Linear (B-reduction*

Stefano Guerrini
LIPN, Institut Galilee, Université Paris Nord 13, SorlmerParis Cité
stefano.guerrini@univ-parisl3.fr

Linear head reduction is a key tool for the analysis of reidacinachines foA -calculus and for
game semantics. lIts definition requires a notion of redexdistance named primary redex in the
literature. Nevertheless, a clear and complete syntacttyais of this rule is missing. We present
here a general notion ¢-reduction at a distance and of linear reduction (i.e., Betricted to the
head variable), and we analyse their relations and pr@serfihis analysis rests on a variant of
the so-calledr-equivalence that is more suitable for the analysis of rédnenachines, since the
position along the spine of primary redexes is not permut&@. finally show that, in the simply
typed case, the proof of strong normalisation of linear ofida can be obtained by a trivial tuning
of Gandy'’s proof for strong normalisation Bfreduction.

1 Introduction

Linear head reduction is a key tool for the analysis of reidncinachines fol -calculus and for game
semantics. A detailed analysis of it, and more generally mdtéon of reduction at a distance, has been
given by Accattoli[1] in terms of proof nets and explicit stitutions. Linear head reduction is usually
presented in terms of the so-calledequivalence introduced by Regnier in [8]. In the followjirnvge
introduce a variant of the-equivalence, which has the main advantage of leaving umygththe order
of primary redexes (a notion @-redex that will be discussed later). Such a new equivalé&nosore
suitable for the analysis of abstract reduction machinegsdan linear head reduction, as for instance
Danos and Regnier's Pointer Abstract Machine (PAM) [3], ahhhas been analysed in detail by the
author and Pellitta in_[5]. Indeed, most of the material that shall present in this paper has been
developed for formalising the results I [5].

The key tool of our approach is a notion of context which iseied an implicit representation of
environments mapping variables to their values. By meatisesk contexts, one can defin@-aeduction
at a distance and its linearised version. Both of these temfutules preservg-equivalence, and both
of them are strongly normalising in the case of simply typedalculus. However, the proof of strong
normalisation is not at all evident. In fact, linear redantdoes not erase any term, it just replaces one
of the occurrences of a variable with a (largarterm; in other words, the size of the reducing term
always increases along the reduction. Surprisingly, thigeent difficulty can be trivially overcome by
a small tuning of Gandy’s proof for strong normalisationBefeduction [4]. Just by changing a detail in
the interpretation of variable occurrences—it sufficemtzéase by 1 their measure—we can adapt the
measure used in Gandy’s proof to the case of linear reduchitmreover, the new measure obtained in
this way simultaneously proves strong normalisatiof-@&duction and of its linearised version.

As already remarked, linear reduction has been studiedtail gy Accattoli [1] by means of linear
logic proof nets. Such an approach has been inspired byriettal calculus introduced by Accattoli

*Partially supported by the Project ELICA (ref. ANR-14-CEQ@805), of the ANR program “Fondements du numérique
(DS0705) 2014”.

I. Cervesato and M. Fernandez (Eds): Fourth Internatidgf@kshop
on Linearity 2016 (LINEARITY’16)
EPTCS 238, 2017, pp. 44353, ¢0i:10.4204/EPTCS.238.5

This work is licensed under the
Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.238.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

S. Guerrini 45

and Kesner([2], a calculus with explicit substitutions aaduction rules at a distance. In the present
paper, our goal is to analyse linear reduction directlydecalculus, without introducing explicit sub-
stitutions or without going down to the low level analysisrefiuction that can be achieved by means
of proof nets. As we shall see later, such a goal is achievadtlyducing a variant ob-equivalence,
named E-equivalence, which is more suitable for investigateduction machines based on pointers, as
for instance the PAM. Moreover, the proof of strong nornadien that we shall give is much simpler
then the one based on reducibility candidates requireddrc#ise of proof nets. Recently, Pedrot and
Saurin [7] have proposed a call-by-need variani pf-calculus defined in terms of a notion of closure
contexts. Such closure contexts correspond to the E-dsriteroduced in the following by Definitidd 2,
but extended tad p-calculus too. We remark that most of the material that wd ginesent below is a
by-product of the study of the PAM started [[5], and that ofi¢he further developments mentioned
in [5] is the extension of the PAM to theu-calculus; Pedrot and Saurin’s call-by-need closure ctsite
seem to be the right tool for formalising such an extension.

