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This paper builds on our contribution [4] which studied modelling of the conjunction in human
language. We have discussed three different ways of constructing a conjunction. We have dealt with
generated t-norms, generated means and Choquet integral.

In this paper we construct the residual operators based on the above conjunctions. The only
operator based on a t-norm is an implication. We show that this implication belongs to the class of
generated implicationsIg

N which was introduced in [8] and studied in [3]. We study its properties.
Moreover, we investigate this class of generated implications. Some important properties, including
relations between some classes of implications, are given.

1 Introduction

In [4], we studied modelling of the conjunction in human language. We have experimentally rated
simple statements and their conjunctions. Then we have tried, on the basis of measured data, to find
a suitable function, which corresponds to human conjunction. We have discussed three different ways
of constructing a conjunction. We have dealt with generatedt-norms, generated means and Choquet
integral. Now we are interested in a construction of the implications based on the above conjuctions.
One of the possible ways to construct the implications is thefollowing transformation

∀x,y,u∈ [0,1];C(x,u) ≤ y ⇐⇒ RC(x,y) ≥ u.

This transformation produces the residual operatorRC based on the given conjunctionC. For some con-
junctions we can get, in this way, a residual operator which is an implication.

For better understanding we recall basic definitions and statements used in the paper. We deal with
multivalued (MV for short) logical connectives, which are monotone extensions of the classical con-
nectives on the unit interval[0,1]. We turn our attention to the conjunctions in MV-logic. Usually, the
triangular norms are used to interpret the conjunctions in MV-logic.

Definition 1. [7] A triangular norm (t-norm for short) is a binary operation on the unit interval[0,1],
i.e., a function T: [0,1]2 → [0,1], such that for all x,y,z∈ [0,1] the following four axioms are satisfied:

• (T1) Commutativity
T(x,y) = T(y,x),

• (T2) Associativity
T (T(x,y),z) = T (x,T(y,z)) ,

• (T3) Monotonicity
T(x,y) ≤ T(x,z) whenever y≤ z,

http://dx.doi.org/10.4204/EPTCS.233.2
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• (T4) Boundary Condition
T(x,1) = x.

The four basic t-norms are:

• the minimum t-normTM(x,y) = min{x,y},

• the product t-normTP(x,y) = x·y,

• the Łukasiewicz t-normTL(x,y) = max{0,x+y−1},

• the drastic productTD(x,y) =

{

0 if max{x,y} < 1,

min{x,y} otherwise.

We deal only with such continuous t-norms, that are generated by a unary function (the generator).
One possibility is to generate by an additive generator, which is a strictly decreasing functionf from the
unit interval[0,1] to [0,+∞] such thatf (1) = 0 and f (x)+ f (y) ∈ H( f )∪ [ f (0+),+∞] for all x,y∈ [0,1],
whereH( f ) is range off . Then the generated t-norm is given as follows

T(x,y) = f (−1) ( f (x)+ f (y)) ,

where f (−1) : [0,+∞] → [0,1] and f (−1)(y) = sup{x ∈ [0,1] | f (x) > y}. Note, that f (−1) is a pseudo-
inverse, which is a monotone extension of the ordinary inverse function. For an illustration, we give the
following example of parametric class of t-norms and their additive generators.

The family of Yager t-norms, introduced by Ronald R. Yager, is given for 0≤ p≤+∞ by

TY
p (x,y) =















TD(x,y) if p= 0,

TM(x,y) if p=+∞,

max
{

0,1− ((1−x)p+(1−y)p)
1
p

}

if 0 < p<+∞.

The additive generator ofTY
p for 0< p<+∞ is

fY
p (x) = (1−x)p

.

Because of associativity, we can extend t-norms to then-variete case as:

x(n)T =

{

x if n= 1,

T(x,x(n−1)
T ) if n> 1.

A t-norm T is called Archimedean if for eachx,y in the open interval]0,1[ there is a natural number

n such thatx(n)T ≤ y. It is sufficient to investigate Archimedean t-norms, because every non-Archimedean
t-norm can be approximated arbitrarily well with Archimedean t-norms, [6, 5].

