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We consider one problem that was largely left open by Rudolf Carnap in his work on inductive logic,
the problem of analogical inference. After discussing some previous attempts to solve this problem,
we propose a new solution that is based on the ideas of Bruno de Finetti on probabilistic symmetries.
We explain how our new inductive logic can be developed within the Carnapian paradigm of inductive
logic—deriving an inductive rule from a set of simple postulates about the observational process—
and discuss some of its properties.

1 Introduction

The logical empiricist movement is often associated with using deductive logic to understand scientific
reasoning. But Rudolf Carnap actually favored an inductive approach, starting with his work on inductive
logic in the 1940s. Carnapian inductive logic can be thought of as a branch of probability theory that
is especially concerned with predictive probabilities—the probability of future observations given past
observations. Carnap spent much of the last thirty years of his life on developing an inductive logic,
but even in his posthumously published works he considered the subject to be wide open to further
investigations. The open problem that I wish to consider in this paper is the problem of analogical
inference, which hasn’t received a satisfactory answer in Carnap’s original system. I shall review some
of the attempts to develop an analogical inductive logic in §4. In order to set the stage, I briefly describe
Carnap’s program in §2 and point to its connections with de Finetti’s theory of inductive inference in
§3. Considering de Finetti is particularly important since he provides an alternative route to analogical
inference. In §5 I discuss an especially interesting probabilistic symmetry that allows for a certain form of
analogical inference. Finally, in §6 I introduce a new analogical inductive logic based on that symmetry
and discuss some of its properties.

2 Carnap’s Program

Carnap’s program for developing an inductive logic as described in his ‘Logical Foundations of Prob-
ability’ [2] was brought to a tentative conclusion in the posthumously published ‘A Basic System of
Inductive Logic’ [4, 5]. Carnapian inductive logic aims at finding rational foundations for the kind of
inductive inferences that are used in scientific investigations. The classic example of such an inference in
the tradition of Bayes and Laplace is the predictive probability of events, such as future coin flips based
on past observations of coin flips. Carnap viewed all inductive inference problems as being essentially
reducible to this type of inference [2].1

1See [36] for an excellent overview for the development of Carnapian inductive logic.
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2 Analogical Inference in Inductive Logic

Of particular importance for Carnap are predictive probabilities based on the relative frequencies of
events. For example, after observing a number of throws of a die, the predictive probability of observing
a six with the next throw usually is judged to be approximately equal to the relative frequency of sixes. In
his systems of inductive logic, Carnap tries to explicate the foundations of this simplest kind of inductive
inference.

Independently of Carnap’s program, a similar approach was developed more than two decades earlier
by the Cambridge logician W. E. Johnson [20, 21]. Johnson’s main contribution was only published
posthumously and contained a number of gaps, which were closed by Sandy Zabell [33], who also
generalized Johnson’s approach to a theory that is essentially equivalent to Carnap’s basic system of
inductive logic. I’m going to follow Zabell’s elegant treatment because it ties in neatly with the work of
Bruno de Finetti (see the next section).2

The basic postulate in this theory of inductive inference is a symmetry requirement known as ‘ex-
changeability’ (called the ‘permutation postulate’ by Johnson). Suppose that there is a finite sequence of
random variables X1, . . . ,Xn representing observations (e.g. coin flips), and let their probability law be P.
Like Carnap, we assume that the random variables can take on only a finite number of values. Then P is
exchangeable if it is invariant under permutations of outcomes; that is,

P[X1 = x1, . . . ,Xn = xn] = P[X1 = xσ(1), . . . ,Xn = xσ(n)]

for every permutation σ of {1, . . . ,n}. This allows us to define exchangeable probabilities of infinite
sequences X1,X2, . . . as those for which every finite initial sequence is exchangeable. For simplicity, the
sequence of random variables is often called exchangeable without referring to its probability law.