2 Preliminaries

The set of thed-termsA is defined by the abstract gramnsat ::= x | Ax.t | st, wherex € # and Ax

is a binder for the variableg. The set of the free variables of a tetnis denoted byFV(t). The key
computational step of -calculus isB-contraction(Ax.t)s —p t{s/x}, wheret{s/x} denotes that every
free occurrence of the variablein t is replaced bys, provided that such a replacement does not cause
any name clash of some free variablesabtherwise, if this is not the case, one has to preliminagply

a suitable sequence of variable renamingsy - gules, tot. (The a-congruence is the least congruence
induced by thex-rule Ax.t = Ay.t{y/x}, in whichy replaces all the free occurrencesxah t andy does

not occur int.) As usual,—>E denotes the reflexive and transitive closure of the bindatiom defined by

the B-rule, and=g denotes the corresponding equivalence (closing by symra&to). Such notations
will extend to the other rewriting rules that we shall seehia paper.

In order to avoid the bureaucratic problems connected-tmngruence, we can assume to work
modulo it, and that all the bound variables in the terms thatshall consider have thdistinct names
property(sometimes referred to as Baredrengt variable names coonrA term has the distinct names
property if no free variable in it has the same name of a boan@ble, and all the bound variables have
distinct names. Remarkably, for evetyterm there is am-congruent one which has the distinct name
property. In this way, no name clash can arise by replasifay x in t in the B-reduction of(Ax.t)s.
However, even if correct, the resulting tetfs/x} might not have the above distinct names property. In
order to guarantee thafs/x} preserves the distinct names propertyof.t)s, we can assume to replace
each occurrence ofwith afreshcopy ofs, in which every bound variable has a fresh name which has
not been already used in the term or in another copy of

In the simply typedA-calculus, every term has a type. The set of types is giverhbyabstract
grammart,o ::= 0| T — o, where the constard is the uniquebase typeand any typer — o is said
a functional type The setA™ of the simply typed terms is the subset/Afwhose terms respect the
following typing rules: {) each variablechas a given type; (ii) if the variablex has typer, and the term
t has typeo, thenAx.t has typer — o; (iii) if the terms has typer — o andt has typer, thenst has
type o. We shall writet : T ort” to denote that a terinhas typer. The 3-rule preserves typing; namely,
if t —>2§ sandt : 7, thens: 1.

A reduction strategy is a set of rules specifying how to redaik -term. Roughly speaking, given a
reducible ternt, a reduction strategy is a function that selects the redethforedexes) of that must

46 Linear(-reduction

(or among which we can choose the redex to) be reduced at shatep. A reduction strategy defines
a sub-rewriting system @8-reduction and, in some cases, if sofweducible ternt contains no valid
redex for the given reduction strategy, it introduces newnad forms.

2.1 Head reduction

Let us say that #-redex(Ax.t)sis in outermost head positirin vwhenv=Ayi....Ayi.(AXt)SU ... Un,
and thatvhead reduces 0 = Ay;.... Ayk.t{s/x}u ... un, writtenv —, v, by reducing its outermost head
redex. A termv is in head normal fornwhenAy;....Ayk.Xu ... Uy, Which in general is not #-normal
form, sinceu, ..., u, may contain3-redexes. Indeed, thg-normal form oft, if it exists, can be found by
head reducing a tertrto its head normal formy;.... Ayk.Xu ... Uy (if any) first, and then by recursively
applying the head reduction strategy to evarand to the subterms of their head normal forms.

2.2 Head contexts

As usual, a context is a term with a holé] (a sort of dummy free variable occurring exactly once in
the term)C ::= O | Ax.C | Ct | tC. Given any ternt, by C[t] we denote the term obtained by replacing
the hole of the conteX@ with the termt, without performing any variable renaming; therefore, wkiee
hole is under the scope ofAaabstraction binding the variable any free occurrence afin t is captured

in CJt], and becomes bound.

Definition 1 (H-context, head variable) A head contextor H-context is a context whose hole appears
in head position. More precisely, H-contexts are definechbyfollowing grammar

H:=0O|AxH |Ht.

