
1 
 

 

The role of brain endothelial MAP kinases in  

ICAM-1-mediated lymphocyte transmigration 

 

 

 

Natalie Hudson  

 

 

Thesis submitted in fulfilment of the requirements for the degree of  

Doctor of Philosophy 

 

University College London 

Institute of Ophthalmology 

 

Supervisor: Dr Patric Turowski 



2 
 

Declaration  

 

I, Natalie Amanda Hudson, confirm that the work presented in this thesis is my own. Where 

information has been derived from other sources, I confirm that this has been indicated in the 

thesis. 



3 
 

Acknowledgements  
 

I would like to thank my supervisor Patric Turowski for his support, guidance, patience and 

encouragement during my entire studies. I also wish to thank my second supervisor, John 

Greenwood for his assistance and advice. 

I am hugely grateful to all past and present lab and office members that have helped make it a 

great place to work, especially to Mike and Charlie for helping keep me sane and the provision of 

snacks. Thanks to others within Cell Biology for being an amazing group of people and for the 

coffee/breakfast/lunch breaks and general happy, fun out of work things that have taken place. 

Fellow ‘library club/weekend’ members- you helped make coming in at weekends that much 

easier and bearable.  

Thank you to the British Heart Foundation for funding my studies. 

To my friends- for always being there and knowing what to say.  

And finally, a massive thank you to my family for believing in me when I didn’t think I could do it 

and for their continued love and support. 



4 
 

Abstract 

 

Leukocyte migration from the blood vessel, across the vascular wall and into the tissue 

underneath occurs in both an inflammatory response as well as immunosurveillance. During this 

process multiple adhesive interactions occur between leukocytes and vascular endothelial cells 

(ECs). The EC itself is rendered compliant to transmigration following inside-out signalling in 

response to leukocyte adhesion altering the activity of a number of different cellular components 

including the actin cytoskeleton, Rho GTPases and various protein kinases. For this, adhesion to 

endothelial intercellular adhesion molecule-1 (ICAM-1/CD54) is particularly important and the 

focus of this study. Indeed, previous work in our lab has shown that endothelial ICAM-1 signalling 

controls lymphocyte diapedesis by modulating interendothelial VE-cadherin (VEC) junction 

phosphorylation via a pathway involving calcium, AMP kinase and nitric oxide synthase (eNOS).  

In this study, I have investigated if ICAM-1-mediated endothelial mitogen-activated protein 

(MAP) kinases activation played a role during lymphocyte transmigration across brain 

microvascular ECs. All three MAP kinases, namely ERK, JNK and p38, were found to be activated in 

response to ICAM-1 engagement, however only JNK was important for lymphocyte transmigration. 

Significantly, specific neutralisation experiments using small-molecule inhibitors or dominant-

negative plasmids inhibiting JNK resulted in inhibition of transmigration. Activation of JNK required 

Src, Rho GTPase, MKK7 and protein kinase C (PKC), with all these components also found to be 

important for lymphocyte transmigration. I further demonstrate that this novel pathway led to the 

phosphorylation of the actin-associated protein paxillin and its association with VEC. Ultimately 

this triggered VEC internalisation, suggesting that adherens junction modulation is an important 

element during transendothelial leukocyte migration. Furthermore, this also suggests that at least 

two endothelial signalling pathways (JNK-paxillin and eNOS-VEC) converge and cooperate to 

regulate ICAM-1-mediated lymphocyte transmigration.  
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Chapter 1: General Introduction 

 

1.1 The vasculature  

1.1.1 Vascular endothelium  

 

Two complementary vascular networks facilitate the transport of oxygen, nutrients and cells 

through tissues (Oliver and Alitalo, 2005), namely the blood and lymphatic vasculature. Blood 

vessels form a circulatory system starting and ending at the same organ, the heart, facilitating the 

transport of nutrients and oxygen throughout the whole body (Lee et al., 2010). Lymphatic vessels 

are unidirectional in returning tissue fluid, cells and macromolecules (collectively termed lymph) 

from capillaries to the thoracic duct where the lymph can drain into the vena cava for recirculation 

(Pepper and Skobe, 2003; Oliver and Alitalo, 2005; Lee et al., 2010).  

The endothelium forms the inner lining of both the blood and lymphatic vasculature and 

displays great heterogeneity and plasticity (Aird, 2003). Heterogeneity does not just occur 

between blood vessels and lymphatic vessels but also between different organs, within the 

vascular loop and also between neighbouring endothelial cells (ECs) (Aird, 2003; Tse and Stan, 

2010). The health of the organism is maintained by the communication that is established 

between the endothelium and the underlying tissue in every organ (Aird, 2004). The importance of 

the endothelium is shown by its involvement in most disease states, either as a primary cause or 

affected as a secondary response (Aird, 2008). Vascular diseases only affect particular regions of 

the vascular tree rather than altering every blood vessel type (Aird, 2003). For example, in 

diabetes the small arterioles of the retina and kidney are affected whilst it is the liver sinusoids in 

veno-occlusive disease.  