Both Johnson and Carnap use a requirement for predictive probabilities that is often called ‘Johnson’s
sufficientness postulate’. This postulate says that predictive probabilities for i basically only depend on
the past relative frequency of i; i.e., there is a function f such that

P[Xn+1 = i|X1, . . . ,Xn] = fi(ni,n). (1)

Johnson’s sufficientness postulate judges information about types other than i to be irrelevant for the
predictive probability of i—a point that is going to be important for the problem of analogical inference.

Finally, in order for conditional probabilities to be well defined, a regularity postulate is assumed
to the effect that each finite initial sequence of outcomes has positive probability. It is then possible
to show that the predictive probability of any outcome is equal to its relative frequency modulo some
prior parameters. More specifically, if trials are not independent, then there exist parameters α j for each
outcome j such that for all n and i

P[Xn+1 = i|X1, . . . ,Xn] =
ni +αi

n+∑ j α j
. (2)

(If trials are independent, then there is no learning from experience.) Here ni is the number of times out-
come i is observed in the first n trials. The parameters α j are either all positive or all negative; they must
be positive if the sequence of observations is infinite exchangeable (see [33] for a thorough discussion).
The rule given by (2) is called a ‘generalized rule of succession’ (after Laplace’s special ‘rule of succes-
sion’). A generalized rule of succession expresses a mode of learning from experience. Experiences are
given by past observations of outcomes, and past observations lead to predictive probabilities for future
outcomes.

2Kuipers [22] gives an overview of the mathematical aspects of Carnap’s theory.
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The inductive logic given in (2) is equivalent to Carnap’s mature basic system of inductive logic,
also known as the ‘λ − γ-continuum of inductive methods’. The system championed in his 1950 book is
much more restricted [2]. It requires that all α j = 1, meaning that all outcomes are judged to be equally
probable prior to any observations. In his later ‘A Continuum of Inductive Methods’ [3], Carnap gen-
eralized this restricted system to one with a weight λ which regulates the effect of the equally probable
prior weights. The basic system (2) extends this to arbitrary prior weights.

Especially in his early work on inductive logic, Carnap thought of symmetry principles such as
exchangeability as requirements of rationality. The idea—familiar from justifications for Laplace’s prin-
ciple of indifference—is that certain probabilistic symmetries should hold whenever one does not have
any knowledge about the relevant underlying structure. For instance, in the absence of any evidence
concerning the order of outcomes you should assume exchangeability. We will see that interpreting sym-
metry principles in this way puts significant constraints on how to include analogy effects into inductive
logic, while the approach discussed in the next section allows for a greater variety of inductive logics.

3 De Finetti’s Program

Bruno de Finetti is famous for his foundational work on probability theory and inductive inference. The
latter is of special importance to us here. The most fundamental result in this arena is de Finetti’s rep-
resentation theorem for exchangeable sequences [12]. Exchangeability is important because it captures
one of the classic situations of statistics—i.i.d. trials with unknown parameters. This is what is shown by
de Finetti’s representation theorem. Suppose, for example, that Xi records whether the ith toss of a coin
flip came up heads or tails, and that the infinite sequence X1,X2, . . . is exchangeable. de Finetti proved
that this is equivalent to the probability of finite sequences of heads and tails being a mixture of i.i.d.
binomial trials with unknown bias of the coin:3

P[X1 = x1, . . . ,Xn = xn] =
∫ 1

0
ph(1− p)n−hdµ(p) (3)

(Here, p is the bias for heads, µ is a uniquely determined prior over biases and h is the number of heads
in the first n trials.) This theorem has profound consequences for the philosophy of probability and for
inductive inference [34]. Specifically, if the prior µ in the representation is a Beta distribution (or, in the
more gneral case of finitely many types of outcomes, a Dirichlet distribution), then

P[Xn+1 = i|X1, . . . ,Xn] =
ni +αi

n+∑ j α j
,

where αi,α j are nonnegative parameters determining the Dirichlet distribution. This is equivalent to the
Carnapian inductive logic given in (2). One difference between the two approaches lies in the underlying
axiomatic foundations. In de Finetti’s case, it is given by (i) the assumption of exchangeability and (ii)
the assumption that the mixing prior in the representation µ is a Dirichlet distribution. In the Johnson-
Carnap approach there is no appeal to the de Finetti representation.

There is also an important interpretive issue that separates the early work of Carnap from de Finetti’s
probabilistic epistemology (in his later work Carnap is closer to de Finetti’s views). de Finetti did not
view exchangeability or other symmetry requirements as postulates of rationality. According to him,
exchangeability is a personal judgement of an epistemic agent as to the basic structure of a learning

3For finite forms of this result, see [9].



4 Analogical Inference in Inductive Logic

situation. Such a judgement does not arise from the lack of knowledge but presupposes knowledge about
an epistemic situation.

This view of symmetry assumptions has two important consequences, one epistemological and one
formal. In the first place, for de Finetti and his followers the justification of generalized rules of succes-
sion is only a relative one. An agent should make inductive inferences provided that she assumes certain
underlying symmetries about the learning situation. This is unlike the objective Bayesian tradition—
which includes Bayes, Laplace, Keynes, the early work on inductive logic by Carnap, and others—where
symmetry assumptions themselves are viewed not just as assumptions that one may make, but as princi-
ples every rational agent has to make under certain conditions.

de Finetti’s probabilistic epistemology is thus distinctly non-foundationalist. There is no bedrock of
initial epistemic judgements that would endow all their consequences with full rationality because they
are themselves requirements of rationality. For de Finetti, rationality is instead to be found in the interplay
of inductive assumptions, such as Johnson’s sufficientness postulate or exchangeability, and rules for
learning from observations. If you use such an inductive rule but deny its underlying assumptions, you
are simply inconsistent. So, de Finetti requires a kind of relative rationality: learning from experience
should be compatible with those inductive assumptions that are judged to be true.

The second consequence of de Finetti’s view of symmetry assumptions lifts constraints from induc-
tive logic. If assumptions such as exchangeability are not thought of as requirements of rationality but
as personal judgements, then one might consider other kinds of symmetries whenever exchangeability
does not seem appropriate. This led de Finetti to study ‘partial exchangeability’ [13, 14, 9]. One kind
of partial exchangeability, known as ‘Markov exchangeability’, allows outcomes to depend on previous
trials [10, 15, 16, 24, 30, 35]. The type of partial exchangeability most relevant to our analogical in-
ductive logic was investigated by de Finetti himself [13, 14]. Consider a situation where outcomes can
be of different types; e.g., coin flips with two coins, or medical trials with men and women. Then one
may not be willing to judge outcomes to be exchangeable across types but only within types. There is a
representation theorem for this kind of partial exchangeability, from which predictive conditional prob-
abilities can be derived [13]. The representation is very similar to (3). Probabilities are again mixtures
of independent trials, but now trials need not be identically distributed; they are identically distributed
within types, but need not be so be across types.

de Finetti viewed partial exchangeability as a type of analogical inference. Take the example of flip-
ping two coins. The coins are judged to be similar but not indistinguishable from each other. Because
of the analogy between the two coins, observations from one coin should have some influence on pre-
dictions for the other coin. The analogy comes from particular prior distributions on the chances in the
mixture of the representation theorem. The biases of the two coins may be chosen dependently, but then
trials are independent. Thus this kind of analogy influence does not persist for very long. This is also a
feature of some analogical inductive logics considered in the next section.

4 The Problem of Analogical Inductive Inference

Carnap’s basic system of inductive logic can express analogical influences only to a limited degree [6, 28,
29]. There have been many attempts to extend Carnap’s original system, and the literature on analogical
inductive logic includes many valuable contributions [1, 5, 8, 11, 17, 18, 23, 25, 26, 27, 28, 29, 31, 32].
I am going to discuss some of those contributions in order to motivate my own.

