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Abstract 
Sterol regulatory element binding proteins (SREBPs) are transcription factors that 

regulate the expression of genes involved in fatty acid and cholesterol biosynthesis. It 

has been established that SREBPs are regulated downstream of the PI3-Kinase/Akt/ 

mTORC1 signalling axis, a pathway that is frequently hyper-activated in cancer. 

SREBP target genes are upregulated in some forms of human cancer and a role for lipid 

metabolism in tumourigenesis has been suggested. 

Glioblastoma multiforme (GBM) is a cancer type that is associated with hyperactivation 

of the PI3-kinase/Akt signalling pathway and frequently displays poorly oxygenated 

(hypoxic) regions. SREBP1 has been implicated in the tumourigenic potential of this 

cancer type. However, the exact role of SREBPs in tumourigenesis is not known. In 

oder to investigate the SREBP-transcriptional response in cancer cells, a gene 

expression microarry analysis was carried out. It was found that SREBPs regulate genes 

involved in a variety of cellular processes including lipid metabolism, cell cycle 

regulation, redox regulation and cellular stress response. In addition, the role of 

SREBPs in lipid metabolism in hypoxia was investigated. It was found that hypoxia 

leads to distinct changes in the expression of different SREBP isoforms and their target 

genes and is associated with a decrease in pyruvate-dependent lipid synthesis and 

increased lipid storage. 

 

SREBPs are regulated downstream of the Akt/mTORC1 pathway, although the exact 

mechanism of this regulation remains to be elucidated. Possible mechanisms by which 

Akt and mTORC1 regulate SREBPs were investigated. It was found that inhibition of 

mTORC1 differentially affects the expression of individual SREBP isoforms. The 

results described in this thesis also show that mTORC1 modulates the transcriptional 

activity of mature SREBP and may regulate its stability in a GSK3-independent 

manner.  
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Chapter 1. Introduction 
1.1 Cellular metabolism and cancer 
At a very basic level, cancer can be described as uncontrolled cellular proliferation. In 

order to sustain increased proliferation rates, cells require energy in the form of ATP 

and must synthesise macromolecules in the form of nucleotides, proteins, fatty acids 

and membrane lipids. Synthesis of these molecules occurs through several key 

metabolic pathways, including glycolysis (conversion of glucose to pyruvate and 

lactate), the tricarboxylic acid cycle (TCA cycle: generation of metabolic precursors and 

electrons in the form of NADH and FADH2), oxidative phosphorylation (OXPHOS: 

generation of ATP), the pentose phosphate pathway (PPP: oxidative and non-oxidative 

for the generation of NADPH and riboses for nucleotide synthesis), lipid synthesis 

(synthesis of fatty acids and sterols) and fatty acid β-oxidation (generation of ATP by 

the breakdown of fatty acids). It stands to reason, therefore, that cellular metabolism 

and proliferation are intimately linked and that cancer cells require rapid nutrient uptake 

and energy production in order to sustain high rates of proliferation. 

 

The observation that cancer cells exhibit an altered metabolism from non-transformed 

cells was made decades ago by the German biochemist Otto Warburg. In his pivotal 

paper published in 1956 he described the discovery that cancer cells preferentially 

utilise the glycolytic pathway to generate energy, even in the presence of an ample 

supply of oxygen (Warburg, 1956). The conversion of glucose to lactate in the presence 

of oxygen has been termed aerobic glycolysis. Aerobic glycolysis is therefore 

accompanied by increased glucose uptake and lactate secretion. This shift to aerobic 

glycolysis is a paradox, as glycolysis is a much less efficient pathway for producing 

cellular energy in the form of ATP than oxidative phosphorylation. This phenomenon 

has since been termed the “Warburg effect”. It is now also clear that alterations in 

cancer cell metabolism are required in order to facilitate the survival of cancer cells in 

less than favourable tumour microenvironments. Altered tumour metabolism is now 

considered an emerging hallmark of cancer and is included in the “revised” edition of 

the seminal Hallmarks of Cancer paper (Hanahan and Weinberg, 2000; Hanahan and 

Weinberg, 2011).  
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1.2 Lipid metabolism 
Fatty acids (FA) consist of a long hydrocarbon chain and a terminal carboxylate group. 

Fatty acids play a major role in the function of the cell. They are the building blocks for 

phospholipids, the main component of membranes. In addition, many proteins are 

covalently modified by FA, resulting in the targeting of these proteins to the membrane. 

FA are also used as energy stores in the form of triacylglycerols (TAGs). Finally, FA 

derivatives are precursors for steroid hormone synthesis and lipid second messengers. 

The synthesis and degradation of fatty acids therefore represent key cellular processes 

that must be tightly regulated.  

 

Cellular lipids are either acquired from the diet or from carbohydrate-derived fatty acids 

resulting from de novo synthesis. In most adult tissues de novo lipid synthesis and 

expression of enzymes required for lipid synthesis is low, as most tissues receive the 

majority of their fatty acids from the circulation (Swinnen et al., 2006). Cells store 

excess fatty acids for subsequent breakdown and energy release (a process known as 

lipolysis) as neutral lipids, predominantly in the form of triacylglycerides (TAGs) and 

cholesterol-esters. These neutral lipids are stored in ubiquitous organelles called lipid 

droplets (LDs), which consist of a neutral lipid core surrounded by a phospholipid 

monolayer (Farese and Walther, 2009). Although the mechanism of LD biogenesis, 

catabolism and function are not fully understood, it is thought that sequestration of 

excess FA in these organelles protects cells from the toxic effects of excess amounts of 

lipids (Farese and Walther, 2009; Listenberger et al., 2003). 

 

FA degradation is essentially the reverse of lipid synthesis. Lipid synthesis takes place 

in the cytosol, whilst FA β-oxidation occurs in the mitochondria. Interestingly, the 

expression of many genes encoding enzymes required for FA and cholesterol 

biosynthesis are regulated by a small family of transcription factors, the sterol 

regulatory element binding proteins (SREBPs, discussed in section 1.3) (Figure 1.1) 

(Horton, 2002). 

 

FA are produced from the repeated condensation of 2-carbon units via a multistep 

process. The acetyl groups for this reaction are provided by cytoplasmic acetyl-
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Coenzyme A (acetyl-CoA). The TCA cycle intermediate citrate is the main source of 

cytoplasmic acetyl-CoA. Citrate is exported from the mitochondria by citrate 

transporters and hydrolysed to acetyl-CoA and oxaloacetate, a reaction catalysed by the 

enzyme ATP-citrate lyase (ACLY). Acetyl-CoA is then used for biosynthetic processes, 

whilst oxaloacetate can re-enter the TCA cycle. Since the mitochondrial membrane is 

impermeable to oxaloacetate it is first converted into malate via malate dehydrogenase 1 

(MDH1) before being decarboxylated to pyruvate by malic enzyme (ME). This reaction 

produces the reducing power required for lipid synthesis in the form of NADPH. 

Acetyl-CoA can also be synthesised from cytosolic acetate by the enzyme ACSS2 

(Yoshii et al., 2009).  

 

The activation of acetyl-CoA by carboxylation to form malanoyl-CoA is the first and 

committed step in FA synthesis. This reaction is catalysed by the enzyme acetyl-CoA 

carboxylase (ACC) and the activity of ACC is highly regulated. Two isoforms of ACC 

(ACACA and ACACAB) have been described and are thought to differ in their ability 

to be activated by citrate (Locke et al., 2008). In addition, it is thought that ACACA and 

ACACB play distinct roles in FA synthesis and degradation, respectively (Munday, 

2002). Malanoyl-CoA is then converted through a series of condensation reactions 

catalysed by the enzyme fatty acid synthase (FASN) to the 16 carbon saturated FA 

(SFA) palmitate. In higher order eukaryotes, FASN is a multi-component enzyme 

complex joined in a single polypeptide chain. FASN is expressed at low levels in most 

adult tissues in keeping with low rates of de novo lipid synthesis.  

 

Desaturation of FA to yield monounsaturated FA (MUFA) significantly alters the 

physical properties of long-chain FA and is an important determinant of membrane 

fluidity. The balance between SFA and MUFA is tightly regulated. Key enzymes 

involved in the regulation of the SFA:MUFA ratio are the stearoyl-CoA desaturases 

(SCD). Two isoforms of this enzyme have been reported in humans: SCD1 and SCD5 

(Wang et al., 2005; Zhang et al., 1999). SCD1 (simply referred to as SCD) is the best-

characterised (Ntambi and Miyazaki, 2004). SCD is an endoplasmic reticulum (ER) 

resident enzyme and is a delta 9 desaturase, catalysing the formation of a double bond at 

the ninth position (C-9) from the carboxyl end of the FA. This reaction generates 
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palmitoleoyl-CoA from palmityl-CoA and oleoyl-CoA from stearoyl-CoA. In humans, 

SCD is ubiquitously expressed but the brain, liver, heart and lungs exhibit elevated SCD 

expression levels (Zhang et al., 1999). Interestingly, mammals lack enzymes capable of 

introducing double bonds beyond the C-9 in the FA chain. Therefore FA with double 

bonds at C-12 or C-15, such as linoleate and linolenate, respectively, are termed 

essential FA and must be supplied in the diet.  

 

Acetyl-CoA can also be used to synthesise cholesterol. Cholesterol is an important 

component of biological membranes and is used as a precursor for the synthesis of 

steroid hormones. Acetyl-CoA is condensed with acetoacetyl-CoA to form 3-hydroxy-

3-methylglutaryl-CoA (HMG-CoA), a reaction catalysed by the enzyme HMG-CoA 

synthase 1 (HMGCS1). HMG-CoA is the substrate for HMG-CoA reductase 

(HMGCR), the enzyme that catalyses the production of mevalonate. This reaction is the 

rate-limiting step for cholesterol synthesis and the activity of HMGCR is highly 

regulated. HMGCR is a transmembrane protein and is anchored to the ER membrane. It 

contains a sterol-sensing domain (SSD) and is targeted for degradation by the 

proteasome pathway following accumulation of certain sterols (Goldstein et al., 2006a).   

 

It can be concluded that lipid synthesis therefore represents a coordinated series of 

reactions relying on intermediates and energy produced by more than one cellular 

metabolic pathway. Lipid synthesis requires the metabolites of the TCA cycle and the 

reducing power of the pentose phosphate pathway (PPP), as well as ATP supplied by 

glycolysis and oxidative phosphorylation (OXPHOS) (see Figure 1.1). 

 

As previously mentioned, the process of FA degradation for the release of energy in the 

form of ATP is known as FA β-oxidation. The first step in FA β-oxidation is the 

transport of FA across the mitochondrial membrane. Free FA (FFA) are first activated 

in the cytoplasm by coupling to CoA. However, the mitochondrial membrane is 

impermeable to this large molecule. In order to facilitate transport into the 

mitochondrial matrix, the acyl chain must first be transferred to carnitine by carnitine 

palmitoyltransferase 1 (CPT1). The activity of this enzyme is inhibited by the FA 

synthesis intermediate malonyl-CoA, thereby ensuring that FA β-oxidation and lipid 
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synthesis are mutually exclusive reactions. As previously mentioned, the synthesis of 

malonyl-CoA is catalysed by ACC and ACACB is considered to be the main isoform 

regulating FA β-oxidation (Munday, 2002). Following entry into the mitochondria, 

acyl-chains are coupled to CoA and degraded by oxidation and hydration, thereby 

releasing acetyl-CoA and producing energy in the form of NADPH and FADH2. The 

expression of a large number of genes encoding enzymes required for FA β-oxidation, 

including CPT1, is regulated by the peroxisome proliferator-activated receptor α 

(PPARα) transcription factor (Mandard et al., 2004).  

 

 

 

 

 

Figure 1-1: SREBPs regulate genes involved in lipid synthesis  
Carbohydrate-derived lipid synthesis is regulated by the family of SREBP transcription factors. 
Glucose is converted into pyruvate which enters the TCA cycle. Mitochondrial citrate is exported 
into the cytoplasm where it is converted into acetyl-CoA by ACLY. The conversion of acetyl-CoA 
into malonyl-CoA is catalysed by ACC and is the rate-limiting step in fatty acid biosynthesis. 
Malonyl-CoA can also directed into the cholesterol biosynthesis pathway, where the rate-limiting 
step is the conversion of HMGCoA into mevalonate, regulated by HMGCR. Lipid synthesis 
requires the metabolites of the TCA cycle and the reducing power of the pentose phosphate 
pathway, as well as ATP supplied by glycolysis and oxidative phosphorylation. All of the 
enzymes shown are regulated at the transcriptional level by SREBPs.     
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1.2.1 Lipid metabolism and cancer 

Glucose-derived de novo lipid synthesis is mainly restricted to the liver and adipose 

tissue in adults, but appears to be reactivated in many tumours despite availability of 

external lipids (Baron et al., 2004; Menendez and Lupu, 2007; Swinnen et al., 2006). 

The reason for this remains unclear, although it has been postulated that lipid synthesis 

may act as a carbon sink for the conversion of excess pyruvate that results from 

increased glycolytic flux (Hatzivassiliou et al., 2005). Furthermore, increased rates of 

lipid synthesis provide the cell with the phospholipids required for membrane 

biogenesis and synthesis of cholesterol and phospholipids is coordinated with the cell 

cycle (Igal, 2010).  

 

There is substantial evidence for increased rates of de novo lipid synthesis in cancer 

cells, most notably reflected by the increased expression of FASN. Indeed, FASN was 

originally identified as a molecule associated with poor prognosis in breast cancer 

patients (Kuhajda et al., 1994). Furthermore, upregulation of FASN has been observed 

in a large variety of other human cancers, including colorectal, prostate, bladder, ovary, 

oesophagus, stomach, and lung (Menendez and Lupu, 2007). In addition, coordinated 

overexpression of FASN, ACC and ACLY has been observed in hepatocellular 

carcinoma (Yahagi et al., 2005). The increased expression of ACLY also correlates with 

decreased survival rates in patients with glioma (Beckner et al., 2009) and inhibition of 

ACLY can decrease tumour growth and prevent tumour cell differentiation in a variety 

of human cancer cell lines (Bauer et al., 2005; Hatzivassiliou et al., 2005). Upregulation 

of ACC has also been demonstrated in breast, (Yoon et al., 2007) as well as liver (see 

above) and prostate cancer cells (Swinnen et al., 2000b).  

 

A comprehensive lipidomics study in breast cancer patients found that products of de 

novo FA synthesis incorporated into membrane phospholipids were increased in 

tumours and that this increase associated with poor patient survival (Hilvo et al., 2011). 

In addition, silencing of several genes involved in lipid synthesis (including FASN, 

SCD and ACACA) resulted in changes to membrane phospholipid composition as well 

as decreased cell viability in breast cancer cell lines compared with non-malignant cells 

(Hilvo et al., 2011). Another report using a mass-spectrometry phospholipid approach 
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found that increased FASN expression in tumours correlated with increased amounts of 

SFA and MUFA in membrane lipids, whilst levels of polyunsaturated FA (PUFA) were 

reduced (Rysman et al., 2010). This again supports the idea that tumour cells increase 

de novo lipogenesis, whilst decreasing lipid uptake. Interestingly, it was also found that 

increased generation of SFAs and MUFAs through increased lipid de novo lipid 

synthesis reduced levels of peroxidated lipid species in tumour cells, and that increased 

levels of PUFAs rendered the cancer cells susceptible to oxidative-stress induced cell 

death. Therefore, the lipogenic phenotype in cancer cells may also protect them from 

the damaging effects of lipid peroxidation (Rysman et al., 2010).  

 

Additionally, other components of the lipid metabolic pathways have also been 

implicated in cancer. In keeping with the increased lipid synthesis observed in cancer 

cells in comparison to non-transformed cells, SCD is also upregulated in a number of 

cancer types, including breast, lung, renal, prostate, colon, bladder and leukaemia (Igal, 

2010). However, a study in prostate cancer cells suggests that SCD expression is lost in 

this cancer type (Moore et al., 2005). In addition, there is evidence for increased 

amounts of MUFA in cancer cells and cohort studies show that an imbalance of the 

SFA:MUFA ratio correlates with cancer incidence (Igal, 2010). Interestingly, inhibition 

of SCD in breast cancer cells resulted in the activation of AMP-kinase (AMPK) and 

subsequent inactivation of ACC and a decrease in lipid synthesis (Scaglia et al., 2009). 

It is proposed that overexpression of SCD in cancer represents a mechanism to prevent 

inhibition of ACC by removal of SFAs, inhibitors of ACC activity (Igal, 2010). 

Increased conversion of SFAs to MUFAs by overexpression of SCD may also protect 

cancer cells from lipotoxicity as a result of increased lipid synthesis (Listenberger et al., 

2003). Furthermore, increased levels of lipid droplets have been reported in cancer cells 

(Accioly et al., 2008; Bozza and Viola, 2010). Although their functional significance in 

cancer remains unclear, increased lipid droplet formation in cancer is in keeping with 

the idea of protecting cells from lipotoxcity. In addition, it was found that 

monoacylglycerol lipase (MAGL), the enzyme responsible for FA mobilisation from 

lipid stores, is overexpressed in aggressive human cancer cells and primary tumours 

(Nomura et al., 2010). This implicates lipolysis in tumour progression. In addition, the 

oxidative arm of the PPP has been linked to cancer progression. The tumour suppressor 
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p53 binds the rate-limiting enzyme of the PPP, glucose-6-phosphate dehydrogenase 

(G6PD) (Jiang et al., 2011). Active p53 therefore prevents G6PD activity, subsequently 

reducing glucose consumption, NADPH production and lipid biosynthesis. Mutations in 

p53 prevent its suppression of G6PD, resulting in enhanced glucose flux through the 

PPP (Jiang et al., 2011).  

 

The coordinated regulation of biosynthetic pathways in cancer cells is regulated by a 

number of signalling networks. Mutations in various oncogenes and tumour suppressors 

within these regulatory networks contribute to the ability of cancer cells to increase 

aerobic glycolysis and lipid biosynthesis (Deberardinis et al., 2008). One of the major 

signalling pathways that regulates glycolysis and lipid metabolism is the 

PI3K/Akt/mTORC1 pathway. Indeed, Akt is considered to be the major integrator of 

signals that control lipid metabolism, cell proliferation, survival and oncogenic 

transformation (Deberardinis et al., 2008). This signalling pathway and its contribution 

to cancer is discussed in more detail in section 1.4.  

 

 

1.3 Sterol regulatory element binding proteins 
Sterol regulatory element binding proteins (SREBPs) belong to the family of basic 

helix-loop-helix-leucine zipper (bHLH-Zip) transcription factors (Bengoecheaalonso 

and Ericsson, 2007). Three SREBP isoforms were originally identified by cDNA 

cloning: SREBP1a, SREBP1c and SREBP2 (Hua et al., 1993; Yokoyama et al., 1993). 

The SREBF1 gene, which is located on chromosome 17, encodes for both SREBP1a 

and SREBP1c (Hua et al., 1995). The rat SREBP1c homologue is occasionally referred 

to as adipocyte determination and differentiation factor-1 (ADD1) (Eberle et al., 2004). 

Alternative transcription start sites result in the production of the two major SREBP1 

isoforms, which differ only in their first exons (see Figure 1.2) (Bengoecheaalonso and 

Ericsson, 2007). Additional splice variants have also been reported, although it is likely 

that they represent only minor forms ((Nohturfft and Zhang, 2009) and references 

therein). The SREBF2 gene encodes for SREBP2 and is located on chromosome 22 

(Hua et al., 1995). All three proteins share a common domain structure: an N-terminal 

transactivation domain, a DNA-binding domain, two transmembrane domains and a C-
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terminal regulatory domain (Bengoecheaalonso and Ericsson, 2007; Sato et al., 1994) 

(see Figure 1.2). SREBPs are highly conserved throughout evolution, with homologues 

being identified in Schizosaccharomyces pombe, Cryptococcus neoformans, Drosophila 

melanogaster, and Caenorhabditis elegans (Nohturfft and Zhang, 2009). Furthermore, 

SREBP homologues have been predicted across all eukarya (Osborne and Espenshade, 

2009).  

 

 

 

 
 
 
 

Figure 1-2 Domain structure of SREBP proteins. 
Domain structure of full-length SREBP proteins showing the N-terminal mature SREBP and the 
C-terminal regulatory region. The two transmembrane segments are coloured black. The 
proteolytic cleavage sites for S1P and S2P are indicated. Numbers refer to amino acids within 
SREBP1a. (B) Domain structure of the mature SREBPs (mSREBPs). SREBP1a and SREBP1c 
are transcribed from alternative start-sites, resulting in the shorter acidic transactivation domain 
in SREBP1c. This domain binds transcriptional coactivators and regulators. The proline rich 
domain and the basic helix-loop-helix leucine zipper (bHLH-LZ) domains are also indicated. 
Adapted from Advances in Enzyme Regulation, (Lewis et al., 2011), copyright © 2011, with 
permission from Elsevier.  
 

 

http://www.sciencedirect.com/science/journal/00652571
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1.3.1 SREBP isoforms and the function of their target genes 

As previously mentioned, most SREBP target genes encode for enzymes required for 

FA and cholesterol biosynthesis as well as the production of NADPH. Indeed, SREBPs 

were first identified through the search for regulators of the low-density lipoprotein 

receptor (LDLR) gene (Yokoyama et al., 1993), as well as the soluble form of HMGCS, 

HMGCS1 (Wang et al., 1994) and HMGCR (Hua et al., 1993). Other SREBP target 

genes identified early on include FASN (Bennett et al., 1995), as well as ACACA 

(Magana et al., 1997) and ACLY (Sato et al., 2000). 

  

SREBPs differ from other bHLH transcription factors in that they have a tyrosine in 

place of the arginine residue found in their DNA binding domain (Kim et al., 1995). 

This allows the dual binding specificity of SREBPs to both E-boxes and the sterol 

regulatory element (SRE). The SRE was originally identified in the promoter of LDLR 

gene and consists of 10 nucleic acids (5’-ATCACCCCAC-3’) containing a direct CAC 

repeat (Briggs et al., 1993). In the LDLR gene promoter, this SRE site is embedded in a 

16 base pair sequence (repeat 2) that is directly followed by a 16 base pair sequence 

containing a binding site for the transcription factor SP1 (repeat 3) (Briggs et al., 1993). 

Other cholesterogenic genes contain SREs as well as binding sites for the transcription 

factor nuclear factor Y (NF-Y) (Amemiya-Kudo et al., 2002). It has also been shown in 

several studies that the co-regulatory factors SP1 and/or NF-Y are required for maximal 

transcriptional activity of SREBPs at the promoters of their target genes (Cagen et al., 

2005; Murphy et al., 2006; Oh, 2003; Teran-Garcia et al., 2007). In addition, the 

promoters of genes encoding for lipogenic enzymes contain E-box-like and SRE-like 

motifs as well as carbohydrate response (ChoRE) elements (Amemiya-Kudo et al., 

2002).  

 

Studies in transgenic mice have yielded a large list of direct SREBP target genes 

(Horton et al., 2002). Although the SREBP isoforms have been shown to share many 

common transcriptional targets, the three SREBP isoforms have also been shown to 

function differentially in vivo. SREBP1c mainly activates genes involved in FA 

biosynthesis (Shimano et al., 1997a), whereas SREBP2 activates genes required for 
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cholesterol synthesis (Horton et al., 2003; Horton et al., 1998). SREBP1a appears to 

regulate genes involved in both biosynthetic pathways (Horton et al., 2003).  

 

Over the last few years a number of studies using gene expression microarray analysis, 

chromatin immunoprecipitation (ChIP) and promoter occupancy methods as well as 

RNA interference (RNAi) screens have identified novel SREBP target genes that are 

involved in FA and cholesterol biosynthesis, as well as those involved in cellular 

processes other than lipid metabolism. Targeted RNAi screening identified novel 

SREBP targets, including the transmembrane protein 97 (TMEM97), which localises to 

endosomal/lysosomal compartments and binds the cholesterol transport-regulating 

protein Niemann-Pick C1 (NPC1) (Bartz et al., 2009). DNA microarray analysis of 

transgenic mouse livers expressing SREBP1a revealed that the cyclin-dependent kinase 

inhibitor p21 (CDKN1A) is a direct SREBP1a target gene (Inoue et al., 2005). A ChIP-

chip study in HepG2 cells following treatment with insulin and glucose identified 

further novel SREBP1 target genes, including genes involved in lipid metabolism, the 

insulin signalling pathway and cell cycle control (Reed et al., 2008). DNA microarray 

analysis in human skeletal muscle cells overexpressing mSREBP1a or mSREBP1c 

showed that SREBPs play a role in functional pathways other than lipid metabolism, 

including mitochondrial respiration and redox, immune response and inflammation, 

regulation of cell cycle, proliferation and apoptosis (Rome et al., 2008). In addition, 

binding sites for SREBP1 have been found in the cell cycle regulator host cell factor C1 

(HCFC1) and filamin A (FLNA), further suggesting a role for SREBPs in processes 

other than lipid metabolism (Motallebipour et al., 2009). Moreover, a recent study using 

ChIP-seq (ChIP-deep sequencing) for SREBP2 targets revealed that SREBP2 plays a 

role in autophagy and apoptosis (Seo et al., 2011). Furthermore, this study also showed 

that SREBP2 is required for autophagosome formation, and that SREBP2 deficiency 

decreases colocalisation of LDs with autophagosomes and triglyceride mobilisation in 

response to serum starvation (Seo et al., 2011). 

 

In addition, a gene expression microarray study in human foreskin fibroblasts 

(AG01518 cells) infected with an adenovirus encoding mSREBP1c revealed that 

SREBP1c activates expression of the PI3K regulatory subunit p55γ (PI3KR3) and haem 
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oxygenase 1 (HMOX1), as well as other genes involved in the cellular stress response 

(Kallin et al., 2007). Furthermore, luciferase reporter analysis in HepG2 cells showed 

that the expression of HMOX1 is sensitive to both SREBP1a and SREBP1c expression, 

but not SREBP2, indicating that regulation of HMOX1 is SREBP1-specific in human 

hepatocarcinoma cells (Kallin et al., 2007). Interestingly, this is not the only evidence 

for SREBP-dependent regulation of the PI3K pathway. The insulin receptor substrate 2 

(IRS2) is an adapter protein required for insulin-dependent PI3K activation. SREBP1c 

inhibits transcription of the insulin receptor substrate 2 (IRS2) in mouse livers (Ide et 

al., 2004). Interestingly, this is through direct binding of SREBP1c to an SRE that 

overlaps the insulin response element (IRE) in the IRS2 promoter. Furthermore, 

SREBP1c directly competes with FOXO1 for binging to the IRS2 promoter, resulting in 

reciprocal regulation of IRS2 expression between FOXO1 and SREBP1c (Ide et al., 

2004). Regulation of PI3KR2 by SREBP could therefore represent another negative 

feedback loop in the insulin-signalling pathway. 

 

Other SREBP target genes whose function has not previously been connected to lipid 

metabolism include two members of the human caspase family. Caspase 2 (CASP2) and 

caspase 7 (CASP7) have both been shown to contain SREs within their promoters. In 

addition, these genes are regulated by SREBP1 and SREBP2 in HepG2 cells (Gibot et 

al., 2009; Logette et al., 2005). However, no regulation of these genes has been 

observed in vivo in mouse livers, although the authors argue that this is due to the 

substantial difference between the human and murine promoters (Logette et al., 2005). 

It is unclear what role CASP2 and CASP7 play in the regulation lipid metabolism. No 

positive effect on cholesterol levels was observed following SREBP-dependent CASP7 

activation (Gibot et al., 2009). In contrast, CASP2 silencing reduced cellular lipid levels 

and is believed to provide an amplification loop to restore normal lipid levels in 

response to lipid depletion (Logette et al., 2005).    

 

Studies in livers of transgenic mice over-expressing the individual SREBP isoforms, as 

well as knockout mice lacking individual components of the SREBP activation pathway 

(see section 1.3.2.1) have confirmed SREBPs as essential genes (Horton et al., 2002). 

Mice lacking all SREBP isoforms die early on during embryonic development (Yang et 
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al., 2001). Interestingly, mice lacking the SREBF2 gene are embryonic lethal, although 

lethality occurs at a later stage when compared with mice lacking all SREBP isoforms 

(Horton et al., 2002). Mice lacking the SREBF1 gene, and therefore both SREBP1a and 

SREBP1c isoforms, display only partial embryonic lethality. SREBP2 mRNA 

expression is increased in these animals, suggesting that SREBP2 can compensate for 

loss of both SREBP1 isoforms (Shimano et al., 1997b). Mice harbouring an SREBP1c-

specific deletion are viable (Liang, 2002), indicating that the partial embryonic lethality 

observed in SREBF1-/- mice is due to the loss of the SREBP1a isoform (Horton et al., 

2002). This is consistent with observations that SREBP1a is a stronger transcriptional 

activator than SREBP1c due to its larger transactivation domain (Shimano et al., 1997a) 

and that SREBP1c is not stably recruited to promoters of SREBP target genes in intact 

cells (Bennett, 2004). However, SREBF1c-/- mice exhibit significantly higher liver 

cholesterol content than their wt counterparts, as well as decreased levels of plasma 

cholesterol and plasma TAGs and mRNA levels of FA synthesis genes are significantly 

reduced (Liang, 2002).  

 

In addition, tissue-specific distribution of the three isoforms differs. SREBP1c is 

considered to be the dominant SREBP1 isoform in vivo, with particularly high 

expression in the liver (Shimomura et al., 1997). In addition, SREBP1c expression is 

higher than that of SREBP1a in mouse and human adrenal gland, white adipose tissue 

and brain (Shimomura et al., 1997). In cultured cells, however, SREBP1a is the 

predominant isoform (Shimomura et al., 1997). SREBP2 is expressed in all human 

tissues as well as cultured cells (Hua et al., 1993).  

 

1.3.2 Regulation of SREBP activity 
Regulation of SREBP transcriptional activity is governed by a number of processes, 

including proteolytic cleavage, post-translational modification and transcriptional 

regulation. This results in the tightly controlled activity of SREBPs as master regulators 

of lipid homeostasis (Eberle et al., 2004). 
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1.3.2.1 Regulated intramembrane proteolysis (RIP) 

Seminal papers from the laboratories of Goldstein and Brown over the last 20 years 

have identified a complex mechanism by which the SREBPs are regulated in response 

to cellular sterol levels; so-called regulated intramembrane processing (RIP) (Brown 

and Goldstein, 1997; Sakai et al., 1996). This process results in the release of the active 

transcription factor from its precursor form. An overview of the RIP process is shown in 

Figure 1.3.  

 

SREBPs are synthesised as inactive, 125 kDa precursors. The full-length proteins are 

inserted into the ER membrane, where the C-terminal regulatory domain of SREBP 

interacts with the C-terminus of the SREBP cleavage activating protein (SCAP) (Sakai 

et al., 1997). SCAP was originally identified from mutant Chinese hamster ovary 

(CHO) cells that fail to suppress cleavage of SREBPs in the presence of sterols (Hua et 

al., 1996). It is a membrane-bound protein with two distinct domains: an N-terminal 

region that contains eight membrane-spanning regions and a hydrophilic C-terminal 

domain containing four WD repeats (Brown and Goldstein, 1997; Nakajima et al., 

1999). The N-terminal half of the protein also contains the sterol-sensing domain 

(SSD), which is required for the sterol-regulated cleavage of SREBPs (Hua et al., 

1996). Under conditions of sterol depletion, the SCAP/SREBP complex is clustered into 

coat protein complex II (COPII)- coated vesicles which then translocate from the ER to 

the Golgi (Sun, 2005), where SREBP undergoes a two-step proteolytic cleavage event. 

Association of SCAP to components of the COPII protein complex facilitates this ER-

Golgi translocation. More specifically, sterol depletion results in the binding of SCAP 

via its MELADL amino acid sequence to the Sec24 COPII protein (Sun, 2005). Sterol 

saturated conditions within the ER membrane induce a conformational change in SCAP 

which results in its interaction with the insulin induced genes (INISG1 or INSIG2) 

(Brown et al., 2002; Yang et al., 2002). This conformational change sequesters the 

MELADL sequence away from Sec24 (Sun et al., 2007), preventing the incorporation 

of the SCAP/SREBP complex into the COPII-coated vesicles and thereby retaining the 

SCAP/SREBP complex in the ER. The sterol sensing mechanism involves both binding 

of cholesterol to SCAP and the binding of oxysterols to INSIG, both of which result in 

conformational changes in SCAP described above (Radhakrishnan et al., 2007; Sun et 
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al., 2007). SCAP is considered indispensible for mammalian SREBP sterol-dependent 

regulation. However, in Drosophila melanogaster, it has been shown that larvae lacking 

dSCAP still process dSREBP in certain tissues, suggesting an alternative mechanism of 

regulation in this organism (Matthews et al., 2010). In addition, processing of dSREBP 

is regulated by phosphatidylcholine rather than sterols in flies (Dobrosotskaya, 2002). 

 

Cellular levels of INSIGs are also controlled by the proteasome pathway. Following 

dissociation from SCAP, INSIG1 is targeted by the membrane bound E3 ubiquitin 

ligase GRP78 resulting in its proteasomal degradation (Lee et al., 2006). In addition, 

INSIG1 (but not INSIG2) is an SREBP target gene (Horton et al., 2003). Thus, the 

retention of the SCAP/SREBP complex in the ER is dependent on the SREBP-

dependent re-synthesis of INSIG1, creating a convergent mechanism for feedback 

control of SREBPs (Gong et al., 2006). The intricate details of the 

INSIG/SCAP/SREBP interactions along with the sterol sensing mechanisms are 

reviewed extensively in (Goldstein et al., 2006b).  

 

Following transport from the ER to the Golgi, SREBPs are proteolytically cleaved to 

release the active transcription factor for nuclear translocation. This sequential cleavage 

requires the Golgi resident membrane proteins site-1 and site-2 proteases (S1P and S2P) 

(Goldstein et al., 2002). S1P cleaves the N-terminal luminal loop of SREBP in a sterol-

regulated manner, resulting in two halves of the protein, which initially remain tethered 

to the membrane (Brown and Goldstein, 1999). This partially cleaved form has been 

designated the intermediate fragment of SREBP (Sakai et al., 1996). The second 

cleavage occurs independently of sterol concentrations and is performed by S2P at a site 

just within the membrane-spanning domain of SREBP (Brown and Goldstein, 1999). 

This second cleavage event results in the release of the N-terminal active transcription 

factor, termed mature SREBP (mSREBP) (Goldstein et al., 2002). The sterol-

dependency of S1P cleavage is presumably as a result of the SCAP/SREBP 

translocation from the ER to the Golgi, whereas S2P cleavage is dependent upon the 

initial cleavage by S1P (Brown and Goldstein, 1999).  
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Following cleavage by S1P and S2P proteases, the N-terminal mature protein 

translocates to the nucleus where it binds promoters of its target genes as a homodimer 

(Parraga et al., 1998). There is only limited literature surrounding the exact mechanisms 

by which SREBPs enter the nucleus. However, it has been shown that SREBP2 

interacts with the nuclear import protein Importin-β via its bHLH domain (Lee et al., 

2003; Nagoshi et al., 1999). Furthermore, this interaction is dependent on the dimeric 

form of mSREBP2, as monomeric mSREBP2 cannot enter the nucleus and is not 

recognised by Importin-β (Nagoshi and Yoneda, 2001). These studies put forward the 

idea the bHLH domain serves as a nuclear localisation signal for SREBPs. Given the 

homology between all SREBP isoforms, it is entirely plausible that this is also true for 

mSREBP1a and mSREBP1c.   

 

It should be noted that sterol-sensitive regulation does not necessarily apply to all three 

SREBP isoforms, at least not in vivo. Studies performed in vivo show that liver SREBP1 

is not regulated in response to sterol, while SREBP2 is only processed in sterol-depleted 

cells (Sheng et al., 1995). Furthermore, SREBP1c in mouse liver is processed in 

response to insulin treatment, in a sterol-independent manner (Hegarty et al., 2005). In 

addition, studies performed in HEK293 cells show that in certain metabolic conditions, 

the addition of cholesterol blocks processing of SREBP1 but not SREBP2 (Hannah et 

al., 2001). This is interesting as it suggests that the SREBP isoforms may be 

differentially regulated in response to different stimuli.  
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Figure 1-3: SREBPs are activated by regulated intramembrane processing (RIP) 
SREBPs are synthesised as inactive precursors inserted into the ER membrane. Under low 
sterol concentrations, the SREBP-SCAP complex binds COPII vesicles, resulting in 
translocation to the Golgi. SREBP undergoes a two-step proteolytic cleavage by S1P and S2P. 
Once cleaved, the N-terminus (mature of SREBP) translocates to the nucleus where it binds to 
the SRE in promoters of target genes as a homodimer. When sterol conditions are saturating, 
SCAP undergoes a conformational change, resulting in the binding of INSIG which anchors the 
SREBP-SCAP complex in the ER. Adapted from an article originally published in Biochemical 
Society Transactions, (Porstmann et al., 2009), © the Biochemical Society. 
 

 

 

1.3.2.2 Transcriptional regulation 

Transcriptional activity of SREBPs is also regulated at the transcriptional level. 

Interestingly, although changes in mRNA expression levels have been reported for all 

three isoforms in response to various stimuli, much of the evidence of transcriptional 

regulation concerns SREBF1c (Eberle et al., 2004). 

http://www.biochemsoctrans.org/bst/default.htm
http://www.biochemsoctrans.org/bst/default.htm
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SREBF1c mRNA expression is regulated in response to nutritional changes in the liver 

(Horton et al., 2002) and insulin is known to induce expression of SREBF1c in both 

adipocytes (Kim et al., 1998) and hepatocytes (Azzout-Marniche et al., 2000). The 

effects of insulin on SREBF1c expression have been shown to be mediated downstream 

of the PI3K pathway (Fleischmann and Iynedjian, 2000) and Akt activation in human 

retinal pigment epithelial (RPE) cells induces the expression of both SREBF1c and 

SREBF1a, but not that of SREBF2 (Porstmann et al., 2005). The regulation of SREBP 

activation downstream of this pathway is described in more detail in section 1.4.3. 

Activation of SREBP has also been observed downstream of other mitogenic stimuli, 

including platelet derived growth factor (PDGF) (Demoulin, 2004), keratinocyte growth 

factor (KGF) (Chang et al., 2005) and epidermal growth factor (EGF) (Guo et al., 

2009b; Swinnen et al., 2000a). In addition, transcription of SREBF1c is induced by 

binding of the pancreatic-duodenal homeobox-1 (PDX-1) and hepatic nuclear factor-4α 

(HNF-4α) transcription factors to elements within its promoter (Tarling et al., 2004).  

 

SREBF1c expression is also controlled by the liver X receptor-alpha (LXRα). LXRα is 

a nuclear hormone receptor that is expressed at high levels in the liver and is activated 

by oxysterols (Baranowski, 2008). It is considered to be a cholesterol sensor, explaining 

how SREBF1c is upregulated in a sterol-sensitive manner (Eberle et al., 2004). LXRα 

regulates the transcription of SREBF1c through the RXR/LXR response elements 

(LXREs) within the SREBF1c promoter. PPARα is also a member of this superfamily 

of nuclear hormone receptors. In addition to LXRs and SREBPs, PPARs also play a 

major role in lipid metabolism and FA β-oxidation. A recent study identified PPARα as 

a novel regulatory factor in SREBF1c expression and demonstrated that PPARα 

agonists act in cooperation with insulin and LXR to induce lipid synthesis (Fernandez-

Alvarez et al., 2011).  

 

Other regulatory factors of SREBF1c expression include the family of forkhead box-

“other” (FOXO) transcription factors. These transcription factors are regulated 

downstream of Akt and play a major role in key cellular processes, including 

metabolism and the response to cellular stress (Greer and Brunet, 2005). In the absence 



Chapter 1. Introduction 

 34 

of activated Akt, FOXOs are localised to the nucleus, where they regulate the 

transcription of their target genes. Upon activation of Akt in response to growth factors, 

FOXOs are phosphorylated, resulting in their exclusion from the nucleus and the 

inhibition of their target gene transcription. It has been shown that in transgenic mouse 

livers, FOXO1 negatively regulates the expression of genes involved in glycolysis, the 

PPP and lipid synthesis, including SREBF1c (Zhang et al., 2006b). Furthermore, in 

skeletal muscle of transgenic mice, FOXO1 abrogates the RXRα/LXRα-dependent 

expression of SREBF1c (Kamei et al., 2008). A study in HepG2 cells revealed that this 

FOXO1-dependent reduction in SREBF1c expression required the LXRE motif in the 

SREBF1c promoter, and that FOXO1 inhibits binding of LXRα to the SREBF1c 

promoter (Liu et al., 2010).  