A head context of a terrhis any H-contexH s.t.t = H[g|, for some terns, that we shall say to be in
head position irt. In particular, for everyA-termt, there is a unique head contesxtof t (the maximal
head contexbf t) and a unique variabbe= hv(t) (thehead variableof t) s.t.t = H[x]. o

2.3 Spine

A spine A -abstraction/application of a tertris any A -abstraction/application in head positiontinThe
spineof t = H[x], and of its head context, is the sequence of its spide-abstractions/applications
ordered from the head variable tofthe hole ofH) to its root. A variablex bound by a spine abstraction
is aspine variable while the right subterm of a spine application isgne argumenotft. By SV(t) and
SV(H) we denote the set of the spine variables of a teand of a H-contexH, respectively.

A H-contextH, is aA-contextif its spine is formed ofA -abstractions only (equivalentli, has no
spine arguments). A H-conteldig is a @-contextf its spine is formed of applications only (equivalently,
H@ has no spine variables).

lUsually this is simply referred to asead position In the following we shall however present a larger notiorhead
position, in which g3-redex may be in head position even if it is inside the body Bfr@dex in head position. According to
such a new notion of head position, the redex reduced by the tezluction is the outermoBtredex in head position.

S. Guerrini 47

3 [B-reduction at a distance

3.1 Environment contexts

Definition 2 (E-context) An environment contexor E-contextis a particular H-context in which spine
A-abstractions and spine applications are balanced. Eextsrdre defined by the grammar

E1.2 =04 | El[)\X.Eg]t

An E-contextE contains an equal numbegE of spine variables and of spine arguments. For every
E-contextE # O, there is a unique paiix,t) s.t. E = E;[Ax.E;]t, for some pair of E-context&;, E.
Therefore, every E-context defines a unigue bijection betws spine variables and its spine arguments.
Such a correspondence can be formalised in terms of enveotsmAnenvironment) =t /Xy, ...tk /X
is an ordered sequence of variable substitutiphs (wheret; is a term replacing the variablg). Given

an environment), we defing{n} =t{ty/x1,...,t/X} =t{ta/xa} ... {tc/X}

Definition 3 The environment) (E) associated to an E-context is inductively defined by
nO)=¢e and n(EAXE]) =n(E),t/xn(E1)

According to the above definition, every pair of matchinghgpargument/variable corresponds to a
substitutiont/x in n(E). We remark that the order of the substitutions in an envireminis relevant,
since fori < j, the occurrences of in the termt; are replaced by the terty, while this is not the case
for any occurrence of; in a termt, with k > j. In particular, the order of the spine variablesni(E)
corresponds to the order in which they appeaE jrassuming to move from the inner head position to
the root. In other wordss precedey in n(E) iff the binder ofx is in the scope of the binder gf

Lemma 1 Let E be an E-context. For evedyterm t, Et] —; t{n(E)}. O

3.2 Primary redexes andB-contraction at a distance

Any pair of matching spine argument/variable in an E-envinent is as a sort of redex at a distance.

Definition 4 (Primary B-redex) A (B-redex at a distances a termE[Ax.t]s, whereE is an E-context. A
primary 3-redexis a-redex at a distance occurring in a head position. 0

As a particular case, fdE = [, any 3-redex is g§3-redex at a distanceB-redexes at a distance can
be reduced as usuBtredexes, by defining the following generalisation at aagiseé of the3-rule

E[Axt]s =g, E[t{s/x}]

and by taking the3q-reduction as the closure by contexts of the above rule. TertextE[Ax.O|s

of a B-redex at a distance is an E-context. Then, everytgaiof matching spine argument/variable of
an E-context (and therefore every substitutionnE)) forms a primary redex. As a consequence, it is
readily seen thakt] —>2§d t{n(E)} for every E-contexE and every term. More generally3-reduction

at a distance is sound w.r.t. the usf@ateduction.

Proposition 1 Lett—7 s, thent=g s. Moreover, sis a normal form fer g, iff it is a B-normal formg

48 Linear(-reduction

4 Spine permutation equivalence ofA -terms

The head canonical E-contextae a particular case of E-contexts in which every redex adtartte is
also aB-redex. Head canonical E-contexts are defined by the grafgas (I | (Ax.E)t, and any head
canonical E-context has the shapex,. ... (Ax2.(Ax.0)ty)t2...)th. An environment) can be seen as
the explicit representation of a head canonical E-conféxt) in which the order of thg-redexes along
the spine is the inverse of the substitution pairs in therenment

t1/X1,t2/%2, ..., th/Xn ,i> (AXn. .. (A%2.(Ax.O)ty 2. .)ty

Which corresponds to the inductive definitiéite) = O, and&’(t/x,n) = &(n)[(Ax.O)t].

