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Abstract

Higher Order Neural Networks (HONNs) were introduced in the late 80’s as

a solution to the increasing complexity within Neural Networks (NNs). Sim-

ilar to NNs HONNs excel at performing pattern recognition, classification,

optimisation particularly for non-linear systems in varied applications such as

communication channel equalisation, real time intelligent control, and intru-

sion detection.

This research introduced new HONNs called the Generalised Correlation Higher

Order Neural Networks which as an extension to the ordinary first order NNs

and HONNs, based on interlinked arrays of correlators with known relation-

ships, they provide the NN with a more extensive view by introducing inter-

actions between the data as an input to the NN model. All studies included

two data sets to generalise the applicability of the findings.

The research investigated the performance of HONNs in the estimation of

short term returns of two financial data sets, the FTSE 100 and NASDAQ.

The new models were compared against several financial models and ordinary

NNs. Two new HONNs, the Correlation HONN (C-HONN) and the Horizontal

HONN (Horiz-HONN) outperformed all other models tested in terms of the

Akaike Information Criterion (AIC).

The new work also investigated HONNs for camera calibration and image map-

ping. HONNs were compared against NNs and standard analytical methods

in terms of mapping performance for three cases; 3D-to-2D mapping, a hy-

brid model combining HONNs with an analytical model, and 2D-to-3D inverse

mapping. This study considered 2 types of data, planar data and co-planar

(cube) data. To our knowledge this is the first study comparing HONNs

against NNs and analytical models for camera calibration. HONNs were able

to transform the reference grid onto the correct camera coordinate and vice

versa, an aspect that the standard analytical model fails to perform with the

type of data used. HONN 3D-to-2D mapping had calibration error lower than

the parametric model by up to 24% for plane data and 43% for cube data.

The hybrid model also had lower calibration error than the parametric model

by 12% for plane data and 34% for cube data. However, the hybrid model did

not outperform the fully non-parametric models. Using HONNs for inverse



mapping from 2D-to-3D outperformed NNs by up to 47% in the case of cube

data mapping.

This thesis is also concerned with the operation and training of NNs in limited

precision specifically on Field Programmable Gate Arrays (FPGAs). Our find-

ings demonstrate the feasibility of on-line, real-time, low-latency training on

limited precision electronic hardware such as Digital Signal Processors (DSPs)

and FPGAs.

This thesis also investigated the effects of limited precision on the Back Prop-

agation (BP) and Levenberg-Marquardt (LM) optimisation algorithms. Two

new HONNs are compared against NNs for estimating the discrete XOR func-

tion and an optical waveguide sidewall roughness dataset in order to find the

Minimum Precision for Lowest Error (MPLE) at which the training and oper-

ation are still possible. The new findings show that compared to NNs, HONNs

require more precision to reach a similar performance level, and that the 2nd

order LM algorithm requires at least 24 bits of precision.

The final investigation implemented and demonstrated the LM algorithm on

Field Programmable Gate Arrays (FPGAs) for the first time in our knowledge.

It was used to train a Neural Network, and the estimation of camera calibration

parameters. The LM algorithm approximated NN to model the XOR function

in only 13 iterations from zero initial conditions with a speed-up in excess

of 3 × 106 compared to an implementation in software. Camera calibration

was also demonstrated on FPGAs; compared to the software implementation,

the FPGA implementation led to an increase in the mean squared error and

standard deviation of only 17.94% and 8.04% respectively, but the FPGA

increased the calibration speed by a factor of 1.41× 106.
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Chapter 1

Introduction

1.1 Motivation

Artificial intelligence enables us to solve highly complex problems. Neural Networks are a

classic case in artificial intelligence where a machine is tuned to learn complex processes

in an effort to mimic the operation of the human brain. Neural Networks (NNs) have a

vital role in complex problems relating to artificial intelligence, pattern recognition, clas-

sification and decision making for several decades. NNs are used in applications such as;

channel equalisation, intrusion detection and active filtering systems in communications,

real time intelligent control and power systems. They are also used in machine vision

applications such as; image processing, segmentation, registration, mapping.

1.2 Aim

This PhD thesis aims to showcase new research in the field of Neural Networks. During

the course of my research I have co-authored three chapters on Neural Networks with my

supervisor. The first chapter introduced and simulated a new type of Higher Order Neural

Network called the Generalised Correlation Higher Order Neural Network. The research

included several studies based on these new Higher Order Neural Networks (HONNs) in

finance, camera calibration and image mapping.

My research interests led me to use the new HONNs to demonstrate the operation and

learning of the networks in limited precision using two different learning algorithms, the

error back-propagation and the Levenberg-Marquardt algorithm. Further research imple-

mented and demonstrated the Levenberg-Marquardt algorithm on a Field Programmable

Gate Array for solving the Exclusive Or (XOR) logic function approximated by a Neural

Network and also parametric camera calibration.
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1.3 Main contributions

1.3 Main contributions

The main contributions of my research are the following:

1.3.1 List of book chapters

• David R. Selviah and Janti Shawash. Generalized Correlation Higher Order Neural

Networks for Financial Time Series Prediction, chapter 10, pages 212249. Artifi-

cial Higher Order Neural Networks for Artificial Higher Order Neural Networks for

Economics and Business. IGI Global, Hershey, PA, 2008.

• Janti Shawash and David R. Selviah. Artificial Higher Order Neural Network Train-

ing on Limited Precision Processors, chapter 14, page 378. Information Science

Publishing, Hershey, PA, 2010. ISBN 1615207112.

• David R. Selviah and Janti Shawash. Fifty Years of Electronic Hardware Imple-

mentations of First and Higher Order Neural Networks, chapter 12, page 269. In-

formation Science Publishing, Hershey, PA, 2010. ISBN 1615207112.

1.3.2 List of papers submitted for peer-review

• Janti Shawash and David R. Selviah. Higher Order Neural Networks for the esti-

mation of Returns and Volatility of Financial Time Series. Submitted to Neuro-

computing. November 2011.

• Janti Shawash and David R. Selviah. Generalized Correlation Higher Order Neural

Networks for Camera Calibration. Submitted to Image and Vision Computing.

November 2011.

• Janti Shawash and David R. Selviah. Real-time non-linear parameter estimation

using the Levenberg-Marquardt algorithm on Field Programmable Gate Arrays. Sub-

mitted to IEEE Transactions on Industrial Electronics. Accepted January 2012.

1.3.3 Talks and posters

• FTSE 100 Returns & Volatility Estimation; Algorithmic Trading Conference, Uni-

versity College London Conference Talk and Poster.
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1.4 Organisation of the thesis

1.3.4 Papers to be submitted based upon the PhD research

Future work based on research findings to be used as material for conference and journal

papers:

• The minimum lowest error precision for Levenberg-Marquardt algorithm on FPGAs.

• Run-time reconfigurable Levenberg-Marquardt algorithm on FPGAs

• Recursive Levenberg-Marquardt algorithm on FPGAs

• Signed-Regressor based Levenberg-Marquardt algorithm

• Higher Order Neural Networks for fibre optic channel electronic predistorion com-

pensation

• Fibre optic channel electronic predistorion compensation using 2nd order learning

algorithms on FPGAs

• Camera calibration operation and real-time optimisation on FPGAs

• Higher Order Neural Networks for well flow detection and characterisation

• Recurrent Higher Order Neural Network for return and volatility estimation of fi-

nancial time series

1.4 Organisation of the thesis

This thesis is divided into two parts. Part I provides a review of the current state of

research in two chapters. Chapter 2 provides a literature for the types of networks we

investigate and use in new research. Chapter 3 provides a review of neural network

operation and training on hardware field programmable gate arrays.

In Part II we showcase our new research. Chapter 4 investigates new types of Higher

Order Neural Networks for predicting returns and volatility of financial time series. Chap-

ter 5 compares the aforementioned Higher Order Neural Networks against parametric

models for camera calibration and calibration performed using ordinary neural networks.

Chapter 6 investigates the operation of two learning algorithms in an emulated limited

precision environment as a precursor for the actual hardware implementation. Chapter 7

showcases the Levenberg-Marquardt algorithm on Field Programmable Gate Arrays used

to estimate neural network and camera calibration parameters. Chapter 8 summarises

all of the conclusions from the new research. Lastly, Chapter ?? provides an overview of

further research opportunities based on the findings in our research.
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Part I

Literature Review
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Chapter 2

Neural Network Review

2.1 Development of Neural Networks

Artificial Neural Networks were first introduced by McCulloch and Pitts (1943) as a system

derived to resemble neurophysiology models with a goal to emulate the biological functions

of the human brain namely learning and identifying patterns. Brain functionality was

modelled by combining a large number of interconnected neurons that aim to model the

brain and its learning process. At first neurons were simple, they had linear functions

that were combined to give us linear perceptrons with interconnections that were manually

coded to represent the intended functionality.

More complex models such as the Adaptive Linear Neuron Element were introduced by

Widrow and Hoff (1960). As more research was conducted, multiple layers were added to

the neural network that provide a solution to problems with higher degrees of complexity,

but the methodology to obtain the correct interconnection weights algorithmically was

not available until Rumelhart et al. (1986) proposed the back propagation algorithm in

1986 and the Multi-Layer-Perceptrons were introduced. Neural Networks provided the

ability to recognise poorly defined patterns, Hertz et al. (1989), where input data can come

from a non-Gaussian distribution and noise, Lippmann (1987). NNs had the ability to

reduce the influence of impulsive noise, Gandhi and Ramamurti (1997), they can tolerate

heavy tailed chaotic noise, providing robust means for general problems with minimal

assumptions about the errors, Masters (1993).

Neural Networks are used in wide array of disciplines extending from engineering and

control problems, neurological function simulation, image processing, time series predic-

tion and varied applications in pattern recognition; advertisements and search engines

functionality and some computer software applications which take artificial intelligence

into account are just a few examples. NNs also gained popularity due to the interest of
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2.2 Higher Order Neural Networks

financial organisations which have been the second largest sponsors of research relating

to neural network applications, Trippi et al. (1993).

2.2 Higher Order Neural Networks

One of the main features of NNs is that they learn the functionality of a system without

a specific set of rules which relate network neurons to specific assignments for the rules

that can be based on actual properties of the system. This feature was coupled with

more demanding problems leading to an increase in complexity giving advantages as well

as disadvantages. The advantages were that more complex problems could be solved.

However, most researchers view that the “black-box” nature of NN training as a primary

disadvantage due to the lack of understanding of the reasons that allow NNs to reach

their decisions regarding the functions they are trained to model. Sometimes the data

has higher order correlations requiring more complex NNs, Psaltis et al. (1988). The

increased complexity in the already complex NN design process led researchers to explore

new types of NN.

A neural network architecture capable of approximating higher-order functions such as

polynomial equations was first proposed by Ivakhnenko (1971). In order to obtain a similar

complex decision regions, ordinary NNs need to incorporate increasing number of neurons

and hidden layers. There is a motivation to keep the models an as “open-box” models,

where each neuron maps variables to a function through weights/coefficients without the

use of hidden layers. A simple Higher Order Neural Network (HONN) could be thought

of as describing elliptical curved regions as Higher Order functions (HO) can include

squared terms, cubic terms, and higher orders. Giles and Maxwell (1987) were the first to

publish a paper on Higher Order Neural Networks (HONNs) in 1987 and the first book on

HONN was by Bengtsson (1990). Higher Order Neural Networks contain processing units

that are capable of performing functions such as polynomial, multiplicative, smoothing

or trigonometric functions Giles and Maxwell (1987); Selviah et al. (1991) which generate

more complex decision regions which are multiply connected.

HONNs are used in pattern recognition, nonlinear simulation, classification, and pre-

diction in computer science and engineering. Examples of using higher order correlation

in the data are shown in engineering applications, where cumulants (higher order statis-

tics) are better than simple correlation terms and are used to eliminate narrow/wide band

interferences, proving to be robust and insensitive to the resolution of the signals under

consideration, providing generalised improvements applicable in other domains, Ibrahim

et al. (1999); Shin and Nikias (1993). It has been demonstrated that HONNs are always
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2.3 Neural Network Structure

faster, more accurate, and easier to explain, Bengtsson (1990). The exclusion of hidden

layers allows for easier training methods to be used such as the Hebbian and Perceptron

learning rules. HONNs lead to faster convergence, reduced network size and more accurate

curve fitting, compared to other types of more complex NNs ,Zhang et al. (2002). In our

research we attempt to continue the work already conducted by our group as presented in

the following publications: Mao et al. (1992); Selviah (1994); Selviah et al. (1989, 1990).

2.3 Neural Network Structure

The HONN we consider in this research is based on first order Feed Forward Neural

Networks (FFNNs) trained by supervised back propagation. This type of NN is the most

common multi-layer-network in use as they are used in 80% of applications related to

neural networks,Caudill (1992). It has been shown that a 3-layer NN with non-linear

hidden layers and linear output can approximate any continuous function, Hecht-Nielsen

(1989); White (1990). These properties and recommendations are used later in the thesis.

Figure 2.1 shows the diagram of typical neural network. The structure of the NN is

described using the following notation, (Dimin - DimHidden - Dimout), for example (3-4-1)

expresses a NN with 3 input neurons 4 hidden neurons and one output neuron.

Input Layer Hidden Layer Output Layer

y
t!n

y
t!2

y
t!1

ŷ
t

Figure 2.1: Neural Network with one hidden layer (3-4-1)
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2.3 Neural Network Structure

A NN is basically a system with inputs and outputs; the output dimension is deter-

mined by the dimension of the model we want to approximate. The input data length

varies from one discipline to another, however; the input is usually decided by criteria

suggested in literature, Fu (1994); Tahai et al. (1998); Walczak and Cerpa (1999); Zhang

and Hu (1998). Successful design of NNs begins with an understanding of the problem

solved, Nelson and Illingworth (1991).

The operation of the diagram in Figure 2.1 can be described in mathematical form as

in (2.1), where the input of the NN comes from a sliding window of inputs taken from

data samples yt at times ranging from t = i + 1, . . . , n, producing an output ŷt as the

latest sample by the interaction of the input data with network parameters (weights and

biases) represented by [W1,i,W2,ii, b1, b2].

ŷt =
m∑
ii=1

W2,ii × f

(
b1 +

n∑
i=1

W1,i × yt−i

)
+ b2 (2.1)

NNs are able to take account of complex non-linearities of systems as the network’s

inherent properties include non-linear threshold functions in the hidden layers represented

in (2.1) by f which may use the logistic or a hyperbolic tangent function as in equations

(2.2), (2.3) and Figure 2.2. There are other types of non-linear functions, such as threshold

and spiking functions. However, they are not relevant to the research in this thesis.

F (x) =
1

1 + e−x
(2.2)

F (x) =
ex − e−x

ex + e−x
(2.3)

If the network is to learn the average behaviour a logistic transfer function should

be used while if learning involves deviations from the average, the hyperbolic tangent

function works best, Klimasauskas et al. (1992). Non-linearity is incorporated by using

non-linear activation functions in the hidden layer, and they must be differentiable to be

able to perform higher order back-propagation optimisation; some of the most frequently

used activation functions are the sigmoid, sometimes referred to as logsig, and hyperbolic

tangent, tansig. Figure 2.2 shows both activation function.

The advantage of having no pre-specification models can give us the option of using

training methods that use weight elimination to remove/reduce complexity in the NN as

in Desai and Bharati (1998). By testing all possible combination and benchmarking their

performance against information criteria taking into account the performance and the

number of parameters used for estimation, finally we need to choose the internal struc-

ture of the NN. The more elements used to construct the network the more information
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2.3 Neural Network Structure
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Figure 2.2: Hyperbolic Tangent and Logistic Function with varying weights

it can store about the data used to train it, this can be analogous to having a memory

effect, over-fitting, that makes the network give better result for in-sample (training sam-

ples) estimations, but worse results for out-of-sample (data used for testing), this problem

is minimised by ensuring we follow an information criteria that penalises increments in

the number of parameters used to make a prediction. Swanson and White (1995) rec-

ommended the use information criteria increase the generalisation ability of the NN. The

number of optimal hidden neurons can be found using Schwarz Information Criterion

(SIC), Schwartz (1978), as suggested by Moody (1992); Moody et al. (1994). In most

cases, simple parsimonious models generalise better Haykin (1999); Ioannides (2003).

The determination of the best size of the hidden layer is complex, Nabhan and Zomaya

(1994). Studies showed that the a smaller size of the hidden layer leads to faster training

but gives us fewer feature detectors, Dayhoff (1990). Increasing the number of hidden

neurons presents a trade-off between the smoothness of the function and closeness of

fit, Barnard and Wessels (1992), one major problem with the freedom we have with the

hidden-layer is that it induces Over-fitting, Walczak and Cerpa (1999); where the NN

stores the data already trained on in the weights linking the neurons together, degrading

the generalisation ability of the network. Methods to avoid over fitting will be mentioned
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2.4 Neural Network Training

in the next section.

The main principle is that the NN is required to be as simple as possible, Haykin

(1999); Ioannides (2003) to provide better generalisation. As for the size of the hidden

layer. Masters (1993) states the increasing the number of outputs of a NN degrade its

performance and recommends that the number of hidden neurons, Dimhid, - Dim for

dimension- should be relative to the dimensions of the input and output of the network

Dimin, Dimout as in (2.4).

Dimhid = round(
√
Dimin ×Dimout) (2.4)

Increasing the number of hidden nodes forms a trade-off between smoothness and closeness-

of-fit, Barnard and Wessels (1992). In our studies we will examine NN with only one

hidden layer as research already showed that one hidden layer NN consistently outper-

form a two hidden NN in most applications, Walczak (2001). Sometimes NN are stacked

together in clusters to improve the results and obtain better performance similar the

method presented by Pavlidis et al. (2006). Another way is to use Principle Component

Analysis (PCA) or weighted network output selection to select the better performing

networks from within that stack, Lai et al. (2006). Even though NNs were successfully

used in financial forecasting, Zhang et al. (1998), they are hindered by the critical issue

of selection an appropriate network structure, the advantage of having a non-parametric

model sometimes leads to uncertainties in understanding the functions of the prediction

of the networks, Qi and Zhang (2001).

All functions that compose and model NN should be verified statistically to check their

feasibility, Amari et al. (1994) provides a statistical commentary on Neural Networks,

were the functioning of the NN is explained and compared to similar techniques used in

statistical problem modelling.

2.4 Neural Network Training

The training of neural networks aims to find a set of weights that give us a global minimum

in the error function, meaning that it is the optimal performance that neural network can

provide. The error surface of NNs is generally described to be complex, convex and

contains concave regions, Fu (1994), it is more likely that we settle down for a local

minimum than a global one. There are two methods to optimise a function, deterministic

and probabilistic approaches, Lee (2007). In this study we will only use deterministic

supervised learning methods as they tend to give better approximation, Lee et al. (2004),
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2.4 Neural Network Training

such as back-propagation using Levenberg-Marquardt optimisation, Marquardt (1963);

Press et al. (1992).

Say the signal we want to predict at time t is described by the variable yt and the

predicted signal is ŷt and we try to find the set of weights that minimise the square of

the error (distance) between those two values, with the error expressed by Et = yt − ŷt.
Usually an energy function which is described by a single variable such as the mean square

error (MSE) is used as in (2.5). Other examples of more robust error functions include

the absolute error function which is less sensitive to outlier error, Lv and Yi (2005), but

minimising MSE is the most widely used criterion in literature.

min
w

1

N

N∑
t=1

(Et)
2 (2.5)

In order to train and evaluate a network the data set is divided into training and

test sets. Researchers presented some heuristics on the number of training samples, Kli-

masauskas et al. (1992) recommend having at least five training examples for each weight,

while Wilson and Sharda (1994) suggests training samples is four times the number of

parameters, with the data representing the population-at-large, for example the latest 10

months, Walczak and Cerpa (1999), as there is a general consensus that more weight to

recent observation outperform older ones, Slim (2004).

In order to reduce network over-fitting and improve generalisation we should test

randomly selected data, making the danger of a testing set characterised by one type of

effect on data largely avoided, Kaastra and Boyd (1996). Another common way to reduce

over-fitting is by dividing the data set into three sets, training, testing and validation

data sets; we use the error from the evaluation of networks using the validation set as

stopping parameter for training algorithms to determine if training should be stopped

when the validation error becomes larger than the training error, this approach is called

early stopping and used in most literature, Finlay et al. (2003); Haykin (1999).

Another way to avoid local minima is by using randomly selected starting points for the

weights being optimised, Masters (1993), we use Nguyen-Widrow initialisation, Nguyen

and Widrow (1990). Randomly selected training, validation and test sets ameliorate the

danger of training on data characterised by one set of local type of market data, thus

gaining a better generalisation ability to our network, Kaastra and Boyd (1996).

2.4.1 Error Back Propagation

The most famous and widely used learning algorithm is the back propagation algorithm,

Rumelhart et al. (1986). Back-propagation (BP) trained NNs can approximate any con-
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2.4 Neural Network Training

tinuous function in a satisfactory manner if a sufficient number of hidden neurons are

used, Hornik et al. (1989). The BP algorithm is based on finding the parameter update

values wi,j as in (2.6); the weight location in the NN is conveyed by subscripts. In (2.6)

the new parameter is evaluated by using the amount of error, ∂E, that can be attributed

to said parameter, ∂wji. The amount of change the new parameter exerts on the learning

system is controlled by a damping factor, sometimes refereed to as learning rate, η. The

subscript h is used to indicate that the learning factor can be either fixed or adaptable

according to the specification of the BP algorithm used.

∆wji = −ηh
∂E

∂wji
(2.6)

The back propagation algorithm was modified and advanced with operations that

make it converge to the correct set of weights at a faster rate as in the Newton method

for example. Even more advanced second-order methods converge even faster at the

cost of more computational time and complexity such as the Levenberg-Marquardt (LM)

algorithm, Marquardt (1963).

2.4.2 Levenberg-Marquardt Algorithm

Figure 2.3 shows a comparison of the closeness of fit performance of a sine function approx-

imated using back-propagation versus the performance of the same function approximated

using Levenberg-Marquardt algorithm.
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Figure 2.3: Back-Propagation versus Levenberg-Marquardt learning algorithm perfor-

mance convergence
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Levenberg-Marquardt reaches the optimal solution in just 24 iterations, while back-

propagation continues for more than 10,000 iterations while still giving poorer results,

hence we select the Levenberg-Marquardt algorithm as a more complex algorithm with

which neural networks with an average number of parameters are approximated quickly

and accurately. It should be noted that there are other learning techniques are not

considered as they constitute a whole field of research on their own.

The Levenberg-Marquardt supervised learning algorithm is a process which finds the

set of weights, W , that give us the best approximation as in (2.7). Where, J , is the

gradient of error vector (Jacobian matrix), and ,JTJ , is the Hessian matrix of the error

function, and λ is the trust region selected by the algorithm.

Wnew = Wold −
[
JTJ + diag(JTJ)× λ

]−1
J × E (2.7)

NNs can be thought of as a non-linear least squares regression, which can be viewed

as an alternative statistical approach to solving the least squares problem, White et al.

(1992). Unsupervised training methods are available to train networks by partitioning

input space, alleviating non-stationary processes, Pavlidis et al. (2006), but most unsu-

pervised are less computational complex and have less capabilities in its generalisation

accuracy compared to networks trained with a supervised method, Fu (1994). Back-

propagation trained neural networks are superior to other networks as presented by various

studies, Barnard and Wessels (1992); Benjamin et al. (1995); Walczak (1998). However,

modelling problems that only have linear relationships and properties produces mixed

results if modelled with NNs, Denton (1995); Zhang (2003), due to the reasons mentioned

before, the added complexity and over-fitting. Nonetheless many studies have shown that

the predictive accuracy is improved by using NNs, Desai and Bharati (1998); Hiemstra

(1996); Kaastra and Boyd (1996); Lee et al. (1992); Qi and Maddala (1999); White (1988).

Both algorithms are derived mathematical and algebraic form in A.1 and A.2.

2.5 Performance Evaluation Criteria

In order to evaluate NN performance it should be compared to other models, we must

choose a criteria to compare their performance. The performance is evaluated by compar-

ing the prediction that the NN provides as it is operated against the actual (target) value

that it is expected to evaluate, similar to comparing network output and test, or train

data sets. The most popular evaluation criteria include the mean square error (MSE),

the normalised mean square error (NMSE), Theil’s coefficient as used by Weigend et al.

(1994) in the Santa Fe Time Series Competition. Other criteria include the root mean
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2.6 Data Conditioning

square error (RMSE) , normalised mean absolute error (NMAE), R2 correlation coef-

ficient, White (1988), and the directional symmetry known also as Hit Rate (HR). In

camera calibration applications for example, the performance is evaluated by the sum of

squared error, SSE, and the standard deviation of the model, σ, both in pixels.

2.6 Data Conditioning

After selecting the appropriate type of raw data to model with NNs, we need to process

the data to eliminate some characteristics that make it difficult if not impossible to deal

with. The raw data can be conditioned in a non-destructive manner without changing

or disregarding vital information the data contains. Non-destructive conditioning means

that we can revert to the original raw data from the transformed data.

Two popular methods for data conditioning are used in time series prediction. The

first method is called minimum and maximum (MinMax) scaling where yt is transformed

to a range of [−1, 1], linear scaling is still susceptible to outliers because it does not change

uniformity of distribution, Kaastra and Boyd (1996). The other common type of scaling

is called the mean and standard deviation scaling (MeanStdv) where yt is changed to

have a zero mean and a standard deviation equal to 1. In our studies we use the MinMax

scaling to insure that the data is within the input bounds required by NNs.

Global models are well suited to problems with stationary dynamics. In the analysis

of real-world systems, however, two of the key problems are non-stationarity (often in

the form of switching between regimes) and over-fitting (which is particularly serious

for noisy processes), Weigend et al. (1995). Non-stationarity implies that the statistical

properties of the data generator vary through time. This leads to gradual changes in the

dependency between the input and output variables. Noise, on the other hand, refers to

the unavailability of complete information from the past behaviour of the time series to

fully capture the dependency between the future and the past. Noise can be the source

of over-fitting, which implies that the performance of the forecasting model will be poor

when applied to new data, Cao (2003); Milidiu et al. (1999).

For example, in finance, prices are represented by pt where, p is the price value at time

t ⊂ [1, 2, 3, ... , n], , t(1) is the first sample data, t(n) is the latest sample, rt is a stable

representation of returns that will be used as input data as shown in (2.8).

rt = 100× [log(yt)− log(yt−1)] (2.8)

Transforming the data logarithmically converts the multiplicative/ratio relationships

in the data to add/subtract operations that simplify and improve network training, Mas-

ters (1993) , this transform makes changes more comparable, for example it makes a
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change from 10 − to − 11 similar to a change from 100 − to − 110. The following trans-

form operation is first differencing; that removes linear trends from the data, Kaastra and

Boyd (1996), and Smith (1993) indicated that correlated variables degrade performance,

which can be examined using the Pearson correlation matrix. Another way to detect in-

tegrated auto correlation in the data, is by conducting unit root tests. Say we have roots

of order d , differencing d times yields a stationary series. For examples the Dicky-Fuller

and Augmented-Dicky-Fuller tests that are used to examine for stationarity, Hæke and

Helmenstein (1996). There are other tests that are applied when selecting input data,

such as the Granger causality test for bidirectional effects between two sets of data that

are believed to affect each other, some studies indicate that the effects of volatility to

volume are stronger than the effects of volume on volatility, Brooks (1998). Cao et al.

(2005) compared NNs uni-variate data and models with multi-variate inputs and found

that we get better performance when working with a single source of data, providing

further evidence to back our choice of input data selection.

2.7 Conclusions

We summarise this chapter as follows:

• NNs can approximate any type of linear and non-linear function or system.

• HONN extend the abilities of NN be moving the complexity from within the NN to

an outside pre-processing function.

• The NN structure is highly dependent on the type of system being modelled.

• The number of neurons in NNs depend on the complexity of the problem on the

and information criteria.

• NNs and HONNs used in a supervised learning environment can be trained using

error back propagation.

• Faster and more accurate learning can be achieved by using more complex learning

algorithms, such as the Levenberg-Marquardt algorithm.

• The NNs performance can be quantified by using various performance indicators

which vary from field to field.

• Using NNs for modelling data requires intelligent thinking about the construction

of the network and the type of data conditioning.
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2.7 Conclusions

Due to the various decisions required to be made during the use of Higher Order

Neural Networks and Neural Networks we will provide a brief review of the problem

under investigation in its respective chapter.
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Chapter 3

Neural Networks on Digital

Hardware Review

This chapter provides a review of Neural Networks (NNs) in applications designed and

implemented mainly on hardware digital circuits, presenting the rationale behind the shift

from software to hardware, the design changes this shift entails, and a discussion of the

benefits and constraints of moving to hardware.

3.1 Introduction

Neural Networks have a wide array of applications in hardware, ranging from telecom-

munication problems such as channel equalisation, intrusion detection and active filtering

systems, Anguita et al. (2003); Pico et al. (2005), real time intelligent control systems

that need to compensate for unknown non-linear uncertainties, Jung and Kim (2007),

machine vision applications like image processing, segmentation and recognition of video

streams that get data from a dynamic environment requiring operations that involve ex-

tensive low-level time consuming operations for the processing of large amounts of data in

real-time; Dias et al. (2007); Gadea-Girones et al. (2003); Irick et al. (2006); Sahin et al.

(2006); Soares et al. (2006); Wu et al. (2007); Yang and Paindavoine (2003). Another ex-

ample is particle physics experimentation for pattern recognition and event classification

providing triggers for other hardware modules using dedicated Neuromorphic NN chips

that include a large-scale implementation of complex networks Won (2007), high speed

decision and classification Krips et al. (2002); Miteran et al. (2003) and real-time power

electronics Zhang et al. (2005b) are just a few examples of the implementations on hard-

ware with Neural Networks that have non-linear and piecewise linear threshold functions.

A further example is the use of hardware NNs in consumer electronics products has a wide
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recognition in Japan, also hardware implementation is used where its operation is mission

critical like in military and aerospace applications Xilinx (2008d) where the variability in

software components is not tolerated, Chtourou et al. (2006).

3.2 Software versus hardware

The modern computer evolved in the past decades by the advances in digital electronics

circuit designs and integration that give us powerful general purpose computational pro-

cessors units (CPU). For example, Irick et al. (2006); Ortigosa et al. (2003) used NNs to

discern patterns in substantially noisy data sets using hardware operating in fixed-point

which achieves real-time operation with only 1% accuracy loss when compared to soft-

ware implementing in floating-point. Numbers can be represented in two common ways

fixed-point and floating-point, these representations will be expanded in later sections.

Lopez-Garcia et al. (2005) demonstrated a 9 fold improvement with real-time operation

on a compact, low power design. Maguire et al. (2007) achieved an improvement factor of

107.25 over a Matlab operation on a 2 GHz Pentium4 PC. However, the increase in per-

formance compared to software depends on many factors. In practice, hardware designed

for a specific task outperforms software implementations. Generally, software provides

flexibility for experimentation without taking parallelism into account Sahin et al. (2006).

Software has the disadvantage of size and portability when comparing the environment

that they operate in; computer clusters or personal computers lack the power and space

reduction features that a hardware design provides, Soares et al. (2006); see Table 3.1.

Table 3.1: Comparison of Computational Platforms
Platform FPGA ASIC DSP CPU GPU

Precision Fixed-point Fixed-point Fixed/Floating point Floating point Floating point

Area More than ASIC Least area More than ASIC Less than GPU Larger than CPU

Embedded Yes Yes Yes Varies No

Throughput **** ***** *** * **

Processing Type Parallel Parallel Serial Serial SIMD

Power requirements ** * ** **** *****

Reprogrammability Yes No Limited Software Software

Flexibility Yes No No Yes Yes

NRE costs Less than ASIC Most More than CPU Minimal More than CPU

Technology New Old Old Old New

Trend Increasing Decreasing Decreasing Decreasing Increasing

The information in this table was compiled from the references found in this chapter.

Traditionally Neural Networks have been implemented in software with computation

processed on general purpose microprocessors that are based on the Von Newmann archi-

tecture which processes instructions sequentially. However, one of the NNs properties is
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its inherent parallelism; which can offer significant performance increments if the designer

takes this parallelism into account by designing it in hardware. Parallelism in hardware

can process the forward-propagation of the NN, while simultaneously performing the back-

propagation step in parallel providing a continuous on-line learning ability Girones et al.

(2005).

The CPU is an example of a Very Large Scale Integration (VLSI) circuit. However,

now it is possible to design VLSI circuits using Computer Aided Design (CAD) tools,

especially Electronic Design Automation (EDA) tools from different vendors in the elec-

tronics industry. The tools give full control of the structure of the hardware allowing

designers to create Application Specific Integrated Circuits (ASICs), making it possible

to design circuits that satisfy application. However, this process is very time consuming

and expensive, making it impractical for small companies, universities or individuals to

design and test their circuits using these tools.

Although software has low processing throughput, it is preferred for implementing the

learning procedure due to its flexibility and high degree of accuracy. However, advances

in hardware technology are catching up with software implementations by including more

semi-conductors, specialised Digital Signal Processing (DSP) capabilities and high preci-

sion fine grained operations, so the gap between hardware and software will be less of an

issue for newer, larger, more resourceful FPGAs.

3.3 FPGA advantages and limitations

There are three main hardware platforms that are relevant to our work and a few related

derivatives based on similar concepts. We begin our discussion with the most optimised

and computationally power efficient design; the Application Specific Integrated Circuit

(ASIC). ASICs provide full control of the design achieving optimal designs with smallest

area with the most power efficient Very Large Scale Integrated circuits (VLSI) chips

suitable for mass production. However, when the chip is designed it cannot be changed,

any addition or alteration made on the design incurs increased design time and non-

recurring engineering (NRE) costs making it an undesirable in situations where the funds

and duration are limited, Zhang et al. (2005a). However, software implementations can

be accelerated using other processing units; mainly the graphics processing unit; which is

basically a combination of a large number of powerful Single Input Multiple Data (SIMD)

processors that operate on data at a much higher rate than the ordinary CPU, also GPUs

have a development rate trend that is twice as fast as the one for CPUs, Cope et al.
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(2005); GPGPU (2008). But both those processing platforms do not play a major role in

applications requiring high performance embedded, low power and high throughput.

The second platform to consider is the Digital Signal Processing (DSP) board in which

the primary circuit has a powerful processing engine that is able to do simple mathematical

arithmetic such as addition, subtraction, multiplication and division. These operations

are arranged in a manner that can implement complex algorithms serially. Although DSPs

are powerful enough to process data at high speed, the serial processing of data makes it a

less desirable alternative compared to Field Programmable Gate Arrays (FPGAs) Soares

et al. (2006); Yang and Paindavoine (2003). Hence, we propose the FPGA platform to

implement our algorithms. Although FPGAs do not achieve the power, frequency and

density of ASICs, they allow for easy reprogrammability, fast development times and

reduced NRE, while being much faster than software implementations, Anguita et al.

(2003); Gadea-Girones et al. (2003); Garrigos et al. (2007). The low NRE costs make this

reconfigurable hardware the most cost effective platform for embedded systems where they

are widely used. The competitive market environment will provide further reductions in

price and increases in performance, Mustafah et al. (2007).

Field Programmable Gate Arrays (FPGAs), are semiconductor devices based on pro-

grammable logic components and interconnects. They are made up of many programmable

blocks that perform basic functions such as logical AND and XOR operations or more

complex functions such as mathematical functions. FPGAs are an attractive platform for

complex processes as they contain pre-compiled cores such as multipliers, memory blocks

and embedded processors. Hardware designed in FPGAs does not achieve the power,

clock rate or gate density of ASICs; however, they make up for it in faster development

time and reduced design effort. FPGA design comes with an extreme reduction in Non-

Recurring Engineering (NRE) costs of ASICs, by reducing the engineering labour in the

design of circuits. FPGA based applications can be designed, debugged, and corrected

without having to go through the circuit design process. For examples, ASICs designs

sometimes lead to losses amounting to millions of pounds, due to failure in the identi-

fication of design problems during manufacture and testing leading to designs that are

thermally unstable which cause a meltdown in the circuit or its packaging, DigiTimes.com

(2008); Tomshardware.co.uk (2008).

There are other hardware platforms available for complex signal processing, such as

the wide spread CPU in personal computers and we have an active area in research in

using Graphical Processing Units (GPUs) in doing scientific calculations with orders of

magnitude in performance increase. But those solutions are not viable when we need an

embedded processing platform with physical constraints in space and power and mission
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critical processing. ASIC have greater performance compared to FPGAs, there are Digi-

tal Signal Processing (DSP) boards available used for real-time scientific computing but

they do not provide the rich features that the FPGAs have to offer; most of the DSP

functionality can be reproduced using FPGAs. Table 3.1 shows a comparison between

the different signal processing platforms.

There are novel hardware derivatives which include a dedicated Neural Network im-

plementation on a Zero Instruction Set Chip (ZISC) supplied by Recognetics.Inc (2008).

This chip implements NNs by calculating the interaction of the system by multiplying the

solution (weights) and the corresponding network structure using a multitude of highly

tuned multiply-add circuits - the number of multipliers varies with chip models - but Yang

and Paindavoine (2003) shows that the results it produces are not as accurate as those of

the FPGAs and DSPs. Intel also produced an Electronically Trainable Artificial Neural

Network (80170NB), Holler (1989), which had an input-output delay of 3 µs with a cal-

culation rate of two billion weight multiplications per second, however, this performance

was achieved at the cost of allowing errors by using reduced precision by operating at

7-bit accurate multiplication.

In the next section, we will show the architectural compromises that facilitate the

implementation of Neural Networks on FPGA and how advances and development in

FPGAs are closing the gap between the software and hardware accuracy.

3.4 Learning in Limited Precision

Most researchers use software for training and store the resultant weights and biases in

memory blocks in the FPGA in fixed-point format Gadea et al. (2000); Soares et al.

(2006); Taright and Hubin (1998); Won (2007). Empirical studies showed sudden failure

in learning when precision is reduced below some critical level Holt and Hwang (1991).

In general, most training done in hardware is ordinary first order back-propagation using

differences in output error to update the weights incrementally through diminishing weight

updates. When defining the original weights with a fixed word length as weight updates

get smaller and smaller they are neglected due to having a value that is less than the

defined precision leading to rounding errors and unnecessary weight updates. Babri et al.

(1998) proposes a new learning method that alleviates this problem by skipping weight

updates. However, this algorithm is still not as efficient as learning that is done in software

with full double floating point precision, as limited precision induces small noise which

can produce large fluctuations in the output.
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For simple networks, it is possible to build the learning circuit alongside the feed

forward NN enabling them to work simultaneously, this is called Continually On-line

Training (COT) Burton and Harley (1998); Gadea-Girones et al. (2003); Petrowski et al.

(1993). Other studies of more complex networks used the run-time reconfiguration ability

of FPGAs to implement both feed-forward and back-propagation on the same chip, Ruan

et al. (2005).

It is known that learning in low precision is not optimal, Zhu and Sutton (2003b)

reports that a 16-bits fixed-point is the minimum allowable precision without diminishing

a NNs capability to learn problems through ordinary back-propagation, while operation

is possible in lower precision, Sahin et al. (2006). Activation functions were found to be

used from a word lengths of 7-bits to 16-bits Gorgon and Wrzesinski (2006); Won (2007).

Zhu and Sutton (2003b) survey mentions that several training approaches have been

implemented and that the development of an FPGA-friendly learning algorithm is still

an open subject for research. So in conclusion, we train NNs using software and convert

them to fixed point representations that are stored on the FPGA.

3.5 Signal Processing in Fixed-Point

Data processing initially was done on limited precision machines using binary representa-

tion. As the computer evolved, we gained more capability in representing the individual

numbers in greater precision - floating point precision. The ability to deal with high

precision data comes at the cost of more complex hardware design and lower processing

throughput. In order to achieve the fastest possible processing we can find an adequate

compromise between data representation and the processing capabilities of our hardware.

Fixed-point signal is a binary representation of data with a finite number of bits (binary

digits) as in Figure 3.1.

S 2n . . . 24 23 22 21 20 . 2−1 2−2 2−3 2−4 . . . 2−m

Sign bit Range/Magnitude . Fraction/resolution

Figure 3.1: Diagram showing Fixed-point data representation

For example, we can represent the number “six” 610 -subscript indicates that it is

decimal based- is represented as 01102 where the subscript 2 stands for fixed-point binary

format, we can add as many zeros to the left side of the number without affecting its value.

Fractional representation is similar to decimal with the a radix point dividing the integer

and fractional bits, where every bit represents multiples of 2n where n is the location of
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the number (bit). We can represent 2.6510 in fixed-point with bit width of 8 (n = 8) as

0010.11002, we notice that the number can be represented in only 4-bits as 10.112 forming

the exact value.

Having more bit width allows for a higher range of numbers to be represented (magni-

tude) and/or smaller fractions (precision), depending on the position of the radix point,

we have the ability to decide how to represent our signal in terms of range and precision

depending on our processing needs, allowing us to design circuits to fit our exact needs

giving absolute control over the data stream and processing flow. It should be noted

that we should take into account the range and resolution of every signal we process, as

incorrect representation leads to unexpected behaviour and functioning in our hardware.

The data will adapts according to the data path structure, meaning that it will change

depending on the design of our circuits, we can truncate, wrap or round the supplied

number to match our design.

A decimal number 0.610 is represented in 16-bit fixed-point as 0.1001100110011012,

converting the fixed-point back to floating results in the following value: 0.59996948210,

which is very close but not exact, we can keep increasing the number of digits to the right

of the decimal points to get closer to the real value at the cost of more complex circuits.

Signed numbers are represented by assigning the left most bit as a sign indicator,

0 for positive number and 1 for negatives, we use twos complement to negate values,

for example can be represented −410 in 8 bits fixed point as 111111102, this is done by

negating the value and adding 12 to the result of the negation. Floating point numbers

are represented as in figures 3.2 and 3.3, for single and double floating point presentation.

S exp(+127) 8 bits . Mantissa 23 bits

Sign bit Exponent . Fraction

Figure 3.2: Single precision floating-point representation

S exp(+1023) 11 bits . Mantissa 52 bits

Sign bit Exponent . Fraction

Figure 3.3: Double precision floating-point representation

We benefit from fixed-point as it gives us better hardware implementation through

simpler circuits that cover smaller areas with lower power consumption and costs, but

it is more difficult to program application in fixed-point hardware compared to ordinary

computer programs that usually take a fraction of time to develop. Fixed-point is more
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suitable when we need high volume of devices with lower costs. Ordinary computers are

better suited for low volume data processing where time and costs are not an issue.

3.6 Hardware Modelling and Emulation

Traditionally hardware designers and algorithm developers do not work simultaneously

on a given problem; usually algorithm developers provide the hardware designers with

algorithmic implementations without taking into account the difficulties in processing the

data flow in finite precision which leads to discrepancies between the golden reference

design (floating point) and the hardware model (fixed-point). Resolving these differences

takes a significant amount of time for both developers and designers.

Field Programmable Gate Arrays contain many logic blocks and programmable in-

terconnects that can be modified in a way to suit the application that they will be used

for. One of the languages that defines the FPGA structure and configuration is called

the Very-High-Speed Integrated Circuit Hardware Description Language (VHDL). In or-

der to have a better understanding of the hardware design process and work-flow, I have

attended an advanced VHDL course provided by Dulous Doulos (2008). All basic to ad-

vanced methods of logic and digital design on FPGAs were discussed, explored and tested

in order to provide an understanding on how to model more complex algorithm in later

stages. Attending the Advance Reconfigurable Computer System 07 Conference provided

a clearer perspective on current trends in FPGA designs from research groups around the

world, with a theme being about reconfigurable computing advances, manufacturers of

FPGA demonstrated that there is less need to reconfigure the hardware during run-time,

used to conserve and reuse circuit area at the expense of time lost due to reconfiguration.

Advances in semi-conductors used to manufacture the FPGA are following Moores law

Moore (1965) increasing the density and count of logic gates and interconnects by means

of reduction in the hardware manufacturing process, alleviating the need to reconfigure

the design at run-time.

3.7 FPGA Programming and Development Environ-

ment

Algorithm design and prototyping of networks is usually done in software using high level

programming languages such as C++ , Java or Matlab. The hardware designer uses dif-

ferent languages and a different sets of tools to implement hardware designs. Traditionally

hardware designers write VHDL programs that contain entities and architectures which
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represent the building blocks of the algorithm. For small designs it is usually manageable

to program all components and test them at the gate level in VHDL, but it becomes a

tedious process in bigger projects; the implementation of static array multiplication can

taking up to several pages of VHDL code.

With the advances in FPGAs and the ability to program them to do sophisticated

algorithms, new high level languages have emerged such as Handel-C, Catapult-C and

others, where we write the programs in a manner close to the C++ language. This

method proved to be a real time saver by cutting down design time by at least 10 times,

Maguire et al. (2007). The conversion from serial NN operation to parallel in high level

language is done in a relatively short time; the same process would take a large amount

of time to be done in VHDL Ortigosa et al. (2003).

Matlab is an environment that provides programs that are robust, accurate and quick

to develop. It is the environment which we found the most suitable to integrate established

algorithms to tools giving optimal results in the least amount of time. Xilinx (2008a,b)

provides tools that enable the transfer of Matlab algorithms to hardware as bit-true and

cycle-true accurate models. Ou and Prasanna (2005) used Matlab as the floating/fixed

point design language and we use it to provide a testing environment for our algorithms

allowing us to significantly reduce the development time and achieve rapid prototyping,

by giving us the ability to examine the functionality of the algorithm as a whole instead

of running time consuming simulations at the gate-level.

Matlab/Simulink designs can be automatically translated into an FPGA implementa-

tion making the design process more robust and less prone to errors. However, the design

of an equivalent algorithm in VHDL might produce a more efficient design, but this

comes at the cost of extensive increase in development time which sometimes makes the

whole project infeasible to implement on hardware. The increased productivity achieved

by switching to programming in Matlab and using Xilinx tools to obtain the Hardware

models led to the development of other tools that are relevant to our project, such as

the HANNA tool, Garrigos et al. (2007), that is a script providing modular templates

for Neural Networks with varying sizes of layer and neurons. Ou and Prasanna (2004)

designed a tool that measures the power efficiency of FPGA models by assigning power

dissipation figures to the hardware resources from which the design is built, such as; the

number of logic gates, memory and multipliers. However, we design our NN using generic

component templates which comprise of matrix multiplication operations only.
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3.8 Design Workflow

In this section we explain what steps are taken in order to make sure our software al-

gorithm is implemented in hardware in a way that insures we do not lose the intended

functionality of our designed algorithm; as explained in the previous section signals rep-

resented in hardware implementations are reduced from floating point operation to a

fixed-point, where it is not possible to change the word length (bit width, bus width)

of the information traversing through the FPGA during run-time; unless we include the

ability to re-program the FPGA during run-time which we will discuss at a later stage.

After examining the methods of implementing hardware design of algorithms in literature

[VHDL, C++, Handel-C, Matlab], we concluded that we need to have the fastest and

most cost effective way to transfer our algorithms into the hardware domain using tools

that yield accurate results and integrated with our current algorithm development envi-

ronment Matlab. Xilinx (2008c) provides the tools needed for hardware implementation

and design; the tools include Xilinx ISE 10.1 design studio and Xilinx DSP tools such

as SystemGenerator and AccelDSP that can be integrated to the Matlab and Simulink

workflow.

Table 3.2 describes the workflow used to convert our golden reference algorithm that

we have in floating point to its hardware represented counterpart that runs on the FPGA

hardware. In this table, Q is the number of bits for representing the fixed-point number.

Fixed-point number representation is comprised of three parts, a sign, Range bits R, and

fractional bits F .

We start off with our floating point design, validate that its operational behaviour

is as we intend it to be. Frequently functions we take for granted in floating point are

extremely difficult to implement in hardware, as they require a very large area and design

complexity leading to impractical or inefficient use of our hardware. For example, the

square root and the sigmoid functions where we can replace the square root function

by an absolute function value function as simplistic solution, while we can replace the

sigmoid function with a look-up table of a specific resolution. We convert our code to a

fixed-point and run a simulation to check that the behaviour is in line with our floating-

point requirements. We explore how the trade-offs affect our algorithm by simulation

and monitoring the behaviour of the changed algorithm and validate against our initial

requirements to have the behaviour we require. VHDL code is obtain form AccelDSP

or SystemGenerator depending on where we programmed our blocks, as they give us a

bit true cycle true implementation of our the fixed point algorithm they are supplied

with. At the final stage we transfer the VHDL code onto the hardware and test the

feasibility of our design on real hardware, we might need to have a smaller area or some
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Table 3.2: Finding Quantifiers that allow for the conversion from floating to fixed-point

1 Parameter Range Estimation

Recording the minimum and maximum value a parameter takes during

the operation and learning phases in floating-point

2 Compute the maximum range the parameter takes

Range = ceil(log2(Parameter) + 1)∗

3 Compute Fraction bits

Since Q = R + F + 1 Fraction length = Q−R− 1

4 Construct quantifiers

Quantifiers take the form of signed fixed-point numbers with Range and

Fractions as defined in the previous two steps

5 Quantisation of the data operation

Use the quantifiers the limit to data operations to the fixed-point data

type

* Ceil is function that maps a number to the an integer larger or equal to the number.

speed or latency constraints that we the automatic code did not take account of, we can

go through the work-flow once more to address an issues preventing the algorithm from

being implemented on hardware.