Remark 1. If T is a t-norm, then the dual function S: [0,1]2 → [0,1] defined by S(x,y) = 1−T(1−x,1−
y) is called a t-conorm. Its neutral element is0 instead of1, and all other conditions remain unchanged.
Analogously to the case of t-norms, some classes of t-conorms can be generated by additive generators.
The additive generator for a t-conorm is a strictly increasing function g from the unit interval[0,1] to
[0,+∞] such that g(0) = 0 and g(x) + g(y) ∈ H(g)∪ [g(1−),+∞] for all x,y ∈ [0,1]. The generated
t-conorm is given by

S(x,y) = g(−1) (g(x)+g(y)) ,

where g(−1)(y) = sup{x ∈ [0,1] |g(x) < y}. Note that t-conorms are usually used for modelling fuzzy
disjunctions.
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Now, we continue with definitions and properties of fuzzy negations.

Definition 2. (see e.g. in [2]) A function N: [0,1] → [0,1] is called afuzzy negationif, for each a,b∈
[0,1], it satisfies the following conditions

• (i) a < b⇒ N(b)≤ N(a),

• (ii) N (0) = 1,N(1) = 0.

Remark 2. A dual negationNd : [0,1]→ [0,1] based on a negation N, is given by Nd(x) = 1−N(1−x).
A fuzzy negation N is calledstrict if N is strictly decreasing and continuous for arbitrary x,y ∈ [0,1].
In classical logic we have that(A′)′ = A. In multivalued logic this equality is not satisfied for every
negation. The negations with this equality are calledinvolutive negations.The strict negation isstrong
if and only if it is involutive. The most important and most widely used strong negation is the standard
negation NS(x) = 1−x.

In the literature, one can find several different definitionsof fuzzy implications. In this paper we will
use the following one, which is equivalent to the definition introduced by Fodor and Roubens in [2].

Definition 3. A function I: [0,1]2 → [0,1] is called afuzzy implicationif it satisfies the following con-
ditions:

(I1) I is non-increasing in its first variable,

(I2) I is non-decreasing in its second variable,

(I3) I(1,0) = 0, I(0,0) = I(1,1) = 1.

We recall definitions of some important properties of fuzzy implications which we will investigate.

Definition 4. A fuzzy implication I: [0,1]2 → [0,1] satisfies:

(NP) the left neutrality property if
I(1,y) = y for all y∈ [0,1],

(EP) the exchange principle if

I(x, I(y,z)) = I(y, I(x,z)) for all x,y,z∈ [0,1],

(IP) the identity principle if
I(x,x) = 1 for all x ∈ [0,1],

(OP) the ordering property if

x≤ y ⇐⇒ I(x,y) = 1 for all x,y∈ [0,1],

(CP) the contrapositive symmetry with respect to a given fuzzy negation N if

I(x,y) = I(N(y),N(x)) for all x,y∈ [0,1].

Definition 5. Let I : [0,1]2 → [0,1] be a fuzzy implication. The function NI defined by NI(x) = I(x,0) for
all x ∈ [0,1], is called the natural negation of I.

(S,N)-implications which are based ont-conorms and fuzzy negations form one of the well-known
classes of fuzzy implications.
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Definition 6. A function I: [0,1]2 → [0,1] is called an(S,N)-implication if there exist a t-conorm S and
a fuzzy negation N such that

I(x,y) = S(N(x),y), x,y∈ [0,1].

If N is a strong negation then I is called a strong implication.

The following characterization of(S,N)-implications is from [1].

Theorem 1. (Baczýnski and Jayaram [1], Theorem 5.1) For a function I: [0,1]2 → [0,1], the following
statements are equivalent:

• I is an(S,N)-implication generated from some t-conorm and some continuous (strict, strong) fuzzy
negation N.

• I satisfies (I2), (EP), and NI is a continuous (strict, strong) fuzzy negation.

Another way of extending the classical binary implication to the unit interval[0,1] is based on the
residual operator with respect to a left-continuous triangular normT

IT(x,y) = max{z∈ [0,1] | T(x,z) ≤ y}.

Elements of this class are known asR-implications. The following characterization ofR-implications is
from [2].

Theorem 2. (Fodor and Roubens [2], Theorem 1.14) For a function I: [0,1]2 → [0,1], the following
statements are equivalent:

• I is an R-implication based on some left-continuous t-norm T.

• I satisfies (I2), (OP), (EP), and I(x, .) is right-continuous for any x∈ [0,1].

At last we introduce a characterization of implications based onΦ-conjugate from [1].

Definition 7. We denote byΦ the family of all increasing bijections on the unit interval[0,1]. We say that
implications I1, I2 : [0,1]2 → [0,1] are Φ-conjugate if there exists a bijectionϕ ∈ Φ such that I2 = (I1)ϕ ,
where

(I1)ϕ(x,y) = ϕ−1(I1(ϕ(x),ϕ(y))),

for all x,y∈ [0,1].