4.1 Surface E-equivalence

By Lemmadl, we have th&; =g E;, for every pair of E-contextg; andE; s.t.n(E1) = n(Ez). We can
then define the following equivalence.

Definition 5 (Surface E-equivalence on E-contexts)he surface E-equivalence on E-contextsthe
least equivalence, defined by

E1[AXExJt ~ E1[(AX.E2)t] if FV(t)NSV(E;) =0
E1[E2] ~ Ej[ES)] if Ej ~¢ E/ fori=1,2
Such an equivalence captures exactly the equivalenceeslagsE-context§E | £(n(E)) = Ec},

whereE. is head canonical, as formally stated by the following lemma

Lemma 2 For every E-context E, there is a unique canonical E-corfigxt: E, which is also the unique
normal form of the terminating rewriting systemg obtained by orienting the E-equivalence rules of
Definition[3 from the left to the right

E]_[A X.Ez]t —E El[(A X.Ez)t] if FV(t) ﬂSV(El) =0
E1[Es] —E Ef[E))] if Ei —e E/ and § = E{, withi,j € {1,2}, and i j
Moreover, E = &(n(E)), and therefore B~ E’ iff n(E) = n(E’). o
Example 1 Let E = E;[Ax.Ep]t with E; = (Ay.0)sandE, = 0. The E-contexE. = (Ay.(Ax.O)t)sis
the unique canonical E-context-equivalent tcE = (Ay.Ax.[J)st. o

4.2 CanonicalA-terms

The E-equivalence can be extended to terms. In the corrdsgphead canonical forms, along the spine,
one finds first all the unmatched spine abstractions, theitbentext formed of the primary redexes,
and finally the unmatched spine arguments.

Definition 6 (Surface E-equivalence on terms)Thesurface E-equivalence on ternssthe least equiv-
alence defined by the E-equivalence rules on E-contexts fifiben 5, plus

Ha[EAX.S]] ~¢ Hy[AX.E[] if x¢ FV (E)
H) [E[s]t] ~ Ha [E[st] if FV(t)SV(E) =0
Ha[Ex[s]] ~e Ha[Ez[s]] if By~ Ep

whereH, is aA-context, ande, E;, E, are E-contexts. The equivalence naturally extends to Hests)
by replacingd for sin the above equations. o

S. Guerrini 49

Definition 7 (head canonicalA-term) Let us say thaH is ahead canonical H-contexthen
H = H, [Ec[He]]

whereH, is aA-context,Hg is an @-context, ané&. is a head canonical E-context. The spihe
abstractions oH, are thehead A -abstractionsof H, while the spine arguments &fg are thehead
argumentof H. TheA-termt is head canonicalvhen its maximal head context is head canonicaly

Summing up, any head canonicaltermt has the shape
t=AX1....AX.Eclzty .. .ty
=AX1. . A (AY1.(... (AYp.Zt.. . tm)Sp) ...)S1)

and we can defing,t = n, #gt =m, n(t) = E;, and#,t = #,E. = p.

Every H-contexH, and then every -termt = H[x|, has a unique E-equivalent head canonical form
Hc, or Hc[x] for terms. Moreover, as shown by Theorein 1 beldwpreserves the same relative positions
of unmatched spina-abstractions, unmatched spine arguments, and primaexesdfH. (A spineA-
abstraction/argument is unmatched when it is not involved primary redex.) More precisely, th¢h
headA -abstraction of. is thei-th unmatched -abstraction on the spine bf, thei-th head argument of
the head canonical form is theh unmatched spine argument on the spinélpthei-th primary redex
of H is thei-th primary redex on the spine #f.
Theorem 1 For any H-context H, there is a unique head canonical contkxt: H. More precisely,

1. for every H-context H, there is a unique sequence of sgniahles X, ... x,, a unique sequence

of spine arguments ..., ty, and a unique sequence of E-contexgsHg, . .., Enim S.t.