3.9 Xilinx ML506 XtremeDSP Development Board

There is a wide selection of FPGA chips available from different vendors that are suit-

able for different application depending on the hardware specification of the FPGA chip;

for example the specification include logic cell count, operating frequency, power con-

sumption, on-board memory, embedded microprocessors, DSP multipliers and adders. In

neural networks, the main operation of neurons and interconnections performed is matrix

multiplication with the weights matrix and the addition of biases followed by accumula-

tion of signals, then performing a non-linear activation function using a look-up table, this

process repeats for subsequent layers in the network. Therefore, we need to implement

multiplication and addition operations; by using normal logic gate design, or by using

specialised circuit blocks called DSP48E which provide design simplification and major

speed up. The Xilinx ML506 XtremeDSP shown in the following figure is optimised for

high-speed serial data processing with powerful DSP capabilities and system integration.
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Figure 3.4: Xilinx Virtex-5 ML506 Development board
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This FPGA development board is manufactured from express fabric measuring 65nm

with an operating speed of 550 MHz, 8,160 logic slices, 288 (25x18 bit width) DSP48E

slices, 4,752 kb Block RAM, 1 PCI Express endpoint, and 12 GTP transceivers running

at 3.75 Gb/s and a total of 480 I/O connections.

A diagram of DSP48E is seen in figure 3.5, which is a special DSP MAC circuit

designed by Xilinx. Multiplication operations designed using normal registers and LUTs,

needs more clock cycles to do the required operation compared to the time it takes it on

the DSP48E, this is achieved by using special fixed interconnection s built-in the FPGA

chip during the manufacturing process, providing optimal structure at optimal power and

maximum frequency operation.
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Figure 3.5: DSP48E fabric from Virtex-5 FPGA

3.10 Design Challenges

3.10.1 Design Challenges in Fixed-point

Since we have the ability to represent values in finite word lengths, we face quantisation

errors of different types, depending on the way format our fixed point word length and

fractional length. Table 3.3 shows the different errors due to quantisation and the way

to avoid them. When programming hardware, we need to consider data ranges and take

into account the quantisation artefacts and the degradation the algorithm suffers by the

limited representation. We need to track all signal values to assign correct precision to
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Quantisation Error

Type Cause Effect Solution

Overflow Data larger than

Operational range

Distortion Increase word length, if not pos-

sible use directives to either satu-

rate or wrap the number.

Underflow Fraction smaller

than least signifi-

cant bit available

Granular noise Increase fractional length, if not

possible then truncate or round.

Table 3.3: Summary of Quantisation effects of data

limit the extent of error propagation throughout the operation of the design, and assure

that it complies with the specifications of the prototype algorithm in full precision.

3.10.2 FPGA Design Challenges

In figures B.1, B.2 and B.3 we presented the multiplier cost when implementing FFNNs

and their training algorithm showing the multiplier count against the size of the network

parameters at different levels in the number of samples used for the optimisation process.

We have drawn four horizontal lines indicating the number of DSP48E available in the

FPGAs under consideration, currently we have the SXT50T Virtex-5 FPGA with 288

DSP48E units, we have the option to increase the number of DSP units by choosing a

bigger FPGA such as the SXT240T that has 1056 DSP48E units and also it is possible

to use multiple FPGAs to run our network and learning processes. Examining the fig-

ures B.1, B.2 and B.3 we notice that we reach the operational capacity of the FPGA quite

quickly, as the number of parameters increases exponentially, when adding more FPGAs

the increases in the DSP units is linear. So for big problems its not possible to run the

optimisation processes with the limited number of DSP48Es that we have. Adding more

FPGAs is not the optimal solution for this problem. We notice that the problem is com-

pounded by the scarcity and the limited resources available to do arithmetic operations

and the limited precision inherent in fixed-point.
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Chapter 4

Higher Order Neural Networks for

the estimation of Returns and

Volatility of Financial Time Series

4.1 Introduction

Estimating the underlying processes that make up the data observed in the financial mar-

kets is decisive in making informed decisions. The Efficient Market Hypothesis proposed

by Fama (1970) describes the financial data as following a random walk-type behaviour.

It is well known that the logarithmic prices of high frequency financials can be estimated,

Campbell (1987). The use of Neural Networks to estimate the logarithmic prices, usually

referred to as returns, has been studied extensively, Deboeck (1994); Qi et al. (1996);

Zhang and Hu (1998). This work aims to demonstrate the improvement in the estimation

of the returns series with Higher Order Neural Networks, specifically the recently in-

troduced Correlation Higher Order Neural Networks, Selviah and Shawash (2008). High

frequency financial estimation has a residual that can be further deconstructed for volatil-

ity trends, Engle (1982). The most popular method is the Generalised AutoRegressive

Conditional Heteroskedasticity (GARCH), Bollerslev (1986), a method we will use in

combination with the new HONNs and compare it to the linear GARCH and non-linear

EGARCH models, Brooks (1998).

The chapter is organised as follows; Section 4.2 provides the background for the re-

search. Section 4.3 describes the procedure in which the simulations were carried out.

Section 4.4 presents the simulation results and their analysis. Lastly, conclusions are

presented in Section 4.5.
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4.2 Returns Estimation

This work compares the ability of linear Auto Regression (AR), first order Neural Net-

work (NN), and Higher Order Neural Networks (HONNs) in capturing the returns series

dynamics and, hence, to make accurate forecasts. These models do not assume changes in

volatility, the Generalised Autoregressive Conditional Heteroscedasticity (GARCH) and

Exponential GARCH (EGARCH) models are used to capture the volatility present in the

returns series residuals. As a general baseline validation, all of the more advanced models

are compared with the Random Walk (RW) model. Each model is described in more

detail below.

4.2.1 Random Walk (RW) Model

The random walk (RW) is a one step ahead forecasting method that assumes that the

forecast value for tomorrow‘s price, ŷt+1, is the same as today‘s value, yt. The RW model

is used as a benchmark to check if it is beneficial to forecast financial data using more

complex models.

4.2.2 Linear Regression Model

Linear regression estimates future samples of a time series based on a weighted function

of a number of previous values of the data. This method assumes that the forecast of

the next point of a time series, ŷt+1, is linearly dependent on previous data observations

yt−i, i = 1, . . . , n, (4.1).

ŷt+1 = β0 +
R∑
i=1

βi × yt−i + εt (4.1)

In (4.1), R is the number of delayed or lagged terms with coefficients (weights), βi, that

are used in the regression of, yt−i, to forecast, ŷt, with error, εt. Theoretically, when

the correct solution is found, after capturing all of the data dynamics, the residual error

remaining in (4.1), εt, is a random variable, N , which is normally distributed with zero

mean and a standard deviation of σ2, εt ≈ N(0, σ2). The first parameter to consider is

the input time window duration or lag length, R. A small lag length may not correctly

represent the data, resulting in a residual error having non-zero autocorrelation between

different data values, indicating that all of the data dynamics have been not captured,

Hafer and Sheehan (1989). The optimal solution is reached when the set of weights (βi)

give a minimum difference between the forecast value and the actual value, εt = yt − ŷt,
usually represented as a single value as the Mean Square Error (MSE), (4.2), where N is
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the number of elements in the residual, min
β

(F (x)) helps attain weights, β, which give the

minimum value for the fitting function F (x).

MSE = min
β

(
1

N

N∑
t=1

ε2t ) (4.2)

The RW and linear regression models are linear functions of the input data that do not take

into account the nonlinear dynamics of financial time series data. Polynomial regression

can be used to extrapolate the nonlinear relationships in the returns, however; we do

not include a separate comparison with polynomial regression models because they are a

subset of Higher Order Neural Networks that are able to capture polynomial nonlinear

dynamics.

4.2.3 First Order Neural Networks Models

Neural Networks (NNs) were conceived in 1943, McCulloch and Pitts (1943), as systems

derived from neurophysiological models aiming to emulate the biological operations of

the brain; mainly for learning and identifying patterns. The range of NN applications

increased after the back propagation training method was introduced in 1986, Rumelhart

et al. (1986). NNs with hidden layers act as universal approximators, for example, a

3-layer NN, given a sufficient number of hidden neurons, can approximate any continuous

function in a satisfactory manner to any degree of accuracy, Hornik et al. (1989). NNs

can take a variety of different forms, depending on the number of inputs, the number

of outputs, the underlying structure and the number of hidden layers. This study uses

3-layer feed forward neural networks as they represent 80% of all studies on multilayer

NNs, Barnard and Wessels (1992). It has been shown that 3-layer networks consistently

outperform 4-layer networks in most applications, Dayhoff and Deleo (2001); Walczak

(2001). Equation (4.3) shows the operation of the NN, where ŷt is the estimated output

that depends on the previous inputs yt−i, i = 1, . . . , n. W2,l, W1,i, b1, and b2, are the

various NN weights and biases that define how the network operates.

ŷt =
m∑
l=1

W2,l × tanh(
m∑
i=1

W1,i × yt−i + b1) + b2 (4.3)

The hyperbolic tangent, tanh, (4.4), is one of the most used non-linear functions in NNs

where it is incorporated into each of the hidden layers neurons, Klimasauskas et al. (1992);

generally non-linear functions are preferably chosen to be differentiable.

tanh(x) =
ex − e−x

ex + e−x
(4.4)
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As with the Linear models, Neural network training aims to reduce the discrepancy, εt,

between the network output, ŷt and the desired value; details on training will be discussed

later.

4.2.4 High Order Neural Network Models

As NN development progressed their structure increased in complexity. This complexity

arose as a result of combining a large number of hidden layers and a large number of

neurons in those layers, making the length of their training time and the explanation of

their behaviour impracticable. Higher Order Neural Networks alleviate this problem by

providing simpler NNs with all of the possible higher order multiplicative or functional

interactions between the elements of the input vectors being provided explicitly. For

example, HONNs can easily model the exclusive OR function (XOR) as they transform

the input data from a linearly inseparable space to a space where the data can be classified

more easily by simpler linear operators, Giles and Maxwell (1987); Lee et al. (1986).

Later, recursive HONNs with feedback, known as HOFNETs, were introduced, Selviah

et al. (1991). HONNs were also successfully applied to financial forecasting with a twofold

improvement over ordinary NNs in some cases, Fulcher et al. (2006).

The transformations used in HONNs often dramatically speed up training as they

help reduce the NN dependence on the hidden layers; at times eliminating them by using

outer product or tensor models, Pao (1989). In this chapter we investigate HONNs that

make use of one hidden layer along with input transformation. Figure 4.1 shows a higher

order functional link transformation, together with a feed through of the untransformed

input data, passing signals to the output through a single hidden layer. All of the single

line links between the neurons in Figure 4.1 transmit a single value multiplied by a single

weight. The thick lines in Figure 4.1 represent the outputs of the Higher Order Function,

H(Xi), where Xi is a vector of previous input values yt−i, n = 1, . . . , n. H(Xi) contains a

vector of output values; such as (y1 × y1, y1 × y2, . . . , y1 × yn) for example.

ŷt =
m∑
l=1

W2,l × tanh(
m∑
i=1

W1,i ×

[
Xi

H(Xi)

]
+ b1) + b2 (4.5)

The Higher Order Neural Network, HONN, (4.5), operates in a similar manner to first

order NNs as described in (4.3), both equations are similar; however, the input to (4.5)

includes a high order function, H(Xi), that determines the type of Higher Order Neural

Network being used. The full cross product function, H(Xi), (4.6), is a higher order

function that generates a matrix with second order multiplicative interactions, products
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Figure 4.1: Schematic diagram of a Higher Order Neural Network structure
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of pairs, of all of the network inputs. In this chapter, we examine HONNs of the types

described in (4.6)-(4.9).

FXP −HONN = H(Xi) = Xi ⊗XT
i (4.6)

FXP −HONN =


y1 × y1 y1 × y2 · · · y1 × ym
y2 × y1 y2 × y2 · · · y2 × ym

...
...

. . .
...

yn × y1 yn × y2 · · · yn × ym


CP −HONN = Hi,j, i : 1→ n, j : i→ n (4.7)

C −HONN =

(∑n
i=1,j=iHi,j

∑n−1
i=2,j=iHi,j+1

. . .
∑1

i=n,j=iHi,j+n−1

)
(4.8)

Horiz −HONN =

(∑n
i=1,j=iHi,j

∑n
i=2,j=iHi,j

. . .
∑n

i=n,j=iHi,j

)
(4.9)

The first network, (4.6), contains all second order interactions between the input data

values as captured in the Kronecker product matrix or covariance matrix H(Xi), this

network is referred to in this paper as the Full Cross Product Higher Order Neural Network

(FXP-HONN). In equations (4.7)-(4.9) n represents the length of the input window, or lag

length, of pervious values used to make the forecast. (4.7) shows the Cross Product Higher

Order Neural Network (CP-HONN) where due to the symmetry of the Kronecker matrix

the elements of the upper right triangular section are selected leading to an input vector of

length n+ n2/2, where n is the number of data values of the input window. The recently

introduced the Generalised Correlation HONN, Selviah and Shawash (2008), performs

an additional localised autocorrelation operation of the input data vector providing an

enhancement in performance. The recently introduced Correlation Higher Order Neural

Network (C-HONN), (4.8), has a compound function which is the sum of the diagonal

elements of the covariance matrix, giving the inner product terms of the autocorrelation,

and the sums of the adjacent off diagonal elements of the covariance matrix, giving the

outer product terms of the autocorrelation. The advantage of this compound function is

that it increases the input dimension by only n elements leading to a model with fewer

parameters. A further network of the class of Generalised Correlation HONNs is also

examined which is referred to as the Horiz-HONN, (4.9), having a compound function of

the horizontal sums of the covariance matrix values (as opposed to the diagonal sums of

the C-HONN) leading to a similar size increase in the number of parameters as the C-

HONN. The significance of the reduction in the number of parameters when compared to

37



4.2 Returns Estimation

the FXP-HONN is shown in Figure 4.2. In this figure the horizontal axis can be divided

into 5 different regions (shades) with respect to each of the 5 networks. Each of the

networks uses a number of input lags (top) and hidden neurons number (middle) and how

these effect the number of parameters (bottom). An exponential increase in the number

of model parameters is observed as the number of elements in the input vector increases

for the FXP-HONN. Compared to the FXP-HONN, at a given number of hidden neurons,

the CP-HONN reduces the number of higher order input parameters by half, while the

number of parameters in the C-HONN and the Horiz-HONN increase linearly with respect

to the number of inputs.

# inputs

# Hidden
neurons

#
parameters

0

200

400

600

800

1000

1200

0

10
0

11

                                NN                                CHONN                                HorizHONN                                CPHONN                                FXPHONN

Figure 4.2: Number of model parameters as a function of the input dimension [1 to 11],

the number of hidden neurons [0 to 10] and the type of Higher Order Neural Network.

Figure 4.2 shows the number of model parameters for 5 types of neural networks; a first

order Neural Network (NN), a Correlation HONN (C-HONN), a Horizontal HONN (Horiz-

HONN), Cross Product HONN (CP-HONN), and a Full Cross Product HONN (FXP-

HONN). The number of model parameters depends on the type of NN and the number of

inputs and the number of neurons in the hidden layer. The number of inputs or the input

data length shown at the top of Figure 4.2 varies from 1 to 11. The number of hidden

neurons varies from 0 to 10 neurons illustrated by the vertically striped pattern across
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the figure and shown in the middle graph. The resulting number of model parameters for

the networks increases slowly in the C-HONN and Horiz-HONN, and more significantly

in the CP-HONN and FXP-HONN as a function of the number of inputs and the number

of hidden layer neurons both independently and when combined. The models mentioned

so far forecast returns ignoring changes in the volatility in the underlying data generating

process. Models that incorporate neural networks and volatility capturing models have

been studied before, Donaldson (1997); Li et al. (2005); Meissner and Kawano (2001).

However, for the first time to our knowledge, this type of estimate of returns using HONN

with the Generalised Autoregressive Conditional Heteroscedasticity model (GARCH) and

the Exponential GARCH model (EGARCH) is performed to take into account changes

in volatility with time.

4.2.5 Volatility Estimation

Linear regression, NN and HONN models are only able to model the linear or curvi-

linear relationships within data containing heteroskedastic error, meaning that they can

only capture information with respect to the returns data without reduction of changing

volatility, Fu (1994). However, the Autoregressive conditional heteroskedasticity (ARCH)

model, Engle (1982) expresses the variance of the residual error as a function of the vari-

ances of previous errors, (4.10). Here, σ̂2
t , is the variance provided by the model, that

depends on q coefficients, αi of the error, εt, and the mean volatility, α0.

σ̂2
t = α0 +

q∑
i=1

αiε
2
t−i (4.10)

It is assumed that the variance, σ̂2
t , is not constant with time and is linearly related to

the random probability distribution of the signal, zt, (4.11). This linear relationship is

captured by, αi, where, i, has a length of q. The volatility of the residual error εt, is related

to the standardised residual, zt, which comes from independent and identically distributed

(i.i.d.) values with zero mean and a constant standard deviation, σ, zt ∼ N(0, σ2). The

volatility can be extracted from the residual, εt by extracting the estimated volatility,

σt driving the residual into a form close to zt, and this, in effect, gives a standardised

residual.

εt = σtzt (4.11)

The Generalised AutoRegressive Conditional Heteroskedasticity (GARCH) model pro-

posed by Bollerslev (1986) has become the standard used in economics and finance, (4.12),

Figure 4.3. This model builds on the ARCH model by using a feedback loop containing
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the previous volatility forecasts, σ̂2
t−j, effectively performing a moving weighted average

operation which is captured by the coefficients, βj, that have p terms.

σ̂2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βjσ̂
2
t−j (4.12)

 !
!̂

t

2

!
1

!
2

!
q

!
t"1

2

!
t"2

2

!
t"q

2

!
t"1

2

!
t"2

2

!
t" p

2

!
1

!
2

!
p

Feedback

residual
Volatility

Figure 4.3: Schematic flow diagram of a GARCH model

The GARCH model incorporates the error, εt, and the error variance, σ2
t−j, of previous

samples to forecast the variance of error, σ̂2
t , at the next time step. Figure 4.3 shows a

schematic flow diagram of GARCH with a summation linear neuron at the output node

similar to the output node of NNs. A more comprehensive explanation of the ARCH and

GARCH models is found in Poon and Granger (2003). The linear GARCH(1,1) model,

where p and q in (4.12) are set to 1, is accepted as being a better model than linear

models alone, however; the inclusion of an additional nonlinear conditional mean specifi-

cation, a nonlinear function of σ2
t−j, provides further improvement, Gencay and Stengos

(1998). Most literature examining nonlinear effects using GARCH adopt the Glosten Ja-

gannathan Runkle GARCH (GJR-GARCH) and Exponential GARCH (EGARCH) mod-

els because they both have the ability to capture the asymmetry of the probability dis-

tribution function of the returns and volatility, as positive and negative returns have

different effects on the volatility. Brooks (1998) demonstrated that EGARCH performs

better than GJR-GARCH so this is included in the models under investigation in this
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study. EGARCH, (4.13), has the following parameters; α0 is the mean volatility, αi are

the coefficients of the previous squared errors, βi are the coefficients of the previous fore-

casted volatilities. In (4.14), S−t−i, captures the asymmetry of the error with coefficients,

Li, of previous error terms.

logσ̂2
t = α0 +

q∑
i=1

αiε
2
t−i +

q∑
i=1

LiS
−
t−iε

2
t−i +

p∑
i=1

βjσ̂
2
t−j (4.13)

S−t−i =

{
1 εt−i ≤ 0

0 otherwise
(4.14)

4.3 Experimental methodology

There are two general types of data that can be used in models that estimate finan-

cial data; heterogeneous (technical) and homogeneous (fundamental) data, Tomek and

Querin (1984). Homogenous data comes from one source of information, for example,

the price series and its previous values. Heterogeneous data includes variables that are

believed to have a relationship with the homogenous data such as; dividend, interest rate,

money growth rate, volume and inflation rate; Deboeck (1994), this study only considers

homogenous data.

To obtain results which are more generally applicable than to a single price series,

two financial data sets were used: the Financial Times Stock Exchange 100 index (FTSE

100) was chosen because it represents 80% of the market capitalisation of the London

Stock Exchange and the National Association of Securities Dealers Automated Quotations

(NASDAQ) which represents the market capitalisation in America. Both data sets are

sampled at daily intervals starting from 04/01/2000 and ending at 26/08/2009. This data

is freely available on the internet at Yahoo! Finance (2009). Some studies, Huang et al.

(2006b), recommend the use of mixed sample rates, for example, using a weekly average to

forecast the following day price value. This study chose to use daily information because it

contains a high level of information, fluctuation, and noise which the weekly and monthly

data suppressed with the averaging process. We observed that the volatility of the two

data sets was significantly reduced when a weekly sampling rate was considered. Weekly

and monthly averaging dampens and reduces the effects of the daily volatility clustering

information that shape daily market trading decisions.

Daily price series are non-stationary; this implies that the statistical property of the

data generating process is time variant. This variation leads to gradual changes in the

dependency between the input and output variables. Non-stationary system dynamics are

not captured by first order NNs, Haykin (1999). A global solution is only applicable for
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stationary data, Pavlidis et al. (2006). Most price series can be converted to a stationary

returns series by rescaling the prices logarithmically and finding the difference, McNelis

(2005), and this technique was used in this study. Equation (4.15) shows describes how

the returns series is attained from the price series.

Returnst = 100× (log(Pricet)− log(Pricet−1)) (4.15)

The logarithm transforms multiplicative or ratio relationships into additive relationships

which simplify and improve network training, Kaastra and Boyd (1996). The difference

removes linear trends as redundant correlations in the data reduce forecasting perfor-

mance, Smith (1993). To avoid saturation at the nonlinear function in the hidden layer,

the input data is rescaled to a range of [-1, 1], (4.16).

yMinMax =
(ymax − ymin)× (x− xmin)

(xmax − xmin)
+ ymin (4.16)

ymax and ymin; are the new maximum and minimum values for the rescaled data. xmax,

xmin; are the maximum and minimum of the original data. yMinMax is the rescaled data.

4.3.1 Neural Network Design

The estimation model structure depends on the input/output lengths. An output with

dimension one alleviates the overall performance degradation observed in systems that

have multiple outputs. Training focused on a single output outperforms training that has

to deal with multiple output errors, Masters (1993); training focused on the major causes

of output errors reduces the chances of lowering the less prominent causes of errors when

compared to individual models dealing with single output error vectors. Models with

input dimension of 1 (1 lag sample) are too simple and models with input lags larger than

9 samples are very rare, Huang et al. (2006a). It was shown, Hiemstra (1996), that NNs

with nonlinear neuron hidden layers have better performance than linear neuron hidden

layers. The number of neurons in the hidden layer is unknown initially and is complex

to determine, Nabhan and Zomaya (1994). The optimum size and number of the hidden

layers is highly dependent on the data set being modelled. Studies show that smaller

sized hidden layers lead to faster training times as they have fewer feature detectors

(weights), Dayhoff (1990); Selviah and Shawash (2008). One major problem that must be

considered when designing the hidden layer is that large and multiple hidden layers cause

over fitting, Walczak and Cerpa (1999), resulting in degraded generalisation ability and

so higher errors. Optimal hidden layers size is selected using information criteria that will

be discussed in a later section.
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4.3.2 Neural Network Training

Iterative training aims to find the weights after convergence that give the global minimum

of the models error surface. Error surfaces are generally complex, globally convex and

contain local concave regions, Fu (1994). NNs are more likely to converge to a local

minimum than a global one. There are two methods to optimise a function; deterministic

and probabilistic, Lee (2007). In this study, deterministic supervised learning methods

are used as they tend to achieve a better approximation of the data behaviour, Lee et al.

(2004). Supervised learning is the process of finding the set of weights, a, that give the

lowest mean squared error (MSE). The popular training method known as error back

propagation is used together with the fast Levenberg-Marquardt optimisation technique,

Marquardt (1963), (4.17); J , the Jacobian matrix containing the first derivatives of each

layer with respect to the network parameters, Wold, error, ε, and Hessian matrix,∇2J .

J =
δLayer

δWLayer

(4.17)

Wnew = Wold − [∇2J + µI]−1Jε

To avoid convergence to local minima a number of techniques are used. Firstly, randomly

initialised weights are chosen using the Nguyen Widrow initialisation method which dis-

tributes the data equally within the neurons active region (avoiding saturation), Nguyen

and Widrow (1990). Overfitting is avoided by early stopping, Haykin (1999); where the

data is split into three parts, training, validation and test sets; the training set is used

to optimise the weights in the network, validation is used to stop the training when the

validation error does not improve or when the validation error becomes larger than the

error obtained when using the training set. Repetition using different choices of random

data for the training (in-sample), validation and test (out-of-sample) sets avoids the prob-

lem of training on specific data which only represents one type of local market condition

resulting in better generalisation ability, Kaastra and Boyd (1996). An additional way to

overcome over fitting is by removing complexity by reducing the number of elements in

the NN which can be achieved by estimating and selecting the best information criterion

will be discussed in Section 4.3.4.

4.3.3 Statistical analysis of the data sets

Figure 4.4 (a) shows the FTSE100 daily price series and histogram. Figure 4.4 (b) shows

the FTSE100 daily returns series and its histogram. Both figures show higher order

statistical information. Figure 4.4 (a) the histogram shows that the daily price distribution
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Figure 4.4: (a) FTSE 100 daily price series. (b) FTSE 100 daily returns series and daily

returns histogram. Autocorrelation function of (c) daily returns and (d) daily squared

returns and their 95% confidence interval.
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does not resemble a Gaussian distribution with a similar mean and constant volatility,

and Figure 4.4 (b) the histogram is distributed similarly to a Gaussian with a highly non

normal kurtosis (Kurtosis > 3) as expected in literature, Slim (2004). The daily returns

are slightly skewed to the negative side and they have a standard deviation of 1.3487. At

a confidence level of 95% the autocorrelation of a random time series would lie within

the shaded region along the sample axis. The position of this boundary is related to the

number of samples, n, and is determined by Bounds = ± 2√
n
, Box et al. (2008). Figure 4.4

(c) shows that the autocorrelation of the returns is almost random as it mainly lies within

the 95% confidence interval. However, the squared returns in Figure 4.4 (d) have high

correlation values for all values of lag, indicating a correlation in the volatility. Figure 4.5

(a) shows the daily price series and histogram of the NASDAQ time series. Figure 4.5 (b)

shows the NASDAQ returns series and histogram; the statistical indicators show that the

data is again highly non normal albeit with a positive skew and a standard deviation of

1.9516. Figure 4.5 (c) shows the autocorrelation of the returns. Figure 4.5 (d) shows the

autocorrelation of the squared returns. There is a high correlation in the squared returns

and almost random data properties in the returns series as for the FTSE100.

4.3.4 Estimation evaluation criteria

To compare the performance of the estimation models indicators must be chosen that

evaluate their performance. A commonly used figure of merit in NN literature is the Root

Mean Squared Error (RMSE), (4.18); the average distance between the target signal and

the actual output of the model.

RMSE =

√√√√ 1

N

N∑
t=1

(yt − ŷt)2 (4.18)

RMSE assumes that the error has a Gaussian distribution with zero mean and a constant

standard deviation, σ. This is true for most data, but when dealing with complex data

with changing volatility, RMSE fails to take into account the changes in volatility of

the data. To alleviate this problem the Log Likelihood Function (LLF ) is used, (4.19);

it incorporates varying volatility (standard deviation, σt) into the measurement of the

performance, N is the length of the error vector, εt, and σt is the volatility at time t.

LLF =
1

2

N∑
t=1

(log(2πσt) +
ε2t
σt

) (4.19)

However, model evaluation criteria should also include the number of system parameters

as these affect the training time and memory capacity required and a small number give

45



4.3 Experimental methodology

Kurtosis = 6.1419
Skewness = 1.6107

! = 674.5619

Year Frequency

NA
SD

AQ
 d

ai
ly

 p
ri

ce
 se

rie
s

1000

2000

3000

4000

5000

2002 2004 2006 2008 0 50 100 150

(a)

Kurtosis = 7.0031
Skewness = 0.1177

! = 1.9516

Year Frequency

N
AS

D
AQ

 d
ai

ly
 re

tu
rn

 se
rie

s (
%

)

-10

-5

0

5

10

15

2002 2004 2006 2008 0 50 100 150

(b)

Au
to

C
or

re
la

tio
n 

C
oe

ffi
ci

en
ts

-0.4

-0.2

0

0.2

0.4

Lag (n)
0 5 10 15 20 25 30

Lag (n)
0 5 10 15 20 25 30

(c)                                                                                                      (d)

Daily returns Daily returns2

Figure 4.5: NASDAQ daily price series. (b) NASDAQ daily returns series and their

histogram. Autocorrelation function of (c) daily returns and (d) daily squared returns

and their 95% confidence interval.
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better generalisation ability; one example that does this is the Akaike information criterion

(AIC), (4.20), Akaike (1974). The AIC incurs a penalty when selecting a higher number

of weights; preferring models with the least number of parameters, k, and the least error.

AIC(k) =
LLF

N
+
k

N
(4.20)

The best input dimension and NN structure should be selected using the AIC criterion

as simple models provide better generalisation ability, Haykin (1999); Ioannides (2003).

The LLF need not be used as a separate evaluation criteria since it is a function of

RMSE and is incorporated in the AIC. So in this chapter the AIC is used as the main

evaluation criterion but the RMSE is also calculated and tabulated. The evaluation

criteria mentioned so far are all based on the difference between the output and the real

signal. In financial signals the direction of the signal forecast is also important and this

is encompassed in the Hit Rate (HR).

HR =
1

N

N∑
t=1

Dtwhere

Dt =

{
1 (ŷt − yt−1)× (yt − yt−1) ≥ 0

0 otherwise

(4.21)

A good value for the correct direction detection is around 60%, Walczak (1998). However,

even if 85% accuracy is achieved in direction forecast, it may still be unprofitable since the

most profitable deviations are the largest, hardest and least probable to detect and most

models are based on normal (Gaussian) distributions while the data is often non-Gaussian.

Even though the RMSE value is used to reflect the performance of the NNs, during

training the performance criteria to be minimised is usually represented by the Mean

Square Error (MSE), (4.2). In this chapter we also examine the mean absolute error

(MAE) training performance criterion, (4.22), as it has been described to be more robust

indicator of performance when compared to the MSE, Bodyanskiy and Popov (2006).

MAE =
1

N

N∑
t=1

|yt − ŷt| (4.22)

To indicate how closely the residuals are to a normally distributed signal we use the χ2

variance test parameter indicated by the parameter VAR.

4.3.5 Simulations

Five different neural networks were simulated using programs written in the Matlab 2009a

language environment. Each neural network had input lengths of 1 to 11 lags. The hidden
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layer varied from having no hidden layer to a hidden layer having 10 neurons. Each

network was simulated 120 times with random starting points (weight distributions) and

random data divisions. All of the forecast returns simulations took into account two error

functions; the Mean Square Error (MSE), and the Mean Absolute Error (MAE). Two

financial data sets were used so the total number of simulations was 11× 11× 120× 2 =

29, 040 simulations. After training, the best models, having minimum AIC for returns

forecasting, were selected and their residual, εt, was used to estimate the volatility. When

estimating volatility using GARCH and EGARCH, they had the following commonly

used initial starting points; α0 = 0, α1 = 0.9, β1 = 0.01, L1 = 0, GARCH/EGARCH

parameters were estimated using Maximum Likelihood Estimation (MLE) algorithms in

Matlab.

4.4 Results and Analysis

4.4.1 Returns Simulation

In Figure 4.6 and Figure 4.7 the 9 graphs show the median of 120 simulations with MSE

and MAE as error functions, random initial weights, and random data divisions. The

median was used to indicate the average of the figures of merit as it provided a more

robust average indicator of performance, since the median is less prone to outlier results

than the mean. Each point on the diagram corresponds to a specific network with lags

and hidden neurons similar to the ones in Figure 4.2. Figure 4.6 and Figure 4.7 show

the AIC, RMSE and Hit Rate for both in-sample and out-of-sample data labeled as

RMSEi, RMSEo, HRi and HRo. The two lowest graphs show the number of training

epochs and the training time for convergence to the optimal weights for the FTSE100

and NASDAQ respectively. The simulation results show the following trends; the best

average AIC is achieved by the new networks C-HONNs and Horiz-HONNs. The RMSEi

performance improves with increasing numbers of parameters, i.e. more lags and hidden

neurons; of all of the HONNs the CP-HONN had the best average RMSEi performance

for most network structures. However, a better performance in the in-sample did not

lead to a better performance in the out-of-sample data. The out-of-sample RMSEo

graph shows that the CP-HONN and FXHONN are the worst. The best out-of-sample

RMSEo is obtained for low lags with a low number of neurons confirming that the best

performance does not require a NN with many parameters. The in-sample Hit Rate had

a trend similar to that in the RMSEi, better performance with increasing parameters.

Similarly, the out-of-sample Hit Rate had better performance in the NN and in the new
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networks C-HONN, and Horiz-HONN; particularly when the hidden layer neuron count

was 0, where the network reduces to a Linear Regression Network. The number of training

epochs required did not correlate with the network structure or type, except when the

NN reduces to a linear regression network when it converged to a solution in 2 epochs

while for the rest of the networks the convergence occurred in 10 epochs. The time taken

for training had a direct correlation with the number of weights. The only noticeable

difference between MAE and MSE performance is in the Hit Rate and Epochs, where

the MAE required a lower number of training epochs while giving better HR performance

for small networks. Generally; the best model has the lowest AIC, RMSE, number of

training epochs, training time, and the highest Hit Rate.

Figure 4.8 shows the results of the FTSE100 returns estimation using the new C-

HONN; the C-HONN was chosen for this example because it had the best returns esti-

mation AIC value. Figure 4.8 (a) shows the residual of the C-HONN estimation of the

FTSE100 daily returns series. Figure 4.8 (b) shows the residual squared. Figure 4.8 (c)

shows the autocorrelation coefficients of the residual. The squared residuals are shown in

Figure 4.8 (d). Comparing Figure 4.8 (c-d) to Figure 4.4 (c-d) indicates that the returns

estimation reduced the autocorrelation observed in the residuals, by moving the coeffi-

cients closer to zero or within the 95% confidence level. But the returns estimation had no

effect in reducing the volatility clustering that is reflected in the non-negligible Residuals2

autocorrelation coefficients. So the C-HONN captures the dynamics of the daily returns

series resulting in reduced autocorrelation in the residuals; however, C-HONN had no

effect on the squared returns autocorrelation coefficients; this can be observed in the

bottom two graphs in Figure 4.8 and Figure 4.6.

Figure 4.8 (c) shows that the autocorrelations in the residuals are reduced and have

autocorrelation values similar to a random variable and graph Figure 4.8 (d) shows the

autocorrelation of the squared returns indicate a clustering in the volatility of the residuals

which remained intact. The autocorrelation of the squared returns (volatility) is not

captured by linear or NN models, hence, we use GARCH and EGARCH methods which

estimate volatility that was unaccounted for when estimating the returns only.

Tables 4.1 and 4.2 show a summary of the FTSE100 and NASDAQ estimation models

with the best results shown in bold font for each of the evaluation criteria. The tables

are sorted according to the AIC criterion, with the best model at the top. Models

estimating returns and volatility have significantly better AIC and RMSE compared to

the performance of returns only estimation models. The structure of the neural networks

with the best AIC is provided in the column labeled (structure), where it indicates the
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Table 4.1: FTSE100 returns estimation results (numbers in bold indicate best perfor-

mance, lower AIC and RMSE better, Higher HRi/o/+ better).

Model AIC(var) RMSEi RMSEo HRi HRo HR+
o Structure

C-HONN 1.630(0.0042) 1.047 1.342 57.83 51.75 59.14 11-10-1

Horiz-HONN 1.631(0.0004) 1.051 1.336 58.07 51.85 59.05 10-7-1

NN 1.648(0.0004) 1.149 1.352 55.94 51.65 60.62 11-10-1

CP-HONN 1.663(0.0005) 0.935 1.342 61.78 51.75 59.67 11-0-1

FXP-HONN 1.689(0.0008) 0.948 1.342 61.92 51.23 60.49 5-2-1

Linear 1.702(0.0004) 1.317 1.344 52.60 52.16 57.49 8-1

RW 2.097(0) 1.969 1.969 49.67 49.67 49.67 1-1

number of inputs, hidden neurons and outputs in the following manner (input-neurons-

output). The structure column is for the cases with the best AIC performance. Lower

AIC is an indicator of better performance in terms of errors and number of parameters.

The table also indicates the variance of the AIC showing that the results closely match

the indicated AIC values. The Random Walk model is, as expected, worst in both data

sets indicating that we can extract patterns that are not i.i.d. The returns estimating

models reduce the out-of-sample error when compared to linear regression by 4.2% for

the FTSE100 and by up to 4.7% for the NASDAQ.The best HR in-sample performance is

correlated with the number of parameters, so the FXP-HONN had the best performance

in both data sets. However, the best out-of-sample Hit Rate (HR+
o ) is estimated by the

NN in the FTSE100 data set to be 60.62% correct forecast and by the FXP-HONN in the

NASDAQ data set to be 59.5% correct forecast. The best performance is an optimistic

value to consider when having forecasting models with a high degree of variability, so a

better more robust estimate is given by the average result which excludes outliers, both

good and bad results, by using functions such as the median. So, more importantly

the best average median HRo performance was for the new C-HONN giving 51.85% for

FTSE100 and the FXP-HONN gives 51.24% for NASDAQ. So in order to get the best

HR estimation on average HONNs should be used. The tables also include a maximum

HRo referred to as HR+
o . HONNs achieve the best performance possible for each criterion

except HR+
o (in bold font).

4.4.2 Volatility Simulation

Figure 4.9 shows an example of one of the results of returns and volatility estimation.

Figure 4.9 (a) shows the FTSE100 estimated volatility of the daily returns residuals after
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Figure 4.9: (a) Estimated FTSE100 daily returns volatility. (b) standardised Residuals.

(c) Autocorrelation function of the standardised daily returns residual and the squared

standardised daily returns residual when using C-HONN-EGARCH.
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Table 4.2: NASDAQ returns estimation results (numbers in bold indicate best perfor-

mance, lower AIC and RMSE better, Higher HRi/o/+ better).

Model AIC(var) RMSEi RMSEo HRi HRo HR+
o Structure

C-HONN 2.031(0.0071) 1.562 1.931 58.21 50.93 58.97 11-10-1

Horiz-HONN 2.040(0.0002) 1.585 1.931 58.73 51.03 58.06 8-7-1

NN 2.054(0.0002) 1.737 1.95 56.25 51.13 58.56 9-10-1

CP-HONN 2.054(0.0014) 1.342 1.931 63.63 51.03 58.68 8-4-1

FXP-HONN 2.074(0.0002) 1.279 1.931 64.39 51.24 59.5 3-1-1

Linear 2.081(0.0002) 1.923 1.951 51.07 50.10 55.99 4-1

RW 2.452(0) 2.808 2.808 48.37 48.37 48.37 1-1

C-HONN estimation. Figure 4.9 (b) shows the standardised residuals obtained by dividing

the returns residual by the EGARCH estimated volatility, εstandardised = εt/σt, resulting

in a residual that is similar to an independent and identically distributed signal, zt, with

volatility close to 1 and kurtosis close to 3. Figure 4.9 (c) displays the autocorrelation

of the standardised returns and lastly the standardised squared returns are shown in

Figure 4.9 (d). We notice that the hybrid C-HONN-EGARCH model captured all of the

information in returns and volatility, by moving the residual autocorrelations, on average,

closer to zero within the 95% confidence level of a random signal, this effect was also

verified by a Ljung-Box-Pierce Q-test function provided by Matlab.

The AIC shows that volatility estimating models perform up to 6.2% better than re-

turns only estimation for the FTSE100, and up to 2% better for the NASDAQ dataset

which indicates that further information was captured from the residuals. The new net-

works C-HONN and Horiz-HONN had the best AIC performance when forecasting re-

turns for both datasets with both networks having similar performance in the FTSE100,

however; the Horiz-HONN had slightly worse out-of-sample performance, in both data

sets the C-HONN model had better average performance, however; it also had the largest

variance compared to other models. In spite of this large variance of the C-HONN model

it still performed better than the NN and linear models.

We selected the new C-HONN as it had the lowest AIC to combine with the linear

and nonlinear volatility estimating models GARCH and EGARCH shown in Tables 4.3

and 4.4. It can be seen that C-HONN and EGARCH provide the best AIC, RMSE, and

HR in these simulations. The RMSE of the volatility estimating models is lower due

to the extraction of the volatility information from the returns residual. The χ2 variance

test, VAR, indicates that the volatility estimating models were able to capture up to

99.98% of the volatility in the data. The volatility estimating models RMSE is that of

55



4.5 Conclusions

Table 4.3: FTSE100 volatility estimation results (numbers in bold indicate best perfor-

mance, lower AIC and RMSE, Higher VAR).

Model AIC V AR RMSE

C-HONN-EGARCH 1.5274 0.9998 0.9998

C-HONN-GARCH 1.5372 0.9678 1.001

Linear-EGARCH 1.5605 0.828 1.0527

Linear-GARCH 1.5358 0.9801 1.001

Table 4.4: NASDAQ volatility estimation results (numbers in bold indicate best perfor-

mance, lower AIC and RMSE, Higher VAR).

Model AIC V AR RMSE

C-HONN-EGARCH 1.9957 0.929 1.0021

C-HONN-GARCH 2.0072 0.972 1.0011

Linear-EGARCH 2.0512 0.638 0.9864

Linear-GARCH 2.0014 0.972 1.0013

the standardised residual errors. Models forecasting volatility had better out-of-sample

RMSEo; the volatility estimating models reduce the out-of-sample error when compared

to linear regression by 10.25% for the FTSE100 and by up to 4.1% for the NASDAQ. In

terms of AIC when combining the C-HONN with the established GARCH and EGARCH

models they provide up to 2.1% and 2.7% improvement in AIC for FTSE100 and NAS-

DAQ when compared to conventional models of Linear-EGARCH models. In both tables,

Linear-E/GARCH indicate that the results were obtained from the best first order Neural

Network which was reduced to a linear regression network followed by a volatility estima-

tion model; this type of process is commonly used for returns and volatility forecasting.

The results show the advantage of using a hybrid returns and volatility forecasting model

using the new C-HONN-EGARCH combination.

4.5 Conclusions

This work presented an investigation into financial data forecasting using linear, First

order Neural Network, and Higher Order Neural Network models. The performance of the

HONN models was superior to other types of network or linear models. The new C-HONN

provided the best performance for forecasting the daily returns series of FTSE100 and

NASDAQ. The FXP-HONN had the best hit rate prediction for the NASDAQ time series

at 59.5% and 60.62% was achieved for the FTSE100 using a first order NN. We conclude
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that models that assume the data has a normal Gaussian distribution with constant

volatility fail to capture all of the information available within the data as reflected in

the AIC, RMSE values and correlation tests. Even the best performing C-HONN did

not capture the conditional volatility in the residual of the returns. This information is

captured using models that take into account conditional volatility, such as GARCH and

EGARCH. HONNs forecasting returns were combined with the GARCH and EGARCH

models, for the first time, to give a hybrid model. It was observed that the hybrid model

reduced the RMSE error by 10.25% for the FTSE100 and by 4.1% for the NASDAQ

datasets when compared to linear regression. The best performing model was the hybrid

C-HONN-EGARCH combination model for the data sets considered.
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Chapter 5

Higher Order Neural Networks for

Camera Calibration

5.1 Introduction

Camera calibration is a process in which a real world image is mapped to match its

projection as seen by the camera sensor. The image seen by the camera lies in a 2D Camera

Coordinate System (CCS), and the reference scene lies in the 3D World Coordinate System

(WCS). Most calibration models are based on geometrical relations which map the WCS

to CCS based on the pinhole camera model.

Conventional camera calibration techniques divide the geometrical relationships an-

alytically into linear transformations and non-linear distortions; referred to as extrinsic

and intrinsic parameters, Bakstein (1999); Weng et al. (1992). The parametric calibration

can only capture the information according to the analytical constructs they are designed

to replicate. So, even a highly optimised parametric calibration process, in some cases,

leaves a calibration residual error that has not been accounted for by the analytical model,

Qiu and Song (1995).

This work proposes a new modification on a technique for camera calibration based on

non-parametric mapping using Neural Networks. A Higher Order Neural Network is used

to map the WCS to CCS using supervised learning. Where the HONN emulates the cam-

era calibration model by accounting for statistical errors that were not considered in the

parametric model. This chapter shows the improvements gained by non-parametric cam-

era calibration by using Generalised Correlation Higher Order Neural Networks, Selviah

and Shawash (2008) as a non-parametric solution for the camera calibration problem.

This chapter compares the parametric models to non-parametric models in two con-

texts. The first context is the comparison of the reduction of the calibration error when
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mapping WCS-to-CCS using parametric, non-parametric, and a hybrid model combining

the linear part of the parametric model with a HONN and a NN that rectifies the non-

linear camera distortion and systemic errors. The second part of this study is concerned

with CSS-to-WCS mapping using implicit models.

The chapter is organised as follows. Section 5.2 describes the existing and the new

calibration techniques considered. Section 5.3 presents the experiments and simulations,

followed by section 5.4 with the results. Section 5.5 ends with the conclusions.

5.2 Camera Calibration

Camera calibration can be ascribed as estimating a function which maps image coordinates

from WCS to CCS. WCS occurs in 3D denoted by point P = [x, y, z]T . CCS occurs in

2D, p = [x, y]T .

In this section we provide a brief summary of the processes that comprise parametric,

non-parametric and semi-parametric models.

5.2.1 Parametric Camera Calibration

Camera calibration is the process of finding explicit linear mapping in the projective space

encoding the internal camera parameters described by the linear pinhole model. Further-

more, many real camera systems cannot be fully described by this linear pinhole model

and require an estimation of the non-linear distortions transpiring in camera systems.

There are many well established techniques that take into account both effects; Heikkila

and Silven (1997); Tsai (1987); Zhang (2004).

Calibration procedures vary in their naming and the number of steps they involve.

However, the equations describing these models revert to two types of functions that

determine the mapping process. Linear functions are based on extrinsic parameters, while

the non-linear functions are based on the intrinsic parameters. Extrinsic parameters

include focal length, centring, scaling, translation and rotation parameters. Intrinsic

parameters include distortions such as the radial and tangential lens distortions. This

type of calibration is referred to as parametric calibration where all the aforementioned

parameters form an equation that maps the WCS 3D data to the 2D image seen in CCS.

The Camera coordinate system (CCS) referred to as (P = [x, y, z]T ) usually measured

in pixels which are coincident on the xy-plane, and optical axis along the z-axis. The

centre of the image plane is at the origin, c, and the lens focal length of the lens f ,

Bacakoglu and Kamel (1997).

59



5.2 Camera Calibration

Equation (5.1) describes of the intrinsic linear mapping which projects points from

WCS to CCS using a [3 × 3] rotation matrix R, and a [3 × 1] translation vector T , the

ĥat denotes calculated parameters.

P̂ = R× P + T

p̂ = f × P̂ + c
(5.1)

The non-linear radial and tangential distortion are calculated using (5.2). Radial

distortion are caused by the shape of the lens, these distortions are highly dependent

on the radius. Tangential distortion is due to manufacturing defects where the lens is

not exactly parallel to the sensor causing the view of the image to occur at an angle

perpendicular to the radius. The parameters which constitute the radial distortion depend

on the radius, r2 = x2 + y2. The tangential distortion is modelled on the following set

of parameters; a1 = 2xy, a2 = r2 + 2x2, a3 = r2 + 2y2. The equation in the first set of

brackets indicates the radial distortion (with terms up to the 6th degree). The parameters

in the brackets on the right account for the tangential distortion.

x̂new = [x(1 + ρ1r
2 + ρ2r

4 + ρ5r
6)] + [ρ3a1 + ρ4a2]

ŷnew = [y(1 + ρ1r
2 + ρ2r

4 + ρ5r
6)] + [ρ3a3 + ρ4a1]

(5.2)

The new projected points resulting from (5.1) and (5.2) are compared to the target

coordinates in CCS to generate an error vector. The error vector, E, is used to estimate

the error gradient with respect to the vector containing the parameters used to perform

the projection, φ. The error gradient matrix, J , is used in the Levenberg-Marquardt non-

linear learning algorithm. This algorithm finds the optimal parameters, φ, which reduce

the error between the projected point and the target CCS values.

φnew = φold +H−1 ×∇J (5.3)

In (5.3), H is the Hessian matrix, H = JTJ , and ∇J = J × E is the gradient of the

error.

5.2.2 Non-Parametric Camera Calibration

This type of calibration is usually described as an implicit camera calibration technique

which maps points from the WCS to CCS. Neural Networks are an example of this type

of calibration where they are used for sensor and camera calibration, Maleki et al. (2004);

Woo and Park (2009).
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A feedforward neural network is used to learn the relationships, linear and non-linear,

by finding the optimal neuron weights that link the reference grid to the distorted one.