Theorem 3. (Baczýnski and Jayaram [1], Theorem 2.4.20) Let I: [0,1]2 → [0,1] be a function. Then
I is a continuous function satisfying (OP), (EP), if and onlyif, I is Φ-conjugate with the Łukasiewicz
implication.

It is well-known that it is possible to generate t-norms fromone variable functions. Therefore the
question whether something similar is possible in the case of fuzzy implications is very interesting. In
[9] Yager introduced two new classes of fuzzy implications:f -implications andg-implications where
their generatorsf are continuous additive generators of continuous Archimedean t-norms and generators
g are continuous additive generators of continuous Archimedean t-conorms.

In this paper we deal with some of less known classes of generated fuzzy implications which were
introduced in [8] and studied in [3].

The first class of generated implications is based on strictly increasing functionsg.

Theorem 4. [8] Let g : [0,1] → [0,∞] be a strictly increasing function such that g(0) = 0. Then the
function Ig : [0,1]2 → [0,1] which is given by

Ig(x,y) = g(−1)(g(1−x)+g(y)), (1)

is a fuzzy implication.
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The fuzzy implicationIg can be generalized. This generalization is based on replacing the standard
negation by an arbitrary one.

Theorem 5. [8] Let g : [0,1] → [0,∞] be a strictly increasing function such that g(0) = 0 and N be a
fuzzy negation. Then the function Ig

N

Ig
N(x,y) = g(−1)(g(N(x))+g(y)), (2)

is a fuzzy implication.

2 The residual operators based on the considered conjunctions

As mentioned in the first section, we have found residual operators of conjunctions which were based on
empirically measured data.

The first conjunction was the t-normTY
2 which is given by

TY
2 (x,y) = max

{

0,1−
(

(1−x)2+(1−y)2)
1
2

}

.

It is Yager’s t-norm with parameterp= 2. The corresponding residual operator (Fig. 1a) is given by

ITY
2
(x,y) = 1− (max((1−y)2− (1−x)2),0)

1
2 . (3)

In general, residual implications which are based on Yager t-normsTY
p are given by:

ITY
p
(x,y) = 1− (max((1−y)p− (1−x)p),0)

1
p . (4)

Now, we will investigate properties of implicationsITY
p

and their membership in the classes of implica-
tions. We turn our attention to the class ofIg implications. The boundary conditions forIg implications
are given by

Ig(x,0) = g(−1) ◦g(1−x) = 1−x,

Ig(1,y) = g(−1) ◦g(y) = y.

On the other hand, residual implicationITY
p

satisfies the following equality

ITY
p
(x,0) = 1− (max(1− (1−x)p),0)

1
p = 1− (1− (1−x)p)

1
p .

Therefore the implicationITY
p

can not be expressed asIg, but asIg
N. The function

Np(x) = ITY
p
(x,0) = 1− (1− (1−x)p)

1
p

is a negation (particularly, forp= 2 we getN2(x) = 1−
√

x(2−x)) and since

Ig
N(x,0) = g(−1)(g(N(x)),g(0)) = N(x),

the implicationITY
p

is expressed by the functionIg
N with negationN = Np.
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Furthermore, we consider the functiongp(x) = 1− (1−x)p, whereg−1
p (x) = 1− (1−x)

1
p . Then the

function I
gp
Np

is given by

I
gp
Np
(x,y) = g−1

p (min(gp(Np(x))+gp(y),gp(1)))

= g−1
p (min((1−x)p+1− (1−y)p

,1))

= 1− (1−min((1−x)p+1− (1−y)p
,1))

1
p .

Since 1−min(1−x,1−y) = max(x,y) we have

I
gp
Np
(x,y) = 1− (max((1−y)p− (1−x)p),0)

1
p = ITY

p
(x,y).

Let p > 0. Directly from Definition 4 we get that the implicationsITY
p

satisfy properties (IP) and

(NP). Since the implicationsITY
p

are residual operators based on the left-continuous t-norms TY
p , and due

to Theorem 2, properties (EP) and (OP) are satisfied for theseimplications. Additionally

ITY
p
(Np(y),Np(x)) = 1− (max(1− (1−x)p− (1− (1−y))p),0)

1
p = ITY

p
(x,y),

which is the property (CP) with respect to the negationsNp.
The next conjunction is a quasi-arithmetic meanM (for more details see [4]). Its residual operator is

given by formula

Mr(x,y) = sup{t ∈ [0,1] | M(x, t)≤ y}= sup

{

t ∈ [0,1]
∣

∣

∣

1
2
(x2+ t2)≤ y2

}

= (min{max{2y2−x2
,0},1})

1
2 .