H = Ep[H4]
Hi = A%.Ei[Hi 1] forl<i<n
Hntj = Entj[Hns j+1)tm—j+1 for1<j<m
Hoim =0

that is
H= Eo[)\ X1.E1[)\ X2.E2[. .. [)\ Xn-En[En+1[- .. [En+m,1[En+mt1]t2] .. .]tm]] .. m

2. there is a unique head canonical context+ H, and H. = H, [E[Hg]] is equal to
Hy =AX1....A%,.00
He=0t...tm
Ec = Eo[Eil.... [Enm]]]
that is
H ~e He = AXg. ... A% B[Ot .. .t
whereE; = &(n(E)) ~ Ei is the unique head canonical E-context equivalent;to E

3. the canonical context 4bf H is the unique normal form of the rewriting systesg obtained by
orienting from the left to the right the surface E-equivales on terms of Definitidd 6. Namely,

HA[EA XS] —& Hy[AxE[S] if x ¢ FV (E)
H, [E[St] — Ha [E[st] if FV (t) "SV(E) = 0
H)\ [El[SH —E H)\ [Ez[SH if Ei—eBE

plus the rules for E-contexts in Lemina 2. 0

50 Linear(-reduction

4.3 E-equivalence

The surface E-equivalence permutes the arguments on the gpa term without modifying them. The
E-equivalence is obtained by recursively applying theasigfE-equivalence to spine arguments too. If
we denote byrg(t,i) thei-th head spine argument of the tetnjwhich corresponds to thieth spine
argument in the head @-context of its head canonical form)ograrg(t, —i) the spine argument of the
i-th primary redex ot (which corresponds to thieth spine argument in the head canonical E-context
E; of the head canonical form ¢f, we define~ as the least equivalence di~ t if t; ~¢ t5, and
arg(ty,i) ~¢ arg(tp,i), for 1 <i < #gt; = #@ts or —#pty = —#pty <i < —1.

4.4 o-equivalence

The o-equivalencd@] is the least congruence induced by

(AXU)V)W ~4 (AX.uw)v with X & FV(w)
(AXAY.U)V ~4 Ay.(AX.U)V withy € FV(v)

The rewriting system obtained by orienting the latterequivalences from the left to the right is
terminating—its head canonical forms are the same alreaflpadl for the E-equivalence—but is not
confluent. Indeed, the-equivalence contains the E-equivalence, but it equatad banonical forms
E; andE; s.t. the environmentg (E;) andn(E,) are equivalent modulo the following permutation rule
t1/X1,t2/ X2 ~ ta /%o, t1 /X1 if X1 € FV(t2) andxz & FV(ty).

Example 2 Let us take theA-termu = E[v] = (Ay.Ax.v)st, whereE is the E-context of Examplé]1.
Its unique head E-canonical form (8y.(Ax.v)t)s, which can be also obtained by applying the fost
rule. However, since by applying the secoodule, u —4 (AX.(Ay.v)s)t too, theA-termu has two
o-equivalent canonical forms. 0

Summing up, the E-equivalence is a variant of thequivalence which equates less terms then the
latter one. The definition of the-equivalence is simpler and more elegant, and has a direchian
interpretation in terms of linear logic proof nets. Howewte better rewriting properties of the E-
equivalence—canonical form uniqueness and preservatiprimary redexes relative positions—makes
it more suitable for a finer analysis of reduction machinegireng a reduction at a distance based on
o-equivalence, as for instance the PAM. Tdw@quivalence can be recovered from the E-equivalence by
adding the following permutation equivalence of primargexes

El[()\ X1. ()\ X2.E2)t2)t1] ~ El[()\ X2. ()\ X1. Ez)tl)tg]

if X, & FV(t2) andxy & FV(t1), to the E-equivalence of E-contexts.

5 Linear head reduction

5.1 Linear reduction

Let (Ax.t)s be a redex s.t. the tertrcontains at least one occurrencexofor any occurrence ofin t,
we can take the contegtobtained by replacing such an occurrence with (1. The following reduction
rule (Ax.C[x])s —p (Ax.C[s])s, wheres' is a fresh copy o5, is a linearised variant of the usyirule
in which, instead of removing the redex after replacing ladl dbccurrences of the bound variakjehe

S. Guerrini 51

redex is kept and only one occurrencexa$ replaced by a fresh copy of the argumenSuch a linear
B-reduction can be extended to be applied at a distance to@bV&e then thdinear reduction rule(at
a distance)

E[Ax.C[X]]s — E[AX.C[]]s

wheres is a fresh copy o6. When the ternt in E[Ax.t]s does not contain any occurrencexpfve can
instead take the followingarbage rule(which is just a degenerated casegBsfeduction at a distance)

E[Axt]s —g E[t] if x¢Z FV(t)

Given af3-redex (at a distance), by iterating the lingg&areduction (at a distance), we can eventually
obtain a redex (at a distance) to which apply glagbage rule Therefore B-reduction (at a distance) can
be simulated by a sort of affine reductiesy, which is the union of linear and garbage reduction.