Neural networks are suited for learning complex nonlinear mappings where not all of

the explicit analytical formulation is available, Wells (1996). This approach has several

distinct features when compared to the parametric one. By using the non-parametric

approach, no analytical form of the distortion surfaces is assumed. The distortion surfaces

are derived directly from the training samples by compensating for the systematic mapping

errors statistically, Qiu and Song (1995).

In this paper an advance type of NNs will be used. Ordinary Feed-forward neural

networks are capable of handling linear and non-linear separations within the input space.

Higher Order Neural Networks contain processing units that are capable of performing

functions such as polynomial, multiplicative, smoothing or trigonometric functions, Giles

and Maxwell (1987); Selviah et al. (1991), which generate more complex decision regions

which are multiply connected. A simple HONN could be thought of as describing elliptical

curve regions as HONN functions can include square terms, cubic terms, and higher orders.

In order to obtain a similar complex decision regions ordinary NN need to incorporate

increasing number of neurons and hidden layers.

HONNs will use implicit mapping instead of explicit mapping. Denoting that instead

of computing the extrinsic and intrinsic parameters of the camera system as in (5.1),(5.2).

A NN can describe the projection by using the formula in (5.4), where the Higher Order

Function is represented by HO and the NN parameters are represented by [W1,W2, b1, b2].

N is the output from the first layer. W1, b1 account for both the normal input and

its higher order function. Network parameters initialization is described later. tanh is

hyperbolic tangent non-linear activation function in the hidden layer, see Figure 5.1.

N = W1 × [P,HO]T + b1

p̂ = W2 × tanh(N) + b2

(5.4)

One of the draw backs of HONNs is that they can consume large amounts of computing

resources if set to encompass all the possible permutations of the input data. Each

neuron in the input layer can be comprised of many multiplicative operations which when

accumulated can begin to increase processing time, Selviah and Shawash (2008); Taylor

(2009).

For example, if WCS P is considered, then the possible input patterns could be: x, y,

z, xy, xz, yz, xx, yy, zz, xxy, xxz, etc. Which represent combination of all possible inter-

multiplications of the input space. This type of function can be described as a Kronecker

process, ⊗, in (5.5).
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Input Layer Hidden Layer Output Layer

HO

Figure 5.1: A Higher Order Neural Network with inputs, P = (x, y, z) and a Higher Order

Function represented by HO, N is the output from the first layer. The projection outputs

are represented by p̂ = (x̂, ŷ, ẑ).
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5.2 Camera Calibration

H(P ) = P ⊗ P

= [x y z]× [x y z]T
(5.5)

This type of operation constitutes a generic HONN which contains all the possible permu-

tations, this network will be referred to as the Full Cross Product HONN (FXP-HONN)

containing 9 parameters, (5.6).

FXP −HONN =

xx xy xz

yx yy yz

zx yz zz

 (5.6)

The output parameters from (5.6) contain redundant information, 6 parameters are

non-unique. With the current data set under consideration, an elementary change per-

formed by selecting only unique polynomial terms of FXP-HONN can reduce the number

of parameters almost by one third, we refer to this network as Cross Product HONN

(CP-HONN), (5.7).

CP −HONN =

xx xy xz

yy yz

zz

 (5.7)

A further reduction on the number of parameters can be achieved by summing the

diagonal and off diagonal traces of the CP-HONN to generate another two HONNs; the

Correlation HONN (C-HONN), (5.8), and the Horizontal HONN (Horiz-HONN), (5.9).

Both of these networks reduce the number of parameters by 33% when compared to the

ordinary HONN.

C −HONN =

xx+ yy + zz

xy + yz

xz

 (5.8)

Horiz −HONN =

xx+ xy + xz

yy + yz

zz

 (5.9)

5.2.3 Semi-Parametric Camera Calibration

The semi-parametric camera calibration is a method that is similar to the parametric

method insofar that it extracts the extrinsic camera parameters, however; it appends a

non-linear approximation of the intrinsic parameters using a HONN or a NN instead of the
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radial and tangential distortion parameter estimation. Semi-parametric calibration can

be considered as combining steps that find the extrinsic parameters using the parametric

model combined with an estimation of the intrinsic errors statistically using NNs and

HONNs.

5.2.4 2D-to-3D mapping

In this chapter we also investigate inverse mapping by using non-parametric camera map-

ping from the CCS to WCS (2D-to-3D) as opposed to WCS to CCS (3D-to-2D). A number

of studies solve this problem analytically, Anchini et al. (2006); Clarkson et al. (2001);

Fanhuai et al. (2004); Phong et al. (1995); Shi et al. (2004); van de Kraats et al. (2005).

Also, by using neural networks, Lynch (1999); Memon and Sohaib (2001). However, both

those techniques require multiple views of the same plane. In this study we examine this

type of mapping without the use of a secondary view. So the results from this results can

only be applied on 2D data captured when the 3D coordinates occur on the same plane

or distance from the camera.

5.3 Experiment

5.3.1 Test Data

In order to compare parametric calibration techniques with the new HONN non-parametric

calibration we used two data sets that are publicly available on the Microsoft Research

and the Caltech vision research websites, Bouguet (2008); Zhang (1998).

The data used in this experiment was obtained from the Caltech Camera Calibration

Toolbox (CCT) repository. The first data set is the calibration planes used in, Zhang

(1998) shown in Figure 5.2, this data will be referred to as “plane data”. The plane data

calibration points represent data extracted from multiple views of the same plane. The

second calibration data set are the reference and distorted grids used in, Heikkila and

Silven (1997), shown in Figure 5.3, this data will be referred to as “Cube data”. The

Cube data is extracted from a grid that is comprised of two sides of a cube which appear

as two planes in WCS.

5.3.2 Simulation design

For parametric modelling we used the Caltech Camera Calibration toolbox for Matlab,

also available in OpenCV. This toolbox provides a good benchmark since it encompasses
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Figure 5.2: The 3D Reference grid and its plane distortion seen in 2D from 5 different

views.
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Figure 5.3: 3D Cube data (x, y, z) and its corresponding 2D plane (x̂, ŷ).

a comparison of the other calibration techniques and camera calibration toolboxes such

as, Heikkila and Silven (1997); Zhang (1998). For details on the techniques adopted by

this toolbox please refer to the original author’s documentation, Bouguet (2008). As for

the non-parametric calibration we used Matlab 2009b, Mathworks (2009),which includes

the Neural Networks toolbox, where the networks were designed, trained and tested.

The neural networks were designed with structures that included a single hidden layer

with varying number of neurons. NNs were trained 10 times with different starting points

that were initialised using the Nguyen-Widrow algorithm, Nguyen and Widrow (1990).

The input and target data sets are randomly divided into three parts; training, validation

and testing data having 70%, 15% and 15% points respectively. This division reduces over-

fitting and makes sure the three data sets do not exclude regions with different properties

in the area in the image. All input and output data points were scaled from their respective

magnitudes to a range of [-1,1] which corresponds the desired input/output boundaries

for optimal neural network training. NN training was performed using the Levenberg-

Marquardt learning algorithm, (5.10), Marquardt (1963); this algorithm is also used by

the CCT for parametric calibration.

∆φ = −(H + Iµ)−1 ∇J (5.10)

After training is completed the output data from the NNs is scaled back to the domain of

the test images and the error is extracted. Networks were trained on each of 5 planes and

cube data separately. The neural networks reported in the results section were the ones

whose structure gave consistently lower MSE on average. For ease of comparison with

the CCT the performance will be reported as the standard deviation of the calibration

residual.
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Semi-parametric calibration was obtained by using the CCT to find the optimal intrin-

sic parameters. Then the error of the resultant projection was fed into a NN or HONN

system that accounted for non-linear distortions. As for the CCS-to-WCS (2D-to-3D)

calibration, the Neural Network toolbox was used to find NNs and HONNs that map

CCS-to-WCS for every data set individually.

5.4 Results

This section is divided into two parts. The first part shows the results of simulations

comparing WCS-to-CCS parametric, non-parametric and semi-parametric calibrations.

The second part outlines the results of CCS-to-WCS mapping, i.e. the performance of

obtaining 3D coordinates from 2D points.

5.4.1 3D-to-2D Mapping

Figure 5.4 shows the convergence of NN error with respect to increasing number of neurons

in the hidden layer benchmarked against the performance of the CCT indicated by the

thick line. From the two graphs we can see that all HONNs and NNs converged to a lower

errors than the parametric method. Compared to NNs, HONNs error converges with a

lower number of hidden neurons, 3 against 4 for the plane data, and 7 compared to 10 for

the cube data.
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Figure 5.4: Calibration error convergence for 3D-to-2D parametric mapping compared to

HONNs and NNs with varying hidden neurons for (a) Plane data. (b) Cube data.
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Data CCT NN FXP CP C Horiz

image 1 0.2454 0.2103 0.2085 0.2088 0.2159 0.2047

image 2 0.1595 0.1086 0.1121 0.1214 0.1223 0.1220

image 3 0.3810 0.3558 0.3718 0.3678 0.3688 0.2756

image 4 0.1676 0.1319 0.1450 0.1475 0.1511 0.1467

image 5 0.1446 0.1211 0.1218 0.1256 0.1275 0.1173

All 0.2364 0.2071 0.2055 0.2058 0.2145 0.1797

Semi 0.7891 0.1968 0.2101 0.2028 0.2045 0.2156

Cube 0.0510 0.0324 0.0291 0.0291 0.0331 0.0314

Semi 0.6765 0.0343 0.0334 0.0343 0.0350 0.0359

Table 5.1: Calibration Error standard deviation (σ) for mapping with the CCT, NN and

HONNs from WCS-to-CCS (3D-to-2D) and semi-parametric calibration for both the plane

and the cube data.

Table 5.1 is divided into an upper and a lower segment. The upper segment shows the

calibration error standard deviation resulting from 3D-to-2D mapping of the coordinates

of the 5 planes indicated in the first column, with later columns indicating the calibration

model. Best results are indicated in bold font. We notice that on average, all non-

parametric models had 14% lower calibration error than the CCT. The Horiz-HONN had

the lowest average error of σ = 0.1797 pixels which is 24% lower than CCT. The percentage

enhancement of using non-parametric models is shown as graph (a) in Figure 5.5.

The final row in the upper segment shows the results of the semi-parametric calibra-

tion. The results are not conclusive with regards to any improvements when using the

hybrid method. However, the average results of the semi-parametric method were lower

by 12% compared to CCT.

The last two rows in Table 5.1 show the calibration error of the cube data; parametric

vs non-parametric. And the last row shows the semi-parametric calibration results. The

results show a similar pattern as in the previous data. The non-parametric reduced the

mapping error by up to 43% in the cases of FXP and CP-HONNs, and by 39% on average

when compared to CCT. The percentage enhancement of using non-parametric models

is shown as graph (b) in Figure 5.5. As for semi-parametric cube calibration, the results

indicate that the calibration error of the hybrid model are larger than the non-parametric

model, however, they too are lower than the CCT by 32% on average with FXP-HONN

having the largest reduction of error by 34%.

These results indicate that mapping errors are reduced when using non-parametric
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models, with both the planar and cube mapping gaining significant calibration improve-

ment. The hybrid model had better performance than the CCT, however, it did not give

a lower calibration error than the fully non-parametric model. A benefit of the hybrid

model is that it retains the intrinsic parameters from the linear analytical model.
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Figure 5.5: Calibration error σ for the camera calibration and the 5 Networks. (a) 3D-2D

average performance of 5 plane images, (b) 3D-2D mapping of cube to grid.

5.4.2 2D-to-3D mapping

In this section we present the results of the inverse mapping problem of obtaining 3D

coordinates from 2D coordinates. Figure 5.6, shows the convergence of HO/NNs when

mapping (a) plane mapping, (b) cube data. Currently, we do not have an analytical model

as a benchmark, so we set the lowest performing model as the benchmark in this case.

In Figure 5.6 we notice a pattern similar to the one mapping WCS-to-CSS in terms of

NN and HONN error convergence with respect to how many neurons are included in the

hidden layer.

Table 5.2 shows the calibration error resulting from 2D-to-3D mapping of the plane

data in the upper segment and the cube data in the last row. There are no results for the

parametric model as it is not capable of performing the required transformation from CCS

to WCS using this type of data, i.e data from a single view of the plane/cube. We notice

the the NN and HONN CCS-to-WCS mapping of the plane data were almost similar,

with FXP and CP HONN having a marginal performance improvement over the rest of
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Figure 5.6: Calibration error convergence for CCS-to-WCS (2D-to-3D) mapping compared

using HO/NNs for (a) Plane data, (b) Cube data.

Data NN FXP CP C Horiz

image 1 0.0036 0.0037 0.0034 0.0037 0.0034

image 2 0.0019 0.0037 0.0018 0.0019 0.0029

image 3 0.0064 0.0061 0.0067 0.0076 0.0100

image 4 0.0025 0.0026 0.0027 0.0025 0.0034

image 5 0.0024 0.0036 0.0025 0.0027 0.0030

All 0.0037 0.0036 0.0036 0.0037 0.0037

Cube 0.0407 0.0213 0.0227 0.0251 0.0245

Table 5.2: Pixel Error in standard deviation (σ) for mapping with the CCT, NN and

HONNs from CCS to WCS (2D-to-3D) for the 5 images and the cube data.
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the models. Figure 5.7 (a) and (b) show calibration error of all HONN models compared

to the NN model as a benchmark.

However, in the case of cube mapping we see a significant drop in the error when using

HONNs compared to NNs, Figure 5.7 (b). The FXP and CP-HONN provide 47.6% and

44.2% lower mapping errors. This reduction in mapping error can be be attributed to the

more complex nature required when mapping non-planar data by HONNs.
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Figure 5.7: 2D-3D calibration error reduction in percentage compared against NNs for

(a) Plane data (b) Cube data.

5.5 Conclusions

This work compared the mapping performance of a new type of Higher Order Neural

Network, the Generalised Correlation Higher Order Neural Network, against standard

analytical methods in three situations; 3D-to-2D mapping, a hybrid model combining

HONNs with an analytical model, and the performance of HONNs compared to NNs

when mapping 2D-to-3D. The study considered 2 types of data, multiple views of plane

data, and a cube data comprising two planes on adjacent sides of a cube.

The results indicate that HONN calibration outperform both the standard analytical

parametric model used by the Camera Calibration Toolbox (CCT) in all cases and the

non-parametric model based on ordinary Neural Networks (NN) in some of the cases.

HONN 3D-to-2D mapping reduced the error by more than 14% on average with the the
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Horiz-HONN having 24% lower error than the parametric method for plane data. 3D-

to-2D cube mapping had more drastic reduction in the error when using HONNs, with

reduction of mapping error of up to 43% in the cases of FXP and CP-HONNs.

The new hybrid models combining analytical solution for linear parameters combined

with a HONN based non-parametric model to account for non-linear distortions out per-

formed the parametric modelling performed by the CCT. However, it did not provide a

discernible mapping improvement in the case of plane data and it had a worse performance

when mapping cube data. Inverse mapping from 2D-to-3D using HONNs did not provide

discernible improvement when compared to the NN model. However, in the case of cube

data the FXP and CP-HONNs provided 47.2% and 44.2% drop in error respectively. This

can be attributed to the more complex nature of mapping non-planar data using HONNs,

and the availability of non-degenerate information for the z-dimension. HONNs provide

mapping improvements compared to the parametric model since it aims to eliminate the

systematic error without being limited to a fixed analytical model. HONNs also outper-

form NNs as the Higher Order functions reformulate the input space into one that reflects

the higher order interactions of the input data passing through a camera system. The

simulations were limited to only two sets of data. Benchmarking HONN mapping capa-

bilities against the standard model and the NN model presents a strong case for further

research.
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Chapter 6

Higher Order Neural Network

Training on Limited Precision

Processors

6.1 Introduction

Dedicated digital hardware, such as Digital Signal Processors (DSPs) and Field Pro-

grammable Gate Arrays (FPGAs) can achieve real-time, high speed, low latency opera-

tion, however, all those enhancements come with a penalty of reduced precision. There is

a trade-off between the throughput of a design and the precision and resources required

for satisfactory operation. There have been many studies on the operation of Artificial

Neural Networks (ANNs) on real-time, low precision electronic hardware, Jung and Kim

(2007); Sahin et al. (2006); Zhu and Sutton (2003b). Furthermore, efforts in improving

NN operation and training performance has been accomplished by using floating-point

libraries that make use of specific operation structure speed ups have been implemented

in works such as Bilmes et al. (1997). However, these types of libraries are not applicable

in the context of this study of NN training and operation in fixed-point. It was found

that the ANN output error depends on the number of hidden layers and other factors,

Piche (1995); Stevenson et al. (1990). Reducing the size of ANNs for simpler operation,

learning can allow for accurate solutions. A number of researchers have found that they

have to train ANNs offline on high precision floating point processors such as general

purpose processors to preserve accuracy during training. The results of this training

are then quantised to obtain a lower precision design which works in a limited precision

environment.
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6.2 Generalised Correlation Higher Order Neural Networks

In real time hardware, the ANN size poses a more serious problem than in software

running on a floating point CPU due to the more limited circuit resources such as memory.

The size of the ANN limits the learning offline in software as the time and memory

requirements grow with ANN size. even though parallel hardware processors significantly

increase the speed at which ANNs operate, they can only accommodate ANNs which

do no exceed the available limited resource, Lopez-Garcia et al. (2005); Maguire et al.

(2007). Another way to reduce the size of an ANN is to move the complexity from inside

the hidden layers of the network to a pre-processing stage before it by using a Higher

Order Neural Network (HONN). So we investigate the implementation of the recently

introduced Correlation HONN (C-HONN), Selviah and Shawash (2008), and compare it

with a first order ANN and a HONN in a limited precision environment. Dias et al.

(2006) demonstrated that it is possible to implement an on-line Levenberg-Marquardt

(LM) training algorithm in software; the use of online learning, as opposed to batch

learning, reduces the memory requirements and operation time. The ability to operate

LM algorithm online with reduced memory and operation complexity suggests that the

LM algorithm may be suited for implementation on real time reduced precision hardware

where it has not been used before. Therefore, we compare the LM online training with

Back Propagation (BP) online training in a limited precision environment to find the

lowest precision at which learning is feasible.

It was found that if training is performed in a limited precision environment the ANN

converges correctly for high precision but below some threshold level of precision the

training does not correctly converge. The most similar work in this area was done by

Minghu et al. (2000), where a single type of HONN with BP training was investigated.

To our knowledge no one has either trained nor even run or operated a HONN in a limited

precision environment. We present the first demonstration of running and operating two

HONNs in an emulated limited precision environment and show how to find the lowest

precision which at which training and a convergence to a solution are still possible.

Section 6.2 describes HONNs and on-line learning algorithms. Section 6.3 details the

experimental method. Sections 6.4, 6.5, and 6.6 present the simulations and the results.

The discussion and conclusions are presented in sections 6.7.

6.2 Generalised Correlation Higher Order Neural Net-

works

ANN applications expanded to take into account the highly complex non-linear data avail-

able in various systems, such as communications systems and economic data. In general,
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when the data complexity is increased, the ANN size needs to expand accordingly, with

the possibility of reaching sizes that are impractical for ANN training even in software.

One solution is to present the ANN with a function of the data, a function which ex-

poses the interrelations that are difficult to capture using the hidden layer. These ANNs

are sometimes referred to as functional-link networks, Masters (1993). HONNs provide

a method to present the ANN with all of the possible high order interactions between

the elements of the input vectors. HONNs can easily model the exclusive OR function

(XOR) as they can transform the input from a linearly inseparable space to a space where

data can be classified more easily by simpler linear operators. HONN also proved to be a

better way to store information, Giles and Maxwell (1987); Lee et al. (1986); Personnaz

et al. (1987). even though it increases the parameter count, the transformation helps

reduce the ANN model dependence on the hidden layers; at times eliminating them by

using outer products or tensor models, Pao (1989). Transforming input data for an ANN

often dramatically speeds up training. HONNs were also successfully applied to financial

prediction with an astonishing twofold improvement over ordinary ANNs in some cases,

Fulcher et al. (2006).

Selviah and Shawash (2008) introduced the Generalised Correlation HONN that trans-

forms input data by performing a localised correlation operation on the input data vector.

Refer to Section 4.2.4 for details.

6.2.1 Artificial Neural Network Training Algorithm Review

The training of ANNs aims to find a set of weights that give a global minimum in the error

function surface where the optimal performance can be achieved. There are two methods

to optimise a function, the deterministic and the probabilistic methods, Lee (2007). In

this study, we consider two popular deterministic supervised learning methods, Lee et al.

(2004), the error Back-Propagation and the Levenberg-Marquardt algorithms, Marquardt

(1963); Press et al. (1992). Since the error surface may be complex, convex and may have

concave regions, Fu (1994), it is more likely that the network settles into a local minimum

than a global one when using a deterministic method. This problem cannot be completely

avoided in the deterministic training methods; however, it can be reduced in a number of

ways. Firstly, early stopping, Haykin (1999) recommends that the data is split into three

parts, training, validation and test sample sets; the training set is used to optimise the

weights in the network, the validation set is used to stop the training when the validation

error becomes less than a certain value with respect to the training error. Secondly,

random selection of training, validation and test sets ameliorates the danger of training

on data characterised by one set of a local type of data, thus giving a better generalisation
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Table 6.1: Back-Propagation Algorithm

1 while i < Max Iteration

2 NetHidden = W1 ×

[
X0

1

]
Output of first layer

3 XHidden = f(NetHidden) Output after hidden

layer

4 NetOutput = W2 ×

[
XHidden

1

]
Network output

5 E = Target−NetOutput
6 ∆Eout = f

′

linear(XHidden) · E Error in output layer

7 ∆W2 = ∆Eout Output layer weight

change

8 ∆EHidden = W T
2 ×∆Eout

9 ∆W1 = f
′

logistic(XHidden) ·∆EHidden Hidden layer weight

change

10 W2new = α×W2old + (1− α)× η ×∆W2 ·
[
XHidden 1

]2

New hidden-output

layer weights

11 W1new = α×W1old + (1− α)× η ×∆W1 ·
[
X0 1

]2

New input-hidden

layer weights

Check if training conditions are still true, if yes: repeat, otherwise exit training

ability to the network, Kaastra and Boyd (1996). Thirdly, local minima can be avoided by

using randomly selected starting points for the weights being optimised Masters (1993),

we use the Nguyen-Widrow initialisation method Nguyen and Widrow (1990). Lastly,

Overfitting can also be reduced by removing ANN complexity by reducing the number of

elements in the ANN by estimating and selecting the best AIC with respect to lag and

layer size. From our study of ANN properties in software, it was recommended to use

the smallest network size which provides valid operation. The same recommendations

apply to hardware implementation to achieve the smallest circuit footprint and power

efficiency, Marchiori and Warglien (2008). The two learning methods are summarised in

Tables 6.1 and 6.2, where the stopping criteria (momentum, learning rates, and maximum

training epoch number) are set to values used widely in literature. The derivation of both

algorithms is available in A.
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Table 6.2: Levenberg-Marquardt Algorithm

1 while i < Max Iteration

2 NetHidden = W1 ×

[
X0

1

]
Output of first layer

3 XHidden = f(NetHidden) Output after hidden layer

4 NetOutput = W2 ×

[
XHidden

1

]
Network output

5 E = Target−NetOutput Error in output layer

6 θ =

[
W1

W2

]
Weight vector

7 J(θ) =

[
f
′
linear(XHidden)

W2 × f
′
logistic(XHidden)

]
Jacobian matrix

8 ∇J = J × E Error gradient

9 H = JT × J Hessian matrix

10 H = H + λ× diag(H) Updating Hessian matrix

11 ∆θ = H−1 ×∇J Weight change

12 θnew = θold + ∆θ New weight vector

13 W2new = W2old + θnew(W2) New hidden-output layer weights

14 W1new = W1old + θnew(W1) New input-hidden layer weights

15 Updating λ

16 L = ∆θT∇J + ∆θT∆θλold Calculating update conditions

17 λ =

{
λ
2 if 2N(MSE −MSEnew) > 0.75L

2λ if 2N(MSE −MSEnew) 5 0.25L
New lambda

Check if training conditions are still true,

if true: repeat or go to step 10 otherwise exit training
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Table 6.3: Floating-point to Fixed-point conversion workflow

1 Golden Algorithm

Our Reference Design which we seek to implement in hardware

2 Floating Point Design Verification

We need to validate our design before we continue with the conversion

to hardware language

3 Simulation of algorithm tradeoffs

Explore design tradeoffs of functions that are impractical to implement

in hardware

4 Conversion to fixed-point

Exploring a software implementation of fixed-point algorithmic behaviour

5 Simulation of fixed-point implementation tradeoffs

Examine tradeoffs of word length variation, pipelining and loop unrolling

if possible

6 Generation of hardware code

Automatic hardware code generation

7 Validation and verification of design deployed on hardware

Verification by analysing test-bench performance

6.3 Experimental Method

In order to investigate the effects of reduced precision on the learning process we followed

algorithm in Table 6.3 to convert from floating point operation to fixed point. The

floating point learning algorithm is referred to as the Golden Algorithm and is used as

the benchmark for comparing the effect of reduced precision ranging from 4 to 28 bits

fixed-point representation, Zarrinkoub (2006).

