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Acknowledgements

I owe sincere and earnest thankfulness to my supervisor Will Penny.

Throughout my PhD, Will has been extremely supportive, patient and

always available for discussion. I have learned immensely in our meetings

and truly enjoyed working with Will. Will has been a constant source

of encouragement, knowledge, and friendship with a brilliant sense of hu-

mour.

I would also like to thank my second supervisor, James Kilner for his

enthusiasm, ideas, advice and crucial contributions to my PhD.

The work I have done would not have been possible without my co-

authors. I thank Sven Bestmann, Lee Harrison and Jean Daunizeau for

providing ideas, data and a lot of enthusiasm. I also thank Felix Blanken-

burg and Oliver Josephs for acquiring the data that I worked with during

most of my PhD.

I would also like to show my gratitude to Karl Friston for critical contri-

butions and inspiring discussions.

I sincerely thank everyone in the Methods Group, in particular Guillaume

Flandin, Justin Chumbley, Klaas Stephan, Baojuan Li and Carlton Chu.

I have learned immensely by attending the Methods II meetings and made

lots of good friends.

I am truly thankful to Marta Garrido and Andre Marreiros. I am very

lucky to have met Marta and Andre when I joined the lab. Since then,

they have been my best friends and Portuguese family in London.

I also owe a lot of gratitude to Wako Yoshida and Ben Seymour for being

my home during most of my PhD.

I would also like to thank all the fellows in the FIL, specially Zoltan Nagy

and everyone on the second floor, for providing the best possible work

environment. We have shared lots of good moments.



I would like to thank Peter Aston and Marcia Bennett for all the support

with travel arrangements and other administrative work.

I would also like to show my gratitude to Eduardo Ducla-Soares, for the

constant support and friendship since my undergrad years.

Finally, I would like to thank all my friends and family.

This work was funded by the Wellcome Trust and the Portuguese Foun-

dation for Science and Technology.



Declaration

I, Maria João Duarte Rosa, confirm that the work presented in this thesis

is my own. Where information has been derived from other sources, I

confirm that this has been indicated in the thesis.



Abstract

The goal of any scientific discipline is to learn about nature, usually

through the process of evaluating competing hypotheses for explaining

observations. Brain research is no exception. Investigating brain function

usually entails comparing models, expressed as mathematical equations,

of how the brain works. The aim of this thesis is to provide and evaluate

new model comparison techniques that facilitate this research. In ad-

dition, it applies existing comparison methods to disambiguate between

hypotheses of how neuronal activity relates to blood flow, a topic known

as neurovascular coupling.

In neuroimaging, techniques such as functional magnetic resonance imag-

ing (fMRI) and electroencephalography (EEG) allow to routinely image

the brain, whilst statistical frameworks, such as statistical parametric

mapping (SPM), allow to identify regionally specific responses, or brain

activations. In this thesis, SPM is first used to address the problem

of neurovascular coupling, and compare different putative coupling func-

tions, which relate fMRI signals to different features of the EEG power

spectrum. These inferences are made using linear models and a model

selection approach based on F-tests. Although valid, this approach is re-

stricted to nested models. This thesis then focuses on the development

of a Bayesian technique, to construct posterior model probability maps

(PPMs) for group studies. PPMs are analogous to F-tests but not limited

to nested hypotheses.

The work presented here then focuses again on neurovascular coupling,

this time from a mechanistic perspective, not afforded by linear models.

For this purpose, a detailed biophysical framework is used to explore the

contribution of synaptic and spiking activity in the generation of hemo-

dynamic signals in visual cortex, using simultaneous EEG-fMRI. This

approach is a special case of brain connectivity models. Finally, using

fMRI data, this thesis validates a recently proposed Bayesian approach

for quickly comparing large numbers of connectivity models based on in-

verting a single model.
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Outline and aims of this thesis

The aim of this thesis was to develop and apply model selection methods for inves-

tigating brain function using human neuroimaging data. In particular, this thesis

focuses on the relationship between neuronal activity and blood flow, also known

as neurovascular coupling. Here, classical and Bayesian model selection methods

are used to disambiguate between competing hypotheses for neurovascular coupling,

using combined electroencephalographic (EEG) and functional magnetic resonance

imaging (fMRI) data. In addition, this thesis presents a novel Bayesian technique to

construct posterior model probability maps (PPMs) for making inferences about re-

gionally specific effects using imaging data from a group of subjects. Finally, the work

presented here explores the relation between different approximations to the model

evidence in the context of deterministic dynamic causal models (DCMs), commonly

used in brain connectivity analyses.

This thesis is organised as follows:

Chapter 1 - Introduction

This chapter introduces the brain imaging techniques and modelling frameworks used

in this thesis, and situates them in the wider context of imaging neuroscience and

brain research.

Chapter 2 - Methods

This chapter focuses on model selection methods used in neuroimaging, and with

which the results in this thesis have been obtained.
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Outline

Chapters 3 to 6 - Results

These chapters describe the original work developed in this thesis, including novel

methodologies and experimental findings. In particular:

• Chapter 3 explores the dependency of the BOLD signal on the temporal dy-

namics of the underlying neuronal activity. This chapter compares different

frequency-dependent and -independent coupling (transfer) functions from neu-

ronal activity to BOLD, using simultaneous EEG-fMRI from healthy subjects;

• Chapter 4 describes the construction of PPMs for Bayesian model selection

(BMS) at the group level. This method is illustrated using fMRI data from a

group of subjects performing a target detection task;

• Chapter 5 presents a modelling framework that can be used to non-invasively

compare biophysically plausible neurovascular coupling mechanisms using EEG

and fMRI data. This framework is used to investigate the role of synaptic versus

spiking activity in the generation of BOLD signals in human visual cortex;

• Chapter 6 presents and validates a recently proposed Bayesian approach for

quickly comparing large numbers of deterministic DCMs, using fMRI data from

an attention to visual motion study.

Chapter 7 - Discussion and conclusions

This chapter provides a general discussion and conclusions of the work presented in

this thesis, and points out directions for future research.
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Chapter 1

Introduction

The aim of this chapter is to introduce the measuring and modelling techniques used

in this thesis, and situate them in the wider context of imaging neuroscience and

brain research.

In brief, this chapter first reviews two of the primary techniques used for non-

invasive imaging of the human brain: functional magnetic resonance imaging (fMRI)

and electroencephalography (EEG). These techniques are non-invasive and, in gen-

eral, widely available, allowing routine acquisition of human brain imaging data.

Moreover, these two techniques have complementary advantages and limitations, and

the recent years have seen a trend for integrating the two. EEG-fMRI integration

is particularly useful for investigating the relationship between neuronal activity and

blood flow, a topic known as neurovascular coupling. This chapter provides a brief

review of some of the most important findings in this field.

In addition to the measuring techniques, this chapter introduces the modelling

frameworks that are most commonly used to analyse such data. It first goes through

basic statistical models used for making classical and Bayesian inferences about re-

gionally specific responses, known as statistical parametric mapping (SPM) and pos-

terior probability mapping (PPM), respectively. This chapter then focuses on how

these basic models can be finessed, by incorporating biophysical constraints, to al-

low one to infer about hidden neurophysiological mechanisms. Finally, this chapter

briefly reviews how these models can be used to infer how interactions among brain

regions are mediated, known as effective connectivity.
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1. Introduction

1.1 Measuring brain function

1.1.1 Imaging techniques

This section aims to introduce two of the most commonly used techniques in imaging

neuroscience: fMRI and EEG. This introduction focuses on the physiological origin

of the signals, rather than on the hardware and data acquisition. The objective is to

review the main advantages and limitations intrinsic to each measure, and motivate

the integration of EEG and fMRI. An understanding of the physiological origin of

the signals is important for the investigation of neurovascular coupling, as described

in Chapters 3 and 5.

1.1.1.1 functional Magnetic Resonance Imaging (fMRI)

fMRI is a non-invasive and widely available technology that allows one to assess

changes in functional brain activity recorded using a magnetic resonance (MR) scan-

ner. The most commonly used fMRI contrast is the Blood Oxygenation Level De-

pendent (BOLD) signal, which is due to the hemodynamic and metabolic outcome

of neuronal responses [Huettel et al., 2009].

It is well known that an increase in neuronal activity is accompanied by an increase

in the cerebral metabolic rate of oxygen consumption (CMRO2) and a much larger

increase in local cerebral blood flow (CBF) [Frostig et al., 1990; Riera et al., 2008].

Due to this imbalance, local venule blood is more oxygenated following activation. It

is also well known that oxygenated hemoglobin, oxyhemoglobin, is diamagnetic, while

deoxygenated hemoglobin, deoxyhemoglobin, is paramagnetic [Pauling and Coryell,

1936]. This increase in oxygenated blood is therefore responsible for a reduction

in the local distortions of the static MR field, which constitutes the BOLD signal

[Kwong et al., 1992; Ogawa et al., 1992].

The BOLD signal is measured using rapid volumetric MR acquisition sequences

[Jezzard et al., 2001] and in consequence has relatively good spatial resolution (Fig-

ure 1.1): voxels (3-D elements) in the image typically represent cubes of tissue of

approximately 2 to 4 millimeters on each side. Higher resolution imaging is becom-

ing routinely possible due to the advent of high field strength scanners (such as 7

Tesla) [Krebs et al., 2010; Yacoub et al., 2008]. In addition, arteriolar control of

blood flow is known to be spatially well-matched to local increases in neuronal ac-

tivity [Turner and Jones, 2003]. This means that the main application of fMRI is
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1. Introduction

mapping brain function, i.e. identifying functionally segregated regions in the brain

responsible for sensorimotor and mental processes.

However, BOLD-fMRI is only an indirect measure, through metabolism, oxygena-

tion and blood flow, of underlying neuronal activity. These slow mechanisms provide

only temporally smoothed functions of this activity. Even though it is possible to

distinguish the BOLD response to experimental stimuli presented several hundred

milliseconds apart (in the same brain region), the time course of the response to

a brief stimulus lasts at least 15 seconds [Huettel et al., 2009]. For these reasons,

fMRI’s temporal resolution is relatively poor compared to electrophysiological mea-

sures, such as EEG (described in the following section), albeit being better than other

metabolic-based techniques such as Positron Emission Tomography (PET) [Poeppel,

1996] (Figure 1.1).

The main limitation of fMRI however, is the fact that the mechanisms of coupling

between neuronal activity and blood flow (i.e. neurovascular coupling) are not fully

understood [Logothetis and Pfeuffer, 2004]. Therefore no precise inferences about the

underlying neuronal activity can be directly drawn from the fMRI signal. This issue

is also referred to as the inverse fMRI problem. A large body of research has been

devoted to understanding neurovascular coupling from different perspectives [Riera

and Sumiyoshi, 2010]. For instance, this research aims to find out which aspects of

neuronal activity (e.g. synaptic or spiking activity), and which cells (e.g. neurons or

glial cells) and particular molecules (e.g. nitric oxide) are responsible for the observed

changes in blood flow following neuronal activation. These mechanisms are discussed

in more detail in a later section (see Neurovascular Coupling section, 1.1.2.2).

In summary, fMRI with BOLD contrast is an established method for making

inferences about regionally specific activations in the brain. Its spatial localisation

power is its main advantage relative to other techniques, but the lack of knowledge

about the mechanics that couple underlying neuronal activity to blood flow hinders

the interpretation of BOLD maps and how these maps relate to other measures of

neuronal activity. This area is still a topic of much debate (see below).

1.1.1.2 Electroencephalography (EEG)

EEG, and magnetoencephalography (MEG), measure extra-cranial electrical poten-

tials, and magnetic fields, respectively, which are known to be generated by brain

current source activity [Hämäläinen et al., 1993; Niedermeyer and Lopes da Silva,
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1. Introduction

Figure 1.1: Relative temporal and spatial resolution of common brain imaging tech-
niques, such as EEG, MEG, fMRI and PET. As can be seen, EEG and MEG provide
the best temporal resolution in general, while fMRI provides the best spatial resolu-
tion.

2004].

Human EEG is recorded non-invasively using small electrodes (usually between 32

and 256) that are temporarily fixed to the scalp. Each scalp electrode records electric

potentials generated in the tissue beneath it, which contains from 107 to 109 neurons

[Nunez and Cutillo, 1995]. The sum of the electrical activity generated by these

cells produces a single current dipole moment in each tissue volume. Tissue volumes

close to the scalp surface are much more likely to contribute to extracranial electrical

fields, which means the neocortex is, in most cases, the largest contributor to the EEG

signal. In addition to its proximity to the EEG sensors, the main neocortex cells,

the pyramidal cells, are aligned parallel to each other and normal to the scalp, which

facilitates the summation of their electrical activity. In general, any brain structure

where cells do not have similar spatial orientation does not create effects that can be

macroscopically detected. Activity in sulci is also less reflected in the EEG because

dipoles in opposing cortical surfaces within the sulci can cancel out [Niedermeyer and

Lopes da Silva, 2004].

Synchronised activity of spatially aligned cells, such as the pyramidal cells, results

in the temporal overlap of their extracellular currents, which are induced by the
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movement of ions across the cell membrane. Currents from non-phase locked sources,

on the other hand, may cancel out. For this reason, EEG signals reflect mainly post-

synaptic (dendro-somatic) potentials, which can more easily overlap, both spatially

and temporally, than the faster and more focal action potentials (spiking activity)

[Nunez and Silberstein, 2000].

Scalp EEG activity shows spontaneous and induced oscillations at a variety of

frequencies [Nunez and Cutillo, 1995]. Several of these macroscopic oscillations have

characteristic frequency ranges, spatial distributions and are associated with different

states of brain functioning (e.g. waking and the various sleep stages) [Nunez and

Cutillo, 1995].

The problem of computing the contribution of cortical sources to the scalp EEG

potential is called the Forward problem. It needs the specification of a head model,

which contains geometric and conductive information about the head volume con-

ductor, and can be relatively straightforward to compute when the head conductivity

profile is known (which, in general, it is not). Head models range from the simple

assumption that the head is a sphere, or set of multiple spheres, to Boundary Element

Methods (BEMs) and Finite Element Methods (FEMs), which allow varying degrees

of conductive anisotropy [Baillet et al., 2001b].

The inverse problem is not easy to solve and consists of using the recorded scalp

potentials with some constraints (usually assumptions) to find the source distribution

that generated the EEG recordings [Nunez, 1990]. The essence of the inverse problem

lies in the lack of a unique mathematical solution, and therefore in the infinite number

of possible locations and magnitudes of the electric current sources within the brain,

even when geometry and conductivity of the different regions is known. Since the

inverse problem has no unique solution, any inverse solution depends critically on

the chosen constraints, for example, on the number of sources, source distribution,

or spatial and temporal smoothness criteria. For a review on solutions to the EEG

inverse problem see Baillet et al. [2001a].

Intra-cranial measurements can also be acquired in special cases, such as in the

study of epilepsy patients [Tao et al., 2005] or non-human mammals [Logothetis,

2008]. Such intracranial recordings provide measures of cortical dynamics at multiple

spatial scales depending on electrode size. Invasive electrodes usually measure Local

Field Potentials (LFPs) and Single/Multi-Unit activity (S/MUA). These signals are

obtained by filtering the electrode signal using a low-pass filter (cut-off <200 Hz) in

the case of LFPs and a high-pass filter (cut-off between 300 and 400 Hz) for MUA. For
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this reason, LFPs correspond primarily to weighted averages of synchronised dendro-

somatic components of synaptic signals in a neuronal population close to the electrode

tip, whilst S/MUA measures the action potentials of a single cell or population of

cells, respectively [Logothetis, 2008]. One of the main benefits of such intracranial

signals is the preservation of high frequency signals (e.g. gamma activity > 40 Hz)

that are attenuated due to spatial smearing at the scalp, in EEG.

In summary, EEG and MEG are the only widely available and non-invasive tech-

nologies that provide direct measurements of brain activity with sufficient temporal

resolution to follow its fast dynamic changes (10 to 100 millisecond range) (Figure

1.1). However, as mentioned above, the ill-posed EEG inverse problem (also present

in MEG) does not allow one to uniquely specify the location of underlying bioelec-

tric activity without additional (prior) information. This fact renders the spatial

resolution of EEG and MEG, in general, relatively poor when compared to other

techniques, such as fMRI or PET (Figure 1.1).

1.1.2 Multimodal imaging

Given the complementary temporal and spatial characteristics of EEG and fMRI,

described in the previous section (1.1.1), the combination of these two techniques

should allow one to make inferences about brain function with improved overall spa-

tiotemporal resolution. This section introduces some of the challenges and alternative

approaches for integrating EEG and fMRI information, also known as EEG-fMRI fu-

sion. In addition, this section focuses on what can be learnt about the relationship

between underlying neuronal activity and hemodynamics (neurovascular coupling)

by exploiting the complementary nature of these two measuring techniques.

1.1.2.1 EEG-fMRI integration

Depending on the nature of the experimental question, multi-modality studies with

EEG and fMRI rely on datasets that are collected in separate sessions (EEG out-

side the MR environment) or simultaneously (EEG inside MR scanner). Acquiring

the data in separate sessions is the most straightforward procedure because it only

needs standard unimodal data acquisition techniques. However, it is suboptimal in

problems commonly addressed by EEG-fMRI integration, such as the investigation

of resting state or epileptic activity. In addition, habituation effects, variations in

the stimulation paradigm, or any other differences between sessions might lead to
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differential activity of neuronal networks, which can hinder integration [Rosen et al.,

1998; Wagner and Fuchs, 2001]. This includes trial-to-trial variability in response

magnitude [Debener et al., 2006].

Simultaneous EEG-fMRI acquisition techniques have been developed to address

these issues [Laufs et al., 2008; Ritter and Villringer, 2006]. Advances in hardware,

such as the use of MR compatible EEG systems, have been able to minimise the

interference of rapidly changing gradient and radio-frequency (RF) electromagnetic

fields with the EEG signal. However, despite these advances the signal-to-noise ratio

(SNR) of this signal is still significantly lower than in the corresponding unimodal

acquisition.

Artifacts that contaminate EEG when inside the MR environment result from

the movement of electrical charges (e.g. electrodes) in the static MR field, and from

the RF- and gradient switching of the MR scanner [Ritter and Villringer, 2006]. The

first type of artifact is mainly dominated by the so-called ‘ballistocardiogram’ artifact,

which is thought to be caused by cardiac-related body and electrode movement due to

expansion and contraction of scalp arteries with heart beat. Various post-acquisition

methods exist that significantly reduce ballistocardiogram in the EEG. One option

is to use template subtraction from individual artifact epochs [Allen et al., 1998],

another is to subtract an amplitude adapted dynamic template calculated by sliding

average [Kruggel et al., 2000].

Artifacts related to gradient switching and RF pulses typically have high ampli-

tudes in the range of several millivolts (as compared to the EEG signal, which is in the

range of tens or hundreds of µV ). These artifacts render the EEG signal extremely

distorted for the period of MR acquisition. Moreover, because they largely exceed

the physiological component of the EEG signal and contain components in the EEG

frequency range, elimination of these artifacts is not easy. Effective gradient artifact

removal methods include subtraction of a weighted average artifact [Allen et al., 2000]

or subtraction of template artifacts adapted to the power spectrum [Sijbers et al.,

1999] of individual artifact periods. The particular artifact removal methods used in

this thesis are described in Chapters 3 and 5.

Once the EEG data has been artifact-corrected, one can proceed with EEG-fMRI

integration using one of three schemes (Figure 1.2): integration through prediction,

integration through constraints and integration through fusion. For a recent review

of these techniques see Rosa et al. [2010a].

In ‘integration through prediction’ studies (Figure 1.2, dotted blue line), the objec-
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Figure 1.2: Schematic showing the approaches to EEG-fMRI integration. (i) Inte-
gration through prediction. (ii) Integration through constraints. (iii) Integration
through fusion with forward models [Kilner et al., 2005].

tive is to localise, using fMRI, brain regions whose response is temporally correlated

with a given EEG event or feature. However, this integration scheme does not iden-

tify regions that are necessarily the generators of the EEG signal, but only those for

which BOLD is temporally correlated with the EEG measure used. In other words,

one uses EEG time-series as predictors of changes in simultaneously recorded fMRI.

The resulting region-specific hemodynamic correlates can then be characterised with

high spatial resolution with conventional imaging methodology [Lemieux et al., 2001;

Rosa et al., 2010b] (see below for more information on methods for analysing fMRI

data, Section 1.2). Typical applications of this approach therefore include hemody-

namic correlates of modulations in ongoing oscillatory activity, including epilepsy and

sleep. Chapter 3 reviews in more detail some of the main findings obtained using this

integration approach. In addition, Chapter 3 uses integration through prediction to

investigate the hemodynamic correlates of different features of the EEG frequency

spectrum (see also Rosa et al. [2010b]).

The aim of ‘integration through constraints’ (Fig. 1.2 dashed blue line) is to use

fMRI activations to constrain the EEG source reconstruction problem and provide

estimates of equivalent dipoles or distributed sources with higher spatial resolution

than otherwise possible [Bonmassar et al., 2001]. This is done by apriori positioning

dipoles at the location of fMRI activation foci [Vanni et al., 2004], or by penalising
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distributed sources whose fMRI-derived activation probability is low [Phillips et al.,

2002; Toma et al., 2002]. Although this type of integration has provided good source

localisation results, it can be strongly biased when the generators of EEG and BOLD

do not overlap [Dale et al., 2000; Liu et al., 1998]. Moreover, EEG and fMRI measures

can be sensitive to different kinds of source activity. For example, a region may have

a large hemodynamic response contributing to the fMRI signal but the orientations of

its cells might not generate a macroscopic potential that can be measured with EEG.

The opposite scenario can also happen. For example, changes in neuronal activity

captured in the EEG signals (such as frequency, phase or synchronisation changes)

might not produce sufficient metabolic activity to generate a BOLD response [Ek-

strom et al., 2009]. In these situations, fMRI constraints may therefore considerably

distort the resulting EEG source estimates [Liu et al., 2006].

Both integration through prediction and integration through constraints rely on

importing information from one modality into the analysis of another, by treating

one modality as a predictor or cause of the other, respectively. These approaches

are labelled as asymmetrical, because they do not analyse the EEG and fMRI data

jointly. In contrast, the third approach, ‘integration through fusion’, is considered

symmetrical because it depends bilaterally on both datasets [Daunizeau et al., 2007].

For a recent review of symmetrical EEG-fMRI fusion see Valdes-Sosa et al. [2009].

This approach relies on a common generative (forward) model that links the underly-

ing neuronal dynamics of interest to measured hemodynamic and electrical responses

(Figure 1.2, solid blue lines). EEG and fMRI data can then be jointly used to in-

vert this model and infer about hidden causes. This approach was first proposed to

circumvent certain specific limitations of the asymmetrical approaches (such as the

utility of spatial fMRI priors in the source reconstruction problem), but it turned out

to be most useful for studying neurovascular coupling. Chapter 5 provides a review

of existing integration through fusion approaches and uses one of these frameworks to

investigate different biologically plausible neurovascular coupling mechanisms. These

mechanisms are described in the following section.

1.1.2.2 Neurovascular coupling

The term ‘neurovascular coupling’ refers to the relationship between local neuronal

activity and subsequent changes in CBF and BOLD signal. Despite the increasing

amount of literature in this field this issue is still under intense debate (for a recent
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review, see Riera and Sumiyoshi [2010]). This discussion results in part from the fact

that neuronal activity within a cortical unit and its relationship to the surrounding

vasculature can be described in many different ways and on many different scales.

For example, one can focus on the role of post-synaptic potentials versus spiking ac-

tivity, excitatory versus inhibitory activity, macroscopic oscillations versus membrane

potential or even neuronal versus glial cell activity.

Most of our present knowledge about neurovascular coupling comes from animal

experiments. These studies usually combine hemodynamic measures such as CBF,

with electrical measures such as LFPs and S/MUA. In a pioneering study, Logothetis

et al. [2001] found, in monkey visual cortex, that although both LFPs and MUA

correlate with the BOLD response, this response could be predicted more accurately

from LFPs. This result has been confirmed in awake animals [Goense and Logothetis,

2008]. On the other hand, Rees et al. [2000], Heeger et al. [2000] and Smith et al.

[2002] found strong positive correlations between blood flow and spiking activity.

However, in Rees et al. [2000] and Heeger et al. [2000] this activity is not actually

measured directly but inferred from the coherence of a motion stimulus and a database

of previous microelectrode recordings [Geisler and Albrecht, 1997]. More recently,

Thomsen et al. [2004], Viswanathan and Freeman [2007] and Rauch et al. [2008] have

shown that when synaptic and spiking activity is uncoupled (by drug injection in

Thomsen et al. [2004] and Rauch et al. [2008], and using a stimulus that elicits only

synaptic activity in Viswanathan and Freeman [2007]), changes in CBF (a predictor

of BOLD) do not reflect underlying spiking activity and relate closer to LFPs. Table

1.1 provides a summary of these finding.

This growing body of evidence therefore supports the hypothesis that BOLD sig-

nals are more closely coupled to synaptic input and processing activity than to the

output spikes of a population of neurons. In addition, this work (Table 1.1) provides

support to a growing consensus in which the BOLD signal is thought to result from

pre-synaptic activity and the release of neurotransmitters, in particular glutamate

[Bonvento et al., 2002]. An increase in pre-synaptic activity and concomitant release

of glutamate induces fluctuations in transmembrane potential at the post-synaptic

neuron, and these fluctuations are measured with LFPs [Friston, 2008]. At the same

time, this activity is also thought to be responsible for triggering the release of va-

sodilatory agents, such as nitric oxide [Estrada and DeFelipe, 1998; Wang et al., 2005],

to the extracellular medium, which induce changes in blood flow and consequently

the BOLD response [Bonvento et al., 2002].
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The role of interplay between neurons and glial cells in neurovascular coupling

has also been emphasised in recent studies (for a recent review see Carmignoto and

Gomez-Gonzalo [2010]). These cells are good candidates for generating the vasodila-

tory agents in response to glutamate release (and perhaps other neurotransmitters).

In particular, it is currently accepted that glutamate released by neurons is responsi-

ble for increases in intracellular calcium in surrounding astrocytes, which are respon-

sible for triggering the delivery of vasodilatory and constriction agents [Filosa and

Blanco, 2007].

When it comes to the human brain, however, most studies address the question of

how BOLD relates to underlying neuronal mechanisms only indirectly (by looking at

the relationship between (macroscopic) EEG/MEG and fMRI measures, as described

below). The number of human studies that investigate particular neurovascular cou-

pling mechanisms, such as synaptic versus spiking activity, is considerably smaller

than the number of animal studies. Moreover, these studies come exclusively from

neurosurgical patients, whose physiology may be compromised (Table 1.2). Of the few

such studies, Mukamel et al. [2005] observe significant correlations between BOLD

signals and both synaptic and spiking signals in auditory cortex of epilepsy patients,

whilst Ekstrom et al. [2009] found no correlation between BOLD signals and spiking

activity in patients’ hippocampal area.

These data therefore do not seem to support the existing animal view and there is

a clear lack of evidence from healthy human brain. Chapter 5 addresses this issue, by

presenting and evaluating a modelling framework that can be used to non-invasively

compare different biologically plausible hypotheses for neurovascular coupling. In

particular, in Chapter 5 this framework is used to explore the contribution of synaptic

and spiking activity to the generation of hemodynamic signals in healthy human

visual cortex, with EEG-fMRI data.

The link between neuronal activity and the BOLD response has not only been

investigated at a microscopic level, using invasive co-localised recordings, but also at

a macroscopic scale using fMRI and EEG/MEG from healthy subjects, as mentioned

above. These studies have mainly focused on correlations between BOLD signals and

oscillatory EEG power measured in different frequency bands (Table 1.2). The main

conclusion of this body of work is that, in general, increases/decreases in power at

low frequencies of the EEG spectrum, and decreases/increases at high frequencies,

are associated with decreases/increases in the BOLD signal (Table 1.2) [Goldman

et al., 2002; Laufs et al., 2003; Moosmann et al., 2003; Rosa et al., 2010b]. However,
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questions still remain regarding the exact relationship between BOLD and the fre-

quency content of neuronal activity. In particular, it is still unclear if BOLD depends

on the total or relative power of a particular frequency band or combination of bands.

A more detailed review of these questions and current findings is provided in Chapter

3. Chapter 3 explores these issues by comparing different frequency-dependent and

-independent coupling functions, using simultaneous EEG-fMRI data from healthy

subjects.

Even though these macroscopic studies do not directly address the particular bio-

physical mechanisms responsible for the coupling, they seem to point in the direction

of the biological hypothesis constructed from invasively acquired animal evidence (see

above): increases in pre-synaptic activity, decrease effective membrane time-constants

and result in faster oscillatory dynamics; at the same time more neurotransmitters

are released (e.g. glutamate), which lead to increases in BOLD signal [Friston, 2008].

In summary, despite the emerging consensus on how blood flow relates to neuronal

activity, there are still issues that need further enlightenment. This thesis addresses

two of these issues: how fMRI is related to the frequency profile of EEG (Chapter

3) and how BOLD is related to synaptic and spiking activities in healthy human

brain (Chapter 5). Understanding the nature of the link between neuronal activity

and BOLD plays a crucial role not only in improving the interpretability of BOLD

imaging but also in relating hemodynamic measures to other measures of human

brain function.

1.2 Modelling brain function

The aim of this section is to introduce the key models used in imaging neuroscience

and how they relate to each other. These models can be quite diverse, ranging

from conceptual models of functional anatomy to mathematical models of neuronal

and hemodynamics. The brief review presented here is restricted to the statistical

and dynamical approaches employed in imaging neuroscience, rather than the much

broader field of computational neuroscience [Dayan and Abbott, 2002].

It is common to categorise the existing frameworks into two groups, depending on

how they approach the functional organisation of the brain (Figure 1.3) . These two

modelling perspectives are: functional specialisation and functional integration [Fris-

ton, 2003a; Friston et al., 2005b]. The aim of the former is to identify where evoked
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brain responses are expressed, whilst the latter focuses on how neuronal responses

are caused.

Figure 1.3: Schematic representation of the two different perspectives on functional
brain organisation. On the left, functional specialisation aims to identify where
evoked brain responses are expressed. On the right, functional integration looks
at how neuronal responses are caused, e.g. how interactions among brain regions are
mediated.

The following sections first deal with models of functional specialisation and return

to models of functional integration later.

1.2.1 Functional specialisation

From a historical perspective, the identification of a brain region with a specific

function has been the central theme in neuroscience. The efforts to attribute function

to a particular cortical area, functional localisation, ranged from early anatomical

studies to electrical stimulation and brain lesion observation. However, functional

localisation per se was not easy to demonstrate because it discounted underlying

connections and interactions between areas.

More recently, brain research has focused not on attributing a particular function

to a particular area, but on identifying features or sub-functions, such as perceptual

or motor processing, that can be anatomically segregated within the cortex. This

perspective, known as functional specialisation, suggests that experimental manipu-

lation leads to activity changes in, and only in, certain specialised brain areas, without

13



1. Introduction

discounting existing interactions between regions that together enable brain function.

Presently, given the availability of non-invasive imaging techniques, such as fMRI

and EEG, functional specialisation studies, or functional ‘mapping’, typically amount

to the production of three-dimensional images of neuronal activation showing which

parts of the brain respond to a given cognitive or sensory challenge. This procedure is

usually based on some form of statistical parametric mapping (SPM). This framework

is described below.

1.2.1.1 Statistical Parametric Mapping

SPM is a modelling framework used to test hypotheses about regionally specific ef-

fects in the brain, also known as brain activations [Friston et al., 1995]. Statistical

Parametric Maps (SPMs) are images constructed with statistical values that, under

the null hypothesis, are distributed according to a known probability density, usually

the Student’s t or F-distribution (t- and F-maps, respectively) (Figure 1.5).

SPM was introduced almost two decades ago [Friston et al., 1995], and is un-

doubtedly one of the most used techniques for fMRI data analysis. The idea behind

this framework is quite simple: the data from each and every voxel is analysed inde-

pendently using a general linear model (GLM) and standard univariate (parametric)

statistical tests. The resulting voxel-wise statistics are assembled into an image and

interpreted as continuous statistical processes, by referring to the probabilistic be-

haviour of random fields, modelled by random field theory (RFT) (see below) [Adler,

2006; Worsley et al., 1992, 1996].

The GLM, also known as analysis of (co)variance or multiple linear regression,

is an equation that expresses the observed response variable in terms of a linear

combination of explanatory variables. The matrix that contains the explanatory

variables is called the design matrix. Each column of the design matrix corresponds

to an effect one has built into the experiment or that may confound the results.

The columns are also referred to as covariates or regressors. Each regressor has an

associated unknown parameter and its relative contribution to explain the data is

assessed using standard maximum likelihood [Christensen, 2002].

For fMRI data, the independent variables representing the experimental effect

are convolved with a hemodynamic response function (HRF) [Boynton et al., 1996]

(Figure 1.4). This function accounts for the fact that BOLD signals are a delayed and

dispersed version of the neuronal response, furnishing a better statistical model of
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the data. It is also common to convolve the regressors in the design matrix with the

HRF’s first temporal and dispersion derivative (Figure 1.4). These two derivatives

allow for the time and duration of the peak of the hemodynamic response to vary

from voxel to voxel and subject to subject. The temporal derivative, for example,

allows for peak responses that are approximately one second earlier or later than

is usual, whilst a positive/negative estimate for the dispersion derivative implies a

less/more dispersed response than usual (Figure 1.4).

Figure 1.4: HRF (red) and its time (blue) and dispersion (green) derivatives. These
two derivatives allow for the time and duration of the peak of the hemodynamic
response to vary from voxel to voxel and subject to subject. The temporal derivative,
for example, allows for peak responses that are approximately one second earlier or
later than is usual, whilst a positive/negative estimate for the dispersion derivative
implies a less/more dispersed response than usual.

The SPM framework can also be used to create scalp-maps, time-frequency im-

ages, and volumetric 3D source reconstruction images using EEG/MEG data [Litvak

et al., 2011]. These statistical maps are again based on the GLM and corrected

for multiple comparisons using RFT [Kilner and Friston, 2010], as described in the
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following section. In addition, the SPM approach can also be used with structural

data, acquired with MRI, to look for voxel-wise differences in the local density of

gray matter between groups of subjects. This technique is known as Voxel-Based

Morphometry (VBM) [Ashburner and Friston, 2000].

1.2.1.2 Classical and Bayesian inference

Classical inferences about the parameter estimates are made using their estimated

variance, allowing one to test the null hypothesis, that all the estimates are zero,

using the F-statistic or that some particular linear combination (e.g. a subtraction)

of the estimates is zero, using a t-test [Poline et al., 1997]. The t-statistic obtains by

dividing a ‘contrast’ vector of the ensuing parameter estimates by the standard error

of that contrast [Poline, 2003].

However, in classical inference, without any apriori anatomical hypothesis, a cor-

rection for multiple comparisons over the volume analysed is necessary to ensure

that the probability of rejecting the null hypothesis incorrectly (false positives) is

maintained at a small rate. RFT provides a way to accommodate this problem by

adjusting the voxel-wise p-values, whilst taking into account the fact that neighbour-

ing voxels are not independent by virtue of continuity in the original data [Adler,

2006; Worsley et al., 1992, 1996]. RFT plays the same role for continuous statistical

fields (in this case, images), as the Bonferroni correction for discrete statistical tests,

therefore being less conservative than the latter. In other words, RFT deals with both

the univariate probabilistic characteristics of an SPM and any non-stationary spatial

covariance structure in the data. As a result, any topological features of the SPM

that are ‘unlikely’ to occur by chance, are interpreted as regionally specific effects

attributable to the experimental manipulation.

However, if one has an apriori anatomical hypothesis about particular regions in

the brain that are likely to activate with the stimulus, e.g. the Brocas area during

word generation, one may chose to correct for multiple comparisons only within

these regions. This procedure is called small volume correction (SVC) and is less

conservative than taking into account the whole brain. In Chapter 3, SVC is used to

correct the p-values of voxels within the primary visual cortex, in a visual stimulation

task.

An alternative approach to classical inference is to use Bayesian inference [Friston

et al., 2002b]. This approach is based upon the posterior distribution of the effect,
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i.e activation, given the data. Bayesian inference relies on the specification of a

prior probability distribution, which comprises knowledge or beliefs about the effect

that have been obtained before observing the data. After observing the data, these

priors are updated into the posterior distribution. A common way to summarise

this posterior is to compute the probability that the effect of interest exceeds some

threshold. By computing this probability for each voxel, one can again assemble the

voxel-wise statistics into a three dimensional image (Figure 1.5), in this case known

as a posterior probability map (PPM) [Friston and Penny, 2003].