ECs differ in their shape across the vascular tree. They are generally flat but at high 

endothelial venules (HEVs) they are plump and tall with a thick basal lamina (Miyasaka and 

Tanaka, 2004). ECs also differ in thickness ranging from less than 0.1µm to 1µm for capillaries and 

aorta respectively (Aird, 2007b). The orientation of the cell nucleus also varies across the vascular 

tree (Aird, 2003) aligning with the direction of blood flow in straight sections but not in regions 

where branching occurs (Aird, 2007a). The organisation and function of interendothelial junctions 
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varies in response to the requirement of the organ (Bazzoni and Dejana, 2004). Adherens junctions 

(AJs) are expressed in both blood and lymphatic vessels with ubiquitous distribution along the 

vascular tree. Tight junction (TJ) expression varies and depends on the requirement of the vascular 

bed. 

The endothelium of the lymphatic system is highly adapted to its functions. The larger, 

collecting lymphatic vessels are found to have basement membrane and pericyte coverage along 

with the presence of valves to prevent retrograde flow (Oliver and Alitalo, 2005; Lee et al., 2010). 

Intercellular junctions of collecting lymphatic vessel ECs resemble those found in blood vessel 

endothelia with a conventional zipper-like structure. In contrast, lymphatic capillaries are blind-

ended structures that lack basal lamina and pericyte coverage, and have overlapping intercellular 

junctions acting as primary valves to aid unidirectional flow of fluid (Pepper and Skobe, 2003; 

Oliver and Alitalo, 2005; Lee et al., 2010). These characteristics ensure that capillaries, also known 

as initial lymphatics, are highly permeable to large macromolecules, pathogens and migrating 

cells. ECs of initial lymphatics are equipped with specialised junctions where AJs and TJs are 

concentrated at the borders of overlapping flaps. Button- rather than zipper-like arrangement 

allows fluid entry without disruption to the integrity of the junction (Baluk et al., 2007; Dejana et 

al., 2009). These differences show that in distinct regions of the same vasculature junctions vary to 

mediate the specific functions carried out. 

Gross morphological differences can be seen between blood vessels from arteries, veins and 

capillaries. Arteries have thick walls, surrounded by smooth muscle cells, which pulsate to carry 

oxygenated blood around the body (Aird, 2003; Aird, 2007b; Dyer and Patterson, 2010). The 

smooth muscle cells provide extra support to the vessel as they experience high shear stress. Veins 

in comparison have no pulsatile motion, are equipped with thin walls and require valves to help 

carry the deoxygenated blood back to the heart (Aird, 2007b; Dyer and Patterson, 2010). 

Capillaries form the majority of the circulatory surface area; they are extremely thin which aids in 

the function of being the major exchange vessels (Aird, 2007b). The blood flow at the level of 

capillaries is extremely slow to allow maximal diffusion. As observed with lymphatic vessels 

interendothelial junction organisation reflects the specific vessel function. Arterioles have a 

complex TJ and AJ protein network whilst in venules junctions are rather loose (Aird, 2003). The 

disorganisation of junctions at postcapillary venules reflects the role they play in inflammation-

induced migration of leukocyte and plasma constituents (Aird, 2007b). However, the ‘tightness’ of 
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junctions can vary between organs. For instance, at the blood-brain barrier (BBB), the TJs are 

highly enriched and tight in most, if not all, parts of the vasculature (Hickey, 2001; Aird, 2007a; 

Dejana et al., 2009). 

Endothelium lining the blood vessels can either be continuous, fenestrated or discontinuous 

(Aird, 2007a). In organs such as the brain and heart the endothelium is continuous due to the 

presence of a continuous basement membrane while in capillaries of exocrine and endocrine 

glands and the kidney the endothelium is fenestrated. Fenestrae are transcellular pores that 

extend the cell thickness and are associated with increased local permeability and transendothelial 

transport (Aird, 2007a; Rocha and Adams, 2009). Discontinuous endothelium is found in sinusoidal 

vascular beds including the liver where larger fenestrations and a poorly formed basement 

membrane is found (Aird, 2007a). 

Functions of specific blood vessel types or vascular sub-regions are primarily characterised by 

the EC they are made up by (Aird, 2003; Aird, 2007a). Therefore, in first approximation, vascular 

function can be interrogated in vitro by studying the respective EC behaviour. For instance, 

capillaries primarily undertake the function of permeability and only in states of inflammation, be 

it acute or chronic, can postcapillary venules carry out the task (Aird, 2007a). Postcapillary venules 

are the key site where leukocyte trafficking occurs although in other areas of the vascular tree 

different regions mediate this function. In the pulmonary circulation, alveolar capillaries sequester 

leukocytes whilst in the liver leukocyte adhesion primarily takes place at the sinusoidal 

endothelium. HEVs support recirculation of lymphocytes from blood and lymph due to the 

expression of a unique adhesion molecule repertoire (Miyasaka and Tