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SUMMARY

Activity-dependent modifications of chromatin are
believed to contribute to dramatic changes in neu-
ronal circuitry. The mechanisms underlying these
modifications are not fully understood. The histone
variant H3.3 is incorporated in a replication-indepen-
dent manner into different regions of the genome,
including gene regulatory elements. It is presently
unknown whether H3.3 deposition is involved in
neuronal activity-dependent events. Here, we ana-
lyze the role of the histone chaperone DAXX in the
regulation of H3.3 incorporation at activity-depen-
dent gene loci. DAXX is found to be associated with
regulatory regions of selected activity-regulated
genes, where it promotes H3.3 loading upon mem-
brane depolarization. DAXX loss not only affects
H3.3 deposition but also impairs transcriptional
induction of these genes. Calcineurin-mediated de-
phosphorylation of DAXX is a key molecular switch
controlling its function upon neuronal activation.
Overall, these findings implicate the H3.3 chaperone
DAXX in the regulation of activity-dependent events,
thus revealing a new mechanism underlying epige-
netic modifications in neurons.

INTRODUCTION

Activity-dependent modifications of chromatin in neurons are

believed to contribute to dramatic changes in neuronal circuitry

(Riccio, 2010). Calcium entry into the postsynaptic neuron leads

to transcriptional activation through induction of signaling

cascade involving key kinases and phosphatases, such as

Ca2+/calmodulin-dependent kinases and calcineurin. A number

of activity-responsive genes, such as the neurotrophin Bdnf,

are kept in a repressive state through mechanisms involving

the recruitment of coREST, histone deacetylases HDAC1/2,

and the methyl-CpG-binding protein 2 (MeCP2) (Ballas et al.,
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2005; Chen et al., 2003a;Martinowich et al., 2003). After synaptic

stimulation, HDAC2 (and possibly HDAC1) is nitrosylated,

leading to its inactivation (Nott et al., 2008), whereas calcium-

dependent phosphorylation of MeCP2 causes the dissociation

of the corepressor complex from the Bdnf promoter (Chen

et al., 2003a; Martinowich et al., 2003; Zhou et al., 2006).

Several regulators of activity-dependent transcription have

been implicated in human disorders of the central nervous

system (CNS). For instance, mutations of theMeCP2 gene cause

Rett syndrome (Amir et al., 1999). MeCP2 is found in a complex

containing the proteins ATRX and cohesin, which are mutated in

the ATR-X and CdLS syndromes, respectively (Gibbons et al.,

1995; Kernohan et al., 2010; Liu and Krantz, 2008; Nan et al.,

2007). Although clearly distinct from one another, many of these

disorders share similar clinical features, thus suggesting that

common symptoms may be caused by underlying interlinked

molecular mechanisms. ATRX interacts with the chromatin-

associated protein DAXX, which was originally cloned as a

FAS-associated protein (Yang et al., 1997). However, subse-

quent studies have revealed that in primary cells, DAXX is mainly

nuclear (Lindsay et al., 2009). Both DAXX and ATRX are found to

be associated with heterochromatic foci and promyelocytic

leukemia nuclear bodies (PML-NBs; Ishov et al., 2004; Lalle-

mand-Breitenbach and de Thé, 2010; Salomoni and Betts-Hen-

derson, 2011; Xue et al., 2003; Zhu et al., 2005). PML is a tumor

suppressor involved in the t(15;17) translocation of acute pro-

myelocytic leukemia. We have recently shown that PML controls

cell fate in neural progenitors during cortical development (Re-

gad et al., 2009). DAXX interacts with transcription factors and

chromatin modifiers, which include histone deacetylases, the

histone acetyl-transferase CBP, and DNA methyltransferases

(Hollenbach et al., 2002; Kuo et al., 2005; Puto and Reed,

2008; Salomoni and Khelifi, 2006).

Recent studies have proposed a more direct role for DAXX in

chromatin remodeling through regulation of histone loading. In

particular, DAXX has been shown to act as a histone chaperone

for the histone variant H3.3 (Drané et al., 2010; Lewis et al., 2010).

Unlike H3.1 and H3.2, H3.3 is loaded onto DNA in a replication-

independent manner. These histone variants are conserved to

lower eukaryotes and are believed to be important carriers of

epigenetic information (Hake and Allis, 2006; Szenker et al.,
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2011). DAXX and ATRX interact with H3.3 and mediate H3.3

loading onto telomeres and pericentric heterochromatin (Drané

et al., 2010; Goldberg et al., 2010; Lewis et al., 2010). DAXX is

required for H3.3/ATRX binding (Drané et al., 2010). Recent

studies showed that H3.3, DAXX, and ATRX are found mutated

in the brain tumor glioma (Schwartzentruber et al., 2012; Wu

et al., 2012), thus suggesting that alterations of H3.3 loading

could contribute to cancer pathogenesis in the central nervous

system. Loading of H3.3 at transcription start site (TSS) and

gene bodies of transcriptionally active loci is dependent on the

chaperone HIRA (Goldberg et al., 2010). Notably, H3.3 is also en-

riched at regulatory regions not immediately adjacent to TSS

(Goldberg et al., 2010; Jin et al., 2009; Mito et al., 2007). Deposi-

tion at those sites has been proved in part to be HIRA and ATRX

independent (Goldberg et al., 2010). It has been speculated that

DAXXmaymediate H3.3 loading at regulatory regions through its

association with the histone chaperone DEK (Elsaesser and Allis,

2010; Sawatsubashi et al., 2010), but evidence for this function

is still lacking. Although chromatin relaxation at actively tran-

scribed genes has been proposed to promote H3.3 loading

(Henikoff, 2008), it is presently unknown whether neuronal

activity-dependent transcription influences deposition of this

histone variant. We set out to study H3.3 deposition at activity

responsive genes and to determine whether DAXX represents

one of the chaperones responsible for this activity.

Here, we show that upon neuronal activation, DAXX mediates

H3.3 loading at regulatory regions of selected immediate

early genes and contributes to their transcriptional induction.

The histone chaperone activity of DAXX is controlled by a

calcium- and calcineurin-dependent phosphorylation switch.

This work implicates DAXX as one of the chaperones for H3.3

deposition at regulatory regions in neurons. In addition, it

proposes a mechanism regulating chromatin variations upon

neuronal activation.

RESULTS

DAXX Is Expressed in the Mouse CNS
We first analyzed the expression of DAXX in the embryonic and

postnatal mouse brain. DAXX protein was detected as early as

embryonic day 12.5 (E12.5) in the neuroepithelium (ventricular

zone, VZ; see Figure S1A available online). At E17.5, DAXX

expression became more pronounced in postmitotic cells of

the cortical plate (CP) (Figure S1E). Early postnatally (postnatal

day 2 [P2]) and in the adult brain (P30), DAXX was expressed

both in the cortex and in the hippocampus (Figures 1A and 1F).

At all stages, DAXX localized to the nucleus, where it was in

part associated with heterochromatic foci and colocalized with

ATRX (VZ and CP) and the ATRX-interacting protein MeCP2

(CP) (Figures 1A–1J and S1A–S1H) (Nan et al., 2007). DAXX

and ATRX interacted in whole-brain extracts (Figure S1I),

whereas we failed to detect interaction between DAXX and

MeCP2 (data not shown). In primary cultures of cortical neurons,

DAXX was nuclear and displayed colocalization with ATRX and

MeCP2, especially starting from 5 days in vitro (5 DIV; Figures

S1J and S1K; data not shown). The promyelocytic leukemia

protein was absent from 5 DIV cultures (data not shown). We

next tested whether membrane depolarization, which mimics
neuronal activation, affects DAXX subnuclear distribution. To

this end, we exposed 5 DIV cortical neurons to high potassium

chloride (50 mM KCl) and analyzed DAXX localization. As shown

in Figures 1K and 1L, the degree of DAXX and ATRX colocaliza-

tion increased shortly following depolarization. These changes in

localization were not associated with increased expression of

the two proteins (Figure S1L; see also Figure 5B). As reported

previously (Martinowich et al., 2003), MeCP2 followed the

same pattern of relocalization (data not shown). Taken together,

these data show that DAXX displays a nuclear distribution in

neurons and colocalizes with both ATRX and MeCP2.

DAXX Associates with Regulatory Elements of Selected
Activity-Regulated Genes
We next investigated whether DAXX could associate with chro-

matin in neurons. Neuronal activation triggers rapid chromatin

changes at a number of immediate early genes (IEGs) (Greer

and Greenberg, 2008; Saha et al., 2011). We started by studying

the Bdnf gene. Of the eight Bdnf promoter regions, the promoter

IV is highly responsive to neuronal activity in cultured cortical

neurons (Tao et al., 1998). The key regulatory elements respon-

sible for the calcium-dependent expression ofBdnf Exon IV have

been previously characterized (RE, calcium-responsive element

in Figure 2A) (Chen et al., 2003b; Tao et al., 1998, 2002). Further-

more, a recent report has annotated the main neuronal activity-

regulated enhancer and promoter regions in neurons by using

chromatin immunoprecipitation followed by sequencing (ChIP-

seq) (Kim et al., 2010). We selected the promoter regions of

Bndf Exon IV that encompass the calcium regulatory elements

(regions 2 and 3) and two more distal regions (regions 1 and 4;

Figure 2A). We failed to identify distal enhancer regions positive

for the enhancer mark histone 3 monomethylated lysine 4

(H3K4me1), probably due to the complex organization of the

Bdnf gene. We used ChIP to investigate the association of

endogenous DAXX with the different proximal and more distal

regions of Bdnf Exon IV. As a negative control, we used cortical

neurons derived from a conditional DAXX knockout mouse

model (DAXXFlox/Flox; Figures S2A and S2B), in which expression

of the CRE recombinase abrogates DAXX expression (Figures

S2C–S2F). Among the regions examined, DAXX-associated

chromatin was enriched in sequences proximal to the TSS

(regions 2 and 3) (Figure 2A). Although binding to region 4 was

also detected, it did not reach statistical significance over

CRE-infected DAXXFlox/Flox cells (Figure 2A). Moreover, we failed

to detect significant association to the transcribed region (region

5; Figure 2A). No binding was detected when we used chromatin

from CRE-infected DAXXFlox/Flox cells (Figure 2A). We concluded

that, in cultured neurons, DAXX is predominantly associated with

sequences at or adjacent to the TSS of Bdnf Exon IV. We then

investigatedMeCP2 associationwith theBdnf Exon IV regulatory

regions. MeCP2 was found at proximal promoter regions (2 and

3) in the absence of KCl (Figure S2G), whereas association with

regions 1 and 4 was negligible (Figure S2G). Thus, DAXX and

MeCP2 are enriched at overlapping Bdnf Exon IV regulatory

regions. Neuronal activation caused the release of MeCP2

from the promoter (Figure S2G), as previously reported (Chen

et al., 2003a; Martinowich et al., 2003), but it did not affect

DAXX association (Figure 2A).
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Figure 1. DAXX Is Expressed in the Mouse Post-

natal Brain and Localizes to the Nucleus

(A–C) Immunohistochemistry of DAXX, ATRX, and MeCP2

on coronal sections of the mouse brain on P2. Higher-

magnification images of a cortex area and CA3 (cornu

ammonis) region of the hippocampus are shown in insets.

Scale bars represent 500 mm.

(D and E) DAXX/ATRX and DAXX/MeCP2 immunofluo-

rescence staining of a cortex area from coronal sections of

the mouse brain at P2. Scale bars represent 5 mm.

(F–H) Immunohistochemistry on coronal sections of the

mouse brain at P30. Higher-magnification images of

a cortex area and dentate gyrus (DG) region of the

hippocampus are shown in insets. Scale bars represent

1,000 mm.

(I and J) DAXX/ATRX and DAXX/MeCP2 immunofluores-

cence of a cortex area on coronal section of the mouse

brain at P30. Scale bars represent 5 mm.

(K) Immunofluorescence analysis of DAXX and ATRX

localization in 5 DIV cortical neurons that were left

untreated or were treated with 50 mM KCl for 3 hr. Scale

bars represent 20 mm.

