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Abstract
The propagation of unsteady disturbances in ducts of slowly-varying geome-

try, such as those typical of an aero-engine, can be successfully modelled using

a multiple scales approach. The multiple-scales approach has a number of dis-

tinct advantages over full numerical methods. Previous authors have validated

the accuracy and usefulness of the multiple scales approach by comparing with

results obtained using the finite element method, using realistic aero-engine

configurations.

Cut-on cut-off transition of acoustic modes in hard-walled ducts with irro-

tational mean flow is well understood. However, previous finite-element sim-

ulations of this phenomenon appear to indicate the possibility of energy scat-

tering into neighbouring modes at large Helmholtz numbers. In this thesis,

an attempt is made to explain such scattering phenomena in slowly varying

aero-engine ducts using multiple-scales techniques.

In order to model modal scattering a good understanding of cut-on cut-off

transition is necessary. Here, the well known single turning point is revisited,

and our understanding of cut-on cut-off transition is extended to include an

analysis of a double turning point. Then using a similar apparatus, modal

scattering in the case where a mode undergoes cut-on cut-off transition is in-

vestigated. It is found that, for sufficiently high frequencies, a mechanism

exists whereby a propagating incident mode can be scattered into neighbour-

ing modes provided that a mean flow exists within the duct. An asymptotic

analysis of this mechanism is presented and, by solving numerically a com-

posite solution, results in a duct of rectangular cross section are obtained.
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Abstract 4

The energy distribution of the incident and neighbouring scattered modes re-

veals an interaction and exchange of energy with the mean flow. This work

now allows greater insight as well as more accurate and fast computations of

high frequency mode propagation in slowly-varying hard walled ducts using

multiple-scales approaches.
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Chapter 1

Introduction

1.1 The Problem of Aeroacoustic Noise

Aeroacoustic noise, such as the noise emitted by a low flying aircraft, has been

of great importance to engineers and scientists ever since such machines came

into widespread commercial deployment. The health effects associated with

elevated sound levels produced by commercial aircraft can include stress, an-

noyance, sleep deprivation and hypertension among other things [30]. These

effects on humans are well known, and in an effort to protect citizens from

exposure to adverse levels of noise governments all over the world have in-

troduced various forms of regulation to combat the problem. For example, a

recent (2003) UK government white paper outlined several measures to pro-

tect citizens that live within the close vicinity of airports, such as imposing

noise limits for departing aircraft, and plans to phase out older types of air-

craft and replace them with newer and quieter aircraft [41]. These measures

have put pressure on commercial aircraft engineers to combat the problem of

15
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aeroacoustic noise, and as a result modern aircraft have become significantly

quieter over the last 30 years. ISO standards currently use a method that

is used to measure the Effective Perceived Noise Level (EPNL) of passenger

planes and certification of aircraft noise levels are awarded using this scale.

Reductions in EPNL levels over the years can be seen in Figure 1.1.

Figure 1.1: Improvements in the Effective Perceived Noise Level (EPNL) of
passenger aircraft between 1955 and 1995

However despite the achievements over the last 40 or so years, there are still

problems as modern aircraft can still by no means be considered to be quiet,

plus the sheer increase in the number of aircraft over the last decade has par-

tially offset the reduction in noise per aircraft. Thus more needs to be done to

control the level of noise produced by this very necessary form of transporta-

tion.
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The problem with aircraft noise in particular is that there are several mech-

anisms for sound production, the three principle mechanisms being aerody-

namic noise, mechanical noise, and noise produced by the aircraft’s systems

which include cockpit and cabin pressurisation/conditioning systems and aux-

iliary power unit. If one’s aim is to significantly reduce aircraft noise then all

of these mechanisms need to be addressed and understood.

Aerodynamic noise arises due to the flow of air around the airframe (i.e. the

aircraft’s fuselage and it’s control surfaces). However to any listeners not on

board the aircraft this aerodynamically generated noise is only significant dur-

ing the take-off and landing phases of the aircraft operation [59].

Noise producing systems that fall into the mechanical noise category include

aircraft propulsion systems. These include the jet, turbofan engine and the

turbine driven propellers and undoubtedly form a major source of mechanical

noise generated by an aircraft. The noise produced by the jet follows Lighthill’s

famous eighth power law, which states that the total acoustic power scales with

the eighth power of the jet velocity [31].

As mentioned above, one key contributor to the degree of aeroacoustic noise is

the noise produced by the aircraft’s turbofan engines. A turbofan engine is a

type of aircraft jet engine whose purpose is to provide the thrust necessary to

keep the aeroplane in steady motion whilst airborne. Although several types

of turbofan exist, the main principle behind all turbofan engines is that thrust

is generated by drawing in and then discharging a fast moving jet of fluid,
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and a natural by-product of this action is aeroacoustic noise. Figure 1.2 shows

some typical features of a modern turbofan engine.

Figure 1.2: Sketch of a typical turbofan engine

The airstream passes into the engine via the inlet duct, a process that is as-

sisted by the fan. Then part of this airstream passes though the core of the

engine, providing oxygen to burn fuel and create power, whilst the rest of the

air flow passes through the by-pass duct, mixing with the faster stream from

the core at the exhaust. This method of splitting the flow field up using the

by-pass duct has two advantages; Firstly it allows some of the thrust to be gen-

erated by allowing air to pass through the by-pass duct and thus reducing fuel

consumption resulting in greater energy efficiency, and secondly this method

of mixing the hot and cool air at the exhaust actually leads to a reduction of

sound being produced at the exhaust.

The engine by-pass ratio is defined as the ratio between the mass flow rate
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of air that is drawn in by the fan that by-passes the engine core to the mass

flow rate passing through the engine core. A higher by-pass ratio gives a

lower exhaust speed, less noise and higher efficiency in terms of fuel level con-

sumption when compared to a low-by-pass duct. Prior to the early 1960s,

low-by-pass ducts were mainly used in civil aviation, but were slowly phased

out of use in favour of high-by-pass engines. Today high by-pass engines are

deployed throughout the entire civil aircraft industry and low-by-pass ducts

are no longer used. One distinct feature of figure 1.1 is the large gap in EPNL

that occurred around the early 1960s, and this gap is a direct consequence of

many aircraft switching from low to high ratio by-pass engines. This period

in history is sometimes referred to as the ‘high by-pass revolution’.

The presence of the rotating fan within a turbofan engine is known to be a

significant source of broadband noise, broadband noise being noise that spans

a large range of the audible frequency spectrum. One of the largest contribu-

tions to this broadband noise is believed to come from the interaction between

the turbulent flow in the rotor wake and the stator vanes, known as rotor

wake-stator interaction noise (see, for example studies by Tyler-Sofrin [26],

Kester-Pickett [29], Sijtsma and Schulten [56] and Britchford et al [27]). An-

other very important mechanism of broadband noise is believed to be the

interaction between the turbulence generated in the boundary layer on the

rotor blades and it’s trailing edge, a mechanism that is often referred to as

rotor self-noise [5].

Although engineers have some degree of control of noise production at the



Chapter 1: Introduction 20

exhaust and broadband noise produced by the fans, noise produced at the in-

let duct is also a big issue, and this is an area that engineers have less control

over. It is known that the degree of sound production within this area of the

duct is effected by the geometry of the duct and the acoustic impedance of the

duct walls. As shown in figure 1.2 some turbofan engines are lined with an

acoustic lining, and the acoustic impedance of this acoustic lining may vary

with the duct geometry. It is the understanding the mechanisms that occur

within the inlet duct area of the turbofan engine that is the main focal point

of this thesis.

1.2 Literature Review

Propagation of sound in straight ducts with a constant cross section, a con-

stant impedance type boundary condition contained within a homogeneous

medium is a classical and well understood problem [33, 34]. In this case the

solution for the sound field is found in the case of frequency ω by solving the

reduced wave (Helmholtz) equation (∇2 + k2)φ = 0, where φ is the acoustic

potential and k = ω/c, where c is the speed of sound. The solution for φ is

constructed by means of a modal expansion, and each modal solution is related

to the two-dimensional Laplacian operator acting on the cross section. These

modes are interesting because they form, in general, a complete basis from

which any solution can be represented. Also from a physical point of view,

each mode is actually a solution in it’s own right, and is not just a small part

of a larger mathematical framework. From understanding these modes and

the way in which they are constructed, the (usually) complicated structure of
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the total acoustic field becomes easier to understand and analyse.

The next major development in the asymptotic analysis of duct acoustics was

made by Nayfeh and Telionis [40], who in 1973 utilised the method of multiple

scales to describe the spatial and temporal variation of amplitudes and phases

of an acoustic wave propagating through a duct of slowly varying square or

circular cross-section in both lined and hard walled ducts. They were able to

show that by slowly reducing the cross section it is possible to eliminate some

of the acoustic modes, and it appears that the behaviour of each mode can

be separated into two distinct regions within the duct, known as the ‘prop-

agating region’ and the ‘attenuating region’. Within the propagating region

the mode is said to be ‘cut-on’, which means that the geometry and boundary

conditions are suitable to allow a particular mode to propagate in the axial

direction, and therefore acoustic energy may be transmitted in the direction

of axial propagation throughout this region by the mode. Throughout the

propagating region the amplitude of the mode varies algebraically according

to the variation of duct cross section. Within the attenuating region the mode

is said to be ‘cut-off’, meaning that the geometry and boundary conditions are

such that the isolated mode is unable to transmit acoustic energy within this

region. A cut-off mode decays exponentially along the duct, and no further

propagation of acoustic energy by this mode occurs within this region.

The point at which the mode undergoes this cut-on cut-off transition is known

as a ‘turning point’, and the propagating/attenuating solutions that were ob-

tained by Nayfeh and Telionis are not valid within the neighbourhood of this
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(usually small) region, because the assumption of the acoustic potential φ be-

ing slowly-varying with respect to the axial direction is not true here, and

therefore a different treatment of the governing equations is required. From

a physical point of view, a mode undergoing cut-on cut-off transition means

that the wavelength of the axially propagating mode is too large to allow fur-

ther propagation into the constricting channel, and so the mode reflects at

the transition point, exchanging all of its acoustic energy with its opposite

running counterpart, causing a standing (or trapped) wave within the duct.

The research was further extended by Nayfeh, Telionis and Kaiser [37] and

then by Nayfeh, Telionis and Lekoudis [38] to include the effects of mean flow.

The introduction of the mean flow made the scenario a lot more complicated,

as the spatially varying mean flow velocities consequently give non-constant

coefficients in the governing acoustic equations, which usually means that a

modal expansion is not possible. The simplest non-trivial case with mean flow

is that with almost uniform mean flow in the case of vanishing viscosity. In

this case, a modal solution may be found that is quite similar to the case

without flow. However although the authors did manage to produce an exact

expression for the modal amplitude in the case of no mean flow, the differential

equation governing the modal amplitude in the case of mean flow appeared to

be unsolvable analytically.

In attempting to derive an analytical solution for the mean flow case, one pro-

cess that requires thorough attention is the way that the sound field is trans-

mitted through the vanishing boundary layer. The reduction of the boundary
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layer to an infinitesimally small size essentially modifies the impedance bound-

ary condition at the duct wall to an equivalent condition in the limit to the

duct wall. In other words a boundary condition should not be applied at the

wall, but instead should be applied at a point very close to the wall, just in-

side where the effects of the mean flow can be felt. For straight ducts with

non-varying cross section, a modified boundary condition was proposed first

by Ingard [24], and then later proved by Eversman and Beckemeyer [18] and

Tester [60]. However this boundary condition only works for uniform mean

flow, and for non uniform mean flow this condition must be significantly mod-

ified. A corrected form of the boundary condition was derived in 1980 by

Myers [35], but of course this modification was unknown when Nayfeh et al

produced their 1975 work, which is the reason why they could not solve the

acoustic field exactly in the mean flow case.

In 1999 Nayfeh et al ’s solution was corrected by Rienstra [47], who used Myers’

boundary condition plus a consistent description of the mean flow to derive an

exact modal solution for slowly varying circular and annular ducts lined with

slowly varying impedance walls. One of the unique features of Rienstra’s solu-

tion was that it provided a systematic approximation to the hollow-to-annular

cylinder transition problem which has direct applications to turbofan engines.

Rienstra’s solution also showed that for hard-walled ducts, the so-called turn-

ing points observed by Nayfeh et al do exist within the duct, and that this

phenomenon is true irrespective of the presence of a mean flow. Cooper and

Peake extended this study to include elliptic cross sections [14], and then in

2003 Rienstra [49] described a modal solution of acoustic propagation in a
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slowly varying duct of arbitrary cross section. Cooper and Peake [13, 15] then

extended their study to model situations with mean swirling flow and trapped

modes, and a more recent development by Brambley and Peake [8] has seen

the model extended to include modal propagation in strongly curved ducts.

Several developments were then made in the study of turning points in hard-

walled ducts [48, 49]. In these studies the equation within the vicinity of the

turning point was derived, solved and then matched to the known outer solu-

tion, a process that allowed explicit forms of the reflection and transmission

coefficients of the mode in question to be obtained. This study of turning

points was extended by Ovenden [42] who demonstrated that a similar phe-

nomenon occurs for lined walls of finite impedance. Ovenden showed that

in the case of lined walls a partial modal reflection is possible, and that the

magnitude of this partial reflection is dependent upon the mean flow and the

magnitude and phase of the wall impedance. It was also shown that the results

were consistent with the results obtained for hard walls by finding the limit as

the impedance was increased to infinity. In this thesis the subject of turning

points is dealt with in chapter 3, which also includes a new set of results for

the so-called double turning point case.

One of the problems with only knowing an inner and outer solution is that it

is difficult to use these when attempting to numerically simulate the acous-

tic field within the duct. However in 2005 Ovenden developed a uniformly

valid composite solution for cut-on cut-off transition for hard walled ducts [44].

This solution encompasses both the outer modal solution and the inner turning
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Figure 1.3: Comparing multiple scales and finite element solutions: Pres-
sure contour plots for high frequency and no mean flow with parameters
ω = 50.2, m = 20, n = 7. Transition point Xt ≈ 1.25.

.

point solution and remains valid throughout the entire duct, completely remov-

ing any singularities that were present in previous modal solutions. Ovenden’s

contribution meant that numerical computations using the multiple scales the-

ory could now be performed with ease.

With the availability of this composite solution Ovenden, Eversman and Rien-

stra compared this multiple scales solution to the solutions obtained from the

finite-element method [43]. For the vast majority of cases the results obtained

from both approaches were in excellent agreement. Figure 1.3 shows a direct

comparison of the results obtained from multiple scales and finite-element

methods for case of zero mean flow, and figure 1.4 shows a comparison of the

results obtained from the two methods with mean flow included. In both of

these cases the mode in question undergoes cut-on cut-off transition, and the

transition point has been indicated.

There was at least one case however where the results differed significantly
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Figure 1.4: Comparing multiple scales and finite element solutions: Pressure
contour plots for a cut-off cut-on acoustic mode with mean flow. Parameters
are ω = 19.8, n = m = 5, M = 0.5. Transition point Xt ≈ 0.18.
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Figure 1.5: Comparing multiple scales and finite element solutions for high
frequency and mean flow. Parameters are M = 0.5, m = 20, n = 7, ω = 44.4.
For the critical point Xt ≈ 1.11.

between the two methods, and differences seemed to occur when attempt-

ing to model cut-on cut-off transition for very high frequency and mean flow.

In such a scenario the finite-element method showed a significant degree of

modal scattering into neighbouring modes, whereas the multiple scales solu-

tion showed no indication of any scattering. Figure 1.5 shows a comparison

of the results obtained in this case. It may be seen from figure 1.5(a) that

according to the multiple scales solution the mode undergoes cut-on cut-off

transition via precisely the same mechanism as with the previous cases, and
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so no acoustic energy may propagate beyond the turning point Xt. However

looking at the finite element solution 1.5(b) it is clear that acoustic energy is

in fact present beyond Xt, although this energy cannot be attributed to the

incident mode because that incident mode cannot propagate beyond the turn-

ing point. Hence the only conclusion that may be drawn is that a non-incident

neighbouring that is cut-on for X > Xt has been excited and has absorbed

sufficient energy from the incident cut-on cut-off mode that it may propagate

axially and out of the duct.

The main aim of this thesis is to use asymptotic analysis to understand and

model the modal scattering of an acoustic mode undergoing cut-on cut-off

transition in the case of high frequency and mean flow for a hard-walled duct

of slowly varying cross section. In chapter 5 the acoustic wave equation within

a duct is studied using an asymptotic framework, the terms responsible for the

modal scattering are identified and a differential equation that describes the

scattering mechanism within the inner region is obtained. The inner equation

is then used to form a composite solution, valid throughout the entire duct.

This composite solution is then used in chapter 6 to demonstrate that modal

scattering can be modelled using the multiple scales technique.

Modal scattering of acoustic modes has recently been successfully modelled

under some circumstances, usually involving a sudden change in the proper-

ties of the boundaries of the acoustic duct. For example, in 2007 Rienstra

successfully developed an explicit Wiener-Hopf solution to model the scatter-

ing of an acoustic mode in a straight duct that contains a hard-soft impedance
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transition at arbitrary frequency [51]. In the same paper Rienstra then went

on to perform an asymptotic analysis for very low frequency (where very lit-

tle modal energy is transmitted) and to study the properties of the reflection

coefficient. Rienstra’s results for the reflection coefficient appeared to be signif-

icantly different depending upon whether a Kutta-like condition was applied,

which corresponds to the inclusion or exclusion of an instability wave over

the impedance wall (assuming an impedance independent of frequency). The

suggestion then was that for certain choices of parameter the differences in

this reflection coefficient are so large that it could be used as an experimental

test to check for the presence of stability waves over the surface of impedance

linings. However in 2009 Brambley rederived Rienstra’s low frequency analy-

sis by considering a frequency dependant locally reacting impedance wall [6].

Brambley’s results proved to be very different from Rienstra’s, and were not

dependant on whether a Kutta-like condition is chosen or not, and appeared

to cast doubt on the usefulness of the reflection coefficient to experimentally

test for instability waves over an impedance wall for small frequency. Another

recent and interesting development in the modelling of modal scattering was

performed by Brambley and Peake, who used the Wiener-Hopf technique to

model the scattering of acoustic modes within a cylindrical duct where the

boundaries of the duct change from being completely rigid to that of a thin

shell [9].

Other notable developments in the field are that of Cooper and Peake [15],

who described the propagation of acoustic waves in a flow duct with mean

swirling flow. This model adds an extra layer of complexity to the problem as
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the flow is assumed to have a swirling component, meaning that the associated

eigenvalue problem is not self-adjoint as it is for irrotational mean flow.

1.3 Mathematical Framework

This section discusses how to construct a modal solution for sound propagation

through a slowly varying duct of arbitrary cross section. A detailed discussion

can be found in Rienstra’s 2003 paper on the subject [49].

Consider a compressible inviscid perfect isentropic irrotational gas flow con-

tained within a duct of slowly varying cross section. It is convenient to make

parameters dimensionless: spatial dimensions can be made dimensionless using

a typical duct radius R∞, densities using a reference density at the inlet ρ∞,

velocities on a typical sound speed c∞, time on R∞/c∞, pressure on ρ∞c2
∞ and

velocity potential on R∞c∞. Note that the corresponding reference pressure

p∞ satisfies ρ∞c2
∞ = γp∞, where γ is the (constant) ratio of specific heats at

constant pressure and volume. Within the acoustic region the non-dimensional

quantities of pressure p̃, velocity ṽ, density ρ̃, entropy s̃ and sound speed c̃

must obey the Euler equations (see for example Acheson [25] and Batche-

lor [28]), which consists of the equation for continuity and the momentum

equation (subject to boundary conditions described in section 1.3)

∂ρ̃

∂t
+ ∇.(ρ̃ṽ) = 0, ρ̃

(
∂ṽ

∂t
+ ṽ.∇ṽ

)
+ ∇p̃ = 0, (1.1)
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and the perfect gas equations

γp̃ = ρ̃γ , c̃2 =
dp̃

dρ̃
= ρ̃γ−1,

ds̃

dt
= 0,

s̃ = CV log p̃ − CP log ρ̃, γ =
CP

CV
, (1.2)

where CV , CP and γ are constants. CV is the heat capacity at constant volume,

CP is the heat capacity at constant pressure and γ is the ratio of specific heats.

The entire fluid flow is assumed to be irrotational in the region of interest

(∇× ṽ = 0) and therefore one can write ṽ = ∇φ̃ for some scalar potential φ̃.

Then making use of the Lamb formula

(ṽ.∇)ṽ =
1

2
∇|ṽ|2 + (∇× ṽ) × ṽ,

and the equations relating p̃ and ρ̃, the momentum equation (1.1) may be

integrated immediately to give a variant of Bernoulli’s equation

∂φ̃

∂t
+

1

2
|∇φ̃|2 +

c̃2

γ − 1
= C(t). (1.3)

It is then assumed that the entire flow field may be split up into a steady mean

flow component, which is assumed near-uniform with no swirling component,

plus infinitesimally-small time-harmonic perturbations of a non-dimensional

frequency (Helmholtz number) ω,

(ṽ, ρ̃, p̃, c̃) = (V, D, P, C) + (∇φ, ρ, p, c) eiωt. (1.4)
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Substituting (1.4) into (1.1), (1.2) and (1.3) plus some subsequent lineari-

sation yields the following expressions: For the mean flow field

∇.(DV) = 0, (1.5)

1

2
|V|2 +

C2

γ − 1
= E, (1.6)

C2 =
γP

D
= Dγ−1, (1.7)

where E is some constant. For the acoustic field

∇.(D∇φ + ρV) = −iωρ, (1.8)

iωφ + V.∇φ = − p

D
, (1.9)

pD−(γ+1)/2 =
2c

γ − 1
, (1.10)

p = C2ρ. (1.11)

The constant of integration in the momentum equation can be absorbed into

the definition of φ. For the acoustic field it is desirable to form one single

differential equation for the acoustic potential φ. Manipulation of equations

(1.8) - (1.11) via elimination of p and ρ gives rise to what is known as the

general convected reduced wave equation

D−1∇.(D∇φ) − (iω + V.∇)[C−2(iω + V.∇)φ] = 0, (1.12)

which is subject to the Myers’ boundary condition, described in more detail

later in this section. Once φ is known the density ρ (and hence p) may be

recovered from

(iω + V.∇)ρ + ρV.∇ + ∇.(D∇φ) = 0.
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Figure 1.6: Sketch of a typical duct geometry

The Geometry

One establishes a three-dimensional cylindrical polar co-ordinate system (x, r, θ)

with unit vectors ex, er and eθ. The problem domain (shown in figure 1.6)

consists of a duct D that is slowly varying in the axial direction with boundary

∂D. The entire duct region may be precisely defined in terms of a function Σ

as

Σ(X, r, θ) = r −R(X, θ) ≤ 0,

where R is the duct radius at a given point (X, θ). Then define the so-called

slow (axial) variable X as X = εx, where ε is a small parameter. The small

parameter ε may be thought of as a typical duct gradient and will form the

basis of our asymptotic expansions as it’s presence is required to legitimise

and support the use of a systematic perturbation method. To avoid coupling

between the acoustic field and ε it is assumed that each acoustic amplitude

is significantly smaller than any relevant power of ε. In this notation a cross

section of the duct A (X) has area A(X). In order to keep the notation sim-

ple, Σ = 0 corresponds to the surface of a hollow duct, although the analysis

presented here is easily extended to topologically more complex shapes, and
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the final results presented in this section will be valid for both hollow and

annular ducts.

At the duct surface Σ = 0 the surface gradient ∇Σ is

∇Σ = −εex
∂R

∂X
+ er − eθ

1

R

∂R

∂θ
, (1.13)

which is derived from the gradient operator in cylindrical polar coordinates

given by

∇ = ex
∂

∂x
+ er

∂

∂r
+ eθ

1

r

∂

∂θ
.

The quantity ∇Σ is a vector quantity that is normal to the duct surface, and

so the unit normal to the duct surface is given as

n =
∇Σ

|∇Σ| .

The transverse gradient ∇⊥Σ lies in the same plane as the cross-section A(X),

is perpendicular to the x axis and is given by

∇⊥Σ = er − eθ
1

R

∂R

∂θ
, where ∇⊥ = er

∂

∂r
+ eθ

1

r

∂

∂θ
. (1.14)

Thus if n⊥ denotes a normal that is the component of the surface normal n

that is projected in the same plane as A then

n = n⊥ − ε
R ∂R

∂X√
R2 +

(
∂R
∂θ

)2
+ O(ε2).

The Boundary Conditions

As far as the mean flow is concerned the wall of the duct is solid and imper-

meable, meaning that fluid cannot pass through the walls of the duct. The



Chapter 1: Introduction 34

usual condition of normal velocity vanishing at the wall is applied, which is

expressed mathematically as

V.n = 0 on Σ = 0. (1.15)

To the acoustic field, the duct is lined with an impedance wall of acoustic

impedance Z ∈ C which is allowed to vary with position provided that it

varies slowly with x, and so Z = Z(X, θ). The acoustic boundary condition of

an impedance wall along a curved wall in the presence of mean flow was given

by Myers [35] as

iω(v.n) = [iω + V.∇− n.(n.∇V]
( p

Z

)
at Σ = 0. (1.16)

When formulating his boundary condition, Myers dealt with a fluid whose

viscosity was vanishing and whose boundary layer was an infinitesimally small

strip that lined the duct wall. This boundary condition could not be applied

directly at the wall, but instead was to be applied at a point very close to the

wall that lies just inside the mean flow region. The Myers boundary condi-

tion above has been well established since 1980, but some very recent papers

have actually called this boundary condition into question [53, 7]. It has been

known for some time that the Myers condition has lead to some numerical

instability issues within the time domain [50], and that some mathematical

problems exist concerning the stability analysis of this boundary condition.

These instabilities occur in the form of surface waves [52] yet these surface

waves have not been shown to exist in reality. Both Brambley and Rien-

stra [7, 53] have recently shown that viscosity within the vanishing boundary

layer must be taken into account in order to avoid such instabilities, and in

doing so they have both independently developed a modified Myers condition,
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though at time of writing there are still some small disagreements between

their solutions. Recent improvements to the Myers boundary condition are

for straight ducts only, and at the time of writing a modified Myers condition

for a slowly varying duct has not yet been developed. Therefore in this thesis

the original boundary condition of Myers will be used, though it should be

noted that for hard walled ducts the Myers condition simplifies significantly

and the difficulties that have recently been studied are not present.

The Mean Flow

If the mean flow is sub-divided as follows

V = Uex + V⊥, (1.17)

with U representing the axial variation and V⊥ representing the cross-sectional

variation, the mean flow mass flux is given by

∫∫

A
DUdσ = F , (1.18)

where F is a constant that is independent of x. It is assumed here that only

knowledge of the slowly varying geometry is required to determine the mean

flow. Further to this, by balancing terms in the mass conservation equation

(1.5) it follows that O(ε) axial variations in mean flow can only be balanced
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by O(ε) radial variations, meaning that V⊥ = O(ε) and so

U = U0(X) + O(ε2), (1.19)

V⊥ = εV⊥0 + O(ε3), (1.20)

C = C0 + O(ε2). (1.21)

D = D0 + O(ε2). (1.22)

P = P0 + O(ε2). (1.23)

Substitution of the above expressions into equations (1.5), (1.6) and (1.7) and

equating to leading order yields the following relationship between P0, D0, and

C0:

1

2
U2

0 +
C2

0

γ − 1
= E, C2

0 =
γP0

D0
,

P0

Dγ
0

=
1

γ
.

and thus it follows that C0, D0 and P0 are functions of X only. Substitution

of (1.19) and (1.20) into (1.18) gives an equation that may be integrated

immediately and yields an expression for U0 as

U0(X) =
F

D0(X)A(X)
, (1.24)

meaning that D0(X) (and hence P0 and C0) is the root of the algebraic equa-

tion

F2

2D0A2
+

Dγ−1
0

γ − 1
= E.

For the cross-wise component of the mean flow V⊥0 this is defined by the

partial differential equation

∂

∂X
(D0U0) + ∇⊥.(D0V⊥0) = 0 (1.25)

subject to the zero normal flow condition at the wall

V⊥0.n⊥ =
RU0

∂R
∂X√

R2 +
(

∂R
∂θ

)2
on r = R. (1.26)
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The Acoustic Field

Applying the slowly-varying assumptions of the mean flow described in section

1.3 the wave equation (1.12) becomes

(
1 − U2

0

C2
0

)
∂2φ

∂2x
− 2iωU0

C2
0

∂φ

∂x
+ ∇2

⊥φ − ω2

C2
0

φ

+ ε
{

D−1
0 D′

0

∂φ

∂x
− iωU0(C

−2
0 )′φ − U0(U0C

−2
0 )′

∂φ

∂x

− 2iωC−2
0 (V⊥0.∇⊥φ) − 2U0C

−2
0

(
V⊥0∇⊥

∂φ

∂x

) }

+ O(ε2) = 0, (1.27)

where the dashes denote derivatives with respect to the slow variable X, and

the cross-sectional Laplacian operator ∇2
⊥ for cylindrical polar coordinates is

given by

∇2
⊥ =

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
.

For a completely straight axisymmetric duct the solution for φ would consist

of a cross-sectional function in r multiplied by a complex exponential in θ

and x. For example the modal solution for a straight circular cylinder is

given by N Jm(αr) exp (−ikx − imθ), and for an annular cylinder the modal

solution is of the form [N Jm(αr) + M Ym(αr)] exp (−ikx − imθ), where Jm

and Ym are Bessel functions of the first and second kind, k, α and m are the

axial, radial and circumferential wavenumbers respectively, and N and M are

modal amplitudes. In this formulation a slowly varying mode-like solution is

sought using the method of multiple scales, and thus the axial wavenumber

and amplitude are assumed to vary slowly with X. Therefore under this

assumption the solution for φ takes on the WKB-Ansatz:

φ(x, r, θ; ε) = Φ(X, r, θ; ε) exp

(
− i

ε

∫

X
µ(X ′)dX ′

)
, (1.28)



Chapter 1: Introduction 38

where m is the (constant) circumferential wavenumber, µ is the slowly varying

axial wavenumber and Φ is the slowly varying amplitude function. From

equation (1.28) it is simple to compute the first and second derivatives with

respect to x as

∂φ

∂x
= −iµΦ + ε

∂Φ

∂X
exp

(
− i

ε

∫

X
µ(X ′)dX ′

)
, (1.29)

∂2φ

∂x2
= −µ2Φ − iε

∂µ

∂X
Φ − 2iεµ

∂Φ

∂X
+ ε2 ∂2Φ

∂X2

× exp

(
− i

ε

∫

X
µ(X ′)dX ′

)
. (1.30)

Defining

Ω = ω − µU0, (1.31)

and substituting (1.28) - (1.31) into (1.27) yields (after some manipulation)

∇2
⊥Φ +

(
Ω2

C2
0

− µ2

)
Φ =

iε

D0Φ

[
∂

∂X

[ (
ΩU0

C2
0

+ µ

)
D0Φ

2
]

+ ∇⊥.

(
ΩD0

C2
0

Φ2V⊥0

) ]
+ O(ε2), (1.32)

and for the boundary conditions at r = R

iω(n⊥.∇⊥Φ) − Ω2D0

Z
Φ = εωµ

R ∂R
∂X√

R2 +
(

∂R
∂θ

)2
Φ − iε

[
U0

∂

∂X

(
D0ΩΦ

Z

)

+ U0

(
D0Ω

Z

)
∂Φ

∂X
+ D0ΩV⊥0.∇⊥

(
Φ

Z

)
+

D0Ω

Z
V⊥0.∇⊥Φ

]

+ iεn⊥.(n⊥.∇⊥V⊥0)
D0ΩΦ

Z
. (1.33)

The amplitude function Φ and axial wavenumber µ are then expanded by

means of a Poincaré expansion about the parameter ε as

Φ(X, r, θ; ε) = Φ0(X, r, θ) + εΦ1(X, r, θ) + O(ε2), (1.34)

µ(X) = µ0(X) + εµ1(X) + O(ε2). (1.35)
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Substitution of (1.34) and (1.35) into (1.32) yields, to leading order

∇2
⊥Φ0 +

(
Ω2

0

C2
0

− µ2
0

)
Φ0 = 0, (1.36)

where Ω0 = ω − µ0U0. The above is subject to the boundary condition

iω(n⊥.∇⊥Φ0) −
Ω2

0D0

Z
Φ0 = 0 on r = R. (1.37)

The differential equation (1.36) subject to boundary condition (1.37) consti-

tutes an eigenvalue problem that is to be solved in the cross-sectional plane

A for some cross-sectional eigenfunction ψ(r, θ; X) at each X station, with X

acting as a parameter in this sense, i.e.

−∇2
⊥ψ = α2ψ, with iω(n⊥.∇⊥ψ) − Ω2

0D0

Z
ψ = 0 on r = R, (1.38)

where the cross sectional wavenumber α satisfies the dispersion relation

Ω2
0

C2
0

− (ω − Ω0)
2

U2
0

= α2. (1.39)

It is then assumed that for the n th eigenvalue αn with corresponding eigen-

function ψn the function satisfies

∫∫

A
|ψn|2dσ 6= 0,

so that ψn can be normalised as

∫∫

A
|ψn|2dσ = 1,

and so for each X one arrives at

Φ0 = N(X)ψn(r, θ; X). (1.40)

The amplitude function N(X) is still unknown and must be determined from

the solvability condition for the next order equation for Φ1 [39]. Subsequently
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the amplitude function Φ1 cannot be determined fully unless the equation for

Φ2 is considered. However it is not necessary to determine the full expression

for Φ1 as all that is required in this analysis is to determine a condition that

allows a solution for Φ1 to exist, and in forming this condition the expression

for the modal amplitude N(X) is obtained.

The differential equation for Φ1 is

∇2
⊥Φ1 +

(
Ω2

0

C2
0

− µ2

)
Φ1

=
iε

D0Φ0

[
∂

∂X

[ (
Ω0U0

C2
0

+ µ

)
D0Φ

2
0

]
+ ∇⊥.

(
Ω0D0

C2
0

Φ2
0V⊥0

) ]
, (1.41)

subject to the boundary condition at r = R

iω(n⊥.∇⊥Φ1) − Ω2
0D0

Z
Φ1 = ωµ

R ∂R
∂X√

R2 +
(

∂R
∂θ

)2
Φ0 − i

[
U0

∂

∂X

(
D0Ω0Φ0

Z

)

+ U0

(
D0Ω0

Z

)
∂Φ0

∂X
+ D0Ω0V⊥0.∇⊥

(
Φ0

Z

)
+

D0Ω0

Z
V⊥0.∇⊥Φ0

]

+ in⊥.(n⊥.∇⊥V⊥0)
D0Ω0Φ0

Z
(1.42)

Multiply equation (1.41) by D0Φ0 and also multiply (1.36) by D0Φ1 and inte-

grate their difference over the cross section to yield (after some manipulation)

D0

∫∫

A

(
Φ0∇2

⊥Φ1 − Φ1∇2
⊥Φ0

)
dσ = i

d

dX

[(Ω0U0

C2
0

+ µ
)
D0

∫∫

A
Φ2

0dσ

]

−i

(
Ω0U0

C2
0

+ µ

)
D0

∫ 2π

0

(
Φ2

0(X, R, θ)R
∂R

∂X

)
dθ (1.43)

Then the boundary condition (1.42) can be manipulated and combined with (1.43)

to obtain for the adiabatic invariant

d

dX

[
iω

[ (
Ω0U0

C2
0

+ µ

)
D0N

2
]

+ D2
0Ω0U0N

2

∫

∂A

1

Z
ψ2

ndl

]
= 0. (1.44)
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It is useful at this stage to introduce a very important quantity, known as the

reduced axial wavenumber σ

σ2(X) = 1 − (C2
0 (X) − U2

0 (X))
α2(X)

ω2
. (1.45)

The reduced axial wavenumber σ may be thought of as µ scaled by ω without

the purely convective effects included, such that

µ = − ωU0

C2
0 − U2

0

+
ωC0σ

C2
0 − U2

0

,

and therefore allowing a clearer distinction between the purely convective and

acoustic parts of the axial wavenumber. The first term in the above constitutes

a phase variation brought about by the presence of the mean flow, and is zero

if no mean flow is present inside the duct. The positive choice for the first

term corresponds to a mode propagating in the positive x direction, and the

negative choice corresponds to a negatively propagating mode. Note that the

reduced axial wavenumber σ also has the following properties:

U0Ω0

C2
0

+ µ =
ωσ

C0
, Ω0 = ωC0

C0 − U0σ

C2
0 − U2

0

.

Therefore of the amplitude N(X)

Q2

N2
=

ωσD0

C0
+

D2
0Ω0

iω
U0

∫

∂A

1

Z
ψ2

ndl, (1.46)

where Q is a constant of integration that is obtained via integration of equa-

tion (1.44). The constant Q represents the conserved quantity, and is fixed at

a point X = X0.

An important special case of (1.46) is that of hard walled ducts (Z = ∞),

where the modal amplitude reduces to

N(X) = Q

√
C0(X)

ωσ(X)D0(X)
, (1.47)
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and examining the consequences of the above result is a key focal point of

this thesis. When σ ∼ 1 equation (1.47) forms a good approximation for

the modal amplitude, but as σ → 0 a singularity forms within the above

expression for the amplitude, and so if the medium varies in such a way that

σ vanishes at some point X = Xt the above approximation breaks down and

a different method for approximating the modal amplitude is required. In the

language of matched asymptotic expansions a boundary layer in the variable X

exists within the vicinity of the point Xt, and Xt is known as a turning point.

The nature by which σ varies as X → Xt largely determines the outcome

of the system. If σ2 is linear as it approaches Xt then no acoustic energy

may propagate beyond Xt and the mode undergoes a total reflection with a

phase shift of π/2, causing a standing wave to be formed within the duct for

X < Xt [49]. If the mode behaves quadratically as X → Xt then the mode

undergoes a partial reflection, causing a partial standing wave to be formed

for X < Xt and modal propagation continues for X > Xt with reduced modal

energy. Precise details of the turning point analysis for these two cases is

discussed in chapter 3.

1.4 Alternative Strategies and Methods

As well as the considerable advances that have been achieved within the field

of aeroacoustics using multiple scales theory, it is important to note that there

have also been advances in the modelling of aeroacoustic problems using meth-

ods other than the asymptotic approach. Whilst the field of aeroacoustics

dates back to James Lighthill’s first groundbreaking paper [31], the use of



Chapter 1: Introduction 43

computational methods to treat acoustics problems is more recent, dating

back to the 1980s, where Hardin and Lamkil [22] modelled the sound field

generated by uniform flow over a cylinder at the moderate Reynolds number.

In this paper, the authors first modelled the flow field using standard CFD

techniques such as a stream function/vorticity formulation. The acoustic field

was then obtained by integrating over the flow field using the Coriolis accel-

eration as the source term and a low frequency Green’s function technique.

Several properties of the acoustic field were obtained using their method, and

these compared favourably against experimental data, indicating the feasibil-

ity of their approach. In 1986 the same authors coined the acronym CAA,

short for computational aeroacoustics, which has since been widely adopted

by the aeroacoustics community [23]. Since then several different techniques

within CAA have subsequently been developed, and the main features of some

of these are described in this section.

Within all CAA methods, several technical challenges are common. Any CAA

algorithm that is designed must not be dispersive or dissipative. Also as all

computational domains are finite in size, one must take care to avoid spurious

reflections of acoustic waves at the boundary of the computational domain.

There are several ways in which one can avoid these reflections, such as the

implementation of a buffer zone, perfectly matched layers or by designing a

non-reflecting boundary condition. In chapter 6 non reflecting boundary con-

ditions are discussed in some detail.
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Direct Numerical Simulation (DNS)

The compressible Navier-Stokes equations contain information regarding both

the mean flow field and the aerodynamically generated acoustic field, and thus

it is possible to obtain a description of the acoustic field via direct numerical

simulation (DNS) of the governing Navier Stokes equations. The use of this

method has led to recent successes by Freund, who’s utilised direct numerical

simulations methods to model the mechanisms of sound generation in a tur-

bulent jet [19], a model which was shown to have excellent agreement when

compared to experimental data.

The direct numerical simulation of sound generation and propagation within

a given medium is a difficult numerical problem, particularly when the mean

flow field is turbulent, and the main reason for this computational difficulty is

due to the large differences in magnitude between the mean flow and acoustic

variables. When compared to the kinetic energy associated with the mean

flow, acoustic waves are phenomena of very low energy which may propagate

over large distances, whereas the fluid flow may be affected by significantly

small fluid structures containing a large amount of energy, one example being

vortices in a turbulent flow. These differences in lengthscale combined with

the differences in their physical behaviour mean that to successfully utilise the

DNS approach one must overcome significant numerical issues. For these rea-

sons the DNS approach is generally considered to be impractical for industrial

use.
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Linearised Euler Equations

The influence of viscosity on the sound propagation is generally very small,

and this is one reason why noise is so difficult to suppress. Also perturba-

tions of the acoustic field have very little influence on the mean flow field, and

for these reasons the acoustic field can be described by the Linearised Euler

Equations or LEE’s as in [2].

For example, consider the superpositioning of small disturbances on a uniform

flow field with mean flow velocity u0 (that consists of an x component only)

with fluid density ρ0 and pressure p0. Then the two dimensional linearised

Euler equations for the sound field are

∂U

∂t
+

∂F

∂x
+

∂G

∂y
= S,

where

U =




ρ

u

v

p




, F =




ρu0 + ρ0u

u0u + p/ρ0

u0v

u0p + γp0u




, G =




ρ0v

0

p/ρ0

γp0v




,

where p, ρ, u and v are the acoustic variables, and the source term on the

right hand side represents distributed unsteady sources. Generally speaking

this representation works better for low Mach number flows as higher Mach

numbers tend to mean that non-linear disturbances that have been ignored

in this formulation become more important and thus need to be considered

when modelling the acoustic field. One recent example of LEE usage relevant

to the topics covered in this thesis is presented by Chen et al [11], who in
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2003 modelled sound propagation from a straight duct using a high order

computational scheme, and this analysis was shown to have good agreement

with analytical techniques used to solve a similar problem.

Finite Element Method

The finite element method (FEM) is a numerical method for finding approxi-

mate solutions to partial differential equations, and is particularly useful when

attempting to solve systems over complex spatial domains (vehicles, pipes etc)

or when the domain changes over time. The domain D is divided into a finite

number of sub-domains known as elements, where adjacent elements are then

assumed to be be connected by a finite number of nodes. The elements may be

all kinds of shapes, but simple shapes such as quadrilaterals and triangles are

commonly used. Within the finite element method the computational mesh

may be irregular and thus may be adapted to complex boundaries. Another

advantage of this method is that, due to the freedom that one has in terms

of selecting elements within the domain, this allows an increase in the nu-

merical precision within certain areas within the computational domain where

larger accuracy may be required. Finite element models of modal propaga-

tion of acoustic modes within a turbofan engine for non-uniform mean flow

is presented in detail in papers by Dander Roy and Eversman [54, 55]. For

some more specific details relating to finite element applications for duct flows

terminated by reflection free boundary conditions, the reader is referred to

papers by Eversman [16, 17].
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1.5 Outline of Thesis

The structure of this thesis is as follows:

Chapter 2 utilises the results discussed in section 1.3 to discuss modal propa-

gation through circular and annular ducts with near uniform mean flow and a

constant impedance lining on one of the duct walls, and within this chapter the

propagation of an acoustic mode is considered. The progress of several char-

acteristics of this mode are tracked throughout the duct, such as the modal

amplitude, axial and radial wavenumbers and acoustic sound pressure. Thanks

to the power of the asymptotic approach these properties may be computed

throughout the duct very quickly. The examples presented on this chapter are

based on realistic turbofan engine configurations and are therefore of practical

importance to a turbofan engine designer. The chapter ends by discussing re-

sults for hard-walled ducts and the problems that may occur when attempting

to model modal propagation through a hard-walled duct, such as the existence

of turning points.

Chapter 3 follows on from chapters 1 and 2 and focuses entirely on the topic

of turning points; this chapter discusses in detail the situation in which the

modal solution presented in section 1.3 breaks down and how this difficulty

is overcome. The technique involves analysing the behaviour of the reduced

axial wavenumber σ in the situation where it vanishes, and compares this be-

haviour to that of the second order derivative of φ with respect to X. This

analysis gives rise to an axial boundary layer and formulates a new differen-
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tial equation for φ, valid within the inner region that may be matched to the

outer solution, and in doing so reflection and transmission coefficients for the

outer modal solution are obtained. Within this chapter two situations are

discussed, one where σ2 varies linearly as in [49], and a new result where σ2

varies quadratically, which is referred to here as the double turning point case.

This chapter also outlines the composite solution devised by Ovenden [44].

Chapter 4 discusses the topic of a modal (outer) solution at large Helmholtz

number. Since the main emphasis behind the work presented in this thesis is

to understand acoustic scattering, it is necessary to understand the structure

of the outer modal solution at high frequency because it is only when the fre-

quency is sufficiently high that modal scattering occurs to leading order [43].

This chapter lays out the framework for constructing an outer modal solution

for high frequency.

Chapter 5 builds on the knowledge of the outer solution discussed in chapter 4

to discuss the phenomenon of modal scattering of acoustic modes in some

detail. This chapter starts by reviewing the results obtained by Ovenden, Ev-

ersman and Rienstra [43], where the finite element showed modal scattering

at high frequency and mean flow, but the multiple scales solution did not. A

brief discussion by the papers authors suggested that in order to induce modal

scattering for order one mean flow the frequency should be sufficiently high in

that ω ∼ ε−2. Chapter 5 begins by considering the situation where ω ∼ ε−2,

and it is shown here that for flow-induced scattering this original estimate is

in fact an overestimate (although it is shown by Smith, Ovenden and Bowles
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that this is a suitable estimate for geometry induced scattering [58]). The wave

equation is then re-analysed, and a new estimate for the order of magnitude of

the modal frequency is obtained, given by ω ∼ ε−
1
2 . However this estimate for

the frequency allows leading order scattering into the incident mode only, and

weak scattering for all other modes. The wave equation is re-visited once more

in an effort to obtain an estimate for ω that gives leading order scattering for

all modes, and an estimate of ω ∼ ε−1 is obtained. The knowledge obtained

from the asymptotic analysis of the inner solution leads to the development of

a model for the equation governing the composite solution (valid throughout

the entire duct as in Ovenden [44]), featured at the end of the chapter.

The composite model developed at the end of Chapter 5 is an ODE for the

modal amplitude throughout the entire duct in terms of a stretched axial vari-

able. Chapter 6 starts out by noting that the stretched variable can be difficult

to work with so instead for numerical purposes the composite model is revised

slightly so that rather than working with the stretched variable it works with

the physical axial variable x, making it much easier to apply finite difference

methods. Once this revision to the composite equation is made it is solved

numerically are the results obtained are compared against the theory shown in

chapter 5. This chapter presents results for two and three dimensional acoustic

scattering given at least one incident mode and mean flow. The results ob-

tained in this chapter demonstrate that when a mode undergoes cut-on cut-off

transition, that mode may exchange energy with neighbouring modes, yield-

ing results that are similar to the finite element results obtained by Ovenden,

Eversman and Rienstra [43]. It is also revealed, in contrast to most previous
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multiple scales analyses of cut-on cut-off modal interaction so far, that there

is evidence that the acoustic fields may exchange energy with the mean flow

during the scattering process.



Chapter 2

Modal Propagation Within

Circular & Annular Ducts

Chapter one section 1.3 described the main features of a multiple-scales solu-

tion concerning the propagation of a mode through a slowly varying duct of

arbitrary cross-section. In this chapter, this theory is used to briefly discuss

the special case of a cylindrical duct. Hollow and annular cylindrical ducts

are of considerable practical importance as they can both used as realistic

approximations to the geometry of a turbofan engine. It will be shown in this

chapter that for a cylindrical duct of slowly varying circular cross section the

acoustic potential φ exhibits an analytical solution, which is due to the relative

simplicity of the solution in the duct cross section.

The purpose of this chapter is to give the reader an idea of how the the-

ory is applied in practice, and how the theory can be used to model and track

the variation of modes and their properties as they propagate through a duct.

51
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The discussions present in this chapter was first shown by Rienstra [47], and

the results shown in this chapter replicate these results accurately. For a more

in depth discussion on the ideas presented in this chapter, the reader is re-

ferred to his 1998 paper.

A cylindrical duct of slowly varying cross section is considered. To the mean

flow, the duct is impermeable, but to the acoustic field, the duct is lined with

a slowly varying impedance wall. Suppose a cylindrical polar coordinate sys-

tem (x, r, θ) is established, with unit vectors ex, er, eθ, with the slowly varying

duct radii R1 and R2 respectively given by

r = R1(X), r = R2(X), X = εx, −∞ < x < ∞, 0 ≤ θ < 2π,

where R1 denotes the inner wall radius and R2 is the outer wall radius. In this

problem the walls R1 and R2 are lined with an impedance wall of constant

acoustic impedance Z1 and Z2 respectively.

The Mean Flow

Following on from the discussion presented in the last chapter, for the mean

flow, the mass flux F can be defined such that

2π

∫ R2

R1

D(X, r; ε)U(X, r; ε)rdrdθ = πF

which, given the asymptotic expansions given by equations (1.19) - (1.23),

may be integrated immediately to yield

U0(X) =
F

D0(X)
(
R2

2(X) − R2
1(X)

) ,
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with the quantities D0, P0 and C0 being given by

1

2

(
F

D0

(
R2

2 − R2
1

)
)2

+
1

γ − 1
Dγ−1

0 = E, P0 =
1

γ
Dγ

0 , C0 = D
(γ−1)/2
0 ,

where D0 must be evaluated numerically at each X station. For the radial

component of the mean flow velocity one arrives at

V1(X, r) = − F

2rD0

∂

∂X

(
r2 − R2

1

R2
2 − R2

1

)
.

The Acoustic Field

The acoustic potential φ satisfies the general acoustic wave equation (1.27).

Recall that modal type approximation for φ is of the WKB form

φ = N(X; ε)ψ(r, θ; X, ε) exp

(
− i

ε

∫ X

µ(X ′; ε)dX ′ − imθ

)
.

Substituting the above into the governing wave equation (1.27) using the cylin-

drical polar form of the Laplacian operator ∇2 yields the differential equation

for ψ as

D0L (ψ) =
i

ψ

{
∂

∂X

[(
U0Ω

C2
0

+ µ

)
D0ψ

2

]
+

1

r

∂

∂r

[
r
V1Ω

C2
0

D0ψ
2

]}
,

where the linear operator L is given by

L =
∂2

∂r2
+

1

r

∂

∂r
+

Ω2

C2
0

− µ2 − m2

r2
.

The Myers boundary condition on R = R1 is

iω
∂ψ

∂r
+

Ω2D0ψ

Z1
= εωµR′

1ψ +
iε

ψ

[
Uo

∂

∂X
+ V1

∂

∂r
− ∂V1

∂r

] (
ΩD0ψ

2

Z1

)
,

and for R = R2 the boundary condition is given by

iω
∂ψ

∂r
− Ω2D0ψ

Z2
= εωµR′

2ψ − iε

ψ

[
Uo

∂

∂X
+ V1

∂

∂r
− ∂V1

∂r

] (
ΩD0ψ

2

Z2

)
,
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with the special case

[
iΩ + ε

(
U0

∂

∂X
+ V1

∂

∂r

)]
ψ = 0 at r = Ri if Zi = 0.

Suppose then that the cross-sectional wavefunction ψ is expanded via a Poincaré

expansion about the small parameter ε as

ψ = ψ0(r, θ; X) + εψ1(r, θ; X) + . . . ,

then the differential equations for ψ0 and ψ1 are given by

L (ψ0) = 0,

D0L (ψ1) =
i

A0

{
∂

∂X

[(
U0Ω

C2
0

+ µ

)
D0ψ

2
0

]
+

1

r

∂

∂r

[
r
V1Ω

C2
0

D0ψ
2
0

]}
,

subject to the following boundary conditions on R = R1:

iω
∂ψ0

∂r
+

Ω2D0ψ0

Z1
= 0

iω
∂ψ1

∂r
+

Ω2D0ψ1

Z1
= ωµR′

1ψ0 +
i

ψ0

[
U0

∂

∂X
+ V1

∂

∂r
− ∂V1

∂r

]

×
(

ΩD0ψ
2
0

Z1

)

and for the R = R2 the boundary conditions are given by

iω
∂ψ0

∂r
+

Ω2D0ψ0

Z2
= 0

iω
∂ψ1

∂r
− Ω2D0ψ1

Z2
= ωµR′

1ψ0 −
i

ψ0

[
U0

∂

∂X
+ V1

∂

∂r
− ∂V1

∂r

]

×
(

ΩD0ψ
2
0

Z1

)
.

The differential equation for ψ0(r, θ; X) is just Bessel’s equation with a radial

coordinate stretching, and thus the general normalised solution for the leading

order cross sectional eigensolution ψ0 is

ψ0(r, θ; X) =
Jm(α(X)r) − Υ(X)Ym(α(X)r)√

2
π

(
R2

2−m2/α2

[αR2 Y′

m(α(X)R2)]2
− R2

1−m2/α2

[αR1 Y′

m(α(X)R1)]2

)eimθ,
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where the (eigenvalue) α and Υ can be determined from the eigenvalue equa-

tion

αR2J
′
m(αR2) − ζ2Jm(αR2)

αR2Y ′
m(αR2) − ζ2Ym(αR2)

=
αR1J

′
m(αR1) + ζ1Jm(αR1)

αR1Y ′
m(αR1) + ζ1Ym(αR1)

= Υ(X), (2.1)

where

ζ1 =
Ω2D0R1

iωZ1
, ζ2 =

Ω2D0R2

iωZ2
,

and for the special Zi = 0

Jm(zR2)

Ym(zR2)
=

Jm(zR1)

Ym(zR1)
= Υ(X).

For a hollow duct (R1 = 0) the expressions reduce to Υ(X) = 0, and

ψ0(r, θ; X) =
Jm(α(X)r)

Jm(αR2)

√
2

π

(
R2

2 −
m2

α2

)− 1
2

e−imθ,

and the eigenvalues are determined by the equation

αR2J
′
m(αR2) − ζ2Jm(αR2) = 0.

Finally, the solvability condition on ψ1 presented in equation (1.44) gives for

the amplitude function N(X)

Q2

N2(X)
=

ωD0σ

C0
+

D2
0ΩU0

iω

(
2

Z1R1

(
1 − m2 − ζ2

1

α2R2
1

)−1

+
2

Z2R2

(
1 − m2 − ζ2

2

α2R2
2

)−1
)

where Q2 is a constant of integration, obtained via integration of equation (1.44).

Examples of Mode Tracking

This example tracks a single acoustic mode as it propagates through a realistic

model of an engine duct.
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Code Implementation

In order to write a program modelling the propagation of a mode through

a duct, the first requirement is to build an eigensolver to find eigenvalues α

satisfying equation (2.1). Thus first define a function f(z) given by

f(z) =
zR2J

′
m(zR2) − ζ2Jm(zR2)

zR2Y ′
m(zR2) − ζ2Ym(zR2)

− zR1J
′
m(zR1) + ζ1Jm(zR1)

zR1Y ′
m(zR1) + ζ1Ym(zR1)

,

and therefore the values of z satisfying f(z) = 0 are the α’s that are required.

For computational ease, it is useful to replace the derivatives in the above

eigenvalue equation using the well known Bessel function identities [61]

J ′
m(z) =

m

z
Jm(z) − Jm+1(z),

Y ′
m(z) =

m

z
Ym(z) − Ym+1(z).

Also note that when αR1 << 1 the product Υ(X)Ym(αr) can be difficult

to compute directly as Υ is very small and Ym very large. To overcome this

difficulty, it is useful to make use of the following asymptotic approximations in

order to compute this product without any computational difficulties whenever

αr << 1,

Ym(αr) ∼ − 1

π
Γ(m)

(
1

2
αr

)−m

,

Jm(αr) ∼ 1

Γ(m + 1)

(
1

2
αr

)m

.

In order to find the roots of the above equation, first define a matrix z rep-

resenting a grid in the complex plane. Start off at the duct inlet, compute a

matrix B = f(z), and locate positions of any possible roots of f by scanning

consecutive elements within B and looking for sign changes (whether real or

imaginary). Should a sign change occur anywhere between two points, the two
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points are parsed to a root finding algorithm known Riddler’s algorithm (de-

scribed below) in order to find the root. If a root is found, its value is returned

and stored in an array α. Once all of the roots have been found, Newton’s

method can be employed to track each α, µ, σ etc as the mode propagates

through the duct.

Riddler’s Algorithm

There are several useful root finding algorithms available, but one of interest

here is known as Riddler’s algorithm [46]. The algorithm works as follows: If

a root is bracketed between values z1 and z2, the midpoint z3 is computed and

a new value z4 is given by

z4 = z3 +
(z3 − z1)Sign (Re(f(z1) − f(z2))) f(z3)√

f(z3)2 − f(z1)f(z2)
,

where Re denotes the real part. The above equation has some nice properties.

First the point z4 is guaranteed to lie within the interval (z1, z2), and the

method never jumps out of the brackets. Also Riddler’s’ algorithm is a very

robust algorithm, and has a convergence rate of
√

2 [45].

Finding ζ1 and ζ2

The functions ζi, (where i = 1, 2) are given by

ζi =
−iD0Ri

ωZi

(
ω − U0

( −ωU0

C2
0 − U2

0

± C0

C2
0 − U2

0

√
ω2 − C2

0z2 + z2U2
0

))2

(2.2)

where again we select positive for forward propagating modes, and negative

for backward propagating. For a completely soft wall (Zi = 0), ζi = 0.
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Geometry and Results

In this example, a lined inlet duct of a CFM56-inspired turbofan engine, from

inlet plane via a (hard-walled) spinner to the inlet rotor plane is given by (see

figure 2.1)

R2(x) = 1.073 − 0.198(1 − x/2)2 + 0.109 exp (−11x/2)

R1(x) = max
(
0, 0.689 − [1.131(1 − x/2)2]

1
2

)

for 0 ≤ x ≤ 2. The acoustic impedances are taken to be Z1 = ∞ and Z2 = 2−i.

An inlet Mach number ∼ 0.6 is chosen, such that F = 0.559 and E = 2.514.

The Helmholtz number is taken to be ω = 25, and the azimuthal eigenvalue

m = 26.
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Figure 2.1: A sketch of the cross section of the duct geometry. The dashed
line is the duct axis

The mean flow is computered prior to computing the acoustic field, and plots

for the Mach number and mean flow density are shown in figure 2.2.
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Figure 2.2: Mean flow density, velocity and Mach Number throughout the
duct. Here Mc denotes the Mach number

Results for ω = 25

Start with ω = 25. Figures 2.3 - 2.18 show plots of radial wavenumber α, the

axial wavenumber µ and reduced axial wavenumber σ in the complex plane,

varying parametrically with the duct position x. The open circles indicate the

initial position at the inlet plane. To ensure that both the same left and right

running mode is being tracked, both are found first at x = 0 when F = 0,

where both of the modes coincide, and then F is increased and the positive

and negative modes are tracked as F is increased to F = 0.559.
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Figure 2.3: Tracking the wavenumber α throughout the duct. The left hand
branch is the positive mode, and the right hand branch is it’s opposite running
counterpart. The solid line denotes the path taken by tracking the two modes
forward from F = 0
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Figure 2.4: Tracking wavenumber µ as it progresses throughout the duct. The
top left hand branch is the negative mode, and the other is the positive mode.
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Figure 2.5: Tracking the reduced axial wavenumber σ of the positive mode as
it progresses throughout the duct.
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Figure 2.6: Tracking the reduced axial wavenumber σ of the negative mode as
it progresses throughout the duct.
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Figure 2.7: Tracking the variation in modal amplitude throughout the duct
for both positive and negative modes
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Figure 2.8: Iso-pressure contours for the positively propagating mode for ω =
25, plotted on the decibel scale
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Figure 2.9: Iso-pressure contours for the positively propagating mode for ω =
25, plotted on the decibel scale
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Figure 2.10: Iso-pressure contours for both the positively and negatively prop-
agating modes for ω = 25, plotted on the decibel scale
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Results for ω = 50

This section contains the results obtained for the well cut-on second harmonic

ω = 50.
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Figure 2.11: Tracking the wavenumber α throughout the duct for ω = 50.
The upper branch is the positive mode, and the lower branch is it’s opposite
running counterpart. The solid line denotes the path taken by tracking the
two modes forward from F = 0



Chapter 2: Modal Propagation Within Circular & Annular Ducts 65

-200 -150 -100 -50 0 50
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Re(µ)

Im
(µ

)

Positive Mode
Negative Mode

Figure 2.12: Tracking the progress of the wavenumber µ throughout the duct
ω = 50.
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Figure 2.13: Tracking the wavenumber σ throughout the duct of the positively
propagating mode for ω = 50.
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Figure 2.14: Tracking the wavenumber σ throughout the duct of the negatively
propagating mode ω = 50.
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Figure 2.15: Tracking the variation in modal amplitude throughout the duct
for both positive and negative modes ω = 50
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Figure 2.16: Iso-pressure contours for the positively propagating mode for
ω = 50, plotted on the decibel scale
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Figure 2.17: Iso-pressure contours for the positively propagating mode for
ω = 50, plotted on the decibel scale
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Figure 2.18: Iso-pressure contours for both the positively and negatively prop-
agating modes for ω = 50, plotted on the decibel scale

Example of Hard Walled Ducts

The scenario is now changed slightly as here the case when both walls are hard

is considered. Consider now a single mode propagating through a duct with

the same geometry as that previously described, the only difference is that the

upper impedance wall is replaced with a completely hard wall. It is important

to understand the mechanics of modal propagation through an acoustically

solid duct as the rest of this thesis deals entirely with hard walled ducts.

Figure 2.21 shows the variation of the radial eigenvalue α as the mode prop-

agates through the duct. Note that in the case of hard walls, the eigenvalue

problem for α reduces to

αR2J
′
m(αR2)

αR2Y ′
m(αR2)

=
αR1J

′
m(αR1)

αR1Y ′
m(αR1)

= Υ(X), (2.3)
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and so the directional dependence brought about by ζ1 and ζ2 is no longer

present, and thus α the same for both the positive and negative mode. An-

other consequence of this is that all α’s are now real.

Recall that the reduced axial wavenumber σ is given by

σ2 = 1 − (C2
0 − U2

0 )
α2

ω2
,

and if α is real this means that sigma is either real or purely imaginary. The

sign of the square root is chosen such that the positive choice corresponds to

the right propagating mode, and the negative choice is for the left propagating

mode.

Another point to note regarding hard walled ducts is that the expression for

the modal amplitude reduces to

N2(X) =
C0

QωD0σ
.

Looking at the plot of sigma given in figure 2.19, it becomes quite clear that

for a particular mode, the geometry and mean flow may vary in such a way as

to make sigma switch from real to imaginary as it propagates along the duct.

This is certainly true in this example, and this fact causes problems in terms

of calculating the modal amplitude because in order for sigma to change from

real to imaginary it must pass through zero. This passing through zero causes

a singularity to be introduced into the above expression for the modal am-

plitude, and the whole modal approximation breaks down. A plot of modal

amplitude in the case of hard walls is shown in figure 2.20, and the sharp

asymptote type peaks are the points at which the approximation breaks down



Chapter 2: Modal Propagation Within Circular & Annular Ducts 70

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

Re(σ)

Im
(σ

)

Figure 2.19: Tracking the variation of σ throughout the duct in the case of
hard walls. Purely Imaginary σ means that the mode is cut-off

due to a vanishing σ in the denominator of the amplitude.

The problem with the vanishing σ described above is due to the fact that

the model developed so far assumes that the mode is slowly varying through-

out the duct. Suppose then that a point is defined such that σ(Xt) = 0. As σ

approaches this point the mode does not vary slowly within a small interval

around this point, and the whole solution breaks down. This small interval is

known as a boundary layer in the variable X. The model with the vicinity of

the turning point needs to be considered separately, and details of how this is

done will be discussed in the next chapter.
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Figure 2.20: Tracking the variation in modal amplitude throughout the duct
for both positive and negative modes. The sharp peaks are areas where σ is
very small and the slowly varying approximation is not valid.
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Figure 2.21: Tracking the variation of α throughout the duct in the case of
hard walls. In the case of hard walls, α is always real
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Summary

This chapter presented an explicit multiple scales solution for sound propaga-

tion through a circular and annular duct. This model was used to simulate the

propagation of acoustic modes through a geometry that is a realistic geomet-

rical approximation to that of a typical turbofan engine. This modal solution

is valid for both hollow and annular ducts, and one of it’s unique features is

to present a systematic approximation to the hollow-to-annular cylinder tran-

sition problem in a turbofan engine. The results shown here are in excellent

agreement with Rienstra’s 1999 paper on the subject [47].

The model developed in this section made use of the Myers acoustic boundary

condition, which models the effect of an impedance wall under a mean flow by

assuming that the boundary layer vanishes. All of the results presented in this

section make use of this condition. However very recently the Myers condition

has been called into question, as there are situations where the Myers gives

rise to a certain type of acoustic wave known as a surface wave, but so far

these surface waves have not been shown to exist in reality. Further to this,

the Myers boundary condition has also recently shown to lead to an ill-posed

problem in the time domain [52]. More recently Rienstra and Brambley have

independently posed a modified acoustic boundary condition [7, 53], although

at present their solutions are similar but not identical. The remainder of this

thesis deals with hard walled ducts in which case the problems associated with

the instability issues known to be related to the Myers boundary condition do

not feature in the analysis.



Chapter 3

Turning Point Analysis

As demonstrated in the last chapter, the outer modal solution presented in

Chapter 1 that describes the propagation of an acoustic mode within a duct

can break down in the case of a slowly varying hard walled duct, because as

the reduced axial wavenumber σ → 0 the modal amplitude N(X) (as given in

equation (1.47))

N(X) = Q

√
C0(X)

ωσ(X)D0(X)
,

becomes singular. Suppose that the medium and duct diameter vary such in

a way that within the duct there exists a point X = Xt with σ(Xt) = 0.

The reason for this breakdown in the modal solution is due to the fact that

within a small neighbourhood of the point Xt the mode is no longer slowly

varying, and so the slowly varying assumption is invalid and therefore a new

approximation to the leading order governing equation is required.

73
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Figure 3.1: Cut-on cut-off Transition for a Single Turning Point: The blue
wave represents the incident cut-on mode, the red the reflected cut-on mode,
and the black is the exponentially decaying cut-off mode

Recall that the reduced axial wavenumber σ is defined as

σ2 = 1 − (C2
0 − U2

0 )
α2

ω2
.

When σ2 changes sign from positive to negative, σ changes from real to imag-

inary. Assuming that there is no interference from other modes around Xt,

no energy can transmit beyond Xt and the mode reflects at Xt, leading to the

formation of a standing wave within the duct. A sketch illustrating this type

of phenomena is shown in figure 3.1. As a result of this reflection, the point

Xt is known as a turning point.

3.1 Single Turning Point Analysis

In this section the situation in which the reduced axial wavenumber σ2 de-

creases linearly within the vicinity of the turning point is discussed. The

details in this section summarise the results presented by Rienstra’s 2003 pa-

per [49].
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Following on from chapter 1 the leading order governing acoustic equation

for φ is

ε2

(
1 − U2

0

C2
0

)
∂2φ

∂X2
− 2iεωU0

C2
0

∂φ

∂X
+

(
ω2

C2
0

− α2

)
φ = O(ε), (3.1)

where the slow variable X = εx as before. In the case of a single mode

propagating within a hard walled duct where an individual turning point exists

within the duct, the modal propagation can be decomposed in accordance with

the discussion in Chapter 1 for X < Xt (far from the turning point) as

φ =
A0√

σ
ψ0(r, θ; X) exp

(
i

ε

∫ X

Xt

ωU0

C2
0 − U2

0

dX ′
)

×
[

exp

(
− i

ε

∫ X

Xt

ωC0σ

C2
0 − U2

0

dX ′
)

+ R exp

(
i

ε

∫ X

Xt

ωC0σ

C2
0 − U2

0

dX ′
)]

, (3.2)

where R is known as the reflection coefficient, a complex number that is to

be determined. The argument of the reflection coefficient indicates the phase

change that occurs to the reflected left running mode as a result of the wave

undergoing cut-on cut-off transition, and the magnitude of R indicates the

factor by which the amplitude of the reflected wave is reduced by. The reduced

amplitude A0 is given by

A0(X) = Q

√(
C0

ωD0

)
.

For X > Xt at a location that is sufficiently far from the turning point where

σ is imaginary negative, the outer solution comprises of an exponentially de-

caying wave and may be represented as

φ =
A0√

σ
ψ0(r, θ; X)

[
T exp

(
−1

ε

∫ X

Xt

ωC0|σ|
C2

0 − U2
0

dX ′
)]

× exp

(
i

ε

∫ X

Xt

ωU0

C2
0 − U2

0

dX ′
)

, (3.3)



Chapter 3: Turning Point Analysis 76

where T is known as the transmission coefficient, and the branch of the square

root is chosen such that
√

σ = e−
iπ
4

√
|σ|.

Examining the asymptotic behaviour of the outer solution near the transition

point Xt and balancing terms in the governing equation leads to the existence

of a boundary layer region of thickness O(ε
2
3 ) described by the inner-axial

variable ξ as

X − Xt = ε
2
3 λ−1ξ.

The coefficient λ was introduced for convenience by Rienstra [49] and is defined

in terms of the mean flow variables evaluated at Xt,

λ3 =
2ω2C2

0 (Xt)

(C2
0 (Xt) − U2

0 (Xt))2

[
C0(Xt)C

′

0(Xt) − U0(Xt)U
′

0(Xt)

C2
0 (Xt) − U2

0 (Xt)
+

α
′

(Xt)

α(Xt)

]
.

(3.4)

Note that σ → 0 as X → Xt, and thus it is possible to form an asymptotic

approximation to σ2 for ε → 0 in the boundary layer for λ ∼ 1. Using Taylor’s

theorem in the form

f(x0 + δx) = f(x0) + δxf ′(x0) + O((δx)2),

where x ≡ x0 + δx, the following is true in the boundary layer;

σ2(X) = σ2(Xt + ε
2
3 λ−1ξ)

= −2ε
2
3 λ−1ξ

(
C0(Xt)C

′
0(Xt) − U0(Xt)U

′
0(Xt)

C2
0 (Xt) − U2

0 (Xt)
+

α′(Xt)

α(Xt)

)

+ O(ε
4
3 ξ2) (3.5)

and thus σ2 ∼ ε
2
3 to leading order.

It is assumed that the boundary layer is very thin and so within the boundary
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layer the duct may be assumed to be locally parallel, thus the modal behaviour

in the radial direction is unchanged and the inner solution takes the form

φ = χ(ξ)ψ(r, θ; Xt) exp

[
i

ε

∫ X

Xt

ωU0

C2
0 − U2

0

dX ′
]

, (3.6)

where ψ(r, θ; Xt) is the solution to the cross sectional eigenvalue problem eval-

uated at Xt, and χ(ξ) is the axial amplitude of the mode within the inner

region which is to be determined. Substitution of the above model into the

reduced governing equation (3.1) yields

ψ(r, θ; X)

(
ε

2
3 λ2 d2

dξ2
χ(ξ) +

ω2C2
0σ2

(
C2

0 − U2
0

)2 χ(ξ)

)
= O(ε).

Inspection of the above equation together with the information gathered from

the Taylor expansion of σ2 shown in equation (3.5) that within the boundary

layer the χ′′ and σ2 terms will balance because they are both of order ε
2
3 .

Substitution of the Taylor approximation to σ2 given in equation (3.5) yields

ε
2
3

(
1 − U2

0 (Xt)

C2
0 (Xt)

)
λ2ψ(r, θ; Xt)

(
d2

dξ2
χ(ξ) − ξχ(ξ)

)
= O(ε),

which to leading order is Airy’s equation in the variable ξ

d2

dξ2
χ(ξ) − ξχ(ξ) = 0.

The general solution for χ(ξ) is therefore given by

χ(ξ) = A Ai(ξ) + B Bi(ξ),

where Ai(ξ) and Bi(ξ) Airy functions of the first and second kind respectively

and A and B are arbitrary constants of integration.

The task now is to determine the constants A , B and the reflection and
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Figure 3.2: Airy Functions of the First and Second Kind

transmission coefficients R and T , and this is achieved by balancing the outer

solution in the limit X → Xt with the inner solution in the limit ξ → ±∞. The

limiting behaviour of the outer solution is obtained by studying the limit of

the integral that corresponds to the modal propagation in the axial direction,

i.e.

L = lim
X→Xt

(
1

ε

∫ X

Xt

ωC0(X
′)σ(X ′)

C2
0 (X ′) − U2

0 (X ′)
dX ′

)
.

In analysing L independently for X ր Xt and X ց Xt (using the asymptotic

approximation to σ given by equation (3.5) ) one arrives at

L =





−2
3(−ξ)

3
2 = −ζ for ξ < 0

−i23(ξ)
3
2 = −iζ for ξ > 0

(3.7)

where ζ = 2
3 |ξ|

3
2 has been introduced for convenience. Thus, for the outer

solution in the limit X ր Xt one arrives at

φ ≃ A0(Xt)

ε
1
6 (−ξ)

1
4

(
ωC0(Xt)

λ(C2
0 (Xt) − U2

0 (Xt))

) 1
2

ψ(r, θ; Xt)(e
iζ + Re−iζ), (3.8)
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and for X ց Xt one arrives at

φ ≃ A0(Xt)

ε
1
6 ξ

1
4

(
ωC0(Xt)

λ(C2
0 (Xt) − U2

0 (Xt))

) 1
2

e
iπ
4 ψ(r, θ; Xt)Te−ζ . (3.9)

On the other hand, for the limiting behaviour of χ(ξ) is determined using the

following well documented limits [1]

Ai(ξ) →





cos (ζ−π
4 )

√
π|ξ|

1
4

as ξ → −∞,

exp (−ζ)

2
√

πξ
1
4

as ξ → ∞,

Bi(ξ) →





cos (ζ+ π
4 )

√
π|ξ|

1
4

as ξ → −∞,

exp (ζ)
√

πξ
1
4

as ξ → ∞.

(3.10)

Thus for ξ → ∞ the inner solution is

φ ∼ A
exp (−ζ)

2
√

πξ
1
4

+ B
exp (ζ)
√

πξ
1
4

, (3.11)

and for ξ → −∞ the inner solution is

φ ∼ A
cos

(
ζ − π

4

)
√

π|ξ| 14
+ B

cos
(
ζ + π

4

)
√

π|ξ| 14
. (3.12)

The first step in the asymptotic matching is performed by comparing the outer

solution in the limit X ց Xt with the inner solution as ξ → ∞. Upon doing

so it is noted that eζ is an exponentially growing term and is dismissed from

the solution giving B = 0 and thus

A =
2A0(Xt)

√
π

ε
1
6

(
ωC0(Xt)

λ(C2
0 (Xt) − U2

0 (Xt))

) 1
2

e
iπ
4 T.

The second step in the matching procedure is performed by comparing the

outer solution in the limit X ր Xt with the inner solution as ξ → −∞ which

yields

A
cos

(
ζ − π

4

)
√

π|ξ| 14
∼ A0(Xt)

ε
1
6 (−ξ)

1
4

(
ωC0(Xt)

λ(C2
0 (Xt) − U2

0 (Xt))

) 1
2

(eiζ + Re−iζ), (3.13)
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which is equivalent to the identity

T exp (iζ) + T i exp (−iζ) ≡ exp (iζ) + R exp (−iζ),

and this holds if and only if

T = 1, R = i.

Therefore, the argument of the reflection coefficient is π/2 which indicates

that the mode undergoes a phase shift of π/2 on reflection at the turning

point. Note also that the reflected amplitude is equal to the incident amplitude

as |R| = 1, creating a standing wave. This also conserves energy as the

transmitted (cut-off) wave carries no energy.

The Composite Solution

The outer solution breaks down as X → Xt because the second order deriva-

tives with respect to X that were neglected in forming the approximation are

the dominant terms in this region. For the inner region the inner solution

is only valid in the region where |X − Xt| ∼ ε
2
3 . Generally speaking it is

desirable to form the so-called composite solution, which is a solution that is

uniformally valid throughtout the entire duct to leading order. The composite

solution encompasses both the slowly varying outer solution (both upstream

and downstream) and the inner boundary later solution near the transition

point Xt. There are several advantages to the composite solution in that there

is no need to calculate the size of the boundary layer, and there is no need

for asymptotic matching of two solutions. The solution will be valid for both

|X −Xt| ∼ 1 and |X −Xt| ∼ ε
2
3 . The composite solution due to Ovenden [44]
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is given by

φ = Q̂

√
C0

ωD0
ψ(y, z; X)

(
− 3

2εσ3

∫ X

Xt

ωC0σ

C2
0 − U2

0

dX ′
) 1

6

×Ai




(
3i

2ε

∫ X

Xt

ωC0σ

C2
0 − U2

0

dX ′
) 2

3


 ,

where it should be noted that the term

(
− 3

2εσ3

∫ X

Xt

ωC0σ

C2
0 − U2

0

dX ′
) 1

6

,

is not singular as X → Xt. The availability of composite solution means that

simulations of wave propagation where a mode undergoes cut-on cut-off via a

single turning point mechanism may now be easily obtained.

As well as using the composite solution it is also possible to simulate cut-

on cut-off transition using a numerical scheme similar to that described in

Chapter 6. The methods described in chapter 6 describe a numerical method

that is derived from a composite-type equation, the derivation of which is sim-

ilar to the derivation of the composite solution described above.

Consider a rectangular duct defined by

−2.5 < x < 2.5, 0 ≤ z ≤ h(x),

where the wall function h(x) is defined by

h(x) = 1 − 0.1 − 0.1 tanh(3x),

and then consider an example of a mode indexed by n = 6 propagating from

left to right throughout this realm with unit incident amplitude A6 = 1 and
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Helmholtz number ω = 20. The traditional theory of modal propagation fails

when σ → 0, and the solution develops a singularity around the vicinity of the

tuning point Xt. However when a composite solution is used the solution is

valid throughout the entire duct and a singularity does not develop anywhere.
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Figure 3.3: Plot of the modal amplitude in the case of a single turning point.
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Figure 3.4: Pressure Contours for a single turning point case.
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3.2 Double Turning Point Analysis

In the work described in the previous section it was assumed that the leading

order behaviour of σ2 was linear with respect to ξ within the vicinity of the

turning point. Here a different scenario is considered, where σ2 is assumed

to be quadratic to leading order within the neighbourhood of Xt, a condition

which gives rise to the so-called double turning point. The work described

here extends the work of Rienstra [49], and is a completely new formulation.

The Outer Solution

In constructing the inner solution for the single turning point analysis the non-

parallel terms on the right hand side of the reduced governing equation (3.1)

are negligible throughout the entire analysis. In this formulation it is neces-

sary to consider these non parallel terms of the inner solution because at first

glance, they appear to be important.

As before, the governing acoustic equation is given by

ε2

(
1 − U2

0

C2
0

)
∂2φ

∂X2
− ε

2iωU0

C2
0

∂φ

∂X
+

(
ω2

C2
0

− α2

)
φ = O(ε). (3.14)

When considering the single turning point scenario all of the modal energy is

reflected at the turning point and no acoustic energy propagated beyond it.

However for a double turning point scenario, far from the turning point for

both X < Xt and X > Xt the reduced wavenumber σ2 is positive in both

regions and therefore one would expect that there is only a partial reflection

of energy at the turning point, with some of the remaining acoustic energy

continuing to propagate beyone the turning point. Thus it is assumed that for
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X < Xt, |X − Xt| ∼ 1 the form of the outer solution remains unchanged and

is the same as (3.2), i.e.

φ =
A0√

σ
ψ(r, θ; X) exp

(
i

ε

∫ X

Xt

ωU0

C2
0 − U2

0

dX ′
)

×
[

exp

(
− i

ε

∫ X

Xt

ωC0σ

C2
0 − U2

0

dX ′
)

+ R exp

(
i

ε

∫ X

Xt

ωC0σ

C2
0 − U2

0

dX ′
)]

. (3.15)

For the region X > Xt, |X − Xt| ∼ 1 there is a difference from the single

turning point case in that a propagating mode is expected rather than a mode

that exponentially decays. Thus for X > Xt, |X − Xt| ∼ 1 it is assumed that

φ =
A0√

σ
ψ(r, θ; X) exp

(
i

ε

∫ X

Xt

ωU0

C2
0 − U2

0

dX ′
)

× T exp

(
− i

ε

∫ X

Xt

ωC0σ

C2
0 − U2

0

dX ′
)

. (3.16)

As with the single turning point case, in general there may be a finite number

of propagating modes (Ai 6= 0) and infinitely many cut-off modes (Ai = 0).

Within this formulation only a single mode is considered, but it is important

to note that other modes may exist within the duct. Indeed, this formulation

does not in any way prohibit the existence of multiple modes, but instead

exploits the fact that within this model energy transfer between neighbouring

modes does not occur and energy per mode is fully conserved, and therefore if

other modes were included within this formulation they would not be effected

by the phenomenon occurring here. All other modes may be considered to

be passive within this process, and therefore it is safe to not consider them in

this calculation (but bearing in mind that they may still be there). Chapters 5

and 6 deal with the situation where there is an exchange of energy between

neighbouring modes, and it will be shown in these chapters that this passive

nature of neighbouring modes that is assumed here is not valid under certain
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conditions involving high frequency.

Equations (3.15) and (3.16) constitute a set of approximate solutions to the

governing equation (3.14) that are valid far from the turning point, referred

to as the outer solution. Within the turning point region the outer solution

breaks down, because the terms in equation (3.14) that were neglected when

forming the outer solution are now dominant, and so within this turning point

region another approximate equation is to be used.

The Inner Solution

In order to proceed it is necessary to analyse the behaviour of the reduced

axial wavenumber σ in the turning point region. The Taylor expansion of σ2

about the transition point Xt is given by

σ2(X) = σ2(Xt) + (X − Xt)

(
d

dX
σ2(X)

)

Xt

+
(X − Xt)

2

2!

(
d2

dX2
σ2(X)

)

Xt

+ O((X − Xt)
3). (3.17)

However in this analysis the turning point Xt takes on a slightly different

meaning because here the turning point is defined as the point in which the

first derivative of σ2 with respect to X vanishes, i.e.

(
d

dX
(σ2)

)

Xt

= 0, (3.18)

and is not necessarily a point where σ2(X) = 0 at Xt, although the case where

σ2(Xt) = 0 is actually a special case that is dealt with by this analysis. Thus

given that condition (3.18) holds, it follows that the second term in the Taylor

expansion given by equation (3.17) is zero, which reduces the Taylor expansion
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to

σ2(X) = σ2(Xt) +
(X − Xt)

2

2

(
d2

dX2
σ2(X)

)

Xt

+ O((X − Xt)
3). (3.19)

The Taylor expansions within the neighbourhood of the turning point of the

mean flow quantities U0(X) and C0(X) and the radial wavenumber α(X) are

U0(X) = U0(Xt) + (X − Xt)U
′
0(Xt) +

1

2
(X − Xt)

2U ′′
0 (Xt) + O((X − Xt)

3),

C0(X) = C0(Xt) + (X − Xt)C
′
0(Xt) +

1

2
(X − Xt)

2C ′′
0 (Xt) + O((X − Xt)

3),

α(X) = α(Xt) + (X − Xt)α
′(Xt) +

1

2
(X − Xt)

2α′′(Xt) + O((X − Xt)
3).

Substitution of the above expansions into the expression for σ2 given in equa-

tion (3.19) yields

σ2(X) = 1 − 1

ω2

(
(C2

0 (Xt) − U2
0 (Xt)α

2(Xt))
)

− 1

ω2

(
d

dX

[
(C2

0 (X) − U2
0 (X))α2(X)

])

Xt

(X − Xt)

+ O((X − Xt)
2).

Comparing the above expression with the Taylor expansion for σ2 given by (3.19),

it should be noted that according to the assumption that the first derivative

of σ2 vanishes at the turning point, then local to the turning point there are

no terms proportional to X − Xt and therefore

(
d

dX
[α2(X)(C2

0 (X) − U2
0 (X))]

) ∣∣∣∣∣
Xt

= 0,

which further implies that

C0(Xt)C
′

0(Xt) − U0(Xt)U
′

0(Xt)

C2
0 (Xt) − U2

0 (Xt)
+

α
′

(Xt)

α(Xt)
= 0. (3.20)

One solution to the above equation that has an interesting physical signif-
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Xt

X

Figure 3.5: An Acoustic Duct that Contains a Choke Point

icance is when the point X = Xt is a choke point, where a choke point is

defined as a point within the duct where the derivatives of the mean flow

terms with respect to X is zero. Figure 3.5 gives an example of a duct that

contains a choke point. Suppose for example that a case of interest is one such

that U ′
0(Xt) = 0. Since the geometry at the point X = Xt has zero gradient

the cross flow component V⊥0 must also be zero at this point. An intuitive

way to see this is to note that if the axial mean flow is propagating from left

to right then the mean flow must converge for X < Xt near the choke point,

so V⊥0 < 0, and as the mean flow passes through the choke point the axial

mean flow diverges and so cross flow component must satisfy V⊥0 > 0 for

X > Xt, and hence at the choke point one finds that V⊥0(Xt, r, θ) = 0. Given

then that the cross flow component is zero at the choke point the cross-flow

continuity equation (1.25) implies that

(
d

dX
(D0U0)

)

Xt

= 0,
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and therefore D′
0(Xt) = 0. It may also be seen that as the duct is locally

stationary at the point Xt then in general α′(Xt) = 0, which by (3.20) means

that C ′
0(Xt) = 0. Therefore to summarise, the following conditions hold at

the choke point

U ′
0(Xt) = C ′

0(Xt) = α′
0(Xt) = D′

0(Xt) = 0. (3.21)

Hence using these mean flow conditions it may be seen that for X = Xt all

of the non parallel terms on the right hand side of the governing equation

must be zero to leading order, as they all contain terms that are zero as a

result of the geometry of the choke point. Using this knowledge regarding the

choke point, the governing acoustic equation within the neighbourhood of the

turning point can be reduced from what was presented in equation (3.14) to

now give

ε2

(
1 − U2

0

C2
0

)
∂2φ

∂X2
− 2iεωU0

C2
0

∂φ

∂X
+

(
ω2

C2
0

− α2

)
φ = 0.

Analysing the terms in the reduced governing equation above indicates that

when the (usually dominant) term becomes comparable to the second deriva-

tive term and behaves in a way that is predominantly quadratic in X, then a

boundary layer in the variable X exists and can be defined by

X − Xt = ε
1
2 λ−1

D ξ,

where ξ is the boundary layer variable. The parameter λD is chosen for con-

venience and its exact value will be defined later.

Based on the knowledge of the form of the outer solution a WKB wave-like
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inner solution is assumed in the form

φ(X, r, θ) = χ(ξ)ψ(r, θ; X) exp

(
i

ε

∫ X

Xt

ωU0(X
′)

C2
0 (X ′) − U2

0 (X ′)
dX ′

)
, (3.22)

and substitution of the above WKB ansatz into the governing equation yields

(after suppressing the exponential)
(

ελ2
D

d2

dξ2
χ(ξ) +

ω2C2
0 (X)σ2(X)

(
C2

0 (X) − U2
0 (X)

)2 χ(ξ)

)
ψ(r, θ; X) = 0 (3.23)

In a manner similar to the single turning point case, as σ2(X) is known to be

small one can approximate σ2(X) within the boundary layer by rewriting the

Taylor expansion (3.19) in terms of the inner variable ξ, i.e.

σ2(X) = εσ̄2(Xt) +
1

2
ελ−2

D ξ2

(
d2σ2

dX2

)

Xt

+ O(ε
3
2 ξ3),

where it has been assumed that σ2(Xt) ∼ ε and thus allowing for the rescaling

σ2(Xt) = εσ̄2(Xt) for σ̄2(Xt) ∼ 1. Substitution of the above expression for

σ2(X) into equation (3.23) and equating leading order terms yields

d2

dξ2
χ(ξ) +

C2
0 (Xt)ω

2

(C2
0 (Xt) − U2

0 (Xt))2

(
1

2λ4
D

(
d2

dX2
σ2(X)

)

Xt

εξ2 +
σ̄2(Xt)

λ2
D

)
= 0.

(3.24)

At this point it is convenient to simplify matters by defining the quantity λD

as

λ4
D =

2C2
0 (Xt)ω

2

(C2
0 (Xt) − U2

0 (Xt))2

(
d2

dX2
σ2(X)

)

Xt

∼ 1, (3.25)

and note that since σ2(Xt) is a minimum point one must have

(
d2

dX2
σ2

)

Xt

> 0,

and thus it is clear that λ4
D must be a positive quantity. Now that λD is

defined then define the following paramater a as

a = − σ̄2(Xt)C
2
0 (Xt)ω

2

λ2
D(C2

0 (Xt) − U2
0 (Xt))2

= − σ̄2(Xt)

2
(

d2σ
dX2

)
Xt

∼ 1, (3.26)
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and now it may now be seen that the leading order equation is simply the

well-known Weber equation [1]

χ′′(ξ) +

(
1

4
ξ2 − a

)
χ(ξ) = 0.

Two linearly independent solutions to the Weber equation are the Parabolic

Cylinder Functions [1], and are denoted W(a, ξ) and W(a,−ξ). Thus the

general solution to the inner amplitude χ(ξ) is

χ(ξ) = Ã W(a, ξ) + B̃ W(a,−ξ),

where Ã and B̃ are arbitrary constants of integration.

The Matching Procedure

Now that a general form for the outer solution has been found it is necessary

to find an explicit form for this solution. This involves determining the values

of the amplitudes Ã and B̃, and the reflection and transmission coefficients

R and T . As with the single turning point case this feat is achieved by per-

forming an asymptotic matching of the outer and inner solutions. In order to

match the inner and outer solutions it is necessary to find the limit of the outer

solution in the limit as X → Xt, and to match this with the inner solution in

the limit as ξ → ±∞. Careful balancing the two solutions in these limits will

give the desired coefficients.

The matching procedure begins by analysing the behaviour of the outer solu-

tions given by expressions (3.15) and (3.16) as |X − Xt| ∼ ε
1
2 . Suppose the
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integral I is defined as

I = lim
X→Xt

(∫ X

Xt

ωC0(X
′)σ(X ′)

C2
0 (X ′) − U2

0 (X ′)
dX ′

)
,

and then in order to evaluate this integral in the limit as X → Xt the following

substitution involving the inner variable is used

X ′ − Xt = ε
1
2 λ−1

D ξ′, ⇒ dX ′ = ε
1
2 λ−1

D dξ′,

and substituting this into the integral I yields

I = ε
1
2

λ−1ωC0(Xt)

C2
0 (Xt) − U2

0 (Xt)

∫ ξ

0
σ(ξ′)dξ′. (3.27)

In order to evaluate the above integral term, Taylors theorem is once again

utilised with the assumpton that σ2 has zero derivative at the turning point,

and so

σ2(X) = εσ̄2(Xt) +
1

2
ελ−2

D ξ2

(
d2σ2

dX2

)

Xt

+ O(ε
3
2 ξ3),

=
ε

2λ2
D

(
ξ2 + η2

) (
d2σ2

dX2

)

Xt

(3.28)

where η2 has been defined for convenience and is given by

η2 = −4a2.

Recalling that it is the quantity σ that is required for the evaluation of the

integral I , taking the square root of (3.28) yields

σ(X) = ±
√

2ε
1
2

2λD
(ξ2 + η2)

1
2

√(
d2σ2

dX2

)

Xt

. (3.29)

Substitution of the above into (3.27) causes many terms multiplying the inte-

gral to cancel yielding

I = ±ε

2

∫ ξ

0

√
ξ′2 + η2dξ′.
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The above integral is a standard integral that may be evaluated to give

I = ±ε

4

(
ξ
√

ξ2 + η2 + η2 log
[
ξ +

√
ξ2 + η2

]
− η2 log η

)
. (3.30)

As far as the outer solution is concerned, for X < Xt the above expression for

I should be negative, and thus the negative solution is chosen. Similarly for

the outer solution for X > Xt the above integral should be positive, and thus

for this region the positive solution is chosen.

In terms of matching the outer solution for X < Xt as X ր Xt, one then

evaluates the asymptotic behaviour of the above expression in the limit as

ξ → −∞, giving

lim
ξ→−∞

(I ) = −εζ,

where a new spatial variable ζ is defined as

ζ =
1

4
ξ2 − a log |ξ|.

Similarly for the outer solution for X ց Xt finding the limit of I as ξ → ∞

gives

lim
ξ→∞

I = εζ. (3.31)

Also note that in order to approximate the outer solution as X → Xt it

is required to find an approximation for the singular term σ− 1
2 . Note from

(3.25) that
(

d2σ2

dX2

)

Xt

=
λ4

D(C2
0 (Xt) − U2

0 (Xt))

2C2
0 (Xt)ω2

,
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and substituting this into (3.28) and taking the appropriate power gives

σ− 1
2 (X) = ε−

1
4 |ξ|− 1

2

(
1 +

η2

ξ2

)− 1
4

√(
C0(Xt)ω

λD(C2
0 (Xt) − U2

0 (Xt))

)

= ε−
1
4 |ξ|− 1

2

√(
C0(Xt)ω

λD(C2
0 (Xt) − U2

0 (Xt))

)
+ O

(
1

ξ2

)
.

Therefore the limiting behaviour of the outer solution for X < Xt is

φ ∼ A0(Xt)

|ξ| 12 ε
1
4

√(
C0(Xt)ω

λD(C2
0 (Xt) − U2

0 (Xt))

)
ψ(r, θ; Xt)

×
(
eiζ + Re−iζ

)
,

and for the limiting behaviour of the outer solution for X > Xt, X ց Xt this

is given by

φ ∼ A0(Xt)

ξ
1
2 ε

1
4

√(
C0(Xt)ω

λD(C2
0 (Xt) − U2

0 (Xt))

)
ψ(r, θ; Xt)

(
Te−iζ

)
.

Now that the outer solution is understood in the limiting case it is now time

to look at the asymptotics of the inner solution as ξ → ±∞. If ξ → ∞

then according to Abramowitz and Stegun the asymptotic approximation to

W(a, ξ) to leading order is given by [1]

W(a, ξ) ∼
√

2k

ξ
cos

(
1

4
ξ2 − a ln ξ +

1

4
π +

1

2
φ2

)
, (3.32)

and in a similar way as ξ → ∞

W(a,−ξ) ∼
√

2

kξ
sin

(
1

4
ξ2 − a ln ξ +

1

4
π +

1

2
φ2

)
, (3.33)

where φ2 is defined as

φ2 = arg

(
Γ

(
1

2
+ ia

))
, (3.34)

and the constant k is given by

k =
√

1 + e2πa − eπa,
1

k
=

√
1 + e2πa + eπa,
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and Γ is the complex Gamma Function [1], i.e

Γ(z) =

∫ ∞

0
tz−1 e−t dt.

Suppose that a real number Θ is defined as

Θ =
1

4
π +

1

2
φ2,

and therefore using the composite angle formula for cosine it is possible to say

that as ξ → −∞

χ(ξ) ∼ cos ζ

(
Ã

√
2

k|ξ| sinΘ + B̃

√
2k

|ξ| cos Θ

)

+ sin ζ

(
Ã

√
2

k|ξ| cosΘ − B̃

√
2k

|ξ| sinΘ

)
,

and in a similar manner one may use the composite angle formula for sine to

say that as ξ → ∞

χ(ξ) ∼ cos ζ

(
Ã

√
2k

ξ
cos Θ + B̃

√
2

kξ
sinΘ

)

+ sin ζ

(
−Ã

√
2k

ξ
sinΘ + B̃

√
2

kξ
cos Θ

)
.

Thus balancing the outer solution as X ր Xt with the inner solution as

ξ → −∞ gives

A0(Xt)

|ξ| 12 ε
1
4

√(
C0(Xt)ω

λD(C2
0 (Xt) − U2

0 (Xt))

)
((1 + R) cos ζ + i(1 − R) sin ζ)

∼ cos ζ

(
Ã

√
2

k|ξ| sin Θ + B̃

√
2k

|ξ| cos Θ

)
+ sin ζ

(
Ã

√
2

k|ξ| cos Θ − B̃

√
2k

|ξ| sin Θ

)
.

(3.35)
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Similarly balancing the outer solution for X > Xt, X ց Xt with the inner

solution for ξ → ∞ gives

A0(Xt)

ξ
1
2 ε

1
4

√(
C0(Xt)ω

λD(C2
0 (Xt) − U2

0 (Xt))

)
T (cos ζ − i sin ζ)

∼ cos ζ

(
Ã

√
2k

ξ
cos Θ + B̃

√
2

kξ
sin Θ

)
+ sin ζ

(
−Ã

√
2k

ξ
sinΘ + B̃

√
2

kξ
cos Θ

)
.

(3.36)

Equating terms proportional to cos ζ and sin ζ in equation (3.35) yields

∆(1 + R) = Ã(2k−1)
1
2 sinΘ + B̃(2k)

1
2 cos Θ, (3.37)

i∆(1 − R) = Ã(2k−1)
1
2 cos Θ − B̃(2k)

1
2 sin Θ, (3.38)

where ∆ is given by

∆ =
A0(Xt)

ε
1
4

√(
C0(Xt)ω

λD(C2
0 (Xt) − U2

0 (Xt))

)
.

Solving (3.37) and (3.38) to find Ã and B̃ in terms of the unknown reflection

coefficient R gives

Ã = ∆(2k−1)−
1
2 [(1 + R) sin Θ + i(1 − R) cos Θ]

B̃ = ∆(2k)−
1
2 [(1 + R) cos Θ + i(R − 1) sinΘ] .

Similarly for the right hand matching, equating terms proportional to cos ζ

and sin ζ in equation (3.36) yields

∆T = Ã(2k)
1
2 cos Θ + B̃(2k−1)

1
2 sinΘ,

−i∆T = −Ã(2k)
1
2 sinΘ + B̃(2k−1)

1
2 cos Θ,

and solving for Ã and B̃ yields

Ã = ∆T (2k)−
1
2 [cos Θ + i sinΘ] , (3.39)

B̃ = ∆T (2k−1)−
1
2 [sinΘ − i cos Θ] . (3.40)
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Equating the expressions for Ã and B̃ and solving for R and T then finally

yields for the reflection and transmission coefficients

R =
k2 − 1

k2 + 1
exp (−2iΘ), T =

2ik

k2 + 1
exp (−2iΘ). (3.41)

For both the reflection and transmission coefficients the magnitude denotes

the degree to which the wavetrain is reflected or transmitted, and the argu-

ment specifies the phase shift that occurs as a result of the transition. Note

also that |R|2 + |T |2 = 1, indicating that modal energy is entirely conserved

throughout the process.

An interesting special case of the above is when a = 0, which constitutes

to

σ2(Xt) =

(
dσ2

dX

)

Xt

= 0,

yielding for the reflection and transmission coefficients

R =

√
2

2
i, T =

√
2

2
,

which means that precisely half of the modal energy reflects and at the turn-

ing point and the other half transmits beyond it. Interestingly enough, in this

case the reflected mode undergoes a phase shift of π/2 and the transmitted

mode does not undergo any phase shift, which is precisely the same as that

observed for the single turning point case.

Single turning points are very likely to occur in aeroplane turbofan engines

due to the shape of the duct, as the slowly constricting geometry means that

some cut-on modes will inevitably cut off somewhere within the duct. Double
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turning points can also occur within an annular duct due to the combined

effect of the inner and outer wall radii. A double turning point is also likely

to occur in a duct that contains a ‘pinch’ (i.e. one that constricts and then

widens again shortly downstream), one such geometry being that of a de Laval

nozzle, which is a type of nozzle widely found in steam turbines and rockets.

Discussion of Results

In order to demonstrate the nature of a mode that undergoes transition via a

double turning point it is useful to look at some examples in which this type

of transition occurs.

Consider the reduced axial wavenumber σn of a mode that is about to un-

dergo transition via a double turning point as it propagates through an acous-

tic duct. That mode may undergo transition via a double turning point can

be effected in one of two possible ways, either the mode σ becomes very close

to zero (but never quite reaches it), or σ2
n just dips below zero. Guided by

the special case highlighted for a = 0 at the end of the last section one would

expect that in the first scenario (where 0 << σ2
n(Xt) < 1) the solution would

exhibit a small partial reflection of the mode, and for the second case scenario

(where 0 << |σ2
n(Xt)| < 1 and σ2

n(Xt) < 0) one would expect the majority of

the modal energy to be reflected with only a small amount being transmitted

beyond the turning point.

In order to simulate some cases, define a three dimensional rectangular duct
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as

xmin ≤ x ≤ xmax, 0 ≤ y ≤ 1, 0 ≤ z ≤ h(x),

where the wall function h(x) is defined as

h(x) = hstep − b sech (cx)

where hstep, b and c are positive constants. In order to compare the values ob-

tained from the numerical simulation with the values predicted by the asymp-

totic analysis it is necessary to establish a numerical value for ε. In all of the

cases outlined in this section the value of ε may be estimated as the average

gradient of the duct wall h(x) between the points x = Xt (i.e. the point at

which the value of h(x) is at a minimum), and some point x1 which is local

to Xt which has x1 > Xt. A sensible value for x1 should be one that gives

a fair representation of the gradient throughout the part of the duct whose

geometry is slowly varying and the transition is taking place. Thus x1 is usu-

ally chosen as a value within the duct with x1 > 0 such the the effects of the

slowly varying geometry are just beginning to wear off. The average value of

the gradient h̄′ between Xt = 0 and x1 may be approximated by noting that,

h′(x) = bc sech (cx) tanh (cx),

and therefore h̄′ is given by

h̄′ =
1

x1

∫ x1

0
h′(x)dx = − 1

x1
[b sech (cx)]x1

0

=
b

x1
[1 − sech (cx1)] ,

and thus ε will be approximated using

ε ≃ b

x1
[1 − sech (cx1)] , (3.42)
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for some suitably chosen point x1.

The equation that is to be solved numerically using a finite difference scheme

is

Φ(X)

(
χ′′

n(x) +
ω̄2C2

0σ2
m

(C2
0 − U2

0 )2
χn(x)

)
= 0,

where χn(x) is the modal amplitude, σn behaves quadratically within the

vicinity of the turning point, and Φ is the so-called slowly varying coefficient,

given by

Φ(X) =

√
C0(X)

(C2
0 (X) − U2

0 (X))D0(X)h(X)
.

Full details of the finite difference method used to solve this system may be

found in chapter 6 section 6.1. Details of how to compute the modal ampli-

tudes, reflection and transmission coefficients and pressure may be found in

chapter 6 section 6.1.1.

Case 1

In this case the duct geometry is defined with parameters hstep = 0.985, b =

0.07 and c = 3, i.e

h(x) = 0.975 − 0.07 sech (3x),

where −2.5 < x < 2.5, and the flow is modelled as two dimensional flow with

Helmholtz number ω = 10. A single incident left running mode indexed by

n = 3 is initialised with unit amplitude, so An = 1 for n = 3 and incident

amplitude zero for all other modes. A non-zero mean flow with U(−∞) = 0.1

that propagates from left to right is also established. In this example, ε is

estimated as the average gradient of the wall between x = 0 and x = 1.2, and
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applying the necessary values to equation (3.42) gives ε ≃ 0.07 to two decimal

places. The minimum value of σ2 within the duct is equal to the value of σ2

at the point x = 0, and this may be shown to be σ2(xt) = −0.068, which is

clearly of the same order as ε as required for the asymptotic analysis to be

valid.

The simulation code was run and the results obtained for the reflection and

transmission coefficients are obtained and are compared against the results pre-

dicted by the asymptotic analysis of the double turning point case. Figure 3.6

shows the modal amplitude of the n = 3 mode as it propagates throughout

the duct. It is interesting to compare this to the single turning point case

discussed earlier. In this case there is a similarity to the single turning point

case in that within the vicinity of the point Xt the mode exchanges energy

with it’s opposite running counterpart. However where this case differs from

that of a single turning point is that the reflection is only a partial reflection

of the mode’s energy, as opposed to a total reflection, and the mode is able to

continue propagating downstream with a finite non-zero amplitude that has

reduced significantly as a result of the partial reflection. This is in contrast

to the single turning point case where no energy can propagate beyond the

turning point. Another interesting feature of this result is the nature of the

resulting wave that is formed due to the reflection of the incident wave. Due

to the fact that a small amount of the modal energy is transmitted beyond

the turning point, the reflected wave has a slightly smaller amplitude than

that of the incident mode, meaning that the resulting wave for x < xt is ac-

tually a partial standing wave, which consists of a stationary component and
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Figure 3.6: Modal amplitude variations throughout the duct for the incident
mode in case 1, clearly exhibiting non zero amplitude for x > xt in contrast
to the single turning point case.

a propagating component (see for example [4]). This explains why the modal

amplitude of the resulting wave shown in figure 3.6 is never zero, a key com-

ponent of a partial standing wave compared to a full standing wave.

