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This paper builds on our contributionl [4] which studied mitidg of the conjunction in human
language. We have discussed three different ways of caistgua conjunction. We have dealt with
generated t-norms, generated means and Choquet integral.

In this paper we construct the residual operators based emalibve conjunctions. The only
operator based on a t-norm is an implication. We show thatithplication belongs to the class of
generated implicationbﬂ which was introduced ir_[8] and studied in [3]. We study iteperties.
Moreover, we investigate this class of generated impbeceti Some important properties, including
relations between some classes of implications, are given.

1 Introduction

In [4], we studied modelling of the conjunction in human laage. We have experimentally rated

simple statements and their conjunctions. Then we have, toe the basis of measured data, to find
a suitable function, which corresponds to human conjunctMye have discussed three different ways
of constructing a conjunction. We have dealt with generatedrms, generated means and Choquet
integral. Now we are interested in a construction of the ioglons based on the above conjuctions.
One of the possible ways to construct the implications idahewing transformation

X, y,u € [0,1];C(x,u) <y <= Rc(X,y) > u.

This transformation produces the residual operRobased on the given conjuncti@ For some con-
junctions we can get, in this way, a residual operator whscmi implication.

For better understanding we recall basic definitions arnérstants used in the paper. We deal with
multivalued (MV for short) logical connectives, which areonotone extensions of the classical con-
nectives on the unit intervd0, 1]. We turn our attention to the conjunctions in MV-logic. Ubyathe
triangular norms are used to interpret the conjunctions Aldgic.

Definition 1. [[7] A triangular norm (t-norm for short) is a binary operatioon the unit intervalO, 1],
i.e., a function T: [0,1]2 — [0, 1], such that for all xy,z € [0,1] the following four axioms are satisfied:
e (T1) Commutativity
TXY) =Ty.X),
e (T2) Associativity
T(T(xY),2 =T (xT(y,2),

e (T3) Monotonicity
T(x,y) < T(x,2) whenever ¥ z,
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e (T4) Boundary Condition
T(x,1) =x.

The four basic t-norms are:
e the minimum t-normly (x,y) = min{x,y},

the product t-nornTp(X,y) = X-V,
the tukasiewicz t-nornT (x,y) = max{0,x+y—1},

0 if max{x,y} <1,
min{x,y} otherwise.

We deal only with such continuous t-norms, that are gengayea unary function (the generator).
One possibility is to generate by an additive generatorchvis a strictly decreasing functidnfrom the
unitinterval[0, 1] to [0, +eo] such thatf (1) = 0 andf (x) + f(y) € H(f)U[f(0"),+oo] for all x,y € [0, 1],
whereH (f) is range off. Then the generated t-norm is given as follows

the drastic producip(x,y) = {

T(xy) = fY(F0+ f(y)),
where (=1 : [0, 4] — [0,1] and f(~Y(y) = sup{x € [0,1]| f(x) > y}. Note, thatf(-1 is a pseudo-
inverse, which is a monotone extension of the ordinary swdunction. For an illustration, we give the
following example of parametric class of t-norms and thditigve generators.
The family of Yager t-norms, introduced by Ronald R. Yagegiven for 0< p < +oo by

TD(X>y) if p:O,
Ty (xy) = ¢ Tw(xy) if p=-+oo,
max{o,l—((1—x)p+(1—y)p)%} if0 < p<+oo.

The additive generator d’fg forO< p<+owis
fo(x) = (1-x)P.

Because of associativity, we can extend t-norms totkiariete case as:

X(n) X ifn=1,
T Teod™) ifn>1

A t-normT is called Archimedean if for eachy in the open interval0, 1] there is a natural number
nsuch thaix(T”) <vy. Itis sufficient to investigate Archimedean t-norms, beeagigery non-Archimedean
t-norm can be approximated arbitrarily well with Archimadet-norms,[[5, 5].

Remark 1. If T is a t-norm, then the dual function: 0, 1]° — [0, 1] defined by 8&y) =1-T(1—x,1—
y) is called a t-conorm. Its neutral elementUsnstead ofl, and all other conditions remain unchanged.
Analogously to the case of t-norms, some classes of t-cancambe generated by additive generators.
The additive generator for a t-conorm is a strictly incraagifunction g from the unit intervdD, 1] to
[0,+00] such that g0) = 0 and gx) +g(y) € H(g) U[g(1™),+] for all x,y € [0,1]. The generated
t-conorm is given by

Sxy) =gV (9 +9(y),
where g9 (y) = sup{x € [0,1]|g(x) < y}. Note that t-conorms are usually used for modelling fuzzy
disjunctions.