 

SREBF1c and SREBF2 contain SREs within their promoters (Amemiya-Kudo, 2000; 

Sato et al., 1996), resulting in feed-forward transcriptional regulation. Furthermore, 

over-expression of SREBPs in transgenic mice results in the induction of SREBF1c 

mRNA (Horton et al., 2003). In addition, the promoters of all three SREBF isoforms 

contain binding sites for the transcription factor SP1, and SREBF1c and SREBF2 

promoters also contain NF-Y binding sites (Amemiya-Kudo, 2000; Sato et al., 1996; 

Zhang et al., 2005). Transcriptional regulation of SREBF1a is induced at low levels 

compared to SREBF1c in response to sterol depletion, although this is only true for 

cultured cells and not in mouse livers (Shimomura et al., 1997). The promoter region 

for SREBF1a is contained within a very small promoter-proximal region, containing 

two SP1 binding sites (Zhang et al., 2005). This may explain why SREBF1a expression 

is low and constant in most tissues. A recent study into the effects of glutamine on 

SREBP transcriptional activity in HepG2 cells has revealed that glutamine increases 

SREBF1a expression through increased binding of SP1 to its promoter (Inoue et al., 

2011). In addition, glutamine increases processing of SREBP1a and SREBP2, which in 

turn leads to the increased expression of SREBF2 via the feed-forward mechanism 

described above (Inoue et al., 2011).  

 

Transcriptional activity of SREBPs is also subject to negative feedback via unsaturated 

FA. The MUFA oleate (C18:1), has been shown to potentiate the effect of sterols on 
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reducing nuclear levels of both SREBP1 and SREBP2 (Thewke et al., 1998). In 

addition, the effects of MUFA and PUFA on SRE-dependent gene expression are 

independent and additive to the effects of exogenous sterol (Worgall et al., 1998). 

Interestingly, in HEK293 cells, both SREBP1a and SREBP1c are subjected to negative 

regulation in response to both MUFA and PUFA, whereas SREBP2 remains unaffected 

(Hannah et al., 2001). It has been shown that in rat hepatoma cells, unsaturated fatty 

acids down-regulate levels of SREBF1c in liver at least in part through antagonising the 

actions of LXRα (Ou et al., 2001). A more recent study by Takeuchi and colleagues 

using in vivo reporter assays demonstrated that PUFA selectively regulate expression of 

SREBP1c in the livers of mice (Takeuchi et al., 2010). However, they showed that this 

regulation was independent of the LXRα and that the decreased expression of SREBP1c 

in response to PUFA was actually mediated through autoloop regulation of SREBP1c 

itself. PUFA specifically prevented SREBP1 cleavage activation (but not SREBP2), 

thereby reducing nuclear levels of the mature transcription factor resulting in decreased 

transcription of SREBF1c itself (Takeuchi et al., 2010). 

 

1.3.2.3 Post-translational modification 
The stability of mature SREBPs represents a major mechanism of regulation of their 

transcriptional activity. A number of different post-translational modifications have 

been reported, which generally affect either the stability of the SREBP proteins, their 

transcriptional activity, or both. Phosphorylation appears to be the major post-

translational modification regulating SREBP activity. Most reports describe the 

phosphorylation of mSREBP1a, although sequences within both SREBP1 isoforms and 

SREBP2 are conserved and it is likely that SREBP2 is regulated in a similar manner 

(Sundqvist et al., 2005).  

 

Perhaps the best characterised of these phosphorylation events are those carried out by 

the glycogen synthase kinase 3β (GSK3β) isoenzyme. It was initially shown that mature 

SREBPs are targeted for degradation by the proteasome (Hirano et al., 2001), and that 

this is dependent on the transcriptional activity of the transcription factor (Sundqvist 

and Ericsson, 2003). This latter study demonstrated that mutations within the 

transactivation or DNA binding domain of SREBP1a inhibit the transcriptional activity 
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of the protein, leading to stabilisation of the protein (Sundqvist and Ericsson, 2003). 

Transcriptionally active mSREBP1a is targeted for degradation by the ubiquitin-

proteasome pathway (Sundqvist and Ericsson, 2003). It was later shown that this 

proteasomal degradation depends on the phosphorylation of mSREBP1a by GSK3β 

(Sundqvist et al., 2005). Initially, two phosphorylation sites within the C-terminus of 

mSREBP1a were identified: Threonine 426 and Serine 430 (T426/S430). 

Phosphorylation of these sites by GSK3β is recognised by the ubiquitin ligase SCFFbw7 

complex and results in ubiquitination and subsequent proteasomal degradation of the 

phosphorylated protein (Sundqvist et al., 2005). More recently, a third phosphorylation 

site has been identified several residues downstream of the existing sites (S434) 

(Bengoechea-Alonso and Ericsson, 2009). Phosphorylation of this “priming” site by 

GSK3β results in the subsequent phosphorylation of T426 and S430. GSK3-dependent 

phosphorylation is enhanced upon binding of mSREBP to DNA (Punga, 2006), further 

confirming that transcriptional activity of mSREBPs and their stability are intricately 

linked.  

 

In addition to GSK3β, other kinases have been reported to phosphorylate SREBPs. It 

has been shown that hyperphosphorylation of mSREBP1a and mSREBP1c leads to the 

increased stability of the proteins in mitotic cells (Bengoechea-Alonso et al., 2005). 

This hyperphosphorylation was later shown to be dependent on the Cdk1/ cyclin B 

complex. Indeed, mSREBP1 interacts with this complex and is phosphorylated on 

residue S439 during mitosis (Bengoechea-Alonso and Ericsson, 2006).  

 

Since SREBPs are regulated downstream of PI3K/ Akt/ mTORC1 signalling (see 

section 1.4.3), it seems likely that one or more of the kinases within this pathway may 

be directly interacting with, and phosphorylating, SREBPs. To date, there is no 

evidence to support a direct interaction of SREBP with mTORC1, although a putative 

Tor signalling (TOS) motif has been identified within the C-terminus of SREBP1a 

(Almut Schulze, personal communication). It has been reported that both flSREBP1c 

and mSREBP1c (but not SREBP2) are phosphorylated by Akt in primary rat 

hepatocytes (Yellaturu et al., 2009). However, the exact residues that are 

phosphorylated have not been identified. This phosphorylation reportedly results in the 
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increased association of the SREBP/SCAP complex with COPII vesicles and therefore 

increased ER to Golgi transport (Yellaturu et al., 2009). Interestingly, it has been 

demonstrated that Akt directly phosphorylates Sec24 in vitro (Sharpe et al., 2010). 

Sec24 is a component of COPII complex required for ER-Golgi translocation of the 

SCAP-SREBP complex. This Akt-dependent phosphorylation of Sec24 results in the 

increased binding affinity of Sec24 for its interaction partner Sec23, another component 

of the COPII complex (Sharpe et al., 2010). However, the exact residue that is targeted 

by Akt phosphorylation is unknown, and it remains to be shown whether this 

phosphorylation event increases ER-Golgi translocation of the SCAP-SREBP complex.    

 

In addition, mature forms of SREBP1a, SREBP1c and SREBP2 have been shown to be 

phosphorylated in response to insulin signalling downstream of the mitogen activated 

protein kinase (MAPK) pathway (Kotzka et al., 2000). Insulin treatment induces the 

phosphorylation of S117 on SREBP1a by Erk1/2 in vitro and mutation of this residue to 

alanine abolished ERK1/2 related transcriptional activation of SREBP in vivo (Roth et 

al., 2000). SREBP2 is phosphorylated by ERK1/2 on S432 and S455 in vivo and this 

phosphorylation does not affect the DNA binding of mSREBP2 but increases its 

transcriptional activity (Kotzka et al., 2004). It has also been shown that SREBPs are 

phosphorylated by the cAMP-dependent kinase PKA (Lu, 2006). Both mSREBP1a and 

mSREBP1c are phosphorylated by PKA in vitro and in HepG2 cells, resulting in 

decreased DNA binding and transactivation (Lu, 2006).   

 

The AMP-activated protein kinase (AMPK) is involved in cellular energy homeostasis 

and antagonises pathways stimulated by insulin (Kahn et al., 2005). Recently, it was 

found that AMPK is able to phosphorylate serine residues in the bHLH domain of 

SREBP1c and SREBP2 in diabetic rat livers (Li et al., 2011). These phosphorylation 

events prevent cleavage and subsequent nuclear translocation of the transcription factors 

in response to polyphenols and metformin treatment (Li et al., 2011). 

 

SREBPs are also regulated by acetylation. Lysine residues in both SREBP1a and 

SREBP2 are acetylated by the intrinsic acetylase activity of the co-activator protein 

p300 and CBP (Giandomenico et al., 2003). The acetylation of K324 and K333 within 
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the DNA-binding domain of mSREBP1a confers stability of the protein (Giandomenico 

et al., 2003). Since K333 is also targeted by ubiquitination, acetylation of mSREBP1a 

may increase stability by preventing ubiquitination and proteasome-dependent 

degradation (Giandomenico et al., 2003). In keeping with this hypothesis, it was 

recently shown that sirtuin 1 (SIRT1) deacetylates mSREBP1c and that this leads to 

degradation of the protein and subsequent decrease in SREBP target gene expression 

(Ponugoti et al., 2010; Wang et al., 2009). In addition, the activating transcription 

factor-6 (ATF6) can form a complex with DNA-bound mSREBP2 in glucose-deprived 

cells, resulting in the recruitment of histone deacetylase complex-1 (HDAC1) and 

attenuated transcriptional activity of mSREBP2 (Zeng et al., 2004).  

 

In addition, SREBPs are also modified by the small ubiquitin-related modifier-1 

(SUMO1). Two residues within mSREBP1a and a single site within SREBP2 have been 

shown to be SUMOylated (Hirano et al., 2003). In contrast to most of the post-

translational modifications described so far, SUMOylation inhibits the transactivation 

capacity of mSREBPs (Hirano et al., 2003). Moreover, ERK-dependent 

phosphorylation of mSREBP2 in response to insulin like growth factor 1 (IFG1) inhibits 

SUMOylation of mSREBP2, thereby increasing its transcriptional activity (Arito et al., 

2008).   

 

Although a great deal of evidence exists for the regulation of stability of the mature 

SREBPs, little is known about whether the full length precursor proteins are also 

targeted for degradation. Interestingly, overexpression of the translocation in renal 

carcinoma on chromosome 8/ RING finger protein 139 (TRC8/RNF139) ubiquitin 

ligase results in the increased degradation of flSREBP in response to long-term sterol 

depletion (Lee et al., 2010). This suggests that the stability of the mature proteins, as 

well as that of the flSREBPs are regulated, further complicating the regulation of 

SREBP activity.  
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1.3.3 SREBPs and cancer 
Despite SREBPs playing a central role in the expression of lipid synthesis genes and the 

clear association of altered lipid metabolism with various cancer types, there is little 

evidence for a direct role of SREBPs in cancer. Most evidence comes from the 

dysregulation of SREBP target genes (see section 1.2.1). However, a study by Swinnen 

and colleagues demonstrated that the upregulation of FASN expression in response to 

epidermal growth factor (EGF) signalling in the human prostate cancer cell line LnCap 

is mediated through SREBP1 (Swinnen et al., 2000a). Furthermore, SREBP1 was 

shown to participate in the upregulation of FASN in colorectal neoplasia (Li et al., 

2000). Increased FASN expression in a panel of breast cancer cell lines was also shown 

to be dependent on SREBP1c (Yang et al., 2003), clearly implicating SREBP in the 

increased lipogenic phenotype of cancer cells. In addition, studies from glioblastoma 

patients treated with the EGF receptor (EGFR) inhibitor lapatinib showed that EGFR 

induces the cleavage and activation of SREBP in this cancer type (Guo et al., 2009b). 

Moreover, increased phosphorylated Akt correlated with increased nuclear mSREBP1 

as well as increased levels of FASN and ACC expression in tumours from primary 

GBMs. Tumours formed from U87 or U87-EGFRvIII cells in mice were smaller when 

treated with the FASN inhibitor C75. Inhibition of lipid synthesis resulted in increased 

apoptosis in U87-EGFRvIII cells in vitro and in vivo, showing that a persistently active 

EGFR allele sensitises GBMs to apoptotic cells death in response to inhibition of 

lipogenesis (Guo et al., 2009b). These data demonstrate a role for SREBP in this EGFR-

mediated prosurvival pathway in glioblastoma.  
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1.4 The PI3K/Akt/mTORC1 signalling pathway: 
  

1.4.1 Akt/PKB 

The Akt/ PKB (protein kinase B) is a serine/ threonine kinase that plays a vital role in 

many cellular processes including metabolism, proliferation, cell survival and growth 

control (Figure 1.4) (Manning and Cantley, 2007). Three closely related homologues of 

Akt have been identified in humans (Bellacosa et al., 1991; Coffer and Woodgett, 1991; 

Jones et al., 1991). Although double knockout mouse models indicate a significant 

overlap in isoform function in vivo, the phenotypes of loss-of-function mouse models 

have established non-redundant functions for the three individual isoforms: Akt1 plays 

a major role in embryonic development and postnatal survival; Akt2 functions in 

glucose homeostasis and Akt3 is important for brain development (Dummler and 

Hemmings, 2007).  

 

Akt is activated downstream of the lipid kinase phosphatidylinositol 3-kinase (PI3K) in 

response to growth factors and insulin signalling (Figure 1.4). Class IA PI3Ks are 

heterodimers that consist of a regulatory subunit (p85) and a catalytic subunit (p110) 

(reviewed in (Engelman, 2009)). Ligand binding to growth factor receptors results in 

autophosphorylation of the cytoplasmic domain of receptor tyrosine kinases (RTKs). 

The p85 regulatory subunit of PI3K binds via its Src-homology2 (SH2) domain to 

phosphotyrosine residues on activated RTKs. In case of the insulin receptor (IR), p85 

binds to an adaptor molecule (IR substrate: IRS). The binding of the p85 subunit serves 

to recruit the p85-p110 heterodimer to the membrane and to relieve basal inhibition of 

p110 (Yu et al., 1998). Once at the membrane, PI3K phosphorylates its substrate 

phosphatidylinositol-4,5-bisphosphate (PIP2) to generate the second messenger 

phosphatidylinositol-3,4,5-triphosphate (PIP3). Akt binds PIP3 via its plekstrin-

homology (PH) domain. The interaction of Akt and PIP3 serves to recruit Akt to the 

plasma membrane (Andjelkovic et al., 1997; Bellacosa et al., 1998), where it is 

phosphorylated by 3-phosphoinositide-dependent kinase (PDK1) on T308 (Akt1) within 

the protein kinase T-loop (Alessi et al., 1997). Phosphorylation of Akt on T308 results 

in a conformational change that facilitates ATP and substrate binding (Stephens et al., 
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1998). However, full activation of Akt occurs only upon an additional phosphorylation 

on S473 (Akt1), located within a hydrophobic motif proximal to the C-terminus. This 

phosphorylation is carried out by the mammalian target of rapamycin complex 2 

(mTORC2) (Hresko and Mueckler, 2005; Sarbassov et al., 2005), although other 

kinases have been reported to phosphorylate Akt on this residue (Woodgett, 2005). 

While both phosphorylation events are required for complete activation of Akt, they can 

occur independently (Jacinto et al., 2006; Williams et al., 2000). Phosphorylation of Akt 

on S473 enables its translocation to the nucleus, meaning that subcellular 

compartmentalisation may infer substrate specificity (Jacinto et al., 2006).    

 

Many direct substrates of Akt have been identified, and these substrates reflect the role 

of Akt in regulating metabolism, protein synthesis, survival and proliferation. Indeed, 

one of the first Akt substrates to be identified was the glycogen synthase kinase-3α and 

-3β (GSK3α/β). Akt-mediated phosphorylation of GSK3α/β inhibits their activity 

(Cross et al., 1995). GSK3 phosphorylates and inhibits glycogen synthase (GS), 

resulting in the inhibition of glycogen synthesis from glucose-6-phosphate. Activated 

Akt stimulates the association of hexokinase with the mitochondrial membrane which is 

important for the conversion of glucose to glucose-6-phosphate (Robey and Hay, 2006). 

Glucose uptake is also stimulated by Akt-dependent translocation of the glucose 

transporter GLUT4 to the membrane (Kohn et al., 1998). Akt also increases the 

expression of several glycolytic enzymes via activation of HIF1α (Manning and 

Cantley, 2007). Glucose metabolism is further regulated by Akt-dependent 

phosphorylation of FOXO1, resulting in decreased expression of gluconeogenesis genes 

(Manning and Cantley, 2007). Akt also plays a major role in lipid metabolism by 

positively regulating carbohydrate-derived lipid synthesis. Aside from regulating 

SREBPs (see section 1.4.3), Akt directly phosphorylates ACLY, possibly increasing its 

activity (Berwick et al., 2002). Akt phosphorylates and inhibits the hepatic 

transcriptional coactivator PGC1α (Li et al., 2007). PGC1α regulates the expression of 

genes required for FA β-oxidation, as well as gluconeogenesis (Puigserver, 2005). In 

addition, Akt phosphorylates and inhibits the transcription factor FOXA2, thereby 

suppressing expression of genes encoding enzymes involved in β-oxidation (Wolfrum et 

al., 2004). Akt, therefore, is a key player in carbohydrate-derived lipid metabolism by 
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co-ordinately upregulating glycolysis and lipid synthesis whilst decreasing 

gluconeogenesis and FA β-oxidation.  

 

Aberrant activation of the PI3K/Akt/mTORC1 signalling pathway, for example, via the 

constitutive activation of oncogenic Ras or the loss of the phosphatase and tensin 

homolog deleted on chromosome 10 (PTEN) tumour suppressor protein is found in 

many cancers (Altomare and Testa, 2005). Amplification of Akt itself has been found in 

a number of human cancers and a somatic mutation in the PH-domain of Akt1 has been 

observed in breast, colorectal and ovarian cancers (Carpten et al., 2007). This mutation 

results in membrane recruitment in a PI3K-independent manner and constitutive 

activation of Akt (Carpten et al., 2007). Activating mutations in the PI3K p110α subunit 

are found in a variety of human cancers, including ovarian, cervical and lung cancers 

(Ma et al., 2000; Massion et al., 2002; Shayesteh et al., 1999). Moreover, mutations and 

amplifications of upstream receptor tyrosine kinases (RTKs) are also frequently found 

in human cancers. For example, copy numbers of epidermal growth factor receptor 

(EGFR) are vastly increased in malignant gliomas (Sauter et al., 1996). In addition, the 

deletion of exons 2-7 in EGFRvIII mutations confers constitutive kinase activity in 

glioblastomas (Narita et al., 2002). HER2, another EGFR family member, is 

overexpressed in 25-30% of invasive breast and ovarian cancers and is associated with 

poor prognosis (Moasser, 2007). Loss of the tumour suppressor protein PTEN 

represents the most common mechanism of activation of the PI3K/Akt pathway (Shaw 

and Cantley, 2006). PTEN is the second most mutated tumour suppressor in human 

cancers after p53, and PTEN mutations have been found in a wide range of human 

malignancies (Shaw and Cantley, 2006; Yuan and Cantley, 2008). 
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Figure 1-4: The PI3K/Akt signalling pathway 
Class IA PI3K are activated in response to ligand binding to the receptor (RTK). Activation either 
occurs through direct binding of the p85 subunit to the phosphorylated receptor or via adaptor 
proteins such as IRS1. Activation of PI3K results in the recruitment of Akt to the plasma 
membrane via its PH domain where it is phosphorylated and activated by PDK1 and mTORC2. 
Both phosphorylation events are required for full Akt kinase activity. Akt targets are involved in 
cellular processes including metabolism, proliferation, cell survival and growth control. The 
PI3K/Akt pathway is upregulated in many cancers through the oncogenic activation of Ras or 
loss of the tumour suppressor protein PTEN. Figure adapted from T.Porstmann. 
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1.4.2 Mammalian target of rapamycin complex 1 (mTORC1) 

mTORC1 functions in many crucial cellular processes, including metabolism, protein 

synthesis, autophagy, cell survival and apoptosis and mTORC1 has emerged as a vital 

downstream target of Akt in growth control (Guertin and Sabatini, 2007). mTOR is a 

conserved serine/ threonine kinase that is found in two distinct complexes that are 

functionally different: mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) 

(Guertin and Sabatini, 2007). In addition, the two mTORCs are differentially regulated 

and have different sensitivities to the compound rapamycin (Howell and Manning, 

2011).  

 

Besides the mTOR kinase, other components of mTORC1 include Raptor and mLST8 

(Wullschleger et al., 2006). The activity of mTORC1 is regulated by a number of 

upstream signalling inputs and can be blocked by the mTORC1-specific inhibitor 

rapamycin (Figure 1.5). Upstream signals lead to regulation of mTORC1 activity via 

two mechanisms: 1) the direct modification of mTORC1 components or 2) the 

regulation of Rheb (Sengupta et al., 2010). Rheb is a small GTPase that directly 

interacts with mTORC1 when bound to GTP, leading to mTORC1 activation (Long et 

al., 2005). Akt modulates mTORC1 activation via both mechanisms and Akt-dependent 

regulation of mTORC1 represents growth factor sensing by mTORC1. Akt 

phosphorylates the proline rich Akt substrate of 40kDA (PRAS40), a negative regulator 

of mTORC1, (Haar et al., 2007; Sancak et al., 2007; Wang et al., 2007). 

Phosphorylation of PRAS40 results in its dissociation from the mTORC1 complex, 

thereby activating mTORC1. In addition, Akt phosphorylates and inhibits the tuberous 

sclerosis protein 2, TSC2, a component of a heterodimeric complex that acts as a 

GTPase activating protein (GAP) for Rheb (Potter et al., 2002). Active TSC2 promotes 

the conversion of Rheb-GTP to Rheb–GDP, thereby preventing mTORC1 activation 

(Inoki et al., 2003; Tee et al., 2003). Phosphorylation of TSC2 by Akt relieves 

inhibition of mTORC1 via the build-up of active Rheb-GTP (Manning and Cantley, 

2007).  

 

Besides responding to growth factor signalling, mTORC1 activity is sensitive to cellular 

nutrient and energy levels, as well as oxygen supply. Low glucose levels and glycolytic 
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flux result in an increase in the AMP:ATP ratio and lead to the activation of the AMPK. 

Under low energy conditions, the tumour repressor LKB1 activates AMPK, which can 

directly phosphorylate and activate TSC2, resulting in the inhibition of mTORC1 (Shaw 

et al., 2004). In addition, mTORC1 senses amino acid levels. Withdrawal of amino 

acids leads to decreased mTORC1 activity in a wide variety of organisms (Sengupta et 

al., 2010). It has been shown that amino acids induce the recruitment of mTORC1 to the 

lysosomal membranes, where the Ragulator complex resides (Sancak et al., 2010). 

Ragulator is thought to serve as a scaffold for a heterodimer of Rag-GTPases. Amino 

acid stimulation results in the activation of the Rag heterodimer, which interacts with 

mTORC1 through raptor, therefore enabling the recruitment of mTORC1 to the 

lysosomal membrane (Sancak et al., 2010; Sancak et al., 2008). Here, mTORC1 is 

proposed to interact with a lysosomal pool of Rheb-GTPase, resulting in its activation.  

 

Activity of mTORC1 is also sensitive to oxygen levels. Exposure to hypoxia blocks 

activation of mTORC1 in a HIF1α-independent manner (Arsham et al., 2003). Hypoxia-

induced inhibition of mTORC1 signalling via activation of TSC1/TCS2 is also 

downstream of the transcriptional regulation of REDD1/DDIT 4 (DNA-damage 

inducible transcript 4) (Brugarolas et al., 2004; Reiling and Hafen, 2004). However, this 

transcriptional regulation does not account for the rapid reduction in mTORC1 

signalling observed by Arsham and colleagues (Arsham et al., 2003) and AMPK-

mediated activation of the TSC1/2 complex in response to hypoxia has also been 

reported (Liu et al., 2006).  

 

Activation of mTORC1 by Akt results in the direct phosphorylation of downstream 

targets that include the ribosomal protein S6 kinases (S6K1 and S6K2) and the 

eukaryotic initiation factor 4E (eIF4E)-binding proteins (4E-BP1 and 4E-BP2) 

(Manning and Cantley, 2007). Phosphorylation of these proteins by mTORC1 results in 

increased mRNA translation and ribosome biogenesis. Interestingly, the mTORC1-

dependent phosphorylation of 4EBP has been found to be rapamycin resistant whilst 

phosphorylation of S6K1 is rapamycin-sensitive (Guertin and Sabatini, 2009). In 

addition, long-term rapamycin treatment may also prevent mTORC2 activity, at least in 

some cell types (Sarbassov et al., 2006). S6K1 participates in an mTORC1-dependent 
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feedback mechanism by phosphorylating and inhibiting IRS1 (Shah and Hunter, 2006; 

Shah et al., 2004; Tremblay et al., 2007). Additional feedback mechanisms include the 

direct phosphorylation of IRS1 by mTORC1 (Shah and Hunter, 2006; Tzatsos and 

Kandror, 2006), as well as the phosphorylation of rictor by S6K1 leading to the 

subsequent inhibition of mTORC2 (Dibble et al., 2009; Treins et al., 2009). 

 

By activation of upstream signalling processes, mTORC1 activity is upregulated in a 

vast number of human cancers. Germline mutations in TSC1 or TSC2 lead to the 

tuberous sclerosis complex, a hamartoma syndrome that is linked to malignant 

predisposition (Huang and Manning, 2008). Mutations in the tumour suppressor LKB1 

are found in the familial cancer disorder Peutz-Jeghers syndrome, as well as in a wide 

variety of sporadic human cancers (van Veelen et al., 2011). In addition, activating 

mutations in mTOR were initially identified in yeast and similar mutations have since 

been found in human cancer (Hardt et al., 2011; Urano et al., 2007). The link between 

hyperactivation of mTORC1 and cancer has prompted major efforts in developing 

mTOR inhibitors for use in the clinic, and substantial progress has been made in recent 

years (Garcia-Echeverria, 2011). Rapamycin analogues (rapalogues) have been used in 

several clinical trials with anti-tumour activity in different tumour types, including 

breast cancer and non-small cell lung cancer (Chan, 2004; Chan et al., 2005). However, 

mTORC1 inhibitors may only provide clinical benefit in a subset of patients and tumour 

types and further work is required to find combinations of therapies that target 

individual nodes of the PI3K/Akt/mTORC1 pathway (Garcia-Echeverria, 2011). 
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Figure 1-5: Regulation of mTORC1 signalling 
mTORC1 comprises raptor, mLST8 and mTOR. mTORC1 is activated by the PI3K/Akt pathway 
and amino acid stimulation. The mTORC1 specific inhibitor rapamycin blocks mTORC1 
signalling. Low cellular energy status results in AMPK activation and mTORC1 inhibition. In 
addition, S6K participates in negative feedback loops by phosphorylating the IRS, as well as 
raptor in mTORC2, resulting in attenuation of Akt signalling. mTORC1 regulates translation and 
ribosome biogenesis, as well as regulating transcription factors involved in cellular metabolism, 
including SREBP. 
 
 
 
1.4.3 Regulation of SREBPs by the Akt-mTORC1 Pathway: 
A number of studies have linked SREBP1 with the PI3K/ Akt pathway via insulin 

signalling (Azzout-Marniche et al., 2000; Fleischmann and Iynedjian, 2000; Shimomura 

et al., 1999). In addition, it has been shown that mTORC1 is required for de novo 

lipogenesis in rat livers and cultured hepatocytes (Brown et al., 2007; Li et al., 2010). 

The GEA lab have previously shown that Akt regulates the expression of genes 

involved in lipogenesis through SREBP1 activation (Porstmann et al., 2005), and that 

mTORC1 is required for Akt-dependent lipogenesis (Porstmann et al., 2008). 

Furthermore, it was demonstrated that nuclear accumulation of mSREBP1 as well as the 

expression of the SREBP1 target genes FASN and ACLY is blocked by rapamycin. 
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Silencing of the mTORC1-specific component Raptor resulted in attenuated expression 

of FASN and ACLY in response to Akt activation as well as a reduction in Akt-

dependent de novo lipogenesis (Porstmann et al., 2008). However, silencing of Rictor 

(the mTORC2-specific component) did not have this effect, indicating that regulation of 

SREBP1 is mediated by mTORC1 and not mTORC2 (Porstmann et al., 2008). Others 

have shown that rapamycin decreases the expression of SREBF1 mRNA in human 

BJAB B-lymphoma cells and murine CTLL-2 T lymphocytes (Peng et al., 2002) and it 

has been reported that the insulin-induced increase in SREBF1c mRNA levels in rat 

livers and cultured hepatocytes requires mTORC1 (Li et al., 2010). However, inhibition 

of mTORC1 by rapamycin did not affect accumulation of mSREBP1 protein in HepG2 

cells (where the predominant isoform is SREBP1c) (Bengoechea-Alonso and Ericsson, 

2009), possibly indicating that mTORC1-dependent regulation of SREBP processing is 

isoform-specific.  

 

In another study, it was shown that low-density lipoprotein receptor (LDLR) -mediated 

cholesterol ester accumulation in HepG2 cells in the presence of inflammatory 

cytokines was inhibited by rapamycin (Ma et al., 2007). Furthermore, rapamycin 

decreased mRNA levels of both SREBF2 and SCAP, as well as preventing 

SCAP/SREBP ER to Golgi translocation under these conditions (Ma et al., 2007). 

Rapamycin also downregulates LDLR expression, although in an SREBP2-independent 

manner (Sharpe and Brown, 2008). 

 

A number of studies have investigated the expression of SREBP target genes in 

response to modulation of the mTORC1 effectors S6K and 4E-BP. Expression of SCD1 

has been shown to be regulated downstream of S6K1 in the breast cancer cell line 

MCF7, although it was not investigated whether this was dependent on SREBP activity 

(Heinonen et al., 2008). In contrast, another study reported that the inhibition of SCD1 

expression by rapamycin in MCF7 and MDA-MB-468 cells lies downstream of eIF4E 

and SREBP (Luyimbazi et al., 2010). Furthermore, silencing of S6K1 did not affect 

SREBP1 or SCD1 expression, indicating that SCD1 expression may be regulated by the 

mTORC1/ 4E-BP1 axis (Luyimbazi et al., 2010).  
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It was reported by Düvel and colleagues that S6K1 is required for SREBP1 processing 

and induction of its target genes in mouse embryonic fibroblasts (MEFs) (Düvel et al., 

2010). This group used an experimental model that exploits the differences between 

mTOR signalling in wild type, TSC1-/- and TSC2-/- MEFs. Cells lacking TSC1 or TSC2 

exhibit growth factor-independent activation of mTORC1, thereby isolating mTORC1 

signalling from that of Akt. They used several approaches to demonstrate the 

requirement for SREBP1 and SREBP2 in mTORC1-induced expression of genes 

involved in fatty acid and sterol biosynthesis. Furthermore, they showed that ablation of 

S6K1 by RNAi in TSC deficient cells resulted in a decrease in nuclear accumulation of 

mSREBP suggesting that S6K1 is required for activation of SREBP by mTORC1 

(Düvel et al., 2010).  

 

  

1.5 Hypoxia 
Rapidly proliferating tumours often outgrow their blood vasculature, resulting in poor 

oxygen supply. This reduction in the partial pressure of oxygen is termed hypoxia and 

often results in cell death if the lack of oxygen is severe or prolonged. Cancer cells 

often undergo genetic changes and metabolic adaptations that allow them to survive and 

even proliferate in the hypoxic tumour microenvironment. Indeed, hypoxia is 

considered a common feature of solid tumours and low oxygen tension in tumours is 

associated with increased metastasis, poor survival and resistance to radiotherapy 

(Favaro et al., 2011; Harris, 2002). 

 

1.5.1 Hypoxia inducible factor (HIF) 

The cellular adaptive response to hypoxia is driven mainly by the hypoxia inducible 

factor  (HIF). HIF is a heterodimeric transcription factor that consists of two subunits: 

the labile α subunit and the stable β subunit (also called ARNT). Three isoforms of the 

α subunit exist in mammals: HIF1α, HIF2α and HIF3α with HIF1α and HIF2α being the 

most characterised (Majmundar et al., 2010). Whilst HIF1α is ubiquitously expressed, 

expression of HIF2α appears to be tissue specific (Bertout et al., 2008). HIF1α and 

HIF2α regulate the expression of partially overlapping sets of genes (Warnecke et al., 

2008).  
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HIFα subunits are sensitive to cellular oxygen levels due to regulation of their stability 

by a family of prolyl hydroxylases (PHDs) (Figure 1.6). In normoxic conditions (4-6% 

O2), PHDs hydroxylate HIFα on two serine residues resulting in the binding of the von 

Hippel Lindau (VHL) tumour suppressor protein. VHL acts as an E3 ubiquitin ligase 

and targets HIFα for degradation by the proteasome. The hydroxylation reaction 

requires molecular oxygen. Therefore, in conditions of insufficient oxygen, PHD 

activity and subsequent binding of VHL to HIFα is inhibited. This prevents the 

degradation of HIFα and promotes its stabilisation. HIFα subunits are also targeted by 

another oxygen-sensing enzyme: Factor inhibiting HIF1α (FIH). Under normoxic 

conditions, HIFα is hydroxylated by FIH. This disrupts the interaction of HIFα with its 

coactivator p300/CREB and inhibits its transcriptional activity (Majmundar et al., 

2010). In addition, the stability of HIF1α, but not that of HIF2α, is regulated 

independently of oxygen and VHL by the hypoxia associated factor (HAF) (Koh et al., 

2008). Once stabilised, HIFα translocates to the nucleus where the HIFα/HIF1β 

heterodimers bind HIF response elements (HRE: 5′-ACGTG-3′) in the promoters of 

their target genes. Transcriptional activity is achieved via the recruitment of coactivator 

proteins such as p300/CREB. Regulation of HIF1α transcriptional activity is also 

regulated by SIRT1. SIRT1 binds to, and deacetylates HIF1α preventing its interaction 

with p300/CREB (Lim et al., 2010). In hypoxic conditions, SIRT1 expression and 

activity is decreased due to decreased levels of NAD+, contributing to the activation of 

HIF1α (Lim et al., 2010).  

 

Most studies concerning hypoxia and cancer development have focussed on HIF1α. In 

addition, HIF1α appears to be the predominant isoform regulating the hypoxic 

transcriptional response (Sowter et al., 2003). Therefore the following text is concerned 

with HIF1α activity in hypoxia. 

 

Activation of the HIF1α transcriptional programme in hypoxia promotes glycolysis but 

inhibits oxidative phosphorylation (Denko, 2008). For example, increased expression of 

the glucose transporters GLUT1 and GLUT3 by HIF1α results in increased glucose 

uptake and flux through the glycolytic pathway (Chen et al., 2001; Maxwell et al., 

1997). HIF1α also induces the expression of the gene encoding pyruvate dehydrogenase 
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kinase 1 (PDK1) (Kim et al., 2006; Papandreou et al., 2006), as well as PDK3 (Lu et al., 

2008). Expression of PDK1 results in the phosphorylation and inhibition of pyruvate 

dehydrogenase (PDH), the mitochondrial enzyme that mediates pyruvate entry into the 

TCA cycle. HIF1α activation therefore inhibits pyruvate oxidation by the TCA cycle, 

resulting in increased lactate production via lactate dehydrogenase A (LDHA). Lactate 

is exported from the cell via the activity of the monocarboxylate transporters (MCT). 

Expression of LDHA and MCT4 is induced by HIF1α (Semenza et al., 1996; Ullah et 

al., 2006). In addition, HIF1α induces expression of carbonic anhydrase 9 (CA9) 

(Wykoff et al., 2000). CA9 is localised to the membrane where it catalyses the 

reversible hydration of carbon dioxide. The increased export of lactate, together with 

the activity of CA9, results in increased cellular pH levels and acidification of the 

extracellular space (Parks et al., 2011). It has been suggested that these could be 

important factors in promoting tumour invasion and lactate secreted by hypoxic cancer 

cells may fuel oxidative metabolism in oxygenated parts of the tumour (Sonveaux et al., 

2008). In addition, HIF1α transcriptionally regulates vascular endothelial growth factor 

(VEGFA) and the induction of angiogenesis (Forsythe et al., 1996; Maxwell et al., 

1997), a process that is crucial to tumour expansion and metastasis formation.  
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Figure 1-6: The HIF1 pathway 
The cellular hypoxic response is regulated by the HIF1α transcription factor. In the presence of 
oxygen, HIF1α is hydroxylated by prolyl hydroxylases (PDHs), leading to the binding of the 
tumour suppressor protein VHL. VHL is part of a larger complex that includes Elongin-B, 
Elongin-C, CUL2 and RBX1, as well as the ubiquitin conjugating enzyme E2. Together with the 
ubiquitin activating enzyme E2, this complex leads to the ubquitination of HIF1α, resulting in its 
degradation by the proteasome pathway. Since the activity of the PHDs requires molecular 
oxygen, hypoxia inhibits the activity of PHDs resulting in the stabilisation and nuclear 
translocation of HIF1α. HIF1α binds the promoters of target genes containing hypoxia response 
elements (HRE) together with ARNT (HIF1β) as a heterodimer. Additional cofactors such as 
CBP/p300 act together with HIF1α/ARNT to regulate gene expression. Figure adapted by 
permission from Macmillan Publishers Ltd: Nature Reviews Cancer (Harris, 2002), copyright © 
2002. 
 

 

1.5.2 Lipid metabolism and hypoxia 
Given the intimate connection between glycolysis, mitochondrial function and lipid 

metabolism, it is no surprise that hypoxia also alters lipid metabolism. However, the 

exact nature of the changes in lipid metabolism in hypoxia remains unclear. 

 

It has been recognised for some time that changes in lipid metabolism occur after 

exposure to hypoxia. A study in cultured cells showed that hypoxia causes the 

http://www.nature.com/nrc/index.html
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reversible accumulation of free fatty acids that are subsequently stored as TAGs in 

structures characteristic of lipid droplets (Gordon et al., 1977). Furthermore, ischemia 

results in decreased FA β-oxidation and an increase in intracellular lipid accumulation 

in rat hearts (Whitmer et al., 1978). An interesting study by Hull and colleagues in 1975 

revealed that increased mitochondrial NADH:NAD ratios generated in the absence of 

oxygen result in the accumulation of fatty acids as a consequence of decreased β-

oxidation (Hull et al., 1975). Hypoxia is also known to convert macrophages into lipid 

loaded foam cells (Bostrom et al., 2006). 

 

In recent years, a direct role for HIF1α in the alterations of cellular lipid metabolism and 

mitochondrial function has been demonstrated. In a model of renal cell carcinoma with 

constitutive HIF1α expression, HIF1α inhibits mitochondrial biogenesis and cellular 

respiration by inhibiting c-myc activity and reducing PGC1β expression (Zhang et al., 

2007). In addition, HIF1α results in increased neutral lipid accumulation in 

cardiomyocytes via inhibition of the positive regulator of β-oxidation, PPARα 

(Belanger et al., 2007). HIF1α reduces expression of CPT1, the rate-limiting enzyme for 

β-oxidation, and this is likely to occur through inhibiting the DNA binding ability of 

PPARα (Belanger et al., 2007). Reduction in FA utilisation and the accompanying 

increase in lipid storage capacity is a continuing theme. Gimm and colleagues identified 

a novel lipid droplet associated protein (hypoxia inducible protein 2: HIG2) that is a 

direct transcriptional target for HIF1α (Gimm et al., 2010). Interestingly, overexpression 

of HIG2 in normoxic conditions was sufficient to increase cellular lipid deposition, 

indicating that proteins required for lipid droplet formation may be connected to the 

signalling pathways that regulate lipid metabolism. Furthermore, in a mouse model of 

HIF-dependent liver steatosis it was found that the increase in cellular lipid 

accumulation was the result of HIF2α-dependent inhibition of β-oxidation (Rankin et 

al., 2009). Notably, this model also showed that expression of enzymes critical for lipid 

synthesis was downregulated. These included genes encoding SREBP1, LDLR, 

HMGCS, FASN, ACC and SCAP (Rankin et al., 2009). The authors suggest that in the 

liver, HIF2α is the predominant isoform regulating lipid metabolism. It has also been 

shown that cholesterol synthesis is perturbed in hypoxic conditions, again resulting in 

increased lipid accumulation (Mukodani et al., 1990). In both human and mouse 
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cardiomyocytes, HIF1α directly induces transcription of PPARγ, resulting in an increase 

in the expression of genes encoding enzymes required for glycerolipid synthesis, 

including glycerol-3-phosphate dehydrogenase 1 (GPD1) and glycerol-3-phosphate 

acyltransferase (GPAT) (Krishnan et al., 2009). Activation of the HIF1α/ PPARγ 

signalling axis in this context also increased intracellular TAG accumulation (Krishnan 

et al., 2009). Furthermore, the authors observed a decrease in expression of both PPARα 

and PPARβ/δ; transcription factors regulating lipid catabolic genes.  

 

There is also evidence that hypoxia upregulates expression of genes required for lipid 

synthesis. In a model for obstructive sleep apnea (OSA), in which chronic intermittent 

hypoxia (CIH) occurs, it was found that CIH induces genes controlling both fatty acid 

and cholesterol biosynthesis, including SREBF1 (Li et al., 2005a). In addition, CIH 

resulted in elevation of cellular lipid content in the liver, but cholesterol levels remained 

unaffected (Li et al., 2005a). In another study by the same group, it was found that 

intermittent hypoxia increased fasting serum levels of total cholesterol, high-density 

lipoprotein (HDL) cholesterol, phospholipids, and TAGs, and enhanced liver TAG 

content in lean mice when compared to obese mice (Li et al., 2005b). This indicates that 

low baseline levels of lipid accumulation augment the effects of hypoxia on lipid 

metabolism. Furthermore, Li and colleagues went on to show that the effects of 

intermittent hypoxia on lipid accumulation in the mouse liver were HIF1α-dependent 

and that HIF1+/- mice exhibited perturbed SREBP1 mRNA and protein levels, as well as 

decreased expression of SCAP and SCD (Li et al., 2006). In addition, a study in 

Caenorhabditis elegans demonstrated that hypoxia-induced fat accumulation was 

dependent on activation of SBP1 (the homologue of SREBP1 in worms) (Taghibiglou et 

al., 2009). 