It is useful to get an idea of exactly how much energy has exchanged with the

left running mode, and an indication of this may be obtained by considering

the values of the reflection and transmission coefficients obtained by the two

models. Calculating the reflection coefficients predicted by the asymptotic

analysis is precisely as described in the previous section. For the compu-

tational method, details of how these coefficients is achieved is described in

chapter 6.

Considering first then the reflection coefficients: the asymptotic analysis de-
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Figure 3.7: Acoustic pressure contours for case one, clearly exhibiting a region
of low yet non-zero acoustic pressure for x > xt in contrast with the single
turning point case.

scribed earlier in this chapter predicts that the theoretical value of the reflec-

tion coefficient is |R| = 0.9630, and this is in very good agreement with the

value of the reflection coefficient obtained using the simulation code, which

gives |R| = 0.9580, and so the absolute error between the two approximations

is O(10−3). For the transmission coefficient, the theoretical value predicted

by the asymptotic analysis is |T | = 0.2694, and this is again in very good

agreement with the result obtained from the numerical simulation, which was

|T | = 0.2868. Figure 3.7 shows the acoustic pressure within the duct in this

case, and it can be seen that regions of very high acoustic pressure exist for

x < xt as a result of the partial standing wave, with relatively small distur-

bances when x > xt.
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Case 2

According to the multiple scales prediction, if σ(Xt) = 0 then precisely half

the energy will continue to propagate downstream and the other half would

be exchanged with the left running counterpart, and therefore for σ2(Xt) > 0

the majority of the energy would continue to propagate downstream, with

less than half the energy being handed over to the left running mode. In

the previous, case due to the fact that the mode slightly cuts off within the

transition region the majority of the modal energy is actually reflected with

only a small proportion of the energy propagating downstream, which is very

much in agreement with the theory predicted by the multiple scales analysis.

Suppose then that the system were to be reconfigured such that the mode

almost momentarily cuts off, but does not cut off exactly, or in other words 0 <

σ2(Xt) << 1. Such a phenomenon can be modelled using the numerical code

simply by altering the computational domain slightly. One such configuration

is to define the duct wall h(x) by

h(x) = 1.04 − 0.07 sech (3x),

and within this configuration the small parameter ε may approximated us-

ing (3.42) and is given by

ε ≃ 0.6

1.0
(1 − sech (3)) = 0.054,

and the Helmholtz number and mean flow are given by ω = 10 and U(∞) = 0.1

as in the previous case. In this example, σ2
3(Xt) = 0.0681, and therefore the

mode does not fully cut off despite getting quite close, and σ2
3 ∼ ε as required

for the asymptotic analysis to be valid. Given that the mode does not com-

pletely cut off it is then expected that only a small amount of modal energy
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Figure 3.8: Modal amplitude variations throughout the duct for the incident
mode in case 2, clearly exhibiting a much larger amplitude for x > xt than on
case 1, but with partial standing wave properties for x < xt.

is partially reflected within the turning point region, and that the majority

of the modal energy passes through this region of the duct and propagates

downstream. The results are run using the same numerical simulation scheme

as in the previous case, and the results obtained for the reflection and trans-

mission coefficients are compared to the results predicted using the asymptotic

approach.

Figure 3.8 shows the plot of the amplitude profile for the mode in question. It

can be seen from this plot that due to the slowly varying geometry the incident

mode undergoes a partial reflection. The key point to note however is that

due to the fact that σ3 does not cut-off fully only a small amount of energy

is reflected and the majority of the modal energy actually propagates down-

stream and transmits out of the duct. Similarly to the previous case a partial
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Figure 3.9: Acoustic pressure contours for case two, clearly exhibiting the
effects of a small reflected mode for x < xt.

standing wave is formed for x < xt. However in this case the amplitude of the

reflected wave is small compared to the amplitude of the incident mode, and

the stationary component of the resulting wave is quite small meaning that

the propagating component of the wave dominates. The effects of the sta-

tionary component can still be seen from the perturbations of the amplitude

about it’s mean position. The degree to which the mode reflects and trans-

mits is indicated by the reflection and transmission coefficients which may

be obtained using both the computational and asymptotic predictions. Once

again the values obtained for |R| and |T | are in excellent agreement: For the

reflection coefficient the asymptotic theory gives a value of |R| = 0.2392, and

the computational result is |R| = 0.2043. For the transmission coefficient the

asymptotic model gives a value of |T | = 0.9710, whereas the computational

value is 0.9789, so in very good agreement with an absolute error to the order
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of 10−3.

Summary

This chapter focused on the subject of turning point analysis for the propa-

gation of an acoustic mode. The subject of turning point analysis is of great

importance in the case of hard-walled ducts whenever the geometry and mean

flow of the duct vary in such a way that σ2 → 0.

If σ2 behaves linearly, then this phenomenon may be modelled as a single

turning point using the method of multiple scales, and the axial variations in

amplitude within the vicinity of the turning point are given by Airy functions.

The mode reflects at the turning point causing a standing wave to be formed

within the duct. Details of this type of single turning point analysis are well

understood as reported by Rienstra [47] and Ovenden [44]. It should also be

noted that if the duct is lined with an impedance wall then a similar but par-

tial reflection of the mode occurs, as reported by Ovenden [42].

A new result presented in this chapter deals with the case when σ2 behaves

quadratically within the vicinity of the turning point. The equations govern-

ing the axial amplitude within the inner region are Weber functions, leading

to a partial transmission and reflection of the mode’s energy, and the reflected

wave causes a partial standing wave to be formed within the duct. It was

also shown in this chapter that this inner solution may be asymptotically

matched with the outer solution, leading to the analytic formulation of the
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reflection and transmission coefficients. Some simulations were then run to

model the double turning point phenomena using the numerical method out-

lined in chapter 6, and it was shown in both of the cases run that there is very

good agreement between the reflection and transmission coefficient obtained

by the two methods.



Chapter 4

Propagation of Acoustic

Modes at High Frequency

In a recent paper [43], comparisons were made between multiple scales and

finite element simulations of a single mode undergoing cut-on cut-off transi-

tion in a slowly varying hard walled annular duct. In most cases both sets

of results were in remarkable agreement. However it was noted that if the

Helmholtz number (frequency) was large and a mean flow was present inside

the duct, the finite element results appeared to indicate that a significant de-

gree of modal energy is scattered into neighbouring modes. Multiple scales

simulations did not reveal any scattering because the multiple scales solution

assumed that energy is conserved for each mode. In the same paper it was

estimated that in order for modal scattering to occur, the Helmholtz number

must be O(ε−2), assuming that the mean flow is O(1) as described in chapter 1.

Recall that a hard walled duct is a duct that does not allow any acoustic

109
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energy to propagate through it’s walls, so in other words a hard walled duct

is one with infinite acoustic impedance Z = ∞. In the case of hard walls the

Myers boundary condition (1.16) reduces to

v.n = 0 at Σ = 0. (4.1)

where Σ describes the duct surface as described in Chapter 1. A consequence of

this simplification means that the cross-sectional eigenvalues α are always real.

In simplistic terms, the numerical results obtained by the finite-element method

presented in [43] indicate that if the frequency is large enough, the structure

of the solution changes. However in this paper it is not entirely clear exactly

how or exactly where this solution changes, although observations seem to

suggest that scattering occurs within the vicinity of the turning point, and

that neighbouring cut-on scattered modes may propagate beyond the turning

point and out of the duct. If one is to study the scattering phenomenon using

the method of multiple scales then it is necessary to go back to the asymp-

totics, beginning with the solution in the outer region for high frequency which

is valid far from any turning points and to verify that a modal solution still

exists. If a modal solution does still exist in the outer region, efforts can then

be focused on describing how the solution structure within the inner region

changes, solving for the inner region and then matching to the outer solution.

In this chapter, an explicit model of sound transmission through a slowly

varying duct of rectangular cross-section with mean flow and high Helmholtz

number is derived using the method of multiple scales, the purpose of which
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is to enable one to understand the modal solution in the situation where scat-

tering is expected. Then, in analysing that solution it is possible to determine

under what conditions the solution breaks down.

Preliminaries

The Geometry

The problem domain here is a slowly-varying rectangular duct, and so a three-

dimensional cartesian co-ordinate system (x, y, z) with unit vectors ex, ey and

ez is established. The duct domain is denoted D , with boundary ∂D and is

given by

−∞ < x < ∞, 0 ≤ y ≤ 1, 0 ≤ z ≤ h(X), X = εx,

where h is by assumption only dependent upon ε through εx. In this model,

it is assumed for simplicity that D has a fixed unit length with respect the the

y direction.

Recall from equation (1.15) that for the mean flow the wall of the duct is

impermeable, and so in this geometry the boundary condition is

V.ni = 0 on D , i = 1, 2, 3, 4 (4.2)

where each ni denotes an outward pointing unit vector to ∂D . The outward

directed normal vector at the duct roof is given by

n1 =
ez − εh′(X)ex√

1 + ε2R′2
1

,
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Figure 4.1: Sketch of the duct geometry

and the remaining outward normals are

n2 = −ey, n3 = −ez, n4 = ey.

For the acoustic boundary condition this is easily derived from equation (4.1)

and is given by

∇φ.ni = 0 on ∂D , i = 1, 2, 3, 4. (4.3)

The Mean Flow and Acoustic Field

The cross sectional area of the duct is given by A = h(X) due to the unit duct

width in the y direction, and so from equation (1.24) the axial component of

the mean flow is given by

U0(X) =
F

D0(X)h(X)
. (4.4)
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Recall from (1.17) and (1.20) that the mean flow is axial to leading order with

a small cross-wise component

V = Uex + V⊥ and V⊥ = εV⊥0 + O(ε3). (4.5)

By letting V⊥0 = W1(X, z)ez, it is straightforward to show that by substi-

tuting (4.4) and (4.5) into the conservation of mass equation (1.5) one may

deduce that

W1 = W̃1(X)z + F̃ (X) where W̃1(X) = − 1

D0
(D0U0)X . (4.6)

for some as-yet unknown function F̃ (X). However the mean flow boundary

condition (4.2) dictates that

W1 = 0 at z = 0, (4.7)

and

W1 = h′(X)U0(X) at z = h. (4.8)

Clearly substitution of (4.7) into (4.6) yields F̃ (X) = 0. For the boundary con-

dition (4.8) it is simple to show that this boundary condition is automatically

satisfied as substituting (4.4) into (4.6) gives

W1(X, z) =
Fh′(X)

D0(X)h2(X)
z, (4.9)

which can be further simplified by rearranging (4.4) to make D0 the subject

and substituting to the above to give

W1(X, z) =
h′(X)

h(X)
U0(X)z, (4.10)

and therefore substituting z = h into the above to obtain the value W1 at the

upperboundary of the duct gives

W1(X, h) = h′(X)U0(X),
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which equals (4.8), and hence it has been shown that W1(X, z) satisfies this

boundary condition.

4.1 The Modal Solution for ω ∼ ε−2

For the acoustic field, recall from Chapter 1 equation (1.12) that the general

wave equation is given by

D−1∇.(D∇φ) − (iω + V.∇)[C−2(iω + V.∇)φ] = 0, (4.11)

which is subject to the simplified version of Myers’ boundary condition (4.3).

Recall from earlier discussions that it is known that the acoustic frequency ω

needs to be sufficiently high in order for modal scattering to be induced [43].

It is the aim of this chapter to obtain and understand how the outer solution

behaves at high frequencies. Thus the following rescaling is introduced for the

Helmholtz number

ω = ε−2ω̄, (4.12)

where ω̄ ∼ 1. Substituting (4.12) into (4.11) then yields the governing wave

equation for the acoustic potential φ at high Helmholtz number as

D−1∇.(D∇φ) − (iε−2ω̄ + V.∇)[C−2(iε−2ω̄ + V.∇)φ] = 0. (4.13)

One may already see from this equation that there exists a term that has an

order of magnitude O(ε−4). In order to choose a suitable modal-type form, it

is vital to determine how a balance with this very large term may be achieved.

The acoustic potential φ is assumed at present to consist of a single mode
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(indexed by some positive integer j), of high wavenumber that is slowly vary-

ing with respect to X and is propagating in the X and z directions, whose

amplitude varies slowly in X. This is equivalent to the WKB Ansatz

φ = Φj(X, y, z) exp

(
− i

ε3

∫ X

−∞
µ̄j(X

′; ε)dX ′
)

× exp

(
i

ε2

∫ z

0
αj(X, z′; ε)dz′

)
, (4.14)

where µ̄j ∼ 1 is the axial-wavenumber, αj ∼ 1 is the cross-sectional wavenum-

ber, and Φj ∼ 1 is the modal amplitude, and that the acoustic potential φ ∼ 1

in this model. Note that the first order terms inside both exponentials have

large orders of magnitude, O(ε−3) for the axial mode and O(ε−2) for the ver-

tical mode, and hence the corresponding wavelengths are very small. These

small wavelengths are required in order to achieve a balance between the terms

in equation (4.13) once the derivatives are calculated and substituted. The

leading order term inside the exponential corresponding to axial propagation is

O(ε−3) to leading order, with the extra factor of ε−1 being brought about as a

direct consequence of using the slowly-varying model in X, giving ε−1dX = dx

The model given by equation (4.14) assumes that a single mode is propagating

in the positive X direction. The propagation in the positive X direction is

given by µj > 0, and consequently negative µj would correspond to propaga-

tion in the negative axial direction. The aim is to seek a solution in which

there there is no interaction between individual modes, and thus it is sufficient

to solve the problem for just one single mode. Once the solution is known for

one mode, the solution for any given mode becomes clear, and therefore a

full solution that consists of potentially infinitely many modes can then be
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obtained via a summation of the individual modes, due to the linearity of the

leading order problem.

In calculating the necessary derivatives of φ from equation (4.14) one obtains

(surpressing the exponential terms)

φx = − i

ε2
µ̄jΦj +

i

ε
Φj

∫ z

0

∂αj

∂X
dz′ + ε

∂Φj

∂X
,

φxx = − 1

ε4
µ̄2Φj +

2

ε3
µ̄jΦj

∫ z

0

∂αj

∂X
dz′ − 1

ε2

(∫ z

0

∂αj

∂X
dz′

)2

Φj

− i

ε

(
∂µ̄j

∂X
Φj + 2µ̄j

∂Φj

∂X

)
+ O(1),

φz =
i

ε2
αjΦj +

∂Φj

∂z
,

φzz = − 1

ε4
α2

jΦj +
1

ε2
i

(
Φj

∂αj

∂z
+ 2αj

∂Φj

∂z

)
+

∂2Φj

∂z2
,

φxz =
1

ε4
αjµ̄jΦj −

1

ε3
αjΦj

∫ z

0

∂αj

∂X
dz′ − i

ε2
µ̄j

∂Φj

∂z

+
i

ε

(
∂Φj

∂z

∫ z

0

∂αj

∂X
dz′ + Φj

∂αj

∂X
+ αj

∂Φj

∂X

)
+ O(ε). (4.15)

It may now be seen from the above expressions that a balance with the large ω2

term in the governing wave equation equation (4.13) may be achieved through

the second derivatives.

The wavenumber and amplitude functions are then expressed via a Poincaré

expansion

αj = αj0(X) + εαj1(X, z) + ε2αj2(X, z) + ε3αj3(X, z) + O(ε4),(4.16)

µ̄j = µj0(X) + εµj1(X) + ε2µj2(X) + ε3µj3(X) + O(ε4), (4.17)

Φj = Φj0(X) + ε3Φj3(X, z) + O(ε4). (4.18)

In this formulation, the variation of φ in X is being described using two sep-

arate functions, Φj and µ̄j . In attempting to find a solution, a certain non-
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uniqueness occurs between Φj and µ̄j due to the fact that there are a total of

two functions with only one equation to determine them. One is therefore at

liberty to choose either one of these functions, or any relation between them,

as one so wishes [21]. For matters of convenience in this formulation, Φj0 has

been chosen to represent the leading order amplitude of the function, but we

note that due to this non-uniqueness property of the WKB method this is not

the only option. For example an equivalent problem could be solved by setting

Φj0 = 1 and allow the amplitude to be determined by some imaginary part of

µj0.

The function Φj3 has been left within to aid in determining the solvability

condition, which is a condition that allows the leading order amplitude Φj0 to

be determined.

Formulating the appropriate boundary conditions

It will be shown in this section that for a given µj0, two valid choices of αj0

exist i.e. αj0 = ±|αj0|. The positive choice corresponds to a mode propagating

in the negative z direction and the negative choice corresponds to a mode

propagating in the positive z direction. Whether the positive or negative

choice is made, each subsequent αji (for i = 1, 2, 3) will consist of one part

that changes sign depending on the choice of αj0, and one part whose sign

remains fixed regardless of the choice of αj0. Therefore let the part of each αji

whose sign remains fixed regardless of the choice of αj0 be denoted αF
ji, and

let the part that changes sign depending upon the choice of αj0 be denoted
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αV
ji. The cross sectional wavenumber can then be written as

α = ±αj0 +
3∑

i=1

εi
(
αF

ji ± αV
ji

)
+ O(ε4). (4.19)

with αj0 > 0. Note that the above expression sums both the positive and

negative modes propagating in z, and therefore using the well-known polar

identity

cos θ ≡ eiθ + e−iθ

2
,

the expression for φ can be written in a way that involves a cosine term in z,

which gives

φ = 2Φ0(X) cos

(
1

ε2

∫ z

0

(
αj0 +

3∑

i=1

εiαV
ji

)
dz′

)

× exp

(
i

ε2

∫ z

0

(
3∑

i=1

εiαF
ji

)
dz′

)
exp

(
− i

ε3

∫ X

−∞
µ̄(X ′; ε)dX ′

)

+ O(ε3), (4.20)

and as the amplitude Φj0 is valid only up to a certain constant coefficient, for

the sake of convention it is useful to re-define Φj0 as Φ0 := 2Φj0, in which case

φ may be expressed as

φ = Φ0(X) cos

(
1

ε2

∫ z

0

(
αj0 +

3∑

i=1

εiαV
ji

)
dz′

)

× exp

(
i

ε2

∫ z

0

(
3∑

i=1

εiαF
ji

)
dz′

)
exp

(
− i

ε3

∫ X

−∞
µ̄(X ′; ε)dX ′

)

+ O(ε3). (4.21)
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The first partial derivative of φ with respect to z can be calculated from (4.21)

and is given by

∂φ

∂z
= ε−2Φj0(X)

{
i

(
3∑

i=1

εiαF
ji

)
cos

(
1

ε2

∫ z

0

(
αj0 +

3∑

i=1

εiαV
ji

)
dz′

)

−
(

αj0 +

3∑

i=1

εiαV
ji

)
sin

(
1

ε2

∫ z

0

(
αj0 +

3∑

i=1

εiαV
ji

)
dz′

)}

× exp

(
i

ε2

∫ z

0

(
3∑

i=1

εiαF
ji

)
dz′

)
exp

(
− i

ε3

∫ X

−∞
µ̄(X ′; ε)dX ′

)

+ . . . . (4.22)

Recall that the lower boundary condition in z is

∂φ

∂z
= 0 at z = 0, (4.23)

which is obtained directly from the simplified version of Myers’ condition (4.3).

The leading order equation (4.21) clearly satisfies this boundary condition be-

cause there is only one term within the curley brackets in (4.22) valid at leading

order, and this term is always zero when z = 0 which in turn makes the entire

derivative zero. For higher orders there are two terms in the curley bracket

have an effect on the derivative, and via inspection of (4.22) one can see that

this boundary condition is satisfied only if αF
ji = 0 when z = 0. It is in fact true

that αF
ji = 0 when z = 0, and will be systematically shown later in this section.

The boundary condition at the upper wall is

φz = εh′φx on z = h, (4.24)

and substitution of (4.21) into (4.24) after some simplifications yields

tan (ε−2θ(X)) =
iε

αj0

(
µj0h

′ + αF
j1(z = h)

)
(4.25)
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where

θ(X) =

∫ h(X)

0
αj(X, z′; ε)dz′.

Equation (4.25) has the solution

θ = ε2nπ +
iε3

αj0

(
µj0h

′ + αF
j1(z = h)

)
for n ∈ Z, (4.26)

where n must be a large integer so that ε2n ∼ 1 in order to satisfy the upper

boundary condition. Balancing terms in the above equation gives the following

conditions on αj0 and αji for i = 1, 2, 3:

αj0 =
Nπ

h
, (4.27)

∫ h

0
αV

j1dz′ = 0, (4.28)

∫ h

0
αV

j2dz′ = 0, (4.29)

∫ h

0
αV

j3dz′ =
i

αj0

(
µj0h

′ + αF
j1(z = h)

)
. (4.30)

where n = ε−2N , and N is not necessarily an integer.

At this stage the boundary condition on αV
j3 seems peculiar as at first glance

it appears to imply that αV
j3 may be complex, and if αV

j3 were complex that

would imply that there exists a small exponential growth or decay in the z

direction. A consequence of this would be that there would be an exponen-

tially growing or decaying term that is not expected in this modal solution.

However although this may seem the case at this stage, it will be shown on

page 124 that in fact αF
j1(z = h) = −µj0h

′ and therefore

∫ h

0
αV

j3dz′ = 0. (4.31)

In the following calculation, a dispersion relation relating µji and αV
ji is derived

at each order, and applying the appropriate boundary condition on αV
ji will
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always give an expression for µji. The phase variation component αF
ji is usually

determined immediately.

The Leading Order O(ε−4) problem

Substitution of (4.21) into (4.13) and balancing all terms proportional to ε−4

yields the leading order equation as

(
ω̄2

C2
0

− 2ω̄µj0U0

C2
0

+
µ2

j0U
2
0

C2
0

− µ2
j0 − α2

j0

)
Φj0 = 0, (4.32)

and since it is a non-trivial solution that is being sought, Φj0 6= 0, which gives

rise to the dispersion relation

α2
j0 =

ω̄2

C2
0

− 2ω̄µj0U0

C2
0

+
µ2

j0U
2
0

C2
0

− µ2
j0 (4.33)

and note that there are two choices for αj0 for given an initial µj0, one positive

and one negative. In a similar fashion as before, the reduced axial wavenumber

σj0 is defined as

σ2
j0 = 1 − (C2

0 − U2
0 )

α2
j0

ω̄2
, (4.34)

and completing the square in (4.33) making µj0 the subject yields

µj0 = − ω̄U0

C2
0 − U2

0

+
ω̄C0σj0

C2
0 − U2

0

. (4.35)

The first term on the right hand side of the above is a purely convective term

and constitutes a leading order phase alteration that is present due to the

presence of the mean flow. If mean flow were not present then this term would

equal zero everywhere within the duct and so would not have any influence of

the acoustic field. The second term describes how the axial propagation within

the duct varies with X. The presence of σj0 demonstrates that a mode can

propagate in both positive and negative X directions depending on whether
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positive or negative σ is chosen. The second term in the above expression is

present whether mean flow exists or not. From (4.35) it is also possible to

show the following properties hold for σj0:

U0(ω̄ − µj0U0)

C2
0

+ µj0 =
ω̄σj0

C0
, (4.36)

ω̄ − µj0U0 = ω̄C0
C0 − U0σj0

C2
0 − U2

0

, (4.37)

and these properties will be used to simplify some expressions later on this

work.

The First Order O(ε−3) problem

Substitution of (4.21) into (4.13) and balancing all terms proportional to ε−3

yields the first order equation as

αj1 =
1

αj0

(
− ω̄U0µj1

C2
0

− µj0µj1 +
U2

0

C2
0

µj0µj1 +
ω̄U0

C2
0

∂

∂X
αj0(X)z

+ µj0
∂

∂X
αj0(X)z − U2

0 µj0

C2
0

∂

∂X
αj0(X)z +

W̃1

C2
0

αj0(ω̄ − U0µj0).
)

As suggested by equation (4.19) the wavenumber αj1 is decomposed into two

parts as follows

αj1 = αF
j1 + αV

j1.

In order to determine which terms in equation (4.38) correspond to αF
j1 and

which correspond to αV
j1, one must analyse how the behaviour of αj1 varies

depending upon whether positive or negative choice of αj0 is selected. On

analysing (4.38) for both positive and negative αj0 it can be deduced that

αV
j1 =

1

αj0

(
− ω̄U0µj1

C2
0

− µj0µj1 +
U2

0

C2
0

µj0µj1

)

= − 1

αj0
µj1

ω̄σj0

C0
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where σj0 has been introduced by making use of equation (4.36).

In analysing equation (4.38) the following may be deduced for αF
j1:

αF
1 =

z

αj0

(
ω̄U0

C2
0

∂

∂X
αj0(X) + µj0

∂

∂X
αj0(X) − U2

0 µj0

C2
0

∂

∂X
αj0(X)

+
W̃1

C2
0

αj0(ω̄ − µj0U0)

)

where it can now bee seen that αF
j1 = 0 at z = 0, so that the boundary condi-

tion (4.23) is satisfied to first order. The above expression may be simplified

using (4.36) to produce the following

αF
1 =

z

αj0

(
ω̄σj0

C0

∂

∂X
αj0(X) +

W̃1(X)αj0(ω̄ − µj0U0)

C2
0

)
, (4.38)

and further simplifications may be achieved by noting that

1

αj0

∂

∂X
αj0(X) = −Nπh(X)h′(X)

Nπh2(X)
= −h′(X)

h(X)
.

Substituting the above expression, the expression for the cross flow velocity

W1 given by equation (4.10) and using the property of σj0 given by (4.37),

means that equation (4.38) reduces to the form

αF
1 = −z

h′(X)

h(X)

(
ω̄C0σj0

C2
0 − U2

0

− ωU0

C2
0 − U2

0

)

= −z
h′(X)

h(X)
µj0(X). (4.39)

From a physical standpoint the existence of a nonzero αF
1 represents a small

(first order) correction to the phase variation in z of the mode as it propagates

axially. Part of this small phase variation corresponds purely to the convective

part of the flow, and part of it corresponds to the existence and subsequent

variation of the mode propagating in the axial direction.
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Clearly from (4.39) αF
j1(z = h) = −µj0h

′(X) which using the boundary con-

dition integral equation (4.30) implies that the boundary condition for αV
j3 is

in fact exactly as required for a modal solution, i.e.

∫ h(X)

0
αV

j3dz′ = 0. (4.40)

Now applying the boundary condition (4.28) yields for αV
j1 and µj1

αV
j1 = 0 =⇒ µj1 = 0, (4.41)

and thus there are no first order corrections to the axial variation, and there

is no first order correction to the magnitude of the radial wavenumber.

The Second Order O(ε−2) problem

In consideration of the third order problem one may deduce that

αj2 =
1

2αj0

(
− (αF

j1)
2 − 2ωU0µj2

C2
0

− 2µj0µj2 +
2µj0µj2U

2
0

C2
0

+
2ωU0

C2
0

∫ z

0

∂

∂X
αF

j1(X, z′)dz′ + 2µj0

∫ z

0

∂

∂X
αF

j1(X, z′)dz′

− 2U2
0

C2
0

µj0

∫ z

0

∂

∂X
αF

j1(X, z′)dz′

+
2W1α

F
j1Ω

C2
0

−
(∫ z

0

∂

∂X
αj0(X)dz′

)2

+
U2

0

C2
0

(∫ z

0

∂

∂X
αj0(X)dz′

)2

+
2U0W1αj0

C2
0

(∫ z

0

∂

∂X
αj0(X)dz′

)
+

W 2
1 α2

j0

C2
0

)
, (4.42)

and in analysing the above for both positive and negative αj0 we see that in

fact all of the above terms change sign. Hence αV
j2 = αj2 and αF

j2 = 0, and as

this is true this means that the boundary condition (4.29) is satisfied to this

order through an appropriate µj2(X).



Chapter 4: Propagation of Acoustic Modes at High Frequency 125

The above expression may be simplified considerably using (4.27) and (4.39)

as well as equation (4.36) to give (after some manipulation)

αV
j2 =

ω̄σj0

2αj0C0

(
−z2(h′)2µj0

h2
− 2µj2

C0
+ 2

∫ h(X)

0

∂

∂X
αj1(X, z′)dz′

)

− 1

2α0j

(
dαj0

dX

)2

z2, (4.43)

which further simplifies to

αV
j2 =

ω̄σj0

2αj0C0

(
−z2(h′)2µj0

h2
− 2µj2

C0
− d

dX

(
h′(X)

h(X)
µj0

)
z2

)

− 1

2α0j

(
dαj0

dX

)2

z2. (4.44)

Applying the boundary condition (4.29) to the above expression, the expres-

sion for µj2(X) is obtained as

µj2(X) = −C0

6

(
(h(X)′)2µj0 + 3h

d

dX

(
h′µj0

h

)
+

C0h
2

ωσj0

(
∂αj0

∂X

)2
)

. (4.45)

The wavenumber µj2(X) constitutes a second order correction to the axial

propagation, and it can be seen that this is dependent upon the duct geometry

and how this geometry varies.
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The Third Order O(ε−1) problem

In consideration of the fourth order problem one may deduce that

0 = 2Φ0

{
− αj0αj3 − αj1αj2 −

ω̄U0

C2
0

µj3 − µj0µj3 − µj1µj2

+
U2

0

C2
0

(µj0µj3 + µj1µj2) +
ω̄U0

C2
0

∫ z

0

∂

∂X
αj2(X, z′)dz′

+ µj0

∫ z

0

∂

∂X
αj2(X, z′)dz′ + µj1

∫ z

0

∂

∂X
αj1(X, z′)dz′

+ µj2

∫ z

0

∂

∂X
αj0(X)dz′ −

(
U2

0

C2
0

) [
µj0

∫ z

0

∂

∂X
αj2(X, z′)dz′

+ µj1

∫ z

0

∂

∂X
αj1(X, z′)dz′ + µj2

∫ z

0

∂

∂X
αj0(X)dz′

]
+

W1ω̄αj2

C2
0

− W1U0

C2
0

(
αj0µj2 + αj1µj1 + αj2µj0

)
−

∫ z

0

∂

∂X
αj0(X)dz′

∫ z

0

∂

∂X
αj1(X, z′)dz′

+
U2

0

C2
0

∫ z

0

∂

∂X
αj0(X)dz′

∫ z

0

∂

∂X
αj1(X, z′)dz′

+
U0W1

C2
0

(
αj0

∫ z

0

∂

∂X
αj1(X, z′)dz′ + αj1

∫ z

0

∂

∂X
αj0(X)dz′

)
+

W 2
1 αj0αj1

C2
0

}

+ iΦj0

(
α1,z +

2ω̄U0C0,X

C3
0

− 2U2
0 µj0C0,X

C3
0

− µj0D0,X

D0
+

U0U0,Xµj0

C2
0

− µ0,X +
U2

0 µ0,X

C2
0

)
+ 2iΦ0,X

(
− ω̄U0

C2
0

− µj0 +
U2

0 µj0

C2
0

)

+

(
ω̄2

C2
0

− 2ω̄µj0U0

C2
0

+
µ2

j0U
2
0

C2
0

− µ2
j0 − α2

j0

)
Φj3(X, z) (4.46)

Notice that there are two terms that have been assigned as those responsible

for the variation in z at this order, namely αj3(X, z) and Φj3(X, z). Recall

also that due to the flexibility offered by this redundancy in z at this order,

one can choose α3 to take any form as one wishes with the knowledge that

Φj3(X, z) will then naturally make up the rest of the the z dependence to give

the correct solution[21]. In this case (noting that the term multiplying Φ3 is

identically zero due the the dispersion relation given by equation (4.33)), αj3
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is chosen in such a way as to “mop up” all of the z-dependence (or real parts)

in the above equation. Choosing α3 in this way will cause all of the real parts

in equation (4.46) to vanish, all that is left with are imaginary parts, which

may then be equated to form a first order linear ordinary differential equation

in Φj0(X). This differential equation in Φj0 is the required solvability condi-

tion, and can easily be solved using integration factors, as shown in the next

section. Explicit forms for αj3 and hence µj3 can be obtained using similar

methods to that shown for previous orders, but given the tedious nature of

the algebra involved these solutions are omitted here.

In most applications of perturbation theory it is usually not common to see

explicit expansions at third order due to the complexity of the algebra that

follows, as can be seen in the above expressions. However in this case it was

necessary to go to third order because it is at this order that the solvability

condition is obtained.

Solvability Condition

Equating imaginary parts in equation (4.46) yields a first order linear ordinary

differential equation in X for Φj0:

Ψj(X)
dΦj0

dX
+ Θj(X)Φj0 = 0 (4.47)
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where Θj(X) and Ψj(X) are given by

Θj(X) =
∂

∂z
α1(X, z′) +

2ωU0(X)

C3
0 (X)

d

dX
(C0(X)) − 2U2

0 (X)µj0

C3
0 (X)

d

dX
(C0(X))

− µj0(X)

D0(X)

d

dX
(D0(X)) +

U0(X)µj0(X)

C2
0 (X)

d

dX
(U0(X)) − d

dX
(µj0(X))

+
U2

0 (X)

C2
0 (X)

d

dX
(µj0(X)) ,

Ψj(X) = 2

(
−ωU0(X)

C2
0 (X)

− µj0(X) +
U2

0 (X)µj0(X)

C2
0 (X)

)
.

In order to form a solvability condition the differential equation (4.47) is re-

arranged as

dΦj0

dX
+

Θj(X)

Ψj(X)
Φj0 = 0 (4.48)

and solved using an integrating factor for Ψj(X) 6= 0 for all X in the domain of

interest. Note that Ψj(X) = 0 corresponds directly to σj = 0 which is known

to cause the solution to break down. It is straightforward from equations (4.36)

and the expressions for α1(X, z) and W1(X, z) to show that

Θ(X) =

(
ω̄σj0(X)

αj0(X)C0(X)

)
∂

∂X
αj0(X) − d

dX

(
ω̄σj0(X)

C0(X)

)
−

(
ω̄σj0

C0

)
D0,X

D0
,

Ψ(X) = −2

(
ω̄σj0

C0

)
.

The integrating factor I is

I = exp

(∫
Θ(X)

Ψ(X)
dX ′

)

= exp

(
1

2

∫ (
− 1

αj0

d

dX
αj0(X) +

1(
ωσC−1

0

) d

dX

(
ωσC−1

0

)
+

1

D0

d

dX
(D0(X))

)
dX

)

= exp

(
1

2

(
− ln (αj0) + ln

(
ωσ

C0

)
+ ln (D0)

))

=

√
ω̄σD0

C0αj0



Chapter 4: Propagation of Acoustic Modes at High Frequency 129

Hence the right hand side of equation (4.48) can be written as an exact deriva-

tive with respect to X, i.e.

d

dX

(
Φj0

√
ω̄j0σD0(X)

C0(X)αj0

)
= 0 (4.49)

and therefore (
Φj0

√
ω̄σj0(X)D0(X)

C0(X)αj0(X)

)
= Q (4.50)

where Q is a constant of integration, which results in the following expression

of the amplitude function Φj0(X)

Φj0(X) = Q

√
αj0(X)C0(X)

ω̄σj0(X)D0(X)
. (4.51)

Note that had we normalised the eigenfunction as described in the first chapter

the αj0 term would have been omitted from the final expression for Φj0. .
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Summary

It has been demonstrated in this chapter that in fact a modal outer solu-

tion does indeed exist for large frequencies. When considering that acoustic

scattering may occur within the duct, it is no longer sufficient for the outer

solution to consider only one mode. A more general form of the solution must

be considered if asymptotic matching between the inner and outer solution is

to be attempted. The most general form of the outer solution is given as a

summation over all possible modes, i.e.