This operator is not an implication, since the boundary condition I(0,0) = 1 is violated (Fig. 1c). The
same problem occurs with residual operator of the last conjunction, which is Choquet integral (Fig. 1b).
Therefore we will not discuss these operators.

3 Properties ofIg and Ig
N implications

In this section we investigate properties of generated implications Ig and Ig
N. We focus on relations

between these generated implications and some well known classes of implications.
In the following text we denote byIg the class ofIg implications and byIg

N the class ofIg
N implica-

tions. Further we denote byITLC
the class ofR-implications based on left-continuous t-norm and byIS,N

the class of(S,N)-implications. With the subscriptc we denote a continuous function (we use it in the
context of continuous functionsg andN).

Two of the best known classes of implications areR-implications and(S,N)-implications. In the first
part we focus on the relation of the classesI

g
N andIS,N. We are interested in two questions – whether the

classIg
N is a proper subclass ofIS,N and if not, find a subclassC of Ig

N satisfyingC ⊆ IS,N.

Lemma 1. Let I : [0,1]2 → [0,1] be an implication. If I∈ I
gc
N then I∈ IS,N.
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(a) Residual operator of t-normTY
2 .

Y

0

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0 0
0.2

0.4

X

0.6
0.8

1

(b) Residual operator of Choquet integral.

Y

0

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0 0
0.2

0.4 X

0.6
0.8

1

(c) Residual operator of quasi arithmetic meanMr .

Figure 1: Residual operators based on the found conjunctions.

Proof. We deal withIg
N, whereN is an arbitrary negation andg is a continuous generator. Sinceg is a

strictly increasing continuous function withg(0) = 0, it holds

g(−1)(g(x)+g(y)) = Sg(x,y),

whereSg is t-conorm generated byg. Accordingly

I(x,y) = Ig
N(x,y) = g(−1)(g(N(x))+g(y)) = Sg(N(x),y)

and thusI ∈ IS,N.

For illustration we provide the following example:

Example 1. Let g: [0,1]→ [0,∞] be a function given by the following formula

g(x) =− ln(1−x).

The function g is strictly increasing and continuous. Its pseudoinverse function g(−1) is given by

g(−1)(x) = 1−e−x for x∈ [0,∞].

Then for the function g we get the following implication

Ig(x,y) = 1−eln(x(1−y)) = 1−x+xy,
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which is SP(1−x,y), where SP is dual operator to the product t-norm and Ig is thus an(S,N)-implication
with negation N(x) = 1−x.

Lemma 2. For the classesIg
N andIS,N, it holdsIg

N \ IS,N 6= /0.

Proof. We assumeIg
N \ IS,N = /0.

We turn our attention to the following example: We consider the strictly increasing functionf :
[0,1]→ [0,∞] which is given by formula

f (x) =

{

x if x≤ 0.5,

0.5+0.5x otherwise.

Its pseudoinverse function is given by

f (−1)(x) =























x if x≤ 0.5,

0.5 if 0.5< x≤ 0.75,

2x−1 if 0.75< x≤ 1,

1 if 1 < x.

Finally, for implication based on the functionf we get

I f (x,y) =











































1−x+y if x≥ 0.5,y≤ 0.5,x−y≥ 0.5,

0.5 if x≥ 0.5,y≤ 0.5,0.25≤ x−y< 0.5,

1−2x+2y if x≥ 0.5,y≤ 0.5,x−y< 0.25,

min(1−x+2y,1) if x< 0.5,y≤ 0.5,

min(2−2x+y,1) if x≥ 0.5,y> 0.5,

1 if x< 0.5,y> 0.5.

Now we will construct a negationN and a t-conormSsuch thatI f (x,y) = S(N(x),y). From the boundary
condition we get

I f (x,0) = f (−1) ◦ f (1−x) = 1−x= S(N(x),0) = N(x)

and thereforeS(x,y) = I f (1−x,y) is a t-conorm. But

S(0.3,S(0.35,0.2)) = S(0.3,0.5) = 1−1.4+1= 0.6

S(S(0.3,0.35),0.2) = S(0.5,0.2) = 0.5

and thusS is not associative, which is a contradiction.