Data quantifiers are used that transform the data into the limited precision domain by

rounding and truncation in a manner similar to that of digital circuits. Quantifiers were

used before and after every operation presented in the network operation and learning

modes, in tables 6.1 and 6.2. The precision of the quantifiers were varied depending on

the section and data path in the network operation and learning modes. The best network

structure was found in software using Matlab Neural Network Toolbox ver.2008a. The best

structure was selected according to the AIC information criterion, where this parameter

selects simplest and best performing ANN. The fixed-point toolbox in Matlab 2008a was

chosen as the development environment as it allows for efficient prototyping by providing

the ability to incorporate fixed-point functionality in signal processing algorithms with
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further functionality that can produce device specific targeted codes which can be ported

onto a hardware circuit at a later stage for direct hardware implementation, Bhatt and

McCain (2005); Ou and Prasanna (2004, 2005); Xilinx (2008a).

6.4 Simulations

This section describes the way the simulations were structured in order to show the effect

of reduced precision on network training algorithms. Matlab was used as our floating

algorithm development environment and the fixed-point toolbox was used to convert the

learning algorithms into fixed-point (reduced precision). The conversion from floating-

point to fixed-point was applied to two learning algorithms BP, and LM. These two

algorithms were implemented with precisions ranging from 4 to 28 bits and tested on

two data sets: the XOR function and waveguide wall roughness measurements. These

two functions were chosen as the data sets under consideration due to several factors;

the XOR has discrete levels and the wall roughness is almost continuous, so they require

different levels of quantisation in order to operate and learn and both data sets are used

in electronic engineering applications.

6.4.1 Exclusive OR (XOR)

The XOR function was chosen as a demonstration as it is one of the functions that cannot

be solved by linear models, ANNs without a hidden layer, or a single layer first order ANN.

XOR input samples were generated by using a threshold function for 1000 values from

a uniformly distributed pseudorandom number generator. The threshold function had a

threshold level of 0.5.

Sample =

{
1 , value > 0.5

0 , value ≤ 0.5
(6.1)

During the Fixed-point training and operation data was split into two parts, training

and testing. The networks structures were set following the following pattern: (IN-Hidden-

Output). In this pattern IN, the input dimension, depending on the estimation model

used, the hidden layer has 4 neurons, and output dimension of 1.

Table 6.4 shows the maximum range which the data paths used during training with

BP and LM displayed in different columns for clarity. The multiply and accumulate are

given in algorithms 6.1 and 6.2 for these parameters. The table shows the minimum

number of bits to take the maximum range into account, in order to prevent the algo-

rithm from overflowing. Underflow is not considered as some numbers require an infinite

precision to represent, however; underflow is reduced by increasing the overall precision.
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A

B

Output

0 1 0 1

0 0 1 1

0 1 1 0

Figure 6.1: Exclusive OR function

Table 6.4: Minimum parameter range during training of the XOR function neural network

models using two learning algorithms with three network types

BP LM

Range ANN C-HONN CP-HONN Range ANN C-HONN CP-HONN

X0 1 1 1 X0 1 1 1

W1 2 2 2 W1 3 2 2

W2 2 2 1 W2 2 1 2

NetHidden 3 2 3 NetHidden 4 1 4

XHidden 1 1 1 XHidden 1 1 1

NetOutput 2 2 1 NetOutput 1 1 1

δW1 1 1 1 E 2 1 1

δW2 2 2 1 J 1 1 1

∆W1 1 1 1 H 7 6 7

∆W2 2 2 1 ∇J 5 4 4

∆θ 2 1 1
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6.4.2 Optical Waveguide sidewall roughness estimation
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Figure 6.2: (a) Waveguide sidewall roughness measurements with an accuracy of 6 signif-

icant figures. (b) Stationary transformed waveguide sidewall roughness. (c) Probability

distribution function (PDF) of waveguide sidewall roughness. (d) PDF of stationary

waveguide wall roughness.

A good description or estimate of the sidewall nano-roughness of multimode rectan-

gular core optical waveguides can facilitate for high bit rate short distance interconnects.

As only small a region of the waveguide sidewall can be measured with an atomic force

microscope (AFM); estimation enables a larger region to be synthesised for modelling.

modelling allows us to investigate the coupling between bound modes and between bound

and radiation modes which affect the equilibrium modal power distribution, cross-talk

and loss, Papakonstantinou et al. (2008, 2009). Figure 6.2(a) shows the first experi-

mentally measured data of polymer optical waveguide sidewall roughness consisting of
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6.5 XOR Modelling Results

10,000 samples taken every 20 nm. The data is non-stationary making it difficult for

networks to model. Figure 6.2(c) shows the histogram of the roughness measurements

scaled by its standard deviation in order to compare it to the histogram in Figure 6.2(d).

Figure 6.2(b) shows roughness measurements transformed into a stationary form by cal-

culating the differences of the logarithms of the non-stationary signal for adjacent points,

Chatfield (1989).

ys = 100× [log(yns)− log(yns−1)] (6.2)

Where, ys is the stationary transformation of the non-stationary data represented by, yns.

This transformation operation is non-destructive, as no information is lost during this

conversion, so the data can be converted back into the original non-stationary form when

required. This transformation converts multiplicative (ratio) relationships in the data to

simpler add (subtract) operations that simplify and improve network training, Masters

(1993). Haykin (1999) mentions that ANNs alone are insufficient to capture the dynamics

of non-stationary systems. However, non-destructive data transformations can transform

the data to a stationary form, to alleviate this problem.

Figure 6.2(c) and (d) show two PDFs of the non-stationary and stationary data with

a common Gaussian distribution fit to the non-stationary data in both the figures to

emphasise the effect of the data transformation and the way it converts the distribution of

the non-stationary data into a form more similar to a Gaussian distribution.We simulated

various networks estimating wall roughness in software first to find the best for hardware

implementation. All models were simulated with input dimension ranging from 1 to 9

input units, and hidden layers having 1 to 8 hidden neurones. To our knowledge there is

no specific convention for choosing the correct ANN structure for use in limited precision,

so we used the procedure given in Algorithm ??, choosing the best network models in

software and converting these models into a format suitable for limited precision hardware.

Comparing Table 6.4 with Table 6.5, the ranges of the various stages have increased

due to the nature of the roughness data set taking values close to a continuous function

with a Gaussian distribution, while the XOR data had discrete values of 0 and 1.

6.5 XOR Modelling Results

Table 6.6 shows the Linear and network evaluation criteria when BP training is preformed

in floating point. The best performing models are in bold font. C-HONN has the best

LLF and AIC criteria. All networks models converge to a solution; the linear model is

unable to capture the solution for the non-linear XOR function as expected.
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6.5 XOR Modelling Results

Table 6.5: Minimum parameter range during training for the estimation of waveguide

sidewall roughness using two learning algorithms with three network types

BP LM

Range ANN C-HONN CP-HONN Range ANN C-HONN CP-HONN

X0 3 4 4 X0 3 4 4

W1 2 2 2 W1 3 3 3

W2 2 2 1 W2 9 7 8

NetHidden 3 4 5 NetHidden 2 2 2

XHidden 1 1 1 XHidden 1 1 1

NetOutput 2 2 2 NetOutput 1 1 1

δW1 2 2 2 E 1 2 1

δW2 2 3 3 J 4 5 4

∆W1 2 4 4 H 21 22 19

∆W2 2 3 3 ∇J 12 13 12

∆θ 3 2 2

Table 6.6: XOR BP floating point estimation results of log-likelihood function (LLF )

and Akaike Information Criteria (AIC) and the Root Mean Squared Error (RMSE)

lower values indicate better performance

LLF AIC RMSE

C-HONN -8897.85423 -17.7657085 4.51E-09

CP-HONN -7915.16279 -15.8043256 3.23E-08

ANN -6737.17429 -13.4563486 3.40E-07

Linear 73.9634 0.7696 0.7083
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Figure 6.3 shows the RMSE versus the number of BP training epochs for several levels

of precision, Q for 3 networks. The best performing networks have lowest RMSE and are

fastest in reaching this lowest error. ANN-BP convergence in Figure 6.3 (a) is very slow

compared to graphs C-HONN-BP convergence in (b) and CP-HONN-BP convergence in

(c). The C-HONN-BP in graph (b) has the fastest initial convergence rate (epochs 3-30)

compared to the other two networks with the same training method. Both C-HONN

and CP-HONN convergence rates increase in later epochs. Based on these graphs in

Figure 6.3, the new network C-HONN is best for modelling the XOR when BP training

in limited precision.
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Figure 6.3: BP Training Error for several levels of precision, Q for XOR modelling

Figure 6.4 (a), (b), and (c) show that all networks reach lower RMSE values in a smaller

number of epochs with the LM learning algorithm rather than the BP learning algorithm.

Figures 6.4 (b) and (c) the HONNs converge after epoch 6 to high precision values (low
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Figure 6.4: LM Training Error for several levels of precision, Q for XOR modelling
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RMSE), while ANNs require at least 23 epochs to achieve the same precision, incurring an

almost 4 fold increase in convergence time. Higher levels of precision give progressively

lower errors as seen in figure 6.4. The RMSE in the LM learning algorithm falls to

very low values such as 10−7 due to the fixed-point nature of the number representation

having two discrete levels at 0 or 1. As networks converge to the optimal solution, the

values making up the error vector are rounded and truncated to 0, whereas the same

parameters would leave small residuals in the error vector if operated in floating point.

RMSE values lower than 10−6 can be considered as converged or optimal solutions with no

need for further enhancement, as most learning algorithms use 10−6 as a training stopping

criterion. The best choice for XOR modelling in reduced precision is either C-HONN or

CP-HONN with LM training.

Figure 6.5 shows the RMSE for all networks for both learning algorithms as a function

of precision level, Q after 55 epochs. The two shaded regions to the left of the figure

indicate the region in which the minimum ranges shown in bold font in Table 6.4 make

some of the quantisers operate with a fraction with negative power, i.e. shifting the

fraction point to the left, leading to more severe levels of underflow. The C-HONN gave

the best error performance for BP training with the CP-HONN second and the ANN

worst. The C-HONN and CP-HONN vie for the lowest RMSE after LM training.In

BP learning, beyond a certain level of precision, increases in precision no longer lead

to increases in RMSE. We refer to the point at which RMSE stops improving as the

Minimum Precision for Lowest Error (MPLE). Setting the precision to the MPLE avoids

increases in the design complexity and circuit size minimising the overall latency. The

MPLE for the XOR function under BP training is 12 bits. A further study needs to

be done in order to determine the MPLE for LM training for XOR modelling, as the

RMSE had not reached its floor before reaching the maximum precision of this study.

6.6 Optical Waveguide Sidewall Roughness Estima-

tion Results

This section presents the results of operating and training networks with an input dimen-

sion of 9, 1 hidden layer with 1 hidden node, to estimate the next sample of the wall

roughness. Floating point results are first presented followed by fixed-point simulations

of the learning algorithms at different precisions. Table 6.7 shows that the C-HONN is

a better estimator than the ANN and CP-HONN in floating point as indicated by bold

font. Although CP-HONN has better RMSE levels the other networks, best models are

selected using the AIC criterion as mentioned previously.
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Figure 6.5: Networks output error after 55 epochs as a function of level of precision, Q

for XOR modelling

Table 6.7: Waveguide roughness LM trained floating point estimation results Log-

likelihood function (LLF), Akaike Information Criteria (AIC), Root Mean Square Error

(RMSE), lower values are better, Hit Rate (HR) -higher values are better-

LLF AIC RMSE HR

C-HONN -1923.5642 -0.1905 0.019425 77.796

ANN -1906.1974 -0.1896 0.019559 77.802

CP-HONN -1853.6991 -0.1799 0.018712 77.161
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Figure 6.6: BP Training Error at several levels of precision, Q for estimating optical

waveguide sidewall roughness
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Figure 6.6 shows that all of the algorithms reach the optimum performance after 30

epochs. ANN-BP Figure 6.6 (a) convergences faster than the C-HONN and CP-HONN

in Figure 6.6 (b) and (c) respectively. HONN operations require higher precision in order

to achieve similar performance levels to the ANN, see Table 6.5. At epoch 10, the ANN

is best for lowest RMSE then C-HONN with the CP-HONN having the worst error.
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Figure 6.7: LM Training Error for several precisions, Q for estimating optical waveguide

sidewall roughness

Figure 6.7 shows the LM training convergence curves for ANN in Figure 6.7 (a), C-

HONN in Figure 6.7 (b), and CP-HONN in Figure 6.7 (c). After 10 epochs the ANN

model had the fastest convergence compared to HONNs. The minimum range indicated

in bold font in Table 3 leads to loss in fraction size due to higher range of high order inter-

actions which in turn required higher precision to reach the optimum performance, these

interactions led to information loss after Multiply and Accumulate (MAC) operations.
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C-HONN and CP-HONN models showed better performance in floating point.Comparing

graphs Figure 6.7 (b) and (c) the convergence of the C-HONN is slower for the lowest

RMSE than that of the CP-HONN, due to the facts mentioned in the previous paragraph.

As mentioned in section Fixed-point number representation the multiplication operation

doubles the required precision and the range bits required an increase with every addition

operation required by the C-HONN.
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Figure 6.8: Output error after 70 epochs of BP and LM Training for several levels of

precision for estimating optical waveguide sidewall roughness

Figure 6.8 shows the performance of all networks for both learning algorithms as a

function of precision level for the waveguide sidewall roughness estimation. Figure 6.8

has two shaded regions that indicate the minimum required ranges as in Table 6.5. As

in Figure 6.7, the effect of the HONN function leads to a deterioration of the estimating
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models for both learning algorithms less than a certain precision. The deviation between

the HONNs and ANN performance almost disappears for precisions higher than 11 bits

for BP training whereas the discrepancies increased for LM training as the number of

MAC operations required by the algorithm increased. In the case of BP learning for more

than 12 bits of precision the RMSE does not change so, MPLE − BP = 12bits. The

LM algorithm starts to converge to an optimal solution after 23 bit precision, having

the best performance at 28 bits, so MPLE − LM > 28bits. The dashed-and-dotted

line in Figure 6.8 shows the performance in floating point RMSE = 0.0194. The fixed-

point RMSE reaches a minimum of 0.0204 when training the CP-HONN using LM. The

BP algorithm converges to a value that is always 0.0015 higher than the floating-point

RMSE.

6.7 Discussion and Conclusions

Simulations were conducted to find the effect of a limited precision environment on learn-

ing algorithms used to train ANNs and HONNs. It was found that the learning algorithms

required less precision when training on discrete data due to the limited levels this data

takes and they required higher precision when dealing with almost-continuous functions.

The BP algorithm reaches the Minimum Precision for Lowest Error (MPLE) at 12 bits

for both the discrete and continuous functions under consideration, being the XOR func-

tion and optical waveguide sidewall roughness. The LM algorithm provided a significant

enhancement to the discrete function modelling without requiring many range bits due to

the discrete nature of the MAC operation it requires; however, the LM training algorithm

required a significant increase in the precision in order to accommodate for the expansion

of MAC operations within the learning algorithm. The MPLE for the LM algorithm was

not established as greater precision levels greater than 28 are needed for it to reach its

error floor. The minimum precision for minimum error was required to be 24 bits so only

the 4 highest precisions could be studied. The results of this study expand and support

the findings of Piche (1995); Stevenson et al. (1990) where it was shown that discrete

functions require less precision than continuous functions during network operation and

indicate a precision level MPLE beyond which no performance gain is achieved. This mea-

sure allows the hardware designer to make an efficient design in the least area possible

enabling the hardware to reach the highest operational frequency at lowest power. The

study was made possible by using advanced high level languages such as Matlab ver.7.4

and Xilinx ISE ver.10 giving fast development time and model exploration with a high
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level of abstraction in algorithmic blocks for circuit and signal track operations on digital

hardware, Bhatt and McCain (2005); Xilinx (2008a); Zarrinkoub (2006).
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Chapter 7

Levenberg-Marquardt algorithm

implementation on Field

Programmable Gate Arrays

7.1 Introduction

Artificial intelligence and machine learning are used to computationally solve complex

problems. Some of these problems are solved statistically by using optimization algorithms

that find the parameters which give the most accurate solution. A widely used algorithm is

the Levenberg-Marquardt Algorithm (LM), Marquardt (1963). The LM-algorithm is used

extensively for problems dealing with non-linear function and parameter approximation,

Hamouda et al. (2011); Wilamowski et al. (2008), such as automated optical inspection

systems Reed and Hutchinson (1996), which can use a single object observation from

a single camera, Cho and Chow (2000), or systems dealing with projective geometry

estimation Segvic and Ribaric (2001). The algorithm investigated can also be used for

motion compensation systems Alam and Bal (2007); Lin et al. (2009), and robotic vision

systems Ashrafiuon et al. (2008); Cho et al. (2009); Motai and Kosaka (2008); Ogawa

et al. (2007); Xie et al. (2009).

To demonstrate non-linear parameter estimation we used Neural Network parameter

estimation and Camera Calibration as practical examples. If we consider camera param-

eter estimation for an automated optical inspection system, the system will be able not

only to tell that a fault occurred in a production line but also show how such a fault

occurs and what caused the fault based on the value of the parameters estimated by the

learning algorithm. It should be noted that this study is not limited to Neural Networks
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or camera calibration it can integrated into a wider range of applications depending on

non-linear parameter estimation.

Replicating advanced learning algorithms on dedicated hardware is a challenging prob-

lem. In the field of Neural Networks, and non-linear parameter estimation, most studies

are limited to the popular back-propagation algorithm and offline full precision training

performed in a software environment Zhu and Sutton (2003a). This study builds on previ-

ous work which investigated the LM-algorithm in reduced precision, Shawash and Selviah

(2010).

The chapter is organised as follows. Section 7.2 provides a brief background. Sec-

tion 7.3 presents details of the two experiments conducted in this paper. Section 7.4

provides the results of these experiments. Ending with conclusions in section 7.5.

7.2 LM algorithm modelling

The Levenberg-Marquardt algorithm (LM) finds a solution of a system of non-linear

equations, y = φx, by finding the parameters, φ, that link dependent variables, y, to

independent variables, x, by minimizing an error of a function of said system by using error

gradient information for every parameter considered in the system. The LM-algorithm

in (7.1), estimates the parameters that make up a specific system function recursively

until convergence by finding the appropriate change, ∆φ, leading to smaller errors. The

LM-algorithm depends on error, E, the Hessian matrix H, the gradient of the error, ∇J ,

a scalar µ which controls the trust region, and I is the identity matrix.

H = J × J

∇J = J × E

∆φ = − (H + Iµ)−1 ∇J

(7.1)

Figure 7.1 shows a generic supervised learning procedure, in this case adapted to the

LM-algorithm. The upper part in the diagram is the operation phase of a function, and

the lower part is the phase which adjusts the parameters in the operational phase. The

upper part of the diagram shows the operation of a function depending on certain weights

and parameters. The function operation tends to start at specified initial starting weights

which are adjusted by a learning algorithm to reach the desired state of operation with

the lowest errors. The lower part in the diagram represents the LM-algorithm training

algorithm. The arrows indicate the flow of signals and parameters to and from the oper-

ation and the training sections of the learning system. The operation phase tends to be

less complex than the learning phase, so some studies managed to port simple learning
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algorithms onto a Field Programmable Gate Array (FPGA). Porting learning algorithms

onto an FPGA tends to be challenging, especially when it is related to on-line training

Neural Networks (NN) on the FPGA, Zhu and Sutton (2003a). Usually, the processing is

ported to hardware and the training remains in software or in some cases the error back

propagation algorithm is performed on hardware Sahin et al. (2006). This study, for the

first time to our knowledge, shows the implementation of the more complex LM-algorithm

in hardware. In Figure 7.1 we propose to keep the high speed operation in software as

its hardware counterpart has been comprehensively studied in literature. The hardware

implementation of a complex 2nd order learning algorithm such as the LM-algorithm has

not been extensively researched. Also, the amount of speed up gained from speeding up

the learning phase on FPGA far exceeds the already fast implementation of the operation

phase in software.

Weight Errors

Weights

Operation

Input

New Weights

LM Algorithm

Training

Output

Software

FPGA

Figure 7.1: Diagram of proposed Levenberg-Marquardt-algorithm partitioning between

Hardware (FPGA) and Software (CPU)

Equation (7.1) summarises the algebraic operation required to perform the LM-algorithm.

To generate the hardware configuration to be implemented on the FPGA the algebraic

operations were deconstructed to simpler parts. Even though the LM-algorithm solves

non-linear functions its main operation resembles a solver of linear systems. In this study

we use the Xilinx AccelDSP software package to construct and integrate three separate

operations that comprise this solver, see Figure 7.2. In order to build this system for

FPGA we use cores that make up the algebraic operations of the LM-algorithm.
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7.2 LM algorithm modelling

Figure 7.2 provides a diagram composed of three cores that are implemented on FPGA.

The three cores that comprise the LM-algorithm can be broken down into a QR fac-

torisation, QR, a matrix multiplication, mtimes, and an upper triangular system solver,

triangSolver. It was decided to split the LM-algorithm into two separate parts to allow

for faster debug, core generation time reduction, and due to the limited resources on an

FPGA. Both parts can be integrated into other projects requiring real-time non-linear

parameter estimation. The first part contains the first two cores that factorize the Hes-

sian matrix and multiply the Q matrix by the gradient of the Jacobian, ∇J . The second

part solves the system using a back-substitution algorithm.

QR

mtimes

Triang
Solver

Part 1

Part 2

Figure 7.2: Levenberg-Marquardt-algorithm on the FPGA

We used the orthogonal, or QR, factorisation because it can deconstruct any rect-

angular matrix, A, to a product of a unitary matrix and an upper triangular matrix,

A = QR, where Q is the orthogonal or unitary, and R is the upper triangular matrix.

Unitary matrices are desirable for numerical computation because they preserve length,

angles, and do not magnify errors, Gentle (2009). QR factorisation was chosen over LU

factorisation because the QR factorisation does not require any pivoting or permutations
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without resorting to division operations. The error gradient is then multiplied by the

unitary matrix Q, ensuring that no increase in range occurs due to these multiplications

since the maximum value Q can take is 1. After performing the factorisation and mul-

tiplication, the results of those two cores are routed to a triangular system solver which

uses the back substitution method to find the solution ∆φ.

7.3 Experiment

Two experiments were conducted for a real-time LM-algorithm implementation on the

FPGA. The first experiment used the FPGA-LM-algorithm to train a neural network to

solve the XOR problem. The second experiment made use of the FPGA-LM-algorithm

for explicit camera calibration.

In the following subsections we present how we implemented the LM-algorithm on the

FPGA. To our knowledge, this is the first time this type of work has been done.

The design and simulation of the experiments required several tools and development

environments. Matlab 2009b, Xilinx ISE Xilinx (2008a) with the AccelDSP development

environment were used for software and hardware prototyping. An FPGA was used as a

hardware-in-the-loop (HIL) system connected to the computer by ethernet; several studies

used similar development environments Bhatt and McCain (2005); Ou and Prasanna

(2005); Rosado-Munoz et al. (2009). The Neural Network toolbox in Matlab 2009b was

used to simulate the XOR training in floating point as a benchmark. The real-time

operation of the FPGA-LM-algorithm design was loaded onto the FPGA and was invoked

by the Neural Network toolbox as a custom training function. The non-linear parameter

estimation module in the Camera Calibration toolbox for Matlab, Bouguet (2008), was

replaced with the real-time FPGA based LMA to perform the main optimisation operation

in the camera calibration algorithm. A Xilinx Vertix-5 ML506 development board, an Intel

Core2Duo 3.0 GHz processor, 4 GB RAM and Windows XP operating system was used

to compile and connect the learning module on the FPGA.

It should be noted that AccelDSP limits the QR factorisation and the triangular

system solvers specification to have a maximum word length of 24-bits and matrices

dimensions to 32 units wide. Another limitation of the FPGA is the maximum speed of

any design operating in a Hardware-in-the-loop configuration, all the designs were limited

to a maximum of 100 MHz. This was found to be sufficient as the current system design is

intended to be a proof of concept of real-time operating non-linear estimators to be used

within stand-alone hardware systems requiring very high speed and low power solution
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where the need of a real-time solution far outweighs the costs of having an integrated

FPGA.