(L) Quantification of DAXX and ATRX relocalization to

heterochromatin. Data are mean ± SEM; n = 3; ***p <

0.001; two-way analysis of variance (ANOVA) test with

Bonferroni posttest.
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We then examined whether DAXX is present at regulatory

elements of two additional IEGs, c-Fos and Npas4 (Greenberg

et al., 1986; Lin et al., 2008). Based on the abovementioned

ChIP-seq study (Kim et al., 2010), we selected two enhancer

regions (regions 1 and 2, corresponding to e4 and e3 in Kim

et al., 2010), the promoter (region 3) and transcribed (region 4)

regions of c-Fos (Figure 2B). DAXX was found highly enriched

at sequences encompassing the promoter region (Figure 2B;

region 3). DAXX-deleted cells were used as negative control

(see above). A significant association with both enhancer regions

was also detected (Figure 2B; regions 1 and 2). However, we

failed to reveal any significant interaction with the transcribed

region of c-Fos (Figure 2B; region 4). With respect to the

Npas4 gene, we next analyzed DAXX association with two regu-
124 Neuron 74, 122–135, April 12, 2012 ª2012 Elsevier Inc.
latory regions (regions 1 and 2; Figure 2C),

which have features of promoter and enhancer,

respectively. We failed to detect DAXX associa-

tion with any of the Npas4 regulatory elements

analyzed (Figure 2C). This apparent selectivity

of binding prompted us to extend our analysis

to additional IEGs (Zif 268, Nurr1, Ier2,

Gadd45g, Egr2, Dusp6, and Arc), which had

been previously described to respond to

neuronal activation (Saha et al., 2011). Two of

them, the transcription factor Egr2 and the

serine/threonine/tyrosine phosphatase Dusp6,

were enriched in DAXX immunoprecipitates

(Figure S2H). Overall, DAXX association with

c-Fos, Egr2, and Dusp6 was not affected by

KCl treatment (Figures 2B and S2H).

We next investigated whether the DAXX-in-

teracting protein ATRX displays similar selec-
tivity for IEG regulatory regions. Indeed, ChIP analysis showed

that ATRX interacts with theBdnf and c-Fos regulatory elements,

but it failed to bind the Npas4 gene (Figure S2I). We confirmed

that DAXX and ATRX could interact in isolated cortical neurons

(Figure S2J). KCl treatment did not affect this interaction or

ATRX association with Bdnf and c-Fos regulatory regions

(Figures S2I and S2J). Thus, DAXX and ATRX interact in neurons

and display similar binding selectivity for IEG regulatory

elements.

Activation-Induced H3.3 Loading at Selected Immediate
Early Genes Is Dependent on DAXX
DAXX has been recently implicated in loading of the histone

variant H3.3 as part of a chaperone complex containing ATRX



Figure 2. DAXX Is Present at Regulatory Elements of Selected Activity-Regulated Genes

(A) Representative Genome Browser image of regulatory element marks for the Bdnf gene in unstimulated and membrane-depolarized neurons (2 hr). H3K4me3

marks promoter regions, whereas H3K4me1 marks enhancer regions. CBP and PolII have been shown to mark both these regions upon neuronal activation. The

gene map and the location of primers are shown underneath (regions 1–5). ChIP analysis of DAXX enrichment at the selected regions in DAXXFlox/WT cortical

neurons in the absence or presence of 50 mM KCl (3 hr). We performed ChIP by using CRE-infected DAXXFlox/Flox cells as background control.

(B and C) Same as in (A) for c-Fos and Npas4. Data are mean ± SEM; n = 3 or n = 6 for Bdnf Exon IV region 4; n.s., not significant; *p < 0.05; **p < 0.01; two-way

ANOVA test with Bonferroni posttest.
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(Elsaesser and Allis, 2010). In view of the presence of both

proteins at regulatory regions of selected IEGs, we speculated

that DAXX could promote H3.3 loading at these loci. No data

was available on induction of H3.3 deposition upon neuronal

activation and the potential chaperones involved. To test this

hypothesis, we first studied whether DAXX and H3.3 interact in

neurons. Coimmunoprecipitation experiments showed that

yellow fluorescent protein (YFP)-H3.3 pulled down endogenous

DAXX (Figure 3A). Based on these data, we analyzed H3.3 asso-

ciation with regulatory regions of activity-regulated genes

by using an H3.3-specific antibody (Figures S3A and S3B).

DAXXFlox/WT or DAXXFlox/Flox neurons infected with CRE particles

were depolarized with KCl for 3 hr. We found that neuronal acti-

vation clearly induced H3.3 deposition at regulatory regions of all

genes included in this study (Bdnf Exon IV, c-Fos,Npas4, Zif 268,

Nurr1, Ier2, Gadd45g, Egr2, Dusp6, and Arc; Figures 3B–3D

and S3C). This was not due to increased nucleosome density,
because anti-H4 ChIP failed to show increased H4 binding at

regulatory regions of Bdnf Exon IV and c-Fos upon membrane

depolarization (Figure S3D). DAXX depletion led to clear impair-

ment in KCl-triggered loading of H3.3 at the regulatory elements

of Bdnf Exon IV (Figure 3B; see regions 2 and 3 in Figure 2A),

c-Fos (Figure 3C; see regions 1–3 in Figure 2B), Egr2, and

Dusp6 (Figure S3C). DAXX depletion did not interfere with nucle-

osome density at these genes (Figure S3D). Deposition of H3.3 at

the c-Fos transcribed region was DAXX-independent, indicating

that DAXX is not required for loading at this region (Figure 3C).

This is in agreement with the HIRA-dependent deposition of

H3.3 at actively transcribed genes (Goldberg et al., 2010). We

observed residual induction of H3.3 loading at Bdnf Exon IV,

c-Fos, Egr2, andDusp6 in DAXX-deficient cells, which, however,

did not reach statistical significance for all regions analyzed

(Figures 3B, 3C, and S3C). This trend was probably due to

residual expression of DAXX in CRE-uninfected cells (Figures
Neuron 74, 122–135, April 12, 2012 ª2012 Elsevier Inc. 125



Figure 3. DAXX Regulates Deposition of H3.3 at Regulatory Regions of Bdnf Exon IV and c-Fos

(A) Interaction between DAXX and H3.3 in cortical neurons. Extracts from 4 DIV cortical neurons, infected with H3.3-YFP lentivirus, were immunoprecipitated (IP)

with anti-GFP or a control antibody. The immunoprecipitates were analyzed by western blotting using the indicated antibodies. Arrows indicate different DAXX

migration forms. Asterisk indicates IgG heavy chain.

(B–D) ChIP analysis of H3.3 enrichment at the regions analyzed in Figure 2 was performed by using chromatin fromDAXXFlox/WT andDAXXFlox/Flox cortical neurons

infected with CRE lentivirus. Cells were left untreated or were treated with 50 mM KCl for 3 hr. ChIP with nonspecific rabbit IgG was used as background control.