The motivation for using Bayesian inference is that it has high face validity [Gel-

man et al., 1995]. This is because the inference is about an effect being greater than

some specified size that has some meaning in relation to the underlying neurophysiol-

ogy. This contrasts with classical inference, in which the inference is about the effect

being significantly different from zero. The problem with classical inference is that,

with sufficient data or sensitivity, trivial departures from the null hypothesis can be

declared significant.

Another advantage of using Bayesian inference in neuroimaging is the fact that it

does not contend with the multiple comparisons problem. The probability that acti-

vation has occurred, given the data, at any particular voxel is the same, irrespective

of whether one has analysed that voxel or the entire brain. Because there is no need

for false positive rate correction, PPMs can be relatively more powerful than SPMs

[Friston and Penny, 2003]. However, see Woolrich [2011] for an alternative view.

In this thesis, the SPM framework is used in Chapter 3 to compare different neu-

rovascular coupling functions, instantiated as linear models. These functions (GLM

regressors) are constructed using different features of the EEG power spectrum, and

are then voxel-wise regressed onto the fMRI data. Inferences are based on F-maps.

In addition, Chapter 4 presents a new method for comparing nested and non-nested

GLMs based on PPMs for inference on model space. The full description of this work

can be found in Chapters 3 and 4, respectively.

1.2.1.3 Biophysical models

In the modelling framework described in the previous sections, regionally specific

responses were modelled as linear mixtures of designed changes in explanatory vari-

ables. Although useful, these models do not allow one to make inferences about

hidden quantities, such as volume and deoxyhemoglobin concentrations, that are not
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Figure 1.5: Illustration of classical and Bayesian inference for a functional mapping
study of word generation. (a) Classical SPM of the t-statistic for a contrast reflecting
the difference between word shadowing and word generation. This SPM has been
thresholded at p-value < 0.05, corrected using RFT. (b) PPM for the same contrast,
using an activation threshold of 2.2 and a confidence of 95%. Figure adapted from
Friston and Penny [2003].

actually observed.

To be able to infer about the hidden biophysical mechanisms that give rise to the

observed data, one needs to finesse the modelling framework with a generative model

of how the data are caused. This generative approach to modelling brain responses

has a much more direct connection with underlying physiology and rests upon an

understanding of the underlying system [Horwitz et al., 2000].

From a mathematical point of view, these models usually comprise an input-

state-output dynamical system that expresses the rate of change of the states as a

parameterised function of the states and inputs (Figure 1.6). Typically, the inputs

correspond to designed experimental effects (e.g. the stimulus function in fMRI). The

objective is then to make inferences about the causes and learn the parameters.

However, in contrast to the simpler GLMs, these models are less straightforward

to invert, due to their extra complexity. One of the procedures commonly used in

functional imaging, is to use Bayesian inference and posit an approximate posterior

density that is consistent with the generative model, and which can be parameterised.

Inference then proceeds by estimating the moments (e.g. expectation) of this den-

sity, within a well-known optimisation scheme, such as the Expectation-Maximisation
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Figure 1.6: Extended Balloon model [Friston, 2002b]: these equations model the
hemodynamic response to neuronal activity, z, for a single region. Neuronal activity
induces a vasodilatory signal s that increases blood flow f . Increases in blood flow
cause changes in volume and deoxyhemoglobin (v and q). These two hemodynamic
states enter the output nonlinearity, λ, to give the observed BOLD response y. The
hemodynamic parameters, θ

H
= {κ, γ, τ, α, ρ}, comprise the rate constant of the

vasodilatory signal decay, the rate constant for autoregulatory feedback by blood
flow, transit time, Grubb’s vessel stiffness exponent, and the resting oxygen extraction
fraction, respectively. A more detailed description of the model and parameters is
presented in Chapters 5 and 6 with a slightly different notation: θ

H
= {τs = 1/κ, τf =

1/γ, τ0 = τ, α, E0 = ρ}.
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(EM) algorithm [Friston, 2002b]. This procedure is described in more detail in the

next chapter (Chapter 2).

One example of a generative model commonly used in neuroimaging is the Bal-

loon model for fMRI data (Figure 1.6). Instead of using a convolution model to

emulate the hemodynamic response, as is done in GLM analyses (Section 1.2.1.1),

one can model this response using a biophysically grounded model. The Balloon

model, originally proposed by Buxton et al. [1998] and extended by Friston et al.

[2000], comprises a set of ordinary differential equations that model how changes in

blood flow, evoked by neuronal activity, are transformed into the observed BOLD

response (Figure 1.7). This system of equations (Figure 1.6) is driven by neuronal

activity, z, which first causes an increase in a vasodilatory signal, s, that is subject

to auto-regulatory feedback. Inflow, f responds in proportion to this signal with

concomitant changes in blood volume ν and deoxyhemoglobin content q (Figure 1.7).

This model is used in Chapter 5 as part of a biophysical framework for modelling both

EEG and fMRI signals, whilst in Chapter 6 this model is used to make inferences

about effective connectivity, as described in the following Section 1.2.2.

Another example of biophysically motivated frameworks are the neural mass mod-

els (NMMs), which model the generation of electrophysiological data, as measured

with EEG/MEG [David and Friston, 2003; Jansen and Rit, 1995; Sotero et al., 2007].

A good introduction to NNMs is given in Grimbert and Faugeras [2006]. For fur-

ther background on these dynamical neural network models the reader is referred to

Wilsom [1999] and Ermentrout and Terman [2010].

NMMs can be viewed as a special case of ensemble density models [Deco et al.,

2008]. Ensemble models describe the dynamics of large populations of neurons, where

single neurons (e.g. pyramidal cells, spiny stellate cells and interneurons) are charac-

terised by a number of states, such as post-synaptic membrane potential and firing

rate. In NMMs, the ensemble density of these neuronal states is summarised with

a single number representing mean activity [Marreiros et al., 2009]. Assuming the

equilibrium density has a point mass (i.e., a delta function), one can reduce the

density dynamics to the location of that mass. This reduces the model to a set of

non-linear differential equations describing the evolution of this mode. Again, Chap-

ter 5 presents a biophysical framework for modelling both EEG and fMRI signals,

by means of combining NMMs with the Balloon model described above [Riera et al.,

2007].

NMMs are also used in brain connectivity studies, described in the following

20



1. Introduction

Figure 1.7: Hemodynamics generated using the extended Balloon model [Friston,
2002b] in response to a brief stimulus. These signals correspond to the equations
plotted in Figure 1.6. A more detailed description of the model and parameters is
presented in Chapters 5 and 6.
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section (1.2.2), using EEG and MEG data. For a review see [Kiebel et al., 2009].

So far, the models introduced here concern responses at a single brain region or

voxel. The following section retains the same biophysical perspective on modelling

brain function, but in the context of distributed responses and functional integration.

1.2.2 Functional integration

Functional specialisation based on SPM has proved to be a very powerful methodology

for visualising regionally specific effects. However, understanding macroscopic brain

function ultimately requires knowing not only about the behaviour of specific brain

areas but also about how these areas interact with each other.

Functional integration refers to the study of interactions among specialised neu-

ronal populations and how these interactions depend upon the sensorimotor or cog-

nitive context [Friston, 2002a]. By contrast to functional specialisation and SPM, the

study of functional integration has relied on a wide range of statistical techniques.

These techniques include both unsupervised (e.g., independent component analysis

(ICA) [Brown and Marsden, 2001]) and supervised methods (e.g., support vector ma-

chine (SVM) [Mourao-Miranda et al., 2005]). In addition, they also include models

that seek to directly measure ‘causal’ connectivity based on either static statistical

constraints (e.g., structural equation modelling (SEM) [McIntosh and Gonzalez-Lima,

1994]) or dynamic and more bio-physically motivated assumptions (e.g., dynamic

causal modelling (DCM) [Friston et al., 2003]).

Given the variety of methods, it is common to classify these methods into two

categories within functional integration: functional connectivity and effective con-

nectivity. Functional connectivity is defined as any statistical dependencies (e.g.

correlations or coherence) between remote neurophysiological events, independent of

how these dependencies are mediated. This is typically a data driven approach that

does not allow one to infer about the directionality of the dependencies [Rogers et al.,

2007]. Effective connectivity, on the other hand, refers explicitly to the influence that

one neuronal system exerts over another, either at a synaptic (i.e. synaptic efficacy)

or population level, and therefore depends upon a model of the interactions, i.e. it is

a model driven approach [Stephan and Friston, 2010].

The following section focuses on one of the most used effective connectivity ap-

proaches in imaging neuroscience, dynamic causal modelling.
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1.2.2.1 Dynamic causal modelling

DCM is a mathematical framework to estimate, and make inferences about, the

coupling among brain areas and how this coupling is influenced by changes in exper-

imental context [Friston et al., 2003].

The idea behind DCM is to construct a reasonably realistic model of interacting

cortical regions or nodes. To this neuronal network model is added a forward model of

how neuronal activity in each cortical region is transformed into a measured response,

such as electromagnetic or hemodynamic signals. This generative framework enables

the parameters of the neuronal model (i.e. effective connectivity) to be estimated

from observed data.

To date, DCM has been applied to fMRI, EEG and MEG [Kiebel et al., 2009],

as well as LFP data [Moran et al., 2009]. This section focuses on DCM for fMRI, as

chapter 6 of this thesis investigates a recently developed model selection criterion in

this context.

In terms of the mathematics, DCM for fMRI comprises a deterministic bilinear

model, or set of bilinear deterministic differential equations (for two-state, non-linear

and stochastic DCMs see Stephan et al. [2008], Marreiros et al. [2008b] and Friston

et al. [2010a], respectively) that describes the dynamics at the neuronal level. On

top of this framework, is the extended Balloon model (as mentioned in the previous

section) for the hemodynamic level (Figure 1.8). The full description of the model

equations can be found in Chapter 6.

By using a bilinear approximation, to the systems equations of motion, the pa-

rameters of the implicit causal model reduce to three sets. These comprise parameters

that: mediate the influence of extrinsic inputs on the states; mediate regional cou-

pling among the states; and [bilinear] parameters that allow the inputs to modulate

that coupling.

In stochastic DCMs for fMRI the bilinear deterministic equations are replaced

by random differential equations and the bilinear (modulatory) and exogenous in-

puts are discarded (for further details on these models see Friston et al. [2010a]).

This method is particularly suitable to study resting-state effective connectivity, and

models endogenous fluctuations that cannot be assessed using deterministic DCMs

[Friston et al., 2010a].

In current implementations of DCM, independent of modality, the model param-

eters are estimated from the data using Bayesian methods [Friston et al., 2007a], and
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Figure 1.8: Schematic illustrating the concepts underlying dynamic causal modelling.
In DCM for fMRI, a set of bilinear deterministic differential equations describes
the dynamics at the neuronal level (neuronal states), where the dot notation, ż,
denotes a temporal derivative. The extended Balloon model is then used to model
the hemodynamic level. Inputs to the system can be of two types: driving inputs, u1,
or modulatory inputs, u2. The full description of the model equations can be found
in Chapter 6.
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different models are compared using the model evidence [Penny et al., 2004]. These

procedures are described in Chapter 2.

Figure 1.9: DCM with two regions (z1 and z2) and two inputs (u1 and u2). The
equation on top of the figure is the equation for a deterministic bilinear DCM, Eq.
6.1, described in Chapter 6, corresponding to the network on the left. The time-series
of the two regions generated by this equation, under the influence of driving input u1
and modulatory input u2 are plotted on the right. The full description of the model
equations can be found in Chapter 6.

In DCM, an experiment is regarded as a designed perturbation of neuronal dynam-

ics distributed throughout a system of coupled anatomical nodes (Figure 1.9). From

this perspective, DCM uses the same experimental design principles to induce region-

specific interactions used in conventional region-specific activation studies (Section

1.2.1.1). In fact, the convolution model, used in SPM analyses of fMRI time-series, is

a special case of DCM that arises when the coupling among regions is not taken into

account. In DCM, the explanatory variables that comprise the design matrix in SPM

become the inputs, whilst the parameters become measures of effective connectivity

[Friston, 2003b].
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Although DCM can be viewed as a generalisation of the GLM, it can also be seen

as an attempt to introduce more plausible biophysical models of how neuronal dy-

namics respond to inputs and produce measured responses. This reflects the growing

appreciation of the role that biophysically grounded models have in understanding

brain function [Horwitz et al., 2000].

DCM has gradually become part of mainstream neuroimaging analysis techniques

and has been applied to a wide range of domains, including: language [Leff et al.,

2008; Noppeney et al., 2008; Schofield et al., 2009], motor processes [Grefkes et al.,

2008; Grol et al., 2007], vision and visual attention [Fairhall and Ishai, 2007; Haynes

et al., 2005], memory [Smith et al., 2006], perceptual decision making [Summerfield

and Koechlin, 2008; Summerfield et al., 2006], and learning [den Ouden et al., 2009;

Garrido et al., 2009].

Chapter 6 describes and evaluates a new method for comparing large numbers of

DCMs using fMRI data from an attention to visual motion study.

1.3 Conclusion

This chapter has reviewed some key imaging and modelling techniques currently

used in brain research. It has also focused on how two of these techniques, fMRI and

EEG, can be combined for multimodal imaging. This multimodal approach allows

one to investigate neurovascular coupling, as described above. From the modelling

perspective, this chapter discussed ways of assessing specialisation and integration in

the brain. General linear models based on convolution models can be finessed with

biophysical constraints to formulate explicit forward models of neuronal activity and

hemodynamics. The latter can then be used to assess interactions among distributed

cortical areas and make inferences about coupling at the neuronal level. The following

chapter will focus on how to invert and compare the models presented here.
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Table 1.1: Main findings of animal studies on neurovascular coupling. S/MUA
refers to single/multi-unit activity. CBF refers to cerebral blood flow; TO2 to tissue
oxygenation concentration; OHb, dHb, CBV to oxy and deoxy-Hemoglobin and
cerebral blood volume, respectively.

Reference Paradigm Main findings Brain

regions

Species Signals

Logothetis

et al. [2001]

Visual

(rotating

checker-

board)

LFP (40-130Hz)

better predictor of

BOLD than MUA

(300-1.5kHz)

V1 Monkey BOLD,

LFP,

MUA

Goense and

Logothetis

[2008]

Visual

(rotating

checker-

board)

BOLD’s variance best

explained by LFP (20-

60 Hz)

V1 Monkey

(awake)

BOLD,

LFP,

MUA,

SUA

Rees et al.

[2000]

Visual

(mov-

ing dots;

changing

coherence)

BOLD contrast in hu-

man V5 is propor-

tional to SUA in mon-

key V5

V5 Monkey

and

Human

BOLD,

SUA

Heeger et al.

[2000]

Visual

(changing

contrast)

BOLD in human V1 is

proportional to SUA

in monkey V1

V1 Monkey

and

Human

BOLD,

SUA

Thomsen

et al. [2004]

Resting-

state

Drug induced increase

in Purkinje cell spike

activity was not suf-

ficient to raise blood

flow above baseline

Cerebe-

llum

Rat CBF,

SUA

Viswanathan

and Freeman

[2007]

Visual

(sine-wave

gratings,

1-20Hz)

Correlation between

BOLD and LFPs in

the absence of spiking

activity (suppressed

by the stimulus)

V1 Cat LFP,

MUA,

TO2
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Table 1.1 – continued from previous page

Rauch et al.

[2008]

Visual

(rotating

checker-

board)

Injected neuromodu-

lator BP554 induces

hyperpolarization

of efferent mem-

brane, reducing MUA

(800-3k Hz) without

affecting either LFP

(24-90 Hz) or BOLD

activity

V1 Monkey BOLD,

LFP,

MUA

Kayser et al.

[2004]

Visual

(sinewave

gratings,

natural

movies and

pink pixel

noise)

Agreement between

BOLD and LFP (in

terms of % of record-

ing sites) depends on

LFP frequency. Best

agreement between 20

and 50 Hz. Poorer

agreement for MUA

Visual

cortex

(17,18,19

and

21a)

Cat BOLD,

LFP,

MUA

Niessing et al.

[2005]

Visual BOLD correlates bet-

ter with gamma-band

LFP

Visual

cortex

Cat BOLD,

LFP,

MUA

Maier et al.

[2008]

Perceptual

suppresion

Only BOLD and low-

Hz LFP (not high-Hz

LFP or spikes) signif-

icantly decreased dur-

ing perceptual sup-

pression

V1 Monkey

(awake)

BOLD,

LFP,

Spikes

Boorman

et al. [2010]

Whisker

pad stimu-

lation

Deep layer negative

BOLD, adjacent to

layers of positive

BOLD, associated

with reductions in

MUA

Somato-

sensory

cortex

Rat BOLD,

LFP,

MUA,

OHb,

dHb,

CBV
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Table 1.1 – continued from previous page

Lee et al.

[2010]

Optical

stimulus

Negative BOLD signal

caused by optically

driven genetically

modified inhibitory

cells

Motor

cortex

Rat Opto-

genetics
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Table 1.2: Main findings of human studies on neurovascular coupling. ECoG refers
to Electrocorticography.

Reference Paradigm Main findings Brain

regions

Species Signals

Mukamel

et al. [2005]

Movie seg-

ment

Significant correlation

between patients’ pre-

dicted BOLD signals

from SUA and signals

measured in healthy

subjects

Auditory

cortex

Human

(pa-

tients)

BOLD,

LFP,

SUA

Ekstrom et al.

[2009]

Spatial

navigation

in virtual

environ-

ment

Correlation between

the BOLD signal and

theta-band activity;

no significant correla-

tion with MUA/SUA

Hippo-

campal

areas

Human

(pa-

tients)

BOLD,

LFP,

MUA,

SUA

Goldman

et al. [2002];

Laufs et al.

[2006a];

Moosmann

et al. [2003]

Resting-

state

Reductions in alpha

power correlate with

increases in BOLD

Occipital

cortex

Human

(healthy)

BOLD,

EEG

Lachaux et al.

[2007]

Semantic

decision

task

Close spatial corre-

spondence between

BOLD activation

regions and gamma-

ECoG sites

Temporal

and sul-

cal

cortex

and

insula

Human

(pa-

tients)

BOLD,

ECoG

Rosa et al.

[2010c]

Visual

(flickering

checker-

board

4-60Hz)

Root-mean squared

frequency explains

more BOLD activity

than the total spec-

tral power or any

linear combination of

frequency-bands

Visual

cortex

Human

(healthy)

BOLD,

EEG
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Table 1.2 – continued from previous page

Nir et al.

[2007]

Movie seg-

ments

Gamma-LFP coupled

well to BOLD; cou-

pling for SUA highly

variable

Auditory

cortex

Human

(pa-

tients)

BOLD,

LFP,

SUA

He et al.

[2008]

Wakefulness

(AW),

slow-

wave and

rapid-eye-

movement

sleep

(REM)

State-invariant sig-

nificant structural

correlation between

BOLD and slow

cortical potentials

(<4 Hz). Gamma

band potentials only

correlate with BOLD

during AW and REM

Sensori-

motor

cortex

Human

(pa-

tients)

BOLD,

ECoG
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Chapter 2

Model selection methods

Chapter 1 presented an overview of some of the most commonly used imaging and

modelling techniques for investigating human brain function. Given these techniques

the next step in learning about the brain typically entails comparing competing hy-

pothesis, or models, such as general linear or biophysical models, for explaining the

observed data. This chapter therefore focuses on model selection methods used in

neuroimaging, and with which the Results in Chapters 3 to 6 have been obtained. It

begins by introducing model inference and its two possible approaches: the Classical

and Bayesian approach. The focus here is on the Bayesian approach, since it is the

most used throughout this thesis. This chapter then proceeds by reviewing Bayesian

model inversion and selection, and, finally, it ends with a description of how inferences

can be taken from single subject to group level.

2.1 Inference on model space

Model comparison is a fundamental tool in any scientific discipline. In other words,

the process of learning about nature is based on evaluating different hypotheses about

how the world works, expressed as mathematical equations in light of experimental

observations.

Model comparison is therefore an instrument for making inferences about unob-

served processes based on observations. If the experimental data clearly supports one

model over several others, this entails strong support to the corresponding hypothesis

(among those considered), and the process that most likely generated the data can

be inferred (Figure 2.1).
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Given the space of all models being compared, model space M , the variable m

here indexes members of that space. The models might be GLMs, where m indexes

different design matrices (e.g. different transfer functions in Chapter 3 and infor-

mation processing models in Chapter 4), or biophysical models such as the models

used in Chapter 5, where m indexes different neurovascular coupling mechanisms. In

DCM (Chapter 6), m indexes different networks, i.e. different connectivity and input

patterns.

Model comparison can be implemented using classical or Bayesian inference. The

following sections provide a brief summary of these two approaches.

Figure 2.1: Hierarchical generative model: the model m, is part of the hierarchical
process of generating data. In Bayesian inference, first a model is chosen from the
prior distribution over models, p(m), then its parameters are generated from the
parameter prior, p(θ|m), according to model m, and finally data are generated from
the likelihood p(y|θ,m).
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2.1.1 Classical inference

The dominant paradigm is to generate a null hypothesis (typically a simpler and less

biologically meaningful hypothesis) and ask whether this hypothesis can be rejected

after observing the data. Rejection occurs when a test statistic generated from ob-

served data falls below an arbitrary probability threshold (usually a p-value < 0.05),

which is interpreted as strong evidence in favour of a biologically more meaning-

ful alternative hypothesis. Hence, the actual hypothesis of interest (the alternative

hypothesis) is accepted only in the sense that the null hypothesis is rejected.

One can then use a series of null hypothesis tests, such as likelihood ratio tests or

F-tests, to compare pairs of models from among the candidate set. In Chapter 3, F-

tests are employed to make inferences on competing transfer functions from EEG to

fMRI, instantiated as GLMs. This procedure tests the additional variance explained

by including a set of additional regressors of interest in the model, which in this case

represent a particular neurovascular coupling hypothesis.

Even though this approach is a mainstay in scientific research, it is restricted to

nested models (i.e. the simpler model must be a special case of the more complex

model). In other words, to infer that changes in an experimental factor led to signif-

icant effects one compares two models, one with that factor and one without. Such

tests cannot therefore be used to quantify relative support for various models. Whilst

sufficient in some cases, such as for analysis of variance (ANOVA), it is suboptimal

in other domains. The following section describes an alternative approach.

2.1.2 Bayesian inference

In contrast to classical inference, the Bayesian approach offers a way to draw infer-

ences from a set of multiple competing hypotheses, without using the traditional null

hypothesis testing procedure.

Bayesian model selection (BMS) therefore provides several advantages over the

classical approach [Wasserman, 2000]. One of the main advantages is the fact that

BMS is not limited to comparing nested models. BMS allows models to be ranked

and weighted, thereby providing a quantitative measure of relative support for each

competing hypothesis, including the null hypothesis. In addition, BMS can be used

to identify the single best model that most likely generated the observed data, but it

can also be used to make inferences based on the weighted evidence from the set of

competing models. The latter is known as Bayesian model averaging (BMA) [Hoeting
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et al., 1999], and allows incorporation of model uncertainty into inference about the

parameters.

BMS has been extensively used in neuroimaging, specially with DCMs [Friston

and Penny, 2003; Penny et al., 2005] and EEG source reconstruction models [Trujillo-

Barreto et al., 2004]. In this thesis, BMS is used in Chapter 4 to construct posterior

model probability maps. In Chapter 5, BMS is used to compare biophysically mo-

tivated hypotheses for neurovascular coupling, while in Chapter 6, BMS is used to

compare DCMs.

The following sections describe Bayesian model inversion and selection in more

detail, including inferences at the single subject and group level.

2.2 Bayesian model inversion

2.2.1 Posterior probabilities

In Bayesian inference, prior beliefs about parameters, θ, of model m are quantified by

the prior density, p(θ|m). Inference on the parameters, θ, after observing data, y, is

based on the posterior density p(θ|y,m). These densities are related through Bayes’

rule:

p(θ|y,m) =
p(y|θ,m)p(θ|m)

p(y|m)
, (2.1)

where p(y|θ,m) is the probability of the data (likelihood) conditioned upon the

model and its parameters. The normalisation factor, p(y|m), is called the model

evidence and plays a central role in model selection (see below). The Maximum a

Posteriori (MAP) estimate of the model parameters is simply:

θMAP = arg max
θ

p(θ|y,m). (2.2)

The posterior density is an optimal combination of prior knowledge and new obser-

vations, and provides a complete description of uncertainty about the model parame-

ters. Generally, the choice of priors reflects either empirical knowledge (e.g., previous

measurements) or formal considerations (e.g., biological or physical constraints).

The following sections describe Bayesian model inversion for linear and non-linear

models.
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2.2.2 Linear models

This section describes how the posterior distribution of the parameters of a linear

model of the type described in Section 1.2.1.1 and used in Chapters 3 and 4, can be

estimated from the data, y. In what follows, N(µ,C) denotes a multivariate normal

distribution with mean µ and covariance C.

Given a linear model y = g(θ) + ε = Xθ + ε, where X is the design matrix,

under Gaussian assumptions about the error, ε ∼ N(0, Cε), the likelihood, p(y|θ) =

N(Xθ,Cε), and priors, p(θ) = N(η,Σ), can be written as:

p(y|θ) ∝ exp{−1

2
(y −Xθ)TC−1ε (y −Xθ)}

p(θ) ∝ exp{−1

2
(θ − η)TΣ−1(θ − η)}, (2.3)

where the dependency on m was dropped in order to simplify the notation. Using

Eq. 2.3 and Eq. 2.1, the posterior density also has a Gaussian form, p(θ|y) = N(µ,C):

p(θ|y) ∝ exp{−1

2
(θ − µ)TC−1(θ − µ)}, (2.4)

and the posterior means and precisions, P = C−1, are given by:

P = XTC−1ε X + Σ−1

µ = C(XTC−1ε y + Σ−1η). (2.5)

See Bishop [2006] for a derivation. To compute the posterior moments, Eq. 2.5,

one needs to know or estimate the error covariance matrix, Cε. Harville [1977] and

Friston et al. [2002b] consider linear Gaussian models in which the error covariance

can be specified in terms of hyperparameters, λi, where Cε =
∑

i λiQi. The matrices

Qi are known as ‘covariance components’ and specify the prior covariance structure,

such as non-sphericity. These hyperparameters can be estimated using restricted

maximum likelihood (ReML) or, equivalently, in an Expectation-Maximisation (EM)

algorithm as follows [Friston et al., 2002b]:
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until convergence {
E-step

Cε =
∑

i λiQi

P = (XTC−1ε X + Σ−1)

µ = C(XTC−1ε y + Σ−1η)

M-step

U = C−1ε − C−1ε XCXTC−1ε

gi = −1
2
tr(UQi) + 1

2
yTUTQiUy

Hij = 1
2
tr(UQiUQj)

λ = λ+H−1g

}.

(2.6)

The matrix U is the residual forming matrix, pre-multiplied by the error precision.

This projector matrix ‘restricts’ the estimation of variance components to the null

space of the design matrix. The quantities g and H are the first- and expected

second-order derivatives (i.e. gradients and expected negative curvature) of the ReML

objective function. This objective function is a special case of the variational free

energy function described below (Section 2.3.2.1) [Friston et al., 2007a].

To summarise, the M-step calculates the hyperparameters by maximising the

ReML objective function. In the E-step, the hyperparameter estimates are then

used to update the posterior means and precisions. This procedure is repeated until

convergence.

Once the moments are known (from Eq. 2.5 or Eq. 2.6), the posterior probabil-

ity, p, that a particular effect or contrast c exceeds some threshold γ can be easily

obtained:

p = 1− Φ

(
γ − cTµ√
cTCc

)
, (2.7)

where Φ is the cumulative density function of the normal distribution. An image

of these probabilities can be constructed by inverting a linear model in all voxels of

the volume analysed. The corresponding maps are called posterior probability maps

(PPMs) [Friston and Penny, 2003] and comprise an alternative approach to the t-

and F-maps used in SPM.
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2.2.3 Non-linear models

This section now describes the case of Bayesian model inversion for non-linear models.

Whilst there are many nonlinear models and approaches for optimising them in the

statistical literature [Gelman et al., 1995; Girolami, 2008; W. H. Press and Vetterling,

1992], this section focuses on the Bayesian optimisation algorithm used in this thesis.

A non-linear model, such as the biophysical models used in Chapters 5 and 6, can

be linearised by expanding the observation equation about a working estimate µθ of

the conditional mean. The prior density is assumed to be Gaussian with mean η and

covariance Σ:

y = g(θ) + ε

g(θ) ≈ g(µθ) + J · (θ − µθ), (2.8)

such that J = ∂g(µθ)
∂θ

, y − g(µθ) ≈ J · (θ − µθ) + ε and ε ∼ N(0, Cε). In the non-

linear models used here, the error covariance is assumed isotropic over the predictions

Cε = λI, where I is the identity matrix.

The linearised model, Eq. 2.8, can be used in a Variational Laplace (VL) optimi-

sation scheme. This assumes that the posterior is Gaussian and VL provides iterative

updates of its moments: q(θ) ≡ q(θ|y,m) = N(µ,C). VL is a generic approach to

estimate the posterior density, and can be formulated by analogy with statistical

physics as a gradient ascent on the ‘negative Free Energy’, F (m), of the system. The

full derivation of the algorithm is described in Friston et al. [2007a]. Section 2.3.2.1

(see below) describes the free energy in more detail, with a focus on how this quantity

can be used for model selection after model inversion.

The fixed-form Variational Laplace algorithm can also be regarded as an EM

scheme [Friston et al., 2007a], of the form of Eq. 2.6, if one assumes that the vari-

ance hyperparameters have a point mass. The E-step performs an ascent on the

variational free energy, F , to optimise the conditional moments of the local linear

approximation (Eq. 2.8), whilst in the M-step, the hyperparameters λ are updated

again by maximising F :
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E-step µ = arg max
µ

F (µ, λ)

M-step λ = arg max
λ

F (µ, λ). (2.9)

Note that the posterior precision is not explicitly updated in the E-step because

it is a function of the posterior mean. This type of EM scheme is based on earlier

work by Neal and Hinton [1996];

The VL approximation to the posterior density over the model parameters has

been verified using Markov Chain Monte Carlo (MCMC), in the context of DCM for

fMRI Chumbley et al. [2007]. MCMC schemes are, in general, more computationally

intensive but allow one to estimate the posterior density without assuming it has a

particular form.

2.3 Bayesian model selection

2.3.1 Posterior model probabilities

After model inversion, Bayesian model selection proceeds by first assigning a prior

probability to each model mj, p(mj), in the comparison set, M . After observing

data, y, BMS then uses the model evidence, or marginal likelihood, for each model,

p(y|mj), and the prior to determine the posterior model probability, p(mj|y). This

posterior probability is obtained through Bayes’ rule, as follows:

p(mj|y) =
p(y|mj)p(mj)∑nM
k p(y|mk)p(mk)

, (2.10)

where the sum in the denominator is over all models that are being compared, and

nM is the total number of models. Model selection corresponds to choosing the model

that most likely generated the data, i.e. the model mj that maximises the posterior

p(mj|y). If no model is favoured a priori then p(m) is a uniform distribution, i.e.

p(mj) = 1/nM , and the model with the highest posterior probability is also the model

with the highest evidence, p(y|mj) [Kass and Raftery, 1995]. Therefore, the model

evidence is often the fundamental object of interest in BMS.

The following sections describe the evidence in more detail, including different

procedures for approximating this quantity.
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2.3.2 Model evidence

The model evidence, p(y|mj), is the probability of obtaining observed data, y, given

model mj, belonging to model space M . As mentioned in the previous section,

this quantity is at the heart of BMS, but, in general, it is not straightforward to

compute, since this computation involves integrating out the dependency on the

model parameters, θ:

p(y|mj) =

∫
p(y|θ,mj)p(θ|mj)dθ (2.11)

Sampling or iterative analytic methods can be used to approximate the above

integral. Here the focus is on how the model evidence can be computed for non-

linear models. The evidence for linear models is then given as a special case.

A common approximation is the variational free energy approximation [Friston

et al., 2007a; Penny et al., 2003; Sato et al., 2004; Stephan et al., 2009; Woolrich et al.,

2004a]. In Chapter 5, the free energy is used to compare different neurovascular

coupling models, whilst in Chapter 6, it is evaluated against another method for

estimating and comparing dynamic causal models.

The following sections describe the free energy and other approximations to the

model evidence.

2.3.2.1 Free energy approximation

Given model mj with any parameters θ, using the rule of conditional probability and

taking the log, the evidence can be written as:

log p(y|mj) = log
p(y, θ|mj)

p(θ|y,mj)
. (2.12)

If expectations are now taken with respect to the variational distribution, q(θ) ≡
q(θ|y,mj), the previous equation becomes:

log p(y|mj) =

∫
q(θ) log

p(y, θ|mj)

p(θ|y,mj)

q(θ)

q(θ)
dθ

=

∫
q(θ) log

p(y, θ|mj)

q(θ)
dθ +

∫
q(θ) log

q(θ)

p(θ|y,mj)
dθ, (2.13)

where the first term in the previous equation is known as the negative free energy
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of the system, Fj, and the second term is the Kullback-Leibler (KL) divergence

between the approximate posterior density, q(θ), and the true posterior, p(θ|y,mj).

Given these definitions, the log model evidence can be written as:

log p(y|mj) = Fj +KL(q(θ)||p(θ|y,mj)). (2.14)

Since the KL divergence between the approximate and true posterior is always

positive, or zero when the densities are identical [Bishop, 2006], the log-evidence,

log p(y|mj), is therefore bounded below by Fj.

Equation 2.14 describes the fundamental relationship between evidence, free en-

ergy and KL divergence, which is used in the Variational Bayes (VB) optimisation

framework [Beal and Ghahramani, 2003]. In VB, the moments of the posterior den-

sity q(θ) are updated by implicitly minimising the KL divergence. Through this

iterative procedure Fj becomes an increasingly tighter lower bound on the log-model

evidence.

In general, the negative free energy can be further decomposed into the sum of

accuracy and complexity terms:

Fj = Accuracy(mj)− Complexity(mj). (2.15)

The accuracy is defined as the average log-likelihood, whilst the complexity term

is the KL divergence between the approximate posterior q(θ) and the prior density

over the model parameters, p(θ|mj):

Accuracy(mj) =

∫
q(θ) log p(y|θ,mj)dθ

Complexity(mj) = KL(q(θ)||p(θ|mj)). (2.16)

The complexity term therefore tends to increase with the number of model pa-

rameters, penalising complex models, but only if these extra parameters diverge from

their priors [Penny, 2012].

Finally, under Gaussian assumptions (Laplace approximation), q(θ) = N(µ,C)

and p(θ|mj) = N(η,Σ), the variational free energy can be written as:
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Fj = −1

2
eTyC

−1
ε ey −

1

2
log |Cε| −

Ny

2
log 2π

− 1

2
eTθ Σ−1eθ −

1

2
log |Σ|+ 1

2
log |C|, (2.17)

where ey = y − g(µ), eθ = µ− η and Ny is the number of observations.

In the case of general linear models, g(θ) = Xθ, the free energy becomes equal

to the ReML objective function. If the model contains unknown hyperparameters λ,

with prior p(λ|m) = N(ηλ,Σλ) and posterior q(λ) = N(µλ, Cλ), three more terms

can be added to Fj, in order to account for these parameters:

Fj = −1

2
eTyC

−1
ε ey −

1

2
log |Cε| −

Ny

2
log 2π

− 1

2
eTθ Σ−1eθ −

1

2
log |Σ|+ 1

2
log |C|

− 1

2
eTλΣ−1λ eλ −

1

2
log |Σλ|+

1

2
log |Cλ|, (2.18)

where eλ = µλ − ηλ. Model selection can then proceed using the free energy Fj

as a surrogate for the log-evidence. We note that, as shown in the Appendix C of

Wipf and Nagarajan [2009], the Laplace approximation, Eq. 2.18, is not equal to

the Variational Free Energy in Eq. 2.14 (it contains extra terms that can be either

positive or negative, see Wipf and Nagarajan [2009] for the derivation) and therefore

the lower bound property might no longer hold under this approximation. That is,

the Laplace approximation is not strictly a lower bound on the log-model evidence.

Nevertheless, it provides a very informative and useful approximation to the free

energy, which can still be used as a model selection criterion [Friston et al., 2007a;

Penny, 2012].

2.3.2.2 Other approximations

Other approximations to the model evidence exist, including the computationally

more expensive Annealed Importance Sampling (AIS) method [Beal and Ghahra-

mani, 2003], and the simpler but potentially less accurate Bayesian Information Cri-

terion (BIC) [Schwarz, 1978] and Akaike Information Criterion (AIC) [Akaike, 1973]

measures, respectively:
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BIC = Accuracy(mj)−
np
2

logNy

AIC = Accuracy(mj)− np, (2.19)

where np is the number of parameters θ in the model. In extensive simulations of

graphical model structures, Beal and Ghahramani [2003] found that the variational

approach outperformed BIC and AIC, at relatively little extra computational cost,

and approached the performance of AIS, but with much less computational cost. In

addition, Penny [2012] shows that for the case of comparing DCMs, the free energy

approach also performs better than either AIC or BIC. Kass and Raftery [1995] show

that AIC and BIC are biased to complex and simple models, respectively .

More recently, Friston and Penny [2011] have proposed a post-hoc approximation

to the evidence, which is computed by optimising only the very largest of a set of

models. This approach can be viewed as a generalisation of the well-known Savage-

Dickey ratios [Dickey, 1971]. Chapter 6 derives the post-hoc model evidence and

compares this approach to the free energy approximation described above, using

dynamic causal models for fMRI data.

2.3.3 Bayes factors

Two models, mi and mj, can be compared using Bayes Factors, which are defined as

the ratio of the corresponding model evidences. Equivalently, log-Bayes Factors are

given by differences in log-evidences:

logBij = log p(y|mi)− log p(y|mj). (2.20)

The Bayes factor is a summary of the evidence provided by the data in favour of

one scientific hypothesis, represented by a statistical model, as opposed to another.

Bayes factors have been stratified into different ranges deemed to correspond to dif-

ferent strengths of evidence [Kass and Raftery, 1995]. ‘Strong’ evidence, for example,

corresponds to a BF of over 20 (log-BF over 3) in favour of model mi when compared

to model mj. Bayes factors can also be directly interpreted as odds ratios where Bij

= 100, for example, corresponds to odds of 100 to 1.

Bayes factors can be used to convert a prior odds ratio into a posterior odds ratio:
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p(mi|y)

p(mj|y)
= Bij

p(mi)

p(mj)
(2.21)

For equal prior odds, as is the case for uniform priors, the posterior odds is equal

to the Bayes factor. From this, the equivalent posterior probability of hypothesis mi

can be computed as follows:

p(mi|y) =
1

1 + 1
Bij

, (2.22)

and a posterior model probability greater than 0.95 is equivalent to a Bayes Factor

greater than 20.

Importantly, unlike classical inference and p-values, Bayes factors can be used

to compare non-nested as well as nested models. They also allow one to quantify

evidence in favour of a null hypothesis.

So far, the theory described applies to single subject analyses. The following

sections describe Bayesian model selection at the group level.

2.3.4 Group studies

Neuroimaging studies usually require data from a group of subjects. This is because

the signals are of small magnitude and may not be detectable in every subject. Col-

lecting data for a group of subjects therefore allows one to assess group effects in

relation to the variability over the group.

2.3.4.1 Fixed-effects

Until very recently, most group studies have adopted what is known as the Group

Bayes Factor (GBF) approach [Stephan and Penny, 2007]. After inverting all models

for all subjects, the GBF can be obtained by simply multiplying the individual BFs

for all N subjects (assuming subjects are independent):

GBij =
N∏
n=1

Bn
ij

logGBij =
N∑
n=1

log p(yn|mi)−
N∑
n=1

log p(yn|mj), (2.23)
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where the subscripts i and j denote the i-th and j-th models being compared,

and yn is the data from subject n. The log GBF is therefore simply the difference of

the log-model evidences aggregated over subjects. Although this is a straightforward

method for model selection and has been used in a number of neuroimaging studies

[Stephan et al., 2007b; Summerfield and Koechlin, 2008], Stephan et al. [2009] have

recently shown that the Group Bayes Factor approach corresponds to what is more

generally known as a Fixed Effects (FFX) analysis. The FFX approach can be un-

derstood as a special case of a more general Random Effects (RFX) model inference

approach, as described below.

2.3.4.2 Random-effects

Random effects model inference [Stephan et al., 2009] is based on model frequencies,

r = [r1, ..., rnM ], where 0 ≤ rk ≤ 1 and
∑nM

k=1 rk = 1, which represent frequencies

of models used in the population at large (Figure 2.2). Stephan et al. [2009] have

developed a hierarchical model for making inferences on the posterior density of the

model frequencies, p(r|Y ), given the data from all subjects, Y . This method can be

viewed as a RFX approach, in which a (potentially different) model is assigned to

each member of the group (Figure 2.2B). In other words, the assignment of models

to subjects is treated as a random process. In FFX, the same model is assigned to

all subjects (Figure 2.2A).

The corresponding random variables are drawn from a density, p(r|α), which then

defines a distribution on how likely it is that model k generated the data for subject n,

p(mnk = 1) = rk, where mnk ∈ {0, 1} and
∑nM

k=1mnk = 1. Because, for each subject,

this latter distribution has a multinomial form (i.e. each subject uses either model

k = 1, 2, ...nM) it is natural to choose p(r|α) as a Dirichlet density, as the Dirichlet

is conjugate to the multinomial [Bernardo and Smith, 2001]. The parameters of this

Dirichlet, α = [α1, ..., αnM ], are related to the unobserved ‘occurrences’ of the models

in the population. FFX is then a special case of RFX, when rk = 1 for the model

with the highest summed evidence over the group and rk = 0 otherwise. These

probabilities indicate that all subjects use the same model, whereas for RFX subjects

can use different models.

The same authors then describe an estimation procedure to invert this hierarchical

model and estimate the posterior distribution over r. Briefly, this optimisation scheme

begins by assuming that each model has been ‘observed’ once, α0 = [1, ..., 1], and
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Figure 2.2: Graphical models underlying (A) Fixed and (B) Random Effects inference
on model space at the group level. FFX assigns a model, drawn using r, to be used by
all members of the group, whilst for RFX a (potentially different) model is assigned
to each member of the group. Mult(m; r) and Dir(r;α) refer to multinomial and
Dirichlet densities. See the main text for a detailed explanation of the two different
inference approaches.
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proceeds by updating estimates of α until convergence. The following pseudo-code

schematises this iterative procedure and the quantities computed at each step:

α = α0

until convergence

compute gnk (see Eq. 2.25)

compute β (see Eq. 2.26)

update α = α0 + β

end.

(2.24)

In the first step the normalised posterior belief that model k generated the data

from subject n, gnk, is computed using the following equations:

unk = exp(log p(yn|mnk) + Ψ(αk)−Ψ(αS))

un =

nM∑
k=1

unk

gnk =
unk
un

, (2.25)

where log p(yn|mnk) is the log-model evidence from subject n and model k, Ψ is

the digamma function, Ψ(αk) = ∂ log Γ(αk)/∂αk, and αS =
∑

k αk. In the next step,

the expected number of subjects whose data are believed to have been generated by

model k is computed for all models:

βk =
∑
n

gnk. (2.26)

Finally, using the result from the previous step, the α parameters are updated

(Eq. 2.24).

After optimisation, the posterior distribution p(r|Y ;α) can be used for model

inference at the group level. One can, for instance, use this distribution to compute

the expected model frequencies, 〈rk〉:

〈rk〉 = αk/(α1 + ...+ αnM ), (2.27)

Another option is to use p(r|Y ;α) to compute an exceedance probability, ϕk,

which corresponds to the belief that model k is more likely than any other (of the
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nM models compared), given the data from all subjects:

ϕk = p(∧j 6=krk > rj|Y ;α). (2.28)

Exceedance probabilities are particularly intuitive when comparing just two mod-

els (see for example Figure 4.5B) as they can be written:

ϕ1 = p(r1 > r2|Y ;α) = p(r1 > 0.5|Y ;α). (2.29)

Finally, it is important to note that if there are reasons to believe that the optimal

model is identical across subjects, then the FFX approach is entirely valid. This

assumption is justified when studying, for instance, a basic physiological mechanism

that is unlikely to vary across subjects, such as the role of forward and backward

connections in visual processing.

2.4 Conclusion

This chapter has reviewed the model inversion and selection methods used in the

following Results chapters. Model selection, and in particular Bayesian model se-

lection, plays a key role in any scientific discipline by providing a principled way of

choosing between competing hypothesis for explaining the observed data. The com-

ing years will probably see the development of more efficient ways, such as the use

of stochastic algorithms, of searching through very large numbers of models. These

developments will have particular impact on connectivity research, where they will

facilitate network discovery in very large model spaces.
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Chapter 3

Estimating the transfer function

from neuronal activity to BOLD

using simultaneous EEG-fMRI

3.1 Introduction

Functional magnetic resonance imaging (fMRI), with blood oxygenation level de-

pendent (BOLD) contrast, is an established method for making inferences about

regionally specific activations in the brain [Frackowiak et al., 2003]. However, the

relationship between BOLD and neuronal activity is still under debate, in particu-

lar, it is still unclear how the hemodynamic response is influenced by the temporal

dynamics of the underlying neuronal activity.

One of the approaches used to study this relationship is to combine information

from hemodynamic measures such as fMRI and electrophysiological measures, such

as electroencephalography (EEG) and magnetoencephalography (MEG) (see Chapter

1). EEG and MEG are well-established non-invasive techniques, and are well suited

to studying the temporal dynamics of neuronal activity, since they provide direct

measurement of this activity with high temporal resolution [Hämäläinen et al., 1993].

In humans, the study of correlations between EEG and fMRI signals has been

pioneered by epilepsy researchers, such as Lemieux et al. [2001] and Salek-Haddadi

et al. [2002]. However, most of our present knowledge about neurovascular coupling

comes from animal research, as described in Chapter 1. This research supports the

emerging consensus in which BOLD is thought to result from pre-synaptic activity
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and the release of neurotransmitters, in particular glutamate [Friston, 2008]. This

release triggers a response in surrounding glial cells, especially astrocytes, leading

to the generation of vasodilatory signals and consequently BOLD [Nair, 2005]. As

well as indirectly causing BOLD, glutamate will increase post-synaptic activity and

therefore the local field potentials (LFP). Increases in LFP frequency would therefore

be accompanied by faster glutamate recycling and consequently a larger BOLD signal.

Whilst the above physiological perspective would suggest that BOLD should be

sensitive to the frequency content of neuronal activity, results from the neuroimaging

literature are not completely clear cut. For example, some studies (see next para-

graph) suggest that BOLD is mainly dependent on the total energy, or total spectral

power, of neuronal activity. Others (see next but one paragraph), suggest that BOLD

is sensitive to a certain range of frequencies or results from more complicated dynam-

ics.

Among those proposing a relationship between BOLD and total neuronal power,

Wan et al. [2006] have found significant correlation between the mean power (mean

square current source density estimates during visual stimulation) of source recon-

structed EEG data in human primary visual cortex and a neuronal efficacy param-

eter, derived from fitting a Balloon model to fMRI data (see Chapter 1). Similarly,

Nangini et al. [2008] propose that the energy density, as measured by the square

of the equivalent current dipole (ECD) waveforms from source reconstructed MEG

data, is a better representation for the neuronal input functions, than the stimulus

functions conventionally used in convolution models for the analysis of fMRI data

[Friston et al., 1995]. In addition to these studies, theoretical models for integrating

EEG/MEG and fMRI (Babajani and Soltanian-Zadeh [2006]; Nunez and Silberstein

[2000]; Trujillo-Barreto et al. [2001]) assume a relationship between indices of neu-

ronal activity and BOLD that is independent of the frequency of this activity. For

instance, Babajani and Soltanian-Zadeh [2006] use a neural mass model of neuronal

activity and propose that the squared post-synaptic membrane potential from both

excitatory and inhibitory cells from a given cortical area drives increases in cerebral

blood flow, and consequently BOLD.

Among those proposing a relation between BOLD and the frequency structure of

electrophysiological signals Goldman et al. [2002], Moosmann et al. [2003] and Laufs

et al. [2003] have shown that reductions in ongoing scalp EEG alpha power in humans

correlate with increases in BOLD activity. Lachaux et al. [2007] have found, using

intra-cranial recordings in epileptic patients, a close spatial correspondence between
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regions of fMRI activation and sites showing EEG energy variation in the gamma

band. Mukamel et al. [2005] have found positive correlations between LFPs and

BOLD at high gamma-range frequencies ([40, 130] Hz) and negative correlations at

low/alpha-range frequencies ([5, 15] Hz) in auditory cortex of neurosurgical patients.

In addition, Niessing et al. [2005] have shown that fluctuations in hemodynamic

response tightly correlate with the power of LFP oscillations, recorded in cat primary

visual cortex, in the same high frequency (gamma) range.

Kilner et al. [2005] note that from the perspective of fMRI, neuronal activation is

proportional to relative metabolic demands, or rate of energy dissipation (1/s units).

In terms of EEG, the effect of activation is to shift the spectral profile toward higher

frequencies (1/s units) with a reduction in amplitude. This led Kilner et al. [2005]

to propose a ‘Heuristic’ model that links these two observations via a dimensionality

analysis. This Heuristic specifies that BOLD activations are accompanied by an

increase in the ‘average’ frequency of EEG neuronal activity, where average is defined

in the root mean square (RMS) sense. Thus increases in higher frequencies, such as

the gamma range, relative to lower frequencies, such as the alpha range, would lead

to increases in BOLD. Conversely, increases in alpha relative to gamma would lead

to decreases in BOLD. The equations of the ‘Heuristic’ model and its assumptions

are summarised in the Appendix.

Moreover, using data from Niessing et al. [2005] the Heuristic model has been

shown to provide a better fit than a model based on gamma correlation alone [Kilner

et al., 2007]. In similar spirit to the idea underlying the Heuristic, Laufs et al. [2006a]

have found that BOLD deactivations in humans are associated with increases in the

ratio between theta and alpha bands (measured with scalp EEG), and that these

deactivations cease when there is a decrease in this ratio and an increase in the

beta/alpha ratio.

More recently, Goense and Logothetis [2008] used simultaneous intra-cortical

LFP-BOLD recordings and a multiple regression model in which activity in many

different frequency bands, covering the entire LFP range of frequencies, were used to

predict BOLD activity in alert behaving monkeys. The results showed that all bands

explained a significant part of the BOLD response.

The link between neuronal activity and BOLD has been investigated at both a

microscopic scale, using invasive, co-localised recordings in animals (e. g. Goense and

Logothetis [2008]; Logothetis et al. [2001]; Niessing et al. [2005]), and at a macroscopic

scale using simultaneous EEG-fMRI in humans [Goldman et al., 2002; Laufs et al.,
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2003; Lemieux et al., 2001; Moosmann et al., 2003]. A problem with the macro-

scopic approach is that the electrophysiological measure, EEG, is not co-localised

with BOLD. This issue can be addressed by the use of principal component analysis

(PCA) [Laufs et al., 2006b], independent component analysis [Eichele et al., 2005,

2009] or source reconstruction [Wan et al., 2006]. A summary of the above findings

is provided in Table 1.2 of Chapter 1.

In this chapter we use simultaneous EEG-fMRI in humans and employ a visual

flicker stimulation paradigm to elicit evoked activity in sensory cortex. As scalp

EEG measures the activity of multiple distributed neuronal processes we used a PCA

approach to isolate activity that was primarily related to the stimulus paradigm. The

resulting time series was then used as a surrogate for neuronal activity.

We then regressed the fMRI data onto convolved features of the power spectrum

of the first principal component of the EEG data. We use a standard statistical para-

metric mapping (SPM) approach employing F-tests to compare models embodying

different transfer functions. These are (i) a total power model (ii) a frequency re-

sponse model, comprising multiple regression onto power in different frequency bands,

and (iii) a Heuristic model in which BOLD is predicted by the RMS EEG frequency.

This chapter is structured as follows. In Section 3.2 we describe the experimental

paradigm and the simultaneous acquisition of EEG and fMRI data. We also describe

the preprocessing steps used for artefact removal, define the transfer functions investi-

gated and the methods used to compare models. Section 3.3 presents the results from

the SPM analysis and in Section 3.4 these results are discussed in light of previous

results from the literature.

3.2 Materials and methods

3.2.1 Subjects and task

Three healthy volunteers (three male, mean age 35 ± 4 years) participated in the

study after giving informed consent. Subjects were exposed to visual flicker stimuli

of a number of different frequencies. A reversing black and white checkerboard (11

x 11 squares, size 13 cm x 13 cm) was delivered via a computer monitor (60 Hz

refresh rate) and projected on a screen positioned 47 ± 1 cm from a 45◦ mirror

located 11 ± 3 cm from the subject (visual angle = 6.5 ± 0.5◦). The stimulation

frequencies used were 2.00, 3.75, 5.00, 6.00, 7.50, 10.00, 15.00 and 30.00 Hz (screen
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reversing frequencies correspond to 2 times the value of the stimulation frequencies;

in Chapter 5 we use reversing frequencies). Stimuli were delivered in epochs of 5 scans

(15.3 s), followed by periods of 15.3 s of rest (blank screen), and the order of stimulus

blocks (eg. 10 Hz, 6 Hz, 5 Hz etc.) was randomised. Subjects were instructed to view

a fixation cross which was visible during both rest and stimulus periods, and no overt

response was required in either condition. Three consecutive sessions of the same

experimental task were recorded for each subject. Although luminance levels were

not held constant for the different flicker frequencies, the variations in luminance were

measured using a lux meter placed in front of the visual display unit. This allowed

luminance variations to be regressed out during subsequent statistical analyses, when

required.

As the aim of our experiment was to investigate a basic physiological mechanism,

the neurovascular coupling, the paradigm used here was designed to induce a large

electrophysiological response in sensory cortex. For this reason, inter-subject variabil-

ity was found to be low, i.e. the response to the stimulation paradigm, as observed in

fMRI and EEG signals (see below), was found to vary little from subject to subject.

It was therefore appropriate [Penny and Holmes, 2006] to acquire data from a small

number of subjects (three) and to report results in the form of case studies, as well

as to summarize these results using fixed effects SPMs (see below). This follows the

precedent of Wan et al. [2006] who also used a case study approach with a small

number of subjects (five).

3.2.2 EEG acquisition

EEG was acquired simultaneously with fMRI using a synchronized imaging protocol

[Mandelkow et al., 2006] and an MR-compatible BrainAmp amplifier and BrainCap

EEG cap with ring Ag/AgCl electrodes (Brainproducts GmbH, Munich, Germany).

Raw EEG was sampled at 5 kHz and a low pass filter (cut off frequency: 1 kHz)

was used. This system provided 29 EEG channels, 2 EOG channels, and 1 ECG

channel. The electrodes were distributed according to the 10/20 system, and the

reference electrode was located between Fz and Cz. EEG was also recorded outside

of the MRI environment (in a dark and acoustically isolated room), so that the

effect of MRI-induced artefacts and their removal could be assessed. We additionally

measured the pulse using a pulse oxymeter attached to the subject’s finger and the

locations of the EEG electrodes were digitised with a Polhemus digitiser.
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3.2.3 fMRI acquisition

Images were acquired from a 1.5 T whole-body scanner (Magnetom Sonata, Siemens

Medical, Erlangen, Germany) operated with its standard body transmit and CP

head receive coil. The manufacturers standard automatic 3D-shim procedure was

performed at the beginning of each experiment. The scanner produced T2*-weighted

images with a single-shot gradient-echo EPI sequence. Whole brain images consisting

of 34 contiguous transverse slices, on a 64-by-64 grid, were acquired every 3.06 seconds

resulting in a total of 320 functional scans for each of the three sessions of each subject

(slice thickness = 2 mm, gap between slices = 1 mm, repetition time TR = 90ms,

flip angle = 90◦, echo time TE = 50 ms, field of view FOV = 192 × 192 mm2, and

therefore 3 × 3 × 3 mm voxel resolution). Whole-brain structural scans were also

acquired using a T1-weighted 3D-Modified Driven Equilibrium Fourier Transform

(MDEFT) sequence [Deichmann et al., 2004] in 176 sagittal partitions with an image

matrix of 256 × 256 (TR = 12 ms, TE = 4 ms, flip angle = 23◦, and voxel size 1 ×
1 × 1 mm).

3.2.4 EEG data analysis

Acquisition of EEG in the MRI environment induces Gradient and Cardiac related

artefacts, such as the Ballistocardiogram artefact [Goldman et al., 2000], as discussed

in Chapter 1. The data acquired inside the scanner were corrected off-line using facil-

ities in the Brain Vision Analyzer software package (Brainproducts GmbH, Munich,

Germany) [Allen et al., 2000]. First, the Gradient artefact was removed via mean

subtraction with template drift compensation. Cardiac related artefacts were then

removed by subtracting the first three principal components that were time-locked

to pulse oxymeter readings. EEG data acquired outside the scanner were not pro-

cessed in this way. Both the data acquired inside and outside the scanner were then

high-pass filtered (0.5 Hz) to reduce slow drifts in the signal.

After MR-related artefact removal and filtering, the inside and outside EEG data

were visually inspected for other artefacts, such as eye-blinks, as well as movement

related artefacts. Due to their proximity to the subjects’ eyes, the Fp1 and Fp2

electrodes contained too many eye-blink artefacts to be included in the analysis.

After visual inspection, the EEG data from the remaining channels were then

processed to form a single representative ‘scalp EEG’ time series, by projecting the

data onto a subspace defined by its first principal eigenvector u1.
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In previous work Moosmann et al. [2003] and Laufs et al. [2003], have generated

a single representative time series by computing the mean over a subset of activated

electrodes (e.g. 01, 02, P1, P2). We have used a spatial eigendecomposition method

because this data driven approach produces the single time series which, out of all

possible linear projections, captures most variance in the original data. However, as

brain activity in our paradigm is primarily driven by activity in visual cortex this

spatial eigenmode is primarily loaded onto posterior electrodes, as is shown below.

The principal eigenvectors can be computed from a singular value decomposition

(SVD) of the data. If Y is an ne× nt matrix of EEG data, with ne electrodes and nt

time points, then an SVD gives Y = USV T , and the projection is given by: ỹ = uT1 Y ,

where u1 is the first column of U .

To investigate the spectral properties of the scalp signal, ỹ(t), we decomposed it

into the time-frequency domain. This decomposition was obtained by convolving the

signal with Morlet wavelets, G, where for each time point t and frequency f :

G(f, t) = A exp(−t2/(2σ2
t )) exp(2iπft), (3.1)

where A = (σt
√
π)−1/2, σt = 1/(2πσf ), σf = f/R, and R = 7 is the ”wavelet

factor”. The time-varying power of the signal around frequency f , is then given by

the squared modulus of the convolution [Tallon-Baudry and Bertrand, 1999]:

P (f, t) = |G(f, t) ∗ ỹ(t)|2, (3.2)

and the power spectrum for all frequencies and time points can be represented by

the matrix P with dimensions nf × nt, where nf is the number of frequencies.

3.2.5 Transfer functions

From the spectrum of the EEG data, P , we constructed regressors defining the differ-

ent transfer functions we were interested in comparing. These represent the functional

link between neuronal activity and BOLD.

The first model, motivated by the result of Wan et al. [2006], assumes that neu-

rovascular coupling is a power transducer. To this end we derived a feature corre-

sponding to the ‘Total Power’ in the scalp EEG time-series. This was obtained by

summing the EEG power over all frequencies analyzed ([1, 40] Hz):
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q
TP

(t) =

nf∑
f=1

P (f, t). (3.3)

The second model, following Goense and Logothetis [2008], assumes that BOLD

is best explained by a linear combination of activity in different frequency bands.

We refer to this as the ‘Frequency Response’ model and consider three variants, each

with a different number of frequency bands. These comprise (i) three bands of low

frequencies [1, 7] Hz, alpha frequencies [8, 15] Hz and higher frequencies [15, 40] Hz,

(ii) five bands of delta [1, 4] Hz, theta [4, 8] Hz, alpha [8, 13] Hz, beta [13, 30] Hz

and lower gamma [30, 40] Hz activity and (iii) eight bands of 5 Hz each, from 1 to

40 Hz. The time-series for each band were obtained by summing the power in the

corresponding frequency interval, b = [fmin, fmax]:

q
FR

(t)b =

fmax∑
f=fmin

P (f, t). (3.4)

The resulting time-series for each band, b, correspond to different columns of the

same design matrix (see below).

The third model, which we refer to as the ‘Heuristic’ model based on Kilner et al.

[2005], assumes that BOLD is best explained by a linear convolution of the ‘Root

Mean Squared Frequency’ (RMSF) function. This is given by

q
RMSF

(t) =

√√√√ nf∑
f=1

f 2P̃ (f, t), (3.5)

where P̃ is the corresponding normalised power spectrum of the representative

scalp time series (at each time point, t, power in each frequency is divided by the

total power over all frequencies, i.e. at each time point the normalised power spectrum

sums to 1 over all frequencies). This function describes how changes in the relative

power of the different frequencies in the EEG spectrum could be associated with

changes in BOLD.

We also investigated two variants of the Heuristic. The first, uses the un-normalised

power spectrum P , instead of P̃ :
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q
uRMSF

(t) =

√√√√ nf∑
f=1

f 2P (f, t). (3.6)

We refer to this as the ‘un-normalised Heuristic’ (u-Heuristic). Second, to test

for the importance of the non-linearity introduced by the square root in the RMSF

function we defined the function,

q
MSF

(t) =

nf∑
f=1

f 2P̃ (f, t), (3.7)

which is a linear version of Eq. 3.5. We refer to this as the ‘linear Heuristic’

(l-Heuristic) model.

To further test the importance of the non-linearity we defined another function

based on a linear convolution of the ‘Mean Frequency’ (MF) of the EEG signal:

q
MF

(t) =

nf∑
f=1

fP̃ (f, t). (3.8)

Finally, we constructed one last frequency-independent transfer function purely

based on variations of amplitude in the EEG signal, as captured by the global field

power (GFP). The GFP corresponds to the root-mean-square deviations between all

electrodes in a given potential field [Skrandies, 1995]:

qGFP (t) =

√√√√ ne∑
i=1

(Ui(t)− Ū(t))2, (3.9)

where Ū(t) = 1
ne

∑ne
j=1 Uj(t) is the mean of the potential across electrodes at a

given time point. This is a reference-free measure and allowed us to compare the

previously described transfer functions, which are all based on the power spectrum

of the EEG data, with a measure based simply on the amplitude of the EEG signal.

This is also the only function constructed using data from all electrodes, instead of

the virtual electrode obtained using PCA.

For each of the above models, the time series were convolved with an informed

basis set to accommodate variability in the hemodynamic response. This basis set

includes the canonical hemodynamic response function (HRF), as well as its first

temporal and dispersion derivatives (see Chapter 1). The two derivative regressors
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allow for variations, across subjects and across the brain, in the peak response time

and duration of the hemodynamic response. The temporal derivative, for example,

allows for peak responses that are approximately one second earlier or later than

is usual. The convolved time series were then downsampled to match the fMRI

sampling rate, and served as regressors of interest in the subsequent general linear

model (GLM).

As we are using an informed basis set with 3 basis functions, each of the To-

tal Power, Heuristic, u-Heuristic, l-Heuristic, MF and GFP models are implemented

using 3 design matrix columns. There are therefore 3 corresponding regression co-

efficients of interest to estimate for each of these models. The Frequency Response

model is implemented with 9, 15 or 24 columns for the 3, 5 or 8 band-model, re-

spectively. The coefficients of interest, as well as the total number of parameters

estimated for each function are summarised in Table 3.1. Whilst some of these mod-

els yield a large number of parameters, this is readily accommodated because there

are 9 sessions of scanning with 100 data points each, yielding a total of 900 data

points (see below). However, we note that although we have 900 data points, these

are not all independent due to the temporal correlations in the BOLD time series. In

the GLM framework, temporal correlation is accounted for using an autoregressive

AR(1) model during classical ReML parameter estimation [Friston et al., 2007b].

3.2.6 fMRI data analysis

The fMRI data were pre-processed with SPM8 software (http://www.fil.ion.ucl.ac.uk/

spm/) implemented in Matlab (The Mathworks, Inc.). The first five scans of each ses-

sion were discarded, and the pre-processing steps included: (a) realigning the images

to the first scan and coregistering the structural scan of each subject with the mean

functional image from all sessions; (b) correcting for differences in acquisition time

between slices (known as slice-timing correction) and normalising all the functional

and structural scans to a standard EPI template based on the Montreal Neurological

Institute (MNI) reference brain in Talairach space [Talairach and Tournoux, 1988]

(c) smoothing the functional images (Gaussian kernel, 8 mm half width). The move-

ment parameters1 obtained from the realignment step were included in the subsequent

GLM analyses as confounding covariates (Table 3.1). The data were also high-pass

1The movement parameters correspond to the three translations and rotations that are applied
to each scan in order to realign it with a reference image.
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Table 3.1: Summary of model comparisons and corresponding number of estimated
parameters. For one session: nR is the number of regressors of interest for each
transfer function; nBF is the number of basis functions, which is always 3 (canonical
HRF, temporal and dispersion derivative); nC is always 7 and corresponds to the
number of confounds (6 motion parameters and 1 mean regressor); nP is the total
number of parameters to be estimated for each comparison.

Model comparisons nR × nBF + nC = nP nP (9 sess.)

i. Heuristic 1× 3 + 7 = 10 90
Total Power (TP) 1× 3 + 7 = 10 90
Freq. Response 3 bands (FR3) 3× 3 + 7 = 16 144

ii. TP vs Heuristic (1 + 1)× 3 + 7 = 13 117
TP vs FR3 (1 + 3)× 3 + 7 = 19 171

iii. TP vs FR3 vs Heuristic (1 + 3 + 1)× 3 + 7 = 22 198

iv. TP vs FR3 vs Heuristic vs GFP (1 + 3 + 1 + 1)× 3 + 7 = 25 225

v. Heuristic vs FR1 (1 + 1)× 3 + 7 = 13 117

vi. Heuristic vs u/l-Heuristic/MF (1 + 1)× 3 + 7 = 13 117
Heuristic vs FR5/FR8 (1 + 5/8)× 3 + 7 = 25/34 225/306
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filtered, with a cut off period of 128 s.

We report analyses based on the first 100 scans of each session due to suspected

movement-related (i.e. high amplitude and high-frequency) artefacts present in the

EEG signal, after approximately 5 minutes of recording, in more than one session

and subject. However, we later visually re-inspected the EEG signal and decided to

include some of the previously discarded scans, and re-analysed the data using 200

scans per session. This new analysis yielded very similar results and strengthened

the findings obtained with less data (see below).

For each subject we first looked at the effect of the experimental task. We used the

onsets of the stimuli as regressors, and inferences based on the statistical parametric

maps (SPMs) from a fixed effects group analysis were considered significant at p <

0.05, corrected for multiple comparisons using random field theory [Friston et al.,

1995] (see Chapter 1). This preliminary SPM analysis, which used convolved visual

stimulus onsets as regressors, is therefore a separate analysis than the one in which

EEG-derived features were used as regressors. Inference was based on F-tests, which

test for the additional variance explained by a set of regressors of interest (see Chapter

2). We also used these maps to generate a mask image, which we refer to as the

‘BOLD activation mask’. This mask allows us to look at correlations between model

predictors and BOLD, limited to the voxels activated by the checkerboard stimuli.

3.2.7 Model comparisons

In this section we describe the comparisons between transfer functions that were

performed in order to investigate the link between neuronal activity and BOLD.

We began by looking at correlations between individual functions and the BOLD

signal, by using these functions in separate design matrices. This was followed by a

more formal comparison, which included regressors from multiple models in the same

design matrix.

Inference in both cases was based on F-tests (see Chapter 2). In the first case

we test for the effect of each model alone, i.e. without taking into account the

rest of the models. This is to reproduce previously published results, in which each

individual feature of neuronal activity has been linked to BOLD. In the second case,

a significant F-statistic for a particular transfer function suggests that model explains

BOLD variability that can’t be explained by any of the other coupling functions in

that design matrix [Friston et al., 1995]. This allows us to infer that one model is
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better than another.

These tests were performed using contrast vectors [Christensen, 2002] that se-

lect the regressors of interest for each model, including the temporal and dispersion

derivative regressors (Table 3.1). The criteria used to evaluate the models included

the F-statistic scores, the number of voxels above the p < 0.05 (FWE corrected) and

p < 0.001 (uncorrected) thresholds, as well as the location of these voxels (inside or

outside the ‘BOLD activation mask’) for each function (Table 3.3).

The transfer functions were compared as follows (a summary of these comparisons

can be found in Table 3.1):

i. In order to ascertain whether our main transfer functions showed significant

correlations with BOLD, as suggested by the results from the literature on which

these functions were based (see Transfer Functions section), we correlated the Total

Power, Heuristic and Frequency Response (3 bands) models individually with BOLD,

as described above.

ii. Subsequently, we compared the frequency-dependent functions (Heuristic and

Frequency Response) with the main frequency-independent function, Total Power.

We implemented two pair-wise comparisons (a) Total Power versus Heuristic and (b)

Total Power versus Frequency Response (3 bands), which allowed us to probe whether

the link between BOLD and neuronal activity is frequency-dependent.

iii. We then implemented a three-way comparison (Total Power, Frequency Re-

sponse with 3, 5 or 8 bands and Heuristic) to finally determine which transfer function

provides a better fit to the BOLD data, when all models are taken into account.

iv. We also performed a similar comparison but we’ve included the GFP transfer

function together with the previous models. This allowed us to assess whether a

model based on the amplitude of the EEG signal, rather than its spectral content,

was a better predictor of BOLD.

v. To determine whether the Frequency Response model performs better with

fewer frequency bands, in particular with just a single band, we’ve performed two

pairwise comparisons between (a) the Heuristic and the power in the Alpha fre-

quencies (8 to 15 Hz) and between (b) the Heuristic and the power in the high

(Beta/Gamma) frequency band (15 to 40 Hz).

vi. Finally, to investigate different properties of the Heuristic model, as described

above, we implemented several pair-wise comparisons. These included the Heuristic

versus (a) the u-Heuristic, (b) the l-Heuristic, (c) the MF function and (d) the Fre-

quency Response model with 5 and 8 bands constructed using the normalised power
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spectrum.

For each of the above comparisons we used a fixed effects group analysis using

3-sessions of data from three subjects (9 sessions in total), giving rise to a total of 900

scans. Subsequent analyses based on 1800 scans (200 scans per session, as mentioned

above) produced very similar results. These fixed effects SPMs summarise the results

over the three subjects [Penny and Holmes, 2006]. We also computed SPMs for each

subject in isolation, in a case study approach (see below).

The total number of regressors for each of the design matrices used is summarised

in Table 3.1. For example, for the main three-way comparison (iii.) the design

matrix employed 198 regressors (198 = 3 regressors of interest for Total Power, 3 for

the Heuristic, 9 for the three-band Frequency Response model, 6 for the movement

regressors and 1 for the session mean × 9 sessions).

The stimulus onset-based regressors were not included in these design matrices,

since they do not provide a plausible biological model, or link, between BOLD and un-

derlying neuronal activity. These regressors were only used in a preliminary analysis

to define a ‘BOLD activation mask’.

3.3 Results

3.3.1 Artefact correction and SVD

To remove scanning artefacts from the EEG, the data were processed as described

in Section 3.2.4. Figure 3.1 shows the first 10 sec of an example time-series from

corrected EEG data for (a) the mean of electrodes O1 and O2 and (b) the scalp

signal, ỹ, obtained from the SVD. As can be seen, the data appears uncontaminated

by MR-related artefacts and is relatively free from other artefacts, such as eye-blinks.

A prominent ∼ 10 Hz waveform can also be easily detected in these signals.

The fact that the time courses of these two signals look very similar (Figure 3.1)

was expected, since the first principal component of the EEG is primarily driven by

activity from posterior regions. This is confirmed by plotting the topography of this

component, as shown in Figure 3.2. In addition, the first component explains 67 %

of the total variance of the data, which should provide a good representation of EEG

activity.

After this step we computed steady state visual evoked responses (SSVERs) to

further assess the goodness of the MR-related artefact correction method. These
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Figure 3.1: Example of artefact corrected EEG time-series for the first 10 seconds of
the first visual stimulation period: (a) Mean activity of electrodes O1 and O2. (b)
Projection onto first principal component (SVD time-series).

SSVERs were computed by first epoching the artefact-corrected 29-electrode EEG

data acquired inside the MRI scanner, for each subject/session, in half-second (500

ms) post-stimulus window and then averaging across trials. Spectral analysis was

then performed on the epoched and averaged EEG, using the data from electrode

O2 (8 averaged epoch time-series corresponding to the different stimuli used). The

time-frequency spectra were constructed using wavelets, as previously described in

Section 3.2.4 (Eq. 3.1 and Eq. 3.2). The same procedure was then performed to

obtain the SSVERs for the EEG data acquired outside the MRI scanner with the

same experimental conditions, including the same paradigm. The responses obtained

for both datasets were then compared. Figure 3.3 shows the averaged SSVERs over

all sessions of one representative subject for different frequencies of visual flicker.