 

 Furuta and colleagues (2008) also observed a role for SREBP1 in increased lipid 

synthesis in response to hypoxia. They demonstrated that hypoxia induces activation of 

Akt, increased SREBP1 nuclear accumulation and increased expression of FASN in 

breast cancer cells (Furuta et al., 2008). Furthermore, FASN expression was induced by 

reactive oxygen species (ROS), indicating that upregulation of FASN expression in 

response to hypoxia was due to the hypoxia-dependent generation of ROS and increased 
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SREBP1 expression was dependent on HIF1α (Furuta et al., 2008), suggesting that both 

Akt activation and HIF1α activity are required for the regulation of SREBP1 in 

hypoxia. The enzyme acetyl-CoA synthetase short-chain family member 2 (ACSS2) 

converts cytosolic acetate to acetyl-CoA for lipid synthesis and is regulated at the 

transcriptional level by all three isoforms of SREBP (Howard et al., 1974; Luong et al., 

2000; Sone et al., 2002). Tumour cells incorporate increased amounts of 14C-acetate 

compared to non-transformed cells, and this correlates with increased proliferation rates 

(Yoshimoto et al., 2001). Increased expression of ACSS2 has been observed in mouse 

tumour cells in hypoxia when compared to normoxia (Yoshii et al., 2009). Here, the 

authors of this study showed that increased ACSS2 expression correlated with increased 

acetate excretion from the cell, leading them to propose that in hypoxic tumour cells 

ACSS2 is able to catalyse the reverse reaction of acetyl-CoA to acetate. Therefore 

ACSS2 may play a buffering role in acetyl-CoA/acetate metabolism in cancer cells 

(Yoshii et al., 2009).  

 

It is clear that lipid metabolism is altered in response to hypoxia. However, the exact 

role of the HIFα isoforms is not fully understood. It is also not clear whether lipid 

accumulation in response to hypoxia is the consequence of inhibited β-oxidation, 

increased lipid synthesis or a combination of both. In addition, increased fatty acid 

uptake may be involved (Krishnan et al., 2009). Furthermore, the transcriptional 

programmes induced by HIFα isoforms may well be cell-type specific (Warnecke et al., 

2008).   
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1.6 Aims of this thesis 
SREBPs are transcription factors regulating the expression of genes involved in fatty 

acid and cholesterol biosynthesis. A common feature of cancer cells is increased flux 

through the glycolytic pathway and an increase in lipid synthesis. SREBPs are at the 

centre of the regulation of lipid synthesis. However, little is known about the role of 

these transcription factors in cancer. One of the aims of this thesis was to examine the 

transcriptional signatures of SREBPs in a cancer cell line using gene expression 

microarray analysis. 

 

Solid tumours often have areas of low oxygenation as a result of poorly developed 

tumour vasculature. Hypoxia induces changes in lipid metabolism in tissues such as 

heart, muscle and liver yet little is known about the effects of hypoxia on lipid 

metabolism in cancer cells. An additional aim of this thesis was to investigate the 

regulation of lipid metabolism in hypoxia in human glioblastoma cells, and furthermore 

to study the role of SREBPs in the regulation of lipid metabolism in these cells. 

 

SREBPs are regulated downstream of the Akt/mTORC1 pathway. This pathway is often 

upregulated in human cancers. Although it has been established that both Akt and 

mTORC1 regulate SREBPs, the exact mechanism of regulation by this important 

signalling pathway remains to be elucidated. Chapter 5 of this thesis examines potential 

mechanisms by which SREBP is regulated by Akt and mTORC1. 

 



Chapter 2. Materials and Methods 

 57 

Chapter 2. Materials and Methods 

2.1 Molecular Biology 
 

2.1.1 DNA Restriction Digests 
Confirmation that plasmids contained the expected insert was achieved by restriction 

digestion (as well as sequencing, section 2.1.6). DNA (2.5-10 µg per reaction) was 

mixed with 2µL 10x restriction enzyme buffer (New England Biolabs, NEB), 1 µL 10x 

bovine serum albumin (BSA, NEB) and 1µL of restriction enzyme (typically 10-20 

units) in a final volume of 20 µL (made up with distilled water, dH2O) and incubated 

for 1 hour at 37°C. Reaction products were analysed by agarose gel electrophoresis (see 

2.1.2). 

 

2.1.2 Agarose gel electrophoresis 

Agarose gel electrophoresis was used to separate linear DNA samples at 80 volts for 1 

hour. Typically, midi-gel apparatus (Biorad) were used. Gels were made by dissolving 

0.8-2% (w/v) agarose in TAE buffer (Tris-acetate: 40 mM Tris Acetate, 2 mM EDTA, 

diluted with dH2O). Ethidium bromide was added to the gel to a final concentration of 5 

µL/ 100 mL gel in order to detect DNA by UV light. As an alternative to ethidium 

bromide, SafeView® (NBS Biologicals) was sometimes used and added to the gel and 

buffer to a final concentration of 0.1µL/mL. Prior to loading, DNA samples were mixed 

with 6x Orange G DNA loading dye (for 25 mL stock: 0.125g Orange G (Sigma), 5g 

Ficoll, 20 mM EDTA were dissolved in dH2O). Sizes of the DNA fragments were 

estimated using the 100bp DNA ladder (NEB). 

 

2.1.3 E. coli transformation by “heat shock” 

Competent E. coli (DH5α strain, Invitrogen) in 50 µL aliquots were thawed on ice. 

DNA to be transformed was added directly to the E. coli in 1.5 mL microcentrifuge 

tubes. Typically, 10-100 ng of maxi prep DNA was used. The DNA and E. coli were 

mixed by flicking the tubes several times and the tubes were incubated on ice for 20 
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minutes. The E. coli/ DNA mix was incubated at 42°C for 45 seconds and then 

immediately placed on ice for 5 minutes. 500 µL of LB-Broth (pre-warmed to 37°C) 

was added and the cells were incubated at 37°C with gentle agitation for 10-30 minutes. 

50 µL (10%) of transformed bacteria were plated onto LB agar plates containing the 

appropriate antibiotic for selection (ampicillin: 50 µg/mL or kanamycin: 30 µg/mL) and 

incubated overnight at 37°C.  

 

2.1.4 DNA maxi preps from bacterial cultures 

Overnight cultures of bacterial cells transformed as in section 2.1.3 with the relevant 

plasmid were harvested by centrifugation at 3,000 x g (Rotor: Beckman JA-10) and 

plasmid purification was achieved using the Qiagen Plasmid Maxi Kit according to the 

manufacturer’s instructions. A slight modification was made. Following DNA 

precipitation using isopropanol, DNA pellets were washed once in 70% ethanol and 

then transferred to a 1.5 mL microcentrifuge tube in 1 mL 70% ethanol. DNA pellets 

were centrifuged at 16,000 x g for 10 minutes before the ethanol was carefully removed 

and pellets were allowed to air-dry. DNA was dissolved in TE buffer pH 8.0 (10 mM 

Tris; 1 mM EDTA) and stored at -20°C. Stock dilutions (typically 0.1 mg/mL if being 

used for transfection) were stored at 4°C. DNA purity and concentration was analysed 

by spectrophotometry (Abs260/280).  
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2.1.5 DNA constructs used in this thesis 

Table 2.1 describes DNA constructs that were used in this thesis: 

Construct: Vector: Description: Source: Reference: 

pBabe-puro3 pBabe-puro3 Retroviral 
expression vector 

H. Land (Morgenstern 
and Land, 
1990) 

pBabe-puro 
ER™- 
mSREBP1a 

pBabe-puro 
ER™ 

 

ER™ fused to 
19bp linker then 
N-term (mature) 
SREBP1a (2-460) 

Thomas 
Porstmann, 
GEA 

N/A 

pBabe-puro 
ER™- 
mSREBP2 

pBabe-puro 
ER™ 

 

ER™ fused to 19 
bp linker then N-
term (mature) 
SREBP2 (2-468) 

Thomas 
Porstmann, 
GEA 

N/A 

pWZL-neo-
EcoR 

pWZL-neo-
EcoR 

Retroviral 
expression vector 
coding for the 
ecotropic receptor 

Signal 
Transduction 
Lab, CRUK 

N/A 

pSRE-luc 

 

pGL2-basic 

 

Contains 3 tandem 
copies of repeats 2 
and 3 (SRE) of the 
human LDL 
receptor prmoter (-
68/-37) fused to 
luciferase gene 

ATCC 

 

(Yokoyama et 
al., 1993) 

FASN-luc 

 

pGL2-basic 

 

Contains FASN 
promoter (-150/-
43) wt fused to 
luciferase gene 

Timothy 
Osborne 

 

(Shimano et 
al., 1997a) 

pRL-SV40 

 

N/A contains the SV40 

enhancer and early 
promoter elements 
to provide high-
level expression of 

Renilla luciferase 

Promega N/A 

pCMV-SCAP pRc/CMV7SB Contains SCAP 
(hamster) 

ATCC (Hua et al., 
1996) 
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pCMV-PLAP-
SREBP2(513-
1141) 

 

pCMV/SEAP 

 

Contains PLAP(2-
501) C-term 
SREBP2 (513-
1141) fusion 
separated by a 
single Y residue 

Axel 
Nohturfft 

 

(Sakai et al., 
1998) 

pCDNA3-myc-
mSREBP1a wt 

 

pCDNA3 

 

Contains N-term 
myc-tagged mature 
SREBP1a (1-490) 
wt 

Johann 
Ericsson 

(Sundqvist et 
al., 2005) 

pCDNA3-myc-
mSREBP1a 
T246A/S430A 

pCDNA3 

 

Contains N-term 
myc-tagged mature 
SREBP1a 
T426A/S430A 
mutant 

Johann 
Ericsson 

 

(Sundqvist et 
al., 2005) 

Table 2-1 DNA constructs used in this thesis 
 

2.1.6 DNA sequencing 

Fluorescent cycle sequencing was performed using gene specific primers (Table 2.3) 

and the BigDye Terminator v3.1 Kit (Applied Biosystems, ABI). Reactions were 

carried out using 8 µL BigDye Terminator (BDT) mix, 200-500 ng plasmid DNA, and 5 

pmol primer. The final volume was adjusted to 20 µL using Nuclease free water 

(Ambion). The cycling parameters are shown in Table 2.2: 

 

Step Conditions: No. of cycles 

Denaturation 

Annealing 
Extension 

96°C 0:10 

55°C 0:05 
60°C 4:00 

 

25 

Table 2-2 Cycling parameters used in DNA sequencing reactions 
 

In order to remove any unincorporated dye, samples were purified using the DyeEx 2.0 

Spin Kit (Qiagen) according to the manufacturer’s instructions. Sequencing itself was 

carried out by staff of the CRUK LRI Equipment Park. Sequences were then analysed 

using DNA Strider 1.4f1 (CEA, France) or SeqMan Pro 8.1.5 (3) (Lasergene 8, 

DNAStar). 
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Primer Name (including bp number 
and direction): 

Sequence (5’-3’): 

SREBP1a 74-93R GTCTTCGATGTCGGTCAGCA 

SREBP1a 207-226F AGGCAGCTTGTCTCCACCTC 

SREBP1a 466-485F CAGTTCAGCTCCACCCCTGT 

SREBP1a 466-485R ACAGGGGTGGAGCTGAACTG 

SREBP1a 978-997F AGCCCACAACGCCATTGAGA 

SREBP1a 978-997R TCTCAATGGCGTTGTGGGCT 

SREBP1a 1481-1500F TCTTCCTCTGCCTGTCCTGC 

SREBP1a 1481-1500R GCAGGACAGGCAGAGGAAGA 

SREBP1a 1968-1987F TGCTCTGCGAGTGGATGCTA 

SREBP1a 1968-1987R TAGCATCCACTCGCAGAGCA 

SREBP1a 2515-2534F TACCTGCAGCTGCTGAACAG 

SREBP1a 2515-2534R CTGTTCAGCAGCTGCAGGTA 

SREBP1a 2921-2940F GTGACCTGCTTCTTGTGGTG 

SREBP1a 2921-2940R CACCACAAGAAGCAGGTCAC 

SREBP1a 3380-3399F TGCTGCACGACTGTCAGCAG 

SREBP2 463-482F ACATTCAGCACCACTCCGCA 

SREBP2 463-382R TGCGGAGTGGTGCTGAATGT 

SREBP2 1021-1040F CGATATCGCTCCTCCATCAA 

SREBP2 1021-1040R  TTGATGGAGGAGCGATATCG 

pBpER 898-917F AGCTCCACTTCAGCACATTC 

pBp MCS  1448-1467R TTGCATACTTCTGCCTGCTG 

Table 2-3 Sequencing primers used in this thesis 
 

2.1.7 Extraction of RNA 

Total RNA from cells was isolated using the RNeasy Kit (Qiagen) according to the 

manufacturer’s instructions. Typically, 3x106 (U87) or 2.5 x106 (RPE) cells were seeded 

in 60 mm dishes. Following experimental culture, medium was removed from the cells 

and 350 µL Buffer RLT was added directly to the dish. Cells were scraped into Qiagen 

Shredders in order to homogenise the sample. RNA was bound to the RNeasy spin 
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columns and DNA was digested using the RNase-free-DNase set (Qiagen). RNA was 

then eluted in 30 µL RNase-free water (Qiagen). The quality and purity of the isolated 

RNA was measured by NanoDrop spectrophotometry  (Abs260/280). 

 

Alternatively, RNA that was subsequently used for Illumina Array analysis (section 

2.1.10) was extracted using RNA Bee (Amsbio) according to the manufacturer’s 

instructions. Briefly, RNA Bee uses a phenol-chloroform phase-separation and 

subsequent isopropanol precipitation to extract the RNA. Cells were washed in PBS and 

1 mL RNA Bee was added directly to the cells. Cells were scraped into a 1.5 mL RNase 

free tube, placed on ice and 200 µL chloroform was added. The mixture was vortexed 

for 15- 20 seconds and phase separation was achieved by centrifugation at 12,000 x g 

for 15 minutes at 4°C. The aqueous phase was transferred to a fresh 1.5 mL 

microcentrifuge tube (RNase-free) and RNA was precipitated by adding 1x volume of 

isopropanol and incubating the mixture for 1 hour at -80°C. Following centrifugation at 

12,000 x g for 10 minutes at 4°C, the resulting RNA pellet was washed once in 70% 

ethanol (-20°C) and dissolved in 50 µL RNase-free water. Purity and quantity of the 

extracted RNA was measured as described above. 

 

2.1.8 Complementary DNA (cDNA) synthesis 

cDNA was synthesised from total RNA using the SuperScript II enzyme (Invitrogen) 

according to the manufacturer’s instructions using oligo dT12-18 primers (Invitrogen). 

Typically, 50-400 ng RNA was used per reaction depending on the total amount of 

RNA isolated in each experiment and the reaction volume adjusted to 20 µL.   

 

2.1.9 Quantitative reverse-transcription real-time PCR (RT-QPCR) 

For a typical reaction, 100 ng cDNA from section 2.1.8 was used as a template for 

semi-quantitative PCR (RT-QPCR) analysis. For this analysis, the increase in 

fluorescence of SYBR Green was monitored in real time on the ABI 7800HT detector 

system. Relative transcript levels of target genes were normalised to β-2-microglobulin 

(B2M) or β actin (depending on the cell line). For most reactions, the Quantitect system 
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(Qiagen) of gene specific primers (table 2.5) was used in combination with Platinum 

SYBR green (Invitrogen). Quantitect primer pairs have been optimised to all have the 

same efficiency of amplification so that the ∆∆CT method of data analysis may be used. 

Total reaction volumes were adjusted to 25 µL containing 12.5 µL 2X SYBR green, 2.5 

µL 10X primer solution and 10 µL cDNA template (10 ng/µL: 100 ng final conc.). A 

dissociation curve was generated at the end of each reaction in order to control for 

primer specificity. Cycling parameters recommended by Invitrogen are shown in Table 

2.4 below: 

Stage Condition No. of cycles 

Hot start 95°C 10:00 1 

Denaturation 
Annealing/ Extension 

95°C 00:15 
60°C 1:00 

40 

Table 2-4 Cycling conditions used in SREBP isoform specific QPCRs 
 

Gene (Gene Symbol): Quantitect Cat. No: 

ACACA QT01670053 

ACACB QT00996352 

ACLY QT00062286 

ACSS2 QT00089271 

ACTB (beta Actin) QT01680476 

B2M QT00088935 

DDIT3 (CHOP QT00082278 

FABP3 QT00018809 

FABP7 QT00007322 

FASN QT00014588 

HIF1A QT00083664 

HMGCR QT00004081 

HMGCS1 QT00055531 

INSIG1 QT00090314 

INSIG2 QT01674337 
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PDK1 QT00069636 

PDK4 QT00003325 

SCAP QT00197764 

SCD QT01669521 

SREBF1 (SREBF1a) QT00036897 

SREBF2 QT0005205 

VEGFA QT01682072 

Table 2-5 Quantitect QPCR primers used in this thesis 
 

When SREBF1c isoform-specific QPCR was performed, isoform-specific primers for 

SREBF1c (Porstmann et al., 2005) were purchased from Sigma (see table 2.6 for 

sequences) and used at a final concentration of 300 nM in a total reaction volume of 25 

µL. In addition, PCR products were checked on an agarose gel to ensure primer 

specificity. The SREBF1c primers have different amplification efficiencies from the 

SREBF1a and SREBF2 primers as well as the loading controls (Quantitect), meaning 

the ∆∆CT method of data analysis cannot be used. Instead, a relative standard curve was 

generated for each gene every time an RT-QPCR analysis was performed. Equal 

volumes of cDNA from each sample within individual experiments were mixed 

together and serially diluted 1:4 or 1:2 (depending on the quantity and quality of the 

starting RNA) to form the standards. The CT values were then converted into “relative” 

quantities by the SDS software (ABI) using the known quantities of the standards.  

 

Primer Sequence (5‘-3’) 

SREBF1c Forward GGAGGGGTAGGGCCAACGGCCT 

SREBF1c Reverse CATGTCTTCGAAAGTGCAATCC 

Table 2-6 Sequences of QPCR primers targeting SREBF1c 
 

For both methods, data were first normalised to the loading control and then within each 

experiment to the internal experimental control. All reactions were performed in 

duplicate. 
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2.1.10 Gene expression microarray analysis using the Illumina platform 

Cells from the three cell lines described in the previous sections were seeded in 100 mm 

dishes at a density of 3x106. 24 hours later, cells were treated with 100 nM 4-OHT to 

induce SREBP activation for 6 or 24 hours. In addition, cells were treated with solvent 

(EtOH) as a control. Total RNA was extracted as described in section 2.1.7 and used for 

transcriptome analysis on HumanRef-8 v2 Expression BeadChip arrays (Illumina, 

performed by Dr. Charles Mein’s laboratory, Bart’s and the London Medical School). 

Data analysis was performed in collaboration with Philip East and Probir Chakravarty 

(LRI BABS). Data represent three independent replicate experiments. 

 

2.1.10.1 Analysis of expression data generated by the Illumina 

microarray (Philip East) 
The Illumina bead level intensity data was processed using Bead Studio from Illumina. 

To correct for intensity dependent variance effects and give the data a normal 

distribution suitable for subsequent statistical analysis the data were VST transformed 

(variance stabilisation transformation: equivalent to log transformation) (Lin et al., 

2008). To correct for systematic effects such as variations in RNA concentration 

between samples a quantile normalisation was applied to the data. This corrects for 

differences in intensity across chips making the distribution of intensity values across 

the samples the same. This technique employs the assumption that the expression of the 

majority of genes on the chip does not change. To remove non-expressed transcripts 

from further analysis probes with a detection p-value greater than 0.01 in all samples 

were removed. Differential probes were selected using a 0.05 FDR (False Discovery 

Rate). To create the FDR, standard errors were corrected using an empirical Bayes 

shrinkage method and multiple testing was accounted for by applying a Benjamini & 

Hochberg correction. To identify time dependent changes specific to the SREBP1a and 

SREBP2 cell types and independent of vector effects, interactions between time and cell 

type factors were tested for. Differential probes were identified using the same 0.05 

FDR as above. Analysis was carried out in Bioconductor (Gentleman et al., 2004). The 

Lumi package was used for annotation and data processing. The statistical analysis was 

carried out using Limma. 
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2.1.10.2 Generation of a heat map using probe expression data 

(Probir Chakravarty) 
Samples were clustered using a 1-Pearson correlation distance matrix and average 

linkage clustering. Probes were clustered using a Euclidean distance matrix and average 

linkage clustering. Clustering was carried out using the software package Gene Cluster 

(Java TreeView; (Eisen et al., 1998)). Expression of each probe at a given time point 

relative to its control was displayed using Java TreeView (controls not shown).  

 

2.1.10.3 Pathway, process and transcription factor enrichment 

analysis (in collaboration with Probir Chakravarty) 
Gene sets for enrichment analysis were identified using Venn diagrams generated using 

Venny software (http://bioinfogp.cnb.csic.es/tools/venny/index.html). Gene sets were 

imported into Metachore (GeneGo Inc, St. Joseph, MI) and pathways, processes and 

transcription factors within the Metacore pathway tool were analysed for enrichment. 

The analysis employs a hypergeometric distribution to determine the most enriched 

gene set.  

 

2.2 Cell Biology 
 

2.2.1 Cell lines and maintenance 
Primary mouse embryonic fibroblasts (MEFs) (wt and S6K1/2-/-) were from Mario 

Pende (Université Paris Descartes, Paris) (Pende et al., 2004). Immortalised MEFs were 

obtained from Esther Castellano (LRI, STL). Human glioma U87 cells were from A. 

Harris (CRUK, WIMM, Oxford). Human osteosarcoma U2OS cells were obtained from 

ATCC. Human retinal pigment epithelial cells transformed with the human telomerase 

(RPE-hTERT) were purchased from BD Biosciences. RPE-myrAkt-ER and U2OS-

myrAkt-ER cells were originally developed by Dr. S. Basu (CRUK, Bart’s Hospital). 

Human embryonic kidney (HEK) 293-TLA cells were purchased from Open 

Biosystems. Phoenix packaging cells were from ATCC. U87-pBabePuro (U87-EV), 

U87-ER.mSREBP1a and U87-ER.mSREBP2 cells were generated using retroviral 
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transduction (see section 2.2.6). U87-pLKO-TetOn-SREBP1 and U87-pLKO-TetOn-

Scrambled cell lines were produced using lentiviral transduction (see section 2.2.7). 

 

Immortalised MEFs and primary MEFs, all U87 based cell lines, U2OS, U2OS-

myrAkt-ER, HEK-293-TLA and Phoenix were cultured in Dulbecco’s Modified Eagle 

medium (DMEM, Gibco) supplemented with 10% foetal calf serum (FCS, Gibco), 

100U/ mL penicllin/ streptomycin (Gibco) and 4 mM L-glutamine (CRUK Cell 

Services). RPE-hTERT and RPE-myr-Akt-ER cell lines were maintained in DMEM/ 

Ham’s F12 (1:1) medium with low glucose (5 mM) (CRUK Cell Services) 

supplemented with 10% FCS, 2 mM L-glutamine and 0.384 % sodium bicarbonate 

(CRUK Cell Services). All cells were grown in incubators at 37°C in 5% CO2. 

 

2.2.2 Culturing of cells in hypoxic conditions  

Cells cultured in hypoxia were incubated in an Invivo2 Hypoxia Workstation (Ruskinn) 

in 0.1-0.5% O2 and 5% CO2 at 37°C and 77% humidity. Dishes and plates containing 

cells were wrapped in aluminium foil to prevent evaporation of the media and to protect 

the cells from light. For cells cultured in hypoxia and subjected to RNA and protein 

extracts the initial stages of the extractions were performed in hypoxia. Cells were 

washed once and lysis buffer was added before the cells were removed from hypoxia. 

 

2.2.3 Cryopreservation and thawing of cultured cells 

Cells were suspended in 1 mL complete medium according to the cell line (see section 

2.2.1) supplemented with 10% DMSO and 10% FCS (total 20% FCS). Aliquots were 

stored in freezing tubs containing isopropanol at -80°C for 48 hours before being 

permanently stored in liquid nitrogen. 

 

To thaw cells, aliquots were thawed in a 37°C water bath and then added to 10 mL of 

pre-warmed complete medium in a 15 mL falcon tube. Cells were centrifuged at 200 x g 

for 5 minutes to remove the DMSO. Cells were resuspended in 10 mL pre-warmed 

complete medium and plated into 100 mm culture dishes and incubated over night.  
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2.2.4 Passaging of RPE, U2OS and U87 cells and their derivatives 

Cultured cells were passaged when they reached approximately 80% confluency, 

typically every three to four days depending on the cell line. Cells were washed once 

using sterile phosphate buffered saline (PBS) and treated with 1 mL Trypsin (0.05%)/ 

Versene (0.016%) (CRUK, Cell Services) per 100 mm culture dish for 2-10 minutes 

(depending on the cell line) at 37°C. Cells were detached from the plate using gentle 

tapping and resuspended in 11 mL complete culture medium. Typically, cells for 

maintenance were re-seeded into new culture dishes at a dilution of 1:4. For 

experiments, cells were counted on a haemocytometer or the ViCell (Beckman Coulter) 

and seeded at appropriate densities.  

 

2.2.5 Passaging of HEK-293-TLA and Phoenix cells 

Cells were cultured as above (2.2.4) with the following modification: Cells were re-

seeded into new culture dishes at a dilution of 1:10. For experiments, cells were counted 

on a haemocytometer and seeded at appropriate densities. 

 

2.2.6 Generation of U87-EV, U87-ER.mSREBP1a and U87-ER.mSREBP2 

by retroviral transduction 
U87 cells expressing the ecotropic receptor (EcoR) were established. Phoenix 

amphotropic packaging cells were transfected with 5µg pWZL-neo-EcoR construct. 24 

hours prior to transfection the cells were seeded at a density of 2.5 x106 cells per 10 cm 

dish. Cells were then transfected using Lipofectamine™ PLUS™ reagent (Invitrogen) 

according to the manufacturer’s instructions (see section 2.2.8). 48 hours post-

transfection the virus was harvested, filtered through a 0.45 µm sterile filter (Millipore) 

and hexadimethrine bromide (Polybrene, Sigma) was added to a final concentration of 1 

µg/mL. The virus was then used to immediately infect U87 cells that had been seeded 

the day before at a density of 7.5 x105 cells per 100 mm dish. Infection was carried out 

for 72 hours before the virus was removed and cells were cultured in complete medium 

supplemented with geneticin ((G148) 0.4 mg/mL, Invitrogen). 
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U87-EcoR cells were then infected with ecotropic retroviruses carrying the pBabe-

puro3 (EV), pBabe-puro-ER.mSREBP1a and pBabe-puro-ER.mSREBP2 constructs. 

PhoenixEcoR cells were transfected with 5 µg of the above constructs using 

Lipofectamine™ PLUS™ reagent according to the manufacturer’s instructions (2.2.8). 

48 hours post-transfection the virus was harvested (as described above) and used 

immediately to infect U87-EcoR cells. 72 hours post-infection, cells were cultured in 

complete medium supplemented with puromycin (Sigma, 1µg/mL). Selection was 

complete after 48 hours. U87-EV, U87-mSREBP1a.ER or U87-mSREBP2.ER cells that 

survived selection were then maintained in complete medium without puromycin.  

 

2.2.7 Generation of U87-pLKO-TetOn-SREBF1 and U87-pLKO-TetOn-

scrambled using lentiviral transduction 
U87 cells stably expressing inducible short hairpin RNAs (shRNAs) targeting SREBF1 

and a non-targeting control (scrambled) were generated using the pLKO-TetON system. 

shRNA sequences (Mission, Sigma: see table 2.5) were cloned into the Tet-pLKO-puro 

lentiviral vector (Addgene)(Wee et al., 2008; Wiederschain et al., 2009) by Susana Ros 

(GEA lab). HEK-293-TLA cells were seeded in 100 mm culture dishes so that they 

were confluent on the day of transfection. Lentiviruses were generated by co-

transfecting the cells with 10 µg shRNA plasmid and 7.5 µg pCMVΔR8.91 (gag-pol) 

and 2.5 µg pMD.G (VSV-G glycoprotein) packaging plasmids (Zufferey et al., 1997) 

using Lipofectamine™ 2000, according to the manufacturer’s instructions (2.2.8). After 

24 hours, 5 mL complete medium containing heat inactivated FCS (10%) was added to 

the cells. 48 hours post-transfection supernatant containing the virus was filtered 

through a 0.45 µm filter (Millipore). 5 mL fresh virus containing 16 µg/mL polybrene 

was used to infect 1x 100 mm dish of U87 cells seeded the day before at a density of 3x 

106 cells/ dish. Cells were incubated with the virus overnight and 5 mL fresh DMEM 

containing heat inactivated FCS (10%) was added after 16 hours. 24 hours later, the 

virus was removed and the cells were incubated in selective medium (containing 1 

µg/mL puromycin) for 48 hours. Once selection was complete, the cells were 

maintained without puromycin. Doxycycline (1 µg/mL) was used to induce expression 

of the shRNAs. As the half-life of doxycycline in cell culture is between 24 and 48 
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hours, fresh doxycycline was added every 48 hours to prevent fluctuation in shRNA 

expression.  

 

Oligonucletotide: Sequence (5’-3’) 

shSREBF1 
forward 

CCGGCCAGAAACTCAAGCAGGAGAACTCGAGTTCTCCTGCTTGA
GTTTCTGGTTTTT 

shSREBF1  
reverse 

AATTAAAAACCAGAAACTCAAGCAGGAGAACTCGAGTTCTCCTG
CTTGAGTTTCTGG 

shScrambled 
forward 

CCGGCCTAAGGTTAAGTCGCCCTCGCTCGAGCGAGGGCGACTTA
ACCTTAGG 

shScrambled 
reverse 

AATTCCTAAGGTTAAGTCGCCCTCGCTCGAGCGAGGGCGACTTA
ACCTTAGG 

Table 2-7 Oligonucleotides used to generate shRNAs used in this thesis 
 

2.2.8 Transient transfection of cells with cDNA 
Cell lines were transiently transfected with cDNA using the transfection reagents shown 

in table 2.8 according to the manufacturer’s protocol. Amounts of DNA plasmids 

transfected are stated in the individual experimental protocols described in this chapter.  

Cell Line: Format: No. of cells: Reagent: Amount 
(µL): 

Manufacturer: 

Phoenix 100 mm 
dish 

2.5 x106 Lipofectamine™ 
Plus™ reagent 

Lipo: 25 
µL Plus: 
17.5 µL 

Invitrogen 

HEK-293-
TLA 

100 mm 
dish 

2.5 x106 Lipofectamine™ 
2000 

60 µL Invitrogen 

RPE 6 well 
plate 

2.5 x105 FuGENE 3:1 
FuGENE 
(µL): 
DNA (µg) 
ratio 

Roche 

U2OS 6 well 
plate 

1.5 x105 Effectene 10 µL Qiagen 

U87 6 well 
plate 

3 x105 Lipofectamine™ 
2000 

1.25 µL Invitrogen 

Table 2-8 Transfection reagents used for transient transfection of cDNA in this thesis  
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2.2.9 Transient transfection of cells with siRNA 

2.2.9.1 Transient transfection of RPE cells using Dharmafect1 

(Dharmacon) 
Transient transfection of RPE cells with siRNA duplexes was performed using a reverse 

transfection protocol with Dharmafect1 (Dharmacon) according to the manufacturer’s 

instructions. Final siRNA concentration (50 nM) was calculated for a final volume of 

1.5 mL for cells transfected in 6-well plate format. Briefly, siRNA duplexes were 

diluted in opti-MEM (Gibco). Dharmafect1 (2 µL) was diluted in opti-MEM and 

incubated at room temperature for 5 minutes. Diluted siRNA duplexes were mixed with 

diluted Dharmafect1 and incubated at room temperature for 20 minutes. During this 

time cells were trypsinised and resuspended at a density of 2.5 x105 in a total of 1.2 mL 

complete medium. siRNA duplexes (300 µL total volume) were added to the wells and 

cells were added on top. The following day, cells were media changed to complete 

medium. 96 hours later cells were assayed for gene knockdown.  

  

2.2.9.2 Transient transfection of U87 cells using Lipofectamine™ 2000 

Transient transfection of U87 cells was performed using a reverse transfection protocol 

using Lipofectamine™ 2000 (Invitrogen) according to the manufacturer’s instructions.  

Final siRNA concentration was calculated for a final volume of 1.5 mL for cells 

transfected in 6-well plate format. Briefly, siRNA duplexes were diluted in opti-MEM 

(Gibco). Lipofectamine™ 2000 (5 µL) was diluted in opti-MEM and incubated at room 

temperature for 5 minutes. Diluted siRNA duplexes were mixed with diluted 

Lipofectamine™ 2000 and incubated at room temperature for 20 minutes. During this 

time cells were trypsinised and resuspended at a density of 3.0 x105 in a total of 1 mL 

complete medium. siRNA duplexes (500 µL total volume) were added to the wells and 

cells were added on top. The following day, cells were media changed to complete 

medium. 96 hours later cells were assayed for gene knockdown. 
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Table 2.8 describes the siRNA oligos (Dharmacon) used in this thesis. 

Gene: Cat. No: Sequence: 

Non-targeting control oligo no. 3 D-001210-03 Unknown 

D-006891-01 UGACUUCCCUGGCCUAUUU 

D-006891-02 ACAUUGAGCUCCUCUCUUG 

D-006891-03 GCGCACUGCUGUCCACAAA 

 

SREBF1 

D-006891-04 ACACAGACGUGCUCAUGGA 

D-009549-01 GAGCGGAGCUGGUCUGUGA 

D-009549-02 GAAGAGAGCUGUGAAUUCU 

D-009549-03 GCACAAGUCUGGCGUUCUG 

 

SREBF2 

D-009549-04 AAACUCAGCUGCAACAACA 

D-004018-01 GGACACAGAUUUAGACUUG 

D-004018-03 GAUGGAAGCACUAGACAAA 

D-004018-05 CGUGUUAUCUGUCGCUUUG 

 

HIF1A 

D-004018-27 GAUGAAAGAAUUACCGAAU 

 

D-003008-05 GAGAAGAAAUGGAAGAAAU 

D-003008-06 CCAAAGUGCUGCAGUACUA 

D-003008-08 GGUCUGAACUGAAUGAAGA 

 

FRAP1 (mTOR) 

D-003008-23 AUAAAGUUCUGGUGCGACA 

D-003005-06 CGCAAUAGCCCAGAAGAUA 

D-003005-07 GAGAUGGACAUUUAAAGCA 

D-003005-09 AGUUUGAGAUGGACAUUUA 

 

EIF4EBP1 (4EBP1) 

D-003005-10 CAUCUAUGACCGGAAAUUC 

D-003616-09 CCAAGGUCAUGUGAAACUA 

D-003616-10 CAUGGAACAUUGUGAGAAA 

D-003616-11 GACAAAAUCCUCAAAUGUA 

 

RPS6KB1 (S6K1) 

D-003616-12 GCAGGAGUGUUUGACAUAG 

D-004671-01 GCAAGGAGUCUAUCCAUGA 

D-004671-02 GACGUGAGCCAGUUUGAUA 

D-004671-03 GGAAGAAAACCAUGGAUAA 

 

RPS6KB2 (S6K2) 

D-004671-04 GGAACAUUCUAGAGUCAGU 

Table 2-9 Dharmacon siRNA oligos used in this thesis  
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2.2.10  Chemicals used in cell biology experiments 

Table 2.9 describes chemicals used in cell biology experiments in this thesis 

Name: Function: Stock 
Dilution: 

Final 
Conc.: 

Source: 

Lipoprotein 
deficient serum 
(LPDS) 

Limits availability of 
exogenous lipids 

100% 1% Intracell 

Normal goat 
serum (NGS) 

Used as a blocking 
reagent in IF 

100%  0.3% Jackson 
Immuno 
Research 

4-hydroxy 
tamoxifen (4-
OHT) 

Artificial ligand for the 
oestrogen receptor 
(ER) 

1 mM in 
EtOH 

100 nM Sigma 

Rapamycin 
(Rapa) 

Selective mTORC1 
inhibitor: binds 
FKBP12 forming 
inhibitory complex 

200 µM in 
DMSO 

50 nM Calbiochem 

MEM amino 
acid solution 

Essential amino acids 
(without L-glutamine) 

50 x 1 x Gibco 

Insulin Hormone that regulates 
carbohydrate and fat 
metabolism 

10 mg/mL 10 µg/mL Sigma 

Thapsigargin 
(TG) 

ER stress inducer: 
blocks transient 
increase in intracellular 
Ca2+ levels 

1 mM in 
DMSO 

50 nM Merk 

Tunicamycin 
(TM) 

ER stress inducer: 
inhibits GPT and N-
linked glycoprotein 
synthesis 

5 mg/mL 5 µg/mL Sigma 

FA free bovine 
serum albumin 
(BSA) 

Starves cells of growth 
factors and exogenous 
lipids 

20% in PBS 0.5% Sigma 

SB-216763 Selective ATP-
competitive GSK3α/β 
inhibitor 

7.5 mM in 
DMSO 

5 µM Calbiochem 

Table 2-10 List of chemicals used in cell biology experiments in this thesis 
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2.2.11 Immunofluoresence microscopy 

Cells were seeded directly onto coverslips (13mm, Thermo Scientific Nunc) in 12-well 

plates at a density of 1.5 x105 cells/ well. Following culture, cells were washed twice in 

PBS and fixed in 3.7% formaldehyde/ PBS (Stock: 37% formaldehyde, histological 

grade, Sigma) for 30 minutes at room temperature. Following two washes in PBS, cells 

were permeabilised in 0.1% Triton-X 100/ 0.3% normal goat serum (NGS) for 15 

minutes at room temperature. Primary antibodies were diluted in 0.1% Triton-X 100/ 

0.3% NGS (see table 2.11) and incubated overnight at 4°C in a humidified chamber. 

Coverslips were washed three times in PBS and incubated in the secondary antibody 

solution (see table 2.11) containing DAPI (1 µg/ mL) for 1 hour at room temperature. 

Following three washes in PBS, coverslips were dipped once in dH2O and once in 

methanol to remove residual salt and mounted on a microscope slide (Thermo 

Scientific) with Mowiol (Calbiochem). Images were obtained using a LSM 710 Upright 

Confocal Microscope (Carl Zeiss) with a 63x Plan-APOCHROMAT 1.4 Oil immersion 

objective (Carl Zeiss) at room temperature. Image capture was performed using the Zen 

2009 (Carl Zeiss) software. Channels were separated using Image J software (National 

Institute of Health) and brightness and contrast were adjusted using Photoshop CS4 

(Adobe). All images from the same experiments were adjusted using identical 

parameters according to LRI image processing guidelines. 

 

  Stock Conc. Working 
Dilution: 

Source: 

Primary 
Antibody 

Anti-SREBP1 
(K10) 

200 µg/ mL 1:50 Santa Cruz 
Biotechnology, 
Inc. 

Secondary 
Antibody 

Alexa Fluor® 546 
goat anti-mouse 

2mg/mL 1:500 Molecular 
Probes 

Table 2-11 Antibodies used in immunofluorescence microscopy 
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2.2.12 Analysis of Lipid Droplets  

2.2.12.1 Visualisation of lipid droplets using confocal microscopy 

Cells that were to be analysed for lipid droplet formation by confocal microscopy were 

seeded in the same way as in section 2.2.11. Following fixation for 30 minutes with 

3.7% formaldehyde/ PBS, cells were stained in 0.1 µg/mL Nile Red (Molecular Probes) 

and 1 µg/mL DAPI (Roche) in 150 mM NaCl for 10 minutes at room temperature. Cells 

were washed twice in PBS, and once in dH2O and mounted onto microscope slides 

(Thermo Scientific) using Mowiol (Calbiochem). Cells were imaged using a LSM 710 

Upright Confocal Microscope (Carl Zeiss) as described in section 2.2.11. Nile Red was 

scanned using the FITC filter.  