The biggest obstacle to analogical inference in Carnap’s system is Johnson’s sufficientness postulate
(1). Johnson’s sufficientness postulate makes it impossible that counts nk of outcomes k other than i
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influence the predictive probability of i. Skyrms [31] suggests an extension of Carnapian inductive logic
that keeps exchangeability but drops Johnson’s sufficientness postulate. Skyrms’ proposal is further
studied and extended in [11] and [18], and a similar model is developed for a different context (two
families of predicates) in [29]. The basic idea is to use mixtures of inductive methods (2) in order to
account for initial analogies between outcomes. This is equivalent to considering mixtures of Dirichlet
distributions instead of Dirichlet distributions in the de Finetti representation. Skyrms discusses this idea
in terms of a wheel of fortune, where observations of an outcome should also increase the predictive
probability of nearby outcomes. Using an appropriate mixture of Dirichlet priors makes this possible.
The resulting probability distributions are exchangeable but violate Johnson’s sufficientness postulate.

The analogy influence exhibited by these kinds of inductive systems is transient. This is due to the
fact that the corresponding prior probabilities are exchangeable. Exchangeability implies that the counts
of one outcome can only have an indirect effect on the predictive probabilities of other outcomes. To
see this, suppose that an outcome k is followed by an outcome i. Then exchanging i with some arbitrary
outcome in the past does not affect the joint probability. Thus, the effect of counts of k outcomes affects
the probability of i outcomes indirectly via the initial parameters in the mixture of Carnapian inductive
logics.

In order to get systems that exhibit a more permanent analogy influence, exchangeability has to
be dropped in addition to Johnson’s sufficientness postulate. The inductive systems of Costantini [8],
Kuipers [23], Niiniluoto [28] and, to a certain extent, Spohn [32] develop inductive logics of this type.
In these models, the predictive probabilities for outcome i do not just contain the counts ni but may
also have terms with counts nk of other outcomes. Each of these systems is interesting in its own right,
but for none of them is it clear what the underlying symmetry assumptions are, or whether they exhibit
interesting symmetries at all, and thus they seem a bit ad hoc.

Another criticism of some of these inductive methods was put forward by Spohn [32] and is also
expressed by Costantini [8]. Because counts of all outcomes may explicitly influence the predictive
probabilities of an outcome i, the corresponding inductive logics generally violate a postulate known
as ‘Reichenbach’s axiom’. Reichenbach’s axiom says that predictive probabilities have to converge to
limiting relative frequencies of sample outcomes, provided that the limit exists. That is, if X1,X2, . . . is
an infinite sequence of outcomes such that the limit ni/n exists as n→ ∞, then

lim
n→∞

P[Xn+1 = i|X1, . . . ,Xn] = p.

Besides Spohn’s own system, Carnap’s basic system and Skyrms’ analogical system meet Reichenbach’s
axiom.

I think this critique misses the point of certain forms of inductive inference. The inductive logics
of Costantini and Niiniluoto may be appropriate when there are underlying probabilistic dependencies
between the outcomes. If these dependencies are persistent, then Reichenbach’s axiom should not hold.
The dependencies will not be reflected in relative frequencies of outcomes, while predictive probabilities
should make use of known dependencies. I discuss this point further in the context of our analogical
inductive logic.

It is not known whether the inductive methods discussed so far can be derived from a set of axioms
analogous to those underlying the Johnson-Carnap system. This is a significant gap in our knowledge.
The set of axioms from which the Johnson-Carnap continuum of inductive methods (2) is derivable com-
pletely specifies inductive assumptions at the observational level, making it easy to determine whether
one’s priors conform to them. None of the above models of inductive inference has been treated within
this Carnapian paradigm. Maher’s inductive logic is something of an exception [25, 26]. He presents a
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set of axioms for an inductive logic with two families of predicates. Maher himself discusses problems
for the extension of the inductive logic to predicate families containing more than two predicates [26], so
I confine my attention to the case of two predicates. I think that already in this case one point is in need
of clarification.