As can be seen in Figure 3.3 the major component of the spectra is at the second

harmonic of the stimulus frequency. This result was expected since for reversing stim-

uli the SSVERs are usually produced at the phase-reversal or alternation frequency,

which is twice the stimulation frequency [Burkitt et al., 2000]. This fact also explains

why almost no response is seen for the 30 Hz stimulus, for the range of frequencies

here analysed (1 to 40 Hz).

However, for the purpose of this section we were only interested in the similarity
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Figure 3.2: Topography (2D) of the EEG first principal component for a represen-
tative subject. The locations of the occipital and frontal electrodes are indicated by
their respective names.
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Figure 3.3: Power spectra of the SSVERs for EEG acquired outside (left) and inside
the scanner (right) averaged over the three sessions of one representative subject.
The frequencies on top of each plot correspond to the stimulation frequencies of the
visual flicker stimuli.
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between the responses obtained inside and outside the scanner, and as can be seen in

Figure 3.3 the close correspondence indicates that the MRI artefacts can be removed

without filtering out the signal of interest.

The SSVERs were not used in the subsequent regression analysis. To compare

the different transfer functions we used the EEG artefact corrected, un-averaged

projected data onto its first principal component.

3.3.2 Effect of the experimental task

We then looked at the effects of visual flicker on both the EEG and fMRI data.

For the EEG data, the SSVER spectra shown in Figure 3.3 provide evidence that

visual cortical neurons synchronised their firing to the stimuli, leading to strong EEG

responses at the second harmonic of the stimulus frequency.

Table 3.2: Anatomical location in Talairach space of the sites with significant results
from the three-way model comparison (fixed effects SPM analysis, without SVC).

Regressors [x, y, z] (mm) Location Inference

Stimuli [12, -101, 18] Right Cuneus p < 0.05 (FWE)
[-9, -101, 15] Left Superior Occipital Gyrus

[3, -92, 3] Right Calcarine Gyrus

Heuristic [-6, -77, 15] Left Calcarine Gyrus p < 0.05 (FWE)
[3, -92, 10] Right Calcarine Gyrus
[-54, -17, 9] Left Superior Temporal Gyrus
[60, -11, 15] Right Rolandic Operculum

[-12, -62, -12] Left Cerebellum

Total Power [-48, -74, 12] Left Middle Temporal Gyrus p < 0.001 (unc.)

Freq. Response [-48, -74, 12] Left Middle Temporal Gyrus p < 0.001 (unc.)
[-42, -74, -15] Left Cerebellum

For the fMRI data, both single subject and fixed effects group analyses showed

significant bilateral activation (p < 0.05 (FWE)) in visual areas of the occipital cortex
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(Figure 3.4). These areas were identified with the help of the ‘Anatomy Toolbox’

for SPM software [Eickhoff et al., 2005]. Talairach coordinates of cluster maxima

[x,y,z] mm: Right Cuneus [12, -101, 18], Left Superior Occipital Gyrus [-9, -101,

15], and Right Calcarine Gyrus [3, -92, 3] (Table 3.2). The fMRI images from the

group analysis in Figure 3.4 were used to create the BOLD activation mask, so that

subsequent analyses could be restricted to BOLD activated regions.

Figure 3.4: Effect of visual flicker stimulation on fMRI data. Single-subject analyses
(3 sessions per subject) and Fixed effects group analysis (9 sessions in total), p < 0.05
(FWE). The voxel locations written on the left of each figure correspond to the most
significant cluster maximum for the group analysis (Talairach space).

In a separate analysis (not shown) which controlled for variation in luminance

levels using an additional regressor of no interest, BOLD activity was shown to have

an inverted U-shaped response to flicker frequencies below 8Hz (equivalent to 16
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Hz for reversing frequencies, see Chapter 5). The peak response was for a flicker

frequency of 4 Hz (8 Hz reversing frequency), agreeing closely with previous studies

(Singh et al. [2003], Parkes et al. [2004] and Wan et al. [2006]). The results of this

analysis are presented in Chapter 5. This result also explains why the amplitude of

the SSVERs plotted in Figure 3.3 decreases with increasing stimulus frequency, for

both the responses obtained inside and outside the scanner (see scaling in Figure 3.3).

3.3.3 Relationship between neuronal activity and BOLD

Figure 3.5 plots example regressors for the Total Power, Heuristic and Frequency Re-

sponse (3 bands) models derived from Equations 3.3, 3.4 and 3.5, convolved with the

Hemodynamic Response Function and downsampled to the fMRI frequency (1/3.06

sec). Figure 3.5d plots an example BOLD time-series for the same time interval and

subject, at the most significant cluster maximum from Figure 3.4 (fixed effects group

analysis), in relation to the paradigm. As can be seen there is an increase in BOLD

during the ‘Task’ blocks which is better reflected in the Heuristic than in the other

models. The highest frequency band of the Frequency Response model (Figure 3.5c,

black) also seems to follow BOLD more closely than the time-series from the other

bands.

The SPM analyses with the separate design matrices (one for each model) showed

significant (p < 0.05 (FWE)) correlations between each model and the observed

BOLD signal, as can be seen in Figure 3.6. The locations of maximal correlation

for each model were not far apart and were included in the voxels activated by the

experimental task shown in Figure 3.4. Although all functions correlated with BOLD,

the Heuristic produced higher maximal F scores and more voxels above the chosen

threshold (p < 0.05 (FWE)) than the other two models (Figure 3.6).

The contrast estimates for the most significant voxel for each model showed that

the Heuristic correlates positively with the amplitude of the BOLD response, while

Total Power and the first frequency band of the 3-band Frequency Response model

correlated negatively with this response (Figure 3.7). Other sites showed significant

correlation between BOLD and the other two frequency bands (not shown).

We then performed two pair-wise comparisons (a) between Total Power and

Heuristic and (b) between Total Power and the Frequency Response model (Fig-

ure 3.8). We included the regressors for the two functions we were interested in

comparing in the same design matrix. The results clearly revealed that the Heuristic
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Figure 3.5: Example regressors for (a) Total Power, (b) Heuristic and (c) Frequency
Response (3 bands) models after convolution with the HRF (subject 2). (d) Example
BOLD time-series for the same period of time and subject, at the most significant
cluster maximum ([12, -101, 18] mm, Talairach space) from the fixed effects group
analysis of the main effects of visual stimulation (Figure 3.4). The numbers at the
bottom of (d) denote the stimulus frequencies.

69



3. Estimating the transfer function from neuronal activity to BOLD
using simultaneous EEG-fMRI

Figure 3.6: Fixed effects SPM analyses (p < 0.001 (unc.)) for the Heuristic, Total
Power and Frequency Response (3 bands) models analysed in separate design ma-
trices. The voxel locations written on the left of each figure correspond to the most
significant cluster maximum after small volume correction with the BOLD activation
mask (Talairach space).
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Figure 3.7: Contrast estimates and 90% C.I. for (a) Heuristic, (b) Total Power, and
(c) Frequency Response with 3 bands (analysed individually). The estimates include
the canonical HRF, as well as its temporal and dispersion derivatives.
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provides a much better fit to the data than Total Power. For the second comparison it

was difficult to see the effects of each model, since the regressors for the Total Power

and particularly the first band from the Frequency Response function (3 bands) were

highly correlated.

Figure 3.8: Two-way model comparison between (a) Total Power versus Heuristic and
(b) Total Power versus Frequency Response (fixed effects SPM analyses (p < 0.001
(unc.)). The voxel locations written on the left of each figure correspond to the most
significant cluster maximum after small volume correction with the BOLD activation
mask (Talairach space). These F-maps show the correlations between EEG and
BOLD that are uniquely attributable to each model within a pair.

The three-way comparison, using regressors from all models in the same de-

sign matrix, showed a much more widespread and stronger relationship between the

Heuristic regressors and the BOLD signal, compared to the Total Power or the Fre-

72



3. Estimating the transfer function from neuronal activity to BOLD
using simultaneous EEG-fMRI

quency Response functions, p < 0.001 (unc.) (Figure 3.9). Furthermore, only the

Heuristic showed significant correlations when we corrected for multiple comparisons,

(p < 0.05 (FWE), using a small volume correction (SVC) (see Chapter 1) over the

BOLD activation mask), and the clusters that remained after SVC were located in

the Right and Left Calcarine Gyrus (Talairach coordinates [x,y,z] mm: [3, -92, 10]

and [-6, -77, 15], respectively) and in the Left Cerebellum (Talairach coordinates

[x,y,z]: [-12, -62, -12]) (Table 3.2).

These results are summarised in Table 3.3, where the number of voxels and the

highest F-scores obtained for each model, within and outside the activation mask, for

different thresholds can be found. The number of voxels, as well as the F-statistics,

in both locations and thresholds were significantly higher for the Heuristic than for

the other models (Table 3.3).

Table 3.3: Summary of results for the three-way comparison between Total Power
(TP), the Heuristic and the 3-band Frequency Response (FR) models from the fixed
effects group analysis (Figure 3.9). ‘BAM’ is the Brain Activation Mask obtained
from the main effects of stimulation (Figure 3.4); nvox is the total number of voxels
within a region and Fmax the maximum F-statistic within that region.

nvox | Fmax
Location Threshold Heuristic TP FR3

Within BAM
p < 0.05 (FWE) 17 | 13.3 0 | - 0 | -
p < 0.001 (unc.) 620 | 13.3 5 | 8.2 18 | 4.9

Outside BAM
p < 0.05 (FWE) 7 | 13.3 0 | - 0 | -
p < 0.001 (unc.) 801 | 13.3 46 | 9.6 95 | 4.8

This three-way comparison is the main result of this work and it was replicated

in a case study analysis [Penny and Holmes, 2006] in which data from the different

subjects was analysed separately. The individual results were very consistent across

subjects: the Heuristic model was markedly superior for all three subjects (individual

SPMs not shown), by producing higher F-scores than the rest of the models and

more activated voxels inside and outside the Brain Activation Mask. These results

are summarised in Table 3.3 (individual tables not shown).

These results were also reproduced when we analysed 1800 scans instead of 900

(see above). Moreover, the inclusion of more data produced even higher statistics
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and more significant voxels (in the same brain areas reported) for the Heuristic than

for the other models (not shown).

Figure 3.9: Three-way model comparison: fixed effects SPM analyses (p < 0.001
(unc.)). Heuristic, Total Power and Frequency Response (3 bands). The voxel lo-
cations written on the left of each figure correspond to the most significant cluster
maximum after small volume correction with the BOLD activation mask (Talairach
space). These F-maps show correlations between EEG and BOLD that are uniquely
attributable to each model.

We also compared our three main models (Heuristic, Total Power and Frequency

Response (3 bands)) with the Global Field Power of the EEG signal as described

in Section 3.2.5. Therefore we added this model to our fixed-effects design matrix.

However, the inclusion of this function did not affect the previously obtained results

(maps not shown), and the Heuristic again provided a better fit to the data, by pro-
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ducing more spatially distributed significant activations (p < 0.05, FWE corrected)

and higher F scores than the other models, including the GFP. These comparisons al-

lowed us to reject the hypothesis that a model based purely on variations of amplitude

across the EEG channels could provide a better fit to the BOLD data.

In addition, when we compared the Heuristic with the single-band Frequency Re-

sponse models, the Heuristic also revealed more significant voxels and higher statis-

tics than the Alpha and Beta/Gamma power. Moreover, inside the Brain Activation

Mask, the number of voxels where the Heuristic provided a better fit (FWE cor-

rected) was 939 (maximum F-statistic: 23.9) when compared with Alpha, and 1480

(max-F: 31.8) when compared with Beta/Gamma. These two models showed only

69 (max-F: 16.8) and 293 (max-F: 20.9) activated voxels in this region, respectively.

This result showed that reducing the number of bands in the Frequency Response

model didn’t improve the performance of this model when compared to the Heuristic

(this test was included as it was thought the Frequency Response model might be

over-parameterised).

As an aside, we note that although the fMRI data were slice time corrected,

significant variability was explained by the temporal derivative regressors (SPMs not

shown), and therefore their inclusion in data analyses such as these is recommended

(see for example Figure 3.7a). See also recent work by Sladky et al. [2011].

Comparing the Heuristic model and its un-normalised version, the u-Heuristic, re-

vealed that the Heuristic significantly correlated (p < 0.05 (FWE)) with the observed

BOLD data in most of the brain areas revealed when this function was compared to

the Total Power and the Frequency Response models (Figure 3.10). Applying the

BOLD activation mask showed that the site with the most significant result was lo-

cated again in the Right Calcarine Gyrus (Talairach coordinates [x,y,z] mm: [15, -80,

15], p = 1.71e-09 (FWE), SVC) (Table 3.2). In this area BOLD correlated positively

with the Heuristic, and negatively with u-Heuristic.

Finally we looked at the importance of the non-linearity present in the RMSF

function for the Heuristic model, introduced by the square root operator (the R in

RMSF). This was addressed by performing the following two-way model comparisons:

between (i) the Heuristic and its linear version, the l-Heuristic (Eq. 3.7), (ii) the

Heuristic and the Frequency Response model but using normalised power (eight bands

of 5 Hz each) and (iii) the Heuristic and the Mean Frequency function (Eq. 3.8). The

rationale behind the second comparison is that the Frequency Response model based

on normalised rather than un-normalised power should be able to implement the
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Figure 3.10: Comparison between Heuristic and its un-normalised version, the u-
Heuristic: fixed effects SPM analysis (p < 0.001 (unc.)). The voxel locations written
on the left of each figure correspond to the most significant cluster maximum after
small volume correction with the BOLD activation mask (Talairach space). These
F-maps show correlations between EEG and BOLD that are uniquely attributable to
each model.

transfer function by assigning regression coefficients, βf = f 2. The results from

these comparisons (SPMs not shown) were very similar. Although when analysed

separately all these functions correlate significantly with the BOLD data at a high

statistical threshold (p < 0.05 (FWE)), when put in the same design matrix none of

the models is able to uniquely explain significant variation in BOLD. These results

indicate that the nonlinearity introduced by the square root function is not critical.

3.4 Discussion

In this chapter we have used simultaneously acquired EEG and fMRI data, with a

visual flicker stimulation task, to probe the transfer function from neuronal activity

to BOLD. We compared three different models, each assuming BOLD is sensitive

to a different feature of the EEG. These were (i) the Total Power model (ii) the

Frequency Response model and (iii) the Heuristic model. When analysed in separate

design matrices all transfer functions correlated with the observed BOLD data, as

expected.

For the Frequency Response model all bands showed significant correlations with
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the data, in agreement with recent monkey EEG-fMRI results [Goense and Logo-

thetis, 2008].

One initially surprising finding was that, at the location of maximal correlation,

Total Power correlated negatively rather than positively with BOLD. However, this

can be understood by noting that most of the power in the EEG signal, over rest and

stimulus blocks, lies in the lower frequencies of the spectrum. This was confirmed by

the negative correlation found in the lowest frequency band of the 3-band Frequency

Response model in agreement with Mukamel et al. [2005] and Laufs et al. [2006a].

Work in which positive correlation was observed, for example Wan et al. [2006],

focussed rather on event-related power (rather than power in both rest and stimulus

blocks). In addition, the fact that we modelled the relation between neuronal activity

and BOLD in both stimulus and rest blocks together, implies that the Heuristic is

also applicable to spontaneous neural activity.

The results of the two-way model comparison, between Total Power and the

Heuristic, showed that the transfer function from neuronal activity to BOLD is fre-

quency dependent. The three-way comparison, was again clearly in favour of the

Heuristic which was shown to explain significantly more BOLD activity than the

other two models.

Independent of model, the majority of the voxels that were significantly correlated

with the regressors were in the occipital cortex (Figure 3.6). This is not surprising

as we used flickering visual stimuli. What is perhaps surprising is that other brain

areas outside of the occipital cortex (such as the cerebellum and temporal cortex)

were also significantly correlated with some of the regressors, most notably for the

Heuristic model (Figure 3.9). It should be noted that as the Heuristic is a function

of the power spectrum and is not a function of any one particular frequency, it may

capture some dynamics that are not a simple entrainment of neural populations at

some harmonic of the flicker rate.

One concern we had regarding the two and three-way comparison results was that

the Heuristic may be better than the Frequency Response model simply because of the

small number (three) of frequency bands used. However, our conclusions remained

unchanged for frequency response models with additional numbers of bands (five and

eight). Conversely, one might also think that the Frequency Response model could

do better with a smaller number of frequency bands. The limiting case of this is a

single frequency band. Two-way model comparisons, however, revealed the Heuristic

to be better than using either (8-15Hz) alpha or (15-40Hz) high (beta/gamma) power
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alone.

Our attention then turned to what it is about the Heuristic that makes it a good

model. We first addressed the issue of power normalisation. Comparison with a

‘scaled’ Heuristic, based on un-normalised rather than normalised spectra, revealed

the original Heuristic to be clearly superior. The use of normalised power therefore

seems important.

We then addressed the issue of nonlinearity. This derives from the square root

operator in Eq. 3.5 (the R in RMS). A direct comparison of the Heuristic with

its linear version based on the MSF, as well as the Heuristic and the MF model,

showed that when included together in the same design, the predictive power of both

functions were reduced by the other. Similarly, model comparison of a normalised

Frequency Response model with the Heuristic revealed that neither model showed

superior predictive power. These results together indicate that, empirically, the non-

linearity introduced by the square root function does not appear to be critical. A

caveat however is that this conclusion may only be valid for the range of frequencies

generated in this experiment (1 to 40Hz).

In the longer term, we envisage that ‘asymmetric’ [Kilner et al., 2005] regression

approaches will be superceded by ‘symmetric’ forward models, such as proposed in

Sotero and Trujillo-Barreto [2008]. Interestingly, this forward modelling approach

based on neural mass models also supports the Heuristic, as exogenous input causes

both a BOLD activation and an increase in the mean LFP frequency [Sotero and

Trujillo-Barreto, 2008].

Some results in the literature may appear at odds with the Heuristic. For instance

the positive correlations with alpha power found in the thalamus by Goldman et al.

[2002] and in other regions [Gonçalves et al., 2006]. However, the Heuristic describes

a relationship based on relative not absolute power. Therefore if increases in alpha

were, for example, accompanied by decreases in lower frequencies (delta/theta), this

would be compatible with the Heuristic. Using separately acquired fMRI and source-

reconstructed MEG data, Muthukumaraswamy and Singh [2008] showed stimulus-

related increases in gamma band activity without corresponding changes in BOLD.

However, whilst this result clearly speaks against the gamma-BOLD hypothesis, it

does not necessarily speak against the Heuristic. This is again because the Heuristic

depends on the relative power of the whole spectrum.

An interesting inference to be drawn from Muthukumaraswamy and Singh [2008]

is that gamma-band power may reflect the synchronized activity of local neuronal
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ensembles. This view fits in with neural network modelling results [Kopell et al.,

2000] and power-law analyses of electrocorticogram data [Miller et al., 2007]. Whilst

BOLD can be sensitive to changes in the gamma band, as many studies have shown, it

is also sensitive to activity in the whole spectral domain, including the more spatially

dispersed lower frequencies [Kopell et al., 2000], and processes reflecting large-scale

neuromodulatory input [Logothetis, 2008].

The original paper that described the Heuristic model was partly inspired by the

results of EEG-fMRI integration in the study of epilepsy. In this field, increased slow

wave activity has been shown to be associated with decreased BOLD [Archer et al.,

2003] while spike and wave discharges (with high frequency components) have been

shown to cause BOLD activations [Hamandi et al., 2004; Krakow et al., 2001]. This

would be entirely in agreement with the Heuristic model.

To our knowledge our work reports the first study where the model proposed by

Kilner et al. [2005] has been empirically tested using human brain imaging data. It is

also the first work in which different putative functions for the relationship between

BOLD and spectral characteristics of neuronal activity, as measured with EEG, have

been explicitly compared.

To this end we designed a study providing experimental control over the frequency

structure of the EEG signal by entraining networks to visual stimulation at different

frequencies. Our results suggest that changes in BOLD are indeed associated with

changes in the spectral profile of the underlying neuronal activity, and that these

changes don’t arise from a single spectral band. Instead they result from the dynamics

of the various frequency components together, in particular, the relative contribution

of high and low frequencies as proposed in Kilner et al. [2005].

Although we entrained networks to visual stimulation we have no reason to an-

ticipate different results if neuronal activity were modulated by different cognitive

processes. However, this is an empirical question that should be addressed in future

studies. The current chapter provides evidence in favour of the Heuristic model but,

of course, as with any scientific experiment does not prove that the underlying theory

is true. We expect that as data is gathered from additional experimental paradigms

and sensory modalities a balance of evidence will emerge.

Understanding the nature of the link between neuronal activity and BOLD plays a

crucial role in improving the interpretability of BOLD imaging, and relating electrical

and hemodynamic measures of human brain function. Finding the optimal transfer

function should also aid the design of more robust and realistic models for the integra-
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tion of EEG and fMRI, leading to estimates of neuronal activity with higher spatial

and temporal resolution, than are currently available. In Chapter 5 we revisit the

same data used in this chapter with a biophysically realistic model of neurovascular

coupling to investigate how BOLD relates to synaptic and spiking activity. Before

that we switch topics to consider Bayesian model selection maps for group studies. In

future, we plan to apply the approach described in the following chapter to evaluate

neurovascular coupling models, such as the functions described here.
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Chapter 4

Bayesian model selection maps for

group studies

4.1 Introduction

Given a set of candidate hypotheses, or models, scientists can use Bayesian inference

to update their beliefs about the respective hypotheses, in light of new experimen-

tal data. The most likely hypothesis can then be identified using Bayesian model

selection (BMS) (see Chapter 2).

BMS is based on the model evidence, i.e. the probability of obtaining observed

data, y, given model m, p(y|m). In a group study, one obtains a separate evidence

value for each model and for each subject. Under the assumption that the data is

independent from subject to subject, these evidence values can be multiplied together

to produce a single evidence value for each model. The ratio of resulting model

evidences then forms what is known as the Group Bayes Factor [Stephan and Penny,

2007].

In more recent work, Stephan et al. [2009] have shown that the Group Bayes

Factor approach corresponds to what is more generally known as a Fixed Effects

analysis [Penny and Holmes, 2006] (Chapter 2). A drawback of the FFX approach is

that it does not account for between-subject variability which can make the resulting

inferences over-confident. Additionally, it is not robust to the presence of outliers.

Stephan et al. [2009] contrast the FFX approach with a proposed Random Effects

(RFX) approach, in which a (potentially different) model is assigned to each member

of the group. Stephan et al. [2009] then describe Bayesian estimation procedures
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for obtaining the posterior distribution p(r|Y ), where Y comprises data from all

subjects. Contrary to the FFX approach, this method correctly takes into account

the variability between subjects, and is also robust to outliers.

In earlier work, Penny et al. [2007] have developed Bayesian spatio-temporal mod-

els for fMRI data, which provide within-subject model evidence maps. Voxel-wise

comparison of these maps allows neuroimagers to make inferences about regionally

specific effects. These comparisons are analogous to the F-tests used in statistical

parametric mapping (SPM), with the advantage that the models to be compared do

not need to be nested. Additionally, an arbitrary number of models can be compared

together.

The Bayesian approach is useful when there is no natural nesting of hypotheses.

A trend in recent neuroimaging research, for example, is to fit computational models

to behavioural data, and then to use variables from these data fits as regressors in

general linear models of fMRI data [Behrens et al., 2008; Montague et al., 2004].

A natural extension of this approach is to derive different sets of regressors from

different computational models, and so allow fMRI to provide evidence in favour of

one model or another. An example in the field of behavioural control would be to

compare different models of ‘value updating’, e.g. the Rescorla-Wagner model versus

the Temporal Difference model [Montague et al., 2004].

In this chapter we describe the combination of the mapping approach for providing

log-evidence maps for each model and subject, with the RFX approach described

in Stephan et al. [2009] (see Section 2.3.4.2). This procedure constructs posterior

probability maps (PPMs) for BMS inference at the group level. We illustrate the

method using fMRI data from a group of subjects performing a cued two-choice

reaction time task, and compare it with a FFX analysis of the same data. It is

our long term aim to apply the methods described in this chapter to adjudicate

among models of neurovascular coupling (see Chapters 3 and 5). What follows in this

chapter, however, provides a proof of concept that is based on a study of information

theoretic models of brain responses.

These models can be used together with brain imaging data to understand how dif-

ferent information-theoretic quantities are learned and represented in the brain, such

as entropy and surprise. This is done by relating changes in these quantities, as deter-

mined by a particular model, to changes in the observed brain signals. For example,

Bestmann et al. [2008], used a cued visual task, to show that motor system respon-

siveness, measured with transcranial magnetic stimulation (TMS), varies according
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to the trial-by-trial entropy (average uncertainty) and surprise (the stimulus-bound

information of a visual cue) conveyed by visual events guiding an action.

This chapter is structured as follows. In the next section (4.2) we describe how

BMS maps can be constructed from previously estimated log-evidence maps, as well

as the data and models we are interested in comparing. In the Results section (4.3)

we apply this method to fMRI group data from a cued target detection task, and in

Section 4.4 we discuss these results.

4.2 Materials and methods

4.2.1 Subjects and task

Twelve subjects responded to a right or left sided target (”+ O” or ”O +”) appearing

for 250 ms on a screen by spatially compatible button presses using the right and left

index finger, respectively. The target was preceded by a visuospatial cue (”< + <”

or ”> + >”) presented for 250 ms and appearing 1000 ms before the target. Four

different event types were presented randomly: validly cued right and left button

presses (66 trials each), and invalidly cued right and left button presses (17 trials

each). During null events (165 trials), the central fixation cross was maintained with

no presentation of cue or target, and no corresponding button press. The inter-trial

interval was 2000 ms. This experimental paradigm, which involves simple spatially

congruous and incongruous cues, is known as a cued detection or Posner-type task

[Posner, 1980]. Responses were recorded by computer using COGENT Cognitive

Interface Software (Wellcome Trust Centre for Neuroimaging, London, UK).

4.2.2 fMRI acquisition and analysis

fMRI data were recorded using a Siemens VISION system (Siemens, Erlangen, Ger-

many), operating at 2T. A total of 330 functional volumes (28 slices) were recorded for

each subject, using T2*-weighted MRI transverse echo-planar images (EPI) (64× 64

matrix, 3×3×5 mm3 voxel size, TE = 40ms) with blood oxygenation level dependent

(BOLD) contrast. Effective repetition time (TR) per volume was 2.15 seconds.

Data were preprocessed using Statistical Parametric Mapping (SPM5, Wellcome

Trust Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/) implemented in

Matlab 6 (The Mathworks Inc., USA). Functional volumes were realigned and un-
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warped [Andersson et al., 2001] and the resulting volumes were normalised to a stan-

dard EPI template based on the Montreal Neurological Institute (MNI) reference

brain in Talairach space [Talairach and Tournoux, 1988] and resampled to 3× 3× 3

mm voxels. The time series in each voxel were high pass filtered at 1/128 Hz to

remove low frequency confounds and scaled to a grand mean of 100 over voxels and

scans within each session.

4.2.3 Models

This section describes the models that were compared using BMS maps. We started

by comparing two simple nested models and followed with a comparison of two non-

nested information theoretic models.

4.2.3.1 Nested models

We first specified a ’Validity’ model (model1), which only includes a column of 1’s for

the session mean and additional regressors for validly and invalidly cued trials. The

paradigm used here is a two-choice reaction time task, and therefore reaction times

vary along the experiment, i.e. reaction times are faster when visual information

indicates in advance which action the subject will have to make [Bestmann et al.,

2008; Hyman, 1953]. These variability should be accounted for and included in the

model. For this reason, the two cued trial regressors were parametrically modulated

by reaction times1.

Second, we specified a ‘Null’ model (model 2) comprising a single column for the

session mean. Comparison of these two models could therefore be implemented using

a standard F-test approach with classical SPMs, because model 2 is nested within

model 1. More generally, however, the BMS approach does not require the models

to be nested (see below).

4.2.3.2 Non-nested models

In Bayesian inference, in principle, there is no upper bound on the number of mod-

els that can be compared; however, for the purpose of this work, we focus on two

1The stimulus functions used to construct the design matrix in a GLM can be modulated by
parametric variates (this can be time or trial-specific variates like reaction time) modelling the inter-
action between the trial and the variate. The events can be modulated by zero or more parameters
(for further information see Buchel et al. [1996]).
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alternative non-nested models.

Previous work has shown that the effect of the history of past-events on brain

activations can be formalized using information theory, as proposed by Strange et al.

[2005] and Harrison et al. [2006], under ideal observer assumptions. One finding of

these studies was that activity in a wide-spread fronto-parietal network, including

bilateral fusiform, parietal, lateral and medial premotor and inferior frontal regions,

as well as in bilateral thalamus relates to the surprise conveyed by a trial event.This

activation pattern is similar to the task-related activity shown by our ‘Validity’ model.

The surprise inherent in an event (e.g. an infrequently occurring invalidly cued trial)

is based on the probability of that event, given previous trials. Here we consider two

different ways of estimating these probabilities: i) an ideal observer (Bayes optimal)

model and ii) using a finite length window and weighting of events. Although we

assume here that the ideal observer is the optimal model this might not always be

the case, and the window model may be preferable in certain situations, e.g. in the

case of drifting distributions.

The ideal observer and window model are the two information theoretic models

that we compare using BMS maps for group studies. For the first model, we calculated

surprise from posterior probabilities updated on a trial-by-trial basis using Bayes rule

(see Strange et al. [2005] and Mars et al. [2008] for further details). This was then used

to predict neuronal responses measured in our fMRI experiment. More specifically, we

modeled the onsets of trials with a stick function that was parametrically modulated

by the surprise on a given trial. We refer to this model as the ‘Ideal Observer’ model,

as it is assumed that subjects update their beliefs about events in an ideal, or Bayes

optimal, manner.

Alternatively, one can relax the assumption that participants are ideal observers.

One could, for example, compare a number of models in which the duration and rate of

decay with which past observations (trials) are weighted are differently parameterized.

For illustrating the BMS approach, we here focus on one case only, in which only a

window of data comprising the four most recent trials was taken into account for

computing surprise (see Bestmann et al. [2008] for details). We refer to this model

as the ‘Window’ model. This model is suboptimal from an information theoretic

perspective because the observer fails to properly accumulate the evidence available

within a block. However, as the brain also has other criteria to optimise (e.g. energy

use, speed of response), it could be that imaging data provide evidence for it.
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4.2.4 Bayesian model selection maps

Each model was estimated with SPM5, using the first-level Bayesian estimation pro-

cedure described in Chapter 2, Section 2.2. This produced a voxel-wise whole brain

log-model evidence map for every subject and model estimated (see left panel of

Figure 4.1). These maps were then smoothed with an 8 mm half width Gaussian

kernel.

This section describes how these log-evidence maps are produced and how BMS

can be applied voxel-wise, in order to construct posterior probability maps and ex-

ceedance probability maps (EPMs) for Bayesian inference at the group level.

4.2.4.1 Within-subject maps

In earlier work, Penny et al. [2005] developed a Bayesian spatio-temporal model for

fMRI data, which allows inferences to be made about regionally specific effects using

posterior probability maps (PPMs). Similar approaches have been developed pre-

viously by Hartvig and Jensen [2000] and Woolrich et al. [2004b]. PPMs represent

images of the probability that a contrast of parameter estimates exceeds some spec-

ified threshold and their construction has previously been described in Friston and

Penny [2003].

The model developed by Penny et al. [2005] extends previous Bayesian modelling

approaches for fMRI [Friston et al., 2002a,b] by, among other things, introducing

a spatial prior on the regression coefficients. This prior embodies the knowledge

that activations are spatially contiguous, and results in an ability to detect more

subtle activations. Although this spatial prior was initially two-dimensional (limited

to voxels contained in the same slice) this work has since been extended to three-

dimensional priors [Harrison et al., 2008].

In more recent work, Penny et al. [2007] have shown how the model evidence

can be used to construct within-subject PPMs for model selection. As compared to

model comparison based on F-tests using classical inference, this approach has the

advantage of allowing the comparison of non-nested models. Additionally it allows

for the simultaneous comparison of an arbitrary number of models. As compared to

earlier work [Friston and Penny, 2003] based on PPMs of effect size, the approach is

advantageous in not requiring an effect size threshold.

In this chapter we have combined the mapping approach used in Penny et al. [2007]

to provide log-evidence maps for each model and subject, with the RFX approach
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described in Stephan et al. [2009], in order to produce group maps for model selection.

4.2.4.2 Group maps

Once the log-evidence maps have been estimated for each subject and model, as de-

scribed above, it is possible to construct between-subject posterior probability maps,

that enable inference on model space at the group level. These maps are created

by applying the RFX approach, described in Chapter 2, at every voxel, i, of the

log-evidence data, which produces a family of posterior distributions, p(rki|Yi). We

can then construct the PPMs for each model k by plotting the posterior expectation,

< rki|Yi > for every voxel i (Eq. 2.27) at which the value exceeds a user-specified

threshold, γ.

In addition to the group-level PPMs, the RFX approach also allows the construc-

tion of EPMs. These constitute an exceedance probability for each voxel i, ϕki, (see

Eq. 2.28) and for each model k. Again, these maps are thresholded at a user-specified

value γ.

The maps described here can be constructed as whole brain images or images from

selected regions of interest. The latter can be created by specifying a mask image,

which limits the construction of the maps to voxels contained in the mask. Such masks

can be created, for example, using a functional localiser analysis [Friston et al., 2006].

This restricts the analysis to those parts of the brain that are functionally relevant.

The overall approach for creating BMS maps for group studies is shown in Figure

4.1.

It is also possible to create group maps using an FFX rather than the above

RFX approach. This is implemented simply by summing the log evidence images

over subjects for each model (see Eq. 2.23). Posterior model probabilities are then

obtained by exponentiating the resulting sums and normalising to unity.

4.3 Results

This section illustrates the application of Bayesian model selection maps to group

fMRI data acquired from subjects performing a cued target detection task, as de-

scribed above (Section 4.2).
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Figure 4.1: Schematic representation of the method for constructing Bayesian Model
Selection (BMS) maps for group studies. (1) The first step involves estimating log-
evidence maps for each subject and model. (2) The RFX approach for BMS described
in the text is then applied in a voxel-wise manner to the log-evidence data. (3)
The BMS maps (Posterior Probability Map, PPM; Exceedance Probability Map,
EPM) for each model are then constructed by plotting the posterior and exceedance
probabilities at each voxel (< rki > and ϕki respectively), using a threshold, γ, to
visualise the resulting image. See the main text for a detailed explanation of the
different steps involved in this procedure.
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4.3.1 Nested models

To illustrate the construction of BMS maps we started by comparing the two nested

models described in the previous section (‘Validity’ versus ‘Null’ model).

We applied the RFX approach described in Chapter 2 to the group model evidence

data for these two models in a voxel-wise manner. This procedure yielded a PPM

and EPM for each model. In addition, we compared these PPMs with those obtained

using a FFX analysis.

Figure 4.2 shows the group-level PPMs for the ‘Validity’ model constructed using

the FFX (A) and RFX (B) method, and thresholded in order to show the brain

regions where the posterior probability for the ‘Validity’ model is above γ = 0.75.

Figure 4.2: Group-level PPMs for the ‘Validity’ model from (A) Fixed and (B) Ran-
dom Effects analysis. The maps therefore show brain regions encoding cue validity.
These maps were thresholded to show regions where the posterior model probability
of the ‘Validity’ model is greater than γ = 0.75. The FFX approach does not account
for between-subject variability and, consequently, can appear over-confident.

These regions show strong evidence in favour of the ‘Validity’ model. More specif-

ically, these regions comprise brain areas one would a priori expect to be generally

involved in a Posner-type task as used in the example data set presented here [Rounis

et al., 2006], including motor areas (peak voxel Talairach coordinates [x, y, z] mm:

Left Supplementary Motor Area [0, 5, 56], Right precentral gyrus [33, -4, 53] and

Left precentral gyrus [-51, -4, 56]), as well as, visual and attention-related regions
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(Talairach coordinates [x, y, z] mm: Right inferior temporal gyrus [57, -67, 2], Left

inferior temporal gyrus [-51, -76, 2], Left middle temporal gyrus [-54, -73, 5]). Figure

4.2 shows that the FFX and RFX approaches for inference on model space yielded

similar results. However, because the FFX approach does not accommodate between-

subject variability the resulting inferences are somewhat over-confident. This is also

illustrated in Figure 4.3 where, for example, the position of the crosshairs indicates

a cluster that is only visible for the FFX maps.

Figure 4.3: Group-level PPMs (z = 59mm, Talairach coordinates) for the ‘Validity’
model from (A) Fixed and (B) Random Effects analysis. The maps were thresholded
to show regions where the posterior probability of the ‘Validity’ model is greater than
γ = 0.75. The position of the crosshairs (Talairach coordinates: [-21, -73, 59] mm)
indicates a cluster that is only visible for the FFX maps.