φ =
∞∑

j=1

Φj(X, z) exp

(
− i

ε3

∫ X

−∞
µ̄j(X

′; ε)dX ′
)

× exp

(
i

ε2

∫ z

0
αj(X, z′; ε)dz′

)
,

=
∞∑

j=1

Φj0 exp

(
− i

ε3

∫ X

−∞

(
µ̄j0(X

′) + ε2µj2(X) + ε3µj3(X)
)
dX ′

)

× exp

(
i

ε2

∫ z

0

(
εαF

j1(X, z′) + ε3αF
j2(X, z′)

)
dz′

)

× cos

(∫ z

0

(
αj0(X) + ε2αV

j2(X, z′) + ε3αV
j3(X, z′)

)
dz′

)
+ . . . (4.52)
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where the various wavenumbers up to O(ε2) are given by

αj0(X) =
Nπ

h(X)
where n = ε−2N for n ∈ Z,

µj0(X) = − ω̄U0

C2
0 − U2

0

+
ω̄C0σj0

C2
0 − U2

0

,

Φj0(X) = Q

√
αj0(X)C0(X)

ω̄σj0(X)D0(X)
,

αF
j1(X, z) = −z

h′(X)

h(X)
µj0(X),

αV
j2(X, z) =

ω̄σj0

2αj0C0

(
−z2(h′)2µj0

h2
− 2µj2

C0
− d

dX

(
h′(X)

h(X)
µj0

)
z2

)

− 1

2α0j

(
dαj0

dX

)2

z2,

µj2(X) =
C0

6

(
(h(X)′)2µj0 + 3h

d

dX

(
h′µj0

h

)
+

C0h
2

ωσj0

(
∂αj0

∂X

)2
)

.

Now that the outer solution in the case of high frequency is understood, the

aim is to understand when this solution is not valid, and to revise the model

within any critical regions where the above solution is known to fail. Numer-

ical results have shown that acoustic scattering is expected within a critical

region, and a thorough attempt to model the scattering will be tackled in

part II.



Part II

Flow Induced Scattering of

Acoustic Modes
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Chapter 5

Asymptotic Analysis of

Modal Scattering

As demonstrated in chapter 3 the phenomenon of cut-on cut-off transition of

slowly varying acoustic modes is well understood. For the single turning point

case it was demonstrated that at a point X = Xt where the reduced axial

wavenumber σ vanished, the mode exchanged energy with it’s opposite run-

ning counterpart, leading to the formation of a standing wave within the duct.

This type of interaction is the only form of modal interaction that has been

successfully modelled using the multiple scales approach when cut-on cut-off

transition is involved, but it is not the only mechanism by which a particular

slowly varying acoustic mode may interact with another mode.

A comparative study between results obtained from analysing cut-on cut-

off transition of acoustic modes with flow using both the multiple-scales and

finite-element approaches was conducted by Ovenden, Eversman and Rien-

133
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stra [43]. In their paper, the numerical results showed that for a high enough

frequency, two different distinct modes (with axial wavenumbers σ1 and σ2 say)

may interact and exchange energy with one other. One may see from study-
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(b) Finite Element Solution

Figure 5.1: Comparing multiple scales and finite element solutions for high
frequency and mean flow

ing the results that there was very good agreement between the two different

methods for lower frequencies both with and without mean flow. However

significant differences between the result occurred whenever there was high

Helmholtz number and mean flow, although there was good agreement when-

ever the Helmholtz number was high and there was no mean flow present. Case

number 6 in the paper considered a slowly varying duct with circumferential

eigenvalue m = 20, Mach number M = 0.5, ω = 44.4 and µ = 7. According to

the multiple scales solution (shown in Figure 5.1(a)) there is a turning point at

Xt ∼ 1.1, and as a result of this turning point a standing wave is formed within

the duct, meaning that no further propagation of acoustic energy beyond Xt

occurs. The results produced by the finite element model (shown in figure

5.1(b)) differ from the results produced by the multiple scales method in that

they give a clear indication of scattering of acoustic energy into neighbouring

modes. In the finite element results, although there clearly is a reduction in
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acoustic pressure beyond Xt modal pressure variations are present beyond Xt.

The neighbouring (n = 6) mode has been excited and subsequently transmits

acoustic energy out of the duct. At this point it appeared that there was

no mechanism within the multiple scales solution to model such transition.

According to Ovenden, Eversman and Rienstra [43], for scattering to occur

sufficiently large ω and n are required, and an estimate for the magnitude of

the frequency required was estimated as

ω ≃ ε−2 2(∆α)3C2
0

(α′/α)2(C2
0 − U2

0 )
1
2 ξ3

, (5.1)

where ∆α is the difference between consecutive cross-sectional eigenvalues that

tends to a constant for large n. The idea that ω must be sufficiently high in

order for scattering to occur was the first indication of how to go about in-

cluding the scattering phenomenon within the multiple scales solution.

Thus, armed with this idea that ω must be large, it is clear that in order

to understand what is happening within the scattering region the frequency

ω must be rescaled to a degree that is known to allow scattering to occur.

Therefore if Ovenden et al’s formulation is to be taken the frequency ω is to

be rescaled as

ω = ε−2ω̄,

where ω̄ ∼ 1 is a rescaled Helmholtz number. Recall that the generalised wave

equation in this case of large frequency is given by equation (4.13), and writing
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this equation in a way that is more convenient to work with one arrives at

ε2

(
1 − U2

0 (X)

C2
0 (X)

)
∂2φ

∂X2
− ε−1 2iω̄U0(X)

C2
0

∂φ

∂X
+ ∇2

⊥φ + ε−4 ω̄2

C2
0 (X)

φ

= −ε

[
1

D0(X)

d

dX
(D0(X))

∂φ

∂x
− iε−2ω̄U0(X)

d

dX

(
1

C2
0 (X)

)
φ

−U0(X)
d

dX

(
U0(X)

C2
0 (X)

)
∂φ

∂x
− 2iε−2ω̄

1

C2
0 (X)

(V⊥0.∇⊥φ)

−2U0(X)
1

C2
0 (X)

(
V⊥0.∇⊥

∂φ

∂x

) ]
. (5.2)

For all of the cases of modal interaction dealt with in this thesis so far, the

non-parallel terms on the right hand side of the wave equation have not yet

come into play to leading order because they have been shown to have been

too small to play a significant part in the phenomenon in question. However

in this attempt to understand acoustic scattering it will be shown that some

of the terms on the right hand side of the equation will in fact come into play

here, and that these non-parallel terms that are important to leading order

within the boundary layer are actually the source of scattering.

The first step is to find a suitable model for φ that is applicable within the

scattering region. The situation here is different from those studied in chap-

ter 3, and thus the left hand side and right hand side of equation (5.2) will

be dealt with individually, the left hand side being dealt with first. For the

non-parallel terms on the right hand side there are several terms that may

contribute to the scattering effect, and the idea is to study each one individu-

ally, analysing it’s order of magnitude within the scattering region in order to

determine whether it is large enough to be comparable to the axial accelera-

tion terms that exist on the left hand side.
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It will be shown over the course of the next few sections that in order to

deduce a model that gives acoustic scattering to leading order for every possi-

ble mode, several technical difficulties relating to the asymptotic analysis must

be overcome. Several models will be attempted, each one building upon the

knowledge gained from the last, until an equation describing acoustic scatter-

ing to leading order is achieved. Each stage in the development of the model

introduces some new key information regarding the structure of the scattering

phenomenon, and these developmental stages are also used in the next chapter

to help explain results.

In section 5.1 the model will assume Ovenden et al’s deduction that in or-

der for scattering to occur the order of magnitude of the Helmholtz number

is given by ω ∼ ε−2. In formulating a model using this assumption the non-

parallel terms responsible for the acoustic scattering will be revealed for the

first time. It will also be shown that for ω ∼ ε−2 the model requires some fur-

ther refinement because the introduction of a Helmholtz number of this order

of magnitude actually leads to an imbalance of the terms within the inner re-

gion. It will be shown in this section that this assumption for ω is actually an

overestimate and in fact a smaller ω is required to achieve the desired balance.

Using the knowledge obtained in the previous section, section 5.2 then looks at

the terms that are known to be active to leading order within the inner region

and asks the question; what should the magnitude of the Helmholtz number

be in order to achieve a balance between these leading order terms? Upon ask-
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ing this question, a new estimate for the Helmholtz number is achieved and

is given by ω ∼ ε−
1
2 , leading to a refined model for φ within the inner region.

However it is then shown that by considering the balance between the required

terms alone only leads to weak form of modal scattering, where the incident

mode experiences leading order modal scattering and the remaining modes

only experience a weak form of scattering. The reason for this is because in

only considering a balance between all of the required terms in the governing

equation means that no consideration is given to whether or not two modes

are close enough to each other to give scattering to leading order for every

mode. Nonetheless the analysis performed here is useful as weak scattering

is a phenomenon that has some physical significance and one could then ex-

ploit the fact that the scattering is weak to yield some useful analytical results.

The model is then further refined in section 5.4, where it is posed that not

only must all of the important terms balance, but also each mode must lie

close enough to every other mode in order to allow scattering to take place.

In performing this third refinement leading order scattering for every mode is

achieved.

Section 5.5, the final section in this chapter deals with the derivation an equa-

tion that describes the composite solution for modal scattering, an equation

that has a solution that is valid throughout the entire duct. This composite

equation can then be used to produce some results for modal scattering, and

the details of these results is described in chapter 6
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5.1 Formulation Using Ovenden et al’s As-

sumptions for the Helmholtz Number

This section attempts to build a scattering model based upon the deduction

made in Ovenden et al’s paper [43] that in order for acoustic scattering to

occur the order of magnitude of the frequency is given by ω ∼ ε−2. It will be

shown here that this is actually an overestimate for the order of magnitude of

the frequency, but nonetheless this is enough to be able to identify the terms

that are attributed to the scattering source. The problem of how to deal with

this overestimate is tackled in section 5.2.

Forming the Appropriate Model for the Inner Region

Using the knowledge gained whilst studying the outer solution in chapter 4

it is then assumed that within the scattering region, the acoustic potential φ

consists of a whole series of modes with wavenumbers of order ∼ ε−2 in the

axial and radial directions that vary slowly in x. Let ξ be the axial boundary

layer variable which is to be determined. For now it is assumed that the

definition of ξ is of a form that is similar to that seen in the turning point

analysis, i.e.

X − Xt = εςξ,

for some constant ς. The axial amplitude within the turning point region

varies on the same scale as ξ, and the rapidly oscillating convective part is

unchanged from that of the outer solution. Thus for the inner solution the
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following WKB type model for φ is assumed:

φ =

∞∑

j=1

χj(ξ) cos (ε−2Mπy) cos (ε−2ᾱj(X)z) exp

(
i

ε3

∫ X ω̄U0

C2
0 − U2

0

dX ′
)

,

(5.3)

where M ∼ 1 and ᾱj ∼ 1, as suggested in chapter 4. It is important to note

that φ ∼ 1 in the boundary layer, and that derivatives of φ with respect to

x and z will indeed contain some very large terms. This solution assumes an

infinite number of modes, although only a finite number of modes are cut-on.

For the turning point analysis studied earlier it was fine to consider only a sin-

gle propagating mode. This is because although other modes (other than the

mode undergoing cut-on cut-off transition) may be present within the acoustic

realm, in general these modes are not effected by the energy transfer that takes

place during turning point process. With the turning point analysis the mode

that underwent cut-on cut-off transition at Xt exchanged energy with it’s op-

posite running counterpart only, and therefore this was the only other mode

that required consideration when describing this mechanism; no other modes

were active in this process and therefore their consideration within the turning

point analysis was not necessary. With the scattering mechanism however, it

is necessary to assume that an incident mode that loses energy at the critical

point Xt may interact with each and every other mode that exists, and hence

every possible mode must be included in the formulation. In fact it will be

shown in chapter 6 that when scattering takes place an interaction with the

mean flow may also occur, in which case energy is not conserved within the

modes.
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The Boundary Layer

In this section the magnitude of the boundary layer width is derived by bal-

ancing various terms in the governing acoustic equation that are believed to be

important within the scattering region. Once the form of the inner region has

been obtained it is possible to then fully determine the terms on the left hand

side of equation (5.2) that are involved in the scattering process to leading

order.

Recall that the boundary layer variable ξ takes the form

X − Xt = εςξ

where ς is a real constant that is to be determined. As with the turning point

analysis the width of the boundary layer is determined by balancing the second

order derivative in X with the term that is vanishing, and thus if this is the

case then using equation (5.2) the following must be true in the boundary

layer

ε2

(
1 − U2

0

C2
0

)
∂2φ

∂X2
∼

(
ε−4 ω̄2

C2
0

+ +
∂2

∂y2
+

∂2

∂z2

)
φ. (5.4)

From equation (5.3) it is simple to show that the derivatives in y and z are

(supressing the exponential)

∂2φ

∂y2
= −ε−4M2π2

∞∑

j=1

χj(ξ) cos(ε−2Mπy) cos(ε−2ᾱjz), (5.5)

∂φ

∂z
= −ε−2

∞∑

j=1

ᾱjχj(ξ) cos(ε−2Mπy) sin(ε−2ᾱjz), (5.6)

∂2φ

∂z2
= −ε−4

∞∑

j=1

ᾱ2
jχj(ξ) cos(ε−2Mπy) cos (ε−2ᾱjz). (5.7)

As with the turning point analysis, one would expect that in order for modal

scattering to occur a second order derivative of the amplitude in the axial
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direction must be present in the leading order analysis, as this term would be

the necessary acceleration term driving the scattering. Therefore one would

expect there to be a χ′′ term in the leading order formulation (where primes

here denote a second order derivative with respect to ξ). Thus in computing

this second order derivative one arrives at

∂2φ

∂X2
=

∞∑

j=1

(
ε−2ςχ′′

j + · · ·
)
, (5.8)

and so by substituting the expressions given by equations (5.7) and (5.8) into

equation (5.4) yields

ε2−2ς

(
1 − U2

0

C2
0

) ∞∑

j=1

(
χ′′

j + · · ·
)
∼ ε−4

∞∑

j=1

{
ω̄2

C2
0

− M2π2 − ᾱ2
j (X)

}
χj(ξ).

(5.9)

As with the turning point analysis, the term in the curley brackets on the right

hand side of (5.9) shrinks to the width of the boundary layer in the limit as

X → Xt. Therefore taking this into consideration, balancing the two terms in

(5.9) one will yield

2 − 2ς = −4 + ς =⇒ ς = 2,

and hence the boundary layer variable may be expressed as

X − Xt = ε2ξ. (5.10)

Now that the boundary layer variable has been established the influential

terms in the left hand side of equation (5.2) may be fully analysed. First the

required derivatives are computed, where it has been noted that because the

boundary layer is very thin, the duct is locally parallel within the boundary

layer, and so there is virtually no variation of the vertical modal eigenvalues
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over such a short lengthscale and therefore the vertical eigenvalues ᾱj(X)

can be considered to be constant in the boundary layer. Computing the first

derivative of φ with respect to X yields

∂φ

∂X
=

∞∑

j=1

[ (
ε−1χ′

j(ξ) + iε−2 ω̄U0

C2
0 − U2

0

χj(ξ)

)
cos(ε−2ᾱjz)

]

× exp

(
i

ε3

∫ X ω̄U0(X
′)

C2
0 (X ′) − U2

0 (X ′)
dX ′

)
, (5.11)

and computing the second derivative yields

∂2φ

∂X2
=

∞∑

j=1

[(
ε−2χ′′

j (ξ) −
ε−4ω̄2U2

0(
C2

0 − U2
0

)2 χj(ξ) +
2iε−3ω̄U0

C2
0 − U2

0

χ′
j(ξ)

)
cos(ε−2ᾱjz)

]

× exp

(
i

ε3

∫ X ω̄U0(X
′)

C2
0 (X ′) − U2

0 (X ′)
dX ′

)
+ O

(
1

ε

)
. (5.12)

Substituting (5.11) and (5.12) into the left hand side of equation (5.2) yields

to O(ε−2) (after some simplifications),

∞∑

j=1

[
ε−2

(
1 − U2

0

C2
0

)
χ′′

j (ξ) +
ε−4ω̄2σ2

j0

(C2
0 − U2

0 )2
χj(ξ)

]
cos(ε−2ᾱjz) = O(ετ ), (5.13)

where τ will be determined once the terms on the right hand side are examined.

The above expression constitutes the full left hand side that is to be bal-

anced against some terms on the right hand side. The analysis so far seems

to indicate that very little has changed than in the single turning point case.

However in the following section the right hand side of equation will be ex-

amined, and in doing this the terms responsible for the underlying scattering

mechanism will be found.
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Analysis of the Non-Parallel Terms

In order for scattering to occur there must be a physical effect present in the

leading order problem that is not present in the turning point analysis studied

in previous chapters. If there is indeed a new physical effect coming onto play,

then this effect must be represented by a term that is present within the gov-

erning equation. Up until now, the analysis performed so far on the governing

equation for high frequency has shown that the left hand side of the equation is

precisely the same as what was seen in the turning point analysis. Therefore,

this new physical effect must be governed by one of the terms that is available

on the right hand side of the governing wave equation. In this section all five

terms on the right hand side of equation (5.2) are analysed one-by-one in order

to determine which of these contribute to the leading order problem.

The first term on the right hand side of the governing equation is

− ε
1

D0(X)

d

dX
(D0(X))

∂φ

∂x
(5.14)

and using the form for the derivative of φ with respect to x given in equa-

tion (5.11) the magnitude of this term is given by

− ε
1

D0(X)

d

dX
(D0(X))

∂φ

∂x
∼ εε−2 = ε−1, (5.15)

and therefore this term appears too small to interact with the leading order

terms on the left hand side.

The second term on the right hand side of the governing equation is given
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by

εiε−2ω̄U0(X)
d

dX

(
1

C2
0 (X)

)
φ ∼ ε−1 (5.16)

and hence it appears that this term is too small to balance with the leading

order terms on the left hand side.

The third term on the right hand side of the governing equation is

− εU0(X)
d

dX

(
U0(X)

C2
0 (X)

)
∂φ

∂x
(5.17)

and using equation (5.11) for the derivative the magnitude of this term is

− εU0(X)
d

dX

(
U0(X)

C2
0 (X)

)
∂φ

∂x
∼ εε−2 = ε−1. (5.18)

which again is too small to interact with the leading order terms on the left

hand side.

The fourth term on the right hand side of the governing equation is

ε{2iε−2ω̄C−2
0 (X)(V⊥0.∇⊥φ)}

= 2iε−1ω̄C−2
0 (X)W1(X, z)

∂φ

∂z

= −2iε−3ω̄C−2
0 (X)W1(X, z)

×
∞∑

j=1

ᾱjχ(ξ) cos(ε−2Mπy) sin(ε−2ᾱjz) ∼ ε−3, (5.19)

and so this term will certainly have some influence due to the fact that it is

of a much higher order than the previous terms analysed.

Now considering the fifth non-parallel term in the governing equation

2εU0(X)C−2
0 (X)

(
V⊥0.∇⊥

∂φ

∂x

)

= 2εU0(X)C−2
0 (X)W1(X, z)

∂2φ

∂x∂z
. (5.20)
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In order to determine this quantity in it’s entirety it is necessary to compute

the cross derivative term, and this is given by

∂2φ

∂x∂z
=

∞∑

j=1

[
− ε−4iω̄

(
ᾱj(X)U0(X)

C2
0 (X) − U2

0 (X)

)

× cos(ε−2Mπy) sin(ε−2ᾱj(X)z)χj(ξ)

− ε−3

(
ᾱj(X) cos(ε−2Mπy) sin(ε−2ᾱj(X)z)

d

dξ
(χj(ξ))

)]

+ O(ε−2). (5.21)

Substituting equation (5.21) into (5.20) gives for the fifth non-parallel term

2εU0C
−2
0 (V⊥0.∇⊥φx)}

=
∞∑

j=1

[
− 2ε−3U0C

−2
0 W1

[ (
iᾱjω̄ sin(ε−2ᾱjz)U0χj(ξj)(

C2
0 − U2

0

)
)

+ ε−2

(
ᾱj(X) sin(ε−2ᾱj(X)z)

d

dξ
(χj(ξ))

) ]]
cos(ε−2Mπy)

+ O(ε−1), (5.22)

and thus it can now be seen from the above that to leading order the order of

magnitude of the fifth non-parallel term is

2εU0C
−2
0 (V⊥0.∇⊥φx)} ∼ ε−3, (5.23)

which appears to be significantly high compared to the first three non-parallel

terms analysed, thus this term may play a significant role within the inner

region to leading order.

Attempting to balance the terms

From the analysis performed in the previous section it is clear that the fourth

and fifth terms on the right hand side of the governing equation (given by ex-

pressions (5.19) and (5.22) respectively) are the largest of the terms that exist
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on the right hand side. It is these two terms that appear to be responsible

for the scattering, because at high frequency they form a dominant physical

process within the boundary layer. Notice that both of these terms include

the cross-flow component W1(X, z), which appears to indicate that the exis-

tence of the cross flow component of the mean flow is necessary to induce the

scattering, provided that the Helmholtz number is large enough. This may

also explain why the results shown in Ovenden et al [43] show scattering for

high frequency and mean flow, yet there is no scattering for zero mean flow

with ω of the same order.

Now although the terms responsible for the scattering appear to have been

identified, there appears to be an issue in that the terms do not balance in

such a way as to give an asymptotically consistant description of the system

to leading order. This can be seen by balancing the important terms on the

right hand side (5.19) and (5.22) with the expression (5.13) which yields

∞∑

j=1

[
ε−2

(
1 − U2

0 (X)

C2
0 (X)

)
d2

dξ2
(χ(ξ)) cos(ε−2ᾱj(X)z)

+ ε−4ω̄2
σ2

j (X)

C2
0 (X) − U2

0 (X)
χj(ξ) cos(ε−2ᾱj(X)z)

+ 2ε−3iω̄
ᾱj(X)W1(X, z)

C2
0 (X) − U2

0 (X)
χj(ξ) sin (ε−2ᾱj(X)z)

]
= O(ε−1), (5.24)

and the problem with the balancing can be seen by studying the above ex-

pression. The second term on the left hand side includes a σ2
j (X), term, and

inside the boundary layer where X − Xt ∼ ε2, σ2
j ∼ ε2, meaning that within

the boundary layer the second term on left hand side of the above expression

shrinks to O(ε−2), and therefore this term balances with the first term in ex-

actly the same way as with the turning point analysis. However the problem



Chapter 5: Asymptotic Analysis of Modal Scattering 148

is that this means that there is one term of O(ε−3) remaining that does not

seem to balance with any other term. This indicates that this term is likely to

be the term responsible for the scattering, but at the moment it is too large to

balance the usual terms that dominate the physics within the inner region for

ω ∼ ε−2. The fact that there is one term only that is considerably larger than

the others implies that the width of the boundary later is incorrect, and that

the scattering actually occurs over different lengthscale than the one specified.

The O(ε2) boundary layer thickness came as a consequence of the assumption

that ω ∼ ε−2 in order for scattering to take place, and it now appears that this

is not the case and in fact the order of magnitude of the frequency required in

order for scattering to occur could be lower than this. The task now therefore

is to re-examine this argument and establish the correct order of magnitude

for ω that is required in order for scattering to occur.

In consideration of the distance between neighbouring σjs

It is worth mentioning at this point that although there is currently an im-

balance between the terms within the inner modal equation, the neighbouring

modes are within the required distance from each other in order to exchange

energy. In other words, the distance between neighbouring modes is small

enough to allow for modal energy exchange. This can be shown by consid-

ering the expression for a general σ2
j (X) and expressing it in terms of the

incident mode σ2
t (X), which is the mode that cuts off at Xt. Recall that for a

three dimensional duct σ2
j (X) is given by

σ2
j = 1 − 1

ω̄2
(C2

0 − U2
0 )

(
ᾱ2

j + M2π2
)
,
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and recall from chapter 4 equation (4.27) that for the cross sectional mode

ᾱj =
Jπ

h(X)
where j = ε−2J

for some integer j ∼ ε−2. The order one index J ∼ 1 is a real number.

Similarly for the mode that cuts off at Xt it’s cross-sectional eigenvalue is

given by

ᾱt =
Tπ

h(X)
where t = ε−2T

for some integer t ∼ ε−2 and T ∼ 1 is a real number. The two integers t and j

are related by a third integer p ∼ 1 via j = t + p. Thus for the reduced axial

wavenumber for a general mode σj it is simple to show that

αj(X) = αt(X) +
ε2pπ

h(X)
=⇒ αj(X) − αt(X) ∼ ε2,

meaning that the difference between cross sectional eigenvalues is sufficiently

small, meaning that it is the same order of magnitude as the width of the

boundary layer, which is a necessary condition for modal interaction. Using

this expression for α2
j above it is then possible to express an arbitrary σ2

j in

terms of the incident σ2
t as

σ2
j = σ2

t + δp,t, where δp,t = −ε2πp
(C2

0 − U2
0 )

h2ω̄2

(
2ᾱth + ε2pπ

)

and thus for the difference between neighbouring modes one has σ2
j −σ2

t ∼ ε2,

thus satisfying the condition presented in [43] that neighbouring modes must

be of a comparable size and be sufficiently close to one another in order for

scattering to occur.
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5.2 Refining the Model Using Arbitrary

Helmholtz Number Scaling

In the previous section the source terms responsible for the scattering were

determined, but a balance between the terms in the equation was not achieved

for ω ∼ ε−2. Ovenden, Eversman and Rienstra calculated that in order for

scattering to take place the required order of magnitude of the frequency is

∼ ε−2 (as stated above), and this result was derived by considering an ω such

the σj ’s are close enough to induce scattering. In this discussion it is shown

that even for the 2D case the magnitude of the frequency required to induce

scattering is actually significantly lower than this estimate.

As noted in the previous chapter, ω = ε−2ω̄ causes an imbalance in the gov-

erning wave equation, and thus an attempt to coordinate a balance between

the necessary terms is done by choosing a general scaling for ω, going through

the same process as was shown in the previous chapter and then picking the

scaling so that all the terms balance.

The first step is to allow ω to have the general form

ω = ε−ϑω̄, (5.25)

where 0 < ϑ < 2 and ω̄ ∼ 1. This of course now means that the general

governing wave equation (1.12) must be rewritten slightly to accommodate
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this general ω, and this is given by

(
1 − U2

0 (X)

C2
0 (X)

)
∂2φ

∂x2
− ε−ϑ 2iω̄U0(X)

C2
0

∂φ

∂x
+ ∇2

⊥φ + ε−2ϑ ω̄2

C2
0 (X)

φ

= −ε

[
1

D0(X)

d

dX
(D0(X))

∂φ

∂x
− iε−ϑω̄U0(X)

d

dX

(
1

C2
0 (X)

)
φ

−U0(X)
d

dX

(
U0(X)

C2
0 (X)

)
∂φ

∂x
− 2iε−ϑω̄

1

C2
0 (X)

(V⊥0.∇⊥φ)

−2U0(X)
1

C2
0 (X)

(
V⊥0.∇⊥

∂φ

∂x

) ]
. (5.26)

Given the scaling introduced in equation (5.25) the acoustic potential φ takes

the following form in the inner region

φ =
∞∑

j=1

χj(ξ) cos (ε−ϑMπz) cos (ε−ϑαj(X)z)

× exp

(
i

∫ X

Xt

ε−ϑ−1ω̄U0(X
′)

C2
0 (X ′) − U2

0 (X ′)
dX ′

)
, (5.27)

where ᾱj(X) ∼ 1 and χj(ξ) ∼ 1. In order to determine the thickness of the

boundary layer in this case, Rienstra’s form for the boundary layer [49] is used,

given by

X − Xt = ε
2
3 λ−1ξ,

for a parameter λ that was given earlier in equation (3.4). However since

λ ∼ ω
2
3 ∼ ε−

2
3
ϑ then

X − Xt ∼ ε
2
3 (ω− 2

3 )ξ ∼ ε
2
3
(1+ϑ)ξ, (5.28)

and so for this formulation the boundary layer variable ξ ∼ 1 is defined by

X − Xt = ε
2
3
(1+ϑ)ξ. (5.29)

The derivatives can be calculated using the chain rule as

∂

∂x
= ε

∂

∂X
= ε

1
3
(1−2ϑ) ∂

∂ξ
, (5.30)

∂2

∂x2
= ε2 ∂2

∂X2
= ε

2
3
(1−2ϑ) ∂2

∂ξ2
. (5.31)
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The first derivative of φ with respect to x is

∂φ

∂x
=

∞∑

j=1

[
ε

1
3
(1−2ϑ)

{
χ′ +

iε−
1
3
(1+ϑ)ω̄U0

C2
0 − U2

0

}
cos (ε−ϑᾱjz)

]

× cos (ε−ϑMπy) exp

(
i

∫ X

Xt

ε−ϑ−1ω̄U0(X
′)

C2
0 (X ′) − U2

0 (X ′)
dX ′

)
, (5.32)

and the second derivative of φ with respect to x is

∂2φ

∂x2
=

∞∑

j=1

[
ε

2
3
(1−2ϑ)χ′′ +

2iε−
1
3
(1−5ϑ)ω̄U0χ

′

C2
0 − U2

0

− ε−2ϑω̄2U2
0 χ

(C2
0 − U2

0 )2

]

× cos (ε−ϑᾱjz) cos (ε−ϑMπy) exp

(
i

∫ X

Xt

ε−ϑ−1ω̄U0(X
′)

C2
0 (X ′) − U2

0 (X ′)
dX ′

)
. (5.33)

The expressions (5.32) and (5.33) may be substituted into the left hand side

of the governing wave equation (5.26) to give

∞∑

j=1

[{
ε

2
3
(1−2ϑ)

(
1 − U2

0

C2
0

)
χ′′

j (ξ) +
ε−2ϑω̄2σ2

j

C2
0 − U2

0

χj(ξ)

}
cos (ε−ϑᾱjz)

]

× cos (ε−ϑMπy) exp

(
i

∫ X

Xt

ε−ϑ−1ω̄U0(X
′)

C2
0 (X ′) − U2

0 (X ′)
dX ′

)
. (5.34)

In all cases so far, due to the presence of the σ2
j term the leading order term

reduces to the same order of magnitude as the χ′′ term within the boundary

layer, achieving a balance between these two terms. It is simple to show that

this is in fact true here too, as within the boundary layer a Taylor series

expansion of σ2
j can be used to show that σ2

j ∼ ε
2
3
(1+ϑ) for X −Xt ∼ ε

2
3
(1+ϑ),

and therefore for the σ2
j term that is reducing to zero one has

ε−2ϑ ω̄2χi

C2
0 − U2

0

σ2
i ∼ ε−2ϑε

2
3 ε

2ϑ
3 = ε

2
3
(1−2ϑ) (5.35)

which is then the same order as the χ′′ term in (5.34) within the boundary

layer.
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It is now a question of studying the terms on the right hand side of equa-

tion (5.26), focusing in particular on the terms that are large enough to induce

modal scattering. Thus for this purpose the fourth and fifth non-parallel terms

previously analysed in section 5.1 will be considered.

Recall that the fourth non-parallel term is given by

ε

(
2iε−ϑω̄C2

0W1(X, z)
∂φ

∂z

)
, (5.36)

and differentiating φ with respect to z yields

∂φ

∂z
=

∞∑

j=1

[
ε−ϑᾱj(X)χj(ξ) sin

(
ε−ϑᾱj(X)z

)]
cos

(
ε−ϑMπy

)

× exp

(
i

∫ X

Xt

ε−ϑ−1ω̄U0(X
′)

C2
0 (X ′) − U2

0 (X ′)
dX ′

)
, (5.37)

and therefore

ε

(
2iε−ϑω̄C2

0W1(X, z)
∂φ

∂z

)

= ε
(
2iε−ϑω̄C2

0W1(X, z)
) ∞∑

j=1

[
ε−ϑᾱj(X)χj(ξ) sin

(
ε−ϑᾱj(X)z

)]

× cos
(
ε−ϑMπy

)
exp

(
i

∫ X

Xt

ε−ϑ−1ω̄U0(X
′)

C2
0 (X ′) − U2

0 (X ′)
dX ′

)

∼ ε1−2ϑ. (5.38)

For the fifth non-parallel term is

2εU0(X)C−2
0 (X)

(
V⊥0.∇⊥

∂φ

∂x

)

= 2εU0(X)C−2
0 (X)W1(X, z)

∂2φ

∂x∂z
, (5.39)
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which involves a cross derivative term, which is given by

∂2φ

∂x∂z
=

∞∑

j=1

[
− ε−2ϑiω̄χj(ξ)

(
ᾱj(X)U0(X)

C2
0 (X) − U2

0 (X)

)
sin(ε−2ᾱj(X)z)

]

× cos
(
ε−ϑMπy

)
exp

(
i

∫ X

Xt

ε−ϑ−1ω̄U0(X
′)

C2
0 (X ′) − U2

0 (X ′)
dX ′

)

+ O(ε−2ϑ+1), (5.40)

and therefore the fifth non-parallel term is

2εU0(X)C−2
0 (X)W1(X, z)

×
∞∑

j=1

[
− ε−2ϑiω̄

(
ᾱj(X)U0(X)

C2
0 (X) − U2

0 (X)

)
χj(ξ) sin(ε−2ᾱj(X)z)

]

× cos(ε−2Mπy) exp

(
i

∫ X

Xt

ε−ϑ−1ω̄U0(X
′)

C2
0 (X ′) − U2

0 (X ′)
dX ′

)

+ O(ε2−2ϑ) (5.41)

which is O(ε1−2ϑ) to leading order, which the same order of magnitude as the

forth non parallel term meaning that there is a balance between these two

terms.

The aim now is to find a condition on ϑ such that these non parallel terms bal-

ance with the left hand side. In order for this balance to occur, the following

must be true:

ε
2
3
(1−2ϑ) = ε(1−2ϑ) =⇒ ϑ =

1

2
,

and therefore selecting ω ∼ ε−
1
2 will yield a balance between the terms. It

then follows that the boundary layer width is given by

X − Xt ∼ ε.
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5.3 Construction of a Model for Weak

Modal Scattering

In the previous section it was shown that choosing ω ∼ ε−
1
2 appears to yield

a balance between all of the required terms in the governing wave equation

within the boundary layer. In this section it will be shown that in fact a

scaling of this order is sufficient to induce modal scattering, but the degree of

modal scattering induced here will only be weak. Section 5.4 takes the ideas

discussed in this section further, discusses the reasons why only weak scatter-

ing is induced, and refines the method to give a model that yields a differential

equation for the inner region for O(1) scattering.

The frequency ω ∼ ε−
1
2 has been shown to yield a balancing between the

terms in the wave equation that are required in order to induce scattering.