Here is a brief overview of Maher’s proposal. Suppose we have two families with two predicates. In
the language of random variables, this means that we have two sequences of random variables V1,V2, . . .
and W1,W2, . . ., where each random variable can take on two different values (the possible values being
different for the V ’s and the W ’s). For instance, the first sequence might record whether the coin lands
heads and tails, and the second sequence may state whether the coin is flipped with the right or the left
hand. Maher then considers the so-called ‘Q-predicates’ (‘state descriptions’ in Carnap’s terminology).
The Q-predicates are all possible combinations of basic predicates from the two families. Again in the
language of random variables, this means that we consider the sequence of pairs Zn = (Vn,Wn). The
random vector Zn takes on pairs of values. Since the random variables Vn and Wn are binary, Zn can take
on four values.

Maher [25] assumes that the infinite sequence Z1,Z2, . . . is exchangeable. It follows from this that
its probability distribution has a de Finetti representation. Maher’s basic idea can then be described
as follows. The de Finetti representation implies that we can construct the probability distribution of
Z1,Z2, . . . by putting a prior distribution over the set of possible chances. Since the Zn can take on
four different values, the set of possible chances is the three-dimensional simplex ∆4 = {(x1, . . . ,x4) ∈
R4|x1, . . . ,x4 ≥ 0,x1 + . . .+ x4 = 1}. Following an idea by Carnap [6], Maher considers the subset of
probability distributions in ∆4 where the two families of predicates are probabilistically independent.
This is the set of all (x1, . . . ,x4) ∈ ∆4 such that x1 = (x1 + x2)(x1 + x3), which defines a two-dimensional
surface in ∆4 that is known as the ‘Wright manifold’ in population genetics.4

If the prior on ∆4 is a Dirichlet distribution, as in Carnap’s basic system, then any two-dimensional
surface in ∆4 has probability zero, since the Dirichlet distribution is absolutely continuous with respect
to Lebesgue measure on ∆4. Thus, the Wright manifold has probability zero. Now, Carnap and Maher
propose to look at a mixture between a Dirichlet distribution and a distribution that puts full weight on
the Wright manifold. The resulting inductive logic is a mixture of Carnap’s basic system on the random
variables Zn and the product of Carnap’s basic systems on the random variables Vn and Wn. The former
terms correspond to the hypothesis that the two predicate families are dependent and the product of the
latter two terms to the hypothesis that they are independent. Using the de Finetti representation, Maher
also provides an axiomatic basis from which this inductive method can be derived. He also shows with
the help of examples that the resulting system seems to lead to plausible numerical results that capture
certain analogy influences.

What type of analogy influences is this model supposed to capture? Maher wants to say that some of
the Q-predicates are more similar than others, namely those that share at least one underlying predicate
from the two families. If we denote the four combinations of values by Q1 = (0,0), Q2 = (1,0), Q3 =
(0,1) and Q4 = (1,1) then Q1 is similar to Q2 and Q3, Q2 to Q1 and Q4, Q3 is similar to Q1 and Q4, and
Q4 is similar to Q2 and Q3. Maher’s goal is to have an inductive logic that respects the analogies based
on these similarities. But it is difficult to see the reason why placing positive prior probability on the
Wright manifold should achieve this. There is no straightforward relationship between considering the
two predicate families as independent and the intended analogies.

The one reason I can see is the following. The similarity relationships between the Q-predicates

4After the population geneticist Sewall Wright. The Wright manifold is the set of probabilities that make the alleles at
different genetic loci independent.
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described in the previous paragraph yield four edges in ∆4 between the vertices that are considered sim-
ilar. These edges are part of the Wrigth manifold. If one wishes to reflect the analogies between the
Q-predicates in one’s prior, then one’s prior distribution over ∆4 should, presumably, place a sufficient
amount of probability weight close to the four edges. One way to achieve this is by distributing proba-
bilities in an appropriate way on the Wright manifold. But this is neither necessary nor sufficient. We
can endow the Wright manifold by assigning positive probability only to the barycenter of ∆4 (which is
an element of the Wright manifold) and probability zero to all the other points in the Wright manifold.
In this case, the overall prior over ∆4 may not place the required probability weight close to the four
edges. On the other hand, we may do exactly that without having to assign positive probability to the
Wright manifold. Thus, even though it may work in some cases, assigning positive probability to the
Wright manifold does not seem to be a principled solution to the analogy problem, which would char-
acterize priors over ∆4 that assign a sufficient probability weight to the four edges between analogous
Q-predicates.