The probabilities obtained for both models at the peak voxel of this cluster are

shown in Figure 4.4. As can be seen, the RFX analysis produces lower posterior

probabilities for the ‘Validity’ model than does the FFX approach. Moreover, this

probability is approximately 0.7 (Figure 4.4B), which is slightly below the thresh-

old, γ = 0.75, used for constructing the maps in Figure 4.3. For this reason the

corresponding cluster is missing in the RFX map (Figure 4.3B).

Figure 4.5A plots the EPM for the ‘Validity’ model using a threshold of γ = 0.95.

For this model the exceedance probability is given by ϕi1 = p(ri1 > 0.5) and Figure

4.5A plots ϕi1 only at those voxels for which ϕi1 > γ. This map is similar to the PPM
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Figure 4.4: Posterior model probabilities obtained by comparing the ‘Validity’ and
‘Null’ model (model 1 and 2, respectively) at an example voxel, [-21, -73, 59] mm
(Talairach coordinates), using a (A) Fixed and (B) Random Effects analysis. For the
RFX analysis we include the exceedance probabilities at the same voxel. As can be
seen, the RFX analysis produces lower posterior probabilities for model 1 than does
the FFX approach.

shown in Figure 4.2B, which plots < ri1 > at those voxels for which < ri1 >> γ.

Figure 4.5: (A) Group-level EPM, (log-odds scale) for the ‘Validity’ model. The map
was thresholded to show regions where the exceedance probability for the ‘Validity’
model is greater than γ = 0.95. (B) Posterior distribution and exceedance probability
for the same model at an example voxel, [-21, -73, 59] mm (Talairach coordinates).

To better illustrate what is being plotted in Figure 4.5A we’ve plotted the poste-
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rior distribution for the same model, p(r1|Y ), obtained at one example voxel (Figure

4.5B). The shaded region corresponds to r1 > 0.5 and for this voxel encompasses

94.1% of the total mass of the posterior distribution. Therefore the exceedance prob-

ability value plotted for this voxel is 0.941.

Stephan et al. [2009] have noted that the RFX approach is more robust in the

presence of outliers than is the FFX method. We examined this in our data by

inspecting regions in the BMS maps showing contradictory results for FFX and RFX.

Consequently, we found groups of voxels at which model 1 was clearly the best model

for the FFX analysis and model 2 for the RFX. We then looked at the log-model

evidence values for all subjects at these voxels and found that the reason for the

discrepancy was indeed an outlying subject. Figure 4.6 shows an example of this,

where almost all subjects indicate that model 2 is best, except for a single outlying

subject with an extreme evidence value favouring model 1.

Figure 4.6: Log-model evidence differences between the ‘Null’ and ‘Validity’ models
(model 2 and model 1, respectively) at voxel [-29, 0, 49] mm (Talairach coordinates),
for the 12 subjects analysed. The data clearly show that one subject (bottom row)
is an outlier.
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The posterior probabilities obtained for this voxel (for which one of the subjects

is an outlier) reveal that the FFX results are in favour of the ‘Validity’ model, while

RFX suggests that the ‘Null’ model is better (Figure 4.7A and B), as can also be seen

in the respective PPMs (Figure 4.8). Moreover, the exceedance probability value for

the ‘Null’ model is almost 80%, which indicates strong evidence in favour of model 2

at this voxel.

Figure 4.7: Posterior model probabilities obtained by comparing the ‘Validity’ and
‘Null’ model (model 1 and 2, respectively) at voxel [-29, 0, 49] mm (Talairach coor-
dinates), using a (A) Fixed and (B) Random Effects analysis. For the RFX analysis
we include the exceedance probabilities at the same voxel. The voxel chosen here
belongs to a brain region where FFX and RFX analyses yield different results due to
the presence of an outlier (see Figure 4.6).

These results corroborate Stephan et al. [2009] who have also shown that the RFX

approach is more robust in the presence of outliers.

4.3.2 Non-nested models

The BMS approach presented here is particularly suited for comparing non-nested

models. Here, we use the aforementioned example dataset to illustrate how BMS can

be applied to compare models for which there is no natural nesting.

These are information theoretic models of brain responses based on probabilistic

updates from (i) ideal observer model and (ii) window model.

Figure 4.9a) shows the group-level PPM for the two locations in which the pos-

terior model probability for the ‘Ideal Observer’ model is greater than γ = 0.6. We

focused explicitly on task-related brain regions, as identified in the group-level PPM
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Figure 4.8: Group-level PPMs (slice z = 49mm, Talairach coordinates) for the ‘Va-
lidity’ model from (A) Fixed and (B) Random Effects analysis. The maps were
thresholded to show regions where the posterior model probability of the ‘Validity’
model is greater than γ = 0.75. The crossbars indicate a cluster of voxels where one
of the subjects is clearly an outlier (Figure 4.6).

for the ‘Validity’ model (see Figure 4.2B). This masking approach is an example of a

functional localiser (differences in brain activation are only expected for those brain

regions engaged by the task). Our BMS suggests that activity in these two regions

(Talairach coordinates [x, y, z] mm: Supplementary motor area [6, 5, 56]; Right su-

perior parietal lobule [36, -58, 59]) is best explained by the surprise conveyed by an

event, as estimated by an ideal observer.

Figure 4.9b) shows the group-level PPM for the ‘Window’ model and corre-

sponding task-related regions where the posterior probability for this model is above

γ = 0.6. As can be seen, in other areas, such as the Left Middle Temporal Gyrus,

the ‘Window’ model is a better model than the ‘Ideal Observer’ to explain the data.

Although the main aim of this work was to validate the BMS maps approach, this

is an interesting result (Fig. 4.9). This result suggests that different areas of the

brain integrate information over different time-scales, with more posterior regions

discarding all but the last events in the environment, whilst more anterior regions are

concerned with events that occurred over longer times scales. This result has been

confirmed in a follow-up study using the BMS maps technique [Harrison et al., 2011].
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Figure 4.9: Group-level PPMs for: a) the ‘Ideal Observer’ model and b) ‘Window’
model from Random Effects analysis. The maps show task-related regions (by mask-
ing the results with the ‘Validity’ model PPM) and are thresholded to show only
regions where the posterior model probability for each model is greater than γ = 0.6.
The coordinates written on the bottom of each figure indicate the location of maxi-
mum posterior probability.
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4.4 Discussion

In this chapter we have presented the construction of posterior probability maps

allowing for Bayesian model selection at the group level. These maps are produced

by combining a model evidence mapping approach with an RFX approach for model

selection.

We have illustrated our method by applying it to fMRI data from a group study,

and compared the resulting maps with those obtained using a FFX analysis. As

expected, both analyses yielded similar results, but the posterior model probabilities

from FFX appeared over-confident. This observation reflects the fact that the RFX

inference properly accommodates between-subject variability, whereas FFX does not.

Another important point is the behaviour of the method in the presence of out-

liers. Since the RFX approach takes into account group heterogeneity, it has proven

[Stephan et al., 2009] to be more robust than FFX. In our fMRI analysis we have

confirmed this result. Moreover, we have observed that the two analyses yield contra-

dictory results for brain regions where one of the subjects provides strong evidence

in favour of one particular model, contrary to the rest of the subjects. The results

from FFX are adversely influenced by this single subject, whereas the RFX inference

was not.

A minor disadvantage of our new approach is that it relies on the prior computa-

tion of log-evidence maps for each subject and model. These computations are more

time consuming than the standard SPM approach by a factor of five to ten. How-

ever, these individual subject maps need only be computed once for all subsequent

group BMS analyses. The method proposed here for constructing BMS maps is not

so computationally demanding and takes on average less than half an hour to create

whole-brain PPMs for the comparison between two models using the log-evidence

images from 12 subjects on a standard PC. Moreover, we envisage that our new

approach may be most usefully applied to regions or networks of regions previously

identified using functional localiser methods. The use of these localisers has the ad-

vantage of speeding up the computation and reducing its time to approximately less

than a minute for a region with a few thousand voxels. We also envisage that, in fu-

ture, subject specific log-evidence maps could be efficiently computed using post-hoc

model selection or Savage-Dickey ratios (see Chapter 6).

In this work, log-evidence maps were smoothed by a user specified Gaussian kernel.

This will be finessed in future work to include a spatial model over r and its smooth-
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ness estimated using a Bayesian framework. This procedure mirrors corresponding

developments in the analysis of group data from M/EEG source reconstructions [Lit-

vak and Friston, 2008].

The product of the analysis procedures described in this chapter are posterior

probability maps. These show voxels where the posterior probability over model

frequency exceeds some user-specified value. In previous work [Friston and Penny,

2003] we have derived PPMs over effect size. We note that, as is common-place in

Bayesian inference, these posterior inferences could be augmented with the use of

decision theory. This requires the costs of false negative and false positive decisions

to be specified. One can then use decision theory to make decisions which minimise,

for example, the posterior expected loss [Gelman et al., 1995]. In addition, we note a

connection between posterior probabilities and false discovery rate, in which if above

threshold values are declared as activations, a posterior probability of greater than

95% implies a rate of false discoveries less than 5% [Friston and Penny, 2003]. It is

also possible to relate posterior probabilities to the realised false discovery rate (FDR)

(rather than an upper bound or the expected FDR) [Muller et al., 2007]. Finally,

we note that a comprehensive Bayesian thresholding approach has been implemented

by Woolrich et al. [2005]. This work uses explicit models of the null and alternative

hypotheses based on Gaussian and Gamma variates. This requires a further com-

putationally expensive stage of model-fitting, based on spatially regularised discrete

Markov Random Fields, but has the benefit that false-positive and true-positive rates

can be controlled explicitly.

Unlike classical inference using F-tests, our framework allows for comparison of

non-nested models, which we hypothesize will be useful in a number of experimental

domains. One such domain is model-based fMRI [O’Doherty et al., 2007] in which

computational models are first fitted to behavioural data, and sets of regressors de-

rived to be used as predictors of brain imaging data. A typical example is the study of

behavioural control using computational models and fMRI [Montague et al., 2004].

The use of model comparison maps in addition to model-based fMRI would allow

brain imaging data to directly adjudicate, for example, between different computa-

tion models of value updating [Montague et al., 2004].

In this chapter we focused on information theoretic models of cued detection.

Harrison et al. [2011] have recently built on our work and used the framework de-

veloped here to adjudicate between windowed updates of event probabilities. The

authors compare models with short versus long time windows and find that anterior
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brain regions integrate events over larger time windows than posterior brain regions,

which is in line with what we observed in this paper. This provides evidence in favour

of the hypothesis that the specific time scale which engages a cortical area can be

inferred by its location from primary sensory to high level areas [Kiebel et al., 2008].
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Chapter 5

Bayesian comparison of

neurovascular coupling models

using EEG-fMRI

5.1 Introduction

Functional magnetic resonance imaging (fMRI) is an extensively employed neuroimag-

ing technique that allows non-invasive recordings of neuronal activity from the human

brain with relatively high spatial resolution. However, the blood oxygenation level-

dependent (BOLD) contrast on which fMRI is based is only an indirect measure of

this activity. The processes that link underlying neuronal activity to BOLD signals

are still a topic of much debate. In particular, there is no consensus on the relative

roles of synaptic and spiking activity in the generation of BOLD signals. In order to

relate findings from fMRI research to other measures of neuronal activity it is impor-

tant to understand the underlying neurovascular coupling mechanism [Anonymous,

2009].

Most of our present knowledge about neurovascular coupling comes from animal

experiments, combining hemodynamic (e.g. CBF) with electrical measurements (e.g.

LFP, MUA), as described in Chapter 1. This body of evidence (Table 1.1) supports

the hypothesis that BOLD signals are more closely coupled to synaptic input and

processing activity than to the output spikes of a population of neurons [Logothetis,

2008; Thomsen et al., 2004; Viswanathan and Freeman, 2007]. In other words, the

BOLD signal is thought to result from pre-synaptic activity and the release of neu-
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rotransmitters, in particular glutamate [Bonvento et al., 2002], which then triggers

the release of vasodilatory substances, such as nitric oxide, by surrounding glial cells

[Aubert and Costalat, 2005; Carmignoto and Gomez-Gonzalo, 2010; Estrada and

DeFelipe, 1998; Friston, 2008; Wang et al., 2005].

As discussed in Chapter 1, despite the consensus that is emerging from animal

data, the above scenario has been more difficult to assess with human data. One

of the reasons is the fact that the participation of healthy subjects prohibits the

use of invasive electrophysiological measures, which can only be obtained under very

specific circumstances, such as the case of pre-surgical neurophysiological patients

(see Chapter 1 for references).

Here we address this issue by providing a modelling framework that can be used to

explicitly investigate competing biological mechanisms for the relationship between

neuronal activity and the BOLD response in the healthy human brain. Our aim is to

explore the relative contribution of synaptic and spiking activity to the generation of

fMRI signals in visual cortex.

The framework used here is based on a mathematical model that allows us to non-

invasively infer the degree of local synaptic and spiking activity using EEG-fMRI data,

in which subjects were exposed to a reversing checkerboard of varying frequencies.

This is similar in spirit to the use of ‘virtual electrodes’ in EEG analysis [Baillet et al.,

2001a], but provides more specific biophysical information. This framework consists

of a biophysically informed forward model from neuronal activity to the observed

EEG and fMRI signals.

Models linking neuronal activity to EEG/MEG signals have been proposed by

Jansen and Rit [1995], David and Friston [2003] and Sotero et al. [2007], to mention

a few. These models usually use one or two state variables to represent the mean

electrical activity of neuronal populations at the macro-column level, and are referred

to as neural mass models [Marreiros et al., 2008a].

Models linking ‘neuronal activity’ to BOLD signals include the metabolic models

proposed by Shulman et al. [2001] and Aubert and Costalat [2005] and the Balloon

model, proposed by Buxton et al. [1998]. The Balloon model describes how evoked

changes in blood flow are transformed into the BOLD response and has been ex-

tended by Friston et al. [2000], who introduced a blood flow-inducing signal relating

‘neuronal activity’ and CBF, and by Sotero and Trujillo-Barreto [2007], where differ-

ent metabolic pathways have been proposed for supporting excitatory and inhibitory

synaptic activity. In the above metabolic and hemodynamic models, stimulus input
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functions are used as surrogates for ‘neuronal activity’.

Models linking a common underlying neuronal substratum to both EEG and fMRI

signals have also been developed [Valdes-Sosa et al., 2009]. Some models are phe-

nomenologically motivated, such as the ‘Heuristic’ proposed by Kilner et al. [2005],

which was investigated in Chapter 3. This model aims to explain empirical results

which relate frequency-specific power changes in EEG with fMRI signals and predicts

that increases in the BOLD contrast reflect increases in the root mean squared (RMS)

frequency of EEG. We have validated these predictions in previous work [Rosa et al.,

2010b] using simultaneous EEG-fMRI data in humans with a visual flicker stimulation

task (see Chapter 3). As predicted by Kilner et al. [2005], the RMS frequency sig-

nificantly explained more BOLD activity than the total time-varying spectral power

or any linear combination of frequency-band amplitude modulations (e.g. alpha or

gamma power). This work is described in more detail in Chapter 3.

Biophysically motivated models include Babajani and Soltanian-Zadeh [2006],

Riera et al. [2006], and Sotero and Trujillo-Barreto [2008]. Most of these theoretical

frameworks combine the neural mass model approach for EEG with the Balloon model

for fMRI, but the coupling between neuronal activity and blood flow differs from

model to model. For instance, Babajani and Soltanian-Zadeh [2006] propose that the

squared post-synaptic membrane potentials from both excitatory and inhibitory cells

from a cortical area drive increases in cerebral blood flow, whilst Sotero and Trujillo-

Barreto [2008] consider all the incoming action potentials from populations within

and outside the voxel to be the input to the BOLD response. In Riera et al. [2006] this

input is proportional to the total concentration of nitric oxide (NO) synthesised by

neurons in the cortical unit. The parameters of this NO model have been estimated

using EEG-fMRI data from the visual cortex of one subject exposed to a reversing

checkerboard with varying frequency [Riera et al., 2007].

Despite these theoretical efforts, the existing modelling frameworks have not yet

been used in conjunction with real electrophysiological and hemodynamic data to

compare different neurovascular coupling mechanisms, although important steps in

this direction have been taken by Riera et al. [2006] and Sotero et al. [2009]. In Sotero

et al. [2009], the authors have compared different models to investigate the role of

excitatory and inhibitory activity in the generation of BOLD signals, using fMRI

data from one subject. They found BOLD signals to be best explained by excitatory

activity alone.

In this chapter, we use the model proposed by Riera et al. [2006] and embed
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it within a Bayesian framework. Using EEG and fMRI data in combination with

Bayesian inference allows us to estimate the underlying synaptic and spiking activity,

along with other biophysical model parameters. These quantities are computed using

the variational Laplace method described in Friston et al. [2007a]. This optimisation

scheme has been successfully applied to other input-state-output systems, such as

Friston et al. [2005a] and Moran et al. [2008].

However, inverting generative models using multimodal datasets, can be a techni-

cally demanding task, if the temporal characteristics of the datasets are very different,

which is the case for EEG-fMRI data. Here we develop a computationally efficient

scheme for model inversion. Instead of inverting the model in a single (computation-

ally demanding) step we adopt a ‘multi-step inversion’ approach. This approach is

based on partitioning model inversion into multiple, independent and computation-

ally efficient steps that are motivated by the time-scales of data involved. This is

a general procedure that can be used with other datasets and in other multimodal

studies, such as with MEG-fMRI or LFP-fMRI data.

Finally, once equipped with this mathematical and computational framework we

posit models embodying different hypotheses about neurovascular coupling and adju-

dicate between them using Bayesian model evidence [Penny et al., 2004]. We compare

three models. The first assumes that blood flow depends on the amount of vasodila-

tory substances (e.g. nitric oxide) released as a result of synaptic activity (synaptic

input model), as proposed by Riera et al. [2006]. The second assumes blood flow is

driven by the firing rate of pyramidal cells from the same unit (spiking output model).

These hypotheses are then compared against a third model where both these quanti-

ties contribute to the BOLD response (mixture model). We note that this has nothing

to do with Gaussian mixture models from statistics and machine learning.

This chapter is structured as follows. Section 5.2 presents the biophysical model

and different neurovascular coupling hypotheses. In Results (Section 5.3), we com-

pare these hypotheses using EEG-fMRI data from visual cortex, whilst in Discussion

(Section 5.4) these comparisons are discussed in light of previous findings in the

literature. We use the same EEG-fMRI data as was presented in Chapter 3.
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5.2 Materials and Methods

5.2.1 Local electro-vascular (LEV) model

We use a realistic biophysical model, proposed by Riera et al. [2006], of how electri-

cal and vascular dynamics are generated within a cortical unit. The unit comprises

three subpopulations of cells: two layer IV GABAergic interneuron populations (the

transmission and feedback interneurons (INs)) and a layer V pyramidal cell (PC)

population (Figure 5.1(a)). Interneurons are modelled as single compartment neu-

rons, whilst each pyramidal cell has three compartments (soma, basal and apical tuft

dendrites). With these neural mass formulations, model variables represent the mean

of each quantity in each subpopulation, e.g. the mean firing rate of pyramidal cells

(see below). Here we briefly describe the forward model. A summary of all the equa-

tions and parameters of the model can be found in Appendix A. For a more detailed

description please consult the original work [Riera et al., 2006].

5.2.1.1 Neural mass model

A neural mass model (NMM) characterises the population dynamics of electrical

states such as the membrane potentials in the somas of the neurons and electric

currents flowing in the neuropil. This modelling framework has been introduced in

Chapter 1 and is appropriate for data that reflect the behaviour of neuronal popula-

tions, such as EEG and fMRI data.

The time variations of membrane potential in the individual compartments of the

pyramidal cell and single compartment interneurons, V (t), are determined by the

differential equation for a simple voltage source circuit:

τm
dV (t)

dt
+ V (t) = I(t)Rm, (5.1)

where Rm is the effective membrane resistance of the compartment, and is cell-

type and compartment specific. τm is the membrane time constant (same for all cells

and compartments). The current, I(t), that flows through the membrane of the cell

depends on the connections between different elements of the cortical unit and its

external inputs (Figure 5.1(a)). The cortical unit receives external excitatory input

in different subpopulations, whilst its sole output is the firing rate of the pyramidal
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cells, which is a function of I+ (see below), the current flowing out of the cell. The

excitatory inputs to the transmission interneuron, I+3 , and basal dendrites of the

pyramidal cell, I+1 , correspond to thalamo-cortical afferent projections. The input to

the apical tuft dendrites, I+2 , mediates cortico-cortical interactions. These currents

can be found in Figure 5.1(a).

Figure 5.1: Local electro-vascular model: cortical unit. a) The unit comprises three
subpopulations of cells, two layer IV GABAergic interneurons and a layer V pyra-
midal cell. The unit receives input from cortical (I+2 ) or thalamic connections (I+1 ,
and I+3 ), whilst its output is the spiking rate of layer V pyramidal cells, I+; b) Non-
linear function of the transmembrane capacitive currents used to calculate the NO
concentration. This function is symmetric because both positive and negative cur-
rents increase the amount of NO released. This function is used in the synaptic input
coupling model. c) Sigmoid function from membrane potential to firing rate. This
function is used as the input to the vascular equations in the spiking output model.

In terms of synaptic connections within the cortical unit, the total inhibitory

synaptic effect on the pyramidal cell is given by: I− = I−T +I−F , where I−T is the trans-
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mission inhibitory current and I−F the feedback inhibitory current. The inhibitory

synaptic currents depend nonlinearly on the membrane potential of the GABAergic

cells through a threshold function: I− ∝ f(V IN). The excitatory synaptic current

generated by the pyramidal cell has the same form: I+ ∝ f(V PC):

f(V ) = Al +
Au

(1 + Te−γ(V (t)−V0))1/T
. (5.2)

The parameters are set to Al = 0 and Au = 1 to ensure that the output stays be-

tween 0 and 1. The V0 and γ parameters determine the voltage sensitivity by setting

the membrane potential maximum growth and growth rate, respectively. These pa-

rameters are estimated from the data. T = 0.03 determines the membrane potential

near the asymptote where maximum growth occurs. The threshold function, f(V ),

is also used to construct the firing rate coupling model (see below).

The equations for the membrane potential at the soma of the three-compartment

pyramidal cell, as well as the extracellular potential along its apical dendrites can be

determined from the potentials and currents at the individual compartments (given

by Eq. 5.1). These equations can be found in Appendix A. The apical dendrites of

the layer V pyramidal cells are arranged in parallel to each other and perpendicularly

oriented to the surface of the cortex. This geometry facilitates the summation of

electric currents in the neuropil. The mesoscopic effect resulting from the spatial

average of these extracellular currents corresponds to the electrical signal measured

with EEG.

The state variables, x
N

, and parameters, θ
N

, of the neural mass model described

above are summarised in Table 5.1 of the main text and Tables 1 and 2 in Appendix

A.

5.2.1.2 Extended Balloon model

The coupling between local neuronal activity, described by the neural mass model,

and subsequent changes in vascular dynamics is our question of interest. These

changes are expressed in the BOLD signal and have previously been modelled in an

extended Balloon approach [Friston et al., 2000], in which a set of four ordinary differ-

ential equations comprise the hemodynamic forward model from ‘neuronal activity’

to hemodynamic responses (see Chapter 1). The full derivation of these equations

can be found in Buxton et al. [1998] and Friston et al. [2000]. In brief, for a particu-

lar region, neuronal activity, z, causes an increase in a vasodilatory signal, s, that is
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subject to auto-regulatory feedback. Inflow, f responds in proportion to this signal

with concomitant changes in blood volume ν and deoxyhemoglobin content q (Figure

1.6):

ds(t)

dt
= z(t)− s(t)

τs
− f(t)− 1

τf
df(t)

dt
= s(t)

τ0
dν(t)

dt
= f(t)− ν(t)1/α

τ0
dq(t)

dt
=

f(t)

E0

[1− (1− E0)
1/f(t)]− q(t)ν(t)(1−α)/α. (5.3)

The hemodynamic parameters, θ
H

= {τs, τf , τ0, α, E0}, comprise the rate constant

of the vasodilatory signal decay, the rate constant for autoregulatory feedback by

blood flow, transit time, Grubb’s vessel stiffness exponent, and the resting oxygen

extraction fraction, respectively.

The whole dynamic system is driven by the input z(t) (Figure 1.7). Different in-

puts, z, correspond to different aspects of neuronal activity and consequently different

coupling hypotheses between neuronal activity and the BOLD response. A summary

of the hemodynamic model’s state variables, x
H

= {s, f, ν, q}, and parameters, θ
H

,

can be found in Table 5.1 of the main text and Tables 1 and 2 in Appendix A.

In the next section we specify the neurovascular coupling mechanisms we are

interested in comparing.

5.2.1.3 Observation equations

The original electro-vascular model proposed by Riera et al. [2006] is represented

by a set of stochastic differential equations describing the dynamics of the neuronal

and vascular states, x(t). In Riera et al. [2006] the stochastic aspect of the model is

instantiated by incorporating an additive multidimensional Wiener process to model

physiological noise. In this chapter, however, we use a deterministic version of the

model. This means that the dynamics are completely determined by the state of

the system and stochastic effects enter only at the observation level (Eq. 5.4). This

deterministic approach resulted in very similar frequency-response curves to those

in Riera et al. [2006] (see Results: synthetic data) and allows us to use standard
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Bayesian estimation routines, widely used with deterministic forward models for EEG

(e.g. Moran et al. [2008]) and fMRI (e.g. Friston [2002b]).

The observation equations for EEG, y
N

, and fMRI, y
H

, data are then given by:

y
N

(t) = h
N

(x
N

(t)) + ε
N

t

y
H

(t) = h
H

(x
H

(t)) + ε
H

t , (5.4)

where the errors are assumed to be i.i.d., ε
N,H ∼ N(0, σ

N,H
I).

The temporal variations of the EEG signal are well approximated by the extra-

cellular electric current in the neuropil, ρ(t), obtained from the NMM multiplied by

the lead field matrix, L. This matrix contains information about the geometry and

conductivity of the head, and is therefore employed to map the distributed electric

sources within the brain to scalp EEG recordings [Babiloni et al., 2009]:

h
N

(x
N

(t)) = Lρ(t). (5.5)

The observation function for fMRI is a static nonlinear function of the cerebral

blood volume and the concentration of deoxyhemoglobin directly [Friston et al., 2000]:

h
H

(x
H

(t)) = V0[k1(1− q(t)) + k2

(
1− q(t)

ν(t)

)
+ k3(1− ν(t))]. (5.6)

The factors k1, k2 and k3 are dimensionless but depend on the characteristics

of the fMRI recording system. For 1.5 T and TE of 40 msec, k1 ∼= 7E0 k2 ∼= 2

k3 ∼= 2E0 − 0.2. V0 = 0.02 is the resting blood volume fraction.

5.2.2 Neurovascular coupling

To link the two main components of the biophysical model, the neural mass model and

the Balloon model, we specified three different biologically plausible neurovascular

coupling mechanisms based on previous empirical results. These mechanisms are

described below:

5.2.2.1 Synaptic input model

The first model assumes that the input to the Balloon model, z(t), depends on the

amount of nitric oxide (NO) released by synaptic activity, as originally proposed by

Riera et al. [2006]. We refer to this model as the synaptic input model.
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NO is a potent vasoactive and rapidly diffusing gas [Marshall et al., 1988], being a

good candidate for regulating blood flow during functional activation [Li and Iadecola,

1994; Wang et al., 2005]. Although its synthesis is not yet fully understood, neuronal

NO is thought to be generated pre-synaptically [Estrada and DeFelipe, 1998] and

increases in NO concentration have been reported following increases in synaptic

activity [Buerk et al., 2003].

As an aside, we note that, although in this coupling model NO is responsible for

generating BOLD, the same model could be used with other pre-synaptically released

substances, such as glutamate, that are thought to be responsible for increases in

BOLD.

The total concentration of NO in the cortical unit is modelled as a nonlinear

function, g, of the transmembrane capacitive currents in the somas of the interneurons

and of the pyramidal cell. Although the genesis of NO is thought to be pre-synaptic,

Riera et al. [2006] assume a direct causal relation between pre-synaptic activity and

changes in post-synaptic transmembrane currents. These currents can be obtained

from the derivative of the membrane potential, I = CdV/dt, (see Eq. 5.1) and

therefore the total concentration of NO is given by:

C
NO

(t) =
∑

i={T,F}

χ
IN
g
IN

(C0
m

dV IN i
(t)

dt
) + χ

PC
g
PC

(Cm
dV PC(t)

dt
). (5.7)

The energetic factors χ
IN

and χ
PC

are introduced in order to make a distinction

between relative metabolic demand in neurons of different types. C0
m and Cm are the

effective membrane capacitances in the somas of the neurons. To take into account

both inward and outward ionic currents, the nonlinear function, g, is required to be

symmetric around zero and to include a saturation effect (Figure 5.1(b)):

g
PC

(x) = ρ
PC

(1− exp(−x2/w
PC

))

g
IN

(x) = ρ
IN

(1− exp(−x2/w
IN

)), (5.8)

where ρ
PC,IN

are parameters to be estimated from the data. w
PC,IN

are fixed

parameters (see Table 2 in the Appendix).

The amount of NO released in the cortical unit (Eq. 5.7) is then passed through

a low-pass filter with gain A, cut-off frequency ω0 and damping factor δ. Finally, the

input to the extended Balloon model, z
in

(and derivative r), is given by:
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dr(t)

dt
= −2δω0r(t)− ω2

0zin(t) + ω2
0ACNO(t)

dzin(t)

dt
= r(t). (5.9)

The baseline concentration of NO before stimulation, z0 = zin(t = 0), is estimated

from the data. In total, this model has seven free parameters (five from the hemo-

dynamic model, θ
H

, θ
in

= {πin, z0, θH}, where π
in

= Aχ
IN
ρ
IN
ω2
0, which are estimated

from the data (Table 5.1). The time series of zin (input to the Balloon model) can

be found in Figure 5.2 for most frequencies.

5.2.2.2 Spiking output model

For the second neurovascular coupling hypothesis we consider blood flow to be driven

by the output spikes of the cortical unit, i.e the firing rate of the pyramidal cells. We

refer to this model as the spiking output model.

The spiking activity of the layer V pyramidal cells is the outcome of information

processing in the cortical unit and contains the information that is transmitted to

other areas within and outside the cortex. Therefore this model looks at how BOLD

signals are related to the output of local neuronal information processing as opposed

to the synaptic input assessed by the previous model.

In this model the generalised logistic function (Eq. 5.2) is employed to transform

the average membrane potential of the pyramidal cell population, V (t), into the

average rate of action potentials fired by these neurons [Wilson and Cowan, 1972]

(Figure 5.1(c)):

zout(t) = f(V (t)). (5.10)

This model has seven free parameters (the same number of parameters of the

input model), θout = {V PC
0 , γ

PC
, θ

H
}, which are estimated from the data (Table 5.1).

The time series of zout (input to the Balloon model) can be found in Figure 5.2 for

most frequencies.

109



5. Bayesian comparison of neurovascular coupling models using
EEG-fMRI

Figure 5.2: Input to Balloon model for different frequencies. Synaptic input model
(blue), zin, spiking output model (black), zout, and mixture model (red), zmix. The
signals have been standardised (mean corrected and divided by the standard deviation
of the signal).
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5.2.2.3 Mixture model

The third coupling model assumes that both synaptic and spiking activities contribute

to the generation of hemodynamic signals. Therefore, the mixture model is a sum

of the amount of NO released by synaptic activity in the cortical unit and the firing

rate of its pyramidal cells:

zmix(t) = ωinzin(t) + ωoutzout(t), (5.11)

where ωin and ωout = 1 − ωin are coefficients to be estimated from the data and

represent the relative contribution of each type of activity. This model has ten free

parameters (three more parameters than the previous models), θ
mix

= {πin, z0, V PC
0 ,

γ
PC
, ωin, θH} . The time series of zmix (input to the Balloon model) can be found in

Figure 5.2 for most frequencies.

5.2.3 EEG-fMRI data

5.2.3.1 Subjects and task

We use EEG and fMRI data from the same study used in Chapter 3 (see Chapter 3 for

full details) to compare the neurovascular coupling models. In brief, the data were

concurrently acquired for three healthy volunteers exposed to visual flicker stimuli

(reversing checkerboard) of varying frequencies. Three consecutive sessions of the

same experimental task were recorded for each subject. The reversing frequencies

used were 4.0, 7.5, 10.0, 12.0, 15.0, 20.0 and 30.0 Hz1. Stimuli were delivered in

epochs of 5 scans, followed by periods of 5 scans of rest (blank screen), and the order

of stimulus blocks was randomised. Subjects were instructed to view a fixation cross

which was visible during both rest and stimulus periods, and no overt response was

required in either condition. The paradigm used here was designed to induce a large

response in sensory cortex, in order to study a basic physiological mechanism, the

neurovascular coupling. Although luminance levels were not held constant for the

different flicker frequencies, these values were measured and taken into account by

scaling the input to the model appropriately.

1Reversing frequencies correspond to double the value of stimulus frequencies used in Chapter
3.
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5.2.3.2 fMRI data

The fMRI data were acquired and pre-processed as described in Chapter 3. In Chap-

ter 3, we identified the brain regions activated by the flickering checkerboard in each

subject. These regions are located in the subjects’ visual cortex, as expected (see

Figure 5.3(a) for an example subject). The coordinates of the corresponding cluster

maxima are: [27,−71,−9] mm, [18,−104, 21] mm and [−9,−101, 12] mm (Talairach

coordinates) for each subject, respectively. From these location we extracted the

BOLD signal (200 scans per session) by calculating the first principal component of

the adjusted data (removing the global drift and other confounds) from voxels within

a 6 mm spherical volume centered on the cluster maximum. The resulting time-

series for each session were then epoched and averaged (in the time domain) across

epochs (Figure 5.3(b)). These time-series were used to estimate the parameters of

the neurovascular coupling model, as described below.

5.2.3.3 EEG data

The EEG data were also acquired and pre-processed as described in Chapter 3. Here

we use the scalp steady state visual evoked responses (SSVERs) to reconstruct the

electrical activity at the source level. SSVERs were computed by first epoching

the artefact-corrected 27-electrode EEG data acquired inside the MRI scanner, for

each session, in a 15-second post-stimulus window and then averaging (in the time

domain) across trials. This procedure yielded 7 averaged 15-second time-series for

each session corresponding to the 7 different flicker frequencies used. The source

electrical activity was then obtained as follows. Given a source region with known

anatomical location, we can form the NC × 1 lead field vector L where NC is the

number of EEG sensors. This vector was obtained with SPM8 using a template

mesh for the location and orientation of the cortical source and a boundary element

method for the head model. The source location was chosen to be the corresponding

cluster maximum identified with the fMRI data (see previous section). Given that the

number of sources (NS = 1) is smaller than the number of scalp channels (NC = 27),

activity in the source region can be estimated as follows [Baillet et al., 2001a]:

ρk(t) = L+ykN(t), (5.12)

where L+ denotes the Moore-Penrose pseudo-inverse of the lead field vector L+ =
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Figure 5.3: EEG-fMRI data. a) SPM results (3 sessions, example subject): effect of
visual flicker stimulation on fMRI data. The voxel location corresponds to the most
significant cluster maximum (Talairach space), p-value < 0.05 (FWE). b) Epoched
BOLD signal (eigenvariate) from the most significant cluster maximum - one example
session. c) 2 second source SSVER, ρ, from the same cluster peak from 1 example
session and frequency (10 Hz). Both signals have been standardised (mean corrected
and divided by the standard deviation of the signal).
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(LTL)−1LT . Here ykN(t) is the artifact-free SSVER for frequency k and one session.

The resulting source time-series (for all frequencies and all sessions), ρ(t), were used

to estimate the parameters of the neural mass model (see below) (Figure 5.3(c)).

This renders observation equation 5.5 redundant as we have already projected our

EEG data into source space.

5.2.4 Bayesian model inversion and selection

Using EEG-fMRI data in combination with Bayesian inference allows us to estimate

the underlying synaptic and spiking activities, along with other parameters of the

biophysical framework. Additionally, we can compare the different neurovascular

coupling hypotheses using Bayesian model evidence.

As described in Chapter 2, the posterior density used in Bayesian inference is

an optimal combination of prior knowledge and new observations, and provides a

complete description of uncertainty about the parameters. Here we use priors based

on empirical knowledge for both the neural mass model parameters and the cou-

pling/hemodynamic parameters. These priors correspond to the parameter estimates

obtained by Riera et al. [2006]. Prior variances were chosen to be of the same order

of magnitude as the prior means to ensure a coefficient of variance (CV = µ
σ
) of

approximately 1 for all parameters.