V. Havlena and D. Hlinéna 15

Now, we continue with definitions and properties of fuzzy at#ns.

Definition 2. (see e.g. in[[R]) A function N[0,1] — [0,1] is called afuzzy negatiorif, for each ab €
[0,1], it satisfies the following conditions

e ()a<b=N(b) <N(a),
e (i)N(0)=1,N(1)=0.

Remark 2. A dual negatioN® : [0,1] — [0, 1] based on a negation Ns given by N(x) =1 —N(1-Xx).

A fuzzy negation N is callestrict if N is strictly decreasing and continuous for arbitraryyxe [0, 1].

In classical logic we have thatA’)’ = A. In multivalued logic this equality is not satisfied for gve
negation. The negations with this equality are calieeblutive negationsThe strict negation istrong

if and only if it is involutive. The most important and mosti@ly used strong negation is the standard
negation N(x) = 1—x.

In the literature, one can find several different definitiohfuzzy implications. In this paper we will
use the following one, which is equivalent to the definitintraduced by Fodor and Roubenslin [2].

Definition 3. A function I: [0,1]> — [0,1] is called afuzzy implicationif it satisfies the following con-
ditions:

(11) 1'is non-increasing in its first variable,

(I12) 1is non-decreasing in its second variable,

(13) 1(1,0) =0, 1(0,0) = 1(1,1) = 1.

We recall definitions of some important properties of fuanplications which we will investigate.
Definition 4. A fuzzy implication t [0,1]? — [0, 1] satisfies:
(NP) the left neutrality property if
I(1,y)=y forallye[0,1],
(EP) the exchange principle if
l(%1(%,2)) =1(y;1(x,2)) forallx,y,z€[0,1],

(IP) the identity principle if
[(x,x) =1 forallxe|0,1],

(OP) the ordering property if
x<y <= I(xy)=1 forallx,ye|0,1],
(CP) the contrapositive symmetry with respect to a givemyfuegation N if
[(x,y) =1(N(y),N(x)) forallx,y e [0,1].

Definition 5. Let 1:[0,1]? — [0,1] be a fuzzy implication. The function tefined by Nx) = I (x,0) for
all x € [0,1], is called the natural negation of I.

(S N)-implications which are based @rconorms and fuzzy negations form one of the well-known
classes of fuzzy implications.
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Definition 6. A function I: [0,1]?> — [0,1] is called an(S, N)-implication if there exist a t-conorm S and
a fuzzy negation N such that

I(xy) =S(N(x),y), xyel0,1].

If N is a strong negation then | is called a strong implication

The following characterization dfS,N)-implications is from/[[1].
Theorem 1. (Baczyski and Jayaram([1], Theorem 5.1) For a function[D, 1] — [0, 1], the following
statements are equivalent:

e |isan(S N)-implication generated from some t-conorm and some coatis(strict, strong) fuzzy

negation N
o | satisfies (12), (EP), and Ns a continuous (strict, strong) fuzzy negation.

Another way of extending the classical binary implicatiorthie unit intervall0,1] is based on the
residual operator with respect to a left-continuous tridagnormT

It(x,y) =max{ze [0,1] | T(X,2) <y}.

Elements of this class are knownRsmplications. The following characterization Bfimplications is
from [2].

Theorem 2. (Fodor and Roubens [2], Theorem 1.14) For a function[0,1]2 — [0, 1], the following
statements are equivalent:

e | is an R-implication based on some left-continuous t-notm T
e | satisfies (12), (OP), (EP), andX,.) is right-continuous for any x [0,1].
At last we introduce a characterization of implicationsdzhen®-conjugate from[[L].

Definition 7. We denote b the family of all increasing bijections on the unit intery@)1]. We say that
implications |, 1, : [0,1]2 — [0, 1] are ®-conjugate if there exists a bijectigh € ® such that 4 = (1),
where

(I)p(xy) = ¢ (11($ (), (¥))),
for all x,y € [0,1].
Theorem 3. (Baczyiski and Jayaram([1], Theorem 2.4.20) Let[0,1]?> — [0,1] be a function. Then
| is a continuous function satisfying (OP), (EP), if and oiflyl is ®-conjugate with the tukasiewicz
implication.