 

2.2.12.2 Lipid droplet quantification using Array Scan VTi  

For lipid droplet quantification, cells were grown in 96-well plates (black with clear 

bottom 96-well Microtest™ Optilux™ plates, BD Falcon™) at a density of 4,000-8,000 

cells per well, depending on the nature of the experiment. Cells were fixed and stained 

as described above (2.2.12.1). Following the final wash in PBS, a final volume of 100 

µL PBS was added to the cells. The plates were sealed with foil (Brandel) and scanned 

on the ArrayScanVTi (Cellomics) using the DAPI filter (nuclei) and the FITC filter 

(Nile Red) (Mike Howell, LRI HTS). The scanning protocol was set up such that 15 

images per well were captured. The nuclei were then defined using the DAPI channel 

and a mask was drawn around the nucleus defining a single cell (valid object). A ring 

around each nucleus (region of interest: ROI) was then defined using a distance of -3 

pixels (inner threshold) to 22 pixels (outer threshold). Spots within this ROI were 

further defined using local pixel intensity and the Compartmental Analysis V4 

algorithm (Cellomics Bioapplication) (see figure 2.1). The “mean ring spot total 

intensity” was then plotted. This is a measurement of the sum of all the pixel intensities 

within all spot regions per single object (cell). Taking the mean of this measurement 

ensures that data is normalised to cell number. 
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Figure 2-1: Quantification of lipid droplet staining using Array Scan VTi (Cellomics).  
Representative images taken by the Array Scan VTi. (A) Composite image showing staining of 
nuclei (DAPI: blue) and lipid droplets (Nile Red: green). (B) Image A showing the masks used to 
define the following: Valid objects (single cells: blue ring); ROI (green ring); and ring spots (lipid 
droplets: pink spots).  
 

 

2.2.13  Sulforhodomine B Assay (Cell Mass) 

Total protein content (cell mass) was measured as an indicator of cell viability/ cell 

number and was measured using the Invitro Toxicology Assay Kit (Sulforhodomine B 

based, Sigma) according to the manufacturer’s instructions. The Sulforhodomine B 

assay is based on the ability of the dye to bind basic amino acid residues on 

trichloroacetic acid (TCA) fixed cells and the results are linear with cell number (Voigt, 

2005). Cells were fixed by adding ¼ of the culture volume of cold 50% TCA to the 

growth medium and incubated for 1 hour at 4°C. Cells were then washed twice with 

dH2O and allowed to air-dry before incubation at room temperature for one hour with 

0.5x culture volume of 0.4% sulforhodamine B in 1% acetic acid. The stain was 

removed and cells were washed twice with 1% acetic acid and allowed to air-dry 

overnight. The dye was re-solublised by adding 1x culture volume 10 mM Tris and 

placing the culture vessel on a rotator for 10 minutes to evenly distribute the dye. 100 

µL/ sample was transferred to a well of a 96 well plate and read at 492 nm using a 

SpectraMax 190 plate reader (Molecular Devices) and analysed using SoftMax® Pro 

software (Molecular Devices).  
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2.3 Protein Biochemistry and Biochemical Techniques 

2.3.1 Preparation of cell lysates 

For the detection of SREBP mature proteins, all cells were treated with ALLN (25 

µg/mL, Calbiochem) or MG-132 (25 µM, Calbiochem) for 1.5 hours before lysis, or as 

indicated in the text. 

 

Cell monolayers were washed once with ice cold PBS and 200 µL TNET Buffer (1% 

Triton-X-100, 50 mM Tris pH 7.5, 300 mM NaCl, 1 mM EGTA, 1 mM DTT, Protease 

Inhibitor Cocktail (Roche) and PhosStop Phosphatase Inihibitor Cocktail (Roche)) was 

added directly to the cells. Cells were lysed on ice for 15 minutes with gentle rocking. 

Cell lysates were scraped into 1.5 mL microcentrifuge tubes and the lysates were 

cleared by centrifugation at 16,000 x g for 10 minutes at 4°C. Cleared lysates were 

transferred to a fresh microcentrifuge tube, snap frozen on dry ice and stored at -80°C. 

 

2.3.2 Nuclear fractionation of cells 

The following protocol is based on that originally described by Wang and colleagues 

for the nuclear fractionation of mature SREBP proteins (Wang et al., 1994) and has 

been adapted to ensure optimal enrichment of nuclear proteins from RPE cells 

(Porstmann et al., 2008). 

 

RPE cells from two 15 cm dishes (U87 cells: 2x 100 mm dishes) were washed once in 

ice cold PBS, scraped into 1 mL ice cold PBS containing Protease Inhibitor Cocktail 

and PhosStop Phosphatase Inhibitor Cocktail (Roche) and transferred to 15 mL falcon 

tubes (on ice). Cells were centrifuged for 5 minutes at 650 x g at 4°C and transferred to 

fresh 1.5 mL microcentrifuge tubes in 1 mL ice cold PBS containing the inhibitor 

cocktails described above. Cells were centrifuged again at 855 x g for 5 minutes at 4°C 

and all PBS was removed. The cell pellets were resuspended in 3 volumes of Buffer C 

(10 mM HEPES/KOH pH 7.6, 10 mM KCL, 1.5 mM MgCl2, 1 mM EDTA, 1 mM 

EGTA, 0.5 mM DTT, Protease Inhibitor Cocktail and PhosStop Inhibitor Cocktail) and 

swelled on ice for 10 minutes. The cells were disrupted by trituration 15 times with a 
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23G needle and the lystate was centrifuged at 855 x g for 10 minutes. The supernatant 

(containing the membrane and cytoplasmic fractions) was transferred to a fresh 1.5 mL 

microcentrifuge tube and centrifuged for another 5 minutes at 855 x g at 4°C to remove 

any nuclei. The cleared supernatant fraction was then snap frozen on dry ice and stored 

at -80°C.  

 

To continue nuclear lysis, the pelleted nuclei were washed twice in 200 µL Buffer C 

and centrifuged at 855 x g at 4°C for 5 minutes between washes. Nuclei were 

centrifuged again for 3 minutes at 855 x g and any remaining Buffer C was removed 

using a gel-loading tip. The pelleted nuclei were then resuspended in one volume of 

Buffer D (20 mM HEPES/KOH pH 7.6, 0.5 M NaCl, 1.5 mM MgCl2, 1 mM EDTA, 1 

mM EGTA, 25 % (v/v) glycerol, Protease Inhibitor Cocktail and PhosStop) and 

incubated on ice for 30 minutes with occasional votexing. The nuclear lysates were 

cleared by centrifugation at 16,000 x g for 10 minutes at 4°C, transferred to a fresh, cold 

1.5 mL microcentrifuge tube, snap frozen on dry ice and stored at -80°C.  

 

2.3.3 Determination of protein quantification 

In order to ensure equal protein loading in SDS-PAGE, total protein concentration of 

protein lysates was determined using the BioRad Protein Assay and measured on a 

SpectraMax 190 plate reader (Molecular Devices) using the SoftMax® Pro software 

(Molecular Devices). 

 

2.3.4 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE was carried out using the NuPAGE® NOVEX® Bis-Tris 4-12% Precast Gel 

System (Invitrogen). Protein samples were mixed with 4x NuPAGE® SDS Sample 

Buffer and heated to 70°C for 10 minutes before loading. Gels were run for 1-1.5 hours 

at 200V in 1x NuPAGE® MOPS or 1x NuPAGE® MES running buffers, depending on 

the size of the proteins to be detected. Protein size was estimated using the Full Range 

Rainbow Molecular Weight Marker (Amersham). 
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2.3.5 Western blotting 

Immobilon-P polyvinylidene difluouride (PVDF, Millipore) membranes were soaked in 

methanol and then equilibriated in transfer buffer (25 mM Tris, 192 mM glycine and 

10% MetOH) for at least 10 minutes. The gel to be transferred, sponges and 4 pieces of 

Whatman 3M filter paper were also soaked in transfer buffer for at least 10 minutes. 

Proteins were transferred from the gel to the PVDF membrane in a Bio-Rad TransBlot® 

electrophoretic transfer cell filled with transfer buffer. 2 filter papers and a sponge were 

placed either side of the gel and membrane. Transfers were either carried out at 200 mA 

for 1.5 hours in the presence of an ice block, or at 15 mA overnight at 4°C.  

 

Membranes were blocked for 1 hour at room temperature with gentle shaking in 3% 

BSA (Sigma)/ Tris buffered saline (TBS). Non-conjugated primary antibodies were 

diluted according to table 2.12 and incubated overnight at 4°C with gentle rocking. 

Primary antibodies were washed using 5x 5 minute washes in TBS-Tween® (0.05% v/v 

Tween®20, Sigma). Secondary antibodies conjugated to horseraddish peroxidase (HRP) 

(Amersham), as well as primary peroxidase-conjugated antibodies, were incubated in 

5% non-fat milk powder (Marvel)/ TBS-Tween® according to table 2.13 for 45-60 

minutes at room temperature with gentle rocking. Secondary antibodies were washed 

using 4x 5 minute washes in TBS- Tween® and a final 5 minute wash in TBS. Protein 

bands were visualised using ECL or ECL Plus™ (for antibodies recognising SREBP1 

(2A4) and SREBP2 (1C6)) western blotting detection reagent (Amersham) and high 

performance chemiluminescence film (Hyperfilm, Amersham), according to the 

manufacturer’s instructions.  
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Primary 
Antibody: 

Stock Conc.  Working Dilution: Source: 

4EBP1 Rabbit 
polyclonal 

 1:1000 Cell Signaling 
Technology 

ACC (ACC1, 
ACACA) Rabbit 
Polyclonal 

 1:1000 

 

Cell Signaling 
Technology 

ACLY Rabbit 
Polyclonal 

 1:1000 Cell Signaling 
Technology 

Akt Rabbit 
polyclonal 

 1:1000 Cell Signaling 
Technology 

ATF4 (CREB-2, C-
20) Mouse 
Monoclonal 

200 µg/ mL 1:1000 

 

Santa Cruz 
Biotechnology, Inc 

ATF6-alpha (H-
280) Rabbit 
Polyclonal 

200 µg/ mL 1:500 

 

Santa Cruz 
Biotechnology, Inc 

beta catenin rabbit 
polyclonal 

 1:1000 Cell Signaling 
Technology 

beta-actin HRP 
Mouse Monoclonal 

0.6 mg/mL 1:5000 Sigma 

beta-tubulin HRP 
Rabbit Polyclonal 

 1:10,000 abcam 

Calreticulin Rabbit 
Polyclonal 

1mg/mL 1:1000 StressGen 

Cyclin A (H-432) 
Rabbit Polyclonal 

200 µg/ mL 1:500 Santa Cruz 
Biotechnology, Inc 

DP1 (1DP06/ 
TFD10) Mouse 
Monoclonal 

200ug/ mL 1:500 Stratech Scientific 
Ltd. 

ER alpha (MC-20) 
Rabbit Polyclonal 

200 µg/ mL 1:1000 Santa Cruz 
Biotechnology, Inc 

FASN Mouse 
Monoclonal 

250ug/mL 1:2000 BD Biosciences 

GAPDH HRP 
Mouse Monoclonal 

 1:2000 abcam 

HIF1a Mouse 
Monoclonal 

250ug/mL 1:5,000 BD Biosciences 
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Lamin B1 (C-20) 
Goat Polyclonal 

200 µg/ mL 1:1000 Santa Cruz 
Biotechnology, Inc 

myc (9E10) Mouse 
Monoclonal 

1.1mg/mL 1:500 CRUK 

phospho beta 
catenin Ser 33/37/ 
Thr 41 rabbit 
polyclonal 

 1:1000 Cell Signaling 
Technology 

phospho 4EBP1 Thr 
37/46 rabbit 
polyclonal 

 1:1000 Cell Signaling 
Technology 

phospho Akt Ser 
473 Rabbit 
Polyclonal 

 1:1000 Cell Signaling 
Technology 

phospho RBPS6 Ser 
235/236 

 1:1000 Cell Signaling 
Technology 

phospho RBPS6 Ser 
240/244 rabbit 
polyclonal 

 1:1000 Cell Signaling 
Technology 

RBPS6 rabbit 
polyclonal 

 1:1000 Cell Signaling 
Technology 

SCAP (C-20) Goat 
Polyclonal 

200 µg/ mL 1:1000 BD Biosciences 

SREBP1 (2A4) 
Mouse Monoclonal 

0.5mg/mL 1:500 BD Biosciences 

SREBP2 (1C6) 
Mouse Monoclonal 

0.5mg/mL 1:500 BD Biosciences 

Table 2-12 Primary antibodies used in Western blotting 
 

 

Secondary 
Anitbody: 

Stock conc.: Working dilution: Source: 

Donkey anti-rabbit 
IgG HRP 

 1: 2000 Amersham 

Rabbit anti-goat 

IgG HRP 

0.5mg/mL 1:2000 Dako Cytomation 

Sheep anti-mouse 

IgG HRP 

 1:2000 Amersham 

Table 2-13 Secondary antibodies used in Western blotting 
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2.3.6 Measuring de novo lipid synthesis 

U87 cells were seeded in 12-well plates at a density of 1.25 x105 cells/ well. The 

following day, cells were media changed to 0.5 mL media and incubated for a further 

24 hours in the appropriate experimental condition. Cells were then incubated with 

either 2.5 µCi/mL D-[6-14C] glucose (45 mM final concentration, Amersham), 10 

µCi/mL [1-14C] acetate (85 µM final concentration, Perkin Elmer) or 2.5 µCi/mL [2-
14C] pyruvate (166 µM final concentration, Perkin Elmer) for 4 hours. Cells were 

washed twice in PBS, trypsinised and transferred to a 15 mL Falcon tube. Following 

centrifugation at 650 x g to remove the trypsin, cells were lysed in 0.5% Triton-X 100. 

Lipids were then extracted by successive addition of 2 mL methanol, 2 mL chloroform 

and 1 mL dH2O. Samples were vortexed between each addition. Phase separation was 

achieved by centrifugation at 1,500 x g for 15 minutes. The aqueous phase was removed 

and the organic phase (lower phase) was transferred to a scintillation vial and allowed to 

dry overnight. Lipids were dissolved in 5 mL Ultima Gold LSC Cocktail (Perkin Elmer) 

and counts per minute (CPM) were measured using a LS 6500 Scintillation Counter 

(Beckmann Coulter). Results were normalised to total protein content (cell mass) 

(section 2.2.13).  

 

2.3.7 Dual Luciferase® assays 

Dual Luciferase Assays (Promega) were used to measure reporter firefly luciferase 

activity and normalise it to an internal Renilla luciferase control. Cells were transfected 

with reporter constructs (pSRE-luc: 0.5 µg or pGL2-FASN-luc (wt): 1µg) and the 

Renilla control (phRL-SV40: 0.5 ng) as described in section 2.2.8. Cells were lysed 

using the passive lysis method, according to the manufacturer’s instructions (Promega). 

Typically, cells seeded in 12-well plates were lysed in 100 µL PLB for 15 minutes at 

room temperature on a rocker. 20 µL of lysate were transferred to an opaque 96-well 

plate and 100 µL Luciferase Assay Reagent II (LARII) was added. The reaction mixture 

was mixed using a plate mixer and firefly luciferase activity was measured using an 

EnVision Multilabel Plate Reader (Perkin Elmer). Immediately after reading, 100 µL 

Stop and Glow® reagent was added, the reaction mixed as above and the renilla activity 

measured as already described. Renilla activity was used to normalise firefly luciferase 

activity. 
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2.3.8 SREBP cleavage assays 

SREBP cleavage assays are based on placental alkaline phosphatase (PLAP) assays 

using a PLAP-SREBP2 fusion construct developed by Sakai and colleagues (Sakai et 

al., 1998). Upon cleavage of SREBP2 at the S1P and S2P sites, the PLAP is released 

into the media and PLAP activity can be measured using a chemiluminescent reaction. 

U2OS-Akt-ER cells were co-transfected with pCMV-PLAP-SREBP2 (1 µg), pCMV-

SCAP (2 µg) and the Renilla luciferase control (phRL-SV40: 0.5 ng) as described in 

section 2.2.8. PLAP activity was measured using the Phospha-Light™ System (Applied 

Biosystems), according to the manufacturer’s instructions. Following culture, 50 µL 

growth media were transferred to a 1.5 mL microcentrifuge tube and diluted 1:2 in 1x 

dilution buffer. Samples were heated at 65°C for 30 minutes and then cooled to room 

temperature by placing on ice for 1 minute. 50 µL of sample were transferred to a well 

of an opaque 96-well plate and incubated with 50 µL Assay Buffer for 5 minutes at 

room temperature. 50 µL Reaction Buffer was then added and incubated at room 

temperature for a further 20 minutes. The resulting PLAP activity was measured using 

the EnVision Multilabel Plate Reader (Perkin Elmer).  PLAP activity was normalised to 

renilla activity measured in the same experiment (see section 2.3.7).  

 

2.3.9 Measuring Caspase 3/7 activity 

As a read-out for apoptosis, caspase 3/7 activity was measured using an assay based on 

the Apo-ONE assay (Promega). Cells were cultured in 96 well plates in a volume of 100 

µL. Following culture for the in the appropriate conditions for the time stated in the 

figure legends 100 µL caspase assay mix (25 mM HEPES pH7.3, 1 mM EDTA, 100 

mM NaCl, 0.1% CHAPS, 5 mM DTT, 0.01mg/mL caspase 3 substrate (Merck)) were 

added to the wells. Cells were incubated with the caspase assay mix for 1.5 hours at 

room temperature and were protected from light. Fluorescence was then measured at 

485 nm using an EnVision Multilabel Plate Reader (Perkin Elmer). Cells were then 

fixed in TCA and stained with Sulforhodomine B (Sigma) to determine total protein 

content (cell mass, 2.2.13). Assay background was measured using media only and each 

experiment was performed in triplicate. 
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2.4 Computational and Statistical Analysis 
Quantitative data were depicted using GraphPad Prism 5.0c. Paired Student’s t tests 

assuming equal or unequal variance and a two-tailed distribution were carried out using 

Microsoft Excel for statistical analysis. Error bars represent either the standard 

deviation (SD) or the standard error of the mean (SEM) as described in the figure 

legends.  
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Chapter 3. Analysis of the transcriptional response 

to activation of SREBP1a and SREBP2 in cancer 

cells 
 

3.1 Introduction 
Sterol regulatory element binding proteins (SREBPs) regulate the expression of genes 

required for the synthesis of fatty acids and cholesterol. Lipid metabolism is perturbed 

in some diseases, including cancer, and SREBP target genes such as fatty acid synthase 

(FASN) and stearoyl-coA desaturase (SCD) are upregulated in some forms of human 

cancer (Li, 2000; Swinnen et al., 2000b; Yoon et al., 2007). A large number of direct 

transcriptional targets have been identified by studies in genetically manipulated mice 

and subsequent gene expression microarrays (Horton et al., 2003; Kallin et al., 2007), as 

well as promoter binding studies (Motallebipour et al., 2009; Reed et al., 2008; Rome et 

al., 2008; Seo et al., 2011). However, little is known about SREBP isoform-specific 

transcriptional signatures in cancer cells. SREBP1 has been shown to play a role in 

tumourigenesis in glioblastoma multiforme (GBM) (Guo et al., 2009b), and this cancer 

type is associated with hyperactivation of the PI3K/Akt signalling pathway through 

functional loss of the tumour suppressor protein PTEN (Parsons et al., 2008). This 

chapter describes the investigation into the transcriptional response to SREBP1a and 

SREBP2 activation in the human glioblastoma cell line U87. 

 

3.2 Generation of U87.SREBP1a.ER and U87.SREBP2.ER cell 
lines 

The two SREBP1 isoforms share the same DNA binding domain, although it is 

generally considered that SREBP1a is the stronger transcriptional activator due the 

longer acidic transactivation domain in its N-terminus (Bengoecheaalonso and Ericsson, 

2007; Shimano et al., 1997a). For this reason, the transcriptional response to SREBP1a 

activation was investigated alongside that of SREBP2 in human glioblastoma cells. In 

order to identify genes that are regulated in response to activation of SREBP1a or 
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SREBP2, stable cell lines expressing 4-hydroxytamoxifen (4-OHT) inducible forms of 

these proteins were generated. The hormone-binding domain of the oestrogen receptor 

that has been previously engineered to selectively bind the oestrogen antagonist 4-

hydroxytamoxifen (4-OHT) instead of its natural ligand 17β-estradiol 

(ERTM)(Littlewood et al., 1995) was used. This was fused N-terminally to the mature N-

terminal domain of SREBP1a and SREBP2 (ER.mSREBP1a and ER.mSREBP2). These 

constructs are described in Figure 3.1. The ER.mSREBP1a and ER.mSREBP2 fusion 

proteins were then stably expressed in the U87 glioblastoma cell line using retroviral 

transduction. 

 

 

Figure 3-1: Schematic representation of the ER.mSREBP1a and ER.mSREBP2 fusion 
constructs.  
(A) A schematic representation of the full length SREBP proteins, showing the N-terminal 
transactivation domains, the bHLH DNA binding domain, the C-terminal regulatory region and 
the S1P and S2P cleavage sites. Numbers correspond to amino acids in SREBP1a B) The 
hormone binding domain of the murine oestrogen receptor (ER) is fused to the N-terminal of the 
mature SREBPs (mSREBP), to create a 4-hydroxytamoxifen (4-OHT) inducible construct. The 
point mutation G>R renders the ER insensitive to its natural ligand, whilst still being able to bind 
4-OHT. A 20bp linker connects the ER and the mSREBP, allowing more flexibility. C) 
Conditional activation of ER.mSREBPs: ER.mSREBPs are constitutively expressed in the cells. 
In the absence of 4-OHT, the ER-domain is in an inhibitory complex with heat shock 90 proteins 
(HSP-90). Upon induction with 4-OHT, the ER changes conformation causing the heat shock 
proteins to dissociate and allowing the ER-mSREBP fusion protein to become transcriptionally 
active. 
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It should be noted that the N-terminal fusions used in this thesis correspond to slightly 

truncated versions of the mature proteins (see Figure 1.2 for the full domain structures 

of mSREBP1a and mSREBP2). ER.mSREBP1a is lacking the final 31 amino acids in 

the C-terminus, whilst ER.mSREBP2 lacks the final 17 C-terminal amino acids. These 

truncations originate from the cDNA originally cloned by the Goldstein and Brown lab 

(Horton et al., 1998; Shimano et al., 1997a), as demonstrated by DNA sequencing (data 

not shown: B. Griffiths, GEA, LRI). The constructs used in this thesis still contain the 

transactivation domains and the DNA binding domains, both of which are required for 

transcriptional activity. In addition, these constructs still contain the C-terminal residues 

that are phosphorylated by various kinases that govern the stability of the mature 

transcription factors (Bengoechea-Alonso and Ericsson, 2009; Bengoechea-Alonso and 

Ericsson, 2006). However, it is possible that the C-terminal truncations lack previously 

undescribed residues important for the functional regulation of the mature proteins. It 

may be difficult, therefore, to compare results obtained using these truncated fusion 

proteins with some of the more recent literature. Nevertheless, the following sections 

demonstrate that these fusion proteins do behave in the expected manner and that the 

ER.mSREBP fusion proteins used in this thesis regulate canonical SREBP target genes. 

 

3.3 Characterisation of U87.ER.mSREBP1a and 
U87.ER.mSREBP2 cell lines 

3.3.1 Activation of ER.mSREBP1a or ER.mSREBP2 reduce cellular 

proliferation 
The U87 cell lines stably expressing ER.mSREBP1a or ER.mSREBP2 (as well as an 

empty vector control cell line; U87-EV) were characterised. Both constructs could be 

detected by Western blot using an ER-alpha antibody (Figure 3.2), indicating that the 

cell lines had been successfully infected and that the proteins were being expressed. 

Treatment with 4-OHT over a period of 24 hours caused a shift in the mobility of 

ER.mSREBP1a, but not ER.mSREBP2 (Figure 3.2). This shift could be the result of 

phosphorylation of the ER.mSREBP1a protein upon activation with 4-OHT.   
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Next, the effect of long-term SREBP activation on the proliferation of U87 cells was 

investigated. Cells were treated with solvent (EtOH) or 4-OHT for the times indicated 

in Figure 3.3 and a cell mass assay was carried out as a measure of cell number. No 

difference in cell mass was observed between U87.EV cells treated with EtOH or 4-

OHT, indicating that treatment with 4-OHT alone had no effect on cell proliferation 

(Figure 3.3). Interestingly, both the 4-OHT treated ER.mSREBP1a and ER.mSREBP2 

cell lines exhibited reduced proliferation at 72 hours compared to their vehicle treated 

controls and the EV control cell line (Figure 3.3). In addition, the loss of cyclin A, a key 

cell cycle component, was observed at the 8 hour and 24 hour time points (Figure 3.4). 

These data indicate that activation of exogenous mSREBP1a and mSREBP2 results in 

reduced proliferation in these cells, possibly by inhibiting positive cell cycle regulators.  

 

 

Figure 3-2: Expression of ER.mSREBP1a and ER.mSREBP2 fusion proteins in U87 cells.  
U87 cells were stably infected with the ER.mSREBP1a and ER.mSREBP2  constructs, as well 
as an empty vector control (EV). Cells were cultured in 10% FCS and treated with 100 nM 4-
OHT for the times indicated. Whole cell lysates were analysed by Western blotting for 
expression of the ER fusion proteins using an ERα antibody. β tubulin is shown as a loading 
control. 
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Figure 3-3 Activation of ER.mSREBP1a and ER.mSREBP2 in U87 cells leads to a 
reduction in growth over time.  
U87 stably expressing ER.mSREBP1a and ER.mSREBP2 together with the empty vector 
control (EV) were seeded in 96-well plates at a density of 5000 or 8000 cells/ well and cultured 
in 10% FCS in the presence of vehicle (EtOH) or 100 nM 4-OHT over a period of 72 hours. At 
each time point a cell mass assay was performed. Data shown represents the mean of three 
biological replicates ± SEM. 
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Figure 3-4: Activation of ER.mSREBP1a and ER.mSREBP2 in U87 cells results in a 
reduction in cyclin A.  
U87 cells stably expressing ER.mSREBP1a and ER.mSREBP2 together with the empty vector 
control (EV) were grown in 10% FCS and treated with vehicle (EtOH) or 100 nM 4-OHT for the 
times indicated. Whole cell lysates were analysed by SDS-PAGE and Western blotting using an 
antibody against cyclin A. β tubulin is shown as a loading control. 
 
 
 

3.3.2 Activation of ER.mSREBP1a and ER.mSREBP2 in U87 cells results 

in the increased expression of SREBP target genes 
In order to assay for transcriptional activity of ER.mSREBP1a and ER.mSREBP2 in 

U87 cells, the expression of two key SREBP target genes was examined (Figure 3.5). 

Cells were treated with solvent (EtOH) or 4-OHT for 24 hours. Whole cell lysates were 

analysed by Western blotting for the expression of FASN and ATP-citrate lyase 

(ACLY) (Figure 3.5 A). In addition, RNA was extracted from parallel cultures and used 

for RT-QPCR analysis of both FASN and ACLY (Figure 3.5 B). Treatment with 4-

OHT for 24 hours resulted in increased protein and mRNA expression of both FASN 

and ACLY in cells expressing ER.mSREBP1a as well as cells expressing 

ER.mSREBP2. Interestingly, activated ER.mSREBP1a appeared to induce both FASN 

and ACLY expression to a greater extent than ER.mSREBP2. This is in keeping with 

previous findings that SREBP1a is the stronger transcriptional activator 

(Bengoecheaalonso and Ericsson, 2007; Shimano et al., 1997a). However, this 

observation could also be the result of high expression levels of the ER.mSREBP1a 

protein relative to ER.mSREBP2. 

 

The increase in transcriptional activity of ER.mSREBP1a and ER.mSREBP2 in 

response to 4-OHT induction was also confirmed using luciferase reporter assays. The 

pSRE-luc reporter contains three repeats of a classic sterol response element (SRE)/ 

SP1 binding site fused to the luciferase gene (described in Figure 3.6 A and (Amemiya-
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Kudo et al., 2002)). It represents sequences initially designated as repeats 2 and 3 in the 

promoter region of the low-density lipoprotein receptor (LDLR) gene (Briggs et al., 

1993). U87-SREBP1a.ER, U87.SREBP2.ER and U87.EV cell lines were transiently 

transfected with pSRE-luc and treated with 4-OHT or solvent (EtOH) for 24 hours as 

indicated in Figure 3.6 B. An increase in the luciferase activity of pSRE-luc was 

observed in both cell lines expressing ER.mSREBP1a or ER.mSREBP2 following 4-

OHT induction (Figure 3.6 B). However, ER.mSREBP1a activation increased luciferase 

activity to a larger extent than ER.mSREBP2 (Figure 3.6 B). This is consistent with the 

above observation that activated ER.mSREBP1a induced FASN and ACLY expression 

to a greater extent than ER.mSREBP2.  

 

When taken together, these data indicate that transcriptional activity of ER.mSREBP1a 

and ER.mSREBP2 was inducible in a 4-OHT-dependent manner in the U87 cell line. 
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Figure 3-5 Activation of ER.mSREBP1a and ER.mSREBP2 in U87 cells leads to increased 
expression of SREBP target genes.  
U87-EV (EV), U87-ER.mSREBP1a (BP1a) and U87-ER.mSREBP2 (BP2) cells were cultured in 
10% FCS for 24 hours in the presence of vehicle (EtOH) or 100 nM 4-OHT. A) Whole cell 
lysates were analysed by SDS-PAGE and Western blotting with antibodies against FASN and 
ACLY. β tubulin is shown as a loading control. B) mRNA from cells treated as in (A) was 
analysed by RT-QPCR and normalised to the loading control. Data shown is the mean of three 
independent biological replicates ± SEM. 
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Figure 3-6: Activation of ER.mSREBP1a and ER.mSREBP2 in U87 cells results in 
increased SRE-luciferase reporter activity.  
(A) Schematic representation of the pSRE-luc reporter, where three repeats of the classical 
SRE-SP1 sequence are fused to a TATA box and the luciferase gene (Amemiya-Kudo et al., 
2002). This sequence was formally designated repeats 2 and 3 in the low-density lipoprotein 
receptor (LDLR) gene promoter (-68/-37) (Briggs et al., 1993). B) U87-EV, U87-ER.mSREBP1a 
and U87-ER.mSREBP2 cells were co-transfected with the pSRE-luc reporter and phRL-SV40 
renilla luciferase as a control. Cells were cultured in 10% FCS in the presence of vehicle (EtOH) 
or 100 nM 4-OHT for 24 hours and a Dual Luciferase® assay was carried out. Data shown 
represents the mean luciferase activity normalised to the renilla luciferase control from two 
biological replicates ± SEM. 
 
 
 

3.3.3 Activation of ER.mSREBP1a and ER.mSREBP2 in U87 cells results 

in the formation of lipid droplets and an increase in de novo lipid 
synthesis 

The ability of cells to store energy plays an important role in the cellular response to 

starvation. Eukaryotic cells store energy in the form of neutral lipids, such as 

triacylgylcerols (TAGs), and lipid droplets (LDs) provide compartmental storage for 

TAGs within the cell (Farese and Walther, 2009). Interestingly, activation of SREBPs 

has been shown to induce the formation of lipid droplets in various models (Seo et al., 

2011; Shimano et al., 1996; Wang et al., 2010). Cells expressing ER.mSREBP1a and 

ER.mSREBP2 were assayed for lipid droplet formation following 4-OHT induced-

activation of SREBP using the dye Nile Red. Nile Red specifically binds to neutral 

lipids found at the core of LDs (Greenspan et al., 1985). Activation of ER.mSREBP1a 

or ER.mSREBP2 strongly induced the formation of lipid droplets as detected by Nile 
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Red staining and imaged by confocal microscopy (Figure 3.7). In contrast, no LDs were 

observed in the control EV cell line after either vehicle (EtOH) or 4-OHT treatment, 

indicating that the formation of lipid droplets was dependent on SREBP activation. A 

limited amount of lipid droplet staining was observed in the U87.ER.mSREBP1a cell 

line when treated with EtOH, however, the size and intensity of the LDs formed upon 

stimulation with 4-OHT were greatly increased. Although LD formation occurs 

naturally within the cell, LDs are not always detectable by microscopy. SREBP 

activation could therefore increase the number of LDs within the cell, or increase the 

size of LDs so that they become detectable using this technique.  

 
As previously mentioned, SREBPs activate genes involved in fatty acid and cholesterol 

biosynthesis. In addition, SREBPs are required for de novo lipid synthesis (Porstmann 

et al., 2008). Therefore, de novo lipid synthesis was measured in response to SREBP 

activation. Cells were treated with solvent (EtOH) or 4-OHT for 24 hours before being 

incubated with radiolabelled glucose (Figure 3.8 A), pyruvate (Figure 3.8 B) or acetate 

(Figure 3.8 C) for a further 4 hours. Analysis of the incorporation of 14C derived from 

these radioactive precursors into cellular lipid fractions revealed that activation of 

ER.mSREBP1a increased the amount of glucose-, pyruvate- and acetate-dependent 

lipogenesis (Figure 3.8). Interestingly, the relative amounts of all three precursors 

incorporated into the lipid fraction differed. Incorporation of glucose-derived 14C 

increased 1.5 fold following ER.mSREBP1a activation (Figure 3.8 A), whereas 

incorporation of pyruvate-derived 14C was increased by almost 2-fold (Figure 3.8 B). 

Acetate-derived 14C incorporation showed the largest increase of all three metabolites 

(Figure 3.8 C). Taken together, these data indicate that activation of ER.mSREBP1a is 

sufficient to increase de novo lipid synthesis in U87 cells, and that mSREBP1a may 

regulate the incorporation of acetate into lipids more potently than other cellular 

precursors.  
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Figure 3-7 Activation of ER.mSREBP1a and ER.mSREBP2 in U87 cells causes increased 
lipid droplet formation.  
U87 cells stably expressing the ER.mSREBP1a and ER.mSREBP2 construts, together with the 
empty vector control (EV) were seeded onto coverslips. Cells were cultured in 10% FCS for 24 
hours in the presence of either vehicle (EtOH) or 100 nM 4-OHT. Cells were fixed and stained 
with 0.1 µg/mL Nile Red (lipid droplets) and 1 µg/mL DAPI (nuclei) and imaged using confocal 
microscopy. All images were taken at the same magnification. Arrowheads indicate examples of 
specific lipid droplet staining. Scale bars represent 20 µm. 
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Figure 3-8: Activation of ER.mSREBP1a and ER.mSREBP2 in U87 cells results in 
increased de novo lipogenesis.  
U87 cells stably expressing the ER.mSREBP1a and ER.mSREBP2 constructs, together with 
the empty vector control (EV) were cultured in 10% FCS in the presence of either vehicle 
(EtOH) or 100 nM 4-OHT for 24 hours. The incorporation of D-[6-14C] glucose (A), [2-14C] 
pyruvate (B) or [1-14C] acetate (C) into the lipid fraction was then measured. CPM were 
normalised to cell mass and relative fold change was calculated. Data shown represent the 
mean of two biological replicates ± SEM.  
 
 

3.4 Identification of SREBP transcriptional signatures in 
human glioblastoma cells using gene expression 

microarray analysis 
Having confirmed that the ER.mSREBP1a and ER.mSREBP2 constructs could be 

activated in a 4-OHT-dependent manner, gene expression microarray analysis was 

performed using these cell lines in order to identify specific SREBP-dependent 

transcriptional signatures in a human glioblastoma cell line (U87). Cells from the three 

cell lines described in the previous sections were treated with  4-OHT to induce SREBP 

activation for 6 or 24 hours. In addition, cells were treated with solvent (EtOH) as a 

control. Total RNA was extracted from three independent biological replicates and used 

for subsequent cDNA synthesis and hybridisation to a HumanRef-8 v2 Expression 

BeadChip (Illumina, performed by Dr. Charles Mein’s laboratory, Bart’s and the 

London Medical School).  

 

Following processing of the Illumina bead intensity data (Phil East, CRUK BABS) it 

was found that ER.mSREBP1a or ER.mSREBP2 activation lead to a total of 2046 

probes being significantly regulated. Using expression values for these probes a 
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hierarchal clustering analysis was performed to generate a heat map of differentially 

regulated probes. Three distinct clusters stood out. Upregulation of probes within 

Cluster A was associated with activation of ER.mSREBP1a (Figure 3.9), whilst 

upregulation of probes present in cluster B was associated with activation of 

ER.mSREBP2 (Figure 3.9). However, there was little distinction between the probes 

downregulated by ER.mSREBP1a or ER.mSREBP2 activation at this clustering level 

(Figure 3.9, Cluster C). This indicates that whilst ER.mSREBP1a or ER.mSREBP2 

activation causes the upregulation of distinct sets of genes, transcriptional 

downregulation is likely to involve a common mechanism and targets the same genes. 

 

In order to further visualise the distinct effects of either ER.mSREBP1a or 

ER.mSREBP2 activation on gene expression, gene expression values were used to 

generate a Venn diagram, showing numbers of genes that were upregulated or 

downregulated by both transcription factors (Figure 3.10). As indicated by the heat 

map, the Venn diagrams revealed that more genes were upregulated following 

activation of either ER.mSREBP1a or ER.mSREBP2 than downregulated. This is 

expected, as SREBPs are direct activators of transcription. However, SREBP activation 

still caused the downregulation of a considerable number of genes. This could be the 

result of the indirect regulation of genes by SREBP activation. It is possible that SREBP 

may be regulating the activity of negative regulators of the genes downregulated in this 

microarray data-set (discussed further in section 3.5, page 117). Alternatively, given the 

effect of SREBP activation on the cell cycle regulator Cyclin A observed in Figure 3.4, 

together with the decreased proliferation observed in Figure 3.6, downregulation of 

genes in response to SREBP activation may be the result of cell cycle arrest induced by 

activation of the exogenous SREBPs. Indeed, overexpression of SREBP1a has 

previously been shown to induce cell cycle arrest via induction of the cell cycle 

inhibitor p21 in CHO cells (Nakakuki et al., 2007), as well as in Saos-2 cells (Inoue et 

al., 2005).    

 

The Venn diagrams also revealed that the number of genes specifically regulated by 

either SREBP1a or SREBP2 were considerably fewer than the number of transcriptional 
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targets shared by both proteins. This indicates an overlap of the transcriptional function 

of SREBP1a and SREBP2 in these cells. However, the number of genes specifically 

regulated by SREBP2 was higher than those specifically regulated by SREBP1a. This 

also meant that the total number of genes upregulated by SREBP2 was greater, 

suggesting that SREBP2 may play a more distinct role in transcriptional regulation in 

these cells.  

 
Next it was investigated whether the sub-sets of genes that were regulated by SREBP1a 

and/or SREBP2 had different functions. Gene lists from the sub-sets identified in the 

Venn diagrams were used for pathway enrichment analysis according to the GeneGo 

pathways and processes within the Metachore pathway tool (GeneGO) (performed in 

collaboration with Probir Chakravarty, LRI BABS). Pathways are defined as genes that 

are directly connected within a defined pathway. As expected, genes upregulated by 

both SREBP1a and SREBP2 were significantly enriched in pathways associated with 

lipid metabolism and cholesterol biosynthesis (Figure 3.11, pathways highlighted in 

orange). Interestingly, the total set of genes upregulated by SREBP2 was enriched in 

pathways associated with glutathione metabolism, which plays a major role in the 

cellular response to oxidative stress (Figure 3.11, pathways highlighted in blue). No 

pathways were significantly enriched in gene sets specifically upregulated by either 

SREBP1a or SREBP2. This is likely due to the relatively small numbers of genes within 

these data sets.  

 

The same gene sets described above were subjected to process enrichment analysis. 

Processes are defined as genes within related pathways that are not directly connected 

within those pathways. This allows identification of more diverse biological functions. 

Enriched processes included insulin and leptin signalling, consistent with the well-

established role of SREBPs in Akt signal transduction and lipid metabolism. 

Interestingly, processes enriched within SREBP2 regulated genes included the response 

to hypoxia and oxidative stress as well as the regulation of angiogenesis. This is 

consistent with enrichment of the glutathione metabolism pathways observed in Figure 

3.11. In addition, process enrichment analysis also revealed that genes upregulated by 

both SREBP1 and SRBEP2 are associated with inflammation and interferon signalling 
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(Figure 3.12). These data demonstrate that SREBPs are involved in a range of 

biological processes. 

 

Next the different subsets of genes were subjected to transcription factor analysis. As 

expected, the two most significantly associated transcription factors were SREBP1 and 

SREBP2 (Figure 3.13). Interestingly, the SP1 transcription factor was also highly 

significantly associated with genes regulated by both SREBP1 and SREBP2. SP1 has 

been shown to enhance gene SREBP-dependent gene expression and DNA binding sites 

for this transcription factor are often located in close proximity to SREs within a range 

of target gene promoters. In addition, other co-regulators of SREBP transcription, 

nuclear factor Y alpha and beta (NFYA and NFYB), were found to be significantly 

associated with genes in these data sets. Furthermore, additional transcription factors 

associated with lipid metabolism were also significantly enriched within these data sets, 

including HNF4-α and PPAR-α (Figure 3.13).   

 

Pathway and process enrichment analysis of genes that were downregulated following 

ER.mSREBP1a or ER.mSREBP2 activation showed that many of these genes are 

associated with cell cycle regulation (see Figures 3.14, 3.15 and 3.16). When taken 

together with the reduction in proliferation and the loss of cyclin A protein observed in 

section 3.3.1 (Figure 3.3 and Figure 3.4, respectively), these data strongly suggest that 

activation of exogenous SREBP results in a reduction in cell proliferation via indirect 

regulation of cell cycle regulators in glioblastoma cells. In addition, it was found that 

genes that were downregulated by SREBP1a and SREBP2 were significantly enriched 

within Notch and Wnt signalling processes. Analysis of transcription factor enrichment 

within the downregulated genes also revealed the indirect role of SREBPs in cell cycle 

regulation. In most cases, the two most significantly associated transcription factors 

were E2F4 and E2F1 (Figure 3.17), transcription factors that are strongly associated 

with cell cycle regulation. 