The coupling models were inverted as described in Chapter 2, Section 2.2, assum-

ing the error covariance is isotropic over the EEG and fMRI predictions CN
ε = σ2

NI

and CB
ε = σ2

BI.

Due to the fact that we are using both EEG and fMRI datasets to invert the

models, which have very different sampling periods (0.01s and 3s, respectively), we

developed an efficient multi-step inversion approach, described below.

After inversion, Bayes factors, Eq. 2.20, were used to compare the models, as

introduced in Chapter 2.

5.2.4.1 Multi-step inversion

The use of both EEG and fMRI data to estimate the electro-vascular model is affected

by the difficult problem of how to deal with the disparity between the two datasets’

time scales. In our study, for each fMRI point (sampled every 3 secs) we have 300

EEG data points (sampled at 100 Hz). The large amount of EEG data renders the
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model inversion computationally intensive, as for each parameter update we must

integrate the model equations at a fine temporal scale (1000 Hz).

To overcome this problem we developed a computationally efficient inversion

scheme based on partitioning model inversion into separate steps depending on the

time-scales of the data involved. We refer to this scheme as a ‘multi-step inversion’

approach. This procedure generalises to other datasets and can be used in other mul-

timodal studies, such as MEG-fMRI or LFP-fMRI, where the amount of data and

time scales are very different between modalities.

This ‘multi-step inversion’ approach works as follows (Figure 5.4):

(1) First we selected 2 secs of the source SSVERs (Eq. 5.12) for each frequency

(4 to 30 Hz) and session to identify the electrical states, x
N

, and parameters, θ
N

of

the NMM. Using the EEG data alone to estimate the parameters of the NMM makes

sense because these data are not dependent on the changes in the vasculature that

give rise to BOLD. We chose to fit only 2 secs for each frequency (concatenated and

chosen from the middle of the stimulation block to avoid onset and offset transients)

because, as reported in Riera et al. [2007], the averaged signal for the entire 15

secs is very regular (stationary), being sufficient in our view to estimate the model

without using the entire trial block. Reducing the data to 2 secs per frequency

considerably speeds up the inversion process. However, it is worth noting that by

assuming stationarity of the response over 15 secs and only estimating the model

from 2 secs, one can potentially be losing important slower variance components that

might be informative/important for looking at EEG-fMRI coupling. The parameters

for each session were estimated iteratively using a time step of 1 msec. At each

iteration the predictions were downsampled by a factor of 10 in order to fit the 100

Hz source SSVER data. Here we assume the neuronal response is stationary within

a given epoch (15 sec stimulus interval) with averaged EEG and BOLD signals used

here.

(2) After estimating the electrical parameters (previous step), we used these esti-

mates to integrate the full LEV model. Importantly, this integration takes place only

once (as opposed to a ‘single-step’ approach, where it would have to be integrated

at every iteration). The integration is implemented as above but instead of 2 secs,

the input to the model is now 15 secs of stimulation and 15 secs of rest for each

frequency. We integrate the full models with the three different coupling mechanisms

described above and produced the following time-series as our input to the BOLD

response (next step). For the synaptic input model the output time-series is the total
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Figure 5.4: LEV model inversion: here we adopted a ‘multi-step’ approach as opposed
to inverting the model in a single step. a) Single-step approach: the EEG and fMRI
data are used to estimate the neuronal and hemodynamic parameters (θ

N
and θ

H
)

simultaneously. At each iteration the model equations are integrated at a small time
scale matching that of neuronal activity, ∆tsmall, for the entire time interval, Tfull (15
seconds for each frequency). b) Multi-step method: here the inversion is performed
in three main steps. (1) First the neuronal parameters, θ

N
, are estimated (using M1

iterations) from the EEG data with a fine temporal resolution, ∆tsmall, but for a
smaller period, Tinter (2 seconds for each frequency). (2) In the second step these
parameter estimates are used to integrate the neuronal equations of the LEV model,
x
N

, with the same temporal resolution ∆tsmall but entire time interval Tfull. (3)
In the last step we use the BOLD data to estimate (using M3 iterations) only the
hemodynamic parameters, θ

H
, with a lower time resolution of ∆tbig over the full time

interval, Tfull. The total number of time steps, Stotal, for each approach is displayed
in each gray box.
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NO concentration, Eq. 5.9. For the spiking output model the output time-series is

the firing rate of pyramidal cells, Eq. 5.10, whilst for the mixture model both of

these output time-series were produced, Eq. 5.11. These output time-series were

downsampled to 10 Hz to reduce the estimation time of the next step and used as

inputs to the Balloon model.

(3) Finally, with the time-series for all coupling models obtained in the previous

step we estimated the extended Balloon model using the epoched BOLD data for

all frequencies. The estimation was again performed iteratively as described above,

this time with a 100 msec time step because the vascular dynamics is a much slower

process than the electrical processes. The value of the free energy (surrogate to the

log model evidence) for each neurovascular model was then used to infer the optimal

coupling mechanism.

5.3 Results

5.3.1 Synthetic data

In this section, simulations are used to explore the behaviour of the model and its abil-

ity to reproduce EEG and BOLD data under the experimental conditions described

in the previous section. The responses of the three neurovascular coupling models

to changes in stimulus frequency are also shown. These synthetic signals are used to

test the model inversion routines and to verify that Bayesian model comparison can

be used to infer the correct coupling model.

The LEV model was numerically integrated using the multi-step Adams-Bashforth-

Moulton predictor-corrector algorithm implemented in the MATLAB (The Math-

Works, Inc.) function ode113. The integration step used was 1 msec (1000 Hz) for

the electrical and vascular states. The integrated signals were then downsampled to

100 Hz in the EEG case and to 0.3 Hz for the BOLD signal. The input to the model

is described below.

5.3.1.1 Model input

The input to the LEV model was generated by creating a series of single events with

the same frequency as the reversing checkerboard (4.0, 7.5, 10.0 ... Hz). These events

are modelled as Gaussian functions of σ = 17.0 msec width: I+(t) =
∑

iA exp(−|t−
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ti|2/2σ2). This value of σ corresponds to the screen refresh interval. The amplitudes

A are fixed over time but differ for excitatory versus inhibitory populations. In

our simulations we used the amplitudes A1 = 1pA and A1 = 0.4pA for I+1 and

I+3 , respectively, as proposed in Riera et al. [2006]. These amplitudes are estimated

from the data when using the EEG-fMRI signals (see below). Input I+3 was also

delayed by 100 msec with respect to I+1 as suggested in Riera et al. [2006]. Cortico-

cortical interactions were neglected and so I+2 was set to zero during the entire period

of integration. Due to the fact that luminance levels were not kept constant for the

different frequencies we multiplied the input time-series according to the lux measures

(from low to high frequencies) by: 1.00, 0.96, 0.93, 0.91, 0.88, 0.82, 0.74 (lower

frequencies had higher luminance levels).

5.3.1.2 Frequency-response curves

We first generated data from the LEV model separately for the different stimulus

frequencies (4 to 30 Hz). We used the three neurovascular coupling mechanisms

described above. The data were simulated using the parameter values summarised

in Table 1 and Table 2 (Appendix) for a period of 15 seconds of stimulation and 15

seconds of rest. The simulated signals showed that all coupling models predict an

increase of the BOLD signal during stimulation, as expected, and synchronisation of

the EEG signal to the input frequency. Figure 5.5 shows the EEG and fMRI signals

generated for a period of 15 sec of stimulation and 15 sec of rest using the synaptic

input model.

We then looked at the behaviour of the fMRI signal predicted by the different

coupling models for all frequencies. Figure 5.6 presents the frequency-response curves

obtained. These curves correspond to the maximum amplitude of the BOLD signal

for each stimulus frequency. As can be seen in Figure 5.6, the synaptic input model

predicts an increase in the BOLD response until approximately 8 Hz and a decrease

afterward. This result confirms the simulations of Riera et al. [2006] who found a

similar frequency-response curve for the NO mechanism between (0.5 and 16 Hz). In

addition, this result validates the use of a deterministic model instead of the original

stochastic model. The stochastic effects are therefore not necessary to reproduce the

frequency response curve obtained in Riera et al. [2006]. Contrary to the synaptic

input model, the spiking output model predicts an increase in the BOLD response

with input frequency without any saturation effect (Figure 5.6).
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Figure 5.5: Simulated data: a) BOLD response for a stimulation block (15 seconds
of stimulation and 15 second of rest) of 8 Hz reversing frequency; b) EEG signal for
the same stimulus (2 seconds). Both signals have been standardised (mean corrected
and divided by the standard deviation of the signal) as used for model inversion.

Figure 5.7(a) shows the frequency-response curve for the real fMRI data. For real

data the values plotted in this curve correspond to GLM coefficients as a function of

frequency (stimulus). These are obtained when we regress the BOLD signal using the

onsets of the stimuli as our regressors, or columns of the design matrix. Each column

corresponds to a different frequency and the associated coefficient tells us how much

BOLD is expected to increase with that particular frequency. As can be seen in Figure

5.7(a), the response of the real BOLD signal to the different frequencies also peaks at

8 Hz and has a minimum at 15 Hz. This behaviour has been previously reported in

human BOLD data for frequencies below 16 Hz under similar experimental conditions

[Parkes et al., 2004; Singh et al., 2003; Wan et al., 2006]. Above 15 Hz this curve has

a second peak in BOLD signal amplitude at 20 Hz and a decrease afterward (Figure

5.7(a)). The same type of curve is reported in Parkes et al. [2004]: two maxima at

8 and 20 Hz, a smaller peak at 12 Hz, and the rest of the frequencies (≤ 20Hz in

Parkes et al. [2004]) lie below these values.

The frequency-response curve for the measured SSVERs is plotted in Figure

5.7(b). The curves for all three sessions of an example subject show a peak at 12

Hz and a decrease in amplitude afterward. This same curve was found in all other

subjects and sessions. This means the peaks in the BOLD signal cannot be explained

from the electrical signals alone.
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Figure 5.6: Model frequency response curves -synthetic data: a) Predicted BOLD
response versus reversing frequency for the synaptic input and spiking output models.
The curves show the BOLD response obtained for each stimulus frequency (divided
by the maximum peak for each model).
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Figure 5.7: Measured frequency response curves - EEG-fMRI data: a) Measured
BOLD response versus reversing frequency. The values on the y-axis correspond to
per cent changes of the global mean signal. b) Frequency-response curve for EEG
data. Each point corresponds to the amplitude of the evoked response (divided by
the maximum response) at that frequency (

∑
m |SSVERm|2), where m is the number

of bins. The maximum value was 2.07µV2.

5.3.1.3 Model parameters

Table 5.1 lists the parameters for the electric, θ
N

and vascular, θ
H

, components of the

model that are estimated from the (synthetic) data. These are the same parameters

estimated in Riera et al. [2007]. We also summarise the coupling parameters in the

same table: θ
in

, θout and θ
mix

(Table 5.1). The amplitudes of the three input currents

(I+1 , I+2 and I+3 ) and θ
N

are estimated from EEG in step (1) of the inversion. θ
H

are

estimated from the BOLD signal in step (3). θ
in

and θout and θ
mix

are estimated from

both EEG and fMRI data in steps (1) and (3) of model inversion.

When using the observed EEG and fMRI signals, the priors on the parameters

corresponded to the parameter estimates obtained by Riera et al. [2007], that is, from

the inversion of the same electro-vascular model with similar EEG-fMRI data.

5.3.1.4 Model comparison

We then tested if Bayesian model comparison could be used to correctly decide upon

which coupling model was used to generate the data, and if despite the small number

of samples of fMRI compared to EEG we could still infer the right model.

We again generated data using the three coupling models as described above. We

generated data for all the frequencies concatenated, with additive Gaussian observa-

tion noise: σ
N
∼ N(0, 0.3I) and σ

B
∼ N(0, 0.008I). These values are based on the
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Table 5.1: Estimated parameters: these are the parameters estimated from synthetic
(column 7) and measured EEG-fMRI data (last column). These are from one example
session and for all frequencies. The parameter π

in
for the synaptic input model

corresponds to: π
in

= Aχ
IN
ρ
IN
ω2
0 (see Eq. 13-18 and Table 2 in Appendix A).

‘Symb.’ means Symbol, ‘Estim.’ means Estimated, ‘Obser.’ means Observed and
‘Mix.’ means Mixture.

Electrical, vascular and coupling parameters
Synthetic Obser.

Type Description Symb. Units Prior True Estim. Estim.
θN

Synaptic input I+1 pA 1.00 0.80 0.85 0.94
Synaptic input I+2 pA 1.00 1.00 1.00 1.00
Synaptic input I+3 pA 1.00 0.50 0.60 0.60
GABAergic IN
synaptic factor α

IN
pA 0.30 0.50 0.49 0.53

PC voltage-ampere
(VA) function V PC

0 mV 0.60 0.90 0.78 0.42
PC VA function γ

PC
mV −1 6.00 4.00 5.62 5.95

θH
Signal decay τs ms 0.65 0.50 0.65 0.59
Autoregulation τf ms 0.41 0.28 0.41 0.40
Transit time τ0 ms 0.98 0.78 0.98 0.91
Stiffness α no dim. 0.32 0.25 0.32 0.32
Resting O2
extraction fraction E0 no dim. 0.34 0.30 0.34 0.34

Coupling
NO (θ

in
) NO concentration

baseline z0 no dim. 0.10 0.30 0.29 0.29
NO synaptic
current factor (IN) π

in
s−2 1590 1500 1590 1590

FR (θout) PC VA function V PC
0 mV 0.78 0.90 0.63 0.17

PC VA function γ
PC

mV −1 5.62 4.00 5.70 7.98
Mix. (θ

mix
) NO coefficient ωin no dim. 0.50 0.40 0.40 0.29

FR coefficient ωout no dim. 0.50 0.60 0.60 0.71
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signal-to-noise ratio for the observed data (1 for the averaged EEG signals and 2 for

the averaged BOLD signals). We then fitted the coupling models to each of the three

synthetic datasets.

We verified that Bayesian model comparison inferred the correct model in all

cases, with a minimum Bayes factor of approximately 20 (log-Bayes factor of 3)

(Figure 5.8). This value corresponds to strong evidence in favour of the model that

generated the data and a posterior model probability over 0.95 [Penny et al., 2004].

The parameter values used to generate the data and the corresponding parameter

estimates and priors for each model can be found in Table 5.1. As can be seen, the

parameter estimates were close to the true values used in data generation, except for

V PC
0 . For this parameter the estimated value was found to be farther away from the

true value than the prior. This result might be due to a bad choice of true or prior

value and potential identifiability issues in the estimation of V PC
0 and γ

PC
. Despite

this fact, the fit of the output model was found to be good (not shown).

As an aside, we note that, as with any gradient-ascent based optimisation al-

gorithms, our inversion scheme is subjected to the possibility of running into local

minima. One way to tackle this problem can be to initialise the inversion in different

parameter regimes. In this work we have only observed once a clear case of local

minimum, where the fit of one of the models to one session was extremely poor. We

have then initialised the parameters with the estimates from other sessions and the

inversion scheme was able to find new parameter estimates that provided a good fit

to the data, similar to what was obtained for the other sessions.

5.3.2 EEG-fMRI data

Finally we fit the electro-vascular model with the three different coupling mechanisms

to the EEG and fMRI data. We used the same ‘multi-step’ inversion procedure

described in the previous section. Figure 5.9 shows the model predictions for EEG,

as well as predictions of the coupling models and the BOLD response.

5.3.2.1 Model comparison

Our analysis focused on the relevant contributions of synaptic and spiking activity

models as a function of stimulation frequency. To this end we divided the stimuli into

‘low-frequencies’ (4 to 15 Hz), ‘high-frequencies’ (10 to 30 Hz) and ‘all-frequencies’ (4

to 30 Hz) and the analysis was repeated for these three regimes. A summary of the
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Figure 5.8: Model comparison with synthetic data: we generated data with the
different coupling models (IN: synaptic input model; OUT: spiking output model;
MIX: mixture model). We then fitted these datasets with the same three coupling
models and obtained the results plotted in the figure. a) Difference in log-evidences
relative to worst model. b) Corresponding model posterior probabilities.
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Figure 5.9: Model identification: a) EEG time-series (black line) and model fit (blue
line) for one example session and subject (2 seconds of data per frequency). b) BOLD
time-series (solid black line) and model fit (dotted lines) for one example session and
subject (15 seconds of data per frequency). The M-shaped response of Fig. 5.7 cannot
be observed here because the BOLD signal is confounded by luminance levels, which
are accounted for in the regression analysis that was done to obtain the frequency-
response curves of Fig. 5.7. For this example session, the model evidence is greater for
the Mixture model than for the other two models. This can be seen in the figure, i.e.
the mixture model (red) provides the best overall fit to the data of this session. The
signals have been standardised (mean centred and divided by the standard deviation
of the signal) as used in the model inversion scheme.
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model comparison results for all subjects can be found in Figure 5.10. The results for

all sessions, subjects and frequency regimes can be found in Table 3 of the Appendix.

Figure 5.10: Model comparison (MIX: mixture model; IN: synaptic input model;
OUT: spiking output model): log-model evidence relative to worst model (for low,
high and all frequencies). These are group results for all subjects and sessions anal-
ysed (the log-evidences are summed over subjects).

As can be seen in Figure 5.10(a), in the low-frequency regime we found that the

synaptic input model best explained the observed data. In this regime the spiking

output model was the worst model. The difference in log-model evidence between

the best model (synaptic input) and the second best model (mixture) was above

5. This value corresponds to strong evidence in favour of the synaptic model and a

probability, p, over 0.99 of this model being the best model to explain the data in this

regime [Penny et al., 2004]. This result was consistent accross subjects and sessions

analysed (5 out of 6 sessions) (Table 3 of the Appendix). The model evidence values

can be found in Table 3 of the Appendix.

However, when we analysed the high frequencies, the mixture model was found to

be the best model with probability p > 0.99 (Figure 5.10(b)). This result was again

consistent across subjects and for the majority of sessions (7 out of 9 sessions) (Table

3 of the Appendix). In this regime the spiking output model was the second best

and, contrary to the low-frequencies case, synaptic activity contributed the least to

the BOLD response.

For both regimes, the inferred neuronal firing rates were found to be commensurate

with the stimulation frequency. Finally, an additional analysis across all frequencies
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revealed that the mixture model was the best model, again with probability p > 0.99

(Figure 5.10(c)). This result was found in 6 of the 9 sessions analysed, although in

one of the sessions the model evidence for all three models was nearly identical (Table

3 of the Appendix).

With hindsight it seems unsurprising that when we analyse all frequencies the

mixture model was found to explain the data better than the input and output

models alone. As we observe in Figure 5.7(a), the double peaked frequency-curve

of fMRI data can be easily explained by a weighted combination of the frequency-

response curves predicted for the input and output models individually (Figure 5.6).

This weighted combination is the definition of the mixture model and the weights

(mixture parameters) depend on the regime of frequencies analysed, providing, for

instance, a one-peaked or two-peaked curve for low and all-frequencies, respectively.

These results were robust to the choice of partition into low/high frequencies.

Similar results (not shown) were obtained with partitions such as: low-frequencies

(4, 8, 10, 12 Hz) and high-frequencies (15, 20, 30 Hz).

5.4 Discussion

In this chapter we used EEG-fMRI data and a biophysically informed mathematical

model to investigate the relationship between neuronal activity and the BOLD signal

in human visual cortex. In particular, we explored the contributions of synaptic input

and spiking output activities to the generation of the BOLD response.

We have provided evidence that the BOLD signal is dependent upon both synap-

tic and spiking activity but that the relative contribution of these two factors are

dependent upon the underlying neuronal firing rate, which is proportional to the

stimulation frequency. When the underlying neuronal firing is low then BOLD sig-

nals are best explained by synaptic input, in agreement with previous animal studies,

such as Logothetis et al. [2001]. This result is also in line with more recent studies,

such as Viswanathan and Freeman [2007] and Rauch et al. [2008], which show that

the BOLD response is only affected by changes in synaptic-related activity (measured

with LFPs) and not by changes in spiking activity (measured with MUA) when these

two signals can be dissociated.

However, when the stimulation frequency, and correspondingly the neuronal firing

rate, is high then both synaptic and spiking activity are required to explain the BOLD
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signal, as observed in, for example, Heeger et al. [2000] and Mukamel et al. [2005].

We were particularly encouraged to find that a combination of synaptic input and

spiking output frequency response curves (Figure 5.6) can explain the doubly-peaked

BOLD response observed by Parkes et al. [2004] and replicated in our own data.

One possible explanation for the increased performance of the output model with

higher frequencies comes from neuroenergetic studies such as e.g. Smith et al. [2002]

and Maandag et al. [2007]. In these studies brain metabolism was found to depend

strongly on neuronal spiking, with increases in oxygen consumption reflecting higher

firing rates. More recently, Lee et al. [2010] have found that differences in the BOLD

response between different brain areas (motor cortex and thalamus) could be ex-

plained by underlying differences in the firing rates of the corresponding neuronal

populations.

Our results also support the conclusion that the relationship between synaptic

activity, spikes and BOLD signals depends on the specific neuronal circuitry engaged

in task processing. Moreover, one can speculate that different coupling mechanisms

involving different types of cells and molecules could come into play depending on

the task in question.

Despite our concern about the small number of fMRI samples compared to EEG,

our initial results with synthetic data showed that it is possible to make inferences

on different hypotheses for the neurovascular coupling using a generative modelling

framework and Bayesian model comparison. The issue of different time-scales was

addressed by partitioning the estimation of electrical and vascular states into a multi-

step approach. In this approach we first estimated the electrical states and parameters

from the EEG data and then integrated the full electro-vascular model using these

estimates. From the integrated model we extracted the input time-series to the

Balloon model, which we then inverted using BOLD data. The last two steps were

repeated for each coupling model.

This method significantly increases the computational efficiency of the model in-

version. However, this multi-step approach is only possible with a deterministic

model. In this work we used a deterministic version of the stochastic electro-vascular

model proposed by Riera et al. [2006]. Under different experimental conditions, which

do not induce a large sensory response, the introduction of stochastic effects might

be essential to reproduce the empirical data. In this case, other Bayesian inversion

frameworks can be employed to estimate the model parameters, such as Friston et al.

[2008] and Daunizeau et al. [2009].
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It is also worth noting that despite the fact that the mixture model had more

parameters than the input and output models, this extra complexity did not provide

a significantly better fit to the data in the low-frequency analysis than the input

model. This complexity is correctly penalised using Bayesian methods, such as the

one used here (see Chapter 2).

One concern about the coupling models defined here regards the definition of NO

concentration. As mentioned in the Methods section, NO is thought to have a pre-

synaptic synthesis [Estrada and DeFelipe, 1998; Wang et al., 2005]. However, here

and in Riera et al. [2006] the concentration of NO is modelled through post-synaptic

quantities such as the transmembrane capacitive currents. Although in principle these

two phenomena are directly related (increases in pre-synaptic activity mean larger

post-synaptic effects) this is not always the case. Changes in transmembrane currents

at the post-synaptic level can be caused by different processes such as chemical-gated

channels, electric-gated channels, and passive leakage, not all of them being related

to pre-synaptic activity. Therefore the transmembrane currents are an indirect way

of quantifying the amount of NO released during synaptic activity. However, this

issue is also encountered in experimental measures of synaptic activity, such as local

field potentials. This signal is a surrogate post-synaptic signal, which is also affected

by other slow potentials occurring at the cellular level that do not have a purely

pre-synaptic origin.

To our knowledge this work presents the first quantitative model comparison

of different biologically plausible mechanisms for neurovascular coupling in human

cortex using EEG-fMRI data and a realistic biophysical model.

However, even though our results were consistent across the three subjects and

the majority of sessions, the case study approach adopted here has its limitations.

Namely, it does not quantitatively address the issue of inter-subject variability and

it therefore precludes inferences at the population level. With a larger sample of

subjects, inter-subject variability can be accommodated using the Random-Effects

(RFX) model selection approach developed by Stephan et al. [2009] and reviewed in

Chapter 2 and Chapter 4.

One possible technical improvement to our work would be to fit the EEG data in

the frequency rather than in the time domain. This would be a sensible option as we

have assumed that the EEG is stationary during the time periods of interest. This

approach is used in related work [Moran et al., 2008], where EEG spectra are related

to parameters of underlying neural mass models.
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The work in this chapter has investigated models of neurovascular coupling for

neurodynamic and hemodynamic activity in a single brain region. In future, we

envisage this work being extended to activity in multiple brain regions. The LEV

model [Riera et al., 2006] is particularly relevant here because the cortical unit is

explicitly modelled as receiving separate inputs from thalamus and other cortical

regions. This would allow us to investigate which aspects of BOLD are due to synaptic

input from cortex versus thalamus. Further, this would bring the research into the

more general area of brain connectivity modelling, which is the topic of the following

chapter.

We hope that future studies with other datasets and different experimental condi-

tions will employ our modeling approach so that a balance of evidence can be reached

that clearly disambiguates between different hypotheses concerning neurovascular

coupling.

Understanding the underlying biophysical mechanisms behind the coupling be-

tween neuronal activity and the BOLD response is vital not only for improving the

interpretability of the BOLD response, but also for relating findings from fMRI re-

search with results from other neuroscientific disciplines. For example, a large amount

of work in neuroscience relies on recordings of firing rates from single responsive neu-

ronal cells.
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Chapter 6

Post-hoc selection of dynamic

causal models

6.1 Introduction

Dynamic causal modelling (DCM) is a mathematical framework to estimate, and

make inferences about, the coupling among brain areas and how this coupling is

influenced by changes in experimental context [Friston and Penny, 2003]. Although

it was originally introduced as a hypothesis driven procedure, in which a small number

of neurobiologically motivated models are compared, recently, a trend has emerged

for comparing very large numbers of models in a more exploratory manner.

Bayesian model selection (BMS) is a powerful method to compare different mod-

els for explaining observed data. BMS is based on the model evidence, which is the

probability of the data given the model. Even though this quantity is not, in gen-

eral, straightforward to compute, it is now well established that statistical models

can be compared using a variational free energy approximation to the evidence [Beal

and Ghahramani, 2003]. This approximation has widespread application, and, in

neuroimaging, it has become the method of choice for comparing models of effec-

tive brain connectivity, in particular dynamic causal models (DCMs) [Penny, 2012;

Stephan and Friston, 2010].

Model comparison in this context has hitherto proceeded by individually fitting

all competing models to data and then approximating the model evidence with the

variational free energy bound [Friston et al., 2007a]. We refer to this approximation

to the model evidence as the optimised evidence.
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Very recently, Friston and Penny [2011] have proposed an alternative, post-hoc,

approximation to the model evidence that is computed by fitting only the very largest

of a set of models: a full model from which all other (reduced) models can be formed

by removing model parameters. This scheme approximates the evidence for any

nested model within a larger model using only the posterior density of the full model.

We refer to this approximation as the post-hoc evidence.

The benefit of this post-hoc approach is a huge reduction in the computational

time required for model fitting. This is because only a single model is fitted to data.

This means that a potentially huge model space can be searched relatively quickly.

In addition to the model evidence approximation, Friston and Penny [2011] also

propose a way to estimate the connectivity parameters for all reduced models from

the posterior density over the parameters of the full model. More specifically, the

posterior mean and precision of the reduced model can also be determined solely

from the mean and precision of the parameters of the full model.

The post-hoc approach can also be viewed as a generalisation of the well-known

Savage-Dickey density ratio [Dickey, 1971] (see Figure 6.1), in which the reduced

models have certain parameters fixed at zero. To our knowledge, the Savage-Dickey

method [Dickey, 1971], has not yet been applied to neuroimaging problems, although

it has been applied in other fields, from cognitive psychology [Wagenmakers et al.,

2010] to cosmological models [Trotta, 2007]. The recently proposed post-hoc approach

has been developed with neuroimaging models in mind, and the authors have shown

[Friston et al., 2010a], using stochastic DCMs (see Chapter 1), that there is a very

good agreement between the optimised and post-hoc model evidences.

This chapter explores the relation between optimised and post-hoc approximations

to the model evidence for deterministic (rather than stochastic) DCM. Currently,

deterministic DCM is the more standard methodology for making inferences about

brain connectivity from functional magnetic resonance imaging (fMRI) data. We also

investigate the effect of SNR on model comparison.

Since the main goal of DCM is to make inferences on the connectivity param-

eters we also compare the estimates of these parameters obtained with these two

approaches. To this end we use synthetic and real fMRI data from a previously pub-

lished study on attention to visual motion [Buchel and Friston, 1997]. This is the

same dataset used in Friston et al. [2010a]. Although we use fMRI data, the methods

described here can also be applied to other data modalities and statistical models, as

long as the models that are compared are nested.
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This chapter is structured as follows. In the Materials and Methods section

(6.2) we review DCM for fMRI. We then focus on model optimisation and differ-

ent approaches to estimate the model evidence and connectivity parameters. We

then present (Section 6.3) and discuss (Section 6.4) results from comparing these

approaches using synthetic and real fMRI data.

6.2 Materials and methods

In this section we briefly review DCM. We then look at different proxies for the model

evidence. In particular we focus on a computationally efficient post-hoc approxima-

tion. In addition, we compare the estimates for the connectivity parameters obtained

with this approach to the estimates obtained by optimising all models.

6.2.1 Dynamic causal modelling

As described in Chapter 1, DCM is a mathematical framework to estimate, and

make inferences about, the coupling among brain areas and how this coupling is

influenced by changes in experimental context [Friston and Penny, 2003]. It uses

differential equations to describe the neuronal activity of interacting cortical regions

and a forward model of how this neuronal activity is transformed into an observed

response. This framework has been applied to fMRI, EEG and MEG [Kiebel et al.,

2009], as well as LFP data [Moran et al., 2009]. Here, we focus on fMRI but the

methods described below can also be applied to other data modalities.

Here we consider DCMs for fMRI that employ a deterministic bilinear model

for the dynamics at the neuronal level (neurodynamics) and an extended Balloon

model for the hemodynamic level. For non-linear, two-state or stochastic DCMs see

Stephan et al. [2008], Marreiros et al. [2008a], and Friston et al. [2010a], respectively.

The deterministic bilinear neurodynamics are described by the following multivariate

differential equation:

ż(t) = (A+
M∑
j=1

uj(t)B
j)z(t) + Cu(t), (6.1)

where the dot notation denotes the time derivative. The variable z describes

changes in neuronal activity resulting from the sum of three effects. First, the matrix
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A encodes direct, or fixed, connectivity between pairs of regions. The elements of

this connectivity matrix are not a function of the input and can represent both

unidirectional and bidirectional connections. Second, the elements of Bj represent

the changes in connectivity induced by the inputs uj. M is the number of inputs.

These condition-specific modulations or bilinear terms are usually the interesting

parameters. Third, the matrix C encodes the direct influence of each exogenous

input uj on each area (Figure 1.8).

The overall structure of fixed, A, modulatory, B, and input, C, connectivity

matrices constitutes our assumptions about model structure. This in turn represents a

scientific hypothesis about the structure of the large-scale neuronal network mediating

the underlying cognitive function.

As mentioned above, DCM for fMRI uses the extended Balloon model to describe

how changes in neuronal activity give rise to the observed fMRI signals for each region.

The full derivation of the model equations can be found in Buxton et al. [1998] and

Friston et al. [2000]. In brief, see Eq. 5.3 (Chapter 5), for a particular region,

neuronal activity, z, causes an increase in a vasodilatory signal, s, that is subject

to auto-regulatory feedback. Inflow, f , responds in proportion to this signal with

concomitant changes in blood volume, ν, and deoxyhemoglobin content, q, (Figure

1.6).

The hemodynamic parameters comprise the rate constant of the vasodilatory sig-

nal decay, τs, the rate constant for autoregulatory feedback by blood flow, τf , transit

time, τ0, Grubb’s vessel stiffness exponent, α, and the resting oxygen extraction frac-

tion, E0. In this chapter, for identifiability reasons, only two of these parameters

are estimated from the data for each region: h = {τs, τ0}. The others are set to

τf = α = E0 = 0.32.

The blood oxygenation level dependent (BOLD) signal, y is then taken to be a

static nonlinear function that comprises a volume-weighted sum of extra- and intra-

vascular signals, Eq. 5.6 (see Chapter 5). See also Stephan et al. [2007a] for recent

work on this BOLD signal model.

The parameters, θ, for a bilinear DCM, indexed by m, comprise the connectivity

matrices as well as the hemodynamic parameters, i.e. θ = {A,B,C, h}. The priors,

p(θ|m), on both the connectivity and hemodynamic parameters are described in the

Appendix. In current implementations of DCM, independent of modality, the model

parameters are estimated from the data, y, using Bayesian methods, and models are

compared using the model evidence.
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6.2.2 Model evidence

The method of choice to approximate the model evidence for DCMs has been the vari-

ational free energy approximation [Friston et al., 2007a; Stephan and Friston, 2010],

as described in Chapter 2. This method involves individually fitting (optimising) each

model to data and then approximating the model evidence with a free energy bound.

We refer to this approximation as the optimised model evidence. In contrast, Friston

and Penny [2011] have proposed a post-hoc approximation to the evidence, which is

computed by optimising only the largest of a set of models. This approach can be

viewed as a generalisation of the well-known Savage-Dickey ratio [Dickey, 1971] (see

Figure 6.1). In addition to the model evidence, the post-hoc scheme also provides

estimates of the parameters for all reduced models from the full (optimised) model.

Below we describe the two different approaches to approximate the model evidence

and parameters (optimised and post-hoc approximations).

6.2.2.1 Optimised evidence

As mentioned in Chapter 2, VL updates the moments of an approximate posterior

density, q(θ|y,m) by maximising an approximation to the negative variational Free

Energy (henceforth ‘free energy’, Fm). This provides an approximation to the log

model evidence, log p(y|m) [Penny, 2012].

Model comparison can then proceed using Fm as a surrogate for the log-evidence.

We call this approximation optimised evidence because it comes out of the optimisa-

tion scheme described in Chapter 2, Section 2.2. This approximation to the model

evidence is based on inverting all models in the model space. This is feasible only in

a hypothesis driven procedure in which the model space comprises a small number of

models. In large model spaces, optimising all models to obtain the evidences rapidly

becomes computationally infeasible. For instance, in more exploratory analyses, one

might be interested in looking at most, if not all, the possible connections and mod-

ulatory effects. The model space in this case can easily have thousands or millions of

different networks. Below, we describe a less computationally expensive alternative

to compute the model evidences.

6.2.2.2 Post-hoc evidence

This approach provides the model evidence and parameters for any nested (reduced)

model within a larger (full) model as a function of the posterior density of the full
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model [Friston and Penny, 2011]. This is a flexible approach that allows for post-hoc

model selection without the need to invert more than a single model. In DCM the

full model may be, for example, the fully connected network and the reduced models

would correspond to networks with a sparser connectivity contained within this larger

model.

The method assumes only the existence of a full model, mF ∈ M , which shares

the same likelihood with the set of reduced models, mi ∈M and ∀i : mi ≺ mF :

p(y|θ,mi) = p(y|θ,mF ), (6.2)

This means the reduced models are constructed from the full model only by chang-

ing the priors on certain parameters θu ⊂ θ as described below. This also implicitly

assumes that the hyperparameters describing observation noise levels, λobs, are the

same for the full and reduced models. This is not the case for the optimised model

evidence approach, where λobs are optimised for each model.

We can then use Bayes rule to transform the above equality, Eq. 6.2. By re-

arranging the terms we can write the ratio of model evidences in terms of the posterior

and priors of the full and reduced model:

p(y|mi)

p(y|mF )
=

p(θ|y,mF )

p(θ|y,mi)

p(θ|mi)

p(θ|mF )
(6.3)

Friston and Penny [2011] consider Eq. 6.3, under the Laplace approximation, as

mentioned in Chapter 2. Under this approximation the posteriors, q, and priors, p,

of the full and reduced models are Gaussian densities:

q(θ|mi) = N(µi, Ci) : Ci = P−1i

q(θ|mF ) = N(µF , CF ) : CF = P−1F

p(θ|mi) = N(ηi,Σi) : Σi = Π−1i

p(θ|mF ) = N(ηF ,ΣF ) : ΣF = Π−1F , (6.4)

where ηi,F and Πi,F are the prior means and precisions for the reduced (i) and full

model (F ), while µi,F and Pi,F are the posterior means and precisions. Making use of
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the assumptions of Eq. 6.4 in Eq. 6.3 the log model evidence for any reduced model

can be written as a simple analytic function of the means and precisions of the prior

and posterior of the full and reduced model:

Fi = log p(y|mi)

=
1

2
log
|Πi||PF |
|Pi|||ΠF |

− 1

2
(µTFPFµF + ηTi Πiηi − ηTFΠFηF − µTi Piµi) + F F . (6.5)

This is useful because the requisite means and precisions of the reduced model

can be derived in a straightforward way from the means and precisions of the full

model (see below).