It is well-known that it is possible to generate t-norms frome variable functions. Therefore the
guestion whether something similar is possible in the cd$azay implications is very interesting. In
[Q] Yager introduced two new classes of fuzzy implicatiorisimplications andg-implications where
their generatorg are continuous additive generators of continuous Archaaad-norms and generators
g are continuous additive generators of continuous Archaaad-conorms.

In this paper we deal with some of less known classes of gtefazzy implications which were
introduced in([8] and studied in][3].

The first class of generated implications is based on strictireasing functiong.

Theorem 4. [8] Let g: [0,1] — [0,] be a strictly increasing function such thatdQy = 0. Then the
function P : [0,1]% — [0,1] which is given by

19(x,y) = g Y (g(1—x) +a(y)), (1)

is a fuzzy implication.
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The fuzzy implicationl9 can be generalized. This generalization is based on regldlé standard
negation by an arbitrary one.

Theorem 5. [B] Let g : [0,1] — [0,] be a strictly increasing function such that@y = 0 and N be a
fuzzy negation. Then the functig |

IR (xy) =gV (a(NX) +a(y)), @)

is a fuzzy implication.

2 The residual operators based on the considered conjunciis

As mentioned in the first section, we have found residualatpes of conjunctions which were based on
empirically measured data.
The first conjunction was the t-norfi)’ which is given by

T (xy) = max{o,l— ((1—x)2+(1—y)2)%}.
It is Yager's t-norm with parametgr = 2. The corresponding residual operator (Eig. 1a) is given by
iy (xy) = 1— (max((1-y)? — (1-%)2),0)2. 3)
In general, residual implications which are based on YagmxrmsTg are given by:

1
Iy (xy) = 1— (max((1—y)P — (1-X)P),0)?. )
Now, we will investigate properties of implicatiomsy and their membership in the classes of implica-
tions. We turn our attention to the classl8fimplications. The boundary conditions fifimplications
are given by
19(x,0) =g Yog(1-x) =1-x,
19(L,y) =g Yog(y) =V.
On the other hand, residual implicatibfg/ satisfies the following equality
Iy (%,0) = 1— (max(1— (1~ %)P),0)? =1 (1 (1—x)P)>.
Therefore the implicationg can not be expressed Bs but asll‘i’l. The function
Np(X) = Iy (,0) = 1— (1~ (1-x)P)»
is a negation (particularly, fgp = 2 we getN,(x) = 1— y/X(2— X)) and since
||8|(Xa O) = g(il)(g(N(X)%g(O)) = N(X)v

the impIicationIpr is expressed by the functidﬁ with negationN = Nj,.
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Furthermore, we consider the functigp(x) = 1— (1—x)P, Whereggl(x) =1-(1- x)Tll. Then the
function Iﬁz is given by

N (xY) = ggl(min(gp(Np(X))Jrgp() p(1)))
= gy (min((1-x)P+1-(1-y)P,1))
= 1-(1-min((1—-X)P+1—(1—y)P,1))>.

Since 1- min(1—x,1—y) = max(x,y) we have

12 (x.y) = 1— (max((1—y)P — (1-%)P).0)? = Iy (x,y).

Let p > 0. Directly from Definition[4 we get that the implicatiorhﬁy satisfy properties (IP) and

(NP). Since the |mpI|cat|ontsry are residual operators based on the Ieft continuous tmﬂigmand due
to TheoreniR, properties (EP) and (OP) are satisfied for thgsications. Additionally

1
Iy (Np(y), Np(¥)) = 1— (max(1— (1-X)P — (1— (1-y))P),0)» = Iry(x,y),
which is the property (CP) with respect to the negatiips

The next conjunction is a quasi-arithmetic méarffor more details seé [4]). Its residual operator is
given by formula

Mi(ey) = suplte 03] [M(co) <y} = supfre 0.3 | J06 %) <y
= (min{max{2y? —x2,0},1}).

This operator is not an implication, since the boundary @ardl (0,0) = 1 is violated (Fig[.Ilc). The
same problem occurs with residual operator of the last cmtipn, which is Choquet integral (Fig.]1b).
Therefore we will not discuss these operators.

3 Properties of19 and I,% implications

In this section we investigate properties of generated igapbns |9 and Iﬁl. We focus on relations
between these generated implications and some well knaeses of implications.

In the following text we denote b§f the class of9 implications and byiﬁl the class oi,?, implica-
tions. Further we denote [y, .. the class oR-implications based on left-continuous t-norm andigy
the class of S N)-implications. With the subscrigt we denote a continuous function (we use it in the
context of continuous functiorggandN).