Data are mean ± SEM; n = 3–4; n.s., not significant; *p < 0.05; **p < 0.01; two-way ANOVA test with Bonferroni posttest.
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S2E and S2F). However, we cannot rule out a small degree of

compensatory loading by other histone chaperones, such as

CAF-1 (Drané et al., 2010). Finally, we analyzed whether H3.3

loading at genes not associated with DAXX was affected by

DAXX loss. Both basal and activity-induced deposition of H3.3

at the regulatory elements of Npas4, Zif 268, Nurr1, Ier2,

Gadd45g, and Arc remained unchanged in DAXX-deficient cells

(Figures 3D and S3C). Thus, binding of DAXX to regulatory

elements correlates with its ability to promote H3.3 loading.
126 Neuron 74, 122–135, April 12, 2012 ª2012 Elsevier Inc.
DAXX Regulates Activity-Dependent Transcription
We next sought to understand whether DAXX could regulate

activity-dependent transcription at loci where it promotes H3.3

loading. H3.3 loading and transcription are tightly intercon-

nected. Chromatin relaxation at actively transcribed genes has

been proposed to promote H3.3 loading (Henikoff, 2008). In

turn, reducedH3.3 loading is associated with impaired transcrip-

tion at the MyoD locus (Yang et al., 2011). Moreover, H3.3

loading has been linked with activity-dependent transcription



Figure 4. DAXX Regulates Bdnf Exon IV and c-Fos

Transcriptional Induction

(A) DAXXFlox/WT and DAXXFlox/Flox cortical neurons were

infected with lentivirus encoding CRE recombinase. qPCR

for Bdnf Exon IV, c-Fos, and Npas4 expression was per-

formed by using RNA extracted from 5 DIV neurons that

were either untreated or membrane depolarized with

50 mM KCl for 3 hr.

(B) DAXXFlox/WT and DAXXFlox/Flox cortical neurons were

infected as above and treated with 50 mM KCl. Samples

were collected at the indicated times during the time

course and analyzed by qPCR.

(C) DAXXFlox/WT and DAXXFlox/Flox cortical neurons were

infected as above. Expression of Bdnf Exon IV, c-Fos, and

Npas4 was analyzed from 9 DIV neurons that were either

untreated or treated with 50 mM bicuculline and 2.5 mM

4-AP for 3 hr. Data are mean ± SEM; n = 3; n.s., not

significant; **p < 0.01; two-way ANOVA test with Bonfer-

roni posttest.
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in myoblasts, T cells, and fibroblasts (Sutcliffe et al., 2009;

Tamura et al., 2009; Yang et al., 2011). Finally, DAXX- and

ATRX-mediated H3.3 loading has been implicated in regulation

of pericentric and telomeric DNA repeat transcription (Drané

et al., 2010; Goldberg et al., 2010). First, we analyzed whether

transcriptional induction is required for H3.3 loading. As shown

in Figure S4A, inhibition of Pol II completely abrogated activity-

induced H3.3 loading at the promoter region of Bdnf Exon IV,

as well as at enhancers, promoter, and gene body of c-Fos.

We then tested the effect of DAXX loss on IEG induction.

Although abrogation of DAXX did not affect basal mRNA levels,
Neuron 74
it led to a significant decrease in KCl-dependent

induction of Bdnf Exon IV, c-Fos, Egr2, and

Dusp6 (Figures 4A and S4B). In contrast,

Npas4, Zif 268, Nurr1, Ier2, Gadd45g, and Arc

induction was not affected (Figures 4A and

S4B). Decreased levels of c-Fos and Bdnf

Exon IV in DAXX-deficient cells were not due

to a delayed induction peak, because we de-

tected a reduced amplitude of Bdnf Exon IV

and c-Fos expression at all time points analyzed

(Figure 4B). Npas4 levels were not affected

throughout the time course (Figure 4B).

We next tested the effect of DAXX loss in 9

DIV neurons treated with the GABAA antagonist

bicuculline, a more physiologically relevant

stimulus. Similar to KCl, DAXX depletion led to

decreased bicuculline-dependent induction of

Bdnf Exon IV, c-Fos, Egr2, and Dusp6, whereas

it did not affect the other genes included in the

panel (Figures 4C and S4C).

Although these data suggest a link between

DAXX-mediated histone loading and transcrip-

tional induction of IEGs, DAXX role in transcrip-

tional regulation could be independent of its

histone loading function. In this respect, DAXX

can associate with histone acetyl transferases,
histone deacetylases, and DNAmethyl transferases (Hollenbach

et al., 2002; Kuo et al., 2005; Puto and Reed, 2008), thus

suggesting that it could regulate transcription via modulation of

histone acetylation and/or DNA methylation. To test this, we

analyzed histone 3 (H3) and 4 (H4) acetylation at Bdnf Exon

IV and c-Fos regulatory regions and methylation of CpG

islands at the Bdnf Exon IV promoter. DAXX loss did not affect

histone acetylation or CpG island methylation (Figures S4D–

S4F). Taken together, these data suggest that DAXX-dependent

regulation of H3.3 loading and activity-dependent transcription

may be linked.
, 122–135, April 12, 2012 ª2012 Elsevier Inc. 127



Figure 5. DAXX Phosphorylation Is Regulated by Calcineurin

(A) Lysates from 5 DIV cortical neurons were left untreated or were treated with l-phosphatase, followed by western blot analysis using a-DAXX antibody. PP-

DAXX indicates the hyperphosphorylated band, whereas P-DAXX indicates intermediate phosphorylation, and DAXX indicates the fully unphosphorylated band.

(B) Western blot from 5 DIV cortical neurons that were left untreated or were treated for 3 hr with 50 mM KCl.

(C) Western blot from 9 DIV cortical neurons that were left untreated or were treated for 3 hr with 50 mM bicuculline and 2.5 mM 4-AP.

(D) Top: whole-cell lysates were prepared from 5 DIV cortical neurons cultured in the absence or presence of EGTA/BAPTA (1 hr) to chelate extracellular and

intracellular calcium, respectively. Extracts were probed with a-DAXX antibody. Bottom: the graphs represent image analysis of band intensity.

(E) Same as in (D), but whole-cell lysates were prepared from 5 DIV cortical neurons infected with lentivirus expressing GFP or the calcineurin inhibitor DCAIN.

(F) HA-DAXX and HA-NFAT1 were immunoprecipitated with a-HA antibody from transfected 293T cells. Immunoprecipitates were treated with purified calci-

neurin (+CaN) or were mock treated (�CaN) and followed by western blot analysis with a-HA antibody. P-NFAT1 and NFAT1 indicate hyperphosphorylated and

unphosphorylated proteins, respectively.

(G) Conservation of the protein sequence (bold) around the serine known to be phosphorylated by HIPK1 (red) among mammalian species.