Proposition 2 Let —a=— U —y.
1. Ift —>2§ s, then t— s. Moreover, there is' s.t. t—* & —gS-
2. Ift =3 u, then U=gt. Therefore, there is{—>2§ SsS.t.u—=;s. o
As a consequence of the above proposition, a term has a nsmafor — iff it has a 8-normal
form; moreover, the two normal forms coincide. We also rdénthe second part of the first item of

Propositiorl 2. This is a particular case of a more generadgsty stating that garbage reductions can be
always postponed; that is, for every>} s, there iss' s.t.t —* & —gS

5.2 Linear head-rule

A particular case of linear reduction arises when the oete to be replaced is the head variable.

Definition 8 (Linear head reduction) Thelinear head reductions the least reduction which contains
the linear heagB-rule
E[Ax.H[X]]s—on E[Ax.H][]]s

wheres is a fresh copy 0§, and which is closed by head contexts. o

Linear head reduction is strongly related to h@aceduction, as shown by the following statements.
Proposition 3 Lett—o} s. There is t=} s’ s.t. s—} s O
Corollary 1 Atermt has a linear head normal form iff it has a head normairfo Moreover, let s be
the linear head normal form of t.

1. The head normal form of s is obtained Byeducing all the primary redexes in s.
2. The head normal form of s is the head normal form of t, indeed o

6 Strong normalisation

All the rewriting systems defined above are strong normmaisin simply typedA-terms. The proof
of strong normalisation is however not at all evident. Intfagince linear reduction does not erase
the reducing redex—it just replaces the occurrence of abkaiby a (larger) -term—the size of the
reducing term increases at each step. Accaitoli [1], inritdyesis of proof nets linear reduction, proved
strong normalisation by applying reducibility candidaté¢ere, we show that, surprisingly, the proof

52 Linear(-reduction

of strong normalisation of linear reduction is simpler thmre might have thought, as it can be easily
obtained by a trivial tuning of the proof of strong normatiisa originally proposed by Gandy fgB-
reduction[4]. In Gandy’s proof, each types interpreted as a well-founded ordered|sgtIn particular,
any functional typer — o is mapped into a set of increasing functions frerhto [0]. A measure is
then associated to every term by interpreting finy as an elemenit| € [t]. Strong normalisation is a
consequence of the fact that gByreductiont — g ssendst] to a lower elements].

The original measure defined for the analysisBefeduction does not directly work for the case
of linear reduction, since such a measure does not changg Afear reduction (i.e.t] = [s], when
t — 5). Indeed, Gandy’s measure just counts the numbdr-abstractions erased along3areduction.
However, by taking the successor of the usual interpretaifa variable occurrence, one obtains a new
measure which counts the number of variable occurrencéscezpby soma -term. Such a new measure
decreases along linear reduction, and allows to prove aaime time the strong normalisation of all the
rewriting systems described in the present papers.

In the following, we shall follow the presentation of Garslyroof given by Miquel([6]. Let us
interpret the base typeas the strict partial ordeiN, <), and every functional type — o as the strict
partial order of the increasing functions from the intetatien of r to the interpretation ofr. Formally,
for every typer, let us inductively definé[t], <;) by

[T—o]={fe[t]=[o]|YWwe[T]:v<rw= f(V) <5 f(W)}
vi,ge[t—o] : f=<ieg iff Ywelr]: f(v)<s0(V)
with [o] = N and<, = <. We define then the binary operatien : [1] x N — [1] as

N+ok=n+Kk f+so k= (Ave[T].f(v) +5K)

fornke Nandf € [t — o]. Itis readily seen that+; 0=, that(v+ k) +h=v+; +(k+h), and that
k < himpliesv+;k < v+¢h, for everyv € [1] andk,h € N.
For every typer, let us definer, € [r] andt*: [T] — N by

o, =0 (T—0)s = (AVE[T].O+6 T (V)
o'(n) =n (t—=0)(f) = o7 (f(1.))

forne Nandf € [T — o]. By induction, we can see that is increasing (that ist*(v) < 7*(w), for all
V,W € [T] S.t.v < W).