Thus a boundary layer variable ξ may be defined as

X − Xt = ελ̄−1ξ

where the parameter λ̄ is defined for convenience as

λ̄3 =
2ω̄2C2

0 (Xt)

(C2
0 (Xt) − U2

0 (Xt))2

(
C0(Xt)C

′
0(Xt) − U0(Xt)U

′
0(Xt)

C2
0 (Xt) − U2

0 (Xt)
+

α′(Xt)

α(Xt)

)

and λ̄ defined here is simply a rescaled version the λ defined in Rienstra’s

previous work [49]. The equation governing the scattering mechanism may

now be written down as (supressing the both the exponential terms and cosine
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term acting the y direction)

∞∑

j=1

([
λ̄2 d2

dξ2
(χj(ξ)) + ε−1

ω̄2C2
0 (X)σ2

j (X)
(
C2

0 (X) − U2
0 (X)

)2 χj(ξ)

]
cos (ε−

1
2 αjz)

)

+
∞∑

j=1

[
2iω̄C2

0 (X)αjW̃1(X)z
(
C2

0 (X) − U2
0 (X)

)2 χj(ξ) sin (ε−
1
2 αj(X)z)

]
= O(ε

1
2 ). (5.42)

In a manner similar to the turning point discussions, it is usually convenient to

expand the σ2
j (X) term as a Taylor series in ascending powers of ξ about the

turning point Xt. However before this is done here it should be noted that, in

a similar manner to the method shown in section 5.1, it is usually convenient

to represent each σ2
j (X) in terms of the incident mode σ2

t (X), where σt is the

mode that undergoes transition at the turning point Xt. This representation

of each σj in terms of σt is easily achieved using the definition for the reduced

axial wavenumber. Traditionally for ω ∼ 1 this mode would undergo cut-on

cut-off transition at this point, but in the case of high frequency this mode is

expected to cut off at Xt, and a proportion of it’s energy may be scattered

into neighbouring modes.

Recall once again that for a three dimensional duct σ2
j (X) is given by

σ2
j = 1 − (C2

0 − U2
0 )

(
ᾱ2

j + M2π2

ω̄2

)

and in a manner similar to that shown in section 5.1 it is possible to write σ2
j

as

σ2
j = σ2

t + δp,t (5.43)

where the shift function δp,t is now given by

δp,t = −ε
1
2 πp

(C2
0 − U2

0 )

h2ω̄2

(
2ᾱth + ε

1
2 pπ

)
. (5.44)
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For the incident mode, multiplying the scattering equation (5.42) by it’s cross-

sectional eigenfunction cos (ε−
1
2 αjz) and exploiting the orthogonality of the

eigenfunction by integrating over the cross section yields the following equation

governing χt(ξ)

χ′′
t (ξ) − ξχt(ξ) =

2iω̄C2
0 (X)W̃1(X)

(
C2

0 (X) − U2
0 (X)

)2

∞∑

k=1

[
Cktαk(X)h(X)χk(ξ)

]
, (5.45)

where a scattering coefficient Ckt is identified and defined as

Ckt = − 2

h2(X)

∫ h

0
z cos

(
αkz

ε
1
2

)
sin

(
αtz

ε
1
2

)
dz, (5.46)

and some routine integration gives

Ckt =





1
2tπ for k = t,

1
π

(
(−1)t+k

t+k + (−1)t−m

t−m

)
for k 6= t.

(5.47)

For the remaining modes equation (5.42) fails to yield a balance between the

terms and hence a rescaling of the boundary layer is necessary. Suppose a

change of variables ξ → η is established such that

d2

dξ2
∼ ε−

1
2

d2

dη2
,

or ε
1
2 dη2 ∼ dξ2, noting that the establishment of this type would lead to a

balance of all the terms in equation (5.42) for all modes that do not cut-off

at Xt. The change of variables described above may be satisfied by setting

η = ε−
1
4 ξ. Substitution of this variable into (5.42) yields (up to O(ε

1
2 ))

∞∑

j=1

([
λ̄2 d2

dη2
(χj(η)) +

ω̄2C2
0 (X)δt,p(X)

(
C2

0 (X) − U2
0 (X)

)2 χj(η)

]
cos (ε−

1
2 αjz)

)

+ε
1
2

∞∑

j=1

[
2iω̄C2

0 (X)αjW̃1(X)z
(
C2

0 (X) − U2
0 (X)

)2 χj(η) sin (ε−
1
2 αj(X)z)

]
= 0. (5.48)
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Multiplying the above through by cos (ε−
1
2 αmz) and integrating over the cross

section yields the following for each χm,

λ̄2

(
d2

dη2
(χm(η)) +

ω̄2C2
0 (X)δt,p(X)

λ̄2
(
C2

0 (X) − U2
0 (X)

)2 χm(η)

)

= ε
1
2

∞∑

j=1

[
2iω̄C2

0 (X)αjW̃1(X)
(
C2

0 (X) − U2
0 (X)

)2 Cjmαj(X)h(X)χj(η)

]
. (5.49)

First note that if δt,p is negative this will yield exponentially decaying waves

within the immediate vicinity of the turning point. It is possible that a mode

with negative δt,p may be cut-on somewhere immediately outside the boundary

layer, but as it has already been noted that neighbouring σ’s are too close to

induce scattering to leading order, it seems unlikely that any modes that have

negative δt,p inside the boundary layer may be scattered in such a way that

they are cut-on just outside the boundary layer. Positive δt,p’s correspond to

waves that are able to propagate through the turning point region.

Through studying equations (5.45) and (5.49) it is possible to understand

the full problem for weak scattering. Suppose it is assumed that only the

mode σt is incident within the problem domain, and that all other modes are

cut-off. It can then be shown that χm for m 6= t is small by expanding χm as

χm(η) = χm0(η) + ε
1
2 χm1(η) + O(ε).

The above is then substituted into (5.49), and equating leading order terms

gives

d2

dη2
(χm0(η)) +

ω̄2C2
0 (X)δt,p(X)

λ̄2
(
C2

0 (X) − U2
0 (X)

)2 χm0(η) = 0

and since there are no incident χm modes this gives χm0 = 0 for all m and

hence χm(η) ∼ ε
1
2 for all m 6= t. The scenario is slightly different if there is
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more than one incident mode, and the details of this are discussed at the end

of this section.

The knowledge that χm(η) ∼ ε
1
2 for all m 6= t means that for the equa-

tion for χt given by equation (5.45), most the terms on the right hand side

may be considered to be too small to act, and this means that the differential

equation for χt may be approximated to leading order as

d2

dξ2
(χt(ξ)) −

(
2iω̄C2

0 (X)W̃1(X)

λ̄2
(
C2

0 (X) − U2
0 (X)

)2 Cttαt(X)h(X) + ξ

)
χt(ξ) = 0, (5.50)

which is just Airy’s equation with an imaginary shift that is approximately

constant within the boundary layer. The general solution to the above equa-

tion is

χt(ξ) = A Ai

(
ξ +

2iω̄C2
0 (Xt)W̃1(Xt)

λ̄2
(
C2

0 (Xt) − U2
0 (Xt)

)2 Cttαt(Xt)h(Xt)

)

+ B Bi

(
ξ +

2iω̄C2
0 (Xt)W̃1(Xt)

λ̄2
(
C2

0 (Xt) − U2
0 (Xt)

)2 Cttαt(Xt)h(Xt)

)
, (5.51)

where it is concluded that B = 0 must be zero to avoid exponentially growing

solutions for ξ > 0. For the arbitrary constant A , this may be found via

matching with the outer solution, although this analysis is not done here

due to the quite complicated manner in which the above solution behaves as

ξ → −∞. A sketch of the nature of this inner solution for the incident mode

is shown in figure 5.2. For the modal amplitude χm of the other modes, the

equation governing the first order amplitude χm1 may be approximated by

λ̄2

(
χ′′

m1(η) +
ω̄2C2

0δt,p

λ̄2
(
C2

0 − U2
0

)2 χm1(η)

)
=

2iω̄C2
0W̃1(X)

(
C2

0 − U2
0

)2 Cttαthχt(η). (5.52)

One may see from the above equation that the first order evolution of modal

amplitude for non-incident modes consists of a propagating wave with the cut-
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Figure 5.2: Airy Function with a small imaginary shift: Ai (ξ + ai) for real a

on cut-off mode acting as a forcing term and thus provides the source of the

scattering for this mode.

It is worth mentioning the case where there are two incident modes, and

the second mode is able to propagate beyond the turning point Xt and has

amplitude that is of order 1 within the boundary layer. In this scenario then

equation (5.50) which governs the cut-on cut-of mode will be inhomogeneous to

leading order due to the presence of this extra mode. So to leading order there

will be a coupling between these two modes and is more difficult to analyse

analytically than the case presented here. The leading order amplitude χm0

for this extra mode will be sinusoidal, as depicted through equation (5.50), and

thus for this mode equation (5.52) above constitutes a first order correction

to the modal evolution. It will be shown in the next section that scattering to

leading order yields a leading order coupling between all modes, whether they

are incident or not.
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5.4 Construction of a Model for Leading

Order Modal Scattering

In the last section an equation governing the modal amplitude within the inner

region χm in the case of weak scattering was derived. The analysis shown in

the previous section is a model for weak scattering only because within the

inner region if ω ∼ ε−
1
2 then neighbouring modes are not sufficiently close to

one another in order for modal scattering to be induced to leading order. In

this section a model that describes leading order scattering for each mode is

derived, and this is achieved by considering the conditions by which a balanc-

ing between all of the required terms is achieved as well as ensuring that the

difference between neighbouring modes is of the correct order.

In a manner similar to that shown in section (5.2), a general form for the

magnitude of ω is assumed via

ω = ε−ϑω̄,

and consequently the boundary layer ξ is defined as

X − Xt = ε
2
3
(1+ϑ).

The acoustic potential function φ is assumed to take the form

φ =

∞∑

j=1

χj(ξ) cos (Mπz) cos (αjz) exp

(
i

∫ X

Xt

ε−ϑ−1ω̄U0(X
′)

C2
0 (X ′) − U2

0 (X ′)
dX ′

)
, (5.53)

where at this stage, in contrast to the model developed in section 5.2, no

assumptions have been made about the various orders of magnitude of the
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wavenumbers αj and M . Taking the above and substituting to the governing

wave equation (5.26) yields

∞∑

j=1

[
ε

2
3
(1−2ϑ)λ̄2χ′′

j (ξ) + ε−2ϑ
ω̄2C2

0 (X)σ2
j (X)

(
C2

0 (X) − U2
0 (X)

)2 χj(ξ)

]
cos (ε−

1
2 αjz)

+ ε1−ϑ
∞∑

j=1

[
2iω̄C2

0 (X)αjW̃1(X)z
(
C2

0 (X) − U2
0 (X)

)2 χj(ξ) sin (ε−
1
2 αj(X)z)

]
= 0. (5.54)

Now use the fact that any given σ2
j may be written as

σ2
j = 1 −

(
C2

0 − U2
0

) (α2
j + π2M2)

ω2
,

where now ω is the unscaled Helmholtz number. Note that within all the for-

mulation so far, the above expression for σ2
j is entirely equivalent to σ2

j when

unscaled Helmholtz number and wavenumbers were used because up to this

point ω2, α2
j and M2 were all considered to be of the same order of magni-

tude, and so if these quantities were to be rescaled as an order one quantity

multiplied by ε to some power, the ε terms would always cancel. However in

this development the possibility that αj , M and ω may not be of the same

order of magnitude is being taken into account, and thus the expression for

σ2
j involving unscaled representations of these quantities is considered.

Recall that it is possible to represent and arbitrary σ2
j as an incident σ2

t plus

a shift δp,t as.

σ2
j = σ2

t + δp,t

where the shift term δp,t is

δp,t = −(C2
0 − U2

0 )

ω2h2

(
2αtpπh + p2π2

)
,

and j = t + p are all integers and p ∼ 1. It should be noted that for the

above expression, the second term in the brackets will be negligible compared
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to the first term as p ∼ 1, and so when this is divided by ω2 factor this

second term will be very small. Substitution of the above expression of δp,t

into equation (5.54) yields

∞∑

j=1

[
ε

2
3
(1−2ϑ)λ̄2χ′′

j (ξ) + ε−2ϑ ω2C2
0 (X)

(
δp,t + σ2

t (ξ)
)

(C2
0 (X) − U2

0 (X))2
χj(ξ)

]
cos (ε−

1
2 αjz)

= −ε1−ϑ 2iω̄C2
0W̃1z(

C2
0 − U2

0

)2

∞∑

j=1

[
αj(X)χj(ξ) sin (ε−

1
2 αj(X)z)

]
. (5.55)

The equation (5.55) contains a summation over all modes, and it may be seen

that even for orthogonal eigenfunctions it is not possible to completely decou-

ple the individual modal equations because in general for the cross-sectional

part of the forcing term

∫ h(X)

0
z sin (ε−

1
2 αj(X)z) cos (ε−

1
2 αm(X)z)dz 6= 0, (5.56)

for some integer m. Therefore this new inner solution consists of an entire

series of Airy type differential systems, forced via a non-zero right hand side

that involves all possible modes and boundary conditions that specify the na-

ture of the incoming waves.

It may be seen that the existence of a non-zero z dependent cross sectional

term W1(X, z) is necessary for this type of scattering phenomenon to take

place. The z dependence of W1(X, z) is a key point that leads to the non zero

integral condition illustrated above, plus a system that consists of zero cross

sectional component would clearly give a non zero right hand side and thus no

scattering would be induced. Equation (5.55) indicates that an incident mode

that undergoes cut-on cut-off transition at Xt will influence the behaviour of

neighbouring modes via this non zero right hand side.
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Due to the orthogonality of the cross sectional cosine eigenfunctions, i.e.

∫ h(X)

0
cos (αkz) cos (αmz)dz = 0 ∀m 6= k,

∫ h(X)

0
cos2 (αkz)dz =

h

2
,

it is possible to deduce an equation governing each individual χm by multi-

plying equation (5.55) through by the cross sectional eigenfunction cos (αmz)

and integrate the resulting equation with respect to z over the entire cross

section, leading to a differential equation describing the scattering mechanism

for each mode as

ε
2
3
(1−2ϑ)λ̄2χ′′

m(ξ) + ε−2ϑ ω2C2
0 (X)

(
δp,t + σ2

t (ξ)
)

(C2
0 (X) − U2

0 (X))2
χm(ξ)

= ε1−ϑ 2iω̄C2
0W̃1(

C2
0 − U2

0

)2

∞∑

j=1

[
αj(X)h(X)Cjmχj(ξ)

]
. (5.57)

where a scattering coefficient C is identified and defined as

Cjm = − 2

h2(X)

∫ h

0
z sin (αjz) cos (αmz)dz,

where some routine integration gives

Cjm =





1
2mπ for j = m,

1
π

(
(−1)j+m

j+m + (−1)j−m

j−m

)
for j 6= m.

(5.58)

Within the inner scaling region the incident σ2
t may be approximated using

a Taylor series which, on substitution into equation (5.57) leads to the Airy

type equation

λ̄2
(
ε

2
3
(1−2ϑ)χ′′

m(ξ) + ε−2ϑ
(
δ̂p,t − ξ

)
χp(ξ)

)

= ε1−ϑ 2iω̄C2
0 (X)W̃1(X)z

(
C2

0 (X) − U2
0 (X)

)2

∞∑

j=1

(
Cjmαj(X)χj(ξ)h(X)

)
, (5.59)
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Figure 5.3: Scattering Coefficients Cjm for 1 ≤ j ≤ 40, m = 20

where δ̂p,t is defined for convenience and is given by

δ̂p,t =
δp,tω

2C2
0 (X)

λ̄2(C2
0 − U2

0 )2
.

The scattering coefficient Cjm is interesting and important because for a given

j and m the magnitude of this coefficient gives an indication of the degree

of modal energy that is exchanged between modes σj and σm. Figure (5.3)

illustrates the values given by Cjm for m = 20. It is important to note that all

of the modes absorb some of this energy, and that modes that are local to the

incident modes absorb the largest proportion of the scattered modal energy

as the incident mode undergoes cut-on cut-off transition. Modes that have

|j − m| = 1 are deemed modes that are most local to the incident mode and

thus these modes are the ones that absorb the most energy. Modes further

away from the incident mode absorb less energy, increasingly so as one moves

further and further away from the cut-on cut-off incident mode.
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As noted in the last section, in order to achieve scattering to leading order,

not only is it necessary for all of the above terms to balance within the inner

region, but now the additional requirement that σ2
j − σ2

t must also be of the

same order of magnitude as the width of the boundary layer, thus imposing

the condition that

σ2
j − σ2

t ∼ ε
2
3
(1+ϑ).

Thus, in order to achieve a balance between the important terms in equa-

tion (5.57) (or equivalently equation (5.59)), a balance between all of the

following

ε
2
3
(1−2ϑ) ∼ ε−2ϑ

(
σ2

t + δp,t

)
∼ ε1−ϑαj

must be achieved, where the first term is the order of magnitude of the second

derivative, the second is the size of σ2
j , including a term representing the order

of magnitude of the shift from σ2
t , and the third term is the order of magnitude

of the relevant non-parallel terms. Recall now that the incident wavenumber

σ2
t may be expanded using a Taylor series about X = Xt as

σ2
t = σ2

t (Xt) + εξ
d

dX

(
σ2

t

)
∣∣∣∣∣
X=Xt

+ . . .

= ε
2
3
(1+ϑ)ξ

d

dX

(
σ2

t

)
∣∣∣∣∣
X=Xt

+ . . . (5.60)

because σ2
t vanishes at the turning point by definition. Thus

ε−2ϑ
(
σ2

t

)
∼ ε

2
3
(1−2ϑ),

and hence yielding an automatic balance with the χ
′′

m term as expected. For

the δp,t shift term

δp,t ∼
αj

ω2
∼ αjε

2ϑ,
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and this must balance with the non-parallel terms, both of which must balance

ε
2
3
(1−2ϑ), thus

αj ∼ ε1−ϑαj ∼ ε
2
3
(1−2ϑ),

and so if ϑ = 1 this finally yields

ω ∼ ε−1, αj ∼ ε−
2
3 , σ2

t ∼ ε
4
3 , X − Xt = ε

4
3 λ̄−1ξ, δp,t ∼ ε

4
3 ,

where it is noted that the difference between σjs neighbouring the incident σt

is the same order of magnitude as the width as the boundary layer as required.

Note that this implicitly means that the integer M ∼ ε−1; to see this, once

again consider σt with unscaled M , αt and ω

σ2
t = 1 −

[(
C2

0 − U2
0

) α2
t + M2π2

ω2

]

and note that if σ2
t is truly very small in the boundary layer then the term in

the square brackets on the right hand side must be very close to unity around

the vicinity of the turning point. However since αt ∼ ε−
2
3 then α2

t /ω2 ∼ ε
2
3 it

follows that the only way in which σ2
t can get close to zero is if M2/ω2 ∼ 1,

which leads to M ∼ ω ∼ ε−1.

So finally then, the full balanced O(1) scattering equation governing the axial

amplitudes χm in the inner region may now be obtained, and this is given by

χ′′
m(ξ) +

(
δ̂p,t − ξ

)
χm(ξ) =

2iω̄C2
0 (Xt)W̃1(Xt)

λ̄2
(
C2

0 (Xt) − U2
0 (Xt)

)2

∞∑

k=1

[
Ckmαk(Xt)h(Xt)χk(ξ)

]
,

(5.61)

which is now referred to as the leading order scattering equation.
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Theoretically one could now solve the above scattering equation for each

χm and then perform an asymptotic matching to the outer solution to ob-

tain reflection and transmission coefficients. However the problem with the

above equation is that it is difficult to solve analytically, and solving the above

equation numerically will only determine the mechanics of the inner region.

Therefore in order to obtain some numerical results it is desirable to form a

composite solution that is valid throughout the entire duct, that may then be

solved numerically. The development of the composite equation is dealt with

in the next section.
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5.5 The Composite Equation

The outer solution breaks down as X → Xt because the second order deriva-

tives with respect to X that were neglected in forming the approximation are

the dominant terms in this region. For the inner region when ω ∼ ε−
1
2 the

inner solution is only valid in the region where |X −Xt| ∼ ε. Generally speak-

ing it is desirable to form the so-called composite solution, which is a solution

that is uniformally valid throughtout the entire duct to leading order. The

composite solution encompasses both the slowly varying outer solution (both

upstream and downstream) and the inner boundary later solution near the

transition point Xt. There are several advantages to the composite solution

in that there is no need to calculate the size of the boundary layer, and there

is no need for asymptotic matching of two solutions, which is known to be

quite difficult for the problem at hand. The solution will be valid for both

|X −Xt| ∼ 1 and |X −Xt| ∼ ε. The method by which the composite solution

will be derived here is similar to that shown by Ovenden [44].

Composite Equation for ω ∼ ε−
1

2

First start with the wave equation, but only including the terms that are

known to be important in both the inner and outer regions, so

(
1 − U2

0

C2
0

)
φxx + φzz −

2iωU0

C2
0

φx +
ω2

C2
0

φ + ε

(
−2iωW

C2
0

φz −
2U0W

C2
0

φxz

)
= 0.

(5.62)

where subscripts denote derivatives. Now let ω = ε−
1
2 ω̄ and let φ be repre-

sented by a multivariable function F (x, z) multiplied by the usual convective
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term

φ = F (x, z) exp

(
i

ǫ
3
2

∫ X ω̄U0

C2
0 − U2

0

dX ′
)

. (5.63)

The first derivative of φ with respect to x is

∂φ

∂x
=

[
Fx +

iε−
1
2 ω̄U0F

C2
0 − U2

0

]
exp

(
i

ǫ
3
2

∫ X ω̄U0

C2
0 − U2

0

dX ′
)

,

and the second derivative of φ with respect to x is

∂2φ

∂x2
=

[
Fxx +

2iε−
1
2 ω̄U0Fx

C2
0 − U2

0

− ε−1ω̄2U2
0 F

(C2
0 − U2

0 )2

]

× exp

(
i

ǫ
3
2

∫ X ω̄U0

C2
0 − U2

0

dX ′
)

, (5.64)

and the cross derivative is

∂2φ

∂x∂z
=

[
Fxz +

iε−
1
2 ω̄U0Fz

C2
0 − U2

0

]
exp

(
i

ǫ
3
2

∫ X ω̄U0

C2
0 − U2

0

dX ′
)

,

where the subscripts of the function F in all of the above denote differentiation

with respect to that variable. Substituting the above derivatives into the

governing equation (5.62) and performing some simplifications yields

(
1 − U2

0

C2
0

)
Fxx + Fzz +

ε−1ω̄2

(C2
0 − U2

0 )
F − ε

1
2

2iω̄W

C2
0 − U2

0

Fz −
2εU0W

C2
0

Fxz = O(ε
1
2 ).

(5.65)

Note that in order to achieve the above expression, when the derivatives were

calculated and substituted into (5.62) a simplification was achieved by com-

bining part of fifth term (which contained the cross derivative of φ) with the

fourth term, yielding the now familiar scattering term. Thus the first four

terms in the above expression now contain all of the information that is nec-

essary to describe both the inner and outer solution, and the fifth term is no

longer required meaning that the Fxz term in the above can now be ignored.
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The function F (X, z) is then split into three parts and represented as

F (X, z) =
∞∑

k=1

Φk(X)χk(s) cos
(
ε−

1
2 αk(X)z

)
, (5.66)

where the Φk terms denote the slowly varying part of each mode in X, the

χk(s) terms are functions of some new stretched variable s and denote the

transitional part of the solution. The stretched variable s varies as a function

of X throughout the duct via some function g(X), and so

s = ε−βg(X),

where the precise definition of g(X) and hence s will be determined within

this analysis, but for now it should be noted that g(X) ∼ 1.

The various required derivatives of F (x, z) with respect to z can be computed

as

Fz = −ε−
1
2

∞∑

k=1

αk(X)Φk(X)χk(s) sin
(
ε−

1
2 αk(X)z

)
,

Fzz = −ε−1
∞∑

k=1

α2
k(X)Φk(X)χk(s) cos

(
ε−

1
2 αk(X)z

)
,

and in considering the derivatives in x one arrives at

Fx =

∞∑

k=1

(
ε1−βg′Φkχ

′
k cos

(
ε−

1
2 αkz

)
− ε

1
2 α′

kΦkχkz sin
(
ε−

1
2 αkz

))
,

+ O(ε),

Fxx =
∞∑

k=1

(
ε2−2β(g′)2Φkχ

′′
k cos

(
ε−

1
2 αkz

)
− 2ε

3
2
−βα′

kg
′Φkχ

′
kz sin

(
ε−

1
2 αkz

))

+ O(ε2−β + ε), (5.67)
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and for the cross derivative term

Fxz = −ε−
1
2

∞∑

k=1

(
ε1−βg′αkΦkχ

′
k sin

(
ε−

1
2 αkz

)
+ ε

1
2 αkα

′
kΦkχ

′
kz cos

(
ε−

1
2 αkz

))

+ O(ε). (5.68)

It is necessary at this stage to determine the value of β, and the manner

in which this task is done is to review the equation (5.65) and the various

derivatives and use the knowledge obtained from the study of the inner and

outer solutions in order to determine what value of β keeps in all the relevant

terms and ignores the irrelevant terms. As mentioned earlier the Fxz term in

equation (5.65) is not a significant term because this term does not feature in

either the inner or outer solution to leading order. Another way of looking at

this is that by noticing that the χ′ and α′ terms were not significant to leading

order in both the inner solution and outer solution, and thus an inequality

condition on β can be formed by considering values of β such that these terms

are not included.

Thus for the Fxz to not be included in the formulation

εε−
1
2 ε1−β < ε

1
2 =⇒ ε

3
2
−β < ε

1
2 ,

which leads to

3

2
− β ≥ 1

2
=⇒ β ≤ 1. (5.69)

Another condition on β can be obtained by considering the fact that it is

necessary to include the χ′′ term into the composite solution if the aim is to

include the effects of the inner boundary layer solution. This is achieved by

considering a condition on β that makes the χ′′ term more significant than ε
1
2 ,
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and therefore by looking at the expression (5.67) and concluding that

ε2−2β > ε
1
2 ,

which leads to the inequality

2 − 2β <
1

2
=⇒ β >

3

4
. (5.70)

Hence in combining inequalities (5.69) and (5.70) one arrives at

3

4
< β ≤ 1.

The method by which a differential equation for each χm is obtained is very

similar to when the inner equation was constructed. The function F and all of

the calculated derivatives are substituted into equation (5.65), and the entire

system is multiplied by a cross sectional eigenfunction and integrated to give

(after some manipulation)

Φm(X)

{
d2

ds2
(χm(s)) + ε2β−3 ω̄2C2

0 (X)σ2
m

[g′(X)]2(C2
0 (X) − U2

0 (X))2
χm(s)

}

−ε2β−2 2iω̄W̃ (X)C2
0 (X)h(X)

[g′(X)]2(C2
0 (X) − U2

0 (X))2

∞∑

k=1

χk(s)αk(s)Φk(s)Ckm = 0 (5.71)

where Ckm is defined by equation (5.58). Note that Φm has not yet been fixed.

The above problem for χm is a standard WKB problem and thus in regions

far from where the scattering effects are felt the solution can be expected to

replicate the outer solution. Thus as with Ovenden 2005 [44] the following

condition must be imposed

Φm(X)

√
C2(X) − U2(X)

ωC(X)σ(X)
=

√
C(X)

ωσ(X)D(X)h(X)
,

and therefore

Φm(X) =

√
C2

(C2 − U2)D(X)h(X)
,



Chapter 5: Asymptotic Analysis of Modal Scattering 174

which is independent of the mode, and therefore Φm(X) = Φ0(X) for all m

and thus it cancels out of the scattering equation. Now let m = t + p and

k = t + q, then equation (5.71) becomes

d2

ds2
(χt+p(s)) + ε2β−3 ω̄2C2

0 (X)
(
σ2

t + δt,p

)

[g′(X)]2(C2
0 (X) − U2

0 (X))2
χt+p(s)

−ε2β−2 2iω̄W̃ (X)C2
0 (X)h(X)

[g′(X)]2(C2
0 (X) − U2

0 (X))2

∞∑

q=−t+1

χk(s)αt+q(s)Ckm = 0.

It is possible to make a direct comparison between the above equation and the

leading order scattering equation (5.61) and comparing the first two terms in

the equation gives

ε2β−3 ω̄2C2
0 (X)(σ2

t )

[g′(X)]2(C2
0 (X) − U2

0 (X))2
= −s = −ε−βg(X),

and therefore if these two terms are to balance then

2β − 3 = −β =⇒ β = 1.

Now that β is known all that remains is to determine g(X), which can be

found by solving the differential equation

[
d

dX
g(X)

]2

g(X) = − ω̄2C2
0 (X)σ2

t (X)

(C2
0 (X) − U2

0 (X))2

taking the square root of both sides and integrating yields for the axial varia-

tion variable g(X)

g(X) =

(
±3i

2

∫ X

Xt

ω̄C0(X
′)σt(X

′)

C2
0 (X ′) − U2

0 (X ′)
dX ′

) 2
3

,

and hence finally for the stretched variable s

s = ε−1g(X) =

(
3i

2ε3/2

∫ X

Xt

ω̄C0(X
′)σt(X

′)

C2
0 (X ′) − U2

0 (X ′)
dX ′

) 2
3

.

and the solution branch is chosen such that s is negative for X < Xt and

positive for X > Xt.
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Now, noting that

C2
0 (X)

(g′(X))2(C2
0 − U2

0 )2
= − s

ω̄2σ2
t

= − 1

ω̄2σ2
t

(
3i

2

∫ X

Xt

ω̄C0(X
′)σt(X

′)

C2
0 (X ′) − U2

0 (X ′)
dX ′

) 2
3

the equation may now be written entirely in terms of the coordinate s as

χ′′
t+p(s) − sχt+p(s) −

sδt,p

σ2
t

χt+p(s)

− 2iω̄W̃ (s)h(s)

(
− s

ω̄2σ2
t

) ∞∑

q=−t+1

χt+q(s)αt+q(s)C(t+q),(t+p).

Now define L (s) as

L (s) =

(
3i

2σ3
t

∫ X

Xt

ωC0σt

C2
0 − U2

0

dX ′
) 2

3

= − ω̄2C2
0

(g′)2(C2
0 − U2

0 )2
=

s

σ2
t

,

where it is noted that the definition above is not singular for σt → 0 (see

Ovenden 2005 [44]). Thus finally the equation for the composite solution is

χ′′
t+p(s) − (s − L (s)δt,p)χt+p(s)

+
2i

ω̄
W̃ (s)h(s)L (s)

∞∑

q=−t+1

χt+q(s)αt+q(s)C(t+q),(t+p), (5.72)

and solving the equation above will yield a solution that is valid throughout

the entire duct for each mode.

Summary

The purpose of the work presented in this chapter was to understand the

mechanism by which modal scattering may be achieved whenever a mode un-

dergoes cut-on cut-off transition. The phenomenon has been shown to occur

using the finite element analysis in Ovenden, Eversman and Rienstra [43], but

up until this point a mechanism for cut-on cut-off induced modal scattering

in the presence of mean flow has not been discovered using the multiple scales
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approach.

Within this chapter it was shown that the original order of magnitude es-

timate for ω from [43] was in fact an overestimate for flow induced scattering,

although as shown by Smith, Ovenden and Bowles [58] this condition is suffi-

cient for geometry induced scattering. The condition for flow induced modal

scattering was re-examined, and on this analysis it was shown that weak modal

scattering may occur at the much lower estimate of ω ∼ ε−
1
2 . Weak scattering

here actually refers to weak scattering for the excited modes, as the incident

mode experiences scattering to leading order.

For the weak scattering it was noted that the scattering is weak for ω ∼ ε−
1
2

because the modes are not sufficiently close together to yield scattering for all

modes to leading order. Thus the analysis was revisited once again with the

notion that the modes should be sufficiently close together, and as a result

an equation for the inner region governing scattering for all modes to leading

order was obtained, and it was shown that scattering to leading order may be

achieved when ω ∼ ε−1.

Performing an asymptotic matching of the inner and outer solutions appears

difficult, and is left as further work. However from a computational point of

view it is desirable to form a model for the so-called composite solution, valid

throughout the entire duct to leading order, and the equation governing the

composite solution for each mode was given at the end of the last section.
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Given that a model for the composite solution is now in place, it is possi-

ble to perform some simulations of modal scattering using a desired numerical

method. However for reasons that will be briefly discussed in the next section,

several difficulties lie with using the derived composite equation (5.72), most

of them to do with the idea of using the derived stretch variables. Nonetheless

a small simplification may be made in order to yield some very interesting and

useful results without encountering too many difficulties with regard to the

numerics.



Chapter 6

Numerical Results on Modal

Scattering

6.1 Computational Methods

In the last chapter, a model for the composite solution, which is valid through-

out the entire duct was derived. However there are several difficulties with the

equation for the composite solution. The cut-on cut-off incident mode defines

a new stretch variable s, and thus everything must be written as a function of

this new and fairly complicated stretch variable. As an analytical solution of

the equation seems unlikely at this stage, the above equation would need to

be solved numerically and then converted back into physical coordinates.

As it appears that the equation is to be solved numerically in terms of the

stretch variable s and then converted back into real coordinates x, it makes

sense just to use real coordinates from the beginning. Therefore as an alter-

178
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native to solving the full composite equation it is desirable to simplify the

equation for the composite solution in such a way that utilising the finite dif-

ference method becomes easy to apply immediately. In this chapter matters

are simplified by seeking the solution to the simpler yet related system by

defining the stretch variable s as s = ε−1X = x. With this simplification the

coupled ODE system then becomes

Φ(X)

[
χ′′

n(x) +
ω̄2C2

0σ2
n

(C2
0 − U2

0 )2
χn(x) − 2iω̄W̃ (X)C2

0

(C2
0 − U2

0 )2

∑

k

αk(X)h(X)χkCkn

]
= 0

(6.1)

for n = 1, 2, 3 . . . N , where it is recalled that the scattering coefficient Ckn is

given by

Ckn =





1
2nπ for k = n,

1
π

(
(−1)n+k

n+k + (−1)k−n

k−n

)
for k 6= n,

as before, and Φ(X) is the so-called slowly-varying coefficient, given by

Φ(X) =

√
C0(X)

(C2
0 (X) − U2

0 (X))D0(X)h(X)
,

with h(X) being the height of the channel. Note that Φ(X) is the same for

each mode as discussed at the end of the last chapter . The system defined

above is the one that will be solved numerically using a finite difference scheme,

the method of which is described here in some detail over the next few pages.

The Computational Domain and Non-Reflecting Bound-

ary Conditions

The computational domain that will be used is defined as

xmin < x < xmax, 0 < y < 1, 0 ≤ z ≤ h(x) (6.2)
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Figure 6.1: A plot of a typical computational domain

where the the height function h(x) is defined as

h(x) = 1 − hs − hs tanh (a0x)

and hs and a0 are constants. The flow geometry has deliberately been chosen

in such a way as to make the liklihood of cut-on cut-off transition and scat-

tering as high as possible. A sketch typical duct can be seen in figure 6.1.