(H) a-HA western blotting of lysates from 293T cells transfected with different combinations of HA-DAXX (wild-type), HA-DAXX S669E (phosphomimetic),

HA-DAXX S669A (phosphomutant), Myc-HIPK1, HA-CaN (constitutively active form of calcineurin), and empty vector. The bottom graphs represent image

analysis of band intensities.
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DAXX Phosphorylation Is Regulated by Neuronal
Activation
We next investigated whether DAXX is regulated upon neuronal

activation. In this respect, neuronal activation promotes changes

in the phosphorylation status of essential regulators of activity-

dependent transcription, such as CREB, MEF2, NFAT, and

MeCP2 (Cohen and Greenberg, 2008). DAXX is known to be

phosphorylated at several residues (Chang et al., 2011; Ecsedy

et al., 2003), leading to differential migration in SDS-PAGE (Ecs-

edy et al., 2003). We detected similar DAXX forms in extracts

from cultured cortical neurons, which were abolished by treat-

ment with l-phosphatase (Figure 5A). KCl or bicuculline treat-

ment led to downregulation of hyperphosphorylated DAXX

(Figures 5B and 5C). These changes were calcium dependent,

because pretreatment with the extracellular and intracellular

chelators EGTA and BAPTA abrogated this effect (Figure 5D).

Calcineurin, a key phosphatase involved in calcium-depen-

dent signaling cascades, dephosphorylates key transcription

factors in neurons, such as MEF2 and NFAT (Flavell et al.,

2006; Graef et al., 1999; Shalizi et al., 2006). To test whether

the modulation of DAXX phosphorylation was calcineurin-

dependent, we infected cortical neurons with lentiviral particles

encoding a calcineurin inhibitory peptide (DCAIN; Lai et al.,

1998). DCAIN prevented the modulation of DAXX phosphoryla-

tion upon membrane depolarization (Figure 5E). Furthermore,

DAXX was dephosphorylated in a calcineurin-dependent

manner in 11 DIV cortical neurons exposed to glutamate (Fig-

ure S5A). Finally, recombinant calcineurin dephosphorylated

DAXX in vitro, showing that DAXX was a direct substrate (Fig-

ure 5F). Taken together, these findings indicate that DAXX phos-

phorylation status is regulated by calcium and calcineurin in

neurons.

As DAXX did not undergo complete dephosphorylation upon

neuronal activation, it is conceivable that specific residues

may be targeted. In this respect, DAXX has been shown to be

phosphorylated at the conserved serine 669 (S669) (Figure 5G)

by the homeodomain-interacting protein kinase 1 (HIPK1) (Ecs-

edy et al., 2003). S669 phosphorylation has been previously

shown responsible for the appearance of slow-migrating DAXX

forms in SDS-PAGE (Ecsedy et al., 2003). We generated hemag-

glutinin (HA)-DAXX constructs expressing nonphosphorylatable

(S669A) and phosphomimetic (S669E) DAXX mutants. Whereas

S669E DAXX migrated like hyperphosphorylated DAXX, migra-

tion of the S669A mutant corresponded to hypophosphorylated

DAXX (Figure 5H). Overexpression of an active form of calci-

neurin led to reduced migration of wild-type (WT) DAXX but did

not affect the two mutants (Figure 5H). Similarly, coexpression

of HIPK1 promoted hyperphosphorylation of WT DAXX only (Fig-

ure 5H). These results indicate that DAXX S669 phosphorylation

is modulated by calcineurin.

We next explored whether the phosphorylation status of

DAXX regulates its interaction with H3.3 and ATRX. As shown

in Figure 3A, we found an enrichment of endogenous hypophos-
(I) Interaction between H3.3 and HA-DAXX (wild-type), HA-DAXX S669E (phosph

293T cells transfected with different combinations of HA-DAXX (wild-type), HA-DA

YFP-H3.3, and empty vector were immunoprecipitated with anti-GFP or control a

indicated antibodies.
phorylated DAXX in YFP-H3.3 immunoprecipitates in neurons.

Similar findings were obtained with exogenously expressed

WT DAXX in 293T cells (Figure 5I) as well as in neurons (Fig-

ure S5B). HIPK1 overexpression led to DAXX hyperphosphoryla-

tion, but only a small proportion of hyperphosphorylated DAXX

was found to be associated with H3.3 (Figure 5I). This enrich-

ment did not appear due to reduced H3.3 affinity for hyperphos-

phorylated DAXX, because similar levels of S669E and S669A

mutants were found to be associated with H3.3 (Figure 5I).

Finally, we failed to detect any effect of DAXX phosphorylation

status on its ability to interact with ATRX (Figure S5C).

Calcineurin-Dependent Dephosphorylation of Serine
669 Regulates DAXX Function upon Neuronal Activation
Because DAXX/H3.3 complexes are enriched in hypophos-

phorylated DAXX, we reasoned that DAXX phosphorylation

status could play a role in the regulation of H3.3 deposition.

To test this hypothesis, we performed rescue experiments in

DAXXFlox/Flox neurons. CRE promoted efficient deletion of

endogenousDAXX in cells coinfected either with a green fluores-

cent protein (GFP) vector or DAXX constructs (Figures S6A–

S6C). Similar expression levels of WT, S669A, and S669E

DAXX were achieved in transduced neurons (Figure 6A). Upon

membrane depolarization, migration of S669A and S669E

DAXX mutants was not affected, whereas levels of hyperphos-

phorylated WT DAXX decreased (Figure 6A). Furthermore, no

significant differences in association with Bdnf Exon IV and

c-Fos regulatory regions were detected in between the

constructs both at steady state and upon KCl treatment (Fig-

ure 6B). As expected, WT DAXX rescued H3.3 loading at

Bdnf Exon IV and c-Fos regulatory regions in CRE-infected

DAXXFlox/Flox neurons (Figure 6C). Notably, S669A DAXX had

a more pronounced rescuing activity at most regions analyzed

(Figure 6C). Conversely, S669E DAXX failed to rescue loading

at all regions (Figure 6C).

We then tested whether DAXX phosphorylation also affected

its ability to regulate transcription. WT and S669A DAXX rescued

expression of Bdnf Exon IV and c-Fos. In contrast, S669E DAXX

was impaired in this function (Figure 6D). Notably, S669A DAXX

was more potent in rescuing c-Fos induction compared to WT

DAXX (Figure 6D). Taken together, these data suggest that

calcium-dependent dephosphorylation of DAXX positively

affects H3.3 loading and transcriptional regulation.