Two of the best known classes of implications Rramplications and S N)-implications. In the first
part we focus on the relation of the clasgfsandls . We are interested in two questions —whether the
cIass]I,%, is a proper subclass &  and if not, find a subclass of ]I,%, satisfyingC C Is .

Lemma 1. Let | : [0,1]? — [0,1] be an implication. If I€ I¥ then | € Is .
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(c) Residual operator of quasi arithmetic mééan

Figure 1: Residual operators based on the found conjursction

19

Proof. We deal Withl,?,, whereN is an arbitrary negation arglis a continuous generator. Singes a

strictly increasing continuous function wij0) = 0, it holds

g P (@) +9y) = (%),
whereS; is t-conorm generated iy Accordingly

1(xy) = 1§ (xy) = g™V (a(N(X) +a(y)) = S(N(x),y)
and thud ¢ HS,N-

For illustration we provide the following example:

Example 1. Let g: [0,1] — [0, ] be a function given by the following formula
g(x) = —In(1—x).
The function g is strictly increasing and continuous. Itsymoinverse function(g? is given by
g V(x)=1—e* forxe[0,].
Then for the function g we get the following implication

19(x,y) = 1— @Y — 1 _x4xy,
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which is $(1—x,y), where $ is dual operator to the product t-norm anélis thus an(S N)-implication
with negation Nx) = 1—x.

Lemma 2. For the classed, andls y, it holdsI{, \ Is iy # O.

Proof. We assuméy \ Is y = 0.
We turn our attention to the following example: We consideg strictly increasing functiorf :
[0,1] — [0, 0] which is given by formula

X if x<0.5,
f(x) = .
0.5+ 0.5x otherwise.

Its pseudoinverse function is given by

X if x<0.5,

0.5 if 0.5 <x<0.75,
2x—1 if0.75<x<1,
1 if 1 <X

fD(x) =

Finally, for implication based on the functidnwe get

1-x+vy if x>0.5,y<05x—y>0.5,
0.5 if x>0.5y<0.5025<x-y<0.5,
1-2x+2y if x>0.5,y<05x—-y<0.25,

1 (x,y) =
() min(1—x+2y,1) if x<0.5y<0.5,

min(2—2x+vy,1) if x>0.5y> 0.5
1 if x<0.5y>0.5.

Now we will construct a negatioN and a t-conornsuch that f(x,y) = S(N(x),y). From the boundary
condition we get

11(x,0) = fY o f(1—x) = 1—x=S(N(x),0) = N(X)
and therefore(x,y) = I (1 —x,y) is a t-conorm. But

S(0.3,50.35,02)) = S0.3,05) =1-14+1=0.6
§(S(0.3,0.35),02) = S(05,0.2) =05

and thusSis not associative, which is a contradiction. O
Theorem 6. For the classed%, I¥ and sy, it holdsI% C I C Is .

Proof. Apparentlyl® C Hﬁfc holds true and the implicatiohzy from the previous section forms an exam-
ple of an implication irl{; \ I1%. From Lemmall we g&f; C Is . If we consider théS N)-implication
I(x,y) = max{1—x,y} and try to express this implication #%, we obtainl (x,y) = max{1—x,y} =
oY (g(1—x) +g(y)), which is an expresion via additive generator, but the soonmaxx,y} has no
additive generator. Therefofig \]I%Cc #£0. O
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Figure 2: Intersection of the class Bfimplications based on left-continuous t-norm and thes:tais,%
implications with continuous generatgiand negatiom.

I[TLC

The second part is devoted to the relation of a subclasﬂﬁ,of/vith continuous generatay and
continuous negatioN, andlr, ., which is explained in the following assertion.

Lemma 3. Let | : [0,1]2 — [0,1] be an implication such that¢ I§;. Then | is an R-implication based
on left-continuous t-norm if and only if | ®-conjugate with the Lukasiewicz implication.

Proof. (=) We assume thatt = I,?, for some continuoug and N. According to Lemmall we get
I(x,y) = §(N(x),y). Since bothg andN are continuous functions, als® is continuous and there-
fore | is continuous, too. By the assumptidnjs an R-implication based on left-continuous t-norm.
From Theorenfi ]2 we directly get thdtsatisfying properties (OP) and (EP) and from Theotém 3 we
finally obtain thatl is ®-conjugate with the tukasiewicz implication.