5 Extending Partial Exchangeability

The brief discussion in the previous section should make it clear that there are many forms of analogical
inference. Each form of analogical inference merits study, and existing inductive logics vary in their
degree of solving analogical inference problems successfully. In the remainder of this paper I would like
to propose one form of analogical inductive inference that is based on de Finetti’s ideas about partial
exchangeability and that can be solved within the Carnapian paradigm.

Recall that partial exchangeability looks at situations with outcomes of different types. This inductive
situation can be illustrated with an example that Achinstein used to criticize Carnap’s original inductive
logic [1]. In this example we observe whether or not different types of metal conduct electricity. We
might, for instance, look at osmium, platinum and rhodium. These three metals are the types in de
Finetti’s setup. Each type may or may not conduct electricity. This defines two outcomes. The analogy
between types comes from the fact that they share certain significant chemical properties. Because of
the analogy between types, it is reasonable to think that instances where osmium and rhodium where
observed to conduct electricity are relevant for predictions of whether platinum conducts electricity. In
this case, de Finetti’s theory of partial exchangeability may be applied with a prior that reflects these
analogies.

Partial exchangeability has a similar effect on analogical inferences as exchangeability: analogy
is transient and vanishes in the limit. This makes sense in the example of flipping two coins. The
similarity between the two coins may influence one’s early judgements, but if there are no underlying
dependencies between the coins the influence of similarity judgements will diminish. This is reflected
by the fact that Reichenbach’s axiom holds for predictive probabilities. But what if there are persistent
dependencies between types? This might arguably be the case in the example of whether different metals
conduct electricity, since there presumably is an underlying common cause for the relevant outcome.
Another example can be constructed by considering the success of medical trials among males and
females. The types are male and female, and the outcomes (in the simplest case) are whether the trial
was successful or not. Now, there might be an underlying chancy dependency between types that is
influenced by environmental and other factors. If this dependency is permanent, this should be reflected
in the analogical inductive logic.

How might such an inductive logic look like? The basic setup has a sequence of outcomes X1,X2, . . .
and a sequence of types Y1,Y2, . . .. Suppose, for simplicity, that there are only two types. Predictive
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probabilities concern future outcomes and not future types. The predictive probability of observing
outcome i given that it is of type 1 and given past observations may be given by

P[XN+1 = i|XN ,YN ,YN+1 = 1] =
ni1 +βni2 +αi1

N1 +βN2 +∑ j α j1
. (4)

In this formula, Xn = (X1, . . .XN),YN = (Y1, . . . ,YN) are the past observations of outcomes and types;
ni j is the number of outcomes i of types j; and N1 and N2 are the total number of observations of type
1 and 2. The α parameters have the same meaning as in Carnap’s basic system (2). The β parameter
expresses the analogy influence of observations of type 2 on observations of type 1. If β is positive,
then i observations of type 2 will have a positive influence on the predictive probability. This indicates a
judgement of positive analogy between types. Moreover, analogy is permanent—since β is a constant,
the analogy influence of type 1 on type 2 does not vanish as n increases.

There are many ways in which the qualitative features of the predictive probability (4) could be
formalized. Is (4) just a formula that exhibits some resemblance to Carnap’s original system? Or is there
some underlying rationale? To see what is going on, notice, in the first place, that de Finetti’s notion of
partial exchangeability will not in general allow predictive probabilities to be of the form as given in (4).
Partial exchangeability implies the following. Suppose that XN+1 = i,XN+2 = k,XN+3 = j. The predictive
probability of this sequence of outcomes, given the past and the sequence of types YN+1 = 1,YN+2 =
2,YN+3 = 1, is equal to the predictive probability of the sequence XN+1 = j,XN+2 = k,XN+3 = i (in order
to get from the first sequence of outcomes to the second we only exchange two outcomes within the same
type). Now suppose that k = j. Then the first sequence of outcomes is XN+1 = i,XN+2 = j,XN+3 = j and
the second is XN+1 = j,XN+2 = j,XN+3 = i. It is difficult to see how in this case counts of outcome j
of type 2 can have a constant influence on the predictive probability of outcomes j of type 1. If it had,
its effect would have to be balanced exactly against the joint probability for the second sequence, which
may not work in general.5