Note that within the discussions outlined here it is useful to get an idea of the

size of the small parameter ε, and it is usually given as a typical (or average)

duct gradient. In this case an estimate for ε will be taken as

ε ≃
∣∣∣∣

1

2x1

∫ x1

−x1

h′(x)dx

∣∣∣∣ ,

for some suitably chosen x1. It is straightforward to show then that ε may be

approximated by

ε ≃ hs

x1
tanh (ax1).
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Another very important notion to consider before establishing the finite dif-

ference scheme is as follows. For many idealised problems in aeroacoustics,

including this one, the domain of interest is unbounded. Suppose that this

unbounded domain is denoted Ω. In order to treat the problem numerically

it is necessary to consider a finite domain D ⊂ Ω, and by doing this one in-

troduces an artificial boundary ∂D into the numerical problem. In defining

∂D, one has to introduce boundary conditions on ∂D, and it is very impor-

tant that the boundary conditions must be chosen in such a way that waves

hitting ∂D from inside the computational domain are transmitted through

∂D without any spurious reflections. An incorrect choice of boundary con-

ditions may produce large spurious reflections of waves from ∂D, leading to

large errors in the computed solution. Boundary conditions that are imple-

mented on the boundary of a finite domain with the intention of preventing

spurious reflections are known as non-reflecting boundary conditions (or NR-

BCs for short). A well designed NRBC should be designed in such a way as

to let waves generated from inside D leave the domain through ∂D without

any spurious reflections. For an in-depth discussion of NRBCs the reader is

directed to papers by Givoli [20] and Ching [32].

Note that the creation of non reflecting boundary conditions is not the only

way in which reflections at the boundary of the computational domain may be

prevented; other methods to combat spurious reflecting waves include using

a sponge/buffer zone region, whereby a damping term is introduced into the

governing equation at a certain distance from ∂D inside the computational

domain, where the idea behind this is to diminish the strength of the outgoing
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waves so that by the time they hit the boundary there is very little or no reflec-

tion. Another technique that is becoming more popular is the introduction of

so-called perfectly matched layers (PMLs), which were originally formulated

by Berenger in 1994 [3], and are to some extent an elegant extension of a

non-reflecting boundary condition. However for the purposes discussed here a

NRBC is a simple and sufficient method by which to deal with the problem of

reflecting waves.

Given the geometry indicated in (6.2), it is simple to achieve an NRBC by

noting that close to the domain boundaries where x ∼ xmin and x ∼ xmax, the

vertical mean flow velocity W̃ (X) ∼ 0 , and therefore near these points the

system described in (6.1) may be approximated by the harmonic equation

χ′′
n(x) +

ω̄2C2
0σ2

n

(C2
0 − U2

0 )2
χn(x) = 0, n = 1, 2, . . . N. (6.3)

which is a very accurate approximation for the modal propagation within this

region provided that the geometry has very little variation in the applicable

region. Thus for χn equation it is simple to form a non reflecting boundary

condition (NRBC) at both the left-hand boundary and right-hand boundaries

as follows. For each x ∼ xmin the general solution for χn(x) is given by

χn(x) ∼ Ane−iknx + Bneiknx

where the wavenumber kn is given by

k2
n =

ω̄2C2
0σ2

n

(C2
0 − U2

0 )2
.
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In this notation, An is the amplitude of the right-running mode and Bn is the

left running mode. Note then that for this general solution

χ′
n(x) − iknχn(x) = −2iknĀn, where Ā = Ae−iknx

where Ā has been used to absorb a complex constant that has unit magnitude.

Now in order to form a non-reflecting boundary condition at the left hand

end of the channel, any right-running modes that are not incident must be

eliminated. If the amplitude of the right running incident mode is given by

Ān, then a non reflecting boundary condition may be achieved by setting the

condition that

χ′
n(x) − iknχn(x) = −2iknĀn on x = xmin, (6.4)

and by setting this condition we have eliminated all spurious right running

reflections at the left hand boundary. Similarly for modes entering the compu-

tational domain at the right hand boundary, for x ∼ xmax the modes propagate

according to the general formula

χn(x) ∼ Cne−iknx + Dneiknx.

At this boundary it is necessary to prevent any non-incident left-running

modes from being reflected, and thus if the incident modal amplitude is given

by Dn then the non reflecting boundary condition to be imposed at this bound-

ary is

χ′
n(x) + iknχn(x) = −2iknD̄n on x = xmax,

where D̄n = Deiknx. However in the results presented here all incident modes

will be assumed to be right-running and so the non-reflecting boundary con-
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dition at x = xmax reduces to

χ′
n(x) + iknχn(x) = 0 on x = xmax. (6.5)

Description of the Finite Difference Scheme

The system that a computational solution is required for is

Φ(X)

(
χ

′′

n(x) +
ω̄2C2

0σ2
m

(C2
0 − U2

0 )2
χn(x)

)
=

2iω̄W̃ (X)C2
0

(C2
0 − U2

0 )2

∑

k

αk(X)Cknh(X)χk,

subject to the non reflecting boundary conditions (6.4) and (6.5). In order

to establish a finite difference solution to this system, first define an equally

spaced mesh in the axial direction as

xi = xmin + i∆x, i = 1, 2, . . . , N.

The aim is to discretise the above differential system and boundary conditions

such that the resulting system is tridiagonal. Once the system has been re-

duced to a tridiagonal system, it may be solved using an algorithm such as

the Thomas algorithm.

The discretisation of the above system may be achieved using second order

central differencing on the second derivative, i.e.

(
d2

dx2
χn(x)

)

x=xi

=
χ

(i−1)
n − 2χ

(i)
n + χ

(i+1)
n

∆x2
+ O(∆x2)

to give for the system of interest

Φ(i)
(
χ(i+1)

n + ((k(i)
n )2∆x2 − 2)χ(i)

n + χ(i−1)
n

)
= ∆x2ϕ(i),
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where χ
(i)
n denotes the i’th node in the computational domain corresponding

to the sought after χn(x). The right hand side coefficient ϕ(i) is given by

ϕ(i) =
2iω̄W̃ (xi)C

2
0 (xi)

h
(xi)(C

2
0 (xi) − U2

0 (xi))
2
∑

k

αk(xi)Cknχj(xi)

For the boundaries it is necessary to use the non-reflecting boundary conditions

that were established earlier. Finite differencing the NRBC at the left hand

side of the domain yields

χ(1)
n =

1

3 + 2ik
(1)
n ∆x

(
4ik(1)

n An∆x + 4χ(2)
n − χ(3)

n

)
,

and then substituting this into the finite difference scheme above one arrives

at

χ(2)
n

(
1 − 1

3 + 2ik
(1)
n

)
+ χ(1)

n

(
(k(1)

n )2∆x2 − 2 +
4

3 + 2ik
(1)
n

)
= −4ik(1)An∆x

3 + 2ik
(1)
n

,

which is to be applied as the left hand boundary term in the Thomas algorithm.

A similar procedure for the right hand boundary yields

χ(N−2)
n

(
1 − 1

3 + 2ik
(N−1)
n

)
+ χ(N−1)

n

(
(k(N−1)

n )2∆x2 − 2 +
4

3 + 2ik
(N−1)
n

)

= −4ik
(N−1)
n An∆x

3 + 2ik
(N−1)
n

.

The scheme above is valid for all 2 ≤ i ≤ N − 1, and the nodes i = 1 and

i = N lie on the boundaries of the domain. The equations above are all that

is required in order to solve this system numerically. The above system may

be solved via several iterations using a Thomas algorithm. Several iterations

are necessary here because the modal equations are coupled as the ϕ(i) term

contains a summation involving all χk’s for k = 1, . . . N . Thus running the

Thomas algorithm several times is necessary in order for the solution to con-

verge to the correct value.
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Once all of the χn’s are known the desired solution for the acoustic field is

given by the summation

φ =

JMax∑

j=1

Φ(X)χj(x) cos (αj(X)z) cos (Mπy) exp

(
i

∫ X

Xt

ωU0

C2
0 − U2

0

dX ′
)

, (6.6)

and this may be obtained simply by multiplying each χj by the necessary

quantities shown in the above, all of which are easily computed. For the ini-

tial incoming (right running) amplitudes, these are set by the vector Aj for

j = 1, 2, . . . , JMax, and similarly the initial left running incoming amplitudes

are set by a vector Dj . For simplicity here the amplitudes Āj and D̄j are

specified as the exact phase is not considered important in this investigation.

Results in this chapter were obtained using Matlab, and details of the Matlab

code used in obtaining the results may be obtained from the author.

6.1.1 Results Processing

Once the code has run for a given case, it is necessary to obtain several physical

quantities from the numerical results. This section gives a short description

of what the quantities of interest are and how they are computed from the

numerical results

Computing the Modal Amplitudes

Plotting the modal amplitudes for each mode is straightforward. All that is

needed required is to plot |Φ(X)χj(x)| for any mode that is required. It is

usual to separate plots for the incident mode from that of the scattered modes
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as typically the amplitude of the scattered modes will be much lower than that

of the incident mode.

Outgoing modal Amplitudes

For both incident and scattered modes it is useful to understand to what de-

gree individual modes are propagating out of the computational domain. If

the incident mode(s) is(are) given by j = t, then the scattered modes are in-

dexed by j 6= t. For the scattered modes there is no incoming wave (Aj 6=t = 0),

and therefore to find the outgoing modal amplitude of a scattered wave this

is simply given by the value of |Φ(X)χj 6=t(x)|, to be calculated at the domain

boundary. In fact this formula may be used to compute the modal amplitude

of a scattered mode anywhere within the computational domain.

Now for the incident modes: Assume that there is a right running incident

mode j = t with no incident left-running counterpart. At the left-hand end

the solution is for χt is

χt(x) = At e−iktx +Bt e+iktx .

In order to find the outgoing modal amplitude Bt the incident amplitude At

may be eliminated by differentiating the above expression with respect to x

and adding finding that

χ′
t + iktχ = 2iktB̃ ⇐⇒ B̃ =

χ′ + iktχ

2ik
,

where B̃ = B e+iktx. A finite difference approximation is then applied to give

B̃ =
1

4ik(0)∆x

(
(−3 + 2ik

(0)
t ∆x)χ

(0)
t + 4χ

(1)
t − χ

(2)
t

)
,
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and the quantity χ
(0)
t may be found by recalling that the non reflecting bound-

ary condition at the left hand boundary is

χ′
j0 = ikjχj0 − 2ikjAj , (6.7)

where χj0 is the value of χj(xmin) at the left-hand end of the domain. Finite

differencing the above equation yields

−3χj0 + 4χj1 − χj2

2∆x
= iktχj0 − 2ikjAj ,

where χj1 and χj2 are the computed values at x = x0 +∆x and x = x0 +2∆x

respectively so that

χj0 =
4χj1 − χj2 + 4ikj∆xAj

(3 + 2ikj∆x)
, (6.8)

and thus the outgoing modal amplitude Bt at the left-hand end is finally given

by

|Φ(x0)Bt| = |Φ(x0)|
∣∣∣∣
χ′

t(x0) + ikt(x0)χt(x0)

2kt(x0)

∣∣∣∣ .

Now that the outgoing modal amplitude is known it is now possible to compute

the reflection coefficient |Rt| as may be found by computing

|Rt| =
B̃

|At|
,

where it is noted that although the actual modal amplitude also includes the

slowly varying coefficient Φ(X), where it is noted that the slowly varying co-

efficient term Φ is not required as it is exactly the same for both the incident

and reflected mode.

At the right-hand end, as it is assumed that there is no incoming wave from

+∞ the solution is

χt = Tt e−iktx,
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and therefore finding the modal amplitude is straightforward and a transmis-

sion coefficient can be found.

Calculation of Acoustic Pressure

As part of the results processing it is very useful to obtain contour plots of

relative sound pressure level. Recall from equation (1.10) that the acoustic

pressure p is given by

p

D0
= −iωφ − U0

∂φ

∂X
, (6.9)

and substituting the scattered solution for φ into the above yields to leading

order

|p| = D0Φ(X)

Jmax∑

j=1

cos [αj(X)z]

(
− iωC2

0

(C2
0 − U2

0 )
χj − U0χ

′
j

)
.

This formula for |p| may then be used in the pressure contour plots. It is sensi-

ble to plot these contours on the decibel scale, i.e. 20 log10 (|p(x, z)|/ max |p(x, z)|),

with contour levels at every 3dB, and this is what is plotted in the pressure

contours presented here.

6.2 Results

The results shown here are separated into four cases: Three of these case

are for two-dimensional scattering (i.e. where M = 0 in equation (5.3) for

example), and the final case deals with three dimensional scattering where

M 6= 0.
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Case 1: Modal Propagation consisting of a single

left-running incident mode with ω = 35, U0(−∞) =

±0.3, M = 0, hs = 0.1, a0 = 3 and n = 10

In this first example a two dimensional (M = 0) duct with a reasonably high

Helmholtz number ω = 35 is considered. In this case there is only one incident

mode, and this mode is right-running of unit amplitude indexed by n = 10.

All other modes (both left and right-running) have zero incident amplitude,

and so A10 = 1 and An6=10 = 0 for all n. Modes given by n < 10 are cut-

on throughout the entire region, and the n = 10 mode cuts off at the point

X10t ≈ 0.64, and the n = 11 mode also cuts off at some point X11t ≈ −0.03,

both lying within the computational domain. A non-dimensional axial mean

flow of magnitude 0.3 is imposed. Given the geometry variation the small

parameter may be approximated by ε ≃ 0.1, and thus comparing this value

to the Helmholtz number means that a strong degree of scattering is expected

to occur. The model is run for two cases; one case where the mean flow is

running from left to right (U0 = 0.3) and another case where the mean flow is

running from right to left (U0 = −0.3).

According to the standard multiple scales theory where the effects of modal

scattering are not taken into consideration, the mode corresponding to n = 10

propagates from left to right, and its reduced axial wavenumber σ10 decreases

as the duct narrows until the point where σ10 = 0 at X = X10t. Beyond X10t,

the reduced axial wavenumber is purely imaginary and no further acoustic

energy is transmitted beyond X10t, and the mode reflects at X10t exchanging
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its entire acoustic energy with its left-running counterpart, causing a stand-

ing wave to be formed within the duct. According to the standard multiple

scales theory, energy for this mode is completely conserved. The maximum

amplitude of the resulting standing wave is equal to 2, which can be seen in

figures 6.2 and 6.3 for the no scattering case. No acoustic energy is transmit-

ted beyond X10t in this case, as shown by the fact that the modal amplitude

reduces to zero beyond the transition point X10t. Also figures 6.6 (a) and 6.7

(a) show contour plots of the acoustic pressure everywhere within the duct for

this standard multiple scales case, and the region beyond the turning point

at which no acoustic energy propagates may be clearly seen. Within this

standard multiple scales model, it is important to note that other than the

left-running counterpart of the incident mode no other modes are excited dur-

ing this cut-on cut-off transition process.

Once the effects of scattering is taken into account, the results appear very

different to the results obtained by the standard multiple scales model. It

can now be seen that as soon as scattering effects are included, the modes

neighbouring the incident mode appear to be excited within the thin narrow-

ing region of the duct, and a cascade of reflected left-running and transmitted

right-running modes are now observed. Figures 6.4 and 6.5 show amplitude

plots of these modes modes for U0(−∞) equal to 0.3 and −0.3 respectively.

The modes that are directly adjacent to the incident mode (i.e. those that

are indexed by n = 9, 11) are the modes that absorb most of the scattered

acoustic energy, although in fact all modes are excited to some extent, a fact
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Figure 6.2: Case 1 with U(−∞) = +0.3: Comparing the modal amplitude of
the incident mode both with and without scattering effects included
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Figure 6.3: Case 1 with U(−∞) = −0.3: Comparing the modal amplitude of
the incident mode both with and without scattering effects included
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Figure 6.4: Case 1 with U(−∞) = +0.3: Comparing the neighbouring modal
amplitudes for n = 8, 9, 11, 12
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amplitudes for n = 8, 9, 11, 12
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which corresponds directly to the magnitude of the scattering coefficient Ckn

as discussed in chapter 5. Recall that all the modes shown whose index is

less than that of the incident mode (those indexed by n < 10) are able to

propagate out of the duct in both directions. Note that modes n < 10 are able

to fully propagate downstream provided that they themselves do not cut-off

at some point further downstream, something which is possible though it is

not the case here. The scattered modes indexed by n > 10 are unable to prop-

agate downstream because they are already cut-off within this region. The

reflection and transmission coefficients for each nearby mode are summarised

in table 6.1 and are also plotted in figures 6.8 and 6.9.

A striking feature worth noting is that according to the results given by the

ω ∼ 1 model, the mode that is indexed by n = 11 has a transition point at

X11t ≈ −0.03 and this mode is cut on within the computational domain for

X < X11t. It may be seen in figures 6.4 and 6.5 that due to the fact that

this mode must absorb a sufficient amount of acoustic energy from its cut-on

cut-off neighbour, combined with the fact that it is cut-on upstream makes

this enough for the mode to propagate in the negative x direction and out of

the duct. This may be contrasted with the behaviour of the n = 12 mode, as

the ω ∼ 1 model shows that this mode is not cut on anywhere within the duct,

and so despite absorbing some energy from the n = 10 mode (and quite possi-

bly the n = 11 mode) and being temporarily excited, it is unable to propagate

upstream and out of the duct.

Recall that within the standard multiple scales model the incident mode con-
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served all of its energy when undergoing cut-on cut-off transition, and this

fact is reflected in non-scattered amplitudes shown in figure 6.2 and figure 6.3.

These figures show that if the effects of scattering are not incorporated into

the model, then a standing wave is formed that has a maximum amplitude

of twice that of the incident mode. Thus, energy is completely conserved for

any mode undergoing cut-on cut-off transition under the standard model. It is

now interesting to compare this to the results obtained here when the effects

of scattering are incorporated for U0(−∞) = −0.3. Note in this case that

the incident mode actually looses some energy, and as a result of this energy

loss the amplitude of the resulting standing wave is less than 2, as may be

seen in figure 6.3. To be specific it is noted that for this case the reflection

coefficient |R10| = 0.59, corresponding to large reduction in acoustic energy.

At first glance the cause of this considerable reduction in amplitude appears

to be obvious in that the remaining energy must have been absorbed by the

modes that were excited as a result of this cut-on cut-off transition process.

However the idea that precisely all of the remaining energy must have been

absorbed by the neighbouring modes is rapidly dispelled when looking at the

results obtained for U0(−∞) = +0.3. Here it is seen that the reflected wave

for n = 10 has a reflection coefficient with |R10| ≈ 1.2, which means that the

amplitude of the reflected mode has increased by 20%, despite the fact that

neighbouring modes have also been excited! This striking result appears to be

an indication that an energy transfer between the mean flow and acoustic field

must be taking place. Further, given the observation presented here it seems

reasonable to postulate that if the mean flow is contracting as the duct narrows

then energy is injected from the mean flow into the acoustic field, resulting
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in an overall increase in the amount acoustic energy available to the system,

something that is necessary in order for the left-running counterpart incident

mode to have a transmission coefficient |R10| > 1, which is sometimes referred

to as over reflection. Conversely a widening duct with a diverging mean flow

may in fact extract some energy from the acoustic field. This exchange in en-

ergy between the mean flow and acoustic field is a very noteworthy discovery,

because up till now the conservation of acoustic energy within multiple-scales

analyses for near uniform plug flow is usually taken for granted.
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Figure 6.6: Case 1 with U(−∞) = +0.3: Pressure Contours for Scattering
and No Scattering

It is necessary therefore to precisely quantify the overall change in acoustic

energy due to the interaction with the mean flow. This can be done by finding

the difference between the acoustic power entering the domain and compar-



Chapter 6: Numerical Results on Modal Scattering 197

(a)

(b)

x

z

Pressure Contours without Scattering

-4 -3 -2 -1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

x

z

Pressure Contours with Scattering

-4 -3 -2 -1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

Figure 6.7: Case 1 with U(−∞) = −0.3: Pressure Contours for Scattering
and No Scattering

ing that with the acoustic power leaving the domain. If acoustic power is

conserved then the energy leaving the domain in the form of reflected and

scattered waves will be of precisely the same magnitude as the energy that

was incident to the domain, and of course if energy is not conserved then

these quantities will be different.

The acoustic power through the duct cross section at a given axial location x

may be calculated by integrating the time-averaged acoustic intensity I over

the cross section [36]: By definition then the acoustic intensity is given by

I ·ex =
1

2
Re





(
p

D
+ U

∂φ

∂x

) (
D

∂φ

∂x
+ ρU

)*


 ,

where * denotes the complex conjugate. Using p = C2ρ and the definition of
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p given in equation (6.9) it may be seen that

I ·ex =
1

2
Re



(−iωφ)

(
D

(
C2 − U2

C2

)
∂φ

∂x
− iωDU

C2
φ

)*


 .

Substituting φ into the above leads to

I ·ex =
1

2

ωD(C2 − U2)

C2
Re



(−iF )

(
∂F

∂x

)*


 ,

where

F =
∑

j

Φ(X)χj(x) cos [αj(x)z] cos(Mπy).

Now axial power P is the integral over an axial cross section, and as all modes

are orthogonal the power may be computed separately for each mode j, and

thus each Pj is given by

Pj =
1

2

ωD(C2 − U2)

C2

∫ 1

0

∫ h(X)

0
cos2 [αj(x)z]cos2(Mπy)dzdy

× Re

{
(−iΦχj)

(
Φ′χj + Φχ′

j

)*
}

.

Computing the double integral over the cosine squared terms yields

∫ 1

0

∫ h(X)

0
cos2 [αj(x)z]cos2(Mπy)dzdy = ν(m),

where

ν(m) =





h
2 for m = 0,

h
4 otherwise,

Also given that Φ′(X) = 0 at the ends of the duct, the expression for Pj

becomes

Pj =
ν(m)ωD(C2 − U2)

2C2
Φ2(X)Re

{
(−iχj)

(
χ′

j

)*
}

.
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In order to compute this one can use the non-reflecting boundary conditions.

Recall from equation (6.4) that at the left-hand end the NRBC gave

χ′
j0 = ikjχj0 − 2ikjAj , (6.10)

where χj0 is the value of χj(xmin) at the left-hand end of the domain. Using

finite differencing then gives

−3χj0 + 4χj1 − χj2

2∆x
= iktχj0 − 2ikjAj ,

where χj1 and χj2 are the computed values at x = x0 +∆x and x = x0 +2∆x

respectively so that

χj0 =
4χj1 − χj2 + 4ikj∆xAj

(3 + 2ikj∆x)
, (6.11)

and now equations (6.10) and (6.11) may be used in the power calculation to

calculate the modal axial power at the left hand end.

Similarly at the right-hand end x = xmax, assuming there is no incoming

mode from x = +∞ the non-reflecting boundary condition is used once again:

χ′
jN = −ikjχjN , (6.12)

and applying a finite differencing approximation yields that

3χjN − 4χj N−1 + χj N−2

2∆x
= −ikjχjN ,

to obtain

χjN =
4χj N−1 − χj N−2

3 + 2ikj∆x
. (6.13)

Equations (6.12) and (6.13) can now be substituted into the axial power cal-

culations to obtain the modal axial power at the right-hand end of the domain.
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It is useful to scale such axial power calculations with so-called incident power

from the incident modes alone, and this can be calculated analytically. Let

the incident modes φi be given by

φi =

JMax∑

j=1

Aj e−ikjx cos (αjz) cos(Mπy) exp

(
−i

∫
ωU0

C2
0 − U2

0

dx

)
.

Substituting this expression into the definition of axial power it is found that

Pincident =
νωD(C2 − U2)

2C2
ktΦ

2(X)A2
j .

and using the fact that kt = (ωC0σt)/(C2
0 − U2

0 ) this becomes

Pincident = ω2ν
D

2C
Re(σt)Φ

2(x)A2
j .

It is desirable to measure the acoustic power of the reflected and scattered

modes relative to the incident mode. First note that contributions to the total

energy flux at the left hand boundary P(xmax) may be decomposed into an

incident and reflected part, i.e.

P(xmin) = Pincident + Preflected.

where Preflected is the total acoustic energy flux of all modes propagating to-

wards x = −∞ at the left hand boundary. The amount of acoustic energy

that is lost or gained due to the presence of the mean flow may be calculated

as the percentage difference of the incident and outputted acoustic energies.

To do this define the flow induced power coefficient EP as

EP =
[P(xmax) − Preflected] − Pincident

Pinc
=

P(xmax) − P(xmin)

Pincident

.
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The flow induced power coefficient calculates the percentage difference (as a

decimal) between the energy of the flow leaving the system at the domain

boundaries compared to the energy of the incident modes.

Returning to the case in hand then, it follows that for U(∞) = −0.3, then

EP = −0.50, which indicates that the presence of the left propagating diverg-

ing mean flow has lead to a reduction of around 50% in the available acoustic

energy, which is quite a considerable reduction in the level of noise. However

when the mean flow is reversed then it follows that EP = 0.8225, indicating a

very considerable 82% increase in acoustic energy due to the interaction with

the mean flow.

U0(−∞) < 0 U0(−∞) > 0

n An |Rn| |Tn| |Rn| |Tn|
1 0 3.10e-05 1.91e-04 2.10e-05 1.86e-06
2 0 8.12e-05 4.70e-04 5.34e-05 4.77e-06
3 0 1.93e-04 1.00e-03 1.20e-04 1.18e-05
4 0 4.76e-04 2.22e-03 2.91e-04 3.88e-05
5 0 1.28e-03 5.33e-03 8.12e-04 1.46e-04
6 0 4.00e-03 0.01 2.79e-03 8.75e-04
7 0 0.01 0.04 0.01 0.01
8 0 0.05 0.12 0.08 0.10
9 0 0.20 0.38 0.41 0.47
10 1 0.55 cut-off 1.17 cut-off
11 0 0.22 cut-off 0.38 cut-off
12 0 cut-off cut-off cut-off cut-off

Table 6.1: Table comparing reflection and transmission coefficients in case 1
for U0(−∞) < 0 and U0(−∞) > 0
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Figure 6.8: Histogram comparing reflection coefficients for U0(−∞) = ±0.3 in
Case 1
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in Case 1
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Case 2: Modal propagation with a two incident left-

running modes, n = 9, 10 together with ω = 35, U0(−∞) =

±0.3, hs = 0.1, a0 = 3 and m = 0,

This case is very similar to the first case in the sense that the duct geometry,

Helmholtz number and mean flow are completely unchanged. However instead

of one incident mode as in the last case, there are now two incident modes,

indexed by n = 9 and n = 10. These two incident modes are right running

and have unit incident modal amplitudes, so Ān = 1 for n = 9, 10 and zero

incident amplitude for all other modes. The case with two incident modes

is interesting and useful to understand because in a physical situation there

are likely to be several modes that are incident. Therefore understanding the

effect that a cut-on cut-off mode has on other neighbouring incident modes is

very important from both a theoretical and practical point of view.

First consider the case with U0(−∞) < 0, where the mean flow is propa-

gating from right to left. It is known from the previous example that the

n = 9 mode is cut-on throughout the entire duct, and the n = 10 mode cuts

off at some point X10t within the duct. Thus the standard multiple scales the-

ory anticipates that the n = 10 mode will cut off and form a standing wave,

whilst the n = 9 mode propagates through without any interference from its

neighbour. A pressure contour plot of this standard multiple scales scenario

can be seen in the upper contour plot shown in figure 6.14(a).

Once modal scattering is taken into consideration, it is now expected that
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the n = 10 mode that undergoes cut-on cut-off transition will scatter energy

into neighbouring modes. Figure 6.10 shows a plot of the modal amplitude of

the n = 10 modal amplitude, and compares it with two other cases: case 1,

where there was only an incident n = 10 mode and no n = 9 incident mode,

and situation as modelled using the standard multiple scales analysis which

includes no scattering effects. As expected, a standing wave is formed for the

n = 10 mode comprising of the incident and reflected mode, but it may also

be seen that due to the presence of the incident n = 9 mode the amplitude of

the n = 10 is even smaller than the case where there was no n = 9 incident

mode and thus this mode has lost energy due to the presence of the incident

n = 9 mode. In fact the reflection coefficient for this mode is now R10 = 0.46,

considerably less than that in the previous case where there was no incident

n = 9 mode.

For X < X10t the cut-on cut-off mode excites a left propagating n = 9 scat-

tered mode, and this scattered mode combined with the already cut-on n = 9

incident mode causes an n = 9 partial standing wave to be formed within

the duct. Figure 6.12 can be referred to in order to illustrate this fact. As

a result of the scattering the amplitude of the n = 9 mode has increased by

a considerable amount for X < X10t, as shown in table 6.2. It should be

noted however that in comparative terms this n = 9 mode appears to ab-

sorb less of the scattered energy than in case 1. However a mode that seems

to benefit a lot from the presence of this n = 9 mode is its adjacent right

running n = 8 mode, which has a transmission coefficient of |T8| = 0.57, con-

siderably larger than in the previous case, despite the fact that there is very
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Figure 6.10: Comparing the modal amplitude for the n = 10 mode for
U(−∞) < 0 in the case of two incident modes n = 9 and n = 10 with
scattering, one incident mode n = 10 with scattering, and two incident modes
with no scattering

little movement in the reflection coefficient of its left running counterpart. A

very similar situation is observed for modes indexed by n < 8, whereby the

transmission coefficient has increased quite considerably, with the reflection

coefficient relatively untouched.

Now that the effects of negative mean flow have been observed it is now nec-

essary to switch the order of the mean flow and observe the differences. When

observing the results for the reflection coefficients, it is apparent from ta-

ble 6.2 that for each mode the magnitudes of this coefficient have increased

from those shown in case one as a result of the extra incident n = 9 mode.

Again however, it is interesting to note that while the reflection coefficients

have increased by a small amount as expected, it is again the transmission

coefficients that appear to have increased most considerably. For example,
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Figure 6.12: Comparing the modal amplitude for the n = 9 mode for U(−∞) <
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Figure 6.13: Comparing the modal amplitude for the n = 9 mode for U(−∞) >
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Figure 6.14: Case 1 with U(−∞) = −0.3: Pressure Contours for Case 2 in the
case of Scattering and for No Scattering
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Figure 6.15: Case 1 with U(−∞) = 0.3: Pressure Contours for Case 2 in the
case of Scattering and for No Scattering

the n = 8 mode has jumped from |T8| = 0.1 in case one to |T8| = 0.55 here,

quite a considerable increase. When looking at the behaviour of the n = 9

mode, this is very similar to the U(∞) < 0 case, with the only noticeable

difference being that the amplitude of the standing wave is larger (due to the

extra energy within the system from the mean flow), and a slight peculiarity in

that the right running transmitted n = 9 mode appears to have only absorbed

about only small amount of energy as the amplitude has increased by about

1% only, less of an increase than in the case where U0(−∞) < 0. However

the explanation for this may be that this appears to have been offset by an

increase in around 20% for the reflected mode when compared to the first case.

For the axial power coefficients it is found that EP = −0.2622 for the U(−∞) <

0 case and for U(−∞) > 0 we have EP = 0.6789. We also have P(xmax) =
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143.9 and Preflected = −444.41 when U > 0. Also when U < 0 the power

coefficients are P(xmax) = 222.66 and Preflected = −35.90

U0(−∞) < 0 U0(−∞) > 0

n An |Rn| |Tn| |Rn| |Tn|
6 0 0.00 0.08 0.00 0.01
7 0 0.01 0.21 0.01 0.10
8 0 0.04 0.57 0.10 0.55
9 1 0.15 0.93 0.51 0.72
10 1 0.41 cut-off 1.53 cut-off
11 0 0.21 cut-off 0.44 cut-off
12 0 cut-off cut-off cut-off cut-off

Table 6.2: Table comparing reflection and transmission coefficients in case 2
for U0(−∞) < 0 and U0(−∞) > 0
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Case 3: Demonstration of Weak Scattering for Low

Helmholtz Number ω = 10, U(∞) = ±0.3 Together

With One Cut-On Incident Mode n = 3 and Two

Dimensional Flow.

The previous two cases dealt with a scenario where the flow was two dimen-

sional and the frequency was very high, leading to a relatively large amount

of energy being transferred from the cut-on cut-off incident mode into the

scattered modes. The case dealt with here is an example where the various

problem parameters are set up in such a way as to induce weak scattering, in

accordance with the theory established in section 5.3.

Consider the case with flow geometry defined such that hs = 0.1 and a0 = 3,

giving rise to ε ≃ 0.1. Recall from chapter 5 section 5.3 that a condition to

induce for weak scattering is to have

ω ∼ ε−
1
2 , α ∼ ε−

1
2 ,

thus ω = 10 and n = 3 are chosen as they fit well with the above approxi-

mations. From the asymptotic analysis of the weak scattering it is predicted

that in a case such as this, the incident mode will endure scattering to leading

order, whereas the scattered modes will propagate with an amplitude that is

O(ε
1
2 ).

The first set of results are for U > 0.

The situation for the incident mode appears quite similar to the previous two
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Figure 6.16: Incident Modal Amplitude for Case 3 with U(∞) = +0.3
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Figure 6.17: Modal Amplitudes for Case 3 with U(∞) = +0.3
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Figure 6.18: Pressure Contours for Case 3 with U(∞) = +0.3

cases studied in that the cut-on cut-off mode extracts a significant proportion

of energy from the mean flow, causing a large partial standing wave to be

formed to the left of the turning point, as shown in figure 6.16. The axial

power coefficient is given by EP = 0.7172, indicating that there has been an

increase in acoustic energy of around 70% due to the mean flow interacting

with the acoustic field. However despite this large influx of extra energy into

the acoustic field, only a very small amount of this appears to have been ab-

sorbed by the scattered modes. Figure 6.17 shows the amplitudes of the modes

most neighbouring to the incident mode. Looking at the amplitudes of the

scattered modes, it appears that most of the extra energy from the mean flow

must have been absorbed by the reflected component of the incident mode as

the amplitudes of the scattered modes are very small. Note that the n = 4

mode was cut-off throughout the entire duct. Also note that the magnitude of

the scattered modal amplitudes do appear to be O(ε
1
2 ) and thus in very good
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Figure 6.19: Modal Amplitudes for Case 3 with U(∞) = −0.3

agreement with the asymptotic analysis on weak scattering shown in the pre-

vious chapter. Figure 6.21 shows contour plots of relative sound pressure level

for case. It may be seen that there is a clear indication of acoustic disturbances

beyond the turning point that may be attributed to the neighbouring modes.

However, despite the fact that a large amount of energy has been extracted

by the acoustic field from the mean flow these disturbances are small.

Now for the situation with U(−∞) < 0. In this case the axial power coef-

ficient is given by EP = −0.3955, and thus of course this

means that as with the previous cases, the diverging mean causes energy to

be extracted from the acoustic field, in this case to the degree of around 40%.