The post-hoc approach can also be viewed as a generalisation of the Savage-Dickey

density ratios [Dickey, 1971], in which the reduced models have certain parameters

fixed at zero. To obtain these ratios we integrate Eq. 6.3 over the parameters.

To do this we first partition the parameter space into two subsets of parameters

θ = {θu, θc}. The subset θu ⊂ θ contains all the parameters which differ between

the full, F , and reduced model, i. The remaining parameters θc are shared between

the models, with equal priors: p(θc|mi) = p(θc|mF ). We refer to θu and θc as the

unique and common parameters, respectively, and assume the priors factorise, i.e.

p(θ|mi) = p(θu|mi)p(θ
c|mi). With this notation, we can write Eq. 6.3 as follows:

∫
p(θ|y,mi)

p(y|mi)

p(y|mF )
dθ =

∫
p(θ|y,mF )

p(θ|mi)

p(θ|mF )
dθ

p(y|mi)

p(y|mF )
=

∫ ∫
p(θ|y,mF )

p(θ|mi)

p(θ|mF )
dθudθc, (6.6)

where
∫
p(θ|y,mi)dθ = 1. If we then use p(θu, θc|y,mF ) = p(θc|θu, y,mF )p(θu|y,mF )

and the fact that the priors over θc are the same for both models we obtain the fol-

lowing result:

p(y|mi)

p(y|mF )
=

∫ ∫
p(θc|θu, y,mF )p(θu|y,mF )

p(θu|mi)

p(θu|mF )
dθudθc

=

∫
p(θu|y,mF )

p(θu|mi)

p(θu|mF )
dθu. (6.7)
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When the reduced prior is a point mass (delta function), p(θu|mi) = δ(θ̄u), that

fixes the subset of parameters θu to a particular value, θ̄u, the last equation, Eq. 6.7,

reduces to the Savage-Dickey ratio (usually considered when θ̄u = 0):

p(y|mi)

p(y|mF )
=

p(θu = 0|y,mF )

p(θu = 0|mF )
. (6.8)

This ratio has a simple intuitive interpretation: if we believe it is more likely that

parameters θu are zero after seeing the data than before, then p(y|mi)/p(y|mF ) > 1

and we have evidence in favour of the reduced model mi. This is depicted in Figure

6.1.

The posterior of the full model can be obtained using the VL optimisation scheme,

q(θ|y,mF ), described in Chapter 2. Again, under Gaussian assumptions we can write

the previous ratio, Eq. 6.8, as follows:

F u
i = log p(y|mi)

=
1

2
log
|P u
F |
|Πu

F |
− 1

2
(µu

T

F P u
Fµ

u
F − ηu

T

F Πu
Fη

u
F ) + F u

F . (6.9)

This analytic formula is a special case of the post-hoc approach, Eq. 6.9, to

calculate the model evidence of any reduced model as a function solely of the posterior

mean and precision of the full model. The difference between Eq. 6.5 and Eq. 6.9

is the absence of quantities from the reduced model and the fact that all means

and precisions are taken only for the subset of unique parameters, θu, which are not

allowed to vary in the reduced model.

6.2.3 Post-hoc parameters

Once the full model has been optimised, Eq. 6.5 can be used to compute the model

evidences for all reduced models from the full model. This results from the fact that,

as we describe in the following, the posterior mean and precision of the reduced model

parameters can also be determined from the mean and precision of the full model.

To obtain these estimates we again assume that the models differ only in the

specification of the priors, i.e. they share the same likelihood, Eq. 6.2. Using this

assumption we can subtract the linearised approximation to the posterior precision,
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Figure 6.1: Savage-Dickey density ratio: This ratio is calculated by dividing the value
of the posterior distribution over the parameters for the full model evaluated at θ = 0,
p(θ = 0|y,m), by the prior for the same model evaluated at the same point, p(θ =
0|m). These quantities are shown here for the case of a univariate Gaussian prior and
posterior. The interpretation is simple: if it is less likely that parameters θ equal 0
after seeing the data (posterior) than before (prior), then p(y|mi)/p(y|mF ) < 1 and
we have evidence in favour of the full model, mF , and vice-versa.
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Eq. 2.5, of the full model from the precision of the reduced model and eliminate the

terms that do not depend on the priors, such as JTC−1ε J . These terms are the same

for all models and therefore cancel out in the subtraction. This yields the following

result:

Pi − PF = JTi C
−1
ε Ji + Πi − JTf C−1ε Jf − ΠF

= Πi − ΠF ,

Pi = PF + Πi − ΠF . (6.10)

Following exactly the same procedure we obtain the posterior mean of the reduced

model as a function of the mean of the full model and the priors for both models. To

summarise, the post-hoc approach provides estimates of the parameters (means and

precision) under the Laplace assumption for any reduced model that can be obtained

by inverting only the full model:

Pi = PF + Πi − ΠF

µi = Ci(PFµF + Πiηi − ΠFηF ). (6.11)

This method is exact for linear models [Friston and Penny, 2011] (assuming that

the likelihoods are the same, i.e. the models have a common noise variance). In the

results section we test the validity of this approximation for bilinear deterministic

DCMs. We compare the parameter estimates obtained with the post-hoc approach

to the variational estimates obtained from optimising all models, using synthetic and

real fMRI data.

Finally, once the model evidence and parameters have been estimated for each

model, m, using the optimised or post-hoc approximations, these estimates can then

be used for model selection, using Bayes Factors, Eq. 2.20, and posterior model

probabilities, Eq. 2.10, as described in Chapter 2.

In the following section, we describe the dataset used to evaluate the methods

presented here.
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6.2.4 Subjects and task

The data were acquired by Buchel and Friston [1997] for one subject during an

attention to visual motion paradigm. This dataset has been used to illustrate the

post-hoc model selection approach on stochastic DCMs [Friston and Penny, 2011],

as well as other methodologies from psychophysiological interactions [Friston et al.,

1997] to Generalised Filtering [Friston et al., 2010b]. This dataset is publicly available

on the SPM website (http://www.fil.ion.ucl.ac.uk/spm/). In this chapter we use

‘DCM10’ as implemented in SPM8, revision 4010.

Four consecutive 100 scan sessions were acquired, comprising a sequence of ten

scan blocks of five conditions. The first was a dummy condition to allow for magnetic

saturation effects. In the second, Fixation, the subject viewed a fixation point at the

centre of a screen. In an Attention condition, the subject viewed 250 dots moving

radially from the centre at 4.7 degrees per second and was asked to detect changes

in radial velocity. In No attention, the subject was asked simply to view the moving

dots. In a Static condition, the subject viewed stationary dots. The order of the

conditions alternated between Fixation and visual stimulation (Static, No Attention,

or Attention). In all conditions the subject fixated the centre of the screen. No overt

response was required in any condition and there were no actual changes in the speed

of the dots.

6.2.5 fMRI acquisiton and analysis

fMRI data were acquired with a 2 Tesla Magnetom VISION (Siemens, Erlangen)

whole body MRI system, during a visual attention study. Contiguous multi-slice im-

ages were obtained with a gradient echo-planar sequence (TE=40 ms; TR=3.22s; ma-

trix size=64×64×32, voxel size 3×3×3mm). The data were pre-processed and anal-

ysed using the conventional SPM analysis pipeline (http://www.fil.ion.ucl.ac.uk/spm/),

as described in Buchel and Friston [1997].

For this work we chose three representative brain regions defined as clusters of

contiguous voxels in an 8 mm sphere surviving an F-test for all effects of interest

at p < 0.001 (uncorrected), using SPM (see Chapter 1). These regions are: the

primary visual cortex (V1), [0, -93 18] mm in MNI space, the middle temporal visual

area (V5), [-36, -87, -3] mm, and the superior parietal cortex (SPC), [-27 -84 36]

mm, [Buchel and Friston, 1997]. The activity of each region was summarised with

its principal eigenvariate to ensure an optimum weighting of contributions from each
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voxel within the region of interest (ROI).

6.3 Results

In this section we compare the optimised and post-hoc model evidences and parameter

estimates with synthetic and the real fMRI dataset described above.

6.3.1 Synthetic data

Model space Model space comprised 128 models. These models have full fixed

connectivity (bidirectional connections) between V1 and V5 and between V5 and

SPC (Figure 6.2a). We allowed Motion to modulate only the connection from V1 to

V5, but Attention was allowed to modulate any connection in the network, including

the three self-connections (one for each region). In total we have 7 connections that

can be modulated by Attention (3 self-connections + 4 fixed connections) resulting

in 27 = 128 different models. The full model (Figure 6.2a) is the model for which

Attention modulates all these 7 connections.

We note that we chose to specify different models by changing only modulatory

parameters because these connections comprise the bilinear terms (B matrices) in Eq.

6.1. This way we can evaluate Eq. 6.11, which provides estimates for the reduced

parameters based on the full model, under non-linear conditions.

We started by generating data from model 96 by integrating the DCM equations

(see Section 6.2.1). and adding Gaussian noise corresponding to a Signal to Noise

Ratio (SNR) of 2.6 (data and noise had a standard deviation of about .350 and 0.135,

respectively, SNR = 0.350/0.135 = 2.59), as used in Friston et al. [2010a]. In this

model, Attention only modulates the connection between V1 and V5. Therefore, we

refer to this model as the Forward model (Figure 6.2b). Figure 6.2c shows another

example model, in which Attention modulates the connection between SPC and V5.

We refer to this model as the Backward model.

To obtain the model evidence and parameter estimates for all 128 models using the

optimised approach we had to invert (optimise) all these models. The optimisation

procedure took approximately 5 hours in a 64-bit workstation. In comparison, for

the post-hoc approach we only had to invert the full model, which took less than 2

minutes.
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Figure 6.2: Models: a) Full model. In this model Attention modulates all the fixed
connections and self-connections. This is the only model that needs to be inverted in
order to estimate the evidence and parameters of all 27 = 128 models, when using the
post-hoc approximation. The following models vary in which connections are modu-
lated by Attention (dashed arrows); b). In this model Attention only modulates the
connection from V1 to V5. Consequently, we call it the Forward model (as opposed
to the Backward model); c) Backward model: in this model Attention modulates the
connection from SPC to V5.
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Model evidence Figure 6.3a shows the optimised model evidence plotted against

the post-hoc evidence for all 128 models. Here the evidence is relative to the worst

model. As can be seen, the post-hoc measures correlate extremely well with the esti-

mates obtained from optimising all models (they lie along the y = x line). The actual

correlation value is almost 1 (r ≈ 1, p-value < 1e−308). Figure 6.3b shows the relative

evidences for the two approaches but as a function of graph size (number of edges).

Again, the estimates for the model evidence obtained using the two approaches are

extremely similar. Reassuringly, the true model (Forward model) has the highest

log-evidence for both approximations and for the correct graph size (full circle): only

one connection being modulated, in this case from area V1 to area V5.

Figure 6.3: Synthetic data: a) Optimised log-model evidence (relative to worst model)
versus post-hoc log-model evidence (128 synthetic models); b) Same data but plot-
ted as a function of graph size (number of edges or modulated connections). The
red circles correspond to the post-hoc estimates, while the black correspond to the
optimised approach. The full circles indicate the best models for each approximation.

Using the same synthetic data generated from the Forward model (Figure 6.2b,

also indexed as model 96) we looked at the model posterior probabilities for all 128

models. Again for the optimised approach we inverted all models, whilst for the post-

hoc approach only the full model was inverted. As can be seen in Figure 6.4, even
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though, as expected due to the number of models [Penny et al., 2010], the posterior

mass is diluted over the models and no single model has very high probability, the

true model (marked by the asterisk) has the highest posterior in both the optimised

and post-hoc approaches.

Figure 6.4: Synthetic data - Bayesian model selection: a) Optimised model posteriors.
The data were generated from model 96, Forward model (Figure 6.2b), (marked by
an asterisk, ∗). This model is also the best model for both approximations; b) Post-
hoc posterior probabilities. The backward model is model number 126 and the Bayes
Factor between the Forward and Backward model is 1.94 (as expected from Figure
6.6).

Model parameters We then looked at the connectivity parameter estimates ob-

tained with the optimised and post-hoc estimation approaches. Figure 6.5a shows

the true connection strengths that were used to generate the data, again from the

same model (Forward model). We have 7 connections but only one of them (from

V1 to V5) has a value different from zero. The second row of plots in Figure 6.5

shows the parameter estimates (mean and 95% confidence intervals) obtained with
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the optimised and post-hoc approaches, respectively, corresponding to the best model

identified previously (Figure 6.4). As can be seen, both approaches identify the sec-

ond parameter as being the only connection significantly different from zero. The

true parameter value is 0.23 and both the optimised and post-hoc posterior means

for this parameter are estimated as 0.29. The parameter estimates are summarised

in Table 6.1.

Table 6.1: Parameter estimates: posterior mean and 95% confidence intervals of the
best model obtained with the optimised and post-hoc methods for synthetic and real
data (first and second row of results for each connection, respectively). The subscript
op means optimised, and ph means post-hoc.

Parameter estimates

Data Connection µtrue µop µph
Synthetic V1 0 0.00± 0.00 0.00± 0.00
Real - 0.80± 0.45 0.80± 0.45

V1 → V5 0.23 0.29± 0.10 0.29± 0.10
- 1.14± 1.08 1.14± 1.08

V5 → V1 0 0.00± 0.00 0.00± 0.00
- −0.79± 0.52 −0.79± 0.52

V5 0 0.00± 0.00 0.00± 0.00
- 0.85± 0.96 0.85± 0.96

V5 → SPC 0 0.00± 0.00 0.00± 0.00
- 0.00± 0.00 0.00± 0.00

SPC → V5 0 0.00± 0.00 0.00± 0.00
- −2.79± 1.16 −2.79± 1.16

SPC 0 0.00± 0.00 0.00± 0.00
- 0.00± 0.00 0.00± 0.00

These results show that, even though Eq. 6.11 is only an approximation in the

case of non-linear models, it provides excellent estimates for bilinear DCMs.

Signal-to-noise ratio The previous results have been obtained by generating data

from one model and looking at how the different approaches to estimate the evidence

and parameters compare using a fixed SNR similar to the SNR of the real fMRI

dataset. This dataset comes from a block design paradigm and therefore has relatively

high SNR (see Chapter 1). In this section we explore the behaviour of the two

approaches for different values of SNR. To this end we performed two different model

comparisons: i) we generated data from the Forward model and compared this to
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Figure 6.5: Synthetic data - parameter estimates: a) True parameters from which the
data were generated; Only the second parameter is modulated: forward connection
from V1 to V5; b) Optimised and post-hoc parameter estimates for the best model
(Figure 6.4). The error bars correspond to 95% confidence intervals. The parameters
1 to 7 (x axis) correspond to the 7 connections possibly modulated by Attention.
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the Backward model (Figure 6.2); ii) we generated data from the full model and

compared this to the Forward model described above. For both these comparisons

we varied the SNR of the data from 0.35 to 3.35 in intervals of 0.1.

We also repeated the data generation, optimisation and model comparison 10

times for each SNR, in order to have 10 realisations of the same result. We then

plotted (Figure 6.6) the mean log-Bayes Factor and 95% confidence intervals for

each comparison as a function of the SNR. To obtain these results with the optimised

approach we had to invert both the Forward and Backward models (first comparison),

and Full and Forward models (second comparison) for each SNR and realisation.

For the post-hoc approach we had only to invert the Full model for each SNR and

repetition in both cases.

Figure 6.6a shows that, as expected, the log-Bayes factors increase with higher

SNR. However, our simulations suggest that the optimised approach seems to reach

significant results (log-Bayes factor higher than 3) slightly faster than the post-hoc

approach. This disparity between the two approaches might be due to the fact that in

the optimised approach the hyperparameters, λ, are estimated for each model, whilst

in the post-hoc approach these are assumed to be the same for all models (equal to

the estimates for the full model).

The fact that the log-Bayes factors are positive (with increasing SNR) means

that both methods are selecting the true model as the best model, with increasing

confidence. One other thing to note is that the error bars are relatively smaller for the

post-hoc approach, suggesting that the results for the optimised evidence are more

inhomogeneous. This may be because the optimised approach reaches different local

minima on different optimisation runs.

At low SNR (below 1) the log-Bayes factors are close to zero with the error bars

enclosing this number, as expected. In this case none of the methods select a winning

model. However, for very low SNR (first two points) both methods seem to slightly

prefer the backward model (BF < 1) . This result might be due to the difficulty of

estimating the models under very low SNR conditions, which can lead to inaccurate

model selection results with both methods.

The results for the second comparison, where the true model is the full model,

(Figure 6.6b) are very similar. The log-Bayes factors for the optimised approach

increase significantly faster than the post-hoc approach, but the error bars are again

slightly bigger. Here too the log-Bayes factors increase positively, which means that

both methods are selecting the full model as the best model, even though this model is
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Figure 6.6: Signal-to-noise ratio: a) log-Bayes factors (between the forward and
backward model) averaged over 10 repetitions of the same comparison (with 95%
confidence intervals) as a function of the signal to noise ratio used to generate the
data (from forward model); b) log-Bayes factors (between the full and forward model)
averaged over 10 repetitions of the same comparison (with 95% confidence intervals)
as a function of the signal to noise ratio used to generate the data (from full model).
The red line corresponds to a log-BF of 3.
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penalised for extra complexity. However, in the low SNR case (first 4 points, between

0.35 and 0.65) both methods seem to select the Forward model as the best model

(negative Bayes factors). This means that in the almost complete absence of data

(i.e. presence of high levels of noise), the full model is highly penalised and both

model selection methods prefer the simpler hypothesis, the Forward model.

We then regressed the post-hoc evidences onto the optimised evidences and looked

at the regression coefficients. In Figure 6.7 we plot these coefficients for both compar-

isons (Figure 6.7a and b)). As can be seen in the first case (Figure 6.7a) the regression

coefficients are all significantly different from zero and seem to slightly increase as a

function of SNR. In the full versus forward model case (Figure 6.7b) the results are

very similar. Again all coefficients are significantly different from zero and increase

as a function of SNR.

The previous results show that there is a linear relationship between the optimised

and post-hoc measures (even in low SNR conditions) and that this relationship in-

creases with increasing SNR.

Figure 6.7: Signal-to-noise ratio: a) regression coefficients (and 95% confidence inter-
vals) between optimised and post-hoc Bayes factors (comparing the forward model,
true model, to the backward model) as a function of the signal to noise ratio; b)
regression coefficients (and 95% confidence intervals) between optimised and post-
hoc Bayes factors (comparing the full model, true model, to the forward model) as a
function of the signal to noise ratio.

In summary, the results obtained with synthetic data show that both approxi-

mations to the model evidence presented here yield similar results but the post-hoc
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approach reduced the computation time from a couple of minutes per model to a

couple of seconds. In addition, even though the SNR of this dataset is relatively

high (it is a block rather than event-related design) the post-hoc approach was also

able to obtain the true model in lower SNR scenarios. The post-hoc estimates of the

connectivity strengths were also very similar to the optimised and true estimates.

6.3.2 fMRI data

After testing the methods on synthetic data we turned to the fMRI dataset acquired

by Buchel and Friston [1997]. Here we used the time-series from the three brain

regions V1, V5 and SPC for one subject as described above.

Model space We used the same set of 128 models as defined before. The full

model is the same full model used with synthetic data, in which Attention modulates

all fixed connections between the three areas, as well as their three self-connections

(Figure 6.2a). In the optimised approach all 128 models were fitted to the fMRI

signals. This took roughly the same amount of time to fit the synthetic data, since

we used a similar signal to noise ratio to the real data. In the post-hoc approach

only the full model was fitted to the fMRI data. Again this approach computed the

evidences for all models in a few seconds.

Model evidence We plotted the post-hoc evidences against the model evidence

obtained with the optimisation approach. As suggested by the results obtained with

synthetic data, these measures correlate extremely well with the optimised evidences

for this dataset (Figure 6.8a), where r ≈ 1 (p-value < 1e−308). The best model identi-

fied by the optimised evidence is the same model (model 6) for the post-hoc approach.

This model corresponds to a graph-size of 5, meaning that Attention modulates five

connections (Figure 6.8b): self-connections of V1 and V5, plus connections from V1

to V5, V5 to V1, and SPC to V5.

Figure 6.9 shows the model posteriors obtained with both approaches for all 128

models using real fMRI data. As shown above (Figure 6.8b), both methods identify

model 6 as the best model with posterior probability close to 0.16.

Model parameters The parameter estimates (means and 95% confidence inter-

vals) for the best model (model 6) are very similar for both approaches (Figure 6.10).
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Figure 6.8: fMRI data: a) Optimised log-model evidence (relative to worst model)
versus post-hoc log-model evidence (128 models); b) Same data but plotted as a
function of graph size (number of edges or modulated connections). The red circles
correspond to the post-hoc estimates, while the black correspond to the optimised
approach. The full circles indicate the best models for each approximation.
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Figure 6.9: fMRI data - Bayesian model selection: a) Optimised model posteriors.
The best model, model 6, is marked by an asterisk, ∗. b) Post-hoc model posteriors.
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We can see that 5 of the total of 7 parameters seem to have values different than zero

(although the error bars cross the zero line for the fourth parameter), as suggested

by the best model by graph size in Figure 6.8b (graph size 5). The values estimated

for each connection are summarised in Table 6.1.

Figure 6.10: fMRI data - parameter estimates: Optimised and post-hoc parameter
estimates for the best model, model 6, (Figure 6.9). The error bars correspond to 95%
confidence intervals. The parameters 1 to 7 (x axis) correspond to the 7 connections
possibly modulated by Attention.

In summary, the results obtained with the real fMRI dataset are very similar to

the ones obtained for synthetic data. Again the optimised and post-hoc methods

provide very similar results both for the evidences and model parameters.

6.4 Discussion

This chapter presents and evaluates a recent approach, post-hoc selection [Friston

and Penny, 2011], for estimating the model evidence and parameters of deterministic

DCMs. This method offers substantial computational advantages to the ‘optimised’

approach that is currently used [Friston et al., 2007a].

Our results show very good agreement between optimised and post-hoc model

evidences, for both synthetic and real fMRI data. This suggests that the post-hoc
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method offers valid estimates of the evidence with little computational cost. The

post-hoc approach reduced the computation time needed to optimise and compare

hundreds of models from several hours to a few minutes.

The post-hoc method also provides estimates of the model parameters. Here we

found that the post-hoc and optimised approaches yield very similar results. We have

also shown that the post-hoc approximation to the model parameters, which is exact

for linear models, seems to be a good approximation for non-linear models, such as

DCMs.

As an aside, we note that we have also compared the post-hoc approximation to

the model evidence, Eq. 6.5, to the Savage-Dickey approximation, Eq. 6.9, which is

a special case of the former. As expected, these two measures yielded numerically

identical results, including identical model posteriors. Moreover, when we regressed

the Savage-Dickey Bayes-factors onto the post-hoc Bayes-factors for a wide range of

SNRs (same as described in Results), we obtained regression coefficients equal to 1

for all SNRs.

Although this post-hoc approach is very computationally efficient, the number of

possible models to compare can rapidly explode when considering networks with many

regions and all possible connections between them. In this case, it might be impossible

to compute the evidences and parameters for all models and one might have to

sample the space of models. For instance, Pyka et al. [2011] use genetic algorithms to

accelerate model selection of large numbers of DCMs. Therefore, one extension to this

work would be to use greedy searches and stochastic search algorithms that efficiently

compute the post-hoc evidences and parameter estimates in arbitrarily large model

spaces.

To conclude, our results provide evidence supporting the use of the post-hoc

method proposed by Friston and Penny [2011] for model selection (and parameter

inference) of bilinear deterministic DCMs.
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Chapter 7

Discussion and conclusions

The previous four chapters described the novel methodologies and empirical work

pursued in this thesis. This chapter presents a summary of this work and discusses

its main implications for the field of imaging neuroscience. In addition, this chapter

presents future research directions that can be followed from the work presented here,

as well as a summary of original contributions and publications can that came out of

this thesis.

7.1 Summary of work

The aim of this thesis was to develop and validate new model comparison techniques

that can be used by the neuroimaging community to investigate brain function. In

addition, this thesis applied existing comparison methods to study the relationship

between neuronal activity and blood flow. This topic is known as neurovascular

coupling and is still under intense debate.

This thesis addressed the neurovascular coupling problem by first looking at how

changes in blood flow (measured with BOLD-fMRI) relate to the temporal dynamics

of neuronal activity (measured with EEG) in the human brain (see Chapter 3). This

work followed previous studies using combined EEG-fMRI data, where changes in

the fMRI signals were regressed onto EEG oscillatory power. This chapter uses

the same methodology but posits different models, or transfer functions, of how the

spectral profile of neuronal activity relates to BOLD. These functions correspond to

different features of the EEG power spectrum, such as the time-varying total power,

time-varying power at a single or combination of frequency bands, and the relative
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power between high and low frequencies. These functions were then compared using

a model selection approach based on F-tests. Results suggest that changes in BOLD

are indeed associated with changes in the spectral profile of neuronal activity and

that these changes do not arise from one specific frequency band. Instead they result

from the dynamics of the various frequency components together, in particular, from

the relative power between high and low frequencies.

The model selection approach used in Chapter 3 is useful and provides valid

comparisons, but is limited to nested models. This limitation lead us to develop

a new Bayesian mapping approach for model selection at the group level (Chapter

4). This technique is based on the combination of an approach for providing log-

evidence maps for each model and subject, with a random-effects approach for model

selection. This procedure constructs PPMs for BMS inference. We illustrated the

method using fMRI data from subjects performing a cued detection task. Results

showed that this is a valid approach and allows neuroimagers to make inferences

about regionally specific effects in the brain without being restricted to comparing

nested hypotheses. It is therefore more general than F-tests and we have shown that

it is also robust to outliers.

This thesis then focused again on neurovascular coupling, this time from a mech-

anistic point-of view. This perspective is not afforded by the approach used in Chap-

ter 3, which was based on linear models (SPM framework) and classical F-tests for

model comparison. Therefore, in Chapter 5, we used a detailed biophysical framework

and posit models embodying biologically plausible hypotheses about neurovascular

coupling. We adjudicated between hypotheses using Bayesian model evidence, and

EEG-fMRI data from human visual cortex. We compared three models: the first

assumes that blood flow depends on the amount of vasodilatory nitric oxide released

as a result of input synaptic activity; the second assumes blood flow is driven by the

firing rate (output spiking activity) of local pyramidal cells; these hypotheses are then

compared against a third model where both these quantities contribute to the BOLD

response. Results showed that the BOLD signal is dependent upon both synaptic and

spiking activity but that the relative contribution of these two factors are dependent

upon the underlying neuronal firing rate. When the underlying neuronal firing is low

then BOLD signals are best explained by synaptic input, when the neuronal firing

rate is high then both synaptic and spiking activity are required to explain the BOLD

signal.

The models used in Chapter 5 are a special case of brain connectivity models, when
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there is only one area. Connectivity models, such as DCMs, allow neuroimagers to

infer how interactions between different brain regions are mediated. In recent years

a trend has arisen for comparing models with many brain regions and all possible

connections between them. With current methods it can rapidly become computa-

tionally infeasible to estimate all models for comparison. This fact has lead to the

recent development of a post-hoc Bayesian approach that can be used to quickly

score large numbers of connectivity (or any other nested) models. In the last chapter

of this thesis (Chapter 6) we have applied this approach to deterministic DCMs for

fMRI, which have become a standard method for effective connectivity analyses. We

use data from an attention to visual motion study and showed that the post-hoc

approach provides valid model evidence and parameter estimates, without having to

invert more than a single (full) model. The advantage is therefore a huge reduction

in computational time necessary for model selection.

7.2 Implications of work

This section discusses the main implications of this work for the field of imaging

neuroscience.

Chapter 3 This chapter has shown that it is possible to disambiguate between

models of how BOLD relates to underlying neuronal activity in the human brain,

using the SPM framework and simultaneous EEG and fMRI data. Results from this

chapter have therefore helped clarifying our current understanding of how BOLD

relates to the frequency dynamics of neuronal activity, as measured with EEG. These

results are important not only for our comprehension of neurovascular coupling but

also for improving the interpretabiliy of fMRI findings. Knowing how fMRI relates to

underlying temporal dynamics allows us to be more certain of what type of neuronal

activity is measured with this technique and how this measure relate to observations

obtained with EEG/MEG. In addition, the results in this chapter can be used to

inform better forward models for both EEG and fMRI data, which can then be used

to further investigate the neurovascular coupling, as was done in Chapter 5.

Chapter 4 The PPMs for BMS developed in this chapter allow one to compare

any non-nested GLMs and therefore can be particularly useful for model-based fMRI

[O’Doherty et al., 2007]. In model-based fMRI, signals derived from computational
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models of specific cognitive processes are correlated against fMRI data from subjects

performing a relevant task to determine brain regions where activity is consistent

with that model. Differences between models are usually subtle and it can therefore

be difficult to compare different hypotheses using F-tests. In this case, models need to

be nested and one model might explain away most of the variance of the other models.

The PPM approach developed in this chapter does not suffer from this limitation and

can therefore facilitate model-based inferences of how particular cognitive processes

are implemented in specific brain areas.

Chapter 5 Similarly to Chapter 3, this chapter has shown that it is possible to

disambiguate between biophysical mechanisms for neurovascular coupling, using non-

invasive techniques in the healthy human brain. The results obtained here are again

important not only to understand what type of neuronal activity is measured by

fMRI but also for relating fMRI findings to other measures, in particular, to elec-

trophysiological data from invasive animal studies. The fact that, as shown in this

chapter, BOLD seems to reflect mostly synaptic or both synaptic and spiking activity

depending on the frequency regime, is also important for the interpretation of fMRI

results under different stimuli conditions. For example, single cell electrophysiology

measures firing rates, and therefore our results show that these measures are more

similar to fMRI measures at high firing rates. In addition, the framework presented

here has been developed so that it can be used efficiently with any EEG or MEG and

fMRI dataset, where the temporal resolutions of the techniques are very different.

This facilitates further research about neurovascular coupling using these types of

models.

Chapter 6 has proved the validity and usefulness of a recently developed post-

hoc approach for quickly scoring large number of deterministic DCMs. This work

therefore opens the door for further exploratory analyses of brain networks, using

DCMs and fMRI data, without the need for excessive computational power.

7.3 Directions for future research

This section puts forward ideas for potential future research based on the work de-

veloped in this thesis, and proposes suggestions for methodological advances.
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Chapter 3 This chapter compared different coupling (transfer) functions, instan-

tiated as linear models, from neuronal activity to BOLD, using simultaneous EEG-

fMRI data. A concern with the model comparison approach taken in this chapter is

that it is based on GLMs and F-tests, which restrict one to making inferences about

nested models. If no natural nesting exists, then the regressors from all models are

placed in the same design matrix and F-tests used to infer whether sets of variables

explain additional variance. Whilst this approach is commonplace [Friston et al.,

2007b], it is nonetheless suboptimal as compared to direct comparison of models

using the Bayesian model evidence criterion, as discussed in Chapter 2. This has

been shown by Penny et al. [2007] in the context of fMRI signals. In Chapter 4, we

have extended Bayesian model comparison to imaging data from group studies. This

method could therefore be used with EEG-fMRI data for comparing neurovascular

coupling models in the human brain, such as the transfer functions compared in this

chapter, without the restriction of the models having to be nested.

Another concern in the analyses we have presented here is in the use of EEG

regressors as a surrogate for neuronal activity. This approach has previously been

used by a number of groups [Goldman et al., 2002; Laufs et al., 2003; Lemieux et al.,

2001; Moosmann et al., 2003]. In this chapter we followed the same rationale but

additionally employed a visual flicker stimulation paradigm to elicit evoked activity

in sensory cortex. We then used the first principal component of the EEG data to

isolate activity that was primarily related to the stimulus paradigm. We note that this

approach could be improved in a number of ways. First, one could employ multiple

PCA or ICA components [Eichele et al., 2005, 2009; Vigario et al., 2000], which

might better isolate activity from specific processes or brain regions. Second, one

could use regressors derived from EEG source reconstructions as in Wan et al. [2006].

A problem with these approaches, however, is that they are no longer compatible

with a whole-brain SPM analysis approach, as that requires the same design matrix

at all voxels. They are nevertheless worth pursuing.

Another improvement to this work would be to use fMRI data recorded concur-

rently with intracranial EEG (iEEG). Although iEEG measurements in humans can

only be obtained under very restricted circumstances, we expect it to play a major

role in investigating neurovascular coupling, as this will provide more direct access

to the various cortical and subcortical regions that have little impact on the scalp

EEG. This may help, for example, to resolve to what extent, if at all, BOLD and

EEG are differentially sensitive to endogenous lower frequency global states versus
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higher frequency local processing [Laufs, 2008].

Chapter 4 This chapter presented the construction of PPMs allowing for BMS at

the group level. These maps are produced by combining a model evidence mapping

approach with an RFX approach for model selection. In the current implementation

of this technique, log-evidence maps were smoothed by a user specified Gaussian

kernel. The arbitrariness of having to specify a particular amount of smoothing could

be eliminated by including a spatial model over the model frequencies. This way the

amount of smoothing would be estimated from the data within the same Bayesian

framework. This procedure mirrors corresponding developments in the analysis of

group data from M/EEG source reconstructions [Litvak and Friston, 2008].

Another potential improvement in the methodology presented in this chapter

would be to use the Savage-Dickey ratios or post-hoc selection approach, described

in Chapter 6, to decrease the computational time necessary to fit the models and

obtain the log-evidence maps. This would allow one to explore large model spaces

(e.g. in the order of hundreds of models or more) using BMS maps.

Furthermore, we envisage that the methodology developed in this chapter will be

used not only for model-based fMRI, but also for model-based EEG/MEG, where,

similarly to fMRI, computational models can be fitted to behaviour measures, which

can then be used as predictors of scalp or source-reconstructed data.

Chapter 5 This chapter used EEG-fMRI data and a biophysically informed math-

ematical model to investigate the relationship between neuronal activity and the

BOLD signal, in human visual cortex. A natural extension to the work presented

in this chapter is the inclusion of multiple cortical units in the model representing

multiple brain areas. For instance, sub-cortical areas such as the thalamus and other

cortical areas activated by the experimental task could be included. Having more

than one area would facilitate the differentiation between input and local processing

synaptic activity, such as in Sotero and Trujillo-Barreto [2008]. In a recent study,

Harris et al. [2010] have decomposed the effect of these two types of synaptic activity

on hemodynamic signals by reducing the thalamic input to a rodents cortex. The

authors found that although both input and local neuronal processing contribute to

BOLD signals, as previously found, this contribution is larger from local processing.

This hypothesis could be tested within the framework proposed in this chapter.

Another extension to the work presented here would be to probe the contribution
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of excitatory and inhibitory neuronal populations to the generation of BOLD signals,

such as in Sotero et al. [2009]. This model-driven approach could, for instance,

be used to study the findings of Boorman et al. [2010], where a negative BOLD

response in deeper cortical layers, adjacent to positive-BOLD areas, was found to be

associated with a reduction in local neuronal firing. Very recently, Lee et al. [2010]

have optically driven genetically modified inhibitory cells and measured a negative

BOLD signal in response to this stimulation, in the rat cortex. This result could

inform the development of new generative models of neurovascular coupling.

Finally, in the long term, we anticipate that the modelling framework presented

in this chapter will be used to test neurovascular coupling hypotheses in a variety of

experimental contexts with a range of subject cohorts.

Chapter 6 This chapter validates a recently proposed Bayesian approach for quickly

comparing large numbers of connectivity models, based on inverting a single model,

using fMRI data and deterministic DCMs. Although this post-hoc approach is very

computationally efficient, the number of possible models to compare can rapidly ex-

plode when considering networks with many regions and all possible connections

between them. In this case, it might be impossible to compute the evidences and

parameters for all models and one might have to sample the space of models. For

instance, Pyka et al. [2011] use genetic algorithms to accelerate model selection of

large numbers of DCMs. Therefore, one extension to this work would be to use greedy

searches and stochastic search algorithms that efficiently compute the post-hoc evi-

dences and parameter estimates in arbitrarily large model spaces.

Another extension of this work would be the application of the post-hoc approach

to other modalities, such as DCMs for EEG and MEG data [Kiebel et al., 2009], as

well as to other types of DCMs, such as non-linear [Stephan et al., 2008] and two-state

DCMs [Marreiros et al., 2008b].