 

 Interestingly, the hypoxia inducible factor 1-alpha (HIF1α) was associated with genes 

downregulated by both SREBP1a and SREBP2 (Figure 3.17). This is consistent with 
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the previous finding that SREBP activation induces expression of genes involved in 

processes associated with the cellular response to hypoxia and oxidative stress (Figure 

3.12). 

 

When taken together, these data indicate that SREBPs are regulating lipid metabolism 

in the cancer cell line U87. In addition, other metabolic processes are being regulated, 

including the response to hypoxia and oxidative stress. Most strikingly, activation of 

SREBPs in U87 cells may lead to a reduction in cellular proliferation, as indicated by 

the enrichment of cell cycle regulators within the downregulated gene sets. These 

microarray data may prove to be a useful tool for the future investigation of SREBP 

function in a human cancer cell line.  
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Figure 3-9: Activation of ER.mSREBP1a and ER.mSREBP2 associates with different sub-
sets of target genes.  
Heat-map showing hierarchal clustering of differentially expressed probes following activation of 
ER.mSREBP1a or ER.mSREBP2 for 6 and 24 hours relative to their control. Total number of 
probes significantly regulated: 2046. Red indicates increased expression and blue indicates 
decreased expression relative to the mean centred and scaled expression of the probe 
compared to the respective sample control. Three selected clusters are highlighted and 
designated Cluster A, Cluster B and Cluster C. 
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Figure 3-10: Venn diagrams indicating the number of genes regulated following 
activation of ER.mSREBP1a or ER.mSREBP2 for 6 and 24 hours.  
Numbers of genes upregulated (left, orange) or downregulated (right, blue) following activation 
of ER.mSREBP1a or ER.mSREBP2 for 6 and 24 hours combined are shown. Venn diagrams 
indicate numbers of genes regulated by ER.mSREBP1a only, ER.mSREBP2 only, genes 
commonly regulated by both ER.mSREBP1a and ER.mSREBP2, total numbers of genes 
regulated by ER.mSREBP1a or ER.mSREBP2 and the total number of genes regulated by both 
ER.mSREBP1a and ER.mSREBP2. Note: numbers shown correspond to numbers of genes, 
rather than probes. 
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Figure 3-11: Pathway enrichment analysis of genes significantly upregulated by 
activation of ER.mSREBP1a or ER.mSREBP2. 
Tables show pathways that are significantly enriched in each of the sub-sets of genes 
highlighted in grey in the corresponding Venn diagram. Pathways are colour-coded according to 
4 functions (see key). No pathways were significantly enriched in the SREBP1a- or SREBP2-
specific sub-sets. Objects: Number of genes in the experimental dataset that are regulated over 
the total number of genes present in the specified pathway. 
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Figure 3-12: Process enrichment analysis of genes significantly upregulated by 
activation of ER.mSRBEP1a and ER.mSREBP2. 
Tables show processes that are significantly enriched in each of the sub-sets of genes 
highlighted in grey in the corresponding Venn diagram. Pathways are colour-coded according to 
4 functions (see key). No pathways were significantly enriched in the SREBP1a- or SREBP2-
specific sub-sets. Objects: Number of genes in the experimental dataset that are regulated over 
the total number of genes present in the specified pathway. 
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Figure 3-13 Transcription factor enrichment analysis of genes significantly upregulated 
by activation of ER.mSREBP1a and ER.mSREBP2. 
Tables show selected transcription factors (TFs) that are significantly associated with genes 
present within each of the sub-sets highlighted in grey in the corresponding Venn diagrams. No 
TFs were significantly associated with genes regulated in the SREBP1a- or SREBP2-specific 
sub-sets. r: number of targets in the dataset regulated by the chosen transcription factor; n: 
number of network objects in the dataset; R: number of targets in the complete database 
regulated by this TF; N: total number of gene-based objects in the complete database; mean: 
mean value for hypergeometric distribution (n*R/N); z-score: z-score ((r-mean)/sqrt(variance)); 
p-value: probability to have the given value of r or higher (or lower for negative z-scores). 
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Figure 3-14: Pathway enrichment analysis of genes significantly downregulated by 
activation of ER.mSREBP1a or ER.mSREBP2.  
Tables show pathways that are significantly enriched in each of the sub-sets of genes 
highlighted in grey in the corresponding Venn diagram. Pathways are colour-coded according to 
4 functions (see key). No pathways were significantly enriched in the SREBP2-specific sub-set. 
Objects: Number of genes in the experimental data set that are regulated over the total number 
of genes present in the specified pathway. 
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Figure 3-15 Process enrichment analysis of genes significantly downregulated by 
activation of ER.mSREBP1a and ER.mSREBP2. 
Tables show processes that are significantly enriched in each of the sub-sets of genes 
highlighted in grey in the corresponding Venn diagram. Pathways are colour-coded according to 
4 functions (see key). Objects: Number of genes in the experimental data set that are regulated 
over the total number of genes present in the specified pathway. 
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Figure 3-16: Process enrichment analysis of genes significantly downregulated by 
activation of ER.mSRBEP1a and ER.mSREBP2 continued. 
Tables show processes that are significantly enriched in each of the sub-sets of genes 
highlighted in grey in the corresponding Venn diagram. Pathways are colour-coded according to 
4 functions (see key). Objects: Number of genes in the experimental data set that are regulated 
over the total number of genes present in the specified pathway. 
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Figure 3-17: Transcription factor enrichment analysis of genes significantly 
downregulated by activation of ER.mSREBP1a and ER.mSREBP2. 
Tables show a selection of transcription factors (TFs) that are significantly associated with 
genes present within each of the sub-sets highlighted in grey in the corresponding Venn 
diagrams. r: number of targets in the dataset regulated by the chosen transcription factor; n: 
number of network objects in the dataset; R: number of targets in the complete database 
regulated by this TF; N: total number of gene-based objects in the complete database; mean: 
mean value for hypergeometric distribution (n*R/N); z-score: z-score ((r-mean)/sqrt(variance)); 
p-value: probability to have the given value of r or higher (or lower for negative z-scores). 
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3.5 Discussion 
Glioblastoma multiforme is a cancer type that is associated with hyperactivation of the 

PI3K/Akt pathway and SREBP has been shown to play a role in tumourigenesis in this 

cancer type (Guo et al., 2009b). Despite many direct transcriptional targets being 

identified for the SREBP family of transcription factors in studies involving genetically 

manipulated mouse models, relatively little is known about the transcriptional signature 

of SREBPs in cancer cells. Using a 4-hyrdoxy tamoxifen inducible system, human U87 

glioblastoma cells were used to study the transcriptional response to activation of 

mature SREBP1a and SREBP2.  

 

Activation of mSREBP1a or mSREBP2 induced expression of the known SREBP target 

genes FASN and ACLY, as well as increasing activity of the pSRE-luciferase reporter, 

demonstrating that these constructs were transcriptionally active. In order to ensure that 

expression levels of the exogenous constructs were consistent between the two cell 

lines, the exogenous proteins were detected by Western blotting using an anti-ER 

antibody (Figure 3.2). Although this suggests that the expression levels are indeed 

similar, use of the ER antibody does not allow comparisons to be made between 

expression levels of the exogenous constructs with those of the endogenous proteins. 

Since it is the activity of these overexpressed constructs that is inducible, it would be 

more appropriate to compare the transcriptional activity of the exogenous proteins with 

that of the endogenous transcription factors. Indeed, activation of ER.mSREBP1a for 24 

hours resulted in a 12-fold increase in FASN expression, as detected by RT-QPCR 

(Figure 3.5B), whilst activation of ER.mSREBP2 increased FASN expression by eight-

fold. In comparison, U87 cells cultured in 1% LPDS for 24 hours (a condition which is 

known to activate the endogenous SREBP transcription factors) showed an eight fold 

induction of FASN mRNA levels (Figure 4.10C), indicating that the transcriptional 

activities of ER.mSREBP1a and ER.mSREBP2 are similar to the endogenous proteins. 

This is an important consideration when evaluating the physiological relevance of the 

gene expression microarray data presented in Figures 3.9-3.17 (discussed further on in 

this section). 
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In addition, activation of ER.mSREBP1a, but not ER.mSREBP2, resulted in a mobility 

shift in the protein as detected by Western blotting (Figure 3.2). This may indicate post-

translational modification of mSREBP1a in response to activation by 4-OHT. 

Posttranslational modifications of both SREBP1 and SREBP2, including 

phosphorylation, have been reported (Bengoechea-Alonso and Ericsson, 2009; 

Bengoechea-Alonso and Ericsson, 2006; Bengoechea-Alonso et al., 2005; 

Giandomenico et al., 2003; Hirano et al., 2003; Kotzka et al., 2004; Lu, 2006; Punga, 

2006; Sundqvist et al., 2005; Sundqvist and Ericsson, 2003; Yellaturu et al., 2009). 

Furthermore, GSK3-dependent phosphorylation of mSREBP1a on serines 426 and 434 

and threonine 430 results in decreased stability of the protein via Fbw7-dependent 

proteasomal degradation (Bengoechea-Alonso and Ericsson, 2009; Sundqvist et al., 

2005). Transcriptional activity of mSREBP1 has been shown to induce its degradation 

and GSK3-dependent phosphorylation of mSREBP1 increases upon binding of the 

active transcription factor to promoter elements of its target genes (Punga, 2006; 

Sundqvist and Ericsson, 2003). Phosphorylation of mSREBP1a could therefore occur in 

response to its 4-OHT-dependent activation as a direct result of its nuclear translocation 

and subsequent increased transcriptional activity. Fbw7 has also been reported to 

regulate the stability of mSREBP2 through GSK3-targeted phosphorylation of serines 

432 and 436 (Sundqvist et al., 2005), although no mobility shift of mSREBP2 could be 

observed upon 4-OHT-dependent activation in the experiment presented here (Figure 

3.2).  

 

Activation of either transcription factors resulted in a visible increase in LD staining (as 

detected by Nile Red staining, Figure 3.7), consistent with results described in mouse 

livers (Shimano et al., 1996). LD formation is associated with increased lipid storage, 

specifically of TAGs and cholesterol-esters. Activation of mSREBPs may therefore 

result in increased cellular TAG levels in U87 cells. It would be interesting to 

investigate the exact biochemical make-up of these lipid droplets, as differences in lipid 

species may reveal details about the exact role that SREBP isoforms have in LD 

formation. Furthermore, SREBP1c has been shown to regulate the expression of the 

novel lipid droplet protein CIDEA, a member of the cell death-inducing DNA 

fragmentation factor-α-like effector (CIDE) proteins (Wang et al., 2010). SREBP1c-



Chapter 3. Results 

 114 

mediated expression of CIDEA in mouse liver results in increased lipid droplet 

formation (Wang et al., 2010).  Interestingly, another member of the family, CIDEC, is 

regulated by SREBP1a or SREBP2 in the microarray presented here (Appendix: Table 

A3). CIDEC functions in LD formation by regulating LD enlargement (Keller et al., 

2008; Puri et al., 2007). Therefore, it is possible that activation of SREBP in U87 cells 

increases expression of this LD protein, resulting in increased LD formation and TAG 

storage.  

 

The ability of ER.mSREBP1a activation to induce de novo lipid synthesis was also 

investigated. It was found that activation of ER.mSREBP1a resulted in the increase in 

glucose-, pyruvate- and acetate-dependent lipid synthesis (Figure 3. 8). This is 

consistent with the role of SREBP1 in regulating expression of genes required for fatty 

acid synthesis. It is interesting to note that the fold change of induction differed 

depending on the precursor. Glucose and pyruvate incorporation into the lipid phase 

increased to a lesser extent than incorporation of acetate into the lipid phase. This may 

reflect the different entry points of each precursor into the lipid synthesis pathway. 

Glucose must first be metabolised to pyruvate, which then enters the TCA cycle. 

Citrate, a TCA cycle intermediate, is exported from the mitochondria by citrate 

transporter SLC25A1, an SREBP target gene. Citrate is then converted to acetyl-coA, 

the major precursor for both cholesterol and fatty acid synthetic pathways. Interestingly, 

cytosolic acetate can also be directly converted into acetyl-coA by the SREBP target 

gene ACSS2. This direct conversion of acetate to acetyl-coA could account for the 

increased incorporation of acetate-derived 14C into the lipid phase. Both ACSS2 and 

SLC25A1 were upregulated in the microarray performed in this thesis (Appendix: 

Tables A1 and A4). The difference in incorporation of 14C derived from the three 

precursors may also reflect SREBP1 target gene activation as most SREBP1 target 

genes lie within the mevalonate and fatty acid pathways. Therefore, activation of 

SREBP may result in an increase in flux through these lipogenic pathways, resulting in 

an increase in acetate-dependent lipid synthesis. The effects of activating mSREBP2 on 

de novo lipid synthesis were not investigated due to limited availability of labelled 
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metabolites. It would be interesting to examine whether activation of mSREBP2 results 

in the same increases in de novo lipid synthesis as mSREBP1a in these cells.  

 

In order to identify SREBP-dependent transcriptional signatures in U87 human 

glioblastoma cells, a microarray gene expression analysis following activation of 

mSREBP1a or mSREBP2 was carried out. Activation of mSREBP1a and mSREBP2 

resulted in the upregulation of known SREBP target genes involved in lipid 

metabolism, including FASN, ACLY, ACACA, ACACB, SCD, INSIG1, HMGCS1, 

HMGCR, LDLR and G6PD (Appendix: Table A1). The role of SREBPs in lipid 

synthesis in U87 cells was further confirmed by pathway and process enrichment 

analysis of the microarray data set. This showed that genes involved in lipid metabolism 

were significantly enriched following activation of ER.mSREBP1a or ER.mSREBP2.  

 

Interestingly, activation of ER.mSREBP1a resulted in the upregulation of members of 

the fatty acid binding protein (FABP) family. Specifically, mSREBP1a significantly 

upregulated expression of FABP3, FABP6 and FABP7. mSREBP2 also upregulated 

FABP7 expression (Appendix: Table A2). The function of these genes is not fully 

understood (Schroeder et al., 1998). It has been described that the binding of FABPs to 

fatty acids facilitates their transport to different cellular compartments, including the 

nucleus (Mita et al., 2010; Schroeder et al., 1998). In addition, a role for FABP7 in 

modulating the activity of PPARs has been reported (Mita et al., 2010; Wolfrum et al., 

2001). It is interesting to note that FABP7 is the brain specific isoform, and FABP7 

increases migration of glioblastoma cells in vitro (Liang et al., 2005; Mita et al., 2010), 

and may be a prognostic marker in GBM patients (Liang et al., 2005). In silico analysis 

predicts the presence of SREs in the promoters of these genes 

(http://www.genecards.org). FABP3 has been shown to be upregulated by SREBP1a 

and SREBP1c in human myotubes (Rome et al., 2008), although to date no direct role 

for SREBP in the expression of FABP7 has been experimentally confirmed. FABPs 

may represent novel SREBP transcriptional targets, further extending the repertoire of 

SREBP function in the regulation of lipid metabolism.  
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In addition to regulation of lipid metabolism, other metabolic processes were also 

enriched within gene sets upregulated by mSREBP1a or mSREBP2, including 

glutathione metabolism and the cellular response to hypoxia and oxidative stress. 

Interestingly, genes associated with the above processes were significantly enriched 

within sets of genes activated by SREBP2. This suggests that SREBP2 could be 

involved in the hypoxic response of this cancer cell line. Association of SREBPs and 

the hypoxic response has been previously described. The fission yeast homologue of 

SREBP is known to function as an oxygen sensor (Hughes et al., 2005). Moreover, 

following microarray analysis of genes regulated by SREBPs in human skeletal muscle, 

SRE binding motifs were found to be significantly associated with transcription factor 

matrixes relating to hypoxia (Rome et al., 2008). Furthermore, HIF1α was associated 

with genes downregulated by SREBP2 in the microarray data presented in this thesis. 

This suggests that SREBP2 may reciprocally regulate genes regulated by HIF1α.  

 

Long-term activation of mSREBP1a and mSREBP2 resulted in the decreased 

proliferation rates of U87 cells as assayed by Sulforhodamine B staining (cell mass) 

measured over time (Figure 3.3). In addition, activation of mSREBP1a or mSREBP2 

resulted in the loss of cyclin A protein as detected by Western blotting (Figure 3.4. 

These data indicate that activation of SREBPs in U87 cells leads to decreased 

proliferation and possibly cell cycle arrest. This is also consistent with gene expression 

data obtained from the microarray analysis following activation of ER.mSREBP1a or 

ER.mSREBP2 for 6 or 24 hours. Pathway and process enrichment analysis revealed that 

a significant number of genes downregulated in response to SREBP activation are 

involved in cell cycle progression (Figures 3.14, 15 and 16). In addition, transcription 

factor analysis revealed an association of downregulated genes with members of the 

E2F family of transcription factors (Figure 3.17). The E2F factors regulate the 

transcription of genes required for cell cycle progression, including cyclin A (Schulze et 

al., 1995). Furthermore, activation of SREBPs downregulated expression of two E2F 

family members. ER.mSREBP1a activation decreased expression of E2F2, whilst 

ER.mSREBP2 activation decreased E2F4 expression (Appendix: Table A4). These data 

strongly suggest that prolonged activation of SREBPs results in the downregulation of 

positive cell cycle regulators. Interestingly, regulation of the cell cycle shares some 
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regulatory pathways with metabolism (Fritz and Fajas, 2010) and E2Fs have been 

implicated in lipid metabolism through their role in regulating PPAR γ activity (Fajas et 

al., 2002). Furthermore, increased E2F activity in Rb-deficient cells causes increased 

expression of SREBP1c (Shamma et al., 2009). E2F binds directly to the promoter of 

SREBP1c, resulting in increased expression of prenyltransferases. This aberrant 

activation of prenyltransferases leads to enhanced isoprenylation and activation of N-

Ras, resulting in N-Ras induced cellular senescence in Rb-deficient cells (Shamma et 

al., 2009).    

 

In addition, expression of the cell cycle inhibitor p21 (CDKN1A) was significantly 

upregulated following activation of both ER.mSREBP1a and ER.mSREBP2 for 24 

hours (Appendix: Table A4). This is consistent with data published by Nakakuki and 

colleagues, who showed that ectopic SREBP1a could completely inhibit cell growth in 

chinese hamster ovary (CHO) cells by causing the accumulation of the cell cycle 

inhibitors p27, p21 and p16 (Nakakuki et al., 2007). However, they did not observe the 

induction of p21 in response to ectopic expression of SREBP2. Induction of SREBP1a 

or SREBP2 has been shown to lead to growth arrest via expression of p21 in Saos-2 

cells (Inoue et al., 2005). In addition, the p21 promoter, along with several other key 

cell cycle regulators, is occupied by SREBP1 in HepG2 cells in response to insulin 

signalling (Reed et al., 2008). 

 

Interestingly, SREBPs have also been shown to be associated with positive cell cycle 

regulation. mSREBP1a and mSREBP1c are phosphorylated by Cdk1/ Cyclin B in 

mitotic cells and this phosphorylation results in the stabilisation of the mature 

transcription factors (Bengoechea-Alonso and Ericsson, 2006; Bengoechea-Alonso et 

al., 2005). Furthermore, the cell cycle regulator host cell factor C-1 (HCFC1) has been 

shown to be an SREBP target gene (Motallebipour et al., 2009), although HCSC1 was 

not regulated by SREBPs in the U87 cells. This suggests that the contribution of 

SREBPs to cell cycle control is complex, and may vary depending on cell type. 
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SREBPs regulate target gene transcription through cooperation with other 

transcriptional regulators, most notably SP1 and NF-Y (Dooley et al., 1998; Jackson et 

al., 1998; Sanchez et al., 1995). Interestingly, Lu and Archer reported that SP1 

positively regulates expression of CDC25A (Lu and Archer, 2010), a phosphatase 

required for G1/S-phase transition. Activation of mSREBP1a for 6 or 24 hours, as well 

as activation of mSREBP2 for 24 hours, resulted in the downregulation of CDC25A in 

the microarray presented in this thesis (Appendix: Table A4). CDC25A contains an SP1 

binding site within its promoter (Lu and Archer, 2010). Transcription factor enrichment 

analysis also identified SP1 as being associated with downregulated genes (Figure 

3.17), suggesting that SREBP could be negatively regulating SP1 activity to inhibit 

transcription of genes required for cell cycle progression. In addition, association with 

the transcriptional regulator NF-Y was enriched within both up- and downregulated 

genes in the microarray presented here (Figures 3.13 and 3.17, respectively). These data 

are in keeping with the observations of Reed and colleagues, who showed a high degree 

of overlap between SREBP1 target-gene promoters occupied by SP1 and/or NF-Y 

(Reed et al., 2008). They suggested that the regulatory circuit of SREBP1, SP1 and NF-

Y is highly interconnected and that the binding sites of all three transcription factors are 

found within promoters for other transcription factor genes, suggesting that these factors 

can regulate gene expression in an indirect manner (Reed et al., 2008).  

 

Taken together, these data support the conclusion that SREBPs not only regulate genes 

required for fatty acid and cholesterol biosynthesis, but also other aspects of lipid 

metabolism, such as lipid droplet formation. In addition, SREBPs play a role in other 

crucial cellular processes, including cell cycle regulation, redox regulation and cellular 

stress response (Figure 3.18). 
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Figure 3-18: Summary of the function of genes regulated by SREBPs as identified by the 
gene expression microarray analysis presented in this thesis. 
Groups of genes representing different cellular processes were identified, including processes 
already known to be regulated by SREBPs (FA biosynthesis, cholesterol biosynthesis, cell cycle 
progression) as well as novel processes (hypoxia and oxidative stress, lipid droplet formation).
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Chapter 4. The role of SREBPs in the hypoxic 

response of cancer cells 

4.1 Introduction 
Many cancers reactivate de novo fatty acid biosynthesis and the role of the lipogenic 

phenotype in cancer has been reviewed (Menendez and Lupu, 2007). Numerous reports 

have shown that SREBP target genes are upregulated in cancer cells. Overexpression of 

FASN is a frequent occurrence in breast and prostate cancers and is associated with 

poor prognosis (Kuhajda et al., 1994; Swinnen et al., 2000a; Swinnen et al., 2000b; 

Yoon et al., 2007). In addition, SREBP participates in the upregulation of FASN in 

colorectal neoplasia (Li et al., 2000). Genetic depletion of SCD has been shown to 

reduce breast cancer cell proliferation (Luyimbazi et al., 2010) and overexpression of 

SCD has been observed in prostate cancer (Fritz et al., 2010). A role for SREBP in 

tumourigenesis in glioblastoma multiforme (GBM) has also been reported (Guo et al., 

2009a; Guo et al., 2009b).  

 

Most solid tumours exhibit regions of poor oxygenation and hypoxia is considered to be 

a key regulatory factor in tumour growth (Harris, 2002). Although prolonged hypoxia 

leads to cell death in both non-cancer and cancer cells, cancer cells have adapted certain 

metabolic pathways in response to hypoxia in order to promote their survival (Harris, 

2002). Interestingly, SREBPs have been implicated in oxygen sensing mechanisms in 

budding yeast (Hughes et al., 2005; Lee et al., 2009) and a number of reports suggest 

that SREBPs and/ or their target genes are involved in the hypoxic response of tumour 

cells (Furuta et al., 2008; Yoshii et al., 2009). However, the exact role of SREBPs in the 

hypoxia response of cancer cells is not known. The cancer type glioblastoma 

multiforme (GBM) is associated with hyper-activation of the PI3K/ Akt signalling 

pathway and this tumour type shows extensive hypoxic regions (Evans et al., 2004; 

Parsons et al., 2008). This chapter describes the investigation of the role of SREBPs in 

the hypoxic response of the human glioblastoma U87 cell line.   
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4.2 Hypoxia induces differential expression of SREBP 
isoforms and their target genes 

4.2.1 Expression of SCD and fatty acid binding proteins is increased 

under hypoxia whilst FASN expression is decreased  
In order to investigate the role that SREBPs may play in the hypoxic response of the 

human glioblastoma U87 cell line, cells were cultured in normoxic (20% O2) or hypoxic 

conditions (<0.5% O2) for a period of 24 hours. RNA from these cells was extracted and 

used in subsequent RT-QPCR analyses. Expression of SREBP target genes within 

different functional groups was investigated. Unexpectedly, SREBP target genes 

showed differential expression in hypoxia. In hypoxic conditions, genes required for 

fatty acid and cholesterol biosynthesis (FASN, ACLY, ACACA, ACACB, and 

HMGCR) were significantly downregulated, with the exception of HMGCS1, which 

showed no change in mRNA expression levels (Figure 4.1A). In contrast, it was found 

that expression of SCD, the enzyme that catalyses the desaturation of SFA, was 

upregulated in hypoxic conditions. Expression of the fatty acid binding proteins FABP3 

and FABP7 were also increased in response to hypoxia (Figure 4.1B). Induction of the 

HIF1α target gene, VEGFA, was used as positive control for hypoxic conditions (Figure 

4.1C).  

 

4.2.2 Expression of SREBF1c mRNA, but not SREBF1a or SREBF2, is 

decreased in hypoxia 
Since SREBP target genes exhibited differential expression in response to hypoxic 

conditions, it was hypothesised that different SREBP isoforms may play a role in the 

transcriptional regulation of these target genes. Therefore, the expression of the three 

SREBP isoforms was investigated. Antibodies recognising SREBP1 cannot distinguish 

between SREBP1a and SREBP1c. Therefore, the expression of SREBF1a and 

SREBF1c (as well as SREBF2) mRNA was measured using isoform-specific RT-

QPCR. Primers from the Quantitect system detecting SREBF1 bind the exon boundary 

between exons 1a and 2a. Primers that bind specifically to SREBF1c mRNA were 

designed. These were chosen to be complementary to exon 1c, which is not present in 

sequences within SREBF1a mRNA (see Figure 1.2, introduction). Therefore, the 
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expression of SREBF1a and SREBF1c mRNA could be individually examined. 

Interestingly, the mRNA expression in response to hypoxia was different for all three 

isoforms. Following 24 hours of culture in hypoxic conditions, mRNA expression of 

SREBF1a remained unchanged, whereas SREBF1c mRNA was significantly decreased 

(Figure 4.2A).  In contrast, expression of SREBF2 mRNA was increased in response to 

hypoxia (Figure 4.2A), although it did not reach statistical significance. In order to 

investigate whether loss of SREBF1c mRNA occurred in a time-dependent manner, 

cells were cultured in hypoxia for the times indicated in Figure 4.2 B. RT-QPCR 

analysis revealed that SREBF1c mRNA expression decreased after 2 hours in hypoxic 

conditions, and this continued to decrease over time, suggesting that loss of SREBP1c 

may lead to the decreased expression of the SREBP target genes examined in Figure 

4.1. 

 

Taken together, these gene expression data indicate that the loss of SREBP1c may 

account for the loss of expression of genes involved in fatty acid synthesis and 

cholesterol biosynthesis. In addition, the maintenance of SREBF1a expression together 

with the increased expression of SREBF2 may play a role in the increased expression of 

SCD, FABP3 and FABP7 that was observed in response to hypoxia. 

 

4.2.3 Hypoxia reduces nuclear accumulation of SREBP1  

As described in section 1.3 (Introduction), SREBPs are produced as inactive precursors 

and undergo a two-step proteolytic cleavage process in the Golgi. The cleaved N-

terminal fragment (mature SREBP: mSREBP) translocates to the nucleus, where it 

binds to the promoters of target genes as a homodimer. Nuclear accumulation of 

mSREBPs is thus an indicator of their activation, and should reflect increased 

transcriptional activity. In order to determine whether the changes in mRNA expression 

observed above also resulted in changes in SREBP protein, U87 cells grown in hypoxia 

for 24 hours were subjected to nuclear fractionation to enrich nuclear mSREBPs. The 

nuclear extracts contain only disrupted nuclei while cytoplasmic material and 

membrane components are found in the supernatant fraction. Whole cell lysates were 

prepared in parallel to assay for expression of FASN as a positive control of SREBP 
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activity. To enhance the formation of mSREBP, cells were grown in 1% lipoprotein 

deficient serum (LPDS). This serum condition starves cells of sterols and results in the 

nuclear accumulation of active mSREBPs. In addition, in order to prevent proteasome-

dependent degradation of the mSREBPs in the nucleus, cells were treated with the 

proteasome inhibitor MG-132 for 1.5 hours prior to lysis, as is standard in protocols for 

the analysis of mSREBPs.  

 

As expected, culture in medium containing 1% LPDS increased nuclear accumulation 

of mSREBP1 in U87 cells (Figure 4.3 A). It is interesting to note that the mature 

SREBP1 protein was detected as a doublet. The lower band was induced by 1% LPDS 

and completely lost in hypoxia, whilst although the upper band was reduced in hypoxic 

conditions, it was not lost completely. When taken together with the mRNA expression 

data shown in Figure 4.2, this may indicate that the lower band could correspond to 

SREBP1c, whilst the upper band may correspond to SREBP1a. SREBP2 was not 

detectable in the supernatant fraction using the SREBP2 antibody (clone 1C6) in U87 

cells under these conditions. In addition, the epitope lies in the C-terminal of SREBP2, 

making it impossible to detect the mature nuclear protein with this antibody. As a 

positive control of hypoxic conditions, HIF1α was detected in the nuclear extract. 

HIF1α stabilisation was not affected by lipoprotein deficient serum (Figure 4.3 A). It 

should be noted that HIF1α was detectable in the normoxia samples, most likely due to 

the treatment of the cells with the proteasome inhibitor MG-132 which causes the 

stabilisation of HIF1α protein in normoxic conditions.  

 

Detection of full-length precursor protein (flSREBP1) in the supernatant fraction 

revealed that flSREBP1 was induced by culturing cells in 1% LPDS and that it was 

completely lost in response to oxygen deprivation (Figure 4.3 B). Analysis of FASN 

expression in whole cell lysates showed that hypoxia reduces FASN in these conditions. 

However, culture of cells in 1% LPDS still increased FASN expression when compared 

to levels in cells cultured in 10% FCS (Figure 4.3C). 
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4.2.4 Hypoxia decreases expression of SCAP mRNA, but not protein 

Since SREBPs can transcriptionally regulate their own promoters (Horton et al., 2003), 

hypoxia may result in a reduction in SREBP processing, which could in turn lead to a 

reduction in SREBF mRNA over a prolonged period. SCAP is required for cleavage of 

the full-length SREBPs into the active mature transcription factors as it regulates ER-

Golgi translocation of SREBPs (Nohturfft et al., 2000; Sakai et al., 1997). Therefore, 

the effect of hypoxia on SCAP expression was investigated. Interestingly, SCAP 

mRNA expression was significantly reduced in cells that were cultured in hypoxia for 

24 hours (Figure 4.4 A). This change in expression in hypoxic conditions was then 

analysed over time. A reduction in SCAP mRNA was not observed until cells had been 

exposed to hypoxic conditions for 24 hours (Figure 4.4 B). Surprisingly, when protein 

levels were analysed, there was no reduction in SCAP protein over time. (Figure 4.4 C). 

These data suggest that SCAP has a relatively long half-life, as loss of mRNA does not 

result in immediate loss of protein. The maintenance of SCAP protein levels suggests 

that the loss of mSREBP1 in hypoxic cells is not due to low SCAP expression in cells 

cultured in hypoxic conditions.  

 

4.2.5 Activation of exogenous SREBP1a and SREBP2 is sufficient to 
drive expression of SREBP-target genes down-regulated in hypoxia 

Since SREBP1 protein is lost in hypoxia and selected SREBP target gene expression is 

downregulated in hypoxic conditions, it was then asked whether exogenous SREBP can 

induce expression of these genes under hypoxia. The U87 ER.mSREBP1a and 

ER.mSREBP2 cell lines described in chapter 3 were grown in hypoxia for 24 hours in 

the presence or absence of 4-OHT. Total RNA was extracted and used for RT-QPCR 

analysis (Figure 4.5A). Activation of either ER.mSREBP1a or ER.mSREBP2 in 

hypoxia for 24 hours was sufficient to induce the expression of FASN, ACLY, 

ACACA, and HMGCR; target genes that were downregulated in Figure 4.1. In addition, 

induction of ER.mSREBP1a or ER.mSREBP2 increased expression of HMGCS1 in 

hypoxia. However, expression of all genes was still slightly lower in the hypoxic cells 

(Figure 4.5A), suggesting decreased transcriptional activity of the exogenous 

mSREBPS in hypoxic cells. Alternatively, the overall activity of the promoter may be 

reduced in hypoxia. 
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When the mRNA expression of the HIF1α target gene VEGFA was analysed as a 

positive control for hypoxic conditions, it was found that activation of mSREBP1a or 

mSREBP2 decreased VEGFA expression in normoxia (Figure 4.5 B). This is consistent 

with a published report showing that overexpression of exogenous SREBP suppresses 

VEGFA promoter activity (Motoyama et al., 2006). However, activation of mSREBP1a 

and mSREBP2 in hypoxia resulted in a slight increase in VEGFA expression compared 

to the EV control. This could indicate that SREBPs influence the expression of a 

canonical HIF1α target in hypoxic conditions. 

 

4.2.6 SREBP1 and SREBP2 are both required for hypoxia-induced 
expression of FABP7 

Since the expression of the SREBP target genes SCD, FABP3 and FABP7 was induced 

in hypoxic conditions, it was next investigated whether SREBPs are indeed required for 

their induction in hypoxia. In addition, the role of HIF1α in the hypoxia-dependent 

induction of SCD, FABP3 and FABP7 was examined. Pools of small interfering RNAs 

(siRNAs) targeting HIF1α, SREBP1, or SREBP2 were transiently transfected into U87 

cells. Non-targeting siRNA was used as a control. Silencing was allowed to establish 

for 96 hours before cells were transferred to hypoxic conditions for a further 24 hours. 

Total RNA was then extracted and used for RT-QPCR analysis. Silencing of SREBP1, 

SREBP2 and HIF1α reduced normoxic expression of SCD (Figure 4.6 A), consistent 

with SCD expression being regulated by these transcription factors. Depletion of 

SREBP1 and HIF1α in hypoxia reduced the expression of SCD to basal normoxic levels 

(Figure 4.6 A), suggesting a role for these transcription factors in the hypoxia-

dependent induction of both genes. However, silencing of SREBP2 did not have an 

effect on SCD and FABP3 expression in hypoxia (Figure 4.6 A). Silencing of HIF1α 

slightly decreased FABP7 mRNA levels in both oxygen conditions compared to control. 

Unexpectedly, silencing of both SREBP1 and SREBP2 alone resulted in the inhibition 

of FABP7 expression in both normoxic and hypoxic cells, suggesting that both isoforms 

are required for FABP7 expression. This gene may therefore represent a novel class of 

SREBP target gene, where both SREBP isoforms are acting together to induce FABP7 

expression. 
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 Although the hypoxia-dependent induction of SCD and FABP3 was not completely 

blocked in SREBP1 or HIF1α depleted cells, this may be due to the remaining 

expression of the transcription factors, since complete silencing was not achieved 

(Figure 4.7 B). However, it cannot be ruled out that other transcriptional regulators may 

be involved. 
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Figure 4-1: Hypoxia induces differential SREBP target-gene expression. 
U87 cells were grown in normoxia or hypoxia for 24 hours and total RNA was extracted. mRNA 
levels of several SREBP target genes were measured using RT-QPCR and normalised to β 
actin as a loading control. Data shown represents the average of at least three independent 
biological replicates ± SEM. n numbers for each gene are given and p values were calculated 
using paired student’s t tests. Asterisks indicate statistical significance (*: <0.05, **:<0.005). A) 
Genes required for fatty acid and cholesterol biosynthesis are down-regulated in hypoxia. B) 
Genes involved in the fate of fatty acids are up-regulated in hypoxia C) The HIF1α target 
VEGFA is shown as a positive control for hypoxic conditions. 
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Figure 4-2: Hypoxia leads to a loss of SREBF1c mRNA.  
(A) U87 cells were grown in normoxia or hypoxia for 24 hours. RNA was extracted and used for 
RT-QPCR analysis of SREBF1a, SREBF1c and SREBF2. Expression was normalised to β actin 
as a loading control. Data shown are the means of at least 3 independent biological replicates ± 
SEM. Asterisks indicate statistical significance. P values were calculated using a student’s 
paired t test. (B) U87 cells were grown in hypoxia for the times indicated. mRNA levels of 
SREBF1c were analysed by RT-QPCR using β actin as a loading control. Data shown are the 
means of two biological replicates ± SD. 
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Figure 4-3: Hypoxia leads to a loss of SREBP1 protein.  
U87 cells were grown in normoxia or hypoxia for 24 hours in either 10% FCS or 1% LPDS 
(lipoprotein deficient serum). Cells were harvested and subjected to nuclear fractionation. A) 
Nuclear extracts were analysed by Western blotting using antibodies against SREBP1 and 
HIF1α. Lamin B1 is shown as a nuclear specific loading control. B) The supernatant fraction 
containing the membranes and cytoplasm was analysed by Western blotting using antibodies 
against SREBP1. Calreticulin is shown as a membrane specific loading control. C) Whole cell 
protein lysates were harvested in parallel and analysed as described in A and B using an 
antibody against FASN.  β tubulin is shown as a loading control. 
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Figure 4-4: Hypoxia leads to a loss of SCAP mRNA but not protein.  
(A) U87 cells were grown in normoxia or hypoxia for 24 hours and total RNA was extracted and 
subjected to RT-QPCR analysis. SCAP mRNA expression was normalised to β actin as a 
loading control (A). Data shown is the mean of three biological replicates ± SEM. (B) U87 cells 
were grown in hypoxia for the times indicated. SCAP mRNA was analysed using RT-QPCR and 
normalised to β actin as a loading control. Data shown are the means of two technical replicates 
± SD. (C) Whole cell lysates extracted from cells grown in parallel to those in (B) were analysed 
by Western blotting for SCAP protein expression. β tubulin is shown as a loading control. 
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Figure 4-5: Activation of ER.mSREBP1a or ER.mSREBP2 is sufficient to drive SREBP-
target gene expression in hypoxia.  
U87-EV, U87-ER.mSREBP1a and U87-ER.mSREBP2 cells were grown in hypoxia or normoxia 
in the presence or absence of 4-hydroxytamoxifen (4OHT). Total RNA was extracted and 
mRNA expression levels of the SREBP target genes FASN, ACLY, ACACA, HMGCS1 and 
HMGCR was analysed using RT-QPCR (A). (B) mRNA expression of VEGFA was analysed as 
a control for hypoxic conditions. Data was normalised to β actin as a loading control. Data 
shown are the means of two technical replicates ± SD. EV: U87.EV; BP1a: 
U87.ER.mSREBP1a; BP2: U87.ER.mSREBP2. These data have been observed in two 
independent biological replicates. 
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Figure 4-6: SREBP1 and SREBP2 are both required for expression of FABP7 in hypoxia.  
U87 cells were transiently transfected with pools of siRNA oligos targeting HIF1α, SREBP1, or 
SREBP2, alongside a non-targeting siRNA control. Silencing was established for 96 hours 
before cells were grown in hypoxia for 24 hours. Total RNA was extracted and subjected to RT-
QPCR analysis. (A) mRNA expression of SREBP target genes SCD, FABP3 and FABP7. (B) 
mRNA expression of  SREBF1a, SREBF2 and HIF1α was analysed as a control for gene 
silencing. mRNA expression levels were normalised to β actin as a loading control. Data shown 
are the means of two technical replicates ± SD. These data have been observed in two 
independent biological replicates. 
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4.3 Hypoxia activates the sterol regulatory element luciferase 
reporter  

In order to further investigate the contribution that SREBPs play in the transcriptional 

regulation in hypoxia, the activity of the sterol regulatory element luciferase reporter 

(pSRE-luc, described in chapter 3) was examined under hypoxic conditions. U87 cells 

were transiently transfected with the pSRE-luc plasmid and a renilla luciferase control 

(pRL-SV40). Cells were then cultured in hypoxia for 24 hours. As a positive control of 

pSRE-luc activity, cells were cultured in 1% LPDS. In cells that were exposed to 

hypoxia, the luciferase activity of the SRE-reporter was significantly increased in both 

cells cultured in 10% FCS and those cultured in 1% LPDS (Figure 4.7). Cells cultured 

in 1% LPDS showed an overall increase in SRE-reporter activity compared to cells 

cultured in 10% FCS (Figure 4.7), indicating that the induction of the luciferase reporter 

was indeed being regulated under conditions known to activate SREBPs.     

 

4.3.1 Activation of the SRE-luciferase reporter in hypoxia is partially 
dependent on SREBP1 and HIF1α  

Since increased activation of the SRE-luciferase reporter was observed in hypoxia, the 

contribution of SREBP1, SREBP2 and HIF1α towards induction of this reporter activity 

was investigated. U87 cells were transiently transfected with pools of siRNA oligos 

targeting HIF1α, SREBP1, or SREBP2, as well as a non-targeting control. Silencing 

was allowed to establish for 48 hours before cells were transiently transfected with the 

pSRE-luc and pRL-SV40 plasmids. 24 hours later, cells were placed into hypoxia for a 

further 24 hours. Parallel cultures were grown in order to extract RNA to assay for gene 

silencing (Figure 4.8 B). As previously observed, hypoxia induced luciferase activity of 

the SRE-reporter in control-transfected cells (Figure 4.8 A). Silencing of HIF1α or 

SREBP1 decreased the overall activity of the reporter in normoxic conditions. 

However, silencing of SREBP2 alone did not affect SRE-reporter activity in either 

normoxic or hypoxic cells. Interestingly, silencing of SREBP1 or HIF1α alone reduced 

luciferase reporter activity in hypoxic conditions when compared to the basal activity 

observed in normoxic control-transfected cells. This is consistent with the mRNA 
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expression data observed for SCD (Figure 4.6 A), suggesting a role for HIF1α and 

SREBP1 in the hypoxia-dependent induction of the SRE-luciferase reporter.  

 

Since SREBP1 and HIF1α are playing a role in the hypoxia-dependent induction of 

SRE-reporter activity, it was next asked whether there may be co-operation between 

SREBP1 and HIF1α under hypoxic conditions in U87 cells. In order to address this 

possibility, the effects of combined silencing of SREBP1 and HIF1α on SRE-reporter 

activity in hypoxia were investigated. U87 cells were transfected with siRNAs and 

cultured as described above. Preliminary results suggested that combined silencing of 

SREBP1 and HIF1α was not sufficient to block the hypoxia-dependent induction of 

luciferase activity, although combined silencing of both genes reduced the overall 

luciferase reporter activity when compared to silencing of either gene alone (Figure 4.9 

A). Although these data could indicate that SREBP1 may be co-operating with HIF1α 

to induce SRE-luciferase reporter activity in hypoxic cells, the influence of other 

transcriptional regulators cannot be excluded.  

 

 

 
 

Figure 4-7: Hypoxia increases SRE luciferase reporter activity.  
U87 cells were transiently transfected with the pSRE-luc reporter and pRL-SV40 renilla 
plasmids. Cells were grown in normoxia or hypoxia in 10% FCS or 1% LPDS (lipoprotein 
deficient serum) for 24 hours. Luciferase activity was measured and normalised to the renilla 
control. Data shown is the mean of four independent biological replicates ± SEM. Asterisks 
indicate statistical significance and p values from paired student’s t tests are shown. 
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Figure 4-8: The hypoxia-dependent induction of the SRE luciferase reporter is partially 
dependent on SREBP1 and HIF1α.  
U87 cells were transiently transfected with siRNAs targeting HIF1α, SREBP1, SREBP2, as well 
as a non-targeting control. 24 hours later, cells were transiently transfected with pSRE-luc and 
pRL-SV40 plasmids. Cells were grown in normoxia or hypoxia for 24 hours and luciferase 
activity was measured and normalised to the renilla control (A). Data shown are the means of 
two independent biological replicates ± SEM. (B) Gene silencing was confirmed in U87 cells 
that were transiently transfected with siRNAs as in (A) and grown in normoxia or hypoxia for 24 
hours. mRNA expression levels of SREBP1, SREBP2 and HIF1α were normalised to β tubulin. 
Data shown is the mean of two biological replicates ± SEM. 
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Figure 4-9: Combined silencing of SREBP1 and HIF1α partially reduce the hypoxia-
dependent induction of SRE-reporter activity.  
(A) U87 cells were transiently transfected with pools of siRNA oligos targeting SREBP1, 
SREBP2, and SREBP1 and HIF1a combined, as well as a non-targeting control. 24 hours later, 
cells were transiently transfected with pSRE-luc and pRL-SV40 plasmids. Cells were placed in 
hypoxia for 24 hours and luciferase activity was measured and normalised to the renilla control. 
Data shown are the means of three technical replicates ± SD. (B) Gene silencing was confirmed 
by RT-QPCR. mRNA expression levels of SREBF1a, SREBF2 and HIF1α were normalised to β 
actin. Data shown is the mean of two technical replicates ± SD.  
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4.4 Hypoxia alters de novo lipid synthesis 

4.4.1 Lipoprotein deficient serum induces pyruvate-dependent de novo 

lipid synthesis in hypoxic cells 
It has been shown that under hypoxic conditions, a number of metabolic changes and 

adaptations take place in cancer cells. Since expression of some SREBP target genes 

required for fatty acid and cholesterol biosynthesis was downregulated under hypoxia, it 

was hypothesised that de novo lipogenesis is reduced in hypoxic cells. Cells were 

cultured in hypoxia for 24 hours before being incubated with 14C- labelled pyruvate or 

acetate for a further four hours. Incorporation of 14C derived from pyruvate or acetate 

into the lipid fraction was measured and normalised to total cell mass. As a positive 

control, cells were cultured in 1% LPDS. Interestingly hypoxia had differential effects 

on pyruvate- and acetate-dependent lipid synthesis. Hypoxia significantly reduced the 

amount of pyruvate-dependent lipid synthesis in U87 cells cultured in both 10% FCS 

and 1% LPDS (Figure 4.10 A). A small, yet significant increase in acetate-dependent 

lipid synthesis was observed in hypoxic cells cultured in full serum (Figure 4.10 B), 

however, no change in lipid synthesis was observed in acetate-derived lipids in hypoxic 

cells cultured in 1% LPDS (Figure 4.10 B). These data suggest that a change in the 

carbohydrate intermediates used for lipid synthesis occurs in hypoxic conditions  

 

Interestingly, cells cultured in 1% LPDS exhibited higher incorporation of 

carbohydrate-derived 14C into the lipid phase than cells cultured in 10% FCS, regardless 

of the oxygen levels (Figure 4.10 A and B). This indicates that lipoprotein deficient 

conditions induce de novo lipid synthesis in U87 cells even in hypoxic conditions and is 

consistent with the induction of SREBP target genes FASN and ACACA in response to 

lipoprotein depletion (Figure 4.10 C). 

 

4.4.2 Hypoxia regulates expression of PDK1, ACSS2 and PDK4 

In order to gain more insight into the regulation of lipid synthesis in hypoxia in U87 

cells, mRNA expression of the key enzyme that regulates pyruvate entry into the TCA 

cycle (PDK1) was analysed. In addition, expression of ACSS2, the enzyme that 
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synthesises cytoplasmic acetyl-CoA from acetate, was measured. Cells were cultured in 

hypoxia for 24 hours and total RNA was extracted and used for RT-QPCR analysis. As 

expected from the observed decrease in pyruvate-dependent lipid synthesis in hypoxic 

conditions, PDK1 was upregulated under hypoxia (Figure 4.11), indicating that entry of 

pyruvate into the TCA cycle is reduced in hypoxic cells. This is consistent with the 

findings of Kim and colleagues as well as Papandreou and colleagues who both 

demonstrated that hypoxia results in a HIF1α-dependent induction of PDK1 expression 

(Kim et al., 2006; Papandreou et al., 2006). However, there was no significant 

difference in PDK1 expression between cells cultured in 10% FCS or 1% LPDS.  

Levels of ACSS2 mRNA in hypoxic cells cultured in both 10% FCS and 1% LPDS 

(Figure 4.11) were reduced in a small, yet statistically significant manner. This indicates 

that increased acetate-dependent lipid synthesis is not due to increased ACSS2 

expression under hypoxic conditions. Culture of cells in 1% LPDS significantly 

increased expression of ACSS2 when compared to cells cultured in 10% FCS (Figure 

4.11). This increase correlates with the increase in acetate-dependent lipid synthesis 

observed in cells cultured in 1% LPDS (Figure 4.10 B). In contrast, expression of PDK4 

was significantly reduced under hypoxia (Figure 4.11). Since PDK4 is a PPARα target 

gene (Mandard et al., 2004), decreased expression may indicate a decrease in PPARα 

transcriptional activity and therefore decreased β-oxidation. 
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Figure 4-10: Hypoxia decreases pyruvate-dependent lipid synthesis but increases 
acetate-dependent lipid synthesis.  
U87 cells were grown in normoxia or hypoxia for 24 hours and incorporation of 14C-pyruvate (A) 
or 14C-acetate (B) into the lipid phase was measured and normalised to cell mass. (C) Cells 
cultured in the same conditions as in (A) were analysed for expression of the SREBP target 
genes FASN and ACACA by RT-QPCR. Data shown is the mean of at least three independent 
biological replicates. p values from paired student’s t tests are shown. Asterisks indicate 
statistical significance.  
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Figure 4-11: Hypoxia increases expression of PDK1 and inhibits PDK4 expression. 
U87 cells were grown in 10% FCS or 1% LPDS (lipoprotein deficient serum) in normoxia or 
hypoxia for 24 hours. Total RNA was extracted and subjected to RT-QPCR analysis. mRNA 
expression levels for PDK1, PDK4 and ACSS2 were normalised to β tubulin as a loading 
control. Data shown is the mean of three independent biological replicates ± SEM. Asterisks 
indicate statistical significance according to the student’s paired t test. n numbers and p values 
are displayed.  
  

4.5 Hypoxia increases lipid droplet formation in an SREBP1-

independent manner 

4.5.1 Hypoxia increases lipid droplet staining  

It has been known for sometime that hypoxic cells induce lipid droplet (LD) formation 

(Gordon et al., 1977; Whitmer et al., 1978) and HIF1α induces expression of the LD 

protein HIG2 (Gimm et al., 2010). This presumably increases capacity for lipid storage 

in response to the inhibition of lipid catabolism (β-oxidation). In the previous sections it 

was demonstrated that expression of SREBP target genes required for fatty acid 

synthesis were largely downregulated under hypoxic conditions, while the expression of 

three genes involved in fatty acid desaturation and transport and were induced in 

hypoxic cells in an SREBP1-dependent manner. In addition, a decrease in de novo 

pyruvate-dependent lipid synthesis was observed. This could indicate that hypoxia 

induces a change in the fate of lipids in U87 cells. Therefore it was investigated whether 

LD formation in U87 cells requires SREBP-dependent gene expression.  

 

Cells were cultured in hypoxia for 24 hours in the serum conditions indicated in Figure 

4.12. Cells were fixed and stained with DAPI to detect nuclei. In addition, cells were 
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stained with Nile Red, a dye that specifically detects neutral lipids, such as those found 

in LDs. LD staining was quantified using Array Scan technology, which uses an 

algorithm to quantify lipid droplet staining normalised to cell number (described in 

materials and methods). Hypoxia induced lipid droplet staining in cells cultured in 10% 

FCS (Figure 4.12). Hypoxia-induced LD staining was also observed in cells cultured in 

reduced serum or reduced lipoprotein conditions, although the levels of LD staining in 

hypoxia were significantly less than cells cultured in full serum (Figure 4.12). These 

data suggest that cell culture medium components (including fatty acids) are required 

for maximum LD formation in hypoxia.  

  

4.5.2 SREBP-activation enhances lipid droplet induction in hypoxia 

It was next investigated whether SREBPs play a role in LD formation in hypoxia. LD 

formation in response to activation of exogenous ER.mSREBP1a and ER.mSREBP2 

was examined. U87-EV, U87-ER.mSREBP1a and U87-ER.mSREBP2 cells were grown 

in normoxia or hypoxia either in full serum or 1% LPDS for 48 hours in the presence or 

absence of 4-OHT. Cells were stained with DAPI and Nile Red and LD formation was 

quantified using the Array Scan. As previously observed, hypoxia induced the 

formation of lipid droplets in both 10% FCS and 1% LPDS and the induction in cells 

cultured in 1% LPDS was lower when compared with 10% FCS (Figure 4.13). 

Interestingly, activation of ER.mSREBP1a or ER.mSREBP2 enhanced LD staining in 

hypoxia. Activation of mSREBP1a or mSREBP2 increased lipid droplet formation in 

both serum conditions, although induction in cells cultured in 1% LPDS was lower than 

those cultured in full serum. This indicates that the SREBP-dependent induction of LDs 

requires components of cell culture medium. 

 

4.5.3 SREBP1-depletion does not prevent lipid droplet induction in 

hypoxia 
Since activation of exogenous SREBP was able to enhance the formation of LDs under 

hypoxia, it was next investigated whether LD formation in hypoxia was SREBP-

dependent. Because SREBP1 silencing performed in experiments described in sections 

4.2.6 and 4.3 was incomplete, and residual SREBP1 expression was observed, a stable 
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silencing strategy was used. U87 cells stably expressing a doxycycline inducible short 

hairpin RNA (shRNA) targeting SREBP1 were generated by lentiviral transduction. As 

a control, cells expressing a doxycycline inducible non-targeting shRNA (scrambled: 

scr) were also generated. Following 72 hours of treatment with doxycycline, flSREBP1 

protein and mRNA levels were reduced in these cells compared to the EtOH treated 

control, demonstrating induction of the shRNA (Figure 4.14 A and B). SREBP1 protein 

and mRNA expression remained unchanged following induction of the scrambled 

control (sh-Scr) (Figure 4.14 A and B). In order to assess the contribution of SREBP1 to 

lipid droplet formation under hypoxia, these cells were cultured for 72 hours in the 

presence or absence of doxycycline and then placed in normoxic or hypoxic conditions 

for a further 24 hours. In addition, cells exposed to hypoxia for 24 hours were returned 

to normoxia for an additional 24 hours (reoxygenation) in order to analyse the effect of 

reoxygenation on LDs. Consistent with previous observations, hypoxia significantly 

increased LD staining in both cell lines (Figure 4.14 C). Interestingly, LD staining was 

significantly reduced following re-oxygenation, indicating that the induction of LDs in 

response to hypoxia is reversible (Figure 4.14 C, grey bars). Induction of SREBP1 

silencing did not affect hypoxia-dependent LD induction. However, the decrease in LD 

staining in cells expressing sh-SREBP1 following reoxygenation was slightly blocked. 

This suggests that loss of SREBP1 may lead to a delay in the recovery of cells exposed 

to hypoxia.  
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Figure 4-12: Hypoxia increases lipid droplet formation.  
U87 cells were grown in 96-well plates in hypoxia or normoxia in the four serum conditions 
indicated for 24 hours. Cells were fixed and stained with DAPI (nuclei) and Nile Red (lipid 
droplets) and scanned using the Array Scan VTI. Data shown represents the mean of 16 
replicates. Asterisks indicate statistical significance. P values from paired student’s t tests are 
shown. 
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Figure 4-13: SREBP activation is sufficient to induce lipid droplet formation in hypoxia.  
U87-EV, U87-ER.mSREBP1a and U87-ER.mSREBP2 cells were grown in 96-well plates. Cells 
were cultured in 10% FCS or 1% LPDS in the presence or absence of 4-hydroxytamoxifen 
(4OHT) and in hypoxia or normoxia for 24 hours. Cells were fixed and stained with DAPI 
(nuclei) and Nile Red (lipid droplets) and staining was quantified using the Array Scan VTI. Data 
shown is the mean from three biological replicates ± SEM. 
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Figure 4-14: Ablation of SREBP1 does not prevent lipid droplet formation in hypoxia.  
(A) U87 cells were stably infected with shRNAs targeting either SREBP1 or a non-targeting 
control (Scrambled). Cells were cultured in the presence or absence of doxycycline (1 µg/ mL) 
for 72 hours and whole cell lysates were analysed by Western blotting and an antibody 
recognising SREBP1. β tubulin is shown as a loading control. (B) RNA was extracted from cells 
treated as in (A) and subjected to RT-QPCR analysis. mRNA expression levels of SREBP1 
were normalised to β actin as a loading control. (C) Cells expressing shRNAs targeting 
SREBP1 or a scrambled control were grown in the presence or absence of doxycycline for 72 
hours. Cells were then cultured in normoxia or hypoxia for 24 hours. In addition, cells that were 
cultured in hypoxia for 24 hours were given 24 hours to recover in normoxic conditions (re-
oxygenation). Cells were grown in 96-well plates, fixed and stained with DAPI (nuclei) and Nile 
Red (lipid droplets) and lipid droplet staining was quantified using the Array Scan VTI. Data 
shown are the means of 9 replicates ± SEM.  
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4.6 Silencing of SREBP1 increases apoptosis in low 

lipoprotein conditions 
The data presented so far strongly suggest that SREBPs are being regulated in response 

to hypoxia. It was therefore investigated whether SREBP1 is required for the survival of 

U87 cells under hypoxic conditions. Cells that were stably expressing doxycycline 

inducible shRNA targeting SREBP1 or a non-targeting control were cultured in the 

presence or absence of doxycycline for 72 hours to induce shRNA expression. Cells 

were then grown in medium containing 10% FCS or 1% LPDS in normoxia or hypoxia 

for 48 hours. The experiment presented in Figure 4.15 indicates that although hypoxia 

tended to increase overall levels of apoptosis, silencing of SREBP1 did not affect cell 

viability in medium supplemented with 10% FCS. Culture of cells in medium 

containing 1% LPDS increased overall levels of apoptosis, suggesting that removal of 

serum lipoproteins may be detrimental to U87 cells. The culturing of cells in hypoxic 

conditions in medium containing 1% LPDS further increased the levels of apoptosis, 

suggesting that the combination of a lack of oxygen and external fatty acids is 

detrimental to U87 cells. Depletion of SREBP1 in cells cultured in 1% LPDS in either 

normoxia or hypoxia resulted in a large increase in apoptosis. This indicates that 

activation of SREBP1 in response to low serum lipoprotein conditions may be 

important for the survival of U87 cells, in both normoxia and hypoxia.   
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Figure 4-15: Silencing of SREBP1 increases apoptosis in low lipoprotein conditions 
U87 cells stably expressing doxycycline-inducible shRNAs targeting SREBP1 or a Scrambled 
control were grown in the presence or absence of doxycycline (1µg/ mL) for 72 hours. Cells 
were then seeded into 96 well plates and allowed to attach before being cultured in either 10% 
FCS or 1% LPDS for 16 hours. Cells were placed into hypoxia or normoxia for 48 hours. 
Caspase 3/7 activity was measured using the Apo1 assay and normalised to total protein 
content (cell mass). This experiment was performed by B. Griffiths (LRI, GEA). Data represent 
the mean of three replicates ± SEM. 
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4.7 Discussion 
Altered lipid metabolism is a common feature of cancer cells and solid tumours often 

exhibit areas of low oxygen tension, due to poorly developed tumour vasculature. 

Glioblastoma multiforme is a cancer associated with areas of hypoxia, and SREBP has 

been shown to play a role in the tumourigenic potential of this cancer type. Although 

there are reports demonstrating a role for altered lipid metabolism in the hypoxic 

response of cancer cells, some of these data are conflicting, suggesting that lipid 

metabolism may be altered in a tumour-type specific manner. The aim of this chapter of 

the thesis was to investigate the role of SREBPs and lipid metabolism in the hypoxic 

response of the human glioblastoma U87 cell line. 

 

The expression of a selected group of SREBP target genes was investigated under 

hypoxic conditions. Unexpectedly, hypoxia induced differential expression of the 

SREBP target genes examined (Figure 4.1). Most SREBP target genes encoding 

enzymes involved in the initial stages of fatty acid and cholesterol biosynthesis were 

downregulated in hypoxia. For example, expression of the rate-limiting enzyme in fatty 

acid biosynthesis (ACACA), as well as the rate-limiting enzyme for cholesterol 

biosynthesis (HMGCR), was downregulated under hypoxic conditions. In contrast, 

expression of the SREBP target gene SCD, as well FABP3 and FABP7, was increased 

in a hypoxia-dependent manner. Upon analysis of SREBP isoform expression in 

hypoxia it was found that hypoxia decreased expression of SREBF1c but not SREBF1a 

or SREBF2 at the mRNA level (Figure 4.2). Indeed, expression of SREBF2 mRNA was 

slightly increased in response to hypoxia. In addition, hypoxia resulted in the decreased 

expression of flSREBP1 protein (Figure 4.3). Hypoxia also reduced nuclear mSREBP1 

levels. It is unclear if the doublets observed in Figure 4.3 correspond to the individual 

SREBP1 isoforms. Although the molecular weights of the two isoforms are not 

different enough to be resolved by SDS PAGE, denaturation of some proteins results in 

altered migration in SDS PAGE. Another possibility is that the two bands observed by 

Western blotting represent different phosphorylation-species of nuclear mSREBP1. 

Treatment with λ phosphatase could reveal whether this is in fact the case. 
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These data indicate the complex nature of lipid metabolism in hypoxia in U87 cells. It is 

tempting to speculate that loss of SREBP1c expression is responsible for the change in 

expression of a specific subset of SREBP target genes that are downregulated. Specific 

silencing of individual SREBP1 isoforms in normoxic conditions may provide more 

information as to the SREBP1c-dependency of this observation. Furthermore, it will be 

interesting to investigate whether the hypoxia-induced changes in SREBP isoform 

expression are HIF dependent. Chromatin-immunoprecipiation (ChIP) studies of the 

promoters of the different SREBP isoforms in hypoxia may yield important clues as to 

their regulation under hypoxia in U87 cells. In addition, analysis of SREBP expression 

following stabilisation of HIF1α using DMOG, an inhibitor of PHD activity, could 

indicate a HIF1α-dependent mechanism.  

 

Interestingly, expression of SREBP1c and FASN was also specifically downregulated 

in response to hypoxia in human hepatoma Hep3B cells (Choi et al., 2008). This 

hypoxia-mediated inhibition of SREBP1c expression was dependent on HIF1α-induced 

expression of Stra13/DEC1 and DEC2. These two transcriptional repressors directly 

compete with SREBP1c for binding to the promoter of the SREBF1c gene in hypoxia 

(Choi et al., 2008), thereby resulting in decreased SREBP1c expression. It would be 

interesting to investigate the expression of Stra13/DEC1 and DEC2 in U87 cells in 

hypoxic conditions in order to further understand the regulation of SREBP expression in 

the cellular response to hypoxia in these cells. In addition, an early paper reported that 

the SCAP promoter contained a binding site for SREBP1c (Nakajima et al., 1999). 

Therefore, the downregulation of SCAP mRNA expression in response to hypoxia that 

was observed in Figure 4.4 may be due to the loss of SREBP1c. However, further 

experiments are required to demonstrate that the loss of SREBP target gene expression 

is dependent on decreased SREBP1c expression. 

 

Decreased expression of SREBP target genes under hypoxic conditions is consistent 

with a report by Rankin and colleagues, who demonstrate that in murine liver 

expression of SREBP1c, HMGCS1, FASN and ACACA is decreased in a HIF2α-

dependent manner (Rankin et al., 2009). The decreased expression of SCAP was also 
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observed in this study, consistent with data presented in this thesis (Figure 4.4). The 

role of HIF2α was not investigated in this thesis and the possible contribution of HIF2α 

to the changes in gene expression should be investigated. In contrast to observations 

throughout this thesis, Rankin et al also observed a decrease in expression of SCD in 

response to HIF2α activation. SCD is considered to be a PPARα target gene (Mandard 

et al., 2004) and the authors show that decreased SCD expression is due to decreased 

expression of PPARα and perturbed β-oxidation (Rankin et al., 2009). SCD catalyses 

the rate limiting step in the production of MUFA from SFA and the expression of SCD 

is regulated by the ratio of SFAs:PUFAs (Ntambi, 1999). In addition,  the reaction 

catalysed by SCD requires molecular oxygen (Ntambi, 1999). Therefore, the absence of 

oxygen could lead to a build up of SFAs due to the decreased catalytic activity of SCD. 

The change in the SFA:PUFA ratio would release the PUFA-dependent inhibition of 

SCD expression and allow SREBP to bind to and activate the SCD promoter. Whether 

or not the limited amount of oxygen present would be sufficient to catalyse the 

desaturation of SFA in response to increased SCD expression is not known. It would be 

interesting to investigate changes in the levels of SFAs, MUFAs and PUFAs in U87 

cells following hypoxia in order to understand the role of SCD in the hypoxic response 

of cancer cells. 

 

The decreased expression of HMGCR observed in this chapter (Figure 4.1) is also 

consistent with the observations of Nguyen and colleagues who demonstrated that 

HIF1α induces expression of INSIGS, resulting in the degradation of HMGCR in 

response to hypoxia in Chinese hamster ovary (CHO) cells (Nguyen et al., 2007). This 

report suggests that hypoxia results in a build up of lanosterol and the authors propose 

that the degradation of HMGCR represents an oxygen sensing mechanism. However, 

this study was not performed in cancer cells. In contrast, it has been shown that 

hypoxic-induction of HIF1α in response to CoCl2 results in increased expression and 

activity of HMGCR in human hepatocellular carcinoma HepG2 cells (Pallottini et al., 

2008). It should be noted that these observations were made in chemically-induced 

pseudo-hypoxia and true hypoxia may result in a different cellular response. 
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Increased expression of FASN and SREBP1, mediated by hypoxia-dependent Akt 

activation, has been reported in the hypoxic response of breast cancer cell lines (Furuta 

et al., 2008). The lack of induction of FASN expression and SREBP1 in response to 

hypoxia in U87 cells may represent a tissue-specific response. In addition, no change in 

Akt phosphorylation on serine 473 was observed in hypoxia in U87 cells (data not 

shown), suggesting that hypoxia does not increase Akt activity in these cells. This may 

account for the difference in SREBP1 and FASN expression observed in response to 

hypoxia in breast cancer cell lines compared with the U87 glioblastoma cell line in this 

thesis.  

 

Increased expression of the potential SREBP target genes FABP3 and FABP7 was 

observed in hypoxic conditions (Figure 4.1). FABP3 and FABP7 were regulated by 

activation of ER.mSREBP1a and ER.mSREBP2 in Chapter 3. Interestingly, FABP7 is 

upregulated in GBM and plays a role in migration of U87 cells in vitro, indicating a role 

in GBM invasion (Liang et al., 2005; Mita et al., 2010). Silencing of either SREBP1 or 

SREBP2 was sufficient to inhibit hypoxia-dependent FABP7 expression (Figure 4.6), 

indicating that FABP7 is an SREBP target gene in U87 cells.  

 

Induction of FABP3 and SCD in response to hypoxia was partially dependent on 

SREBP (Figure 4.6). Although induction under hypoxic conditions was still observed 

following silencing of SREBP1 or HIF1α, expression of both genes was substantially 

reduced. This indicates that both HIF1α and SREBP1 may play a role in the 

transcriptional induction of SCD and FABP3 in hypoxia. Consistent with this 

hypothesis, SREBP1a and SREBP1c transcriptionally regulate FABP3 in human 

myotubes (Rome et al., 2008). In addition, FABP3 contains an HIF1β regulatory 

element within its promoter and is also regulated by hypoxia (Biron-Shental et al., 

2007). Analysis of expression of SCD and FABP3 in response to hypoxia following 

combined silencing of HIF1α and SREBP1 may reveal whether there is cooperation 

between HIF1α and SREBP1 in the transcriptional response to hypoxia. In addition, the 

role of HIF2α in the expression of SCD and FABP3 could be investigated.  
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The activity of the pSRE-luc reporter in hypoxia was also investigated and increased 

luciferase activity was observed in hypoxic conditions (Figure 4.7). This suggests that 

despite the decreased expression of SREBP1c and some SREBP target genes, 

transcriptional activity of SREBP1a and SREBP2 in hypoxia is still present. The 

regulation of the pSRE-luc reporter by SREBP1, SREBP2 and HIF1α was also 

investigated. Silencing of HIF1α or SREBP1, but not SREBP2, decreased reporter 

activity in hypoxic conditions to that of basal activity (Figure 4.8). Combined silencing 

of HIF1α and SREBP1 resulted in a further decrease in reporter activity, although 

induction in response to hypoxia was not blocked completely (Figure 4.9). Since the 

pSRE-luc reporter also contains binding sites for SP1, regulation of the reporter by SP1 

in response to hypoxia cannot be ruled out. Furthermore, both HIF1α and SREBP1 are 

known to interact with additional transcriptional regulators. Experiments with a mutated 

version of the pSRE-luc without the SP1 binding sites should be performed in order to 

confirm the contribution of SREBPs to the hypoxic induction of this reporter. In 

addition, it would be interesting to investigate whether hypoxia induces activity of the 

FASN-luc reporter (Amemiya-Kudo et al., 2002), since hypoxia decreases expression of 

FASN mRNA. 

 

Taken together, these results clearly show that some SREBP targets, as well as 

SREBP1c itself, are downregulated following hypoxia. At the same time, SREBPs are 

essential for the hypoxia-dependent induction of other genes (i.e. FABP7). It is possible 

that hypoxia induces post-translational modifications in individual SREBP isoforms, 

thereby altering their transcriptional activity resulting in the induction of specific 

subsets of genes. Alternatively, SREBPs could be recruited to specific promoters in 

hypoxic cells by other transcription factors such as HIF1α or SP1. Detailed analysis of 

the promoters of FABP7, FABP3 and SCD may lead to the identification of additional 

binding sites involved in the regulation of these genes. 

 

Since hypoxia resulted in decreased expression of SREBP target genes involved in lipid 

biosynthesis, it was investigated whether de novo lipid synthesis was affected by 

hypoxic conditions. Hypoxia reduced pyruvate-dependent lipid synthesis in U87 cells in 
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a manner consistent with the induction of PDK1 (Figures 4.10 and 4.11) (Kim et al., 

2006; Papandreou et al., 2006). However, acetate-dependent lipid synthesis in hypoxia 

is unaltered in lipoprotein deficient conditions, and in full serum conditions acetate-

dependent lipid synthesis is moderately increased in hypoxia. Since activation of 

SREBP1a in these cells (Chapter 3) induces de novo lipid synthesis, it should be 

demonstrated that SREBPs are required for this acetate-dependent lipid synthesis in 

hypoxia. It is possible that the increased acetate-dependent lipid synthesis is a response 

to the reduction of pyruvate-dependent lipid synthesis in these conditions.  

 

Expression of the SREBP target gene ACSS2 was also examined. ACSS2 catalyses the 

activation of cytosolic acetate for lipid synthesis and is induced by hypoxia in tumour 

cells (Yoshii et al., 2009). However, expression of ACSS2 in U87 cells was slightly 

downregulated in hypoxia (Figure 4.11). Since the possibility that ACSS2 is required 

for acetate-dependent lipid synthesis cannot yet be ruled out, ACSS2 silencing 

experiments would be useful. However, the culture of cells in lipoprotein deficient 

conditions increased both pyruvate- and acetate-dependent lipid synthesis when 

compared to full serum conditions (Figure 4.10 A and B), regardless of oxygen levels. 

This indicates that in conditions where external fatty acids are limited, de novo lipid 

synthesis is still able to take place. This is consistent with the upregulation of SREBP 

target genes observed in lipoprotein deplete conditions in hypoxia compared to full 

serum (Figure 4. 10 C). Finally, the expression of the PPARα target gene PDK4 was 

analysed (Figure 4.11). The observed hypoxia-dependent decrease in PDK4 expression 

could indicate reduced PPARα activity and suggests a reduction in fatty acid β-

oxidation. However, expression analysis of other β-oxidation genes such as CPT1 

would be beneficial to support this conclusion. In addition, β-oxidation itself could be 

measured to investigate whether hypoxia inhibits the break down of fatty acids in U87 

cells. 

 

Hypoxia induces lipid accumulation and storage in the form of lipid droplets (LDs) and 

increased LD formation in response to hypoxia in U87 cells was observed (Figure 4.12). 

Interestingly, in contrast to lipid synthesis and expression of SREBP target genes, LD 
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formation was dramatically reduced in lipoprotein-depleted conditions, suggesting that 

LD formation in hypoxia may be the result of increased fatty acid uptake. Indeed, 

HIF1α has been shown to result in activation of PPARγ, whose target genes include the 

lipid transporter CD36, as well as the rate-limiting enzyme in TAG synthesis GPAT 

(Krishnan et al., 2009). The authors of this study concluded that HIF1α activation leads 

to increased PPARγ activity, thus resulting in increased lipid uptake, TAG synthesis and 

increased storage of lipids in LDs. This supports the idea put forward by other 

publications (Gimm et al., 2010; Rankin et al., 2009). In experiments described in 

chapter 3 it was observed that SREBP activation is sufficient to induce LD formation in 

U87 cells (Figure 3.7), consistent with previously published findings that SREBP 

induces LD formation in various models (Seo et al., 2011; Shimano et al., 1996; Wang 

et al., 2010). Activation of mSREBP1a or mSREBP2 in hypoxia greatly enhanced LD 

formation in 10% FCS but not in 1% LPDS (Figure 4.13), suggesting that SREBPs 

induce LD formation only in the presence of external lipids. However, LD formation 

was unaltered in hypoxia after SREBP1 shRNA-mediated depletion in U87 cells 

(Figure 4.14 C), indicating that factors other than SREBP1 are also involved in LD 

formation in hypoxia. Interestingly, the loss of LDs in response to reoxygenation was 

moderately reduced in cells in which SREBP1 had been silenced (Figure 4.14 C). This 

suggests that SREBP1 may be involved in the mobilisation of TAGs from LDs, which 

fits with observations made by Seo and colleaugues who demonstrated that serum 

depletion resulted in reduced mobilisation of TAGs from LDs upon silencing of 

SREBP2 in HeLa cells (Seo et al., 2011). 

 

Experiments in this chapter demonstrated that SREBP1 is involved in the hypoxia-

dependent induction of SCD, FABP3 and FABP7 (Figure 4.6) and together the data 

suggest a role for SREBPs and lipid metabolism in the hypoxic response of cancer cells. 

Therefore, it was hypothesised that SREBP1 may be required for U87 viability in 

hypoxia. Although hypoxia increased overall levels of apoptosis, SREBP1 silencing did 

not affect cell viability in full serum conditions.  However, SREBP1 depletion by 

shRNA in low lipoprotein conditions caused a large increase in apoptosis, suggesting 

that SREBP1 is important for cell viability in these conditions (Figure 4.15). 

Demonstrating failure of hypoxia-dependent FABP7 induction upon SREBP1 silencing 
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in these conditions would support this hypothesis. Additional confirmation would be 

provided by a similar induction of apoptosis after SCD, FABP3, or FABP7 silencing in 

the same conditions. Furthermore, rescue experiments following SREBP1 silencing 

could also be performed. If SCD-induction is SREBP-dependent in these conditions, 

addition of the MUFA oleate may rescue the apoptotic effect. Similarly, the rescue of 

apoptosis following overexpression of FABP7 in SREBP1-depleted cells would 

demonstrate a role for the SREBP-dependent induction of FABP7 in U87 cell survival 

in hypoxia.  

 

The exact mechanism by which SREBP1 promotes cell survival under oxygen and 

nutrient-deprived conditions remains to be elucidated. It is unlikely that the pro-survival 

function of SREBP1 in this context is due to a single target gene. Given the observation 

that SREBP1-depletion increases cell death only in response to a reduction in both 

oxygen and serum components, it would be beneficial to analyse SREBP-target gene 

expression under these conditions. Gene expression microarray analysis in cells in 

which SREBP1 has been silenced would allow for the identification of SREBP-target 

genes that are required for cancer cell survival under conditions of oxygen and nutrient 

stress. Furthermore, the exact components of serum that are present in 10% FCS but not 

in 1% LPDS should be identified in order to further clarify the role of SREBP1 in cell 

survival in response to nutrient and oxygen deprivation. Throughout this thesis 

commercial LPDS was used, although the manufacturer does not make the exact 

components of this serum available. Removing the lipoproteins and other lipids from 

FCS used in parallel experiments would enable us to determine which lipids and/or 

lipoproteins are required for cell survival under hypoxic conditions.  

 

It is also possible that SREBP functions to protect the cells from reactive oxygen 

species (ROS), which are produced by the mitochondria under hypoxic conditions and 

can sensitise the cells to apoptosis (Dang et al., 2008). Gene expression microarray 

analysis carried out in Chapter 3 revealed a number of genes involved in oxidative 

stress to be regulated by SREBPs (Figure 3.12). Determination of intracellular ROS 

levels could be carried out to demonstrate that loss of SREBP1 under these conditions 
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increases levels of ROS. If the failure of the cell to detoxify cellular ROS plays a role in 

the apoptosis observed in SREBP1-silenced cells, it may be possible to rescue cell death 

following SREBP1-silencing in 1% LPDS and hypoxia by treating the cells with a ROS 

scavenger. 

 

The regulation of lipid metabolism in U87 cells in hypoxia is clearly complex (see 

Figure 4.16 for a summary of the hypotheses presented in this thesis). The data 

presented here suggest that hypoxia may induce a switch in SREBP-isoform expression. 

In addition, hypoxia may increase the transcriptional activity of SREBP1a, resulting in 

the increased expression of FABP7, thereby increasing fatty acid uptake and TAG 

synthesis. This would be similar to the induction of PPARγ expression by HIF1α, which 

results in the increase of fatty acid uptake and TAG biosynthesis (Krishnan et al., 2009). 

FABPs have been implicated in the regulation of PPAR transcriptional activity (Mita et 

al., 2010; Wolfrum et al., 2001), which allows for the possibility that the hypoxia-

induced expression of SREBP1-dependent FABP7 results in PPARγ transcriptional 

activation, and a subsequent increase in fatty acid uptake and TAG synthesis.  Further 

experiments are required to link the formation of lipid droplets in hypoxia directly to 

SREBP. It would be interesting to investigate the purpose of hypoxia-induced LD 

formation in this context to determine whether LDs are simply a consequence of 

increased fatty acid uptake and decreased β oxidation, or if LD formation in hypoxia 

protects the cells from lipotoxicity and/or plays a role in cell recovery following 

reoxygenation.  
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Figure 4-16: Schematic summary of the effect of hypoxia on SREBP1 isoform expression 
and activity and the proposed role of SREBP in cell survival in hypoxic conditions.  
(A) Hypoxia results in the decreased expression of SREBF1c mRNA and an increase in 
SREBP1a transcriptional activity. This leads to an increase in SREBP1-dependent expression 
of FABP7, as well as expression of SCD and FABP3. Increased FABP7 expression may be 
required for PPARγ transcriptional activity and subsequent increase in FA uptake. This may 
represent a mechanism of survival for cells under hypoxic conditions. (B) In hypoxic conditions 
de novo lipid synthesis is reduced, but not inhibited completely. It is possible that in hypoxia FA 
uptake is the main source of lipids for the cell. However, removal of external FAs under low 
oxygen conditions forces the cell to switch back to de novo lipid synthesis, for which SREBP1 
may be required. Ablation of SREBP1 in these conditions leads to cell death. 
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Chapter 5. Regulation of SREBPs by the Akt/ 

mTORC1 pathway  

 

5.1 Introduction 
The Akt/ PKB serine/ threonine kinase plays a vital role in many cellular processes 

including metabolism, proliferation, cell survival and growth control (Manning and 

Cantley, 2007). Akt is activated by the lipid kinase phosphoinositide 3-kinase (PI3K) in 

response to growth factors (Engelman et al., 2006). Insulin activates Akt via the insulin 

receptor (IR) and Akt is a critical mediator of the metabolic changes resulting from 

insulin signalling (Manning and Cantley, 2007). Aberrant activation of the PI3K/ Akt 

signalling pathway via the constitutive activation of oncogenic Ras or the loss of the 

tumour suppressor protein PTEN is frequently observed in human cancers (Altomare 

and Testa, 2005). 