7.3.1 Exclusive OR (XOR)

The XOR estimation using a neural network is considered as a benchmark operation for

various training techniques. The XOR is a function of two variables whose interaction

forms a system that is linearly inseparable; meaning that it can not be solved using a

linear system, see Figure 7.3.

A

B

Output

0 1 0 1

0 0 1 1

0 1 1 0

Figure 7.3: Exclusive OR function

To simulate NN training of the XOR function, two input signals with 32 binary

samples were used to estimate the magnitude of the signals traversing through the NN. The

data was divided into three segments; with 24 samples for training (75%), 4 samples (15%)

for validation leaving 4 samples (15%) for testing. Neural Networks neuron parameter

may have both weights and biases. The NN constructed had 2 layers, 4 weights linking the

input-to-hidden layer with no biases and 2 weights linking the hidden-to-output layer with

a 1 bias at the output neuron, see Fig. 7.4. The biases from the hidden layer were removed

as the NN reached the same solution without them. This type of structure comprises a

NN with 7 parameters. For repeatability the NNs were initialised to zero starting values.

In order to find the appropriate ranges for the variables used in the FPGA-LM-

algorithm a floating point simulation of XOR-NN training was used to collate the variables

and find the appropriate ranges, Zarrinkoub (2006). The input variables were quantised to

fit the fixed-point format of Q(24,19); comprising a signed number with a range of 24 and

2−19 resolution. The output of the XOR-NN was set to Q(48,38), a precision generated

using the AccelDSP workflow.
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Output LayerInput Layer Hidden Layer

Figure 7.4: Neural Network for solving XOR

7.3.2 Camera Calibration

Camera Calibration is a process of finding the non-linear parameters which map World

Coordinate System (WCS) in 3D to Camera Coordinate System (CCS) in 2D. The camera

calibration operation and optimisation has a similar setting as neural networks when it

comes to the optimisation to find the camera system parameters with studies performing

the operation phase on hardware and the learning phase in software ??. Camera cali-

bration adopts an established analytical framework that uses the LM-algorithm for the

estimation of both the linear and non-linear distortions of the camera system. We make

use of the well known camera calibration toolbox used in both Matlab and OpenCV,

Bouguet (2008). The calibration test data is found in Zhang (2000). Five planes and

their reference grid were used for calibration, see Fig. 5.2. The FPGA-LM-algorithm was

integrated into the toolbox by integrating it into the main optimisation routine.

The LM-algorithm is used to find the parameters mapping the reference 3D coordinates

into the 2D camera coordinates. This type of mapping uses a combination of a linear and

a non-linear system of equations. The linear system is used for the estimation of linear

camera parameters which describe the rotation, translation and scaling vectors as in (7.2),

where P = [X, Y, Z] is a 3D reference point in world coordinate system (WCS), p̂ = [x, y]

is the 2D target point in the camera coordinate system (CCS). WCS points are mapped

linearly to 2D points by using rotation matrix R, a translation matrix T , a focal point

estimate f and centre point estimate c.
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P̂ = R× P + T

p̂ = f × P̂ + c
(7.2)

The non-linear effects of the camera system are estimated using equations dealing with

radial and tangential distortions as in (7.3), where ρ(1,2,5) specify the extent of the radial

distortion term r2 = x2 + y2, and the tangential distortion is specified by ρ(3,4), where

a1 = 2xy, a2 = r2 + 2x2, a3 = r2 + 2y2.

x̂new = [x(1 + ρ1r
2 + ρ2r

4 + ρ5r
6)] + [ρ3a1 + ρ4a2]

ŷnew = [y(1 + ρ1r
2 + ρ2r

4 + ρ5r
6)] + [ρ3a3 + ρ4a1]

(7.3)

The number of unique parameters in both equations amount to a vector with a total

of 12 parameters. It should be noted that the camera calibration toolbox for Matlab uses

the data from all the images to construct a single vector containing all the parameters

derived from all of the images. However, hardware development tools limit the size of the

FPGA-LM-algorithm leading to image mapping of each image on an individual basis.

7.4 Results

7.4.1 XOR

Table 7.1 shows the specifications and the number of components used by the two parts

of the FPGA-LM-algorithm, this summary of components excludes the logic required to

time the internal functioning of the core, however, it is correlated with the number of

cycles required per function call. It can be noted that only a few multipliers and adders

were used, the clock cycles per function call were high. This is due to the process in which

all cores were generated using the default settings in AccelDSP; mainly that all vector

operations were rolled into loops and not performed in parallel. The loop-rolling process

decreases the amount of multipliers and addition operations by using local memories which

are triggered to supply intermediate values during algebraic operations. Loop unrolling

reduces the clock cycles needed to perform the required operation, however, for the current

study there was no need to produce cores with lower latency and higher resource usage

as the FPGA used is large enough to accommodate for the XOR FPGA-LM-algorithm

implementation. Both cores took up to 71% of the resources available in this FPGA.
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Table 7.1: XOR FPGA-LM algorithm hardware utilisation summary

Part 1 Part2

Parameter Value

Frequency (MHz) 100 100

Startup Clock Cycle 2011 452

Clock Cycles Per Function Call 2010 451

Multipliers 27 6

Adders 39 11

Subtractors 42 16

Number of Slice Registers 23375 out of 32640

71%

After generating the cores, the FPGA-LM-algorithm was integrated into the Matlab

Neural Network toolbox by designing a custom training function replacing the inter-

nal software LM-algorithm. The results of the software LM-algorithm and FPGA-LM-

algorithm can be seen in Fig. 7.5. The upper graph in this figure shows that the software

solution convergence stopped after only 9 iterations; if the back-propagation algorithm

was used we can expect the optimization to require tens of thousands of iterations. The

LM-algorithm on software reached the optimisation stopping criteria by reaching a level

lower than the minimum gradient. The lower graph in Fig. 7.5 shows the convergence of

the hardware trained NN. The solution converged in 13 iterations, incurring only 4 more

training iterations than software. The FPGA-LM-algorithm optimisation ended when the

maximum allowable µ value was reached. It can be assumed that the NN converged to

the correct solution in both hardware and software as they both reached error levels lower

than 10−6.

Table 7.2 provides a summary of the software and hardware optimisation results. The

summary indicates the number of epochs taken and the mean squared error (MSE) of

the solution. We can note that the hardware solution had a slower rate of convergence

after the 6th epoch attributed to the lower precision nature of the learning system on

hardware.

In order to compare hardware and software performance, we compare the time it takes

to perform the main LM-algorithm function in both cases. We assume that there are no

signal routing delays or memory transfer delays to and from the FPGA chip. The only

functions timed are the ones concerned with the LM-algorithm parameter update. The

floating-point software implementations were timed to to be the average of a 100 runs, this
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Figure 7.5: XOR LM algorithm training, validation and test performance trace in software

and FPGA

Table 7.2: XOR LM training performance summary

Parameter Epochs MSE

Software 9 2.45× 10−27

FPGA 13 1.73× 10−13
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way we accommodate for outlier events slowing down the algorithm calculation. Also, the

floating-point operation in Matlab uses the BLAS library within the interpreted language

of Matlab. It should also be noted that the LM implementation has been broken down to

elementary multiply and matrix inversion operations. All function nesting and memory

copying operation have been avoided. The 9 epochs in the software implementation of the

XOR LM-algorithm took 0.3982 s. The FPGA LM-algorithm required 13 iterations at 100

MHz, taking up to 13 µs, accelerating the learning algorithm by a factor of 3.0633× 106.

For reference, a recent study Shoushan et al. (2010) which implemented the training

of a Neural Network using the popular back-propagation that solves the XOR problem

in 760 iterations reaching an error levels 10 orders of magnitude higher than training

performed in the LM-Algorithm.

7.4.2 Camera Calibration

Table 7.3 provides a summary of hardware utilisation required by the FPGA-LM-algorithm

suitable to calculate the required 12 parameters for the WCS-to-CCS (3D-to-2D) map-

ping. It should be noted that part 1 of the LM-algorithm was generated and simulated

in Fixed-Point on the computer due to the fact that the routing of the algorithm requires

more resources than the one available on the Virtex-5 SX50T available for this study. The

amount of logic required to time the design function and make it cycle true is correlated

with the amount of clock cycles per function call, so the routing delay prohibited the gen-

eration of an FPGA netlist which fits on the FPGA under consideration. Several vector

operations were unrolled to reduce the amount of timing, however, they did not reduce

the amount of logic required in order to fit on the FPGA chip. A simulation of HDL code

comprising the operation of Part1 shows that it introduced an error of a magnitude of

only 10−5. So for this experiment only the 12x12 back substitution system (part 2) was

operating in real-time on the FPGA hardware taking only 7,273 slices from the total of

32,640 slices available on the Virtex5 SX50T. In order to fit the whole solution onto a

single chip, we need to use either a newer Virtex-6 chip or an LX85 Virtex5 FPGA.

Figure 7.6 shows the parameter estimation convergence rate for the 12 parameters both

in software, in the top graph, and through the FPGA, on the lower graph. The parameters

initial and end values vary in their range extensively, this type of normalisation is used for

the purpose of illustrating the convergence of the software and FPGA solutions of the LM

algorithm. The graph displays the convergence rate after collating the parameters during

the optimisation process and normalising them to a range of [0, 1] and taking the absolute

values. The software convergence is smoother than the FPGA and reaches a lower error

level. From the FPGA system convergence figure we notice that the parameter estimation
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Table 7.3: Camera Calibration FPGA-LM algorithm hardware utilisation summary

Part 1 Part 2

Parameter Value

Frequency (MHz) 100 100

Startup Clock Cycle 6484 818

Clock Cycles Per Function Call 6483 817

Multipliers 19 6

Adders 24 11

Subtractors 24 16

Number of Slice Registers 62906 out of 32640

for the complete solution 192%

Number of Slice Registers 7273 out of 32640

for the current solution 22%

was not as smooth and that some of the parameters did not reach a lower level of error

after the 16th iteration. The camera calibration optimisation system has a maximum of

30 iterations.

Figure 7.7 shows a comparison of the error scatter from the floating point optimisation

on the left and the fixed-point FPGA optimisation on the right. The figure shows that

the error resulting from the FPGA solution is almost similar to the software solution.

Table 7.4 shows the summary of camera calibration in terms of the number of iterations

and the Mean Squared Error (MSE) and standard deviation (σ) of the mapping error

for the 5 images in their original format and also when the images and the reference

grid are rescaled to [0,1]. When mapping the raw images, we notice that the floating

LM-algorithm ends in 20 iterations because the criteria of lowest change in the norm

of parameters reached a level below 10−9. In all of the cases and data considered the

FPGA-LM-algorithm terminated when the maximum number of iterations was reached.

The FPGA-LM-algorithm had satisfactory performance in terms of error and standard

deviation when compared to software. When the data was in its original scale the FPGA-

LM-algorithm MSE performance increased by 173.5% on average, the standard deviation

of the FPGA solution was also 60.10% larger than the software solution. The lower part

of Table 7.4 shows the performance of the camera calibration mapping the rescaled data.

All images and their reference grid were mapped to be in the range [0,1]. This type

of rescaling process was first applied in this study to try to reduce the ranges of the

resultant Hessian matrix, the error gradient matrices and also to reduce the condition
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Figure 7.6: Camera LM algorithm parameter convergence for image 1 in software and

FPGA
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Figure 7.7: Calibration error for mapping reference grid to image 1 when both are rescaled

to [0, 1] in (a) Software. (b) FPGA.

105



7.4 Results

Table 7.4: Camera Calibration LM algorithm training summary

Iterations MSE(σ)

image Software FPGA Software FPGA % MSE(σ) increase

Raw 1 19 30 0.0601 (0.2454) 0.0665 (0.2581) 10.65 (5.18)

Data 2 20 30 0.0254 (0.1595) 0.1165 (0.3417) 358.66 (114.23)

3 20 30 0.1449 (0.3810) 0.2311 (0.4811) 59.49 (26.27)

4 20 30 0.0280 (0.1676) 0.1109 (0.3334) 296.07 (98.93)

5 20 30 0.0209 (0.1446) 0.0507 (0.2254) 142.58 (55.88)

Average: 173.49 (60.10)

Data 1 19 30 0.0640 (0.2533) 0.0651 (0.2554) 1.72 (0.83)

scaled 2 30 30 0.1577 (0.3975) 0.1540 (0.3928) -2.35 (-1.18)

to 3 — — — — —

[0, 1] 4 30 30 0.2438 (0.4943) 0.3899 (0.6251) 59.93 (26.46)

5 21 30 0.0217 (0.1474) 0.0244* (0.1563)* 12.44 (6.04)

Average: 17.94 (8.04)

The asterisk ‘*’ indicates that the initial iteration of the optimisation algorithm was performed in

software.

number of the Hessian matrix. The condition number of the matrix has a significant

effect when dealing with quantised data which on occasion leads to singularities that

do not occur when working in full precision. The rescaling reduced the initial condition

number, however, the Hessian matrices that occur later in the algorithm are more difficult

to solve even on a floating point precision, this can be seen in the worse performance of

the software LM-algorithm. Image 3 had an ill-conditioned Hessian matrix that could

not be solved on neither software nor hardware. Image 5 was solved on both platforms,

however, the asterisk indicates that the first iteration of the FPGA-LM-algorithm was

solved on floating point with subsequent iterations on hardware, a situation which would

be preferable in real-world applications where the initial conditions are obtained using the

highest precision available, and the adaptive system will only need to account for small

changes that a system undergoes after calibration. Even though the rescaling rendered

some of the mapping examples inoperable, the average increase in the hardware solution

MSE was lowered to 17.94% more than the software solution while the standard deviation

of the error remained almost the same only increasing by 8.04%.

The software implementation for the calibration of image 1 in software LM-algorithm

took 0.4228 s. The FPGA LM-algorithm required 30 iterations at 100 MHz, taking up to

30 µs, resulting in an operation almost 1.41× 106 faster than software.

106



7.5 Conclusions

7.5 Conclusions

The Levenberg-Marquardt Algorithm was programmed and used successfully in real-time

on an FPGA, for the first time to our knowledge. It was found that the hardware im-

plementation of the LM-algorithm was able to find Neural Network parameters to solve

the XOR problem in just 13 iterations compared to existing studies of hardware learning

using the back propagation algorithm. Comparing the optimised LM implementation in

Matlab to the FPGA implementation the NN training speed was increased by a factor of

3×106. The same algorithm was also used to find the optimal mapping parameters in the

camera calibration problem having a penalty of only 17.94% increase in the MSE and

an 8.04% increase in the standard deviation when compared to a software solution. The

FPGA-LM-algorithm for camera calibration speed was increased by a factor of 1.4× 106.

We were able to get these results by using high level software and hardware development

environments. However, the limitations of the development environment restricted the

variables to 24 bits of precision, and the FPGA hardware area restricted the size of the

system that needs to be solved.

The FPGA hardware used in this study proved to be a restriction for portions of the

algorithms used. By using a newer FPGA with more resources all the algorithms can

be ported to hardware including the operation phase of the function estimation allowing

for the elimination of some of the restrictions posed by the current deployed solution. A

solution implemented fully in hardware would allow for a reduction in the latency of the

solution and can remove the dependency on software.

This study provides a roadmap for the implementation of the LM-algorithm on fixed-

point hardware which can be ported onto a dedicated ASIC for high speed low power

applications. In most cases the requirement for a real-time low powered solution outweigh

the costs of including an FPGA. To this extent the solution demonstrated here can be

readily integrated into a robotics vision and control or in an optical inspection system.

To operate viably, both of these systems ideally require a real-time parameter estimation

module.
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Chapter 8

Conclusions

8.1 Higher Order Neural Networks in Finance

The investigation of new Higher Order Neural Networks (HONNs) on financial data had

the following results. The performance of the HONN models was superior to other types

of network or linear models. The new C-HONN provided the best performance for fore-

casting the daily returns series of FTSE100 and NASDAQ. The FXP-HONN had the best

hit rate prediction for the NASDAQ time series at 59.5% and 60.62% was achieved for

the FTSE100 using a first order NN. We conclude that models that assume the data has

a normal Gaussian distribution with constant volatility fail to capture all of the infor-

mation available within the data as reflected in the AIC, RMSE values and correlation

tests. Even the best performing C-HONN did not capture the conditional volatility in the

residual of the returns. This information is captured using models that take into account

conditional volatility, such as GARCH and EGARCH. HONNs forecasting returns were

combined with the GARCH and EGARCH models, for the first time, to give a hybrid

model. It was observed that the hybrid model reduced the RMSE error by 10.25% for

the FTSE100 and by 4.1% for the NASDAQ datasets when compared to linear regression.

The best performing model was the hybrid C-HONN-EGARCH combination model for

the data sets considered, in summary:

1. A new type of HONN called the Correlation Higher Order Neural network was

combined with a volatility model to estimate returns and volatility of time series.

2. This hybrid model reduced the RMSE of the returns and volatility by 10.25% for

the FTSE100 and by 4.1% for the NASDAQ datasets when compared to linear

regression.

3. Ordinary Higher Order Neural Networks (FXP-HONN) provided the best Hit Rate

estimates.
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8.2 Higher Order Neural Networks for Camera Map-

ping

The new work comparing the mapping performance of a new type of Higher Order Neural

Network, the Generalised Correlation Higher Order Neural Network, against standard

analytical methods was tested in three situations; 3D-to-2D mapping, a hybrid model

combining HO/NNs with an analytical model, and the performance of HONNs compared

to NNs performing 2D-to-3D mapping. The study considered 2 types of data, multiple

views of plane data, and a cube data comprising two planes on either side of a cube.

The results indicate that HONN calibration outperform both the standard analytical

parametric model used by the Camera Calibration Toolbox (CCT) in all cases and the

non-parametric model based on ordinary Neural Networks (NN) in some of the cases.

HONN 3D-to-2D mapping reduced the error by more than 14% on average with the the

Horiz-HONN having 24% lower error than the parametric method for plane data. 3D-

to-2D cube mapping had more drastic reduction in the error when using HONNs, with

reduction of mapping error of up to 43% in the cases of FXP and CP-HONNs.

The new hybrid models combining analytical solution for linear parameters combined

with a HO/NN based non-parametric model to account for non-linear distortions out

performed the parametric modelling performed by the CCT. However, it did not provide a

discernible mapping improvement in the case of plane data and it had a worse performance

when mapping cube data. Inverse mapping from 2D-to-3D using HONNs did not provide

discernible improvement when compared to the NN model. However, in the case of cube

data the FXP and CP-HONNs provided 47.2% and 44.2% drop in error respectively. This

can be attributed to the more complex nature of mapping non-planar data using HONNs,

and the availability of non-degenerate information for the z-dimension. HONNs provide

mapping improvements compared to the parametric model since it aims to eliminate

the systematic error without being limited to a fixed analytical model. HONNs also

outperform NNs as they Higher Order functions reformulate the input space into one that

reflects the higher order interactions of the input data passing through a camera system.

The simulations were limited to only two sets of data. Benchmarking HONN mapping

capabilities against the standard model and the NN model presents a strong case for

further research.

1. This is the first work comparing HONNs to NNs and parametric camera calibration

models in terms of calibration and mapping error reduction.

2. HONNs were found to have a better performance for co-planar data than planar

data when compared to NNs.
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3. A new hybrid model combining intrinsic camera parameter with HONN modelling

of camera data outperformed a fully parametric camera calibration model.

4. Hybrid camera calibration did not outperform a fully non-parametric models.

8.3 Learning in Limited Precision

The new work carried out on finding and simulating the effects of a limited precision

environment on learning algorithms to train ANNs and HONNs found that the learning

algorithms required less precision when training on discrete data due to the limited levels

this data takes and they required higher precision when dealing with almost-continuous

functions. The BP algorithm reaches the Minimum Precision for Lowest Error (MPLE)

at 12 bits for both the discrete and continuous functions under consideration, being the

XOR function and optical waveguide sidewall roughness. The LM algorithm provided a

significant enhancement to the discrete function modelling without requiring many range

bits due to the discrete nature of the MAC operation it requires; however, the LM training

algorithm required a significant increase in the precision in order to accommodate for the

expansion of MAC operations within the learning algorithm. The MPLE for the LM

algorithm was not established as greater precision levels greater than 28 are needed for it

to reach its error floor. The minimum precision for minimum error was required to be 24

bits so only the 4 highest precisions could be studied. To summarise:

1. This is the first research conducted to find the minimum precision for lowest error

for the BP and LM algorithms on two types of data, discreet and continuous.

2. It was found that when dealing with the discreet systems have lower precision re-

quirement than continuos systems when learning and optimising said systems.

3. MPLE for XOR was 12 bits. MPLE for LM was 24 bits minimum.

8.4 Levenberg-Marquardt algorithm on FPGAs

The new study implemented the Levenberg-Marquardt Algorithm, for the first time to

our knowledge, on an FPGA. We found that the hardware implementation of the LM

algorithm was able to find Neural Network parameters to solve the XOR problem in just

13 iteration compared to existing studies of hardware learning using the back propagation

algorithm. The FPGA-LM algorithm NN training speed was increased by a factor of

3×106. The same algorithm was also used to find the optimal mapping parameters in the
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camera calibration problem having a penalty of only 17.94% increase in the MSE and

an 8.04% increase in the standard deviation when compared to a software solution. The

FPGA-LM algorithm for camera calibration speed was increased by a factor of 1.4× 106.

We were able to get these results by using high level software and hardware development

environments. However, the limitations of the development environment restricted the

variables to 24 bits of precision, and the FPGA hardware area restricted the size of the

system that needs to be solved. The FPGA hardware used in this study proved to be

a restriction for portions of the algorithms used. By using a newer FPGA with more

resources all the algorithms can be ported to hardware including the operation phase of

the function estimation allowing for the elimination of some of the restrictions posed by

the current deployed solution. A solution implemented fully in hardware would allow for

a reduction in the latency of the solution and can remove the dependency on software.

This study provides a roadmap for the implementation of the LM algorithm on fixed-

point hardware which can be ported onto a dedicated ASIC for high speed low power

applications. In summary:

1. This thesis provides the first implementation of a Levenberg-Marquardt algorithm

to estimation NN parameters and calibrate a parametric camera model.

2. Integrating a trust region factor on hardware is crucial to problem with a very large

condition number.

3. Training small networks on FPGAs had a speed up in excess of 3 × 106 compared

to software.

4. Calibrating camera systems on FPGA gained a speed up of 1.4×104 when compared

to software.

5. The FPGA used in this research restricted the size of the optimisation problems

that can be solved feasibly.

6. Rescaling data for Parametric Camera calibration system incurs a reduction in per-

formance on the calibration system.

7. HONNs and NNs managed to find the image calibration with the data rescaled from

it original range.

111



Appendix A

Back Propagation and
Levenberg-Marquardt Algorithm
derivation

A.1 Error Back-propagation Algorithm

The following section will present the training of a Neural Network using the Back-

Propagation BP algorithm. The network weights are initialised, either randomly or by

using other initialisation methods. The Back-propagation algorithm consists of three

steps:

1. Network simulation

2. Back-propagating the error

3. Updating the weights

Neural Networks has a number N of input vectors X with length n,

X = x0, x1, x2, ..., xn

Netinput = X0, X1, X2, ..., XN

We implement the feed forward stage of the network by multiplying with the corre-

sponding weights as follows

Nethiddeni = W1 ×Xi

NethiddenI is the output of the first hidden layer at sample i before applying the non-linear

threshold function.

Netoutputi = W2 × f(Nethiddeni)
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A.1 Error Back-propagation Algorithm

where the non-linear function in the hidden layer is the logistic function.

fhid(x) =
1

1 + e−x

In order to back-propagate the error, the transfer functions need to be differentiable.

f
′

hid =
df

dx
= f(x)× (1− f(x))

while the output layer will have a linear function

fout(x) = x

f
′

out =
∂fout
∂x

= 1

We attempt to minimise the following energy function over the training set with W

representing all the networks weights

E(W ) =
N∑
n=1

(targetn −Netoutputn)2

δ = − ∂E

∂Netoutput

As the target

is given, we can calculate the weight update using the delta rule.

∆wij = − ∂E

∂Netoutput

∂Netoutput
∂wij

where i is the index of the layer the weight is located in, and j is its position within

that layer.

Then the weight difference in the hidden layer is calculated,

∂Netoutput
∂wi

=
∂

∂wij

∑
wiNetHidden

Using the chain rule, we find the weight update in the hidden layers

∆wij = δiNetHiddenj

∆wji = −ηh
∂E

∂wji
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A.2 Levenberg-Marquardt Algorithm

As the error is calculated as previously mentioned, it can be written in a simple way

for every sample presented to the NN as follows.