However a weak form of modal scattering still takes place, and it is interesting

to observe that despite the reduction in available acoustic energy the ampli-

tude of the neighbouring right running n = 2 mode is of very similar size
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Figure 6.20: Incident Modal Amplitude for Case 3 with U(∞) = −0.3
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Figure 6.21: Pressure Contours for Case 3 with U(∞) = −0.3
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compared to the case when U(∞) > 0. Also, comparing the reflection and

transmission coefficients (shown in table 6.2) for the n = 1 mode, it may be

observed that the transmission coefficient for the U(−∞) < 0 is larger than

for the case when U(−∞) > 0. It appears therefore, that the relationship

between the reflection and transmission coefficients of the scattered modes is

such that for a given scattered mode, the tendency is for proportionally more

energy is to be scattered into the part that propagates in the opposite direc-

tion of the mean flow. A similar conclusion may be drawn when comparing

the axial power coefficients for a particular mode at both ends of the compu-

tational domain. Moreover, it may be seen that a similar trend may be seen

for all results presented so far in this chapter. Therefore, a useful study to

continue from the work presented here would be to compare these findings

with theoretical values for the reflection and transmission coefficients. These

reflection and transmission coefficients could theoretically be obtained via an

analysis involving matched asymptotic expansions of the inner and outer so-

lutions, using similar methods to those demonstrated in chapter 3. However

due to the apparent complex nature of the inner solution this matching is not

straightforward and is left as further work (see chapter 7).

U0(−∞) < 0 U0(−∞) > 0

n An |Rn| |Tn| |Rn| |Tn|
1 0 0.121 0.0215 0.0140 0.0059
2 0 0.0752 0.1072 0.1244 0.1289
3 1 0.7616 cut-off 1.2924 cut-off
4 0 cut-off cut-off cut-off cut-off

Table 6.3: Table comparing reflection and transmission coefficients in case 3
for U0(−∞) < 0 and U0(−∞) > 0
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Case 4: Three Dimensional Scattering ω = 25, U(∞) =

±0.3 Together With One Cut-On Incident Mode n = 4

This problem considers a three dimensional flow with a slightly different ge-

ometry, defined as

h(x) = 1.2 − hs tanh(a0x)

where hs = 0.2 and a0 = 3. Under these geometrical conditions the small

parameter ε may be approximated by ε ≈ 0.1. Similarly to the last case,

it is desirable to attempt to induce leading order scattering for all modes

by setting the various problem parameters according to those described in

chapter 5 section 5.4. Recall from the asymptotics performed earlier that

leading order scattering may be induced via

ω ∼ ε−1, α ∼ ε−
2
3 , σ2

t ∼ ε
4
3 , δm,t ∼ ε

4
3 , M ∼ ε−1

where M is the eigenvalue in the y direction. Thus for this case parameters

ω = 25, n = 4 and M = 8 are chosen as they are in good agreement with

the approximations above. The asymptotics predict that even despite the low

vertical mode and moderately high frequency, a large amount of scattering

should be observed. Note that with regard to the difference between the vari-

ous reduced axial wavenumbers, in running this case it was observed that this

was typically some multiple of 0.05, which fits very well with the approxima-

tion that δm,t ∼ ε
4
3 .

First start with the situation of positive mean flow. The axial power coefficient

is EP = 1.4857, indicating a large amount of energy injected into the acous-

tic field by the mean flow. Although the reflected component of the incident
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Figure 6.22: Incident Amplitudes for Case 4 with U(∞) = +0.3

mode clearly absorbs some of this energy (as can be seen from figure 6.22), a

rather significant amount of this energy is scattered into neighbouring modes.

A clear indicator of the degree of modal scattering is given by the pressure

contour plot shown in figure 6.23, where there appears to be significant levels

of acoustic energy propagation beyond Xt. However it has been noted that

the apparent tendency of an excited mode is that the majority of the acoustic

energy should be scattered into the mode running in the opposite direction to

that of the mean flow. Hence in the case with positive mean flow the majority

of the scattered modal energy is reflected. This can also be seen from the

modal amplitudes given in figure 6.24 and reflection and transmission coeffi-

cients shown in table 6.4.

When the direction of the mean flow is reversed the usual trends in terms

of the behaviour of the incident mode may be observed, given by the fact
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Figure 6.23: Pressure Contours for Case 4 with U(∞) = +0.3

that EP = −0.5289 in this case, and the effect of which is depicted in fig-

ure 6.27. Notice that for the individual scattered amplitudes, given in fig-

ure 6.26, these are smaller than in the case where U(−∞) < 0, a consequence

of the reduced level of acoustic energy due to extraction by the mean flow.

However it may still be seen that the combined effect of all of these scattered

modes is still leading order, and this idea reinforced by observing the acoustic

pressure contours given by figure 6.25, where it may be seen that a signifi-

cant amount of modal energy is able to propagate beyond the turning point

of the incident mode, leading to some areas of rather high acoustic pressure.

Figure 6.26 also gives a clear picture of the tendency of an excited mode to

propagate in the opposite direction to that of the mean flow.
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Figure 6.24: Scattered Amplitudes for Case 4 with U(∞) = +0.3

Summary

Modal scattering is a phenomenon that occurs whenever an incident mode

undergoes cut-on cut-off transition under suitable flow conditions and the fre-

quency is sufficiently large. The composite solution discussed here is useful for

computational and industrial purposes at it is especially suited to cases where

the frequency is large, and due to the intricacy of the method the runtime

of the numerical code is very fast, making it ideal for implementation within

industry.

For two dimensional flow, modal scattering to leading order can only occur

when the frequency is very high. Weak scattering is more likely for two dimen-

sional flows and the results presented here show that weak scattering may be

achieved under conditions that appear to be in very good agreement with the

conditions outlined in section 5.3. Leading order scattering for three dimen-
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Figure 6.25: Pressure Contours for Case 4 with U(∞) = −0.3

U0(−∞) < 0 U0(−∞) > 0

n An |Rn| |Tn| |Rn| |Tn|
1 0 0.0129 0.0575 0.0224 0.0161
2 0 0.0373 0.1304 0.0937 0.1072
3 0 0.0997 0.2133 0.4109 0.3151
4 1 0.5346 cut-off 1.3228 cut-off

Table 6.4: Table comparing reflection and transmission coefficients in case 4
for U0(−∞) < 0 and U0(−∞) > 0



Chapter 6: Numerical Results on Modal Scattering 221

sional flow is possible under certain conditions, and these conditions appear

to be in good agreement with those specified in section 5.4.

One interesting feature outlined in all of the cases discussed here is that there

appears to be an exchange of energy between the mean flow and acoustic field

during the scattering process, the like of which has not been observed within

the asymptotic model before. When the mean flow is contracting, acoustic

energy appears to be injected into the acoustic field, and when the mean flow

is diverging, energy is extracted from the acoustic field. When the mean flow

is contracting at the turning point the amplitude of the reflected component

of the cut-on cut-off incident mode is larger than the incident component, and

vice versa when the flow the result of which causes a partial standing wave to

be formed within the duct for the incident cut-on cut-off mode. Similar con-

clusions were presented by Smith, Ovenden and Bowles [57]. Another paper by

Smith, Ovenden and Bowles [58] also looked at the effects of both mean flow

and geometry induced modal scattering. In this second paper it was shown

that acoustic energy is fully conserved during geometry induced scattering

without zero mean flow, but that an energy transfer takes place between the

mean flow and the acoustic field whenever the mean flow is present.

Another interesting case shown in case 2 is the situation where there are two

incident modes that propagate in the same direction and one of the modes

undergoes cut-on cut-off transition. The mode that undergoes cut-on cut-off

transition first causes the opposite running counterpart of the second mode to

be excited, causing a partial standing wave to be formed between the second
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incident mode and it’s opposite running counterpart.

For a given mode that is excited via cut-on cut-off transition, there appears

to be a tendency for the majority of the modal energy to be scattered into the

mode that propagates in the direction that is opposite to that of the mean

flow. The full extent of this relationship can be revealed by a thorough asymp-

totic matching of the inner and outer solutions, which is a desirable extension

to the work presented in this thesis.

At this point it is noted that for a fully irrotational mean flow, acoustic en-

ergy should be completely conserved within the acoustic field, and therefore

no exchange of energy with the mean flow can take place. This result is due

to Cantrell and Hart [10] and Morfey [12]. Therefore the fact that there is an

exchange of energy between mean flow and acoustic field in the results shown

here may be attributed to the fact that irrotational mean flow has only been

imposed to O(ε), and in fact the mean flow velocity profile described here ac-

tually has a small (O(ε2)) vorticity component. Work aimed at understanding

how one might impose a fully irrotational mean flow leading to full energy

conservation within the acoustic field for flow induced scattering is currently

underway.
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Figure 6.26: Scattered Amplitudes for Case 4 with U(∞) = −0.3
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Figure 6.27: Incident Amplitudes for Case 4 with U(∞) = −0.3



Chapter 7

Conclusions and Further

Research

The aim of this thesis has been to obtain a deeper understanding of some of the

phenomena associated with the propagation of acoustic waves within slowly

varying ducts, with the main application being to improve our knowledge of

some mechanisms that are related to noise associated with aircraft turbofan

engines. Due to the significant number of people whose lives it effects, the

understanding of this type of aeroacoustic noise is an important engineering

problem, and detailed knowledge and enhancement of the topics discussed

within this thesis will undoubtedly lead to improvements with regard to the

design and manufacture of quieter turbofan engines.

The first part of this thesis explored the general properties of propagation and

transmission of acoustic modes as modelled using the multiple scales approach.

Chapter 2 discussed the general features of the propagation of acoustic modes

224
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through a lined duct, as modelled using the standard multiple scales approach.

In this analysis, an equation for the modal amplitude of a propagating mode

was deduced by supressing the secular non-parallel terms on the right hand

side, leading to the so-called solvability condition which in turn allowed the

modal amplitude to be found. Under certain flow conditions however this so-

lution may develop a singularity, because the slowly varying assumption that

was made in the initial derivation is no longer valid, and therefore a different

model must be used for the modal amplitude wherever this slowly varying

assumption is invalid. For the hard-walled limit, a turning point analysis may

be performed in order to form the appropriate model for the inner region, and

this solution may be matched to the outer solution to reveal theoretical values

for the reflection and transmission coefficient.

Chapter 3 discussed the turning point analysis in some depth, and one of the

new results contained within this thesis is the matched asymptotic solution

of the so-called double turning point, where the reduced axial wavenumber

behaves quadratically as it approaches the turning point. There are several

features of the double turning point that make it distinct from the single turn-

ing point analysis of Rienstra [49] presented in section 3.1. Firstly, the double

turning point allows for the possibility of partial transmission of an acoustic

mode through the turning point region. Secondly, the reflected component of

the mode will lead to a partial standing wave being formed within the duct,

and it was found that it is not necessary for the mode to be cut-off anywhere

inside the duct in order for a partial reflection of the mode to occur. Also,

in contrast to the single turning point case, the modal amplitude was shown
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to exhibit the properties of Weber type functions within the turning point

region (rather than Airy functions), and the resulting magnitude and phase

of the reflection and transmission coefficients depend upon the behaviour and

nature of the reduced axial wavenumber within the turning point region. The

analysis of the double turning point is a useful result for acoustics and is likely

to occur within other areas of physics. It was also shown that the reflection

and transmission coefficients obtained using this asymptotic analysis appear

to agree well with numerical simulations that utilise a finite difference scheme.

The focus of Chapter 4 was to develop a model for modal propagation in a

slowly varying hard-walled duct of rectangular cross section at large Helmholtz

number. The need for such a solution was influenced by the conclusions of

Ovenden et al [43], who postulated that in order to induce modal scattering

within a slowly varying hard-walled duct the frequency must be sufficiently

high in order for the modes to be sufficiently close to one another to exchange

energy. It was shown in this chapter a modal type solution does in fact exist

for ω ∼ ε−2, and this was achieved by truncating the Poincaré expansions of

the modal amplitude and wavenumbers up to third order, eventually supply-

ing a solvability condition that yielded the modal amplitude. The solution

presented in this chapter may then be analysed further, and it may be possi-

ble to achieve a matched asymptotic solution with the solution governing the

inner region. However due to the complex nature of both the inner solution

and outer solutions this procedure is left as further work.

Chapter 5 then went on to look at the phenomenon of modal scattering of
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acoustic modes within a slowly varying hard walled rectangular duct with

mean flow. The first task used Ovenden et al’s estimate for the magnitude

of the frequency [43], as well as the outer solution developed in chapter 4,

to attempt to describe a model for the scattering of an acoustic mode as an

incident mode undergoes cut-on cut-off transition at some point within the

duct. Although it was shown here that Ovenden et al’s estimate was actually

an overestimate, this analysis was valuable because for the first time the terms

that are responsible for the scattering were revealed. It was also shown that

these scattering terms appeared to be dependent upon a transverse mean flow

being present within the duct, which immediately appeared to explain why the

finite element model shown in [43] appeared to give scattering only in cases

with high Helmholtz number and mean flow.

Following on from the previous analysis, the high frequency argument was

then re-examined. It was shown that a balance between all of the neces-

sary terms in the governing wave equation may be achieved using the scaling

ω ∼ ε−
1
2 , which is much lower than the previous estimate. It was then shown

that simply balancing the necessary terms in the governing wave equation is

not the only scaling consideration that must be undertaken in order to achieve

leading order scattering for each mode. In fact ω ∼ ε−
1
2 actually yields weak

scattering for two dimensional flows, and the reason that the scattering is weak

is because at Helmholtz numbers of this magnitude the modes remain quite

far apart and are unable to exchange sufficient energy to induce scattering

to leading order. Weak scattering in this context actually refers to leading

order scattering for the incident modes alone, and O(ε
1
2 ) scattering for all



Chapter 7: Conclusions and Further Research 228

non-incident modes. An understanding of weak scattering is still very valu-

able, and the equations governing this weak scattering were presented at the

end of 5.3. If one’s aim is to perform an asymptotic matching of the inner and

outer solutions the weak scattering equations may be a good starting point.

The next development of chapter 5 was to construct a model that gave scat-

tering to leading order for every mode. Once again the conditions required

for a balance between all important terms was considered, with the additional

condition that the modes should be sufficiently close to one another to achieve

scattering to leading order. Once these conditions had been ascertained, a

model for leading order scattering within the inner region was obtained.

The equation governing leading order scattering within the inner region ap-

pears to be difficult to solve analytically, and thus a matching with the al-

gebraically complicated outer solution appeared to be quite laborious. It is

also noted that the inner equation is only valid within the small region sur-

rounding the turning point. From a practical point of view, it is desirable to

develop the so-called composite solution, a solution that comprises of both the

inner and outer solutions and is valid throughout the entire duct to leading

order. Given the knowledge obtained from the previous analyses, the final

development of chapter 5 was to find an equation that governed the compos-

ite solution throughout the whole duct, and this was achieved by defining a

stretch variable s = ε−βg(X). Conditions on s were then established by con-

sidering values of β such that all of the terms known to be important within

both the inner and outer region were included, and then once these conditions
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were established the exact form for s was found by comparing it with the

previously found inner equation.

A great advantage of using the multiple scales approach to model aeroacoustic

problems compared to other methods is that it gives a great understanding of

the physics involved within the mechanism under consideration for relatively

simple geometries. For example it was shown in this thesis that flow induced

modal scattering occurs as a result of a non-zero crosswise mean flow com-

ponent which comes about due to the effects of the slowly varying geometry.

This interaction with the mean flow is the source of the scattering, and it is

thanks to the analysis shown in chapter 5 that this is known to be the case.

The physical understanding of the situation revealed by this multiple scales

approach means that the physics of problems that involve more complicated

geometries and flow conditions may be understood.

Chapter 6 then went on to use the composite solution to obtain some nu-

merical results. First of all, the composite model involving the stretched vari-

able s was reformed to give a simpler yet related system involving the axial

variable x, and this system was analysed using a finite difference scheme and

non-reflecting boundary conditions. Results were computed and compared to

the results obtained using standard multiple scales theory. In stark contrast to

the standard multiple scales results, results using the scattering theory showed

that when a mode undergoes cut-on cut-off transition energy is scattered into

neighbouring modes, causing them to be excited and to propagate. Further

to this it was also shown that there is evidence that an exchange of energy
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between the mean flow and the acoustic field is taking place, as the mean

flow appears to inject energy into the acoustic field whenever the mean flow is

contracting (accelerating) at the turning point, and extracts energy from the

acoustic field when it is diverging (slowing) around the vicinity of the turning

point. This striking effect is absent from current multiple scales models of

modal propagation, and it shows that energy is not conserved throughout the

acoustic realm whenever scattering takes place and a mean flow exists inside

the duct. Further analysis of modal scattering, including modal interaction

at even higher frequencies without the effects of mean flow can be found in

a paper by Smith et al [58], where it is shown that when a mean flow is not

present within the duct scattering may still be induced via an even high fre-

quency, and as there is no mean flow present energy is conserved throughout

the acoustic field as one would expect.

Other cases shown within chapter 6 included scattering with two incident

modes, a case which is of a great deal of practical importance as, in most

practical situations, the acoustic realm will consist of several propagating in-

cident modes, and it is important to know what happens in the situation where

one of these modes cuts off. Further cases included a case of weak scattering

and three dimensional scattering, and both of these cases gave results that

appear to agree well with the asymptotic analysis presented in section 5.4.

Some further results for this type of scattering phenomena may be found in

papers by Smith, Ovenden and Bowles [57, 58].

One of the great features of a multiple scales solution is the efficiency of this
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asymptotic approach, meaning that computer simulations of acoustic phenom-

ena can be rapidly resolved, aiding the design of acoustic ducts. Typically the

results presented in this thesis took around 30 seconds to compute using a sin-

gle machine with an Intel Core 2 Duo CPU T7100 @ 1.80GHz processor and

2GB RAM. Such speed in processing results is a very desirable feature of any

simulation that is to be used within industry. The reasons listed here should

hopefully lead to a more widespread adoption of the asymptotic approach to

acoustic noise problems within industry.
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7.1 Further Work

There are many ways to further develop the work presented in this thesis.

Examples of some of these possible studies are detailed below:

Extending the Turning Point Analysis

In chapter 3 the topic of turning points was discussed, looking at how the

behaviour of a cut-on cut-off acoustic mode depends upon the nature of the

reduced axial wavenumber as it approaches the turning point. This thesis

has discussed the cases where σ2 behaves linearly, and a solution where σ2

behaves quadratically was developed here. An interesting extension of the

work presented here would be to understand what happens to the solution

when σ2 behaves as a general higher order polynomial within the vicinity of

the turning point, or as a general function.

Full Comparison with the Finite Element Model

The results presented here showed that acoustic scattering may indeed be

modelled using the multiple scales as well as the finite difference approach.

However although some comparisons between the results have been made, up

to this point there are as yet no direct comparisons between results using

the multiple scales and results obtained using the finite element approach as

in [54, 55, 43]. Thus it would be useful to make a direct comparison between

the results obtained in chapter 6 with those obtained using the finite element

approach.
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Extending the Analysis to More Complex Geome-

tries

The results for modal scattering presented within this thesis assumed the case

of a slowly varying rectangular ducts. For industrial applications it would be

more realistic to extend the model presented here to accommodate circular,

annular and elliptic ducts or even ducts of arbitrary cross section. Another

interesting and useful extension from a geometrical perspective would be to

extend Brambley and Peake’s [8] work on strongly curved ducts.

Further Development of the Asymptotic Analysis

Chapter 4 described the features of the outer solution in the case where the

frequency was very large, and chapter 5 derived a set of equations governing

both weak and leading order modal scattering. Due to the complicated na-

ture of the inner solution these solutions were not asymptotically matched and

instead the more practical composite solution was developed to yield some nu-

merical results. The composite solution was run for several cases, and from the

numerics it was possible to calculate reflection and transmission coefficients.

A comparison between these numerically obtained coefficients and theoretical

values may be obtained via an asymptotic matching of the inner and outer

solutions, and if an asymptotic matching can be done then it would be very

useful to compare these numerical results to those obtained by the theory.

Another very interesting and important follow up from this would be to con-

struct a full energy analysis of the asymptotic solution (similar to that de-
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scribed in chapter 6), and compare this with the numerical results. This type

of energy analysis would also be useful in developing a fuller understanding

of how energy between the mean flow and acoustic field is exchanged. It was

noted at the end of chapter 6 that for a fully irrotational mean flow, acous-

tic energy should be completely conserved within the acoustic field. This is

resulting from studies by Cantrell and Hart [10] and Morfey [12]. The fact

that the results presented in this thesis show an interaction between the mean

flow and the acoustic field may be attributed to the fact that irrotationality

has only been imposed up to O(ε). One feature that does not appear to be

present within the current analysis is a mechanism by which energy may be

fully conserved within the acoustic field. Irrotational mean flow to O(ε3) may

be imposed by allowing the second order component of the axial mean flow

to take the form U2(X, z) = 1
2W̃ ′

1(X)z2, but this term has not yet shown to

play a significant role within the analysis because this term occurs at O(ε2ω2)

whereas the scattering term is O(εω2). A possible way to include this term

can be made via the following ansatz for the inner region:

φ = χ(ξ)ψ(y, z; X) exp

(
− i

ε

∫ X

Xt

ωU

C2 − U2
dX ′

)
,

where U = U0(X) + ε2U2(X, z) and C = C0(X) + ε2C2(X, z). However al-

though this might seem a feasible attempt at including the required U2 term,

an ansatz of this form fails to satisfy the boundary condition at the duct walls,

and actually leads to a scattering term that is active even when the walls of

the duct are parallel far from the turning point, which is clearly unphysical.

Therefore, a much more general form for the variation in X within the inner

region must be included, and this should be matched with the outer solution
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presented in chapter 4. Attempts to understand conservation of acoustic en-

ergy for flow induced modal scattering in a fully irrotational mean flow are

part of an ongoing study.

It would also be useful to determine in what regimes modal scattering occurs

under conditions other than when a mode undergoes cut-on cut-off transition.

Extending the Study to Include Lined Ducts

The results presented here for the double turning point and modal scattering

assumed a completely hard walled duct. An interesting extension of the work

presented here would be to analyse whether any similar effects occur within

a ducted that is lined with an impedance wall. In 2002 Ovenden showed that

if one considers the action of a single mode for ω ∼ 1 as |σ| << 1 then a

partial reflection of modal energy occurs within the duct [42], similar to the

type of reflection that occurs for a single turning point in the case of hard

walls. The aim then would be to take the work of Ovenden and extend this

to include scattering effects, and such a model would then be very useful in

industrial applications where ducts ducts are typically lined with a wall of finite

impedance. It should also be noted that as soon as the model incorporates a

finite acoustic impedance then one must use a non-trivial acoustic boundary

condition at the duct wall, which would normally be modelled using Myers’

condition. However it is now known that the Myers’ condition leads to an

ill-posed problem in the time domain giving rise to surface waves that are not

observed in reality and one must now use one of the corrected forms of the

Myers condition presented by Rienstra and Brambley [53, 7].
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Incorporating the Effects of Swirling Mean Flow

Throughout this thesis the model has assumed that both the vortical and

swirling component of the mean flow is so small that it may be neglected within

the model. Although the assumption of irrotational mean flow is valid within

the inlet duct, it is not valid within the by-pass duct as the effects of swirl

must be taken into consideration within this region. Strongly swirling flow also

occurs within the gap between the fan and the stator vanes (see the turbofan

engine sketch given in figure 1.2). Thus a further extension of the work

presented here that is of practical importance is to study scattering of acoustic

modes in the case when a swirling component is taken into consideration.

Cooper and Peake [15, 13] have already successfully used the multiple scales

approach to model the propagation and cut-on cut-off transition of acoustic

modes within an acoustic duct and swirling mean flow, and the aim then would

be to extend their work to include modal scattering.
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[2] C. Bailly and D. Juvé. Numerical Solution of Acoustic Propagation Prob-

lems Using Linearized Euler Equations. AIAA Journal, 38:22–29, January

2000.

[3] Jean-Pierre Berenger. A perfectly matched layer for the absorption of

electromagnetic waves. Journal of Computational Physics, 114(2):185 –

200, 1994.

[4] David T. Blackstock. Fundementals of Physical Acoustics. Wiley-

Interscience, 1st edition, 2000.

[5] Jian bo XIE, Qi dou ZHOU, and Bin FANG. Broadband rotor noise

prediction based on a new frequency-domain foumulation. Journal of

Hydrodynamics, Ser. B, 22(3):387 – 392, 2010.

[6] E. Brambley. Low-frequency acoustic reflection at a hardsoft lining tran-

sition in a cylindrical duct with uniform flow. Journal of Engineering

Mathematics, 65:345–354, 2009. 10.1007/s10665-009-9291-1.

237



Bibliography 238

[7] E. J. Brambley. A well-posed boundary condition for acoustic liners in

straight ducts with flow. AIAA Journal 0001-1452, 49:1272–1282, 2011.

[8] E. J. Brambley and N. Peake. Sound transmission in strongly curved

slowly varying cylindrical ducts with flow. Journal of Fluid Mechanics,

596:387–412, 2008.

[9] E. J. Brambley and N. Peake. Stability and acoustic scattering in a

cylindrical thin shell containing compressible mean flow. Journal of Fluid

Mechanics, 602:403–426, 2008.

[10] R. H. Cantrell and R. W. Hart. Interaction between sound and flow

in acoustic cavities: Mass, momentum, and energy considerations. The

Journal of the Acoustical Society of America, 36(4):697–706, 1964.

[11] X. X. Chen, X. Zhang, C. L. Morfey, and P. A. Nelson. A numerical

method for computation of sound radiation from an unflanged duct. Jour-

nal of Sound and Vibration, 270(3):573 – 586, 2004.

[12] C.L. and Morfey. Acoustic energy in non-uniform flows. Journal of Sound

and Vibration, 14(2):159 – 170, 1971.

[13] A. J. Cooper and N. Peake. Trapped acoustic modes in aeroengine intakes

with swirling flow. Journal of Fluid Mechanics, 419:151–175, 2000.

[14] A. J. Cooper and N. Peake. Acoustic propagation in ducts with elliptic

cross section. Journal of Sound and Vibration, 243:381–401, 2001.

[15] A. J. Cooper and N. Peake. Propagation of unsteady disturbances in a

slowly varying duct with mean swirling flow. Journal of Fluid Mechanics,

445:207–234, 2001.



Bibliography 239

[16] W. Eversman. Numerical experiments on acoustic reciprocity in com-

pressible potential flows in ducts. Journal of Sound and Vibration,

246(1):97 – 113, 2001.

[17] W. Eversman. A reverse flow theorem and acoustic reciprocity in com-

pressible potential flows in ducts. Journal of Sound and Vibration,

246(1):71 – 95, 2001.

[18] W. Eversman and R. J. Beckemeyer. Transmission of sound in ducts with

thin shear layers - convergence to the uniform flow case. J. Acoust. Soc.

Am., 52:216–220, 1972.

[19] Jonathan B. Freund. Noise sources in a low-reynolds-number turbulent

jet at mach 0.9. Journal of Fluid Mechanics, 438:277–305, 2001.

[20] Dan Givoli. Non-reflecting boundary conditions. J. Comput. Phys., 94:1–

29, May 1991.

[21] D. O. Gough. An elementary introduction to the wkbj approximation.

Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, 180:1–13, 2007.

[22] J. C. Hardin and S. L. Lamkin. Aeroacoustic computation of cylinder

wake flow. AIAA Journal, 22:51–57, 1984.

[23] J. C. Hardin and S. L. Lamkin. Computational aeroacoustics - Present

status and future promise. In G. Comte-Bellot & J. E. Ffowcs Williams,

editor, Aero- and Hydro-Acoustics, pages 253–259, 1986.

[24] K. U. Ingard. Influence of fluid motion past a plane boundary on sound

reflection, absorption and transmission. J. Acoust. Soc. Am., 31:1035–

1036, 1959.



Bibliography 240

[25] Acheson D. J. Elementary Fluid Dynamics: Oxford Applied Mathematics

and Computing Science Series. Clarendon Press, 1990.

[26] Tyler J.M. and Sofrin T.G. Axial flow compressor noise studies. SAE

Transactions, 70:309–332, 1962.

[27] P. Britchford Joseph, K.E., and Pierre Loheac. A model of fan broadband

noise due to rotor-stator interaction. pages 45–54. 5th European Confer-

ence on Turbomachinery Fluid Dynamics and Thermodynamics, Prague,

Czech Republic, 2003.

[28] Batchelor G. K. An Introduction to Fluid Dynamics. Cambridge Univer-

sity Press, 2000.

[29] J D Kester and G F Pickett. Application of theoretical acoustics to the

reduction of jet engine noise. J. Phys. D: Appl. Phys., 5, 1972.

[30] Karl D. Kryter. The handbook of hearing and the effects of noise: physi-

ology, psychology, and public health. Emerald Group Publishing Limited;

1 edition, 1994.

[31] M. J. Lighthill. On sound generated aerodynamically: I general theory.

Proc. R. Soc. Lond. A, 211:564–587, 1952.

[32] Ching. Y. Loh. On a non-reflecting boundary condition for hyperbolic

conservation laws. American Institue of Aeronautics and Aeroacoustics,

2003. Paper AIAA-2003-3975 of the 9th AIAA/CEAS Aeroacoustics Con-

ference, 12-14 May 2003.

[33] P. M. Morse. The transmission of sound inside pipes. J. Acoust. Soc.

Am., 11:205–210, 1939.



Bibliography 241

[34] P. M. Morse and K. U. Ingard. Theoretical Acoustics. McGraw-Hill, 1968.

[35] M. K. Myers. On the acoustic boundary condition in the presence of flow.

Journal of Sound and Vibration, 71:429–434, 1980.

[36] M.K. Myers. An exact energy corollary for homentropic flow. Journal of

Sound and Vibration, 109(2):277 – 284, 1986.

[37] A. H. Nayfeh, D. P. Telionis, and J. E. Kaiser. Acoustics of aircraft

engine-duct systems. AIAA Journal, 13:130–153, 1975.

[38] A. H. Nayfeh, D. P. Telionis, and S. G. Lekoudis. Acoustic propagation

in ducts with varying cross sections and sheared mean flow. Progress in

aeronautics and astronautics: Aeroacoustics: Jet and combustion noise;

duct acoustics, 37:331–351, 1975.

[39] Ali Hasan Nayfeh. Introduction to Perturbation Techniques. John Wiley

and Sons, 1981.

[40] Ali Hasan Nayfeh and Demetri P. Telionis. Acoustic propagation in ducts

with varying cross sections. J. Acoust. Soc. Am., 53:1654–1661, 1973.

[41] The UK Department of Transport. The future of air transport - white

paper and the civil aviation bill. 2003.

[42] N. C. Ovenden. Near cut-on/cut-off transition in lined ducts with flow.

2002. Paper AIAA 2002-2445 of the Eighth AIAA/CEAS Aeroacoustics

Conference in Breckenridge, CO, 17-19 June, 2002.

[43] N C Ovenden, W Eversman, and S W Rienstra. Cut-on cut-off transi-

tion in flow ducts: comparing multiple-scales and finite-element solutions.



Bibliography 242

2004. Paper AIAA-2004-2945 of the 10th AIAA/CEAS Aeroacoustics

Conference, 10-12 May 2004.

[44] N.C. Ovenden. A uniformly valid multiple scales solution for cut-on cut-

off transition of sound in flow ducts. Journal of Sound and Vibration,

286(1-2):403 – 416, 2005.

[45] W. H. Press, S. A. Teukolosky, W. T. Vetterling, and B. P. Flannery.

Numerical Recipies in C++, The Art of Scientific Computing. Cambridge

University Press, 2001.

[46] C. J. F. Riddlers. A new algorithm for computing a single root of a

real continuous function. IEEE Transactions on Circuits and Systems,

26:979–980, 1979.

[47] S. W. Rienstra. Sound transmission in slowly varying circular and annular

lined ducts with flow. Journal of Fluid Mechanics, 380:279–296, 1999.

[48] S. W. Rienstra. Cut-on, cut-off transition of sound in slowly varying flow

ducts. contribution to the david crighton memorial issue of aerotechnica

missili e spazio. Journal of the Associazione Italiana di Aeronautica e

Astronautica AIDAA, 79:93–96, 2000.

[49] S. W. Rienstra. Sound propagation in slowly varing lined flow ducts of

arbitrary cross section. Journal of Fluid Mechanics, 495:157–173, 2003.

[50] S. W. Rienstra. Impedance models in time domain including the ex-

tended helmholtz resonator model. American Institue of Aeronautics and

Aeroacoustics, 2006. Paper AIAA-2006-2686 of the 12th AIAA/CEAS

Aeroacoustics Conference, 9-10 May 2006, Cambridge, MA, USA.



Bibliography 243

[51] Sjoerd Rienstra. Acoustic scattering at a hardsoft lining transition in

a flow duct. Journal of Engineering Mathematics, 59:451–475, 2007.

10.1007/s10665-007-9193-z.

[52] Sjoerd W. Rienstra. A classification of duct modes based on surface waves.

Wave Motion, 37(2):119 – 135, 2003.

[53] SJOERD W. RIENSTRA and MIRELA DARAU. Boundary-layer thick-

ness effects of the hydrodynamic instability along an impedance wall.

Journal of Fluid Mechanics, 671:559–573, 2011.

[54] I. Danda Roy and W. Eversman. Improved finite element modeling of

the turbofan engine inlet radiation problem. Journal of Vibration and

Acoustics, 117(1):109–115, 1995.

[55] Indranil Danda Roy and Walter Eversman. Far-field calculations for tur-

bofan noise. AIAA Journal, 39:2255–2261, 2001.

[56] P. Sijtsma and J.B.H.M Schulten. Wake modelling accuracy requirements

for prediction of rotor wake-stator interaction noise. 2003. Paper AIAA-

2003-3138 of the 9th AIAA/CEAS Aeroacoustics Conference and Exhibit

12 - 14 May 2003.

[57] A. F. Smith, N. C. Ovenden, and R. I. Bowles. Flow induced scattering

of acoustic modes in slowly varying ducts. Paper AIAA-2010-3893 of the

16th AIAA/CEAS Aeroacoustics Conference, 7-9 June 2010, Stockholm,

Sweden.

[58] A. F. Smith, N. C. Ovenden, and R. I. Bowles. Flow and geometry



Bibliography 244

induced scattering of high frequency acoustic modes in ducts (accepted

for publication). Wave Motion, 2011.

[59] M. J. T. Smith. Aircraft Noise. Cambridge University Press, 1989.

[60] B. J. Tester. Some aspects of sound attenuation in lined ducts containing

invicid mean flows with boundary layers. Journal of Sound and Vibration,

28:217–245, 1973.

[61] G. N. Watson. The Theory of Bessel Functions. Cambridge University

Press, 1966.


	I Propagation & Transmission of Acoustic Modes
	Introduction
	The Problem of Aeroacoustic Noise
	Literature Review
	Mathematical Framework
	Alternative Strategies and Methods
	Outline of Thesis

	Modal Propagation Within Circular & Annular Ducts
	Turning Point Analysis
	Single Turning Point Analysis
	Double Turning Point Analysis

	Propagation of Acoustic Modes at High Frequency
	The Modal Solution for -2


	II Flow Induced Scattering of Acoustic Modes
	Asymptotic Analysis of Modal Scattering
	Formulation Using Ovenden et al's Assumptions for the Helmholtz Number
	Refining the Model Using Arbitrary Helmholtz Number Scaling
	Construction of a Model for Weak Modal Scattering
	Construction of a Model for Leading Order Modal Scattering
	The Composite Equation

	Numerical Results on Modal Scattering
	Computational Methods
	Results Processing

	Results

	Conclusions and Further Research
	Further Work

	Bibliography