 

It has previously been shown that Akt regulates the expression of genes involved in 

lipogenesis through SREBP1 activation (Porstmann et al., 2005). In addition, a 

requirement for mTORC1 in Akt-dependent lipogenesis has been demonstrated 

(Porstmann et al., 2008). Furthermore, Akt induces nuclear accumulation of mSREBP1, 

and the induction of the SREBP1 target genes FASN and ACLY following Akt 

activation is blocked by rapamycin, indicating the requirement for mTORC1 

(Porstmann et al., 2008). Other groups have since established a role for mTORC1 in 

lipid metabolism and demonstrated that this is mediated by SREBPs. There are a 

number of reports that support a role for mTORC1 in the regulation of SREBP. 

mTORC1 has been implicated at multiple levels in the control of SREBP activity 

including regulation of SREBP1 transcription (Li et al., 2010), ER-Golgi translocation 

(Ma et al., 2007), flSREBP1 processing (Düvel et al., 2010) and stability of the mature 

protein (Porstmann et al., 2008). However, the mechanism by which Akt and mTORC1 

regulate SREBPs is still unknown. In this chapter, new results demonstrating the 

regulation of SREBPs by mTORC1 are presented.  
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5.2 Inhibition of mTORC1 differentially affects SREBP protein 
and mRNA levels 

 

In order to gain further insight into the regulation of SREBPs by Akt and mTORC1, the 

RPE-Akt-ER inducible cell line was used. Human retinal pigment epithelial cells 

(RPEs) that have been immortalised using the human telomerase gene (RPE-hTERT) 

are considered to be a good cellular system in which to study biochemical and 

physiological aspects of cell growth, due to their untransformed phenotype and 

indefinite life span (Bodnar et al., 1998). RPE-hTERT cells that stably express an 

inducible, truncated form of Akt1 (myrAkt) fused to the oestrogen receptor (ER) have 

been described previously (RPE-Akt-ER) (Porstmann et al., 2005). This truncated Akt 

lacks the PH domain and is instead targeted to the membrane via an N-terminal Src 

myristolation sequence independently of PI3K activation (Figure 5.1 B). Treatment with 

4-OHT results in rapid and sustained activation of the kinase activity of the Akt-ER 

fusion protein (Figure 5.1 C) (Kohn et al., 1998).  
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Figure 5-1: Schematic representation of the myr-Akt-ER construct used in this thesis.  
(A) Domain structure of wild-type Akt showing the plekstrin homology (PH) domain, catalytic 
domain and the hydrophobic motif. Phosphorylation sites involved in Akt activation are 
indicated. (B) Schematic representation of the truncated ∆PH form of Akt fused to the mutant 
murine oestrogen receptor (ER) showing the N-terminal Src myristolation sequence (myr). (C) 
Conditional activation of myr-Akt-ER: Akt-ER is directed to the membrane by the myristolated 
residue, thereby rendering it independent from its upstream regulator PI3K. In the absence of 4-
hydroxytamoxifen (4-OHT) the ER domain is in an inhibitory complex with heatshock proteins. 
Upon treatment with 4-OHT the ER changes conformation, causing the dissociation of 
heatshock proteins and the two phosphorylation sites become accessible for their 
corresponding kinases. PDK1: 3-phosphoinositide-dependent kinase 1; mTORC2: mammalian 
target of rapamycin complex 2; ER: oestrogen receptor. 
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5.2.1 Nuclear accumulation of mSREBP1 following Akt activation is 

rapamycin sensitive 
Since SREBP processing and activation is negatively regulated by high cellular sterol 

concentrations, RPE-Akt-ER cells were grown in 1% lipoprotein deficient serum 

(LPDS) in order to allow processing and nuclear accumulation of mSREBP. This 

condition also limits the activation of endogenous Akt. In addition, in order to prevent 

proteasome-dependent degradation of the mSREBPs in the nucleus, cells were treated 

with the proteasome inhibitor MG-132 for 1.5 hours prior to lysis, as is standard in 

protocols for the analysis of mSREBPs.  

 

In order to investigate the role of mTORC1 in nuclear accumulation of mSREBP1 in 

response to Akt activation, RPE-Akt-ER cells were treated with solvent (EtOH) or 4-

OHT for 24 hours in the presence or absence of the mTORC1-specific inhibitor 

rapamcyin. Treatment with 4-OHT resulted in increased phosphorylation of Akt on 

serine 473 (S473), and phosphorylation of the ribosomal protein S6 was completely 

abolished upon treatment with rapamycin (Figure 5.2 A), demonstrating that both Akt 

activation and mTORC1 inhibition were successful. Activation of Akt for 24 hours 

induced accumulation of mSREBP1 in whole cell lysates (Figure 5.2 A). In addition, 

Akt increased flSREBP1 levels, as well as expression of the SREBP target gene FASN 

(Figure 5.2 A). This increase was attenuated by rapamycin treatment (Figure 5.2 A). 

Analysis of mSREBP1 enriched in nuclear fractions showed that Akt induced nuclear 

accumulation of mSREBP1 and that this was reduced in the presence of rapamycin 

(Figure 5.2 B).  

 

5.2.2 Inhibition of mTORC1 differentially affects mRNA expression of 

SREBF isoforms 
Several groups have reported that mTORC1 regulates SREBF mRNA expression (Li et 

al., 2010; Ma et al., 2007; Peng et al., 2002; Yecies et al., 2011) and Akt activation has 

been shown to increase expression of SREBF1a and SREBF1c, but not SREBF2 mRNA 

(Porstmann et al., 2005). In order to investigate the effect of mTORC1 inhibition on the 

Akt-dependent induction of SREBP mRNA, RPE-Akt-ER cells were cultured in 1% 
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LPDS. Cells were treated with solvent (EtOH) or 100 nM 4-OHT in the presence or 

absence of 50 nM rapamycin for 24 hours. Total RNA was extracted and analysed by 

RT-QPCR. As previously described by Porstmann and colleagues (Porstmann et al., 

2008), Akt activation increased expression of both SREBF1a and SREBF1c mRNA 

expression, but had no effect on SREBF2 mRNA expression levels (Figure 5.3 A). In 

addition, mRNA expression of SREBP target genes SCD and FASN was up-regulated 

following Akt activation (Figure 5.3 B). Interestingly, rapamycin treatment had 

differential effects on the mRNA expression levels of the three SREBF isoforms. 

SREBF1a mRNA was significantly reduced by rapamycin treatment in EtOH treated 

cells (Figure 5.3 A). However, in cells that had activated Akt, rapamycin was not able 

to significantly decrease mRNA expression. In contrast, SREBF1c mRNA levels were 

significantly decreased following rapamycin treatment, regardless of Akt activation 

status (Figure 5.3 A). These data indicate that mTORC1 activity may differ towards the 

two SREBP1 isoforms. Levels of SREBF2 mRNA expression were unaffected by both 

Akt activation and rapamycin treatment, suggesting that SREBF2 mRNA is not 

regulated downstream of Akt or mTORC1 in this model system.  

 

Since the nuclear accumulation of mSREBP1 occurs within 2 hours of Akt activation 

(Porstmann et al., 2008), it was next investigated whether short-term activation of Akt 

and mTORC1 influence SREBF mRNA expression. RPE-Akt-ER cells were cultured in 

1% LPDS for 16 hours and pre-treated with rapamycin for 30 minutes before being 

treated with solvent (EtOH) or 4-OHT for 2 hours. Expression of SREBF1a, SREBF1c 

and SREBF2 mRNA was analysed by RT-QPCR (Figure 5.4). Both SREBF1a and 

SREBF1c mRNA levels increased in response to Akt-activation, although this did not 

reach statistical significance. This indicates that Akt activation may induce SREBF1 

mRNA expression quite rapidly. In contrast to long-term mTORC1 inhibition, Akt 

activation for 2 hours in the presence of rapamycin failed to reduce SREBF1c mRNA 

expression, but SREBF1a mRNA expression was significantly reduced. Expression of 

SREBF2 mRNA remained unaffected following Akt activation and mTORC1 

inhibition, providing further evidence that SREBF2 mRNA is not regulated downstream 

of Akt or mTORC1 in these cells. Taken together, these data indicate that over time, 

mTORC1 inhibition differentially affects SREBF1a and SREBF1c mRNA expression. 
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SREBF1a is rapidly upregulated in response to Akt/mTORC1 activation while 

SREBF1c is upregulated only after longer-term activation. This may indicate that 

regulation of SREBF1a by Akt is more direct, whilst increased SREBF1c expression 

may be a result of increased SREBF1a expression. 

 

 

 

Figure 5-2: Akt activation leads to rapamycin-sensitive accumulation of mSREBP1 in the 
nucleus.  
RPE-Akt-ER cells were grown in 1% LPDS and treated with solvent (EtOH) or 100 nM 4-OHT in 
the presence or absence of rapamycin (50 nM) for 24 hours. Cells were harvested and 
subjected to nuclear fractionation. Cell lysates were analysed by Western blotting. (A) Whole 
cell lysates from cells treated in parallel to those in (B) showing total levels of flSREBP1 and 
mSREBP1. FASN expression is shown as a positive control for SREBP1 transcriptional activity. 
Phosphorylated Akt (pAktSer473) and S6 (pS6Ser240/244) were assayed as controls for 4-OHT 
and rapamcyin treatment. β actin is shown as a loading control. (B) Nuclear fractions showing 
levels of mature SREBP1 (mSREBP1). Lamin B1 is shown as a nuclear specific loading control.  
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Figure 5-3: Rapamycin differentially affects mRNA expression of SREBF isoforms.  
RPE-Akt-ER cells were grown in 1% LPDS and treated with solvent (EtOH) or 100 nM 4-OHT in 
the presence or absence of rapamycin (50 nM) for 24 hours. Total RNA was extracted and used 
for RT-QPCR analysis. (A) mRNA expression levels of SREBF1a, SREBF1c and SREBF2 were 
normalised to B2M as a loading control. Data shown represents the mean of at least three 
individual biological replicates ± SEM. Asterisks indicate statistical significance. P values 
calculated using paired student’s t tests and n number for each gene are shown. (B) mRNA 
expression levels of SREBP target genes SCD and FASN were normalised to B2M as a loading 
control. Data shown is the mean of three individual biological replicates ± SEM. 
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Figure 5-4: Short-term Akt activation leads to an increase in SREBF1a and SREBF1c 
mRNA but not SREBF2 mRNA expression.  
RPE-Akt-ER cells were cultured overnight in 1% LPDS. The following day cells were pre-treated 
with vehicle (DMSO) or rapamycin for 30 minutes before being treated with solvent (EtOH) or 
100 nM 4-OHT for 2 hours. RNA was extracted and used for RT-QPCR analysis. Expression 
levels of SREBF1a, SREBF1c and SREBF2 mRNA were normalied to B2M as a loading control. 
Data shown is the mean of 3 independent biological replicates ± SEM. Asterisk indicates 
statistical significance. P values were calculated using student’s paired t tests. 
 
 
 

5.3 Amino acid stimulation increases mSREBP1 nuclear 

accumulation and this may be dependent on mTORC1 
activity 

Having established that pharmacological inhibition of mTORC1 is sufficient to decrease 

nuclear accumulation of mSREBP1, it was investigated whether activation of mTORC1 

was able to increase mSREBP1 nuclear accumulation. mTORC1 is a mediator of 

nutrient response and its activity has been shown to be positively regulated by amino 

acids. Amino acid stimulation leads to increased co-localisation of mTORC1 with GTP-

loaded Rheb and therefore increases mTORC1 activity (Kim et al., 2008; Sancak et al., 

2008). In order to investigate whether activation of mTORC1 is sufficient to regulate 

SREBP1, the effect of amino acid stimulation on the accumulation of nuclear 

mSREBP1 was analysed.  

 

RPE-hTERT cells were serum starved for 16 hours and then starved of amino acids for 

the final 3 hours, before amino acids were added back to the medium for 1 hour. Whole 

cell lysates and nuclear fractions were analysed by Western blotting. Stimulation with 
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amino acids increased nuclear accumulation of mSREBP1 (Figure 5.5 A), as well as 

flSREBP1 in whole cell lysate  (Figure 5.5 B). Increased S6 phosphorylation was 

observed in response to amino acid stimulation, consistent with increased mTORC1 

activity (Figure 5.5 B). Interestingly, phosphorylation of Akt on serine 473 was 

decreased following amino acid stimulation (Figure 5.5 B), indicating that increased 

SREBP1 expression in response to amino acid stimulation is independent of Akt 

activation.  

 

In order to confirm that this increase was indeed dependent on mTORC1 activity, RPE-

hTERT cells were stimulated with amino acids in the presence or absence of rapamycin. 

In the absence of amino acids, rapamycin was not able to further reduce the levels of 

nuclear mSREBP1 (Figure 5.6A). Upon stimulation with amino acids, levels of 

mSREBP1 in the nucleus were increased, supporting the observations in Figure 5.5. 

Rapamycin had a moderate effect on the levels of nuclear mSREBP1 in the amino acid 

stimulated cells (Figure 5.6A), indicating that this increase may be mTORC1-

dependent. In addition, increased levels of mSREBP1 and flSREBP1 were observed in 

whole cell lysates following stimulation with amino acids, although the effects of 

rapamycin on both mSREBP1 and flSREBP1 are more difficult to interpret, as the 

samples in this particular experiment do not appear to be accurately loaded (Figure 

5.6B). Although this experiment was performed twice, it should be repeated in order to 

confirm that mTORC1 activity is indeed required for the increase in mSREBP1 

observed in response to amino acid stimulation. It would then be possible to determine 

if these differences are statistically significant using densitometry. Phosphorylation of 

Akt in amino acid stimulated cells was decreased, again suggesting that Akt is inactive 

under these conditions (Figure 5.6B). Together, these data indicate that amino acid 

stimulation results in an increase in nuclear mSREBP1 and that this may be dependent 

on mTORC1 activity. However, it cannot be ruled out that amino acids are capable of 

increasing nuclear mSREBP1 accumulation in an Akt/mTORC1-independent manner 

and further experiments would be required to show this. 
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Figure 5-5: Amino acid stimulation and activation of mTORC1 is sufficient to induce 
mSREBP1 nuclear accumulation.  
RPE-hTERT cells were serum starved overnight and starved of amino acids for 3 hours. Amino 
acids were then added back for 1 hour and cells were subjected to nuclear fractionation and 
analysis by Western blot. (A) Nuclear fraction showing expression of mSREBP1. Lamin B1 is 
shown as a loading control. (B) Whole cell lysates showing expression of flSREBP1 and 
phosphorylation of Akt (pAktSer473). Phosphorylation of S6 (pS6Ser240/244) is shown as a control of 
mTORC1 activity. GAPDH is shown as a loading control. 
 
 
 

 

Figure 5-6: Amino acid induced mSREBP1 nuclear accumulation may be dependent on 
mTORC1 activity. 
RPE-hTERT cells were serum starved overnight and starved of amino acids for 1 hour. Cells 
were pre-treated with vehicle (DMSO) or rapamycin (50 nM) for 30 minutes before amino acids 
were added back for 1 hour. Cells were harvested and subjected to nuclear fractionation. (A) 
Nuclear fraction showing expression of mSREBP1. DP1 is shown as loading control. (B) Whole 
cell lysates from cells treated in parallel to those in (A) showing expression of flSREBP1, 
mSREBP1 and phosphorylation of Akt (pAktSer473). Phosphorylation of pS6S240/244 is shown as a 
control for mTORC1 activity. β actin is shown as a loading control. 
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5.4 S6 kinases are not required for SREBP1 processing 
Since it remains unclear whether mTORC1 is acting directly on SREBP or via a 

downstream signalling component following Akt activation, the requirement for the 

mTORC1 target S6K in SREBP processing was investigated.  

 

5.4.1  Silencing of S6K does not prevent the Akt-dependent induction of 

mSREBP1 accumulation 
RPE-Akt-ER cells were transiently transfected with siRNAs targeting mTOR, 4EBP1, 

S6K1, S6K2 and a combination of sequences targeting both S6K1 and S6K2. Cells 

were cultured in 1%LPDS and Akt was activated in the presence or absence of 

rapamycin. Whole cell lysates were analysed by Western blotting for the accumulation 

of mSREBP1. Akt activation induced accumulation of mSREBP1 (Figure 5.7, lanes a 

and b). Silencing of mTOR blocked the Akt-dependent induction of mSREBP1 and 

reduced expression of the SREBP target gene ACLY (Figure 5.7, lanes c and d). FASN 

was still induced following Akt activation, this could be as a result of incomplete 

mTOR silencing, as indicated by residual phosphorylation of S6 (Figure 5.7, lanes c and 

d). This could also account for the lack of complete loss of mSREBP1 in response to 

mTOR silencing. Depletion of the mTORC1 downstream target 4EBP1 did not result in 

a reduction in the Akt-dependent increase in mSREBP1 accumulation or the increase in 

ACLY or FASN expression (Figure 5.7, lanes e and f), indicating that 4EBP1 does not 

play a role in the regulation of SREBP1. However, the silencing efficiency of 4EBP1 

was not investigated. Silencing of S6K1 did not affect the Akt-dependent induction of 

SREBP1 accumulation, and phosphorylation of S6 remained unaffected (Figure 5.7, 

lanes g and h). This could be a result of S6K2 compensating for loss of S6K1 activity as 

S6K2 has been shown to compensate for loss of S6K1 activity in mice harbouring a 

deletion of the S6K1 gene (Shima et al., 1998). In contrast, S6K2 silencing alone 

reduced Akt-dependent accumulation of mSREBP1 as well as FASN and ACLY 

induction and reduced S6 phosphorylation (Figure 5.7, lanes i and j). Combined 

silencing of both S6K1 and S6K2 reduced S6 phosphorylation but increased overall 

expression of mSREBP1 (Figure 5.7, lanes k and l). It is unlikely that co-silencing of 

S6K1 with S6K2 causes a re-activation of S6K2 function since the reduction in of S6 
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phosphorylation was unaffected. Silencing of any of the TOR signalling components 

investigated here did not affect Akt-dependent induction of flSREBP1 expression, 

suggesting that Akt and mTORC1 may regulate flSREBP1 and mSREBP1 in different 

ways.  

 

5.4.2 Genetic ablation of S6 kinases does not prevent SREBP1 
processing 

It is possible that the residual phosphorylation of S6 following silencing of S6K1 and 

S6K2 may be sufficient to regulate SREBP1 downstream of mTORC1. Primary mouse 

embryonic fibroblasts (MEFs) from mice carrying a deletion in both S6K1 and S6K2 

genes, in which S6 phosphorylation is completely abolished, were used in order to 

investigate this further.  

 

It was first determined whether SREBP1 was sensitive to rapamycin treatment in 

immortalised MEFs which were cultured in 10% FCS or 1% LPDS as a positive control 

for SREBP1 processing. Cells were treated either with insulin or with rapamycin for 24 

hours to induce Akt signalling or mTORC1 inhibition, respectively. Accumulation of 

mSREBP1 in response to insulin treatment was observed in cells cultured in 1% LPDS 

but not full serum (Figure 5.8, lanes a-d). Phosphorylation of Akt on serine 473 was 

increased in 1% LPDS but not 10% FCS (Figure 5.8, lanes a-d), confirming activation 

of Akt. It is likely that full serum already induces maximal activation of Akt, and 

therefore no change in phosphorylation levels are observed. Treatment of cells with 

rapamycin resulted in decreased mSREBP1 levels in both serum conditions, although a 

more potent effect of rapamycin treatment on mSREBP1 was observed in cells cultured 

in 1% LPDS (Figure 5.8, lanes e-h). Phosphorylation of S6 on serine 240/244 was 

abolished by rapamycin treatment in both serum conditions (Figure 5.8, lanes e-f). A 

slight increase in flSREBP1 was observed in response to insulin treatment in cells 

cultured in 1% LPDS (Figure 5.8, lanes a and b) and rapamycin treatment partially 

reduced flSREBP1 levels in cells cultured in 1% LPDS (Figure 5.8, lanes e and f). 

These data indicate that regulation of the Akt-mTORC1-SREBP1 signalling axis 

observed in RPEs is also found in immortalised MEFs.  
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Next the effect of genetic ablation of S6K1 and S6K2 on mSREBP1 accumulation was 

investigated. Primary MEFs from mice in which both genes have been deleted (Pende et 

al., 2004) were cultured in 10% FCS or 1% LPDS and treated with rapamycin for 24 

hours. Whole cell lysates were analysed by Western blotting. Primary wild-type MEFs 

from wild-type littermates were treated in parallel. Wild-type cells cultured in 1% 

LPDS showed an accumulation of mSREBP1, although rapamycin treatment did not 

affect this (Figure 5.9, lanes a and b). Low levels of mSREBP1 were present in cells 

cultured in 10% FCS, although a non-specific band was detected by the SREBP1 

antibody (Figure 5.9, lanes c and d). No effect of rapamycin on mSREBP1 was 

observed in these cells, despite phosphorylation of S6 on being completely abolished 

upon rapamycin treatment (Figure 5.9, lanes a-d). MEFs lacking S6K1 and S6K2 

cultured in 1% LPDS still showed accumulation of mSREBP1, indicating that 

processing of SREBP1 was still intact in these cells. The absence of S6 kinases was 

confirmed as no S6 phosphorylation was detected in these cells (Figure 5.9, lanes e-h). 

Processed mSREBP1 was still detected in S6K knockout cells cultured in 10% FCS 

(Figure 5.9, lanes g and h), although the bands detected by the SREBP1 antibody were 

altered in the same manner as in the wild-type cells.  

 

When taken together with the silencing data in the RPE-Akt-ER cells, these data 

suggest that S6 kinases are not required for SREBP1 processing, since mSREBP1 is still 

detected in cells lacking both S6K1 and S6K2. However, it is possible that S6 kinases 

contribute to mSREBP1 accumulation under conditions of mTORC1 hyperactivation.  
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Figure 5-7: Silencing of S6K1 or S6K2 does not block Akt-dependent accumulation of 
mature SREBP.  
RPE-myrAkt-ER cells were transfected with siRNA oligonucleotides targeting the expression of 
mTOR, 4EBP1, S6K1, S6K2 or a mixture of the oligonucleotides targeting S6K1 and S6K2. 
Three days post-transfection, cells were transferred to medium supplemented with 1% 
lipoprotein deficient serum (LPDS) and treated with 100 nM 4-hydroxytamoxifen (4-OHT) or 
solvent (ethanol) for 24 h. Whole cell extracts were analysed by Western blotting using 
antibodies against the proteins indicated. GAPDH was used as a loading control. This 
experiment was performed by B. Griffiths (LRI, GEA). Reprinted from Advances in Enzyme 
Regulation, (Lewis et al., 2011), © 2011, with permission from Elsevier. 

 

http://www.sciencedirect.com/science/journal/00652571
http://www.sciencedirect.com/science/journal/00652571
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Figure 5-8: Rapamycin reduces mSREBP1 accumulation in immortalised MEFs. 
Immortalised MEFs were grown in medium containing 10% FCS or 1% LPDS in the presence or 
absence of rapamycin (50 nM) or insulin (10 mg/ml) for 24 h. Cells were treated with 25 mg/ml 
ALLN for 2 h before harvesting. Whole cell lysates were analysed by Western blot using 
antibodies against the proteins indicated. β tubulin was used as a loading control. Figure 
adapted from Advances in Enzyme Regulation, (Lewis et al., 2011), © 2011, with permission 
from Elsevier.  
 

 

http://www.sciencedirect.com/science/journal/00652571
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Figure 5-9: Genetic deletion of S6K does not prevent processing of SREBP1. 
Primary MEFs from WT and S6K1/S6K2 double knockout MEFs were grown in medium 
containing 10% FCS or 1% LPDS and treated with rapamycin (50 nM) for 24 h. Cells were 
treated with 25 mg/ml ALLN for 2 h before harvesting. Whole cell lysates were analysed by 
Western blotting using antibodies against the proteins indicated. β tubulin was used as a 
loading control. Figure adapted from Advances in Enzyme Regulation, (Lewis et al., 2011), © 
2011, with permission from Elsevier. 
 
 
 
 
 
 

5.5 Regulation of SREBP processing components by Akt and 
mTORC1 

The results presented so far in this chapter have focussed on the nuclear accumulation 

of mSREBP1 in response to activation of Akt and mTORC1. However, it still remains 

unclear whether Akt and mTORC1 are directly regulating SREBP processing in the 

RPE-Akt-ER system. In order to address the role of Akt and mTORC1 on SREBP 

processing in RPE-Akt-ER cells, the effects of Akt activation and mTORC1 inhibition 

on components required for SREBP processing were investigated.  

http://www.sciencedirect.com/science/journal/00652571
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5.5.1  mTORC1 influences SCAP mRNA expression 

The SREBP cleavage activating protein (SCAP) is required for the ER-Golgi 

translocation of the precursor SREBP protein under low sterol conditions (Nohturfft et 

al., 1999; Nohturfft et al., 2000; Sakai et al., 1997). RPE-Akt-ER cells were cultured in 

10% FCS or 1% LPDS and treated with solvent (EtOH) or 4-OHT in the presence or 

absence of rapamycin for 24 hours. Whole cell lysates were analysed by Western 

blotting and total RNA was analysed by RT-QPCR (Figure 5.10). As a positive control 

for Akt activation and mTORC1 inhibition, lysates were analysed for phospho-Akt and 

phospho-S6, as well as mSREBP1 accumulation. Figure 5.10 B shows that activation of 

Akt resulted in an increase in Akt phosphorylation on serine 473 and treatment with 

rapamycin abolished S6 phosphorylation (Figure 5.10 B). In addition, levels of 

mSREBP1 were increased in response to Akt activation and rapamycin treatment 

reduced mSREBP1 levels.  

 

Activation of Akt or treatment with rapamycin did not alter SCAP protein levels (Figure 

5.10 A). Interestingly, although mRNA expression levels of SCAP were not affected by 

Akt activation, short-term rapamcyin treatment (2 hours; Figure 5.10 C) and long-term 

treatment (24 hours; Figure 5.10 D) moderately reduced levels of SCAP mRNA in 4-

OHT treated cells. As observed in Chapter 4 (Figure 4.4), a reduction in SCAP mRNA 

does not result in a reduction in SCAP protein levels, suggesting that SCAP is a very 

stable protein. It is therefore unlikely that the effect of mTORC1 inhibition on 

mSREBP1 is occurring through loss of SCAP mRNA. However, a slight shift in SCAP 

mobility was observed between cells cultured in 10% FCS and 1% LPDS and may be 

lost following rapamycin treatment (Figure 5.10 A), indicating that mTORC1 may 

influence the conformational change that SCAP protein undergoes in response to low 

sterol conditions. These data indicate that increased accumulation of mSREBP1 in 

response to Akt activation and the decrease in response to mTORC1 inhibition do not 

occur through changes in SCAP expression.  
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5.5.2 Activation of Akt and inhibition of mTORC1 do not prevent activity 

of the proteases required for SREBP cleavage  
The site-1 (S1P) and site-2 (S2P) proteases are both required for the regulation of the 

two-step proteolytic cleavage that SREBP undergoes in the Golgi. It was therefore 

investigated whether Akt or mTORC1 could affect the activity of these proteins. 

Activating transcription factor 6-alpha (ATF6α) is regulated by S1P and S2P cleavage 

in response to ER stress (Shen and Prywes, 2005; Ye et al., 2000). In order to 

investigate whether Akt or mTORC1 regulate the activity of S1P or S2P, cells were 

treated with tunicamycin, an inducer of ER stress and a known activator of ATF6α 

processing. RPE-Akt-ER cells were cultured in 1% LPDS for 16 hours before they were 

pre-treated with vehicle or rapamycin for 30 minutes before being treated with vehicle 

or tunicamycin for a further 30 minutes. Akt activation was then induced for 5 hours. 

Whole cell lysates were analysed for ATF6α cleavage by Western blotting. Akt 

activation alone did not induce ATF6α cleavage (Figure 5.11, lanes a and b). Cleaved 

ATF6α protein (N- nuclear fragment) was observed in all cells treated with 

tunicamycin, regardless of Akt activation status (Figure 5.11, lanes c-f), indicating that 

Akt activation does not influence the activity of S1P or S2P. Inhibition of mTORC1 

through treatment with rapamycin did not alter levels of activated ATF6α (N) (Figure 

5.11, lanes e and f). This confirms that inhibition of mTORC1 does also not regulate the 

activity of the proteases required for ATF6α and SREBP cleavage. In addition to the 

formation of the 50 kDa nuclear ATF6α fragment (N), treatment with tunicamycin 

alone also resulted in a decrease in the glycosylated precursor protein (P) and caused an 

increase in the levels of non-glycosylated precursor (P*) protein (Figure 5.11, lanes c 

and d). This corresponds to the movement of ATF6α from the ER to the Golgi upon 

induction of ER stress (Shen and Prywes, 2005; Ye et al., 2000). These data indicate 

that Akt or mTORC1 do not influence the proteolytic activity of the S1P and S2P 

proteases. 

 

5.5.3 mTORC1 inhibition reduces the mRNA expression of INSIG1 but not 

INSIG2  
The insulin-induced genes INSIG1 and INSIG2 also regulate the processing and 

activation of SREBPs. In sterol-saturated conditions, a conformational change in SCAP 
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results in its interaction with INSIG proteins, which prevents translocation of the 

SCAP/SREBP complex and retains SREBP in the ER (Brown et al., 2002; Yang et al., 

2002). It was therefore investigated whether levels of INSIG are influenced by Akt 

activation and/or mTORC1 inhibition. Due to the lack of sensitive INSIG antibodies, 

mRNA expression of INSIG1 and INSIG2 was determined in response to Akt activation 

and inhibition of mTORC1. RPE-Akt-ER cells were cultured in 1% LPDS and treated 

with vehicle (EtOH) or 4-OHT in the presence or absence of rapamycin for 24 hours. 

Total RNA was analysed by RT-QPCR analysis. Expression of INSIG1 was 

significantly increased following Akt activation (Figure 5.12 A) and this induction was 

significantly reduced upon rapamycin treatment (Figure 5.12 A). However, INSIG1 is 

also an SREBP target gene (Horton et al., 2003). Therefore, the change in expression of 

INSIG1 following long-term Akt activation and mTORC1 inhibition is most likely due 

to regulation of SREBP activity. Expression of INSIG2 mRNA did not change (Figure 

5.10 A), indicating both that Akt and mTORC1 are not signalling through INSIG2 

expression and that INSIG2 is not an SREBP target gene. 

 

Since SREBP transcriptionally regulates INSIG1 it was next investigated whether short-

term Akt activation and mTORC1 inhibition influenced mRNA expression levels of the 

INSIGs. RPE-Akt-ER cells were cultured in 1% LPDS for 16 hours and were pre-

treated with rapamycin for 30 minutes before being treated with solvent (EtOH) or 4-

OHT for 2 hours. mRNA expression of INSIG1 and INSIG2 was analysed. Akt 

activation or rapamycin treatment did not alter mRNA expression of INSIG2 (Figure 

5.12 B). In addition, Akt activation significantly increased INSIG1 expression. This 

could indicate that Akt activation results in increased transcriptional activity of SREBPs 

after only 2 hours (Figure 5.12 B). In contrast, rapamycin treatment did not significantly 

reduce mRNA expression of INSIG1, indicating that inhibition of mTORC1 is not able 

to block the transcriptional activity of SREBP following short-term inhibition. 

However, other regulators of INSIG1 expression in response to Akt activation cannot be 

ruled out.  

. 
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5.5.4 Akt and mTORC1 do not regulate processing of exogenous SREBP2 

It remains unclear whether endogenous SREBP processing is regulated by Akt or 

mTORC1. Therefore the effects of Akt and mTORC1 on exogenous SREBP were 

investigated. Since the general mechanisms of SREBP processing are conserved 

between the different isoforms, it was investigated whether Akt or mTORC1 influence 

the processing of an exogenous PLAP-SREBP2 fusion construct. pCMV-PLAP-

SREBP2(513-1141) encodes a fusion protein in which the signal peptidase cleavage site 

and catalytic domain of placental alkaline phosphatase (PLAP) is joined to the luminal 

loop of SREBP2 on the NH2-terminal side of the S1P cleavage site (see Figure 5.13 A) 

(Sakai et al., 1998). Expression of this fusion protein results in the catalytic domain of 

PLAP being located in the ER lumen, flanked on either side by the signal peptidase and 

S1P cleavage sites (Sakai et al., 1998). Low sterol conditions lead to cleavage of this 

fusion protein at both sites, resulting in PLAP secretion into the medium where its 

activity can be readily detected. Sakai and colleagues have demonstrated that in the 

absence of exogenous SCAP, relatively little PLAP is secreted into the medium. 

Expression of increasing amounts of exogenous SCAP results in a linear increase in the 

amount of PLAP secretion indicating an increase in the amount of PLAP-SREBP2 

processing (Sakai et al., 1998). 

 

Using this system to assay SREBP2 cleavage, no PLAP activity could be detected in 

RPE-Akt-ER cells (data not shown). This may be because the PLAP-SREBP2 construct 

was not successfully expressed in RPE cells. Instead, U2OS-Akt-ER cells were co-

transfected with pCMV-PLAP-SREBP2(513-1141) and increasing amounts of an 

exogenous SCAP expression construct (pCMV-SCAP), along with the renilla luciferase 

control (pRL-SV40). Cells were cultured in 0.5% BSA to induce sterol starvation and 

the PLAP activity in the cell culture medium was analysed using a chemiluminescence 

PLAP assay. PLAP activity was normalised to renilla luciferase activity as a control. 

Expression of PLAP-SREBP2 alone resulted in very little PLAP activity (Figure 5.13 

B), whereas co-expression of PLAP-SREBP2 with increasing amounts of SCAP (0.5-

1.5 µg) produced a dose-dependent increase in PLAP activity, indicating that PLAP-

SREBP2 was cleaved in these cells (Figure 5.13 B). It was next investigated whether 

PLAP-SREBP2 cleavage was induced in U2OS-Akt-ER cells by sterol starvation alone. 
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Cells were co-transfected with pCMV-PLAP-SREBP2(513-1141) and pCMV- SCAP 

and cultured either in full serum (10% FCS) or 0.5% BSA. Cells cultured in full serum 

produced less PLAP activity than cells cultured in 0.5% BSA (Figure 5.13 C), 

indicating that sterol starvation was sufficient to induce PLAP-SREBP2 cleavage in 

these cells.  

 

In order to address whether Akt activation and mTORC1 inhibition could affect PLAP-

SREBP2 processing, U2OS-Akt-ER cells were co-transfected with pCMV-PLAP-

SREBP2 and pCMV-SCAP, along with the renilla luciferase control, and cultured in 

0.5% BSA. Cells were treated with vehicle (EtOH) or 4-OHT in the presence or absence 

of the mTORC1 inhibitor rapamycin for 24 hours. Conditioned medium was then 

analysed for PLAP activity and this was normalised to renilla luciferase activity. There 

was no clear effect on the amount of PLAP activity in cells treated with EtOH or 4-

OHT, nor with rapamycin treatment on PLAP activity (Figure 5.13 D).  

 

Since the inability of Akt or mTORC1 to affect PLAP-SREBP2 cleavage in U2OS-Akt-

ER cells might be due to the possibility that SREBP2 is not regulated by this pathway in 

this cell line. In order to address whether Akt and mTORC1 influenced SREBP2 

expression levels in U2OS cells, U2OS-Akt-ER cells were treated as described above 

and whole cell lysates were analysed for levels of flSREBP2 and processed SREBP2 

(pSREBP2) by Western blotting. Levels of pSREBP2 were low in cells cultured in 10% 

FCS, and levels of flSREBP2 did not change in response to Akt activation (Figure 5.13 

E, lanes a and b). In contrast, cells cultured in 0.5% BSA showed an increase in 

pSREBP2 and a decrease in flSREBP2 compared to cells cultured in full serum (Figure 

5.13 E, compare lanes a and b with c and d), indicating that low sterol conditions induce 

SREBP2 processing in these cells However, activation of Akt did not affect levels of 

pSREBP2 or flSREBP2 (Figure 5.13 E, lanes c and d). In addition, treatment of the 

cells with rapamycin had no effect on levels of pSREBP2. When taken together, these 

data suggest that SREBP2 is not regulated downstream of Akt or mTORC1 in U2OS 

cells. Furthermore, these data indicate that Akt and mTORC1 do not target the common 
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components of SREBP processing machinery that are conserved between SREBP1 and 

SREBP2. 

 

 

Figure 5-10: Akt and mTORC1 do not affect mSREBP1 levels by altering SCAP 
expression.  
RPE-Akt-ER cells were cultured either in 10% FCS or medium supplemented with 1% LPDS. 
Cells were treated with solvent (EtOH) or 100 nM 4-OHT in the presence or absence of 
rapamycin (50 nM) for 24 hours. (A) Whole cell extracts were analysed by Western blotting for 
SCAP expression. β tubulin was used as a loading control. (B) Whole cell extracts from cells 
treated as in (A) were analysed by Western blotting for expression of mSREBP1, pAkt-ERSer473 
and pS6Ser240/244 as a positive control for inhibitor function. β tubulin was used as a loading 
control. (C) RNA extracted from cells cultured in 1% LPDS and treated as in (A) and (B) was 
analysed by RT-QPCR for SCAP expression. Data shown is the mean of three independent 
biological replicates ± SEM normalized to B2M expression as a loading control. Asterisk 
indicates statistical significance. P values were calculated using a paired student’s t test. (D) 
RPE-Akt-ER cells were cultured in 1% LPDS gor 16 hours. Cells were pre-treated with 
rapamycin (50 nM) for 30 minutes before being treated with either solvent (EtOH) or 100 nM 4-
OHT for 2 hours. RNA was extracted and used for RT-QPCR analysis of SCAP expression. 
Data shown is the mean of three independent biological replicates ± SEM normalized to B2M 
expression as a loading control. Asterisk indicates statistical significance. P values were 
calculated using a paired student’s t test. 
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Figure 5-11: Akt activation and mTORC1 inhibition do not alter the activity of proteases 
required for cleavage activation of SREBPs.  
RPE-Akt-ER cells were cultured in 1% LPDS overnight. Cells were then pre-treated with 
rapamycin (50 nM) for 30 minutes before being treated either with vehicle (DMSO) or 
tunicamycin (5 µg/ mL) for a further 30 minutes. Akt activation was induced by addition of 100 
nM 4-OHT for 5 hours. Cells were treated with MG-132 (25 µM) for 1.5 hours prior to lysis. 
Whole cell extracts were analysed by Western blotting for cleavage of ATF6α. β tubulin was 
used as a loading control. Molecular weight markers are shown (left). P: Unprocessed precursor 
protein; P*: Unprocessed non-glycosylated precursor protein; N: Processed (nuclear) ATF6α. 
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Figure 5-12: Inhibition of mTORC1 reduces mRNA expression of INSIG1 but not INSIG2. 
RPE-Akt-ER cells were cultured in 1% LPDS and treated with vehicle (EtOH) or 100 nM 4-OHT 
in the presence or absence of rapamcyin for 24 hours (A) or 2 hours (B). RNA was extracted 
and used for RT-QPCR analysis of INSIG1 and INSIG2 expression. Data shown is the mean of 
three biological replicates ± SEM normalised to B2M expression. Asterisks indicate statistical 
significance. P values were calculated using a paired student’s t test. 
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Figure 5-13: Akt and mTORC1 do not regulate SREBP2 in U2OS-Akt-ER cells. 
(A) Schematic representation of the pCMV-PLAP-SREBP2 construct described in (Sakai et al., 
1998). PLAP: placental alkaline phosphatase. (B) U2OS-Akt-ER cells were transiently 
transfected with pCMV-PLAP-SREBP2 and increasing amounts of pCMV-SCAP (0.5 µg- 1.5 
µg). Cells were cultured in 0.5% BSA overnight and conditioned medium was assayed for PLAP 
activity and normalised to the renilla luciferase control. Data shown is the mean of three 
technical replicates ± SEM. (C) U2OS-Akt-ER cells were co-transfected with pCMV-PLAP-
SREBP2 and pCMV-SCAP. Cells were cultured in either 10% FCS or 0.5% BSA overnight. 
PLAP activity in the medium was measured as described above. Data shown is the mean of 
three independent biological replicates ± SEM. (D) US2S-Akt-ER cells were co-transfected with 
PLAP-SREBP2 and SCAP and cultured in 0.5% BSA. Cells were treated with vehicle (EtOH) or 
100 nM 4-OHT for 24 hours in the presence or absence of rapamycin (50 nM). Data shown is 
the mean of three independent biological replicates ± SEM. (E) Whole cell lysates from U2OS-
Akt-ER cells treated as in D were analysed for expression of flSREBP2 and processed SREBP2 
(pSREBP2). β tubulin was used as a loading control. 
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5.6 Analysis of SREBP1 sub-cellular localisation in response 
to Akt activation and mTORC1 inhibition  

The transcriptional activity of mSREBP is dependent on the nuclear localisation of the 

protein. It is possible that Akt and mTORC1 influence the sub-cellular localisation of 

mSREBP. In order to address this possibility, confocal microscopy was used to 

determine subcellular localisation of SREBP1. Previous attempts to visualise 

endogenous SREBPs in RPE cells using the antibody recognising the 2A4 epitope were 

not successful (C.Santos, GEA, unpublished observations). Therefore, SREBP1 was 

visualised in U2OS-Akt-ER cells using an alternative N-terminal SREBP1 antibody 

(K10). Cells were seeded onto coverslips and cultured in 0.5% BSA and treated with 

solvent (EtOH) or 4-OHT in the presence or absence of rapamycin for 24 hours. As a 

negative control of mSREBP1 nuclear localisation, cells were cultured in 10% FCS in 

parallel. Cells were fixed and stained with DAPI (nuclei) and anti-SREBP1 (K-10) and 

imaged using confocal microscopy. The cytoplasmic localisation of SREBP1 was not 

clear due to high background staining. However, it was observed that serum starvation 

(0.5% BSA) resulted in a slight increase in the intensity of SREBP1 staining in the 

nucleus when compared with cells cultured in 10% FCS (Figure 5.14). This staining 

appeared more intense upon Akt activation and was localised mainly to the nucleus 

(Figure 5.14). Treatment with rapamycin decreased overall SREBP1 staining in both 

EtOH and 4-OHT treated cells (Figure 5.14). These support the observations that Akt 

increases nuclear localisation (Figure 5.2), although it remains difficult to conclude 

whether this is due to increased processing. Co-localisation studies using markers for 

the ER and Golgi apparatus would be useful to demonstrate SREBP1 localisation to 

these organelles. 
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Figure 5-14: Rapamycin decreases overall staining of SREBP1 in confocal microscopy 
studies. 
U2OS-Akt-ER cells grown on coverslips were cultured in 10% FCS or 0.5% BSA and treated 
with EtOH or 100 nM 4-OHT in the presence or absence of 50 nM rapamycin for 24 hours. Cells 
were fixed and stained with DAPI (nuclei) and an antibody recognising SREBP1 (clone K10). 
Images were acquired using confocal microscopy. Scale bars represent 20 µm. 
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5.7 Effects of Akt and mTORC1 on SREBP protein stability 
Levels of nuclear SREBP1 are increased in response to Akt activation following 

inhibition of mTORC1 (Figure 5.2). A major mechanism that regulates the 

transcriptional activity of mSREBPs is their proteasomal-dependent degradation (see 

chapter 1, introduction). GSK3-dependent phosphorylation of 3 sites within the C-

terminus of mSREBP enables binding of the Fbw7 ubiquitin ligase and induces 

degradation of the mSREBP protein (Bengoechea-Alonso and Ericsson, 2009; 

Sundqvist et al., 2005). Since insulin signalling regulates this GSK3-dependent 

phosphorylation (Bengoechea-Alonso and Ericsson, 2009), it was hypothesised that Akt 

may regulate the stability of mature SREBP. 