(<) Sincel is ®-conjugate with the Lukasiewicz implication, accordingrteeoreni 8] is a contin-
uous implication satisfying (OP), (EP) and from Theofém 2getthatl is anR-implication based on a
left-continuous t-norm. O

Theorem 7. Let | : [0,1] — [0, 1] be an implication such that¢ I¥; . Then | is an R-implication based
on a left-continuous t-norm if and only i I¢¢, where N (x) = ¢ (1 — ¢ (x)) for somep € ®.

Proof. (=) Sincel is anR-implication based on a left-continuous t-norm, from LenfBhae get that
is d-conjugate with the Lukasiewicz implication, and thus fbhnay € [0, 1],

1(x,y) = (Ik (% ))g = ¢ ~H(min{1—$(x) + d(y), 1}) = 1§, (x.y),

wherel k is the Lukasiewicz implication given byk (x,y) = min{1—x-+Y,1}. The last equality holds
because, for ak,y € [0, 1]

1%, (Y) = ¢~ H(min{§ (Ng(x)) + $ (¥), #(1)}) = ¢~ *(in{1— () + (y), 1}).
(<) This directly follows from Lemmal3 and equalityik )¢ = Iﬁp. O

Directly from previous theorem we get what are the intefeactf Iy, . and H,g\fc, 1% respectively.
(Fig.[2).
e _ 19 9 ¢
Corollary 1. Ir,. NI, = Ix; , wherelgf, = {I{, | ¢ € ®}.

Corollary 2. Tr, . N1% =1%, wherel% = {I1? | ¢ € ®,¢(x)+¢(1—x) =1,x€[0,1]}.
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4 Conclusion

We have investigated the residual operator of the conjoncilhis conjunction was based on empirical
data. It turned out that the only operator based on genetatedn is an implication and it belongs to
the less known class of generated implicatitﬂmwhereN(x) # Ns(x). We have studied the properties of
|§-implications. We showed that although the clad§esnd (S N)-implications are similar, they are not
identical. And also, we examined the relationship betwéaﬂsesi,?, andR-implications based on left-
continuous t-norms. In the future we plan to model implimasi in human language via fitting residual
operators to empirical data.

Acknowledgement. The work was supported by the BUT project FIT-S-14-2486.

References

[1] M. Baczynski & B. Jayaram (2008)Fuzzy Implications Studies in Fuzziness and Soft Comput2@/,
Springer, Berlin, doi:10.1007/978-3-540-69082-5.

[2] J.C. Fodor & M. R. Roubens (1994fuzzy Preference Modelling and Multicriteria Decision $ap. Theory
and Decision Library D:, Kluwer Academic Publishers, Deirt, doi:10.1007/978-94-017-1648-2.

[3] D. Hlinéna & V. Biba (2012): Generated fuzzy implications and fuzzy preference strestuKybernetika
48(3), pp. 453-464.

[4] D. Hlinéna & V. Havlena (2016)Fitting Aggregation Operatorsin: Mathematical and Engineering Methods
in Computer Science, Lecture Notes in Computer Science, 98 Springer International Publishing, pp.
42 —53,dol:10.1007/978-3-319-2981 57

[5] S. Jenei (1998):0n Archimedean triangular norms Fuzzy Sets and Systen®9(2), pp. 179 — 186,
doi{10.1016/S0165-0114(97)00021-3.

[6] S. Jenei & J. C. Fodor (1998Dn continuous triangular norms~uzzy Sets and Systeri®0(13), pp. 273 —
282, d0i:10.1016/S0165-0114(97)00063-8.

[7] E. P. Klement, R. Mesiar & E. Pap (2000J)riangular Norms Kluwer Academic Publishers, Boston,
doi{10.1007/978-94-015-9540-7.

[8] D. Smutna (1999)0On many valued conjunstions and implicatiodsurnal of Electrical Engineerii®99(50),
p. 8.

[9] R.R.Yager (2004)On Some New Classes of Implication Operators and Their R@@proximate Reasoning
Information Science$67(1-4), pp. 193-216, dpi:10.1016/j.ins.2003.04.001.


http://dx.doi.org/10.1007/978-3-540-69082-5
http://dx.doi.org/10.1007/978-94-017-1648-2
http://dx.doi.org/10.1007/978-3-319-29817-7_5
http://dx.doi.org/10.1016/S0165-0114(97)00021-3
http://dx.doi.org/10.1016/S0165-0114(97)00063-8
http://dx.doi.org/10.1007/978-94-015-9540-7
http://dx.doi.org/10.1016/j.ins.2003.04.001

	1 Introduction
	2 The residual operators based on the considered conjunctions
	3 Properties of Ig and Ig_N implications
	4 Conclusion