The same issue does not arise if k 6= i, j. Thus, it seems reasonable to weaken partial exchangeability
in order to allow for persistent analogical influences. We let pn

ik j,st = P[XN+1 = i,XN+2 = k,XN+3 =
j|Xn,Yn,YN+1 = s,YN+2 = t,YN+3 = s]. Then generalized partial exchangeability requires, in the first
place, that

pn
ik j,st = pn

jki,st

whenever k 6= i, j (if k = i or k = j, equality may but need not hold). Furthermore, let pn
i j,s = P[XN+1 =

i,XN+2 = j|Xn,Yn,YN+1 = s,YN+2 = s]. Then generalized partial exchangeability requires, in the second
place, that

pn
i j,s = pn

ji,s

The next section is devoted to showing that generalized partial exchangeability, together with some
further assumptions, leads to an interesting analogical inductive logic.

6 A New Analogical Inductive Logic

The most important additional assumption that we need is a modification of Johnson’s sufficientness
postulate:

P[XN+1 = i|XN ,YN ,YN+1 = j] = fi j(ni1,ni2,N1,N2) (5)

5For a precise statement, see my [19], especially Corollary 2.
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For simplicity, we continue assuming that there are only two types (for a generalization to a finite number
of types, see [19]). The modified sufficientness postulate says that predictive probabilities for an outcome
i depend on i, its type, as well as on the observed counts of i outcomes of both types. This is a natural
way to allow for analogical influences between types.

We also need two technical postulates. The first one is a regularity assumption to the effect that
all finite sequences of types and outcomes have positive probability; i.e., every finite pair of sequences
X1, . . . ,XN ,Y1, . . . ,YN has positive probability. Finally, we assume that future types do not give informa-
tion about the outcome of the next trial. More specifically,

P[XN+1 = i|X1, . . . ,XN ,YN+1 = j] (6)

= P[XN+1 = i|X1, . . . ,XN ,YN+1 = j,YN+2 = k]

= P[XN+1 = i|X1, . . . ,XN ,YN+1 = j,YN+2 = k,YN+3 = l].

This condition is a significant restriction for the applicability of our inductive logic. For example, think
of types as different medical treatments (as in a bandit problem) and of outcomes as success or failure.
Then a success on the next trial might not be probabilistically independent of future treatments.

Suppose now that X1,X2, . . . and Y1,Y2, . . . are two infinite sequences of outcomes and types for which
the foregoing assumptions hold (generalized partial exchangeability, modified sufficientness postulate,
regularity, and conditional independence (6)). Suppose, in addition, that trials within types are not inde-
pendent, and that there are at least three outcomes.6 Then the following theorem is true:

Theorem 1. There exist positive constants αi j and nonnegative constants β ,γ such that N1 + βN2 +

∑i αi1 6= 0,N2 + γN1 +∑i αi2 6= 0 and

P[XN+1 = i|XN ,YN ,YN+1 = 1] =
ni1 +βni2 +αi1

N1 +βN2 +∑i αi1

P[XN+1 = i|XN ,YN ,YN+1 = 2] =
ni2 + γni1 +αi2

N2 + γN1 +∑i αi2

for all N and all 0≤ ni j ≤ N j.

This theorem follows from a more general result in my [19] where I prove these assertions for more
than two types and allow the total number of trials to be finite.