 

5.7.1 Activation of Akt increases stability of mature SREBP1a in an 

mTORC1-independent manner 

So far, three phosphorylation sites for GSK3 have been identified in mSREBP 

(Bengoechea-Alonso and Ericsson, 2009; Sundqvist et al., 2005). The phosphorylation 

of S434 by GSK3 acts as a priming phosphorylation, resulting in the subsequent 

phosphorylation of S430 and T426 (Bengoechea-Alonso and Ericsson, 2009). It is these 

two sites that when phosphorylated are recognised by Fbw7 and target mSREBP for 

degradation. In order to investigate the effects of Akt activation and mTORC1 

inhibition on SREBP stability, a DNA construct encoding a myc-tagged mSREBP1a 

protein containing mutated GSK3-phosphorylation sites (myc-mSREBP1aT426A/S430A) 

was used. RPE-Akt-ER cells were transiently transfected with either pcDNA3-myc-

mSREBP1a(wt) or pcDNA3-myc-mSREBP1aT426A/S430A. 24 hours following 

transfection, cells were re-seeded, placed in 1% LPDS and treated with solvent (EtOH) 

or 4-OHT in the presence or absence of rapamycin for 24 hours. Whole cell lysates 

were analysed by Western blotting using an antibody recognising the myc-tag. 

Importantly, cells were not treated with proteasome inhibitors, as this would mask the 

effects of Akt activation. Activation of Akt increased levels of the wild-type myc-

mSREBP1a protein and treatment with rapamycin decreased overall expression of wild-

type myc-mSREBP1a (Figure 5.15 B), consistent with what has been observed for 

endogenous protein (Figure 5.2). In contrast, levels of myc-mSREBP1aT426A/S430A 
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remained unchanged following activation of Akt (Figure 5.15 B) strongly suggesting 

that Akt activation regulates mSREBP1a protein stability through a mechanism 

requiring T426/S430 phosphorylation. This indicates that Akt may regulate the stability 

of mSREBP1a in an mTORC1-independent manner, presumably via the 

phosphorylation and inhibition of GSK3. However, upon rapamycin treatment, a slight 

decrease in protein levels of myc-mSREBP1aT426A/S430A could be observed. This 

indicates that mTORC1 may regulate exogenous mSREBP1a stability independently of 

GSK3-mediated phosphorylation.  

 

5.7.2 Akt increases transcriptional activity of exogenous mSREBP1a 
Since Akt increases stability of mSREBP1a in a rapamycin-independent manner, it was 

investigated whether inhibition of mTORC1 was able to affect the transcriptional 

activity of the protein. RPE-Akt-ER cells transfected with either wild-type pcDNA3-

myc-mSREBP1a, pcDNA3-myc-mSREBP1aT426A/S430A or empty vector control 

(pcDNA3) were co-transfected with the FASN luciferase reporter in order to assay for 

SREBP1a transcriptional activity (FASN-luc, Figure 5.16 A; described in (Bennett et 

al., 1995)). Cells were cultured in 1% LPDS and treated with solvent (EtOH) or 4-OHT 

in the presence or absence of rapamycin for 24 hours. Luciferase activity of the FASN-

luc reporter was measured and normalised to activity of the renilla luciferase control. 

Expression of either mature SREBP1a constructs increased luciferase activity when 

compared to the empty vector control (Figure 5.16B), demonstrating that the 

mSREBP1a constructs are transcriptionally active. Expression of myc- 

mSREBP1aT426A/S430A increased overall luciferase reporter activity compared to cells 

expressing wild-type myc-mSREBP1a (Figure 5.16 B), demonstrating that increased 

stability of mSREBP1a results in increased transcriptional activity. Interestingly, Akt 

activation significantly increased luciferase reporter activity not only in wild-type, but 

also in mutant expressing cells, indicating that Akt may not only be increasing the 

stability of the mature protein but also promoter activation. In addition, rapamycin 

treatment reduced reporter activity in cells expressing either wild-type protein or mutant 

mSREBP1a (Figure 5.16 B), suggesting that rapamycin can affect mSREBP1a 

independently of Akt/GSK3.  
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These data suggest that Akt activation increases the stability of mSREBP1a through 

inhibition of GSK3-dependent phosphorylation and degradation. In addition, Akt also 

increases the transcriptional activity of mSREBP1a independently of GSK3 

phosphorylation. Inhibition of mTORC1 via treatment with rapamycin may affect 

stability of mSREBP1 independently of GSK3 phosphorylation and reduce its 

transcriptional activity. This indicates that Akt may regulate SREBP1a in mTORC1-

dependent, as well as an mTORC1-independent, manner.  

 

5.7.3 mTORC1 activity is required for mSREBP1 accumulation following 
GSK3 inhibition 

Activation of mTORC1 has been shown to result in the inactivation of GSK3 

(Peyrollier et al., 2000). In addition, it has been shown that under conditions of 

mTORC1 hyper-activation in cells that lack its upstream regulators TSC1/2, GSK3 

becomes a direct target for S6K (Zhang et al., 2006a). In order to further investigate 

whether rapamycin-dependent loss of mSREBP1 is dependent on GSK3 activity, the 

effects of mTORC1 inhibition in the presence of a GSK3 inhibitor on the nuclear 

accumulation of endogenous mSREBP1 were analysed. RPE-hTERT cells were 

cultured in 1% LPDS in the presence or absence of the GSK3 kinase inhibitor SB-

216763 and treated with vehicle (DMSO) or rapamycin for 24 hours. Cells were 

subjected to nuclear fractionation and analysis by Western blotting (Figure 5.17 A). 

Whole cell lysates from cells treated in parallel were analysed as a control of inhibitor 

function (Figure 5.17 B). Phosphorylated levels of the GSK-3 target protein β catenin 

were reduced in response to treatment with SB-216763 and β catenin was stabilised, 

indicating that GSK-3 activity was reduced in the presence of the inhibitor (Figure 5.17 

B). Rapamycin completely blocked phosphorylation of S6 in cells treated with 

rapamycin alone and reduced levels of S6 phosphorylation in cells treated with the 

GSK3 inhibitor (Figure 5.17 B). However, cells treated with GSK3 inhibitor alone 

showed reduced pS6 levels when compared with control cells, indicating that inhibition 

of GSK3 itself reduces S6 phosphorylation (Figure 5.17 B). GSK3 inhibition resulted in 

increased nuclear accumulation of mSREBP1, as well an increase in the full-length 
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protein in whole cell lysates. This is consistent with an increase in mSREBP1 stability 

(Figure 5.17 A). However, GSK3 inhibition increased levels of the nuclear protein DP1, 

used as a loading control in this experiment.  These data have been observed at least 

twice, although further repetition would allow statistical analysis. GSK3-inhibitor 

treatment has been shown to increase DP1 levels on other occasions (data not shown), 

making it unlikely that the differences in mSREBP1 levels are as a result of unequal 

loading. Nevertheless, in order to fully confirm this result, this experiment should be 

repeated using an alternative loading control. Rapamycin treatment reduced the 

accumulation of nuclear mSREBP1 in cells treated with vehicle and with the GSK3 

inhibitor, indicating that inhibition of mTORC1 prevents induction of nuclear 

mSREBP1 levels in the presence of a GSK3 inhibitor.  

 

5.7.4 Effects of rapamycin on nuclear accumulation of mSREBP1 are 

blocked in the presence of the proteasome inhibitor MG-132 
In experiments investigating the nuclear accumulation of mSREBP1, cells have been 

treated with the proteasome inhibitor MG-132 in the final 1.5-2 hours before lysis to 

preserve the levels of nuclear mSREBP1. Since rapamycin reduces mSREBP1 nuclear 

accumulation in the presence of a GSK3 inhibitor, it was also investigated whether 

mTORC1 inhibition can reduce nuclear mSREBP1 accumulation following prior 

treatment with MG-132. RPE-hTERT cells were cultured overnight in 1% LPDS before 

being pre-treated for 30 minutes with MG-132. Cells were then treated with solvent or 

rapamycin for the times indicated (Figure 5.18 A). Nuclear fractions, supernatant 

fractions and whole cell lysates from cells treated in parallel were analysed by Western 

blotting for accumulation of mSREBP1 and flSREBP1. mSREBP1 was not detected in 

cells that were not treated with MG-132 (Figure 5.18 A, lane a). Treatment of cells with 

MG-132 for only 1.5 hours resulted in a substantial increase in the levels of mSREBP1 

in cells treated with or without rapamycin (Figure 5.18 A, compare lane a with b and e), 

confirming that mSREBP1 is turned over rapidly. Treatment with MG-132 for 

increasing amounts of time increased the nuclear accumulation of mSREBP1, consistent 

with an increase in protein stability (Figure 5.18 A, lanes a-d). However, treatment of 

cells with rapamycin failed to reduce levels of nuclear mSREBP1 (Figure 5.18 A, lanes 

e-g), indicating that when mSREBP1 is already stabilised, inhibition of mTORC1 is not 
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sufficient to reduce mSREBP1 accumulation. This is in contrast to the finding that 

mTORC1 inhibition is still able to decrease levels of nuclear mSREBP1 in cells treated 

with a GSK3 inhibitor (Figure 5.17). This suggests that MG-132 and GSK3 may 

function in different ways to regulate the stability of mSREBP1. It may be that GSK3 

inhibition blocks Fbw7 dependent mSREBP1 degradation, whilst mSREBP1 

degradation following mTORC1 inhibition is likely to be Fbw7-indpendent. However, it 

should be noted that cells were treated with the GSK3 inhibitor for 24 hours, whereas 

MG-132 treatment was relatively short (6.5 hours) due to the detrimental effect of long-

term proteasome inhibition on cells.  

 

In the supernatant fractions, it was observed that treatment with MG-132 resulted in 

increased levels of flSREBP1 over time, similar to that observed for mSREBP1 in the 

nuclear fractions (Figure 5.18 A, lanes a-d). Interestingly, this increase in flSREBP1 

was less pronounced in cells treated with rapamycin (Figure 5.18 A, lanes e-g), 

indicating that even in the presence of MG-132, rapamycin is able to reduce expression 

of flSREBP1, providing further evidence that rapamycin may differentially regulate 

flSREBP1 and mSREBP1.  

 

It was then investigated whether MG132 is still able to block the effects of rapamycin 

on mSREBP1 accumulation in the presence of activated Akt. RPE-Akt-ER cells were 

cultured in 1% LPDS and treated with solvent (EtOH) or 4-OHT for 16 hours. Cells 

were then treated with MG-132 and rapamcyin as previously described. Nuclear 

mSREBP1 levels were increased after 1.5 hours of MG132 treatment (Figure 5.18 B, 

lane c) and increased further after 3.5 hours of MG-132 treatment (Figure 5.18 B, lanes 

b-c). However, accumulation of nuclear mSREBP1 remained the same after treatment 

of MG-132 for 6.5 hours (Figure 5.18 B, lanes b-d), indicating that there was no further 

increase in mSREBP1 stability in the presence of activated Akt. In contrast, levels of 

flSREBP1 expression continued to increase following treatment with MG-132 over time 

(Figure 5.18 B, supernatant fraction, lanes a-e). However, rapamycin treatment prevent 

this increase in flSREBP1 levels (Figure 5.18 B, supernatant fraction, lanes f-h). This 
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may indicate that rapamycin prevents the transcriptional activity of mSREBP1, 

preventing feed-forward transcriptional regulation of its promoter.  

 

The data presented in this section indicate that activated Akt induces stabilisation of 

mSREBP1 in a GSK3-dependent, mTORC1 independent manner, yet inhibition of 

SREBP1 transcriptional activity is still reduced by rapamycin. Inhibition of the 

proteasome prevents rapamycin-dependent loss of nuclear mSREBP1, suggesting that 

mTORC1 signalling may be regulating mSREBP1 stability in a GSK3-independent, yet 

proteasome-dependent manner. 

 

 

Figure 5-15: Activation of Akt increases stability of mature exogenous SREBP1a in an 
mTORC1-independent manner. 
(A) Schematic representation of Akt-mediated phosphorylation of GSK3 suggesting one 
mechanism of regulation of mSREBP1 stability. Three key phosphorylation sites are depicted. 
Adapted from (Bengoechea-Alonso and Ericsson, 2009). (B) RPE-Akt-ER cells were transiently 
transfected with myc-mSREBP1 wt or mSREBP1T426A/ S430A, a mutant form of the protein that 
cannot be phosphorylated by GSK3. Cells were then cultured in 1% LPDS and treated with 
100nM 4-OHT in the presence or absence of rapamycin (50 nM) for 24 hours. Whole cell 
lysates were analysed for the expression of myc-mSREBP1a. 
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Figure 5-16: Akt increases transcriptional activity of mSREBP1a. 
(A) A schematic representation of the fatty acid synthase (FASN) promoter luciferase reporter 
construct used in (B). (B) RPE-Akt-ER cells were transiently transfected with the FASN-luc 
reporter construct and the pRL-SV40 renilla control together with either empty vector control 
pcDNA3 (EV), myc-mSREBP1a wt (BP1awt) or myc-mSREBP1aT426A/ S430A (BP1amut) as 
indicated. Cells were cultured in 1% LPDS and treated with 100 nM 4-OHT in the presence or 
absence of rapamycin (50 nM) for 24 hours. Luciferase activity was measured and normalised 
to the renilla control. Data were normalised to the EV control and show relative fold change. 
Data shown is the mean of three independent biological replicates ± SEM. Asterisks indicate 
statistical significance. 
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Figure 5-17: Inhibition of GSK3 does not prevent the effects of mTORC1 inhibition on 
nuclear accumulation of mSREBP1. 
RPE-hTERT cells were cultured in 1% LPDS and treated with vehicle (DMSO) or the GSK3 
inhibitor SB-216763 (5 µM) in the presence or absence rapamycin (50 nM) for 24 hours. Cells 
were subjected to nuclear fractionation and analysed by Western blotting. (A) Nuclear fractions 
showing mSREBP1 expression. DP1 is shown as a nuclear-specific loading control. (B) Whole 
cell lysates treated from cells treated in parallel to those in (A). Antibodies were used to detect 
S6 phosphorylation (pS6 S235/236) as a control of rapamycin treatment and phosphorylation of β 
catenin (p-β catenin S33/37/T41) as well as β-catenin as controls for GSK3 inhibition. β tubulin is 
shown as a loading control. 
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Figure 5-18: MG-132 increases nuclear accumulation of mSREBP1 in a time-dependent 
manner and this is not prevented by rapamycin.  
(A) RPE-hTERT cells were cultured overnight in 1% LPDS. Cells were then pre-treated with 
vehicle (DMSO) or rapamycin (50 nM) for 30 minutes before being treated with or without 25 µM 
MG-132 for the times indicated. Nuclear fractions, supernatant fractions and whole cell extracts 
treated in parallel were analysed by Western blotting for expression of, mSREBP1, 
flSREBP1and pS6Ser240/244. Lamin B1, Calreticulin and β tubulin were used as loading controls 
for nuclear extracts, supernatant fractions and whole cell extracts, respectively. (B) RPE-Akt-ER 
cells were cultured in 1% LPDS overnight in the presence of solvent (EtOH) or 100 nM 4-OHT. 
Cells were then treated as in (A). Nuclear fractions, supernatant fractions and whole cell 
extracts were analysed by Western blotting for the expression of mSREBP1, flSREBP1, myr-
pAktSer473 and pS6Ser240/244. Lamin B1, calreticulin and β tubulin were used as loading controls. 
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5.8 Discussion 
It has been established by the GEA lab that SREBPs are regulated downstream of Akt 

(Porstmann et al., 2005) and that Akt-dependent activation of SREBP requires 

mTORC1 activity (Porstmann et al., 2008). In addition, mTORC1-dependent regulation 

of lipogenesis occurs through SREBP1-activation in liver (Düvel et al., 2010). The 

regulatory mechanisms governing SREBP activation are likely to be complex, and 

could involve many factors. In this chapter, several possible mechanisms by which Akt 

and mTORC1 regulate SREBPs were investigated. 

 

First, it was demonstrated that Akt-dependent nuclear accumulation of mSREBP1 was 

attenuated following mTORC1 inhibition (Figure 5.2). In addition, treatment with 

rapamycin resulted in decreased levels of flSREBP1 protein (Figure 5.2). This is 

consistent with previously published results (Porstmann et al., 2008), confirming that 

Akt and mTORC1 regulate nuclear accumulation of mSREBP1. It remains unclear 

whether Akt and mTORC1 affect all three SREBP isoforms in a similar manner. Akt 

activation increases SREBP2 protein expression in RPE cells, and silencing of 

mTORC1 components do not alter levels of flSREBP2 protein (Porstmann et al., 2008). 

However, the effects of mTORC1 inhibition were not investigated in this study. It is 

important to assess the effects of mTORC1 inhibition on SREBP2 protein levels in this 

system in order to conclude that mTORC1 differentially affects SREBP isoform 

expression. Unfortunately, the antibodies used in this thesis could not accurately detect 

SREBP2 protein levels in RPE cells. In addition, as the SREBP1 antibody cannot 

distinguish between SREBP1a and SREBP1c, RT-QPCR analysis of individual isoform 

expression was carried out. It was demonstrated that SREBF1a and SREBF1c mRNA 

expression was increased following 24 hrs Akt activation, whereas activation of Akt did 

not effect SREBF2 mRNA expression (Figure 5.3 and 5.4). This is consistent with 

previously published data (Porstmann et al., 2005). It was shown that SREBF1a is 

rapidly upregulated in response to Akt activation while SREBF1c is upregulated only 

after longer-term activation. This suggests that Akt regulates SREBF1 isoforms 

differentially. It is possible that Akt rapidly upregulates expression of SREBF1a in a 

more direct manner, resulting in SREBF1a transcriptional-dependent regulation of 
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SREBF1c. Indeed, SREBF1c is regulated mostly at the transcriptional level (Eberle et 

al., 2004).  

 

mRNA expression of the two SREBF1 isoforms was differentially regulated in response 

to mTORC1 inhibition (Figures 5.3-5.4). Overall, rapamycin more potently inhibited 

expression of SREBF1c mRNA than SREBF1a. Rapamycin-dependent inhibition of 

SREBF1 mRNA expression has been observed previously in human BJAB B-

lymphoma cells and murine CTLL-2 T lymphocytes (Peng et al., 2002) and insulin 

induced SREBF1c mRNA expression in rat livers and cultured hepatocytes requires 

mTORC1 (Li et al., 2010). No effects of mTORC1 inhibition using rapamycin were 

observed on SREBF2 mRNA expression (Figure 5.3-5.4). This demonstrates that in 

human RPE cells SREBF2 mRNA expression is independent of Akt and mTORC1 

activity. This is in contrast to what has been observed in human HepG2 cells (Ma et al., 

2007). However, rapamycin has been shown to reduce LDLR expression in CHO cells 

in an SREBP2-independent manner (Sharpe and Brown, 2008). In NIH3T3 cells, 

inhibitors of mTORC1 were shown to decrease SREBF2 mRNA expression but not 

SREBF1 expression (Peterson et al., 2011), suggesting that mTORC1 regulation of 

SREBP isoforms may be cell-type specific.  

 

A report by Düvel and colleagues demonstrated that expression of the SREBP2 target 

gene MVK is decreased by rapamycin treatment in TSC2 null MEFs (Düvel et al., 

2010). However, expression of SREBP2 itself was not analysed. In addition, they 

showed that silencing of SREBP1 or SREBP2 in this context reduced MVK expression, 

indicating that there is overlap between SREBP targets. This is also supported by the 

microarray data presented in chapter 3 of this thesis, where both SREBP1a and SREBP2 

activation upregulated expression of MVK in U87 cells. Therefore, it remains unclear 

whether mTORC1 activity affects SREBP2 activation.   

 

It was also shown that amino acid stimulation was sufficient to induce nuclear 

accumulation of mSREBP1 (Figure 5.5) This is consistent with results published in 

NIH3T3 cells and MEFs, where amino acid withdrawal results in the decreased 
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expression of SREBP target genes (Peterson et al., 2011). It remains unclear from the 

experiments presented in this thesis whether the increase in mSREBP1 levels in 

response to amino acid stimulation is in fact mTORC1-dependent and these 

experiments should be repeated. It is possible that amino acids may be able to influence 

levels of both flSREBP1 and mSREBP1 in an Akt/mTORC1-independent manner. 

Although it has recently been shown that glutamine can induce SREBP activation 

(Inoue et al., 2011), the effects of glutamine on SREBP1 can be ruled out in the 

experiments presented in this thesis as there was no glutamine present in the amino acid 

free medium and the mixture of amino acids used for amino acid stimulation was 

glutamine free. 

  

It may still be possible that this increase in flSREBP1 and nuclear mSREBP1 in 

response to amino acid stimulation is a result of increased SREBP translation through 

the mTORC1 pathway.  Indeed, mTORC1-mediated de novo protein synthesis is one of 

the most important biological consequences of this pathway in response to activation by 

nutrients and growth factors (Wullschleger et al., 2006). Interestingly, the SREBP 

targets FASN and ACC have been shown to be upregulated at the translational level in 

an mTORC1-dependent manner in breast cancer cells (Yoon et al., 2007), 

demonstrating that the lipid synthesis pathway is a target for mTORC1-dependent 

translational control. In addition, mTORC1 regulates HIF1α translation (Bernardi et al., 

2006), demonstrating the regulation of a transcription factor at the translational level. 

Although attempts were made to investigate whether mTORC1 regulates translation of 

SREBPs, technical difficulties hampered these experiments. Therefore, it cannot be 

excluded that SREBP regulation by mTORC1 is at the translational level.    

 

The involvement of downstream effectors of mTORC1 on SREBP1 activation was 

investigated. It was shown that S6K is required for SREBP processing in the 

experimental systems used, as mSREBP1 could still be detected even in MEFs in which 

S6K1 and S6K2 had been genetically deleted (Figure 5.9). This is in contrast to the data 

published by Düvel and colleagues where they show that processing of SREBP1 is 

dependent on S6K1 activity in MEFs lacking the mTORC1 inhibitor TSC2 (Düvel et 
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al., 2010). However, this model results in the uncoupling of mTORC1 activity from Akt 

signalling. Furthermore, constitutive activation of mTORC1 by genetic ablation of the 

negative regulators TSC1 or TSC2 is likely to cause adaptations due to extensive 

feedback regulation within the mTORC pathway (Efeyan and Sabatini, 2010). Another 

report has suggested that SREBP activation downstream of mTORC1 is not dependent 

on S6 kinases in MCF7 and MDA-MB- 468 cell lines, and that mTORC1 signalling 

proceeds through the 4-EBP1 axis in these cells (Luyimbazi et al., 2010). It should be 

noted, however, that experiments with primary S6K1/S6K2 knockout MEFs presented 

in this thesis did not include insulin stimulation, and it cannot be excluded that the 

downstream activation of SREBP1 in response to Akt activation signals through 

mTORC1 and S6K1. Together, these data indicate that SREBP activation downstream 

of Akt and mTORC1 is complex and may differ according to cell type, as well as 

between immortalised and primary cells.  

 

The discussion of data presented in Figures 5.5-5.9 has so far focussed on the ability of 

Akt and mTORC1 to influence levels of nuclear mSREBP1. Nuclear mSREBP1 is 

difficult to detect, and whenever possible mSREBP1 was enriched using nuclear 

fractionation. However, differences in the levels of mSREBP1 remain partial in the 

Western blots presented. Although experiments presented in Figures 5.5-5.8 have been 

performed twice, it may be beneficial to repeat these experiments in order to determine 

if differences are statistically significant using densitometry. Data presented in Figure 

5.9 represents only one experiment, due to the limited availability of the primary cell 

line used. Alternatively, given the much stronger effects of Akt activation and amino 

acid stimulation on the full-length precursor protein levels compared with the levels of 

the mature transcription factor (Figures 5.5-5.9) it may be that flSREBP1 is being 

regulated under these conditions. The increased nuclear mSREBP1 observed could 

therefore be a result of increased precursor protein.  

 

Potential mechanisms for mTORC1 regulating SREBP activity include the regulation of 

SREBP processing. Therefore, effects of Akt activation and mTORC1 inhibition on 

components of the SREBP processing machinery were investigated. It was shown that 
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SCAP mRNA expression was reduced following rapamycin treatment (Figure 5.10). 

This has been observed previously in HepG2 cells (Ma et al., 2007). SCAP protein 

levels were unaffected by Akt activation or mTORC1 inhibition in this thesis. It is 

therefore unlikely that changes in SCAP expression form part of the Akt/mTORC1 

regulatory mechanism governing SREBP activity in RPE cells. However, a slight shift 

in SCAP protein migration was observed in cells cultured in 1% LPDS. Rapamycin 

treatment partially inhibited this, suggesting that mTORC1 may affect the 

conformational change in SCAP that occurs in response to sterol depletion. 

Interestingly, it has been shown recently that SCAP is phosphorylated on Ser 850 and 

that this phosphorylation is sensitive to an inhibitor of mTORC1 (Torin1) (Hsu et al., 

2011). Therefore it cannot be ruled out that mTORC1-dependent phosphorylation of 

SCAP affects the ability of SCAP to facilitate SREBP-dependent ER-Golgi 

translocation. It has also been shown that Akt phosphorylates Sec24, a component of 

the COPII complex (Sharpe et al., 2010). It has been proposed that this phosphorylation 

increases incorporation of the SCAP/SREBP complex into budding vesicles (Sharpe et 

al., 2010). Co-immunoprecipitation experiments were used to investigate whether Akt 

and mTORC1 can regulate the interaction of SCAP and SREBP proteins. However, 

despite immunoprecipitation of SCAP and SREBP with their corresponding antibodies, 

co-immunoprecipitation of the two proteins together could not be established and 

therefore it has not been possible to evaluate any effect of Akt and mTORC1 on this 

interaction (data not shown). Thus, it remains unclear whether Akt and mTORC1 could 

be influencing the ability of SCAP to interact with SREBPs.  

 

SREBP activation requires a two-step proteolytic cleavage of SREBP. This cleavage is 

carried out by the S1P and S2P proteases. It was investigated whether this cleavage 

process was influenced by Akt and mTORC1 activity. The activity of S1P and S2P 

proteases was not affected by either activation of Akt or inhibition of mTORC1, as 

demonstrated by the cleavage of ATF6α in the presence of rapamycin (Figure 5.11). 

Effects of Akt and mTORC1 activity on INSIG mRNA expression levels were also 

investigated (Figure 5.12). It was found that INSIG1 mRNA was affected by Akt 

activation and mTORC1 inhibition in a similar manner to SREBF1 mRNA expression 

levels. INSIG1 is an SREBP target gene and it is therefore likely that these changes are 
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due to the effects of Akt and mTORC1 on SREBP activity. Interestingly, activation of 

Akt for 2 hours was sufficient to increase INSIG1 expression, yet rapamycin had no 

effect. However, longer-term rapamycin treatment resulted in decreased INSIG1 

expression. This indicates that the Akt-mediated effects on SREBP activation occur 

more rapidly than mTORC1 inhibition. INSIG2 mRNA expression was unaffected by 

Akt activation or mTORC1 inhibition. However, a recent report demonstrates that Akt 

suppresses the liver-specific transcript INSIG2a in primary mouse hepatocytes resulting 

in an mTORC1-independent, Akt-dependent increase in SREBF1c expression (Yecies 

et al., 2011). It would be interesting to investigate the effects of Akt activation and 

mTORC1 inhibition on the interaction between INSIGs and SCAP/SREBP complexes 

in the experimental system used in this thesis.  

 

The direct involvement of mTORC1 in the cleavage of SREBPs was investigated. As 

the mechanisms that regulate processing of SREBPs are conserved, an exogenous 

PLAP-SREBP2 construct was used. A change in the processing of exogenous PLAP-

SREBP2 in U2OS-Akt-ER cells was not observed in response to Akt activation or 

mTORC1 inhibition (Figure 5.13). Sterol starvation did increase PLAP-SREBP2 

processing in these cells, demonstrating that sterol responsive processing of SREBP2 is 

intact in these cells. In contrast to RPE-Akt-ER cells, SREBP2 protein levels were 

detectable in the U2OS-Akt-ER cell line, although Akt activation and mTORC1 

inhibition did not have any effect on levels of flSREBP2 or processed SREBP2. These 

data suggest that although SREBP2 processing is sterol responsive in this cell line, it is 

independent of Akt and mTORC1 activity. It should be investigated whether a PLAP-

SREBP1 fusion construct is regulated in the same manner. 

 

The subcellular localisation of mSREBP1 was analysed in response to Akt activation 

and mTORC1 inhibition (Figure 5.14). Sterol depletion resulted in an increased 

intensity of SREBP1 staining in the nucleus and Akt activation increased this. 

Rapamycin treatment resulted in the reduction of overall SREBP1 staining. These data 

indicate that inhibition of mTORC1 activity reduces total SREBP1 protein levels, and 

support previous observations made throughout this thesis. As no clear cytoplasmic 
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staining of SREBP1 was observed, it may be suggested that rapamycin does not 

sequester mSREBP1 to another cellular compartment. However, this analysis should be 

treated with caution as the antibody staining resulted in high background. This problem 

with the ability of antibodies to detect endogenous SREBP in immunofluorescence is 

perhaps reflected in the relatively few publications showing cellular localisation of 

endogenous SREBP. Most studies that have analysed subcellular localisation of SREBP 

have used exogenous, epitope-tagged SREBP. 

 

The effects of Akt and mTORC1 signalling on SREBP1 stability were investigated. It 

was shown that activation of Akt increased the GSK3-regulated stability of exogenous 

mSREBP1a in a rapamycin-independent manner, although the transcriptional activity of 

exogenous mSRBEP1a remained rapamycin-sensitive (Figures 5.15 and 5.16). This 

indicates that rapamycin does not affect the stability of mSREBP1a protein in a GSK3-

dependent manner. This would be consistent with recently published data, showing that 

inhibition of mTORC1 prevents SREBP-transcriptional activity through a lipin1 

dependent mechanism (Peterson et al., 2011). Inhibition of mTORC1 results in 

dephosphorylation of lipin1 and its subsequent translocation to the nucleus where it 

prevents SREBP transcriptional activity (Peterson et al., 2011).  

 

In addition, rapamycin decreased nuclear accumulation of endogenous mSREBP1 in a 

GSK3-independent manner (Figure 5.17). Although GSK3-inhibition resulted in 

decreased S6 phosphorylation, this may be accounted for by the slight non-specific 

effects of the GSK3 inhibitor SB-216763 on S6K1 activity (Bain et al., 2007). Despite 

this, inhibition of GSK3 was demonstrated by decreased β-catenin phosphorylation 

(Figure 5.17). Rapamycin treatment reduced mSREBP1 nuclear accumulation in the 

presence of the GSK3 inhibitor, confirming that inhibition of mTORC1 prevents 

nuclear accumulation of mSREBP1 in a GSK3-independent manner.  

 

The very low stability of SREBP is a crucial factor when investigating mSREBP protein 

levels. In order to detect mSREBP1 by Western blot, cells are generally treated with a 

proteasome inhibitor (MG-132) for 1.5 hours prior to lysis. Since rapamycin reduces 
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nuclear accumulation of mSREBP1 independently of GSK3 activity, it was investigated 

whether the effects of rapamycin are proteasome dependent (Figure 5.18). Inhibition of 

the proteasome increased mSREBP1 nuclear accumulation in a time-dependent manner. 

However, rapamycin did not prevent this accumulation, suggesting that inhibition of 

mTORC1 effects mSREBP1 stability in a GSK3-independent, proteasome-dependent 

manner. This finding is in contrast to data published by Düvel and colleaugues, who 

show that rapamycin-dependent inhibition of mSREBP1 is independent of proteasomal 

activity (Düvel et al., 2010). Interestingly, the levels of flSREBP1 were increased 

following proteasome inhibition, but rapamycin reduced flSREBP1 levels in the 

presence of MG-132. These data could support the model whereby mTORC1 inhibition 

decreases mSREBP1 transcriptional activity, as SREBF1 is an SREBP target gene.  

 

It should be noted that throughout this thesis experiments were performed using long-

term rapamycin treatment (i.e. 24 hours). As previously mentioned in the introduction, 

it has been shown in some cases that prolonged rapamycin treatment results in the 

inhibition of mTORC2, and the effects of rapamycin are no longer mTORC1-specific 

(Sarbassov et al., 2006). Under these conditions, rapamycin inhibits the formation of 

mTORC2 as well as Akt activity (Sarbassov et al., 2006). However, in the experiments 

presented in this thesis rapamycin treatment was often performed together with 

activation of Akt in order to prevent inhibition of Akt. Furthermore, previous data 

published by the GEA lab has shown that short-term rapamycin treatment does prevent 

nuclear accumulation of mSREBP1 in RPE-Akt-ER cells (Porstmann et al., 2008), and 

that the effects of long-tern rapamycin treatment observed by Sarbassov and colleagues 

do not occur in the RPE-Akt-ER cells (T.Porstmann, personal communication). 

Nevertheless, it may be beneficial to repeat certain experiments with shorter rapamycin 

treatment (2 hours) in order to separate out the indirect and direct effects of mTORC1 

inhibition.  

  

The data presented here demonstrate that regulation of SREBP by the Akt and 

mTORC1 signalling pathway is complex (see Figure 5.19). However, the data strongly 

support a model whereby Akt activation stabilises mSREBP1 through inhibition of 



Chapter 5. Results 

 202 

GSK3, and mTORC1 affects mSREBP1 stabilisation through a GSK3-independent 

mechanism. These effects result in an increase in SREBP transcriptional activity. 

Although this appears to be a rather complex mechanism, it allows for SREBP 

activation downstream of mTORC1 independently of Akt activity. 

 

 

 

 

Figure 5-19: Model showing the complex regulation of SREBP1 by Akt, mTORC1 and 
amino acids. 
The regulation of SREBP by Akt and mTORC1 is complex. Experiments presented in this thesis 
suggest that Akt promotes the stability of mSREBP1 by inactivating GSK3. In addition, it is likely 
that mTORC1 regulates stability of mSREBP1, but in a GSK-3 independent manner. mTORC1 
may also regulate the full length precursor protein. Amino acids may signal to flSREBP1 
through mTORC1, although an mTORC1-independent mechanism is also possible. Increase in 
levels of mSREBP1 results in an increase in SREBP1 target genes, such as FASN and SCD. 
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Chapter 6. Final Discussion 

 The original observations of Otto Warburg were made over half a century ago, but in 

the last decade the role of altered cell metabolism has taken the cancer research field by 

storm. Initially, interest focussed primarily on the altered glycolytic state of cancer 

cells, but more recent research has demonstrated the importance of altered lipid 

metabolism in tumourigenesis. This has been largely fuelled by discoveries that 

regulators of lipid metabolism are downstream of canonical oncogenic pathways, in 

particular the PI3K/Akt/mTORC1 pathway. 

 

The SREBP family of transcription factors are master regulators of lipid metabolism, 

controlling the expression of genes encoding enzymes required for fatty acid and 

cholesterol biosynthesis. Although there is ample evidence for altered lipid metabolism 

in cancer, surprisingly little is known about the role of SREBPs in this context. The data 

presented in this thesis reinforces the importance of SREBPs as master regulators of 

lipid synthesis, as well as providing insight into their involvement in the regulation of 

other cellular processes, such as cell cycle progression, redox regulation and cellular 

stress response. Identification of FABP7 as a SREBP target gene in glioblastoma cells 

also demonstrates a role for SREBPs in other aspects of lipid metabolism in addition to 

fatty acid and cholesterol biosynthesis. The data-set generated from the microarray 

analysis will be an important tool for further investigation of the role of SREBPs in 

promoting survival by regulating previously unidentified sub-sets of genes that are 

important in processes other than lipid metabolism in cancer cells.  

 

Hypoxia is a feature of many solid tumours and altered lipid metabolism has been 

shown to occur in hypoxic conditions. Experiments performed in this thesis have shown 

that lipid metabolism in glioblastoma cells in hypoxia is indeed altered, and suggest a 

change in the SREBP-regulated transcriptional programme in response to hypoxia. 

Although further work is required to fully understand the changes in lipid metabolism in 

hypoxia and the role it may have for cancer cell survival, the data presented in this 

thesis point to a metabolic switch resulting in decreased lipid synthesis and increased 
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lipid storage. In addition, the hypoxia-induced transcriptional programme observed here 

may have particular relevance to the clinical manifestations of GBM. The regulation of 

FABP7 by SREBP could be of particular importance given its observed overexpression 

in GBM and association with poor clinical prognosis and patient outcome (Liang et al., 

2005; Mita et al., 2010). In addition, the increased expression of FABP7 in glioblastoma 

cells in hypoxia may also be of significant importance. Clinical trials are underway for 

the use of an anti-human VEGF antibody (Bevacizumab: Bev) in the treatment of GBM. 

However, the efficacy of inhibiting angiogenesis in GBM is controversial and to date no 

significant impact on overall patient survival has been observed (Keunen et al., 2011). 

A study in a clinically relevant model of GBM in rats has demonstrated that anti-

angiogenic treatment results in an increased hypoxic tumour microenvironment along 

with HIF1α stabilisation and increased glycolysis (Keunen et al., 2011). In addition, this 

switch in metabolism is accompanied by increased invasiveness of tumour cells into the 

normal brain tissue (Keunen et al., 2011). Since SREBP may be required for cell 

survival in hypoxia and under conditions of nutrient-depletion, it is possible that 

combination therapy which includes compounds targeting the SREBP pathway may be 

more efficacious than single treatment alone. 

 

The PI3K/mTORC1 pathway is a target for anti-cancer therapies and although 

rapalogues are yielding some success in the clinic, the development of mTORC1 

inhibitors as anti-cancer drugs is still in early days (Garcia-Echeverria, 2011). 

Furthermore, the need to consider signalling crosstalk and feedback mechanisms within 

the pathway is becoming more evident (Garcia-Echeverria, 2011). Activation of SREBP 

downstream of mTORC1 may have important implications for cancer treatments 

targeting this pathway. Therefore, understanding the exact mechanism of regulation of 

SREBPs by mTORC1 is of great importance. The data presented here contribute to the 

understanding of this mechanism by showing that mTORC1 regulates the expression of 

SREBP isoforms in a differential manner. Furthermore, mTORC1 regulates the 

transcriptional activity of SREBP and may regulate the stability of the mature protein in 

a GSK3-independent, proteasome-dependent manner. The regulation of SREBP by the 

PI3K/Akt/mTORC1 axis is likely to be highly complex, and may depend on the exact 

nature of the signalling input. The PI3K/mTORC1 pathway is one of the most 
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frequently deregulated signalling pathways in cancer. The diverse genetic aberrations 

that contribute to its hyperactivation could have differential effects on its downstream 

transcriptional effectors, including SREBP, in a tissue-specific manner. Continued 

experimentation is therefore required to elucidate the mechanism by which SREBP is 

regulated by this important signalling axis. 

 

The regulation of SREBPs downstream of the PI3K/Akt/mTORC1 pathway as well as 

their important role in the cellular response to hypoxia demonstrates the importance of 

these transcription factors in regulating cellular homeostasis. The implications that this 

may have on cancer progression are becoming evident and this is reflected in the 

increasing interest in SREBPs in the research field of cancer cell metabolism. 
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Appendix and Supplementary Data 

The following pages contain tables of selected individual genes that were significantly 

regulated following activation of mSREBP1a and mSREBP2 in U87 cells. Genes were 

identified by gene expression microarray analysis, described in Chapter 3. Tables show 

fold change gene expression following activation of mSREBP1a or mSREBP2 for 6 or 

24 hours. 

 

List of Tables: 

Table A1: Selected known SREBP target genes upregulated in response to activation of 
mSREBP1a or mSREBP2, as identified by microarray analysis 

Table A2: Genes encoding fatty acid binding proteins upregulated in response to 
activation of mSREBP1a or mSREBP2, as identified by microarray analysis 

Table A3: Genes encoding lipid droplet associated proteins upregulated in response to 
activation of mSREBP1a or mSREBP2, as identified by microarray analysis 

Table A4: Genes encoding selected cell cycle regulators regulated in response to 
activation of mSREBP1a or mSREBP2, as identified by microarray analysis 
 

Microarray Data (CD-ROM) 

A full list of significantly regulated genes can be found on the CD-ROM submitted with 

this thesis, along with the complete pathway and process enrichment analysis described 

in Chapter 3. 
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