Theorem 6. For the classesIgc,I
gc
Nc

andIS,N, it holdsIgc ⊂ I
gc
Nc

⊂ IS,N.

Proof. ApparentlyIgc ⊆ I
gc
Nc

holds true and the implicationITY
2

from the previous section forms an exam-

ple of an implication inIgc
Nc
\Igc. From Lemma 1 we getIgc

Nc
⊆ IS,N. If we consider the(S,N)-implication

I(x,y) = max{1− x,y} and try to express this implication asIg
N, we obtainI(x,y) = max{1− x,y} =

g(−1)(g(1− x)+g(y)), which is an expresion via additive generator, but the t-conorm max{x,y} has no
additive generator. ThereforeIS,N \ Igc

Nc
6= /0.
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I
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I
gc

I
gϕ
Nϕ I

gϕ

Figure 2: Intersection of the class ofR-implications based on left-continuous t-norm and the class of Ig
N

implications with continuous generatorg and negationN.

The second part is devoted to the relation of a subclass ofI
g
N, with continuous generatorg and

continuous negationN, andITLC
, which is explained in the following assertion.

Lemma 3. Let I : [0,1]2 → [0,1] be an implication such that I∈ I
gc
Nc

. Then I is an R-implication based
on left-continuous t-norm if and only if I isΦ-conjugate with the Łukasiewicz implication.

Proof. (⇒) We assume thatI = Ig
N for some continuousg and N. According to Lemma 1 we get

I(x,y) = Sg(N(x),y). Since bothg and N are continuous functions, alsoSg is continuous and there-
fore I is continuous, too. By the assumption,I is an R-implication based on left-continuous t-norm.
From Theorem 2 we directly get that,I satisfying properties (OP) and (EP) and from Theorem 3 we
finally obtain thatI is Φ-conjugate with the Łukasiewicz implication.

(⇐) SinceI is Φ-conjugate with the Łukasiewicz implication, according toTheorem 3,I is a contin-
uous implication satisfying (OP), (EP) and from Theorem 2 weget thatI is anR-implication based on a
left-continuous t-norm.

Theorem 7. Let I : [0,1]2 → [0,1] be an implication such that I∈ I
gc
Nc

. Then I is an R-implication based
on a left-continuous t-norm if and only if I= Iϕ

Nϕ
, where Nϕ(x) = ϕ−1(1−ϕ(x)) for someϕ ∈ Φ.

Proof. (⇒) SinceI is anR-implication based on a left-continuous t-norm, from Lemma3 we get thatI
is Φ-conjugate with the Łukasiewicz implication, and thus for all x,y∈ [0,1],

I(x,y) = (ILK (x,y))ϕ = ϕ−1(min{1−ϕ(x)+ϕ(y),1}) = Iϕ
Nϕ
(x,y),

whereILK is the Łukasiewicz implication given byILK (x,y) = min{1−x+y,1}. The last equality holds
because, for allx,y∈ [0,1]

Iϕ
Nϕ
(x,y) = ϕ−1(min{ϕ(Nϕ(x))+ϕ(y),ϕ(1)}) = ϕ−1(min{1−ϕ(x)+ϕ(y),1}).

(⇐) This directly follows from Lemma 3 and equality(ILK )ϕ = Iϕ
Nϕ

.

Directly from previous theorem we get what are the intersection of ITLC
and Igc

Nc
, Igc respectively.

(Fig. 2).

Corollary 1. ITLC
∩ I

gc
Nc

= I
gϕ
Nϕ

, whereI
gϕ
Nϕ

= {Iϕ
Nϕ

| ϕ ∈ Φ}.

Corollary 2. ITLC
∩ I

gc = I
gϕ , whereIgϕ = {Iϕ | ϕ ∈ Φ,ϕ(x)+ϕ(1−x) = 1,x∈ [0,1]}.
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4 Conclusion

We have investigated the residual operator of the conjunction. This conjunction was based on empirical
data. It turned out that the only operator based on generatedt-norm is an implication and it belongs to
the less known class of generated implicationsIg

N whereN(x) 6=NS(x). We have studied the properties of
Ig
N-implications. We showed that although the classesIg

N and(S,N)-implications are similar, they are not
identical. And also, we examined the relationship between classesIg

N andR-implications based on left-
continuous t-norms. In the future we plan to model implications in human language via fitting residual
operators to empirical data.
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