DISCUSSION

Although considerable progress has been made in our under-

standing of activity-dependent chromatin remodeling in

neurons, this process is far from being fully elucidated. In the

present study, we implicate loading of the histone variant H3.3

as part of activity-triggered chromatin changes in neurons. In

particular, we show that the histone chaperone DAXX regulates

activity-dependent H3.3 deposition and transcription through
omimetic), and HA-DAXX S669A (phosphomutant) in 293T cells. Extracts from

XX S669E (phosphomimetic), HA-DAXX S669A (phosphomutant), Myc-HIPK1,

ntibody. The immunoprecipitates were analyzed by western blotting using the
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Figure 6. DAXX Phosphorylation Status Regulates Deposition of H3.3 and Immediate Early Gene Expression

(A) Whole-cell lysates were prepared from 5DIVDAXXFlox/Flox cortical neurons that were left untreated or were treated for 3 hr with 50mMKCl. Cells were infected

with WT HA-DAXX, S669E HA-DAXX, and S669A HA-DAXX lentiviral constructs.

(B) ChIP analysis of recombinant HA-tagged DAXX constructs enrichment at the Bdnf Exon IV and c-Fos regulatory regions. DAXXFlox/Flox cortical neurons were

infected with a combination of CRE/GFP or CRE/DAXX vectors (CRE/GFP, DAXX; multiplicity of infection [moi] 0.75/1.00). Regions were selected based on data

presented in Figure 2. We performed ChIP by using CRE/GFP-infected DAXXFlox/Flox cells as background control. Data are mean ± SEM from n = 3; only

statistically significant differences are indicated; *p < 0.05; **p < 0.01; ***p < 0.001; two-way ANOVA test with Bonferroni posttest.
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a mechanism involving a calcium-dependent phosphorylation

switch.

DAXX interacts with PML and ATRX, known regulators of brain

development (Bérubé et al., 2005; Gibbons et al., 1995; Regad

et al., 2009). Differentiated cortical neurons coexpress DAXX

and ATRX, which are found in the nucleoplasm and are associ-

ated with heterochromatic foci, phenocopying the distribution

of ATRX-binding protein MeCP2 (Martinowich et al., 2003).

Furthermore, DAXX and ATRX interact in whole-brain extracts

and isolated neurons. Both ATRX and MeCP2 are involved in

chromatin remodeling and transcriptional control (Guy et al.,

2011; Xue et al., 2003). In particular, MeCP2 has been shown

to regulate transcriptional activation of the immediate early

gene Bdnf Exon IV upon enhanced neuronal activity (Chen

et al., 2003a; Martinowich et al., 2003). Our data show that

DAXX associates with the same regulatory region of the Bdnf

Exon IV promoter occupied by MeCP2. In addition, it is also

present at regulatory regions of the IEGs c-Fos, Egr2, and

Dusp6. In contrast, it is absent from Npas4, Zif 268, Nurr1,

Ier2, Gadd45g, and Arc regulatory elements. This raises the

question of how gene-specific localization of DAXX is regulated.

A candidate for this function is ATRX. DAXX and ATRX interact in

neurons and bind the same IEG regulatory regions. Furthermore,

ATRX has been recently shown to recognize specific histone

tail modifications and DNA conformation (Eustermann et al.,

2011; Iwase et al., 2011), thus suggesting that these marks

could confer specificity to DAXX binding.

DAXX is a chaperone for the histone variant H3.3, which, unlike

H3, is transcribed in a replication-independent manner. Because

neurons do not proliferate, H3.3 is the predominant H3 variant

expressed in neurons, exemplified by the increased ratio of

H3.3/H3 in the mouse brain during postnatal development

(Piña and Suau, 1987). So far, regulation of H3.3 loading in

neurons has not been studied. Our data show that DAXX inter-

acts with H3.3 in neurons, thus suggesting that it may regulate

its deposition at activity-regulated genes. Indeed, we demon-

strate that H3.3 is loaded onto IEG regulatory regions upon

membrane depolarization. H3.3 loading was dependent on

active transcription, as inhibition of Pol II blocked its deposition,

thus suggesting that initiation of transcription is essential for

histone variant deposition. It has to be noted that the loading

of H3.3 at enhancer regions could be explained by the presence

of actively transcribing Pol II (Kim et al., 2010). Although the

histone chaperone HIRA is responsible for H3.3 loading at TSS

and bodies of active genes (Goldberg et al., 2010), the chap-

erone controlling H3.3 deposition at gene regulatory regions

was not known. We discovered that H3.3 deposition at regula-

tory elements of selected IEGs (Bdnf Exon IV, c-Fos, Egr2, and

Dusp6) mainly relies on DAXX. These data suggest that DAXX

is one of the previously unknown chaperones controlling H3.3
(C) ChIP analysis of H3.3 enrichment at the Bdnf Exon IV and c-Fos regulatory re

(moi 1.75) or with a combination of CRE/DAXX vectors (CRE/GFP, moi 0.75/1.00

membrane depolarized with 50 mM KCl for 3 hr. Regions were selected based

background control. Data are mean ± SEM from n = 3; n.s., not significant; **p <

(D) DAXXFlox/Flox cortical neurons were infected as in (C). qPCR analysis of Bdnf E

cells that were either untreated or were membrane depolarized with 50 mM KCl fo

are indicated; **p < 0.01; ***p < 0.001; two-way ANOVA test with Bonferroni pos
loading at regulatory elements. Because downregulation of

DAXX does not change H3.3 loading at regulatory elements of

Npas4, Zif 268, Nurr1, Ier2, Gadd45g, and Arc, further studies

are needed to discover the chaperone responsible for this

activity. Potential candidates are DEK and HIRA (Elsaesser and

Allis, 2010; Sawatsubashi et al., 2010).

Our findings show that impaired H3.3 loading in DAXX-

depleted cells correlates with reduced transcriptional induction

by neuronal depolarization. Similar findings were obtained by

activating neurons through the use of the GABAA antagonist

bicuculline. These results show that there is correlation between

the presence of DAXX at specific regulatory elements, DAXX-

dependent H3.3 loading at these same regions, and transcrip-

tional induction. The effect on transcriptional regulation could

be independent of DAXX chaperone function. In this respect,

DAXX has been reported to regulate histone acetylation as well

as DNA methylation (Kuo et al., 2005; Puto and Reed, 2008).

However, no changes in H3 and H4 acetylation or CpG island

methylation were observed in DAXX-deficient neurons. This rai-

ses the question of whether activity-regulated H3.3 deposition

at regulatory regions could regulate gene transcription. This

remains an unanswered question in the epigenetics field, due

to the interdependent relationship between transcription,

histone eviction, and de novo loading processes. Loss of histone

chaperones has been shown to affect transcription (Placek et al.,

2009; Tamura et al., 2009; Yang et al., 2011). For instance, loss of

HIRA impairs both H3.3 loading and transcription of the MyoD

gene (Yang et al., 2011). Furthermore, H3.3 loading at telomeres

and pericentric heterochromatin, which is dependent on DAXX

and ATRX, have been suggested to modulate transcription of

respective DNA repeats (Drané et al., 2010; Goldberg et al.,

2010). Vice versa, H3.3 overexpression leads to changes in

transcription of selected genes (Jin and Felsenfeld, 2006).

However, in these studies, nonspecific effects of global changes

downstream which altered loading could not be excluded.

Notably, a recent study has shown that mutations of H3.3

found in glioma are associated with specific alterations of gene

expression (Schwartzentruber et al., 2012; Wu et al., 2012),

thus suggesting that changes in H3.3 deposition may affect

gene transcription and potentially contribute to disease

pathogenesis. Mechanistically, it has been suggested that incor-

poration of histone variants can lead to nucleosome destabiliza-

tion. In this respect, ASF1-mediated loading may affect tran-

scription in yeast because of the destabilizing effect of histone

variants on nucleosomes, which in turn would favor their more

rapid and efficient eviction by Pol II (Schwabish and Struhl,

2006). In mammalian cells, variant nucleosomes containing

H3.3/H2AZ are unstable, thus suggesting a more accessible

state of chromatin marked by these nucleosome variants (Jin

et al., 2009). It is possible that DAXX could promote loading of
gions. DAXXFlox/Flox cortical neurons were infected with a GFP lentiviral vector

; CRE/HA-DAXX constructs, moi 0.75/1.00). Cells were either left untreated or

on data presented in Figure 2. ChIP with nonspecific rabbit IgG was used as

0.01; *p < 0.05; ***p < 0.001; two-way ANOVA test with Bonferroni posttest.

xon IV and c-Fos expression was performed by using RNA from infected 5 DIV

r 3 hr. Data are mean ± SEM from n = 3; only statistically significant differences

ttest.
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H3.3/H2AZ-containing nucleosomes at regulatory elements

of activity-regulated genes, thus making them more easily

displaceable. Finally, it is also possible that H3.3 deposition

could have more long-lasting effects on transcriptional regula-

tion. In this respect, it has been also implicated in controlling

epigenetic memory and maintenance of active transcriptional

state (Ng and Gurdon, 2008). Therefore, loss of DAXX-depen-

dent H3.3 loading could also regulate long-lasting chromatin

regulation of IEGs.

DAXX association with regulatory elements is not affected

by neuronal activity. Instead, neuronal activation leads to

decreased DAXX phosphorylation. We demonstrate that DAXX

phosphorylation is regulated by calcineurin, a key calcium-

dependent phosphatase involved in dephosphorylation of

MEF2 and NFAT (Flavell et al., 2006; Graef et al., 1999; Shalizi

et al., 2006). Calcineurin dephosphorylates DAXX at the serine

669, which is under the control of HIPKs (Ecsedy et al., 2003).

Interestingly, HIPK2 is known to regulate transcription in neurons

(Wiggins et al., 2004). In resting neurons, HIPK2 phosphorylates

MecP2 at serine 80 (Bracaglia et al., 2009), contributing to

transcriptional repression (Tao et al., 2009). Thus, it is conceiv-

able that interplay between HIPKs and calcineurin could be an

important regulatory node for regulation of chromatin remodeling

and transcription in neurons. We investigated whether DAXX

phosphorylation status could affect its ability to promote H3.3

deposition and transcription. The phosphomimetic S669E

DAXX mutant is unable to promote either H3.3 loading or tran-

scription in rescue experiments. In contrast, the S669A mutant

rescues both H3.3 loading and transcription in DAXX-deficient

cells. Notably, the effect of S669A DAXX on H3.3 loading is

greater thanWTDAXX. It isworth noting thatCabin/CAIN, anega-

tive regulator of calcineurin (Lai et al., 1998), is a component of

the HIRA complex (Ray-Gallet et al., 2011; Tagami et al., 2004),

thus suggesting that other H3.3 chaperone complexes may be

regulated in a calcium- and calcineurin-dependent manner.

Would DAXX phosphorylation affect its interaction with H3.3?

We found an enrichment of hypophosphorylated DAXX in H3.3

immunoprecipitates. Overexpression of the S669 kinase HIPK1

only led to a small increase in the amount of hyperphosphory-

lated DAXX in H3.3 pull-downs. This is unlikely due to increased

affinity of hypophosphorylated DAXX for H3.3, because similar

levels of S669E and S669A mutants were found in H3.3 pull-

downs. Considering the loss-of-function property of S669E

DAXX in rescue experiments, it is conceivable that dephosphor-

ylation of DAXX when in complex with H3.3 could be required for

its chaperone activity. Therefore, the functional impairment of

the S669E mutant could be due to lack of dephosphorylation

rather than reduced binding.

Taken together, these findings implicate DAXX in the regula-

tion of histone variant loading and transcription in the central

nervous system. In particular, we propose a model by which

activity-induced calcium signaling promotes transcriptional initi-

ation as well as DAXX dephosphorylation. Both events are key

for stimulation of DAXX-dependent H3.3 loading. Because

DAXX loss impairs not only H3.3 loading, but also induction of

activity-regulated genes, it is possible that H3.3 deposition could

underlie aspects of stimulus-inducible gene transcription. More

broadly, our work raises the prospect that dynamic replacement
132 Neuron 74, 122–135, April 12, 2012 ª2012 Elsevier Inc.
of histone variants could play an important role in genome re-

modeling and transcriptional regulation in the nervous system.

EXPERIMENTAL PROCEDURES

See Supplemental Experimental Procedures.

Plasmids

N-terminal HA-tagged mouse DAXX and derivatives were cloned into

pcDNA3.1 (Invitrogen) or pCMS-EGFP for transfection or into TRIP-PGK-

ATGm-MCS-WHV (D. Trono’s laboratory, see Acknowledgments) for lentivirus

production. DAXX phosphomimetic (S669E) and phosphomutant (S669A)

were generated by PCR mutagenesis as described previously (Nelson and

Long, 1989). Plasmids were controlled by sequencing. Plasmids expressing

the calcineurin inhibitor DCAIN (Lai et al., 1998) and the constitutively active

calcineurin (O’Keefe et al., 1992) were a gift from A. Genazzani. Each construct

was subcloned into TRIP-PGK-ATGm-MCS-WHV for lentivirus production.

