J Pharmacol Exp Ther 305, 1104-1115. 

Smith, L.E., Carvan, M.J., 3rd, Dellinger, J.A., Ghorai, J.K., White, D.B., Williams, F.E., and 
Weber, D.N. (2010). Developmental selenomethionine and methylmercury exposures affect 
zebrafish learning. Neurotoxicol Teratol 32, 246-255. 

Strahle, U., and Grabher, C. (2010). The zebrafish embryo as a model for assessing off-target 
drug effects. Dis Model Mech 3, 689-692. 

Swain, H.A., Sigstad, C., and Scalzo, F.M. (2004). Effects of dizocilpine (MK-801) on circling 
behavior, swimming activity, and place preference in zebrafish (Danio rerio). Neurotoxicol 
Teratol 26, 725-729. 

Taylor, K.L., Grant, N.J., Temperley, N.D., and Patton, E.E. (2010). Small molecule screening in 
zebrafish: an in vivo approach to identifying new chemical tools and drug leads. Cell Commun 
Signal 8, 11. 

Thirumalai, V., and Cline, H.T. (2008). Endogenous dopamine suppresses initiation of 
swimming in prefeeding zebrafish larvae. J Neurophysiol 100, 1635-1648. 

Tierney, K.B. (2011). Behavioural assessments of neurotoxic effects and neurodegeneration in 
zebrafish. Biochim Biophys Acta 1812, 381-389. 

Trampus, M., Ferri, N., Adami, M., and Ongini, E. (1993). The dopamine D1 receptor agonists, 
A68930 and SKF 38393, induce arousal and suppress REM sleep in the rat. Eur J Pharmacol 
235, 83-87. 



This is the pre-peer reviewed version of the following article: Rihel J and Schier AF (2012).  Behavioral 
screening for neuroactive drugs in zebrafish.  Developmental Neurobiology, 72(3):373-385., which has 

been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/dneu.20910/full 
 

Webb, K.J., Norton, W.H., Trumbach, D., Meijer, A.H., Ninkovic, J., Topp, S., Heck, D., Marr, C., 
Wurst, W., Theis, F.J., et al. (2009). Zebrafish reward mutants reveal novel transcripts 
mediating the behavioral effects of amphetamine. Genome Biol 10, R81. 

Wheeler, G.N., and Brandli, A.W. (2009). Simple vertebrate models for chemical genetics and 
drug discovery screens: lessons from zebrafish and Xenopus. Dev Dyn 238, 1287-1308. 

Williams, F.E., and Messer, W.S., Jr. (2004). Muscarinic acetylcholine receptors in the brain of 
the zebrafish (Danio rerio) measured by radioligand binding techniques. Comp Biochem Physiol 
C Toxicol Pharmacol 137, 349-353. 

Wong, D.T., Perry, K.W., and Bymaster, F.P. (2005). Case history: the discovery of fluoxetine 
hydrochloride (Prozac). Nat Rev Drug Discov 4, 764-774. 

Wong, K., Elegante, M., Bartels, B., Elkhayat, S., Tien, D., Roy, S., Goodspeed, J., Suciu, C., 
Tan, J., Grimes, C., et al. (2010). Analyzing habituation responses to novelty in zebrafish (Danio 
rerio). Behav Brain Res 208, 450-457. 

Xie, J., Farage, E., Sugimoto, M., and Anand-Apte, B. (2010). A novel transgenic zebrafish 
model for blood-brain and blood-retinal barrier development. BMC Dev Biol 10, 76. 

Yeh, J.R., Munson, K.M., Elagib, K.E., Goldfarb, A.N., Sweetser, D.A., and Peterson, R.T. 
(2009). Discovering chemical modifiers of oncogene-regulated hematopoietic differentiation. Nat 
Chem Biol 5, 236-243. 

Yokogawa, T., Marin, W., Faraco, J., Pezeron, G., Appelbaum, L., Zhang, J., Rosa, F., 
Mourrain, P., and Mignot, E. (2007). Characterization of sleep in zebrafish and insomnia in 
hypocretin receptor mutants. PLoS Biol 5, e277. 

Yu, P.B., Hong, C.C., Sachidanandan, C., Babitt, J.L., Deng, D.Y., Hoyng, S.A., Lin, H.Y., 
Bloch, K.D., and Peterson, R.T. (2008). Dorsomorphin inhibits BMP signals required for 
embryogenesis and iron metabolism. Nat Chem Biol 4, 33-41. 

Zhang, J., Piontek, J., Wolburg, H., Piehl, C., Liss, M., Otten, C., Christ, A., Willnow, T.E., 
Blasig, I.E., and Abdelilah-Seyfried, S. (2010). Establishment of a neuroepithelial barrier by 
Claudin5a is essential for zebrafish brain ventricular lumen expansion. Proc Natl Acad Sci U S A 
107, 1425-1430. 

Zhdanova, I.V. (2006). Sleep in zebrafish. Zebrafish 3, 215-226. 

Zhdanova, I.V., Wang, S.Y., Leclair, O.U., and Danilova, N.P. (2001). Melatonin promotes 
sleep-like state in zebrafish. Brain Res 903, 263-268. 

Zon, L.I., and Peterson, R.T. (2005). In vivo drug discovery in the zebrafish. Nat Rev Drug 
Discov 4, 35-44. 

 