Finally, another possible application of this work would be to use the post-hoc

approximation to the model evidence, described here, in a voxel-wise manner, to

be able to create computationally efficient log-model evidence maps. These maps

could then be used in conjunction with the methodology described in Chapter 4 to

construct PPMs for BMS at the group level. The advantage would be an enormous

reduction in computational time necessary to calculate the evidence maps.
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7.4 Conclusions

The work presented in this thesis developed and applied different model selection

techniques that can be used to investigate brain function, using imaging data. These

techniques ranged from classical methods, based on F-tests (Chapter 3), to more

sophisticated Bayesian approaches (Chapters 4 to 6).

One of the open research topics that this thesis focused on is the relationship

between neuronal activity and BOLD, known as neurovascular coupling. The work

presented here shows that it is possible to non-invasively investigate different hy-

potheses (models) for the coupling, both at a phenomenological (Chapter 3) and

neurophysiological (Chapter 5) level, in human brain using combined EEG and fMRI

data.

This thesis has also shown that it is possible to construct PPMs for BMS at

the group level, which allow one to characterise regional specific effects using brain

imaging data, without being restricted to comparing nested models. This approach

was shown to be able to distinguish between models of how the brain integrates

information over time, using fMRI data from a group of subjects (Chapter 4).

Finally, this thesis has shown that it is possible to compare large numbers of

deterministic dynamic causal models by inverting a single model, using a post-hoc

approximation to the model evidence (Chapter 6).

This thesis is based on the publications numbered from I-VI (see below, Section

7.5.1). These publications comprise original research described in the previous chap-

ters of this thesis (Chapters 3 to 6) and a critical review of the literature on EEG

and fMRI integration (related to Chapter 1).

7.5 Original contributions

The original contributions of this thesis are summarised as follows (for corresponding

publications and software see following sections):

• Chapter 3 (Publication I) provides the first study where different models of how

BOLD relates to the frequency profile of neuronal activity have been explicitly

compared using human brain imaging data. Results from this study suggest

that changes in BOLD are indeed associated with changes in the spectral pro-

file of neuronal activity and that these changes do not arise from one specific
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spectral band. Instead they result from the dynamics of the various frequency

components together, in particular, from the relative power between high and

low frequencies.

• Chapter 4 (Publication II) provides a new Bayesian technique for constructing

posterior probability maps (PPMs) for model selection inference at the group

level. This approach allows neuroimagers to make inferences about regionally

specific effects in the brain, without being restricted to comparing nested mod-

els. This method has been used by colleagues to make inferences about how

the brain integrates information over time (Publication VI).

• Chapter 5 (Publication IV) provides the first study of how BOLD relates to

synaptic and spiking activity in the healthy human brain. Results show that

the BOLD signal is dependent upon both synaptic and spiking activities but

that the relative contributions of these two inputs are dependent upon the

underlying neuronal firing rate. When the underlying neuronal firing is low

then the BOLD response is best explained by synaptic activity. However, when

the neuronal firing rate is high then both synaptic and spiking activity are

required to explain the BOLD signal. In addition, this chapter also provides

an efficient modelling framework that can be used to test additional coupling

models using EEG/MEG and fMRI data.

• Chapter 6 (Publication V) provides the first application and validation of a

recently proposed post-hoc Bayesian model selection approach, using determin-

istic DCMs for fMRI. This chapter shows that the post-hoc approach provides

valid model selection results with the advantage of a substantial reduction in

computational time, by decreasing the number of models that need to be in-

verted from all models to a single model.

7.5.1 Publications

Below are the publications that have arisen from the work developed in this thesis:

I M. J. Rosa, J. Kilner, F. Blankenburg, O. Josephs, and W. D. Penny. Estimat-

ing the transfer function from neuronal activity to BOLD using simultaneous

EEG-fMRI. NeuroImage, 49(2):1496-1509, 2010.
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II M. J. Rosa, S. Bestmann, L. Harrison, and W. D. Penny. Bayesian Model

Selection Maps for Group Studies. NeuroImage, 49(1):217-224, 2010.

III M. J. Rosa1, J. Daunizeau, and K.J. Friston. EEG-fMRI integration : a critical

review of biophysical modelling and data analysis approaches. J. Integrative

Neurosci., 9(4):453-476, 2010.

IV M. J. Rosa, J. Kilner, and W. D. Penny. Bayesian Comparison of Neurovascular

Coupling Models using EEG-fMRI. PLoS Computational Biology, 7(6):e1002070,

2011.

V M. J. Rosa, K. J. Friston and W. D. Penny. Post-hoc selection of Dynamic

Causal Models. Submitted.

VI L. M. Harrison, S. Bestmann, M. J. Rosa, W. Penny, and G. G. Green. Time

scales of representation in the human brain: weighing past information to predict

future events. Frontiers in Human Neuroscience, 5:37, 2011.

7.5.2 Software

Part of the software developed for this thesis has been implemented in the SPM8

version of the Statistical Parametric Mapping software toolbox, which can be down-

loaded from here: http://www.fil.ion.ucl.ac.uk/spm/. This includes the following

functions:

• Chapter 4: spm cfg bms, spm run bms map, spm run bms disp, spm bms display,

spm bms display ROI, spm bms display vox, spm bms partition, spm bms compare

groups ;

• Chapter 6: spm log evidence SD.

The rest of the software developed for this thesis can be downloaded from:

http://www.fil.ion.ucl.ac.uk/∼mjoao/archive.html.

1Joint first author with J. Daunizeau.
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Appendix A

.1 ‘Heuristic’ model of neurovascular coupling

This section summarises the equations of the ‘Heuristic’ model developed by Kilner

et al. [2005]. The full derivation can be found in the original publication [Kilner et al.,

2005].

The model proposed by Kilner et al. [2005] assumes that the BOLD signal, b,

at any point in time, is proportional to the rate of energy dissipation induced by

neuronal transmembrane currents. This assumption is valid under the view that

BOLD is thought to be driven by glutamate release and this measure is correlated

with energy usage. This relation can be expressed as:

b ∝< vT i >= c < vT v̇ >, (1)

where v is the transmembrane potential, i the transmembrane current, and i =

−cv̇.

Kilner et al. [2005] adopt a simple model of neuronal dynamics of the form:

v̇k = −vk/τk + uk, (2)

where k represents the neuronal compartment or unit k within a voxel, with time

constant τk. Kilner et al. [2005] then express Eq. 1 for the BOLD signal as a function

of the Jacobian, J , of the neuronal system:

b ∝ ctr(< JCov{v} >), (3)
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where v(t) = exp−Jt v0. J summarises the functional architecture of the system.

Each entry of the Jacobian corresponds to either a self-inhibitory connection, Jkk =

1/τk, or to the intrinsic coupling among units, Jkj = ∂v̇k/∂vj. Eq. 3 means that

the BOLD response is proportional to the trace of the product of the Jacobian (i.e.,

effective connectivity matrix) and the temporal covariance of the transmembrane

potentials.

Kilner et al. [2005] then represent ‘neuronal activation’ by a variable α, which

quantifies changes in effective connectivity and consequently in the dynamics of the

neuronal system. This model assumes that the effect of activation, α, is to accelerate

the dynamics and increase the system’s energy dissipation:

b̃

b
∝ tr(< J̃Cov{v} >)

tr(< JCov{v} >)
= (1 + α), (4)

where b̃ corresponds to the BOLD signal during activation. J̃ = J(α) = (1 +α)J ,

which is obtained by expanding J(α) around 0 and assuming that ∂J/∂α = J(0) (the

change in intrinsic coupling induced by activation is proportional to the coupling in

the resting state, when α = 0).

Eq. 4 relates activation to increases in metabolic demands that are then associated

with increases in the BOLD signal. Kilner et al. [2005] then relate this result to the

effects of the same activation in the EEG signal.

From the point of view of the EEG, activation will cause an acceleration of its

dynamics:

ṽ(t) = exp−J̃t v0 = v((1 + α)t). (5)

This leads to a rougher looking signal with loss of lower frequencies, relative to

higher frequencies. A simple way to measure this effect is in terms of the roughness

r, which is equivalent to the negative curvature of the EEG autocorrelation function,

ρ(h), evaluated at zero lag (h = 0):

r = −ρ(0)
′′
, (6)
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where ρ(h) =< v(t)T lT lv(t + h) >, and l is a lead-field vector. From Eq. 5, the

autocorrelation of the signal, ρ̃(h) can be written as:

ρ̃(h) = ρ((1 + α)h)

ρ̃(h)
′′

= (1 + α)2ρ(h)
′′
, (7)

which means that changes in r are related to neuronal activation by:

r̃

r
=
ρ̃(0)

′′

ρ(0)′′ = (1 + α)2. (8)

Knowing that the spectral density, g(ω), of a random process is the Fourier trans-

form of its autocorrelation, the ‘roughness’ can be expressed in the frequency domain

as:

r =

∫
ω2g(ω)dω∫
g(ω)dω

. (9)

From Eq. 8 we then obtain the effect of activation on this spectral density:

g̃(ω) =
g(ω/(1 + α))

(1 + α)
. (10)

Eq. 22 shows that the effect of activation in the signal is to shift the spectral

profile toward higher frequencies with a reduction in amplitude. This activation can

be expressed in terms of the normalised spectral density, p(ω), as follows:

r̃

r
=

∫
ω2p̃(ω)dω∫
ω2p(ω)dω

= (1 + α)2, (11)

where p(ω) = g(ω)/(
∫
g(ω)dω).

Finally, putting Eq. 4 and Eq. 11 together, we obtain the following result:
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b̃

b
∝ (1 + α) ∝

√∫
ω2p̃(ω)dω∫
ω2p(ω)dω

. (12)

The previous equation means that as neuronal activation increases, there is a

consequent increase in BOLD signal and a shift in the spectral profile of EEG to higher

frequencies. High-frequency dynamics are associated with small effective membrane

time constants. These fast changes in potential are responsible for increases in energy

consumption to which the BOLD signal is sensitive. The predicted BOLD signal is

therefore a function of the frequency profile of neuronal activity as opposed to any

particular frequency. For example, an increase in alpha (low-frequency), without a

change in total power, would reduce the mean square frequency of EEG and relate

to deactivation. Conversely, an increase in gamma (high-frequency) would increase

the mean square frequency of EEG signals and relate to activation (Figure 1).

Figure 1: Schematic showing the effect of deactivation on mean square frequency
(taken from Kilner et al. [2005]).
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.2 Electrovascular model

.2.1 Neural mass model

This section summarises the equations of the neural mass model, which is part of

the electrovascular coupling model, proposed by Riera et al. [2006], and used for

generating the electrical dynamics in a cortical unit (see Chapter 5 and Riera et al.

[2006] for the full derivation). The meaning of each state variable is presented in

Table 1.

τm
dV T

IN(t)

dt
+ V T

IN(t) = I+3 (t)R0
m

τm
dV F

IN(t)

dt
+ V F

IN(t) = I+(t)R0
m (13)

τm
dν1(t)

dt
+ ν1(t) = R1

mI
+
1 (t)

τm
dν2(t)

dt
+ ν2(t) = R2

mI
+
2 (t)

τm
dν−(t)

dt
+ ν−(t) = RmI

−(t)

(14)

τm
dVPC(t)

dt
= −(α0 +

∑
k

1

βk
)VPC(t) +

Ω(t)∏
k βk

+RmI
−(t)

+
∑
k

[
Rmνk(t)

(Rk
i +Rk

e)
− ν−(t)

βk

]
(15)

τm
dΩ(t)

dt
= Rm

∑
k

βk(VPC(t)− νk(t))
(Rk

i +Rk
e)

+ VPC(t) + ν−(t)− Ω(t) (16)
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τm
dρ(t)

dt
= −(α0 +

∑
k

1

βk
)ρ(t) +

Θ(t)∏
k βk

+
R2
e

(R2
i +R2

e)
(RmI

−(t) +R2
mI

+
2 (t))

+
[R1

m(ν−(t) + ν2(t)) +Rm(ν2(t)− ν1(t))]R2
e∏

k(R
k
i +Rk

e)
(17)

τm
dΘ(t)

dt
=

[
1 +Rm

∑
k

1

Rk
m

]
ρ(t)−Θ(t). (18)

.2.2 Model states and parameters

Tables 1 and 2 summarise the states and parameters of the electrovascular coupling

model [Riera et al., 2006] used for generating the electrical and vascular dynamics in

a cortical unit (see Chapter 5).

Table 1: Electrical and vascular states.

Type State Symbol Initial value

Electrical

Membrane potential at the soma of

GABAergic IN (Transmission) V T
IN 0

Membrane potential at the soma of

GABAergic IN (Feedback) V F
IN 0

Membrane potential at the soma of

Layer V PC VPC 0

Voltage difference Ω 0

Equivalent voltage source at

the layer V PC basal dendrites ν1 0

Equivalent voltage source at

the layer V PC apical tuft dendrites ν2 0

Equivalent voltage source at

the soma of layer V PC ν− 0

Extracellular voltage difference
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Table 1 – continued from previous page

along the layer V PC apical tuft ρ 0

Voltage difference Θ 0

Time derivative of the input (Balloon approach) r 0

Input (Balloon approach) z z0

Vascular

Flow-inducing signal s 0

CBF f 1

CBV ν 1

Concentration of dHb q 1

Table 2: Fixed parameters: these parameters are not estimated from the data.

Type Symbol Parameter Dimension Value

Electrical

cm Membrane capacitance µF/cm2 0.75

τm Membrane time constant ms 30

Effective membrane resistance:

C0
m soma compartment (IN) nF 6.81

Cm soma compartment (PC) nF 1.045

Membrane resistance:

R0
m soma compartment (IN) GΩ 4.082

Rm soma compartment (PC) GΩ 2.871

R1
m basal compartment GΩ 0.222

R2
m apical tuft compartment GΩ 0.667

R1
i basal longitudinal (intracellular) GΩ 0.226

R1
e basal longitudinal (extracellular) GΩ 0.272

R2
i apical longitudinal (intracellular) GΩ 2.264

R2
e apical longitudinal (extracellular) GΩ 2.716

α
PC

Layer V PC synaptic factor pA(0 ∼ 1.5) 0.4

γ
IN

GABAergic IN V-A relationships mV −1 5

V IN
0 GABAergic IN V-A relationships mV 0.7

β1 Basal voltage divisor no dim. 2.24

β2 Apical voltage divisor no dim. 7.45

α0 Mixed coefficient no dim. 7.32
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Others

χ
PC

Layer V PC energetic factor nM(0 ∼ 1) 1.0

χ
IN

GABAergic IN energetic factor nM(0 ∼ 1) 0.8

ω0 Low-pass filter: angular high cut Hz Hz 2π8

δ Low-pass filter: damping factor no dim. 0.8

A Low-pass filter: gain nM−1 1.0

ρ
PC

Layer V PC nonlinear function no dim. 1.0

ρ
IN

GABAergic IN nonlinear function no dim. 1.0

w
PC

Layer V PC nonlinear function (nA)2 0.1091

w
IN

GABAergic IN nonlinear function (nA)2 0.0464

.2.3 Model comparisons

Table 3 presents the results obtained from comparing all coupling models for all

subjects and frequency regimes, as described in Chapter 5.

Table 3: Model comparison results. Log-evidence values for each model, session
and subject (low-frequencies, high-frequencies and all-frequencies). ‘Sum’ is the sum
of the log-evidences per session and ‘Group’ the sum of all subjects’ sums. The values
in bold correspond to the winning model for each session and subject. BF12 are the
log-Bayes factors between the best (1) and second best (2) model for each session.
The values x∗ correspond to a posterior probability for the best model higher than
0.95. The values x∗∗ correspond to a posterior probability higher than 0.99. ‘Freqs.’
means the frequencies of the stimuli. �One of the subjects lacked the 4.0 and 7.5
Hz stimulus epochs and was therefore not included in ‘low-frequency’ analyses. Fx:
Log-evidences; Bxy: Bayes Factors; ωin: ‘mixture’ model coefficient (synaptic).

Subject Session Fmix Fin Fout BF12 ω
in

Low freq.� (4-15 Hz)

1 1 -57.27 -55.69 -56.82 1.13 0.72

2 -37.27 -34.89 -44.58 2.38 0.80

3 -59.23 -59.01 -58.21 0.80 0.60

Sum -153.77 -149.59 -159.61 4.18∗ 0.71

2 1 -39.54 -38.53 -42.25 1.01 0.66

2 -41.30 -40.16 -45.85 1.14 0.65

3 -34.21 -33.40 -37.69 0.81 0.67

Sum -115.05 -112.09 -125.79 3.00∗ 0.69
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Group -268.82 -261.68 -285.40 7.14∗∗ 0.69

High frequencies (12-30 Hz)

1 1 -37.85 -80.68 -43.22 5.37∗∗ 0.60

2 -32.59 -45.90 -35.21 2.62 0.40

3 -47.59 -44.56 -87.01 3.03∗ 0.83

Sum -118.03 -171.14 -165.44 53.11∗∗ 0.61

2 1 -69.48 -69.92 -68.57 0.91 0.55

2 -47.24 -55.77 -84.73 8.23∗∗ 0.48

3 -59.41 -68.00 -57.21 2.20 0.46

Sum -176.13 -193.69 -210.51 17.56∗∗ 0.50

3 1 -31.91 -43.06 -34.27 2.36 0.46

2 -38.51 -49.64 -40.64 2.13 0.41

3 -29.60 -44.52 -31.27 1.67 0.43

Sum -99.72 -137.22 -106.18 6.46∗∗ 0.43

Group -393.88 -502.05 -482.13 88.25∗∗ 0.51

All frequencies (4-30 Hz)

1 1 -37.85 -80.68 -43.22 5.37∗∗ 0.60

2 -32.59 -45.90 -35.21 2.62 0.40

3 -47.59 -44.56 -87.01 3.30∗ 0.83

Sum -118.03 -171.14 -165.44 53.11∗∗ 0.61

2 1 -89.78 -90.93 -88.10 1.68 0.56

2 -71.94 -71.42 -71.56 0.14 0.65

3 -79.46 -91.57 -80.48 1.02 0.59

Sum -241.18 -253.92 -240.14 1.04 0.60

3 1 -49.41 -61.05 -52.21 2.80 0.49

2 -54.19 -64.21 -59.13 4.94∗ 0.46

3 -44.94 -46.84 -50.76 1.90 0.58

Sum -148.54 -172.12 -162.10 13.56∗∗ 0.51

Group -507.75 -597.18 -567.68 59.93∗∗ 0.57

.3 Dynamic causal modelling priors

This thesis uses dynamic causal modelling (DCM) priors in Chapter 6 from ‘DCM10’,

as implemented in SPM8 software (revision 4010). The priors on both the connec-
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tivity and hemodynamic parameters are assumed to be Gaussian and factorise over

parameter types:

p(θ|m) = p(A|m)p(B|m)p(C|m)p(h|m). (19)

The priors on the fixed parameters (A) depend on the number of regions, n, to

encourage stable dynamics. The priors on the fixed self-connections (Aii) are defined

as follows:

p(Aii|m) = N(−1/2, σ2
ii), (20)

where σ2
ii = 1/(8 × n). In our case n = 3 regions, therefore σii = 0.0417. The

priors on the rest of the fixed parameters (Aij) are calculated as follows:

p(Aij|m) = N(1/(64 ∗ n), 8/n+ 1/(8× n)). (21)

In our case, this yields p(Aij|m) = N(0.0052, 2.7083). The rest of the connectivity

parameters (modulatory and input parameters) have shrinkage priors:

p(Bk
ij|m) = N(0, 1),

p(Cij|m) = N(0, 1). (22)

The unknown hemodynamic parameters are {τs, τ0}. These are represented as

τs = 0.64 exp(θτs) (23)

τ0 = 2 exp(θτ0),

and have Gaussian priors:

p(θτs) = N(θτs ; 0, 0.135) (24)

p(θτ0) = N(θτ0 ; 0, 0.135),

where h = {θτs , θτ0} are the hemodynamic parameters to be estimated.

The overall prior density can then be written as p(θ|m) = N(η,Σ), where η and
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Σ are concatenations of the above means and variances.

176



References

Robert J. Adler. Random fields. In Encyclopedia of Environmetrics. John Wiley and

Sons, Ltd, 2006. ISBN 9780470057339. doi: 10.1002/9780470057339.var007. 14,

16

H Akaike. Information theory and an extension of the maximum likelihood principle.

In Second International Symposium on Information Theory, volume 1, pages 267–

281. Akademiai Kiado, 1973. 42

P. Allen, O. Josephs, and R. Turner. A method for removing imaging artifact from

continuous EEG recorded during functional MRI. Neuroimage, 12(2):230–239,

2000. 7, 54

Philip J. Allen, Giovanni Polizzi, Karsten Krakow, David R. Fish, and Louis Lemieux.

Identification of eeg events in the mr scanner: The problem of pulse artifact and a

method for its subtraction. NeuroImage, 8(3):229 – 239, 1998. 7

J. L. Andersson, C. Hutton, J. Ashburner, R. Turner, and K. Friston. Modeling

geometric deformations in EPI time series. Neuroimage, 13:903–919, May 2001. 84

Anonymous. Connecting the dots. Nat. Neurosci., 12:99, Feb 2009. ISSN 0006–3495.

99

J. S. Archer, D. F. Abbott, A. B. Waites, and G. D. Jackson. fMRI ”deactivation”

of the posterior cingulate during generalized spike and wave. Neuroimage, 20:

1915–1922, Dec 2003. 79

J. Ashburner and K.J. Friston. Voxel-based morphometry – the methods. NeuroIm-

age, 11:805–821, 2000. 16

177



REFERENCES

A. Aubert and R. Costalat. Interaction between astrocytes and neurons studied using

a mathematical model of compartmentalized energy metabolism. J. Cereb. Blood

Flow Metab., 25:1476–1490, Nov 2005. 100

A. Babajani and H. Soltanian-Zadeh. Integrated MEG/EEG and fMRI model based

on neural masses. Biomedical Engineering, IEEE Transactions on, 53(9):1794–

1801, September 2006. 50, 101

C. Babiloni, V. Pizzella, C. D. Gratta, A. Ferretti, and G. L. Romani. Fundamen-

tals of electroencephalography, magnetoencephalography, and functional magnetic

resonance imaging. Int. Rev. Neurobiol., 86:67–80, 2009. 107

S. Baillet, J. C. Mosher, and R. M. Leahy. Electromagnetic brain mapping. IEEE

signal processing magazine, 18:14–30, November 2001a. 5, 100, 112

S. Baillet, J. J. Riera, G. Marin, J. F. Mangin, J. Aubert, and L. Garnero. Evaluation

of inverse methods and head models for EEG source localization using a human

skull phantom. Phys Med Biol, 46:77–96, Jan 2001b. 5

M. Beal and Z. Ghahramani. The Variational Bayesian EM algorithms for incomplete

data: with application to scoring graphical model structures. In J. Bernardo,

M. Bayarri, J. Berger, and A. Dawid, editors, Bayesian Statistics 7. Cambridge

University Press, 2003. 41, 42, 43, 131

T. E. Behrens, L. T. Hunt, M. W. Woolrich, and M. F. Rushworth. Associative

learning of social value. Nature, 456:245–249, Nov 2008. 82

J.M. Bernardo and A.M. Smith. Bayesian Theory. Meas. Sci. Technol., 12:221–222,

2001. 45

S. Bestmann, L. M. Harrison, F. Blankenburg, R. B. Mars, P. Haggard, K. J. Friston,

and J. C. Rothwell. Influence of uncertainty and surprise on human corticospinal

excitability during preparation for action. Curr. Biol., 18:775–780, May 2008. 82,

84, 85

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2nd edition,

2006. 36, 41

178



REFERENCES

G. Bonmassar, D. P. Schwartz, A. K. Liu, K. K. Kwong, A. M. Dale, and J. W.

Belliveau. Spatiotemporal brain imaging of visual-evoked activity using interleaved

eeg and fmri recordings. NeuroImage, 13(6):1035 – 1043, 2001. 8

G. Bonvento, N. Sibson, and L. Pellerin. Does glutamate image your thoughts?

Trends Neurosci., 25:359–364, Jul 2002. 10, 100

L. Boorman, A. J. Kennerley, D. Johnston, M. Jones, Y. Zheng, P. Redgrave, and

J. Berwick. Negative blood oxygen level dependence in the rat: a model for in-

vestigating the role of suppression in neurovascular coupling. J. Neurosci., 30:

4285–4294, Mar 2010. 28, 162

G. M. Boynton, S. A. Engel, G. H. Glover, and D. J. Heeger. Linear systems analysis

of functional magnetic resonance imaging in human V1. J. Neurosci., 16:4207–4221,

Jul 1996. 14

P. Brown and J. F. Marsden. Cortical network resonance and motor activity in

humans. Neuroscientist, 7:518–527, Dec 2001. 22

C. Buchel and K. J. Friston. Modulation of connectivity in visual pathways by

attention: cortical interactions evaluated with structural equation modelling and

fMRI. Cereb. Cortex, 7:768–778, Dec 1997. 132, 141, 151

C. Buchel, R. J. Wise, C. J. Mummery, J. B. Poline, and K. J. Friston. Nonlinear

regression in parametric activation studies. Neuroimage, 4:60–66, Aug 1996. 84

D. G. Buerk, B. M. Ances, J. H. Greenberg, and J. A. Detre. Temporal dynamics of

brain tissue nitric oxide during functional forepaw stimulation in rats. Neuroimage,

18:1–9, Jan 2003. 108

G. R. Burkitt, R. B. Silberstein, P. J. Cadusch, and A. W. Wood. Steady-state visual

evoked potentials and travelling waves. Clin Neurophysiol, 111:246–258, Feb 2000.

63

R. B. Buxton, E. C. Wong, and L. R. Frank. Dynamics of blood flow and oxygenation

changes during brain activation: the balloon model. Magn Reson Med, 39:855–864,

Jun 1998. 20, 100, 105, 134

G. Carmignoto and M. Gomez-Gonzalo. The contribution of astrocyte signalling to

neurovascular coupling. Brain Res Rev, 63:138–148, May 2010. 11, 100

179



REFERENCES

R. Christensen. Plane Answers to Complex Questions: The Theory of Linear Models.

Springer, 3rd edition, 2002. 14, 61

J. Chumbley, K.J. Friston, T. Fearn, and S.J. Kiebel. A Metropolis-Hastings al-

gorithm for dynamic causal models. NeuroImage, 38(3):478–487, 2007. doi:

10.1016/j.neuroimage.2007.07.028. 39

Anders M. Dale, Arthur K. Liu, Bruce R. Fischl, Randy L. Buckner, John W. Bel-

liveau, Jeffrey D. Lewine, and Eric Halgren. Dynamic statistical parametric map-

ping: Combining fmri and meg for high-resolution imaging of cortical activity.

Neuron, 26(1):55 – 67, 2000. 9

J. Daunizeau, K. J. Friston, and S. J. Kiebel. Variational Bayesian identification

and prediction of stochastic nonlinear dynamic causal models. Physica D, 238:

2089–2118, Nov 2009. 128

Jean Daunizeau, Christophe Grova, Guillaume Marrelec, Jrmie Mattout, Saad

Jbabdi, Mlanie Plgrini-Issac, Jean-Marc Lina, and Habib Benali. Symmetrical

event-related eeg/fmri information fusion in a variational bayesian framework. Neu-

roImage, 36(1):69 – 87, 2007. 9

O. David and K. J. Friston. A neural mass model for MEG/EEG: coupling and

neuronal dynamics. Neuroimage, 20:1743–1755, Nov 2003. 20, 100

P. Dayan and L. F. Abbott. Theoretical Neuroscience. MIT Press, 1st edition, 2002.

12

S. Debener, M. Ullsperger, M. Siegel, and A. K. Engel. Single-trial EEG-fMRI reveals

the dynamics of cognitive function. Trends Cogn. Sci. (Regul. Ed.), 10:558–563,

Dec 2006. 7

Gustavo Deco, Viktor K. Jirsa, Peter A. Robinson, Michael Breakspear, and Karl

Friston. The dynamic brain: From spiking neurons to neural masses and cortical

fields. PLoS Comput Biol, 4(8):e1000092, 08 2008. 20

R. Deichmann, C. Schwarzbauer, and R. Turner. Optimisation of the 3D MDEFT

sequence for anatomical brain imaging: technical implications at 1.5 and 3 T.

Neuroimage, 21:757–767, Feb 2004. 54

180



REFERENCES

H. E. den Ouden, K. J. Friston, N. D. Daw, A. R. McIntosh, and K. E. Stephan. A

dual role for prediction error in associative learning. Cereb. Cortex, 19:1175–1185,

May 2009. 26

James M. Dickey. The weighted likelihood ratio, linear hypotheses on normal location

parameters. The Annals of Mathematical Statistics, 42(1):pp. 204–223, 1971. ISSN

00034851. 43, 132, 135, 137

T. Eichele, K. Specht, M. Moosmann, M. L. Jongsma, R. Q. Quiroga, H. Nordby,

and K. Hugdahl. Assessing the spatiotemporal evolution of neuronal activation

with single-trial event-related potentials and functional MRI. Proc. Natl. Acad.

Sci. U.S.A., 102:17798–17803, Dec 2005. 52, 160

T. Eichele, V. D. Calhoun, and S. Debener. Mining EEG-fMRI using independent

component analysis. Int J Psychophysiol, Feb 2009. 52, 160

S. B. Eickhoff, K. E. Stephan, H. Mohlberg, C. Grefkes, G. R. Fink, K. Amunts, and

K. Zilles. A new SPM toolbox for combining probabilistic cytoarchitectonic maps

and functional imaging data. Neuroimage, 25:1325–1335, May 2005. 67

A. Ekstrom, N. Suthana, D. Millett, I. Fried, and S. Bookheimer. Correlation between

BOLD fMRI and theta-band local field potentials in the human hippocampal area.

J. Neurophysiol., 101:2668–2678, May 2009. 9, 11, 30

G. B. Ermentrout and D Terman. Mathematical Foundations of Neuroscience.

Springer, 1st edition, 2010. 20

C. Estrada and J. DeFelipe. Nitric oxide-producing neurons in the neocortex: mor-

phological and functional relationship with intraparenchymal microvasculature.

Cereb. Cortex, 8:193–203, 1998. 10, 100, 108, 129

S. L. Fairhall and A. Ishai. Effective connectivity within the distributed cortical

network for face perception. Cereb. Cortex, 17:2400–2406, Oct 2007. 26

Jessica A. Filosa and Vctor M. Blanco. Neurovascular coupling in the mammalian

brain. Experimental Physiology, 92(4):641–646, 2007. 11

R.S.J. Frackowiak, K.J. Friston, C. Frith, R. Dolan, C.J. Price, S. Zeki, J. Ashburner,

and W.D. Penny. Human Brain Function. Academic Press, 2nd edition, 2003. 49

181



REFERENCES

K. Friston. Functional integration and inference in the brain. Prog. Neurobiol., 68:

113–143, Oct 2002a. 22

K. Friston and W. Penny. Post hoc Bayesian model selection. Neuroimage, 56:

2089–2099, Jun 2011. 43, 132, 135, 136, 140, 141, 154, 155

K. Friston, J. Mattout, N. Trujillo-Barreto, J. Ashburner, and W. Penny. Variational

free energy and the Laplace approximation. Neuroimage, 34:220–234, Jan 2007a.

23, 37, 38, 40, 42, 102, 131, 135, 154

K. J. Friston. Bayesian estimation of dynamical systems: an application to fMRI.

Neuroimage, 16:513–530, Jun 2002b. xii, 19, 20, 21, 107

K. J. Friston. Neurophysiology: The Brain at Work. Current Biology, 18:418–420,

May 2008. 10, 12, 50, 100

K. J. Friston, P. Rotshtein, J. J. Geng, P. Sterzer, and R. N. Henson. A critique of

functional localisers. Neuroimage, 30:1077–1087, May 2006. 87

K. J. Friston, N. Trujillo-Barreto, and J. Daunizeau. DEM: a variational treatment

of dynamic systems. Neuroimage, 41:849–885, Jul 2008. 128

K. J. Friston, B. Li, J. Daunizeau, and K. E. Stephan. Network discovery with DCM.

Neuroimage, Dec 2010a. 23, 132, 133, 142

K.J. Friston. Functional integration. In R.S.J. Frackowiak, K.J. Friston, C. Frith,

R. Dolan, K.J. Friston, C.J. Price, S. Zeki, J. Ashburner, and W.D. Penny, editors,

Human Brain Function. Academic Press, 2nd edition, 2003a. 12

K.J. Friston. Dynamic causal models. In R.S.J. Frackowiak, K.J. Friston, C. Frith,

R. Dolan, K.J. Friston, C.J. Price, S. Zeki, J. Ashburner, and W.D. Penny, editors,

Human Brain Function. Academic Press, 2nd edition, 2003b. 25

K.J. Friston and W.D. Penny. Posterior probability maps and SPMs. NeuroImage,

19(3):1240–1249, 2003. xi, 17, 18, 35, 37, 86, 97, 131, 133

K.J. Friston, A.P. Holmes, K.J. Worsley, J.B. Poline, C. Frith, and R.S.J. Frackowiak.

Statistical parametric maps in functional imaging: A general linear approach. Hu-

man Brain Mapping, 2:189–210, 1995. 14, 50, 60

182



REFERENCES

K.J. Friston, C. Buchel, G.R. Fink, J. Morris, E. Rolls, and R. Dolan. Psychophys-

iological and modulatory interactions in neuroimaging. NeuroImage, 6:218–229,

1997. doi: 10.1006/nimg.1997.0291. 141

K.J. Friston, A. Mechelli, R. Turner, and C.J. Price. Nonlinear responses in fMRI:

The Balloon model, Volterra kernels and other hemodynamics. NeuroImage, 12:

466–477, 2000. 20, 100, 105, 107, 134

K.J. Friston, D.E. Glaser, R.N.A. Henson, S.J. Kiebel, C. Phillips, and J. Ashburner.

Classical and Bayesian inference in neuroimaging: Applications. NeuroImage, 16:

484–512, 2002a. 86

K.J. Friston, W.D. Penny, C. Phillips, S.J. Kiebel, G. Hinton, and J. Ashburner.

Classical and Bayesian inference in neuroimaging: Theory. NeuroImage, 16:465–

483, 2002b. 16, 36, 86

K.J. Friston, L. Harrison, and W.D. Penny. Dynamic Causal Modelling. NeuroImage,

19(4):1273–1302, 2003. 22, 23

K.J. Friston, R.N.A. Henson, C. Phillips, and J. Mattout. Bayesian estimation of

evoked and induced responses. Human Brain Mapping, 27:722–735, 2005a. doi:

10.1002/hbm.20214. 102

K.J. Friston, W.D. Penny, and O. David. Modelling brain responses. In M.F.

Glabus, editor, International Review of Neurobiology, Neuroimaging, Part A. El-

sevier, 2005b. 12

K.J. Friston, J. Ashburner, S.J. Kiebel, T.E. Nichols, and W.D. Penny, editors. Sta-

tistical Parametric Mapping: The Analysis of Functional Brain Images. Academic

Press, 2007b. 58, 160

K.J. Friston, K.E. Stephan, Baojuan Li, and J. Daunizeau. Generalised filtering.

Mathematical Problems in Engineering, 621670, 2010b. doi: 10.1155/2010/621670.

141

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald. Cortical functional ar-

chitecture and local coupling between neuronal activity and the microcirculation

revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc. Natl.

Acad. Sci. U.S.A., 87:6082–6086, Aug 1990. 2

183



REFERENCES

M. I. Garrido, J. M. Kilner, S. J. Kiebel, K. E. Stephan, T. Baldeweg, and K. J.

Friston. Repetition suppression and plasticity in the human brain. Neuroimage,

48:269–279, Oct 2009. 26

W. S. Geisler and D. G. Albrecht. Visual cortex neurons in monkeys and cats:

detection, discrimination, and identification. Vis. Neurosci., 14:897–919, 1997. 10

A. Gelman, J. Carlin, H. Stern, and D. Rubin, editors. Bayesian data analysis.

Chapman and Hall, 1995. 17, 38, 97

M. Girolami. Bayesian inference for differential equations. Theoretical Computer

Science, 408(1):4 – 16, 2008. 38

J.B. Goense and N.K. Logothetis. Neurophysiology of the BOLD fMRI signal in

awake monkeys. Curr. Biol., 18:631–640, May 2008. 10, 27, 51, 56, 77

R. Goldman, J. Stern, J. Engel, and M. Cohen. Simultaneous EEG and fMRI of the

alpha rhythm. Neuroreport, 18(13):2587–2492, 2002. 11, 30, 50, 51, 78, 160

R.I. Goldman, J.M. Stern, J. Engel, and M.S. Cohen. Acquiring simultaneous EEG

and functional MRI. Clin Neurophysiol, 111:1974–1980, Nov 2000. 54
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