δ = target−Netoutput

We expand the difference (the error) using the delta chain rule,

δij =
∂E

∂Netoutput
× ∂Netoutput
∂NetHidden

× ∂NetHidden
∂wji

The Back-Propagation algorithm in matrix form:

ŷ =
L∑
l=1

fl(Wl ×Xl + bl)

Where l , is the layer index, l = 1, 2, . . . , L. Xl is the input to layer l , Wl and bl are

the weights and biases of their respective layers.

The error of the output layer is,

δ = target− ŷL

.

The error back propagation is as follows,

δl =
(
W T
l+1 × δl+1

)
· f ′l (Xl)

Weight updates,

∆Wl = δlX
T
l−1

∆bl = δl

We repeat the forward simulation and back-propagation followed by weight updates

for as many times as required by our conditions of operation.

A.2 Levenberg-Marquardt Algorithm

We want to fit function that has output, y, when it operates on input, x, having param-

eters, w,

y = F (x;w)

Where the energy function we want to minimise is the same as before
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A.2 Levenberg-Marquardt Algorithm

Table A.1: Back-Propagation Algorithm

1 while i < Max Iteration

2 NetHidden = W1 ×

[
X0

1

]
Output of first layer

3 XHidden = f(NetHidden) Output after hidden
layer

4 NetOutput = W2 ×

[
XHidden

1

]
Network output

5 E = Target−NetOutput
6 ∆Eout = f

′

linear(XHidden) · E Error in output layer
7 ∆W2 = ∆Eout Output layer weight

change
8 ∆EHidden = W T

2 ×∆Eout
9 ∆W1 = f

′

logistic(XHidden) ·∆EHidden Hidden layer weight
change

10 W2new = α×W2old + (1− α)× η ×∆W2 ·
[
XHidden 1

]2
New hidden-output
layer weights

11 W1new = α×W1old + (1− α)× η ×∆W1 ·
[
X0 1

]2
New input-hidden
layer weights

Check if training conditions are still true, if yes: repeat, otherwise exit training
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A.2 Levenberg-Marquardt Algorithm

E(w) =
n∑
i=1

[yi − y(xi;w)]2

The gradient of, E, with respect to the parameters, w, which will be zero at, E,

minimum, K, is the layer number.

∂E

∂wk
= −2

N∑
i=1

[yi − y(xi;w)]× ∂y(xi;w)

∂wk
k = 1, 2, ...,M

Taking an additional partial derivative gives

∂2E

∂wk∂wl
= 2

N∑
i=1

[
∂y(xi;w)

∂wk

∂y(xi;w)

∂wl
− [yi − y(xi;w)]× ∂2y(xi;w)

∂wk∂wl
]

Its common to remove the factors of 2 by defining

βk = −1

2

∂E

∂wk
αk =

1

2

∂2E

∂wk∂wl

Setting, α = 1
2
D, we can rewrite the equation as a set of linear equations, D, is a

square Hessian matrix

M∑
l=1

αklδwl = βk

Solved for increments of, δwl, in the context of least-squares, matrix α, being equal to

one-half times the Hessian matrix.

δwl = constant× βl

Matrix form of this algorithm:

As previously stated in the back-propagation algorithm, we first perform the network

simulation and extract the resulting error,

We cast the weight parameters to form a single column vector as follows,

θ =


WL

WL−1

...

W1


Now we calculate the Jacobian matrix of partial differentials of the outputs with their

respective weights and inputs,
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A.2 Levenberg-Marquardt Algorithm

J(θ,N)

Elements in J relating to the weight vectors is calculated as follows,

J


WL

WL−1

...

W1

 =


f
′
L(WL+1 ×XL)

f
′
L−1(WL ×XL−1)

...

f
′
1(W2 ×X1)


where l = 1, 2, . . . , L is the layer number and Xl is the input to layer l. The Hessian

matrix is calculated as follows,

H(θ) = JTJ

The gradient of the error vector also calculated,

∇J(θ) = J(θ)× E

And the weight update is,

∆θ = (H + λ× diag(H))−1∇J(θ)
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A.2 Levenberg-Marquardt Algorithm

Table A.2: Levenberg-Marquardt Algorithm

1 while i < Max Iteration

2 NetHidden = W1 ×

[
X0

1

]
Output of first layer

3 XHidden = f(NetHidden) Output after hidden layer

4 NetOutput = W2 ×

[
XHidden

1

]
Network output

5 E = Target−NetOutput Error in output layer

6 θ =

[
W1

W2

]
Weight vector

7 J(θ) =

[
f
′
linear(XHidden)

W2 × f
′
logistic(XHidden)

]
Jacobian matrix

8 ∇J = J × E Error gradient
9 H = JT × J Hessian matrix

10 H = H + λ× diag(H) Updating Hessian matrix
11 ∆θ = H−1 ×∇J Weight change
12 θnew = θold + ∆θ New weight vector
13 W2new = W2old + θnew(W2) New hidden-output layer weights
14 W1new = W1old + θnew(W1) New input-hidden layer weights
15 Updating λ
16 L = ∆θT∇J + ∆θT∆θλold Calculating update conditions

17 λ =

{
λ
2 if 2N(MSE −MSEnew) > 0.75L

2λ if 2N(MSE −MSEnew) 5 0.25L
New lambda

Check if training conditions are still true,
if true: repeat or go to step 10 otherwise exit training
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Appendix B

Learning algorithms Hardware Cost
analysis

B.1 Back-Propagation Hardware cost analysis

Performance and requirements of the calculations constituting the learning algorithm are

presented in the tables in this section. The location of Outputs, Operands and the type

of operation implemented can be seen in prior NN diagrams:

1. Setting the parameters: momentum α, αmin,max, learning rate η, min(E), min(Gradient),

maximum iterations.

2. Initialise random weight matrices with the following dimensions:

• Assume input signals is of dimension Din and has N samples. With a corre-

sponding output signal of dimension Dout and the same number of samples.

• W1 is a matrix with dimension [ Hidden , Din + 1 ].

• W2 is a matrix with dimension [ Dout, Hidden+ 1 ].

3. We calculate forward propagation and store intermediate stages for later use in

back propagation, the operations are shown in Table B.1. In the following tables

we present the number of multiplication and addition operations needed in order to

perform the functions that the Neural Network is built upon.

• h1 : Output from Hidden layer before applying threshold.

• y1 : Output after applying threshold on h1.

• y2 : Output of the neural network.

• E : Error vector, difference between the target and the output of the network.
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B.2 Levenberg-Marquardt Hardware cost analysis

Table B.1: Cost of Forward Propagation
Output Operation Shape Multiply Add LUT

h1 W1 ×
[
IN,NSamples

]
(Hid.,Din + 1)× (Din + 1, N) Hid.×Din + 1×N (Din + 1)×N No

y1 logsig

(
h1

b

)
(Hid.+ 1, N) — — Yes

y2 W2 ×
[
y1

b
,N

]
(Dout, Hid.+ 1×Hid.+ 1, N) Dout ×Hid.+ 1×N (Hid.+ 1)×N No

E Y − y2 (Dout, N) — Dout ×N No

SSE
∑

E × ET (Dout, N)× (N,Dout) Dout ×N ×Dout N ×Dout No
Perf SSE/2N (1)/(1)× (1) 3 — No

Table B.2: Cost of the Back-Propagation of Error
Output Operation Shape Multiply Add LUT

δE2 E (Dout, N) — — No

E1 WT
2(1:Hid.)

× δE2 (Hid.,Dout)× (Dout, N) Hid.×Dout ×N Dout ×N No

temp y1(1:Hid.) × (1− y1(1:Hid.)) (Hid.,N) · (Hid.,N) Hid.×N Dout ×N Yes**

δE1 temp · E1 (Hid.,N) · (Hid.,N) Hid.×N — Yes**

**::

values in the temp vector can be stored in a LUT, we also can avoid multiplication by using LUTs.

• SSE :sum of squared errors. Perf : mean squared errors /2.

4. Back-Propagation of Error. In Table B.2 we present the cost of back-propagating

the error through the Neural Network.

5. In this stage we present the costs associated with the calculation of Error gradients

shown in Table B.3.

6. In tables B.4, B.5 and B.6, we present the costs associated with weight update

in the presence and absence of the momentum parameter. Additional operations

are recalled in order to determine the conditions of Neural Network training as

in Table B.7, where we notice that there is a sorting operation of the Gradient

parameters in order to determine the maximum gradient in both hidden and output

weight matrices, typically a sorting operation is of complexity O (nlogn) , so we

need to account for the delay the sorting operation takes.

7. We repeat the NN training while conditions 6= true, we go back to step 3 and repeat

until condition test results are true, meaning that the NN training operation is

complete.

B.2 Levenberg-Marquardt Hardware cost analysis

1. Setting the parameters: momentum: α , learning rate: η , min(E), min(Gradient),

αmin,max , damping factor: λ, maximum iterations.
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B.2 Levenberg-Marquardt Hardware cost analysis

Table B.3: Cost of the calculating weight changes
Output Operation Shape Multiply Add LUT

G2 δE2 ×
[
y1

b

]T
(Dout, N)× (N,Hid.+ 1) Dout ×N × (Hid.+ 1) N × (Hid.+ 1) No

G1 δE1 ×
[
IN

b

]T
(Hid.,N)× (N,Din + 1) Hid.× (Din + 1)×N N × (Din + 1) No

Table B.4: Cost of the weight updates depending on the value of α
If α = 0

Output Operation Shape Multiply Add

W2new W2 + η ×G2 (Dout, Hid.+ 1) + (S.)× (Dout,Hid.+ 1) Dout × (Hid.+ 1) Dout × (Hid.+ 1)
W1new W1 + η ×G1 (Hid.,Din + 1) + (S.)× (Hid.,Din + 1) Hid.× (Din + 1) Hi.× (Din + 1)

Table B.5: Cost of the weight updates depending on the value of α

If α 6= 0

Output Operation Shape

∆W2 α∆W2old + (1− α)η ×G2 (Scaler)× (Dout, Hid.+ 1)+(Scaler)× (Scaler)× (Dout, Hid.+ 1)
W2new W2 + ∆W2 (Dout, Hid.+ 1) + (Dout, Hid.+ 1)
∆W1 α∆W1old + (1− α)η ×G1 (Scaler)× (Hid.,Din + 1) + (Scaler)× (Scaler)× (Hid.,Din + 1)
W1 W1 + ∆W1 (Hid.,Din + 1) + (Hid.,Din + 1)

Table B.6: Cost of the weight updates depending on the value of α, continued from
Table B.5

If α 6= 0

Output Operation Shape

∆W2 2× Scaler ×Dout × (Hid.+ 1) Dout × (Hid.+ 1)
W2new

— Dout × (Hid.+ 1)
∆W1 2× Scaler ×Hid.× (Din + 1) Hid.× (Din + 1)
W1 — Hid.× (Din + 1)

Table B.7: Cost of the Checking conditions
Output Operation Shape Multiply Add LUT

Perfvector Perf (1, 1) — — Yes
Paramdifference ηMax(Max(|G1|),Max(|G2|)) (1, 1) 1 Sorting operation ×2 Yes

Gradmax Paramdifference/η/N (1, 1) 2 — Yes
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B.2 Levenberg-Marquardt Hardware cost analysis

Table B.8: Cost of computing the Jacobian matrix
Output Operation Shape

θ
[
reshape(W

′
2 , parameters2, 1), reshape(W

′
1 , parameters1, 1)

]
(θ, 1)

J(θ,N) (# of parameters, N) (θ,N)
J(θW2

) y1 (Hid. + 1, N)

For j=1:Hid.
temptemp (1− y1(j)) · y1(j) (1, N) · (1, N)
temp W2(j)× temptemp (1) · (1, N)

J(θW1
index(j) : index(j) + IN, :) [1 : length(IN + 1)]T × [temp] ·

[
IN

b

]
(IN + 1, 1)× (1, N) · (IN + 1, N)

end
∇J J × E (θ,N)× (N, 1)

2. Initialise random weight matrices with the following dimensions:

• Assume input signals is of dimension Din and has N samples. With a corre-

sponding output signal of dimension Dout and the same number of samples. W1

is a matrix with dimension [ Hid. , Din + 1 ]. W2 is a matrix with dimension [

Dout , Hid.+ 1 ].

3. We calculate forward propagation and store intermediate stages for later use in

back propagation which is exactly the same as in the back-propagation algorithm

feed-forward cost analysis in Table B.1.

4. Computing the Jacobian and Gradient of the network error needs the operations

presented in Table B.8.

5. Computing the Hessian Matrix and updating the weights is shown in Table B.10, we

set a flag dw indicating that the weights are calculated. Search direction h obtained

by solving a system of linear equations, X = A\B → AX = B , by using Gaussian

elimination. we finish the updating by converting θ back to its corresponding W1

and W2 weight matrices.

6. Forward propagation to calculate new damping factor: λ . We re-simulate the

Network as previously demonstrated and store the corresponding Enew , SSEnew

and Perfnew scalars for use in the calculation of a reference value that will indicate

the way we change the value of λ as in Table B.11.

7. Then check if conditions are still in effect, if training is to continue, go back to step

4, as we already have the obtained Enew from the beginning of step 6; allowing us

calculate the Jacobian matrix and proceed with the training. Training is suspended

if the training conditions are no longer hold.
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B.2 Levenberg-Marquardt Hardware cost analysis

Table B.9: Cost of computing Jacobian matrix, continued from B.8
Output Multiply Add LUT

θ — — Yes
J(θ,N) — — Yes
J(θW2

) — — Yes
For j=1:Hid.
temptemp (1)×N (1)×N Yes**
temp (1)×N (1)×N No

J(θW1
index(j) : index(j) + IN, :) ((IN + 1)× 1×N) + (IN + 1, N) (IN + 1)×N Store

∇J θ ×N θ Store

Table B.10: Cost of computing the Hessian matrix and updating the weights
Output Operators and Operands Shape Multiply Add LUT

H J × JT (θ,N)× (N, θ) θ ×N × θ N × θ Yes
H(diag) H(diag) + (λ− λold) (1, θ) + (1) — θ Yes
H−1 — (θ, θ)× (θ, θ) θ3 θ2 —
h H−1∇J (θ, θ)× (θ, 1) θ × θ × 1 θ Store

θnew θ + h (1, θ) + (1, θ) — θ Store

Table B.11: Cost of computing the λ update
Output Operators and Operands Shape Multiply Add

L (h′ ×∇J) + (h′ × (h · λ)) ((1, θ)× (θ, 1)) + ((1, θ)× (θ, 1) · (1)) 2× θ θ
λold λ (1) — —
temp 2 ·N · (PI − PInew) (1) · (1) · (1) 3 1

λ
λ/2 if temp > 0.75 · L or

λ× 2 if temp < 0.25 · L
[(1) · (1)] if >< (value) 2 —
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B.3 DSP48E Component Summary

B.3 DSP48E Component Summary

Analysing the algorithms implementing the FFNN, BP and LM algorithms we can sum-

marise the information in the tables from the previous section to equations relating the

size of the network and the length of the training vectors. Let N be the number of the

training vectors, In is the length of the input vector, Hid. is the number of hidden neu-

rons, we assume the output dimension is equal to 1, the activation function is assumed

to be linear or stored in LUT, further reducing the burden on the circuit design.

B.3.1 Area of Neural Networks

We will express the number of DSP48E components needed as a function of number of

input samples, length of the size of the input vector and the structure of the hidden layer,

Multipliers = f(N, In,Hid.)

Multipliers = A+B

A, is the multiplication count in the first-to-hidden layer, while B is the number of

multiplications in the hidden-to-output layer

A = (In+ 1)×Hid.×N

B = (Hid.+ 1)×N

= N × (((In+ 1)×Hid.) + (Hid.+ 1))

Assuming the size of the input vector and the number of hidden neurons is large we can

ignore the bias factor of 1.

Multipliers = N ×Hid.× In

Figure B.1 shows the multiplier count at various sample sizes, N , and the network pa-

rameters, θ, as a function of, In and Hid..

θ(In,Hid.) = ((Hid.+ 1) + (Hid.× (In+ 1)))
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B.3 DSP48E Component Summary
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Figure B.1: Area of FeedForward Neural Network with respect to increasing number of
parameters
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B.3 DSP48E Component Summary

B.3.2 Area of Back-Propagation

We assume that the momentum parameter α = 0 , to reduce complexity. We can segment

the BP algorithm as in the following equations.

Multipliers = A+B + C +D + E + F +G

Where, A is the partial error in the output layer, B is the derivative of the activation

function, C is the partial error in hidden layer, D is update calculation for weights linking

the hidden layer to the output layer, E is the weights update of the input-to-hidden layer

matrix, F and G are the updating costs when multiplying by the learning rate η.

A = Hid.×N

B = Hid.×N

C = Hid.×N

D = (Hid.+ 1)×N

E = Hid.×N

F = Hid.+ 1

G = Hid.× (In+ 1)

= 4× (Hid.×N) + (Hid.+ 1)×N +Hid.+ 1 +Hid.× (In+ 1)

Removing small factors,

Multipliers = Hid.(4×N + In) +N

The relationship between θ and the length of the training vector N is shown in figure B.2.

B.3.3 Levenberg-Marquardt Multiplier Area

Multipliers = A+B + C +D + E + F

Where, A is the Jacobian matrix of the input-to-hidden layer matrix , B gradient function

∇J , C is the Hessian, D is the inverse of the Hessian, E is the weight update vector and

F is the calculation of the λ updating parameter.

A = Hid.× (N +N +N(In+ 1))

B = θ ×N
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B.3 DSP48E Component Summary
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Figure B.2: BP algorithm multiplier cost
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B.3 DSP48E Component Summary

C = θ ×N × θ

D = θ3

E = θ2

F = θ + θ

= N ×Hid.× (3 + In) + θ(N + θN + θ2 + θ + 2)

Removing small factors,

Multipliers = N ×Hid.× In+ θ(N + θN + θ2 + θ)

The relationship between θ and the length of the training vector N is shown in figure B.3.

In figures B.1, B.2 and B.3 we presented the multiplier cost when implementing FFNNs

and their training algorithm showing the multiplier count against the size of the network

parameters at different levels in the number of samples used for the optimisation process.

We have drawn four horizontal lines indicating the number of DSP48E available in the

FPGAs under consideration, currently we have the SXT50T Virtex-5 FPGA with 288

DSP48E units, we have the option to increase the number of DSP units by choosing a

bigger FPGA such as the SXT240T that has 1056 DSP48E units and also it is possible

to use multiple FPGAs to run our network and learning processes. Examining the fig-

ures B.1, B.2 and B.3 we notice that we reach the operational capacity of the FPGA quite

quickly, as the number of parameters increases exponentially, when adding more FPGAs

the increases in the DSP units is linear. So for big problems its not possible to run the

optimisation processes with the limited number of DSP48Es that we have. Adding more

FPGAs is not the optimal solution for this problem. We notice that the problem is dou-

bled by the scarcity and the limited resources available to do arithmetic operations and

the limited precision inherent in fixed-point. In the next chapter we propose future work

that deals with those issues, explaining the rational and suggest solutions for this research

problem.
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B.3 DSP48E Component Summary
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Figure B.3: LM algorithm multiplier cost
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Appendix C

Example of NN smoothing function
on a FPGA

Neural network operation has two modes, operation and training. In the operation mode,

the signals are propagated thought the NN structure as in (C.1). The propagation provides

an evaluation of the deviation of the results from the target values. These deviation are

used in the second, training mode of operation. The deviation form the errors that are

used in the back-propagation algorithm.

N = W1 ×X + b1

Ŷ = W2 × sigmoid(N) + b2

(C.1)

y =
1

1 + e−x
(C.2)

y = ck +mk × x (C.3)

Table C.1 shows the error in the estimation of the piecewise linear estimation of the

non-linear sigmoid function. Where the k defines the number of piecewise segments that

the interpolation look up table (LUT) will be divided to approximate; the number of

segments is divided into 2k segments. The LUT covers 2k + 1 segments in the active

region of [0,8] as can be seen in Figure C.1. This region was chosen due to the symmetry

of the sigmoid around the x-axis and its convergence to 1 when its input is larger than 8.

The second column in Table C.1 shows the total number of coefficients based on Eq (C.3).

The last three columns show the MSE error when comparing the LUT operation to the

floating point operation using the Eq (C.2). MSE“double” shows the error of Eq (C.2)

and Eq (C.3) when both are operating in floating point format. MSE“Q” compares

Eq (C.2) in floating point to Eq (C.3) when all the variables are quantised in the precision

indicated in Table C.2, however; all operation are carried out in floating point precision.
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Table C.1: sigmoid approximation error of LUT operation in floating and fixed-point
format

k # coefficients MSE“double” MSE“Q” MSE“FPGA”

3 16 1.6812× 10−5 1.7258× 10−5 1.7259× 10−5

4 32 1.0751× 10−6 1.1699× 10−6 1.1707× 10−6

5 64 6.7583× 10−8 9.2152× 10−8 9.2968× 10−8

Table C.2: Quantizer resolutions in the LUT based sigmoid function
Data in c1 c2 out
Sign 1 1 1 1

Word length 16 16 16 16
Fraction length 11 14 14 12

Finally, MSE“FPGA” compares Eq (C.2) in floating point to Eq (C.3) with the actual

values obtained from the FPGA implementation with signals and variables casted to the

precision shown in Table C.2, however; this time all operation are carried out in fixed-

point precision. The MSE results were obtained from implementing the sigmoid function

using 2000 intermediate values in the region of [0, 8].
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Figure C.1: sigmoid approximation error of quantised LUT operation at three k-values

Figure C.2 shows the error when approximating the sigmoid function using piecewise

linear function in double and quantised precisions with k ranging from [1-14]. We can

see that the error of the LUT double approximation reaches the limits of the computer

precision. The quantised precision error converges after k = 7 with minute levels of

improvement.

Initially the weights were calculated using the Neural Networks toolbox operating in

full double precision mode. This network parameters were converted to fixed-point format

and loaded onto a Neural Network running in the FPGA.
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Figure C.2: Double and quantised Piecewise Linear Approximation error for k ranging
from 1 to 14

Table C.3: XOR Neural Network (2-2-1) on FPGA utilisation summary

IO utilisation: # %
Number of bonded IOBs: 59 out of 480 12%
Number of LOCed IOBs: 59 out of 59 100%

IOB Flip Flops: 39

Specific Feature utilisation:
Number of BlockRAM/FIFO: 6 out of 132 4%

Number using BlockRAM only: 6
Total primitives used:

Number of 36k BlockRAM used: 6
Total Memory used (KB): 216 out of 4,752 4%

Number of BUFG/BUFGCTRLs: 8 out of 32 25%
Number used as BUFGs: 3

Number used as BUFGCTRLs: 5
Number of IDELAYCTRLs: 1 out of 16 6%

Number of DCM ADVs: 1 out of 12 8%
Number of DSP48Es: 1 out of 288 1%
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Appendix D

Floating point LM algorithm using
QR factorisation

Table D.1 shows the difference in the parameters of the trained neural network using

the Matlab Neural Network LM algorithm and the modified version using the QR solver

method, the fixed-point precision was set to 32-bits.

Table D.2 shows the difference in the parameters of the trained neural network using

the Matlab Neural Network LM algorithm and the modified version using the QR solver

method, the fixed-point precision was set to 52-bits.

Table D.3 shows the difference the number of epochs required to complete training

with different quantisation constraints. The QR in the first column was performed in

floating point, in the second column only the Hessian matrix was quantised. In the final

column both the Hessian matrix and the Jacobian were quantised to 52 bits.

Table D.1: Difference of the default LM approach vs the proposed QR @ 32 bits

Parameters MSE“floating” MSE“quantised(H)” MSE“quantised(H,J)”

W1 1.4204× 10−25 6.5723× 10−13 2.8667× 10−7

W2 9.7234× 10−25 9.5571× 10−13 1.0499× 10−7

B2 3.2950× 10−26 1.7972× 10−13 2.4145× 10−7
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Table D.2: Difference of the default LM approach vs the proposed QR @ 52 bits

Parameters MSE“floating” MSE“quantised(H)” MSE“quantised(H,J)”

W1 1.4204× 10−25 2.1137× 10−25 1.3263× 10−19

W2 9.7234× 10−25 1.6532× 10−25 4.9710× 10−20

B2 3.2950× 10−26 1.4824× 10−25 1.1104× 10−19

Table D.3: QR−MSE at different quantisation configurations

Parameter floating quantised(H) quantised(H, J)
Epochs 8 8 13

Performance 2.45× 10−27 2.53× 10−27 3.57× 10−18
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