The sequence of predictive probabilities can be generated by an urn model (just like the predictive
probabilities of Carnap’s basic system are generated by a Polya urn). Since the predictive probabilities
of our new inductive logic do not fix the probabilities of types, we may first choose a sequence of types
at random from a distribution that assigns positive probability to each finite sequence of types. Assume
that we also have an urn for each type containing balls labelled by the outcomes. The initial distribution
of balls in urn j depends on the prior parameters αi j. We now start choosing balls from urns following
the sequence of types. Whenever we choose a ball from an urn, we put it back together with another
label. If the urn is of type 1, we put a ball with weight β into the urn associated with type 2.

The most important difference between our new inductive logic and Carnap’s basic system (2) are the
parameters β ,γ . Are there any good reasons to think that they are analogy parameters? Let me mention
two. First, it can be shown that β is positive if

P[X2 = i|X1 = i,Y1 = 2,Y2 = 1]> P[X1 = i|Y1 = 1].

6Assuming independence has the same reason as in the case of the Johnson-Carnap continuum—independence means that
there is no inductive learning. Since the sufficientness postulate is empty if there are only two outcomes, this case has to be
treated separately, for example by assuming additivity of predictive probabilities. An alternative approach is proposed in [7].
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Furthermore, β increases as P[X2 = i|X1 = i,Y1 = 2,Y2 = 1] approaches 1.7 This means that we have
analogy effects of type 2 on type 1 if observing an outcome of type 2 makes it sufficiently more likely to
observe the same outcome of type 1. This is what one would expect of an analogical inference.

The second reason becomes relevant if there are more than two types. Consider the analogy param-
eters of two types with respect to a third one. If one parameter is larger than the other, then observing
outcomes of the former type raises the probability of outcomes of the third type more than observing
outcomes of the second type.8

The inductive logic of Theorem 1 is open to various interpretations. If we interpret the parameters
β and γ as analogy parameters, then it is plausible to require that β ,γ ≤ 1 since, arguably, every type is
maximally analogous to itself. This idea can be captured by another postulate:

P[X2 = i|X1 = i,Y1 = j,Y2 = j]

≥ P[X2 = i|X1 = i,Y1 = k,Y2 = j]

This says that an observation of an outcome i of type j never has a lower effect on the predictive proba-
bility of that outcome when it is of type j than observing an outcome i of another type. It is easy to see
that this forces the analogy parameters β ,γ to be between zero and one.

But we may also think of types in terms of different information sources that are used to predict
probabilities of outcomes. In this case, β and γ express judgements about the reliability of the two
sources. Consequently, if β > 1 the agent believes that the second information source is more trustworthy
than the first one and that, accordingly, information from type 2 observations should have more weight.

One feature of the inductive logic of Theorem 1 was already discussed earlier in a different context.
Our new inductive logic violates Reichenbach’s axiom whenever the analogy parameters β and γ are
positive. In this case, predictive probabilities converge to a convex combination of relative frequencies
of outcomes of the two different types. As remarked earlier, if the underlying process is not assumed to
be essentially independent, this is what one should expect. Our inductive logic allows types to be proba-
bilistically dependent throughout the process of observation, and so observations from other types don’t
necessarily cease to be relevant for predictive probabilities of one particular type. Thus, Reichenbach’s
axiom should not be postulated for this case.

7 Conclusion

One of the biggest advantages of our inductive logic is that there is a precise set of conditions from
which it can be derived. These conditions can be thought of as the inductive assumptions that make the
use of our analogical inductive logic adequate, provided that they are thought to be true. For most other
analogical inductive logics the underlying assumptions are not as clear, which makes it difficult to apply
them.

What I wish to emphasize is that there are different ways to reason analogically. Accordingly, there
is going to be a variety of legitimate analogical inductive logics, and not just the one inductive logic
that fully captures analogical reasoning. One basic distinguishing feature is suggested by the foregoing
discussion. There are, on the one hand, inductive logics where analogies reflect initial similarities but are
washed out with increasing information. On the other hand, there are permanent analogical inferences
such as in our inductive logic. Here, analogy persists with increasing information. Which type of analogy
is appropriate depends on one’s inductive assumptions.

7Similar relations hold for γ; see [19].
8See Proposition 1 in [19].
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