The plasmid for the expression of HIPK1 was a gift from P. Leder (Harvard

University). Plasmids used for lentivirus production (pMD.G and pCMV delta

R8.91) were from D. Trono’s laboratory. YFP-H3 and YFP-H3.3 plasmids are

from Addgene (Addgene plasmids 8694 and 8693); YFP-H3.3 sequence was

subcloned into TRIP-PGK-ATGm-MCS-WHV for lentivirus production.

Production of Conditional DAXX Knockout Mouse

The DAXXFlox/Floxmouse line was obtained from P. Leder. Details can be found

on the Jackson Laboratories webpage. The targeting vector contained a

neomycin (PGKneo) gene surrounded by flipase sequences (FRT), which

were removed in embryonic stem cells. DAXX Exon II sequence was flanked

by LoxP sites. All mice were maintained in the 129S background. Mice were

bred and subjected to listed procedures under the Project License 80-2325,

released from the Home Office, UK. Genotyping of mice was performed by

using Extract-N-Amp Tissue PCR Kit (Sigma-Aldrich) with primers inside

exon I (50-AGCAGTAACTCCGGTAGTAGGAAG) and exon II (50-AGGAACG

GAACCACCTCAG). To check the recombination induced by the CRE recom-

binase, we added an additional primer inside exon III (50-GAAGGCGGCGAGC

CAATGTG). An alternative primer inside the 50 UTR of exon I (50-CCCTCA
GGGGAATTTGAACC) was used in Figure S5.

Culture of Cortical Neurons

Cortical neurons were prepared from mouse embryonic day 16 (E16) cerebral

cortices. The cortices were dissociated into single-cell suspension by trypsin

digestion and mechanical trituration. The triturated cells were passed

through a 40 mm cell strainer. Cells were first cultured in Neurobasal Medium

(Invitrogen) supplemented with 10% fetal bovine serum (Invitrogen), 2 mM

glutamine (Invitrogen), 100 U/ml penicillin, and 100 mg/ml streptomycin

(Invitrogen) for 1 hr; then the medium was replaced with culture medium (Neu-

robasal Medium, B27, Invitrogen), 2 mM glutamine, 100 U/ml penicillin, and

100 mg/ml streptomycin). Cells were plated at 83 105 cells/ml in 6-well plates

previously coated with poly-D-lysine (Sigma-Aldrich). Neuronal cultures were

treated overnight in 1 mM tetrodotoxin (Tocris) to reduce endogenous neuronal

activity prior to stimulation. Neuron depolarization was induced by adding

50 mM KCl to the medium for the indicated times. For neurons kept in culture

until 9 DIV, cells were treated with 10 mM Ara-C (Sigma C6645) at 4 DIV, and

half the medium was replaced with fresh medium 2 days after 5 DIV. Neurons

were treated with 50 mM bicuculline (Sigma B7561) and 2.5 mM 4-AP (Sigma

A78403) for the indicated times.

Chromatin Immunoprecipitation

We cultured 83 106 cortical neurons in 10 cm petri dishes for 5 DIV. For chro-

matin immunoprecipitation (ChIP), the ChIP Assay Kit (Millipore) was used

according to the manufacturer’s instructions. Briefly, cells were crosslinked

in 1% formaldehyde, lysed in SDS buffer, and sonicated. Immunoprecipitation

was performed overnight with the relevant antibody: DAXX (Santa Cruz

Biotechnology sc-7152), ATRX (Santa Cruz Biotechnology sc-15408),

MeCP2 (Millipore 07-013), H3.3 (Abcam ab62642), H4 (Millipore 17-10047),

acH3 (Millipore 06-599), acH4 (Millipore 06-866), HA (Abcam ab9110), or rabbit
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IgG (Cell Signaling 2729). The precipitated protein-DNA complexes were

eluted from the antibodywith 1%SDS and 0.1MNaHCO3, and then incubated

at 65�C overnight in 200 mM NaCl to reverse formaldehyde crosslinks. After

proteinase K and RNase digestion, DNA was purified with the MinElute PCR

Purification Kit (QIAGEN). Input samples represent 1%of total chromatin input.

For quantitative ChIP, amplification was performed with Maxima SYBR Green

qPCR Master Mix (Fermentas). Percent input was calculated with the formula

100 3 2^(Ctadjusted input � CtIP). Input DNA Ct was adjusted from 1% to 100%

equivalent by subtracting 6.644 Cts (Log2100) from original Ctinput. Primers

sequences are in Table S1.

Analysis of ChIP-Seq Data

Analysis was performed with the UCSC Genome Browser by using published

data given in Table S6 of Kim et al. (2010).

Western Blot

Established methods were used for western blotting. Additional details can be

found in the Supplemental Experimental Procedures.

Coimmunoprecipitation

Coimmunoprecipitation experiments were conducted by using extracts from

primary neurons and 293T cells. Additional details can be found in the

Supplemental Experimental Procedures.

RNA Isolation, RT-PCR, and Quantitative Real-Time PCR Analysis

Total RNA was prepared from primary neurons. Additional details can be

found in the Supplemental Experimental Procedures. Primer sequences are

in Table S1.

In Vitro Phosphatase Assay

Phosphatase assays were conducted by using purified calcineurin. Additional

details can be found in the Supplemental Experimental Procedures.

Virus Preparation and Infection

Lentiviral supernatants were prepared as described previously (Salmon and

Trono, 2006). Additional details can be found in the Supplemental Experi-

mental Procedures.

Immunohistochemistry

Immunohistochemistry was performed on tissue sections from mouse brain.

Additional details can be found in the Supplemental Experimental Procedures.

Immunofluorescence

Details of immunofluorescence techniques can be found in the Supplemental

Experimental Procedures.

Image Analysis

Western blot scans were analyzed by using ImageJ. A rectangle was drawn

around the band, and analysis was done by using the Plot Profile command.

Plot Profile command displays, for a rectangular selection, a ‘‘column average

plot,’’ in which the x axis represents the horizontal distance through the

selection and the y axis indicates the vertically averaged pixel intensity.

Statistical Analysis

Mean values are presented with error bars corresponding to ±SEM. Statistical

analysis was performed by using Prism statistical analysis software (Graph-

Pad). Significance is indicated as ***p < 0.001; **p < 0.01; *p < 0.05.
SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, one table, and Supplemental

Experimental Procedures and can be found with this article online at

doi:10.1016/j.neuron.2012.02.021.
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