A valuationis a functiong associating an element {af] to every variables: 7. Given a valuationp,
avariablex: 1, and a value € [1], we shall denote by[x +— V] a new valuation s.tp[x+— V](x) = v, and
@lx— V](y) = @(y), wheny # x.

Given a valuationp, any typedA-termt’ can be interpreted as an eleméy < [1] by application
of the following inductive definition

x: Tl = @X) 41
[AXt:T—0lp = AVE [T].[tgxoy +o (T7(V) +1)
S5 7% 0]y = [s:T— Olplt: Ty

For every valuatiorp, we can also define the measyg: A7 — N, by Lp(t7) = T*[t],.

Remark 1 The only difference w.r.t. the usual interpretation usethi proof of strong normalisation
of B-reduction is the interpretation of variables. Indeed, osigally takesx : 1], = @(x) (see([6]). With
this choice, however, we would g} = [s| whent — s. O

S. Guerrini 53

Lemma 3 For every valuationp, every Gx'] : o, and every t T, we have that

1. [CXlgixs1t1g) <o [Cltl]g;
2. ift =48, then[s]y <o [t]p and Ly(s) < Uy(t). O

By the previous lemma, and the fact that there is at leastumtiah (for instance, the valuatiap
defined byg(x") = 1.), we can eventually get the strong normalisation result.

Theorem 2 The rewriting systems»a, —o, —g,, —g, —h, @nd—op, are strongly normalising. 0

7 Conclusions

In the paper we have analysed linggareduction in terms of a notion of evaluation context, anchaee
seen how a simple adaptation of the semantical proof of gtrmmmalisation for the simply typeal-
calculus allows to prove the same result for the linear cébe.proof is surprisingly simple and its idea
might be adapted to prove strong normalisations of adhealculi in which theB-rule is decomposed in
more elementary steps, as for instance in the case of ebgligstitutionA -calculi.

References

[1] Beniamino Accattoli (2013):Linear Logic and Strong Normalizationln Femke van Raamsdonk, editor:
24th International Conference on Rewriting Techniques Apglications (RTA 2013)LIPIcs 21, Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, @amy, pp. 39-54, d0i:10.4230/LIPIcs.RTA.2013.39.

[2] Beniamino Accattoli & Delia Kesner (2010):The StructuralA-Calculus In Anuj Dawar & Hel-
mut Veith, editors: Computer Science LogicLNCS 6247, Springer Berlin Heidelberg, pp. 381-395,
doii10.1007/978-3-642-1520530.

[3] Vincent Danos & Laurent Regnier (2004):Head Linear Reductian Http://iml.univ-mrs.fr/ reg-
nier/articles/pam.ps.gz.

[4] R. O. Gandy (1980)Proofs of strong normalisatianin J. P. Seldin & J. R. Hindley, editor§o H. B. Curry:
Essays in Combinatory Logic, Lambda Calculus, and Formmakscademic Press, pp. 457-477.

[5] Stefano Guerrini & Giulio Pellitta (2016 Dissecting the PAMSubmitted.

[6] Alexandre Miquel:A combinatorial proof of strong normalisation for the simpyped -calculusUnpublished
draft.

[7] Pierre-Marie Pédrot & Alexis Saurin (2016Llassical By-Need In Peter Thiemann, editorProgramming
Languages and Systems. 25th European Symposium on ProgrgnE80OP 201 NCS9632, Springer, pp.
616—643, d0i:10.1007/978-3-662-494924.

[8] Laurent Regnier (1994)Jne équivalence sur les lambda-termegheoretical Computer Scien@26(2), pp.
281-292, d0i:10.1016/0304-3975(94)90012-4.

http://dx.doi.org/10.4230/LIPIcs.RTA.2013.39
http://dx.doi.org/10.1007/978-3-642-15205-4_30
http://dx.doi.org/10.1007/978-3-662-49498-1_24
http://dx.doi.org/10.1016/0304-3975(94)90012-4

	1 Introduction
	2 Preliminaries
	2.1 Head reduction
	2.2 Head contexts
	2.3 Spine

	3 -reduction at a distance
	3.1 Environment contexts
	3.2 Primary redexes and -contraction at a distance

	4 Spine permutation equivalence of -terms
	4.1 Surface E-equivalence
	4.2 Canonical -terms
	4.3 E-equivalence
	4.4 -equivalence

	5 Linear head reduction
	5.1 Linear reduction
	5.2 Linear head -rule

	6 Strong normalisation
	7 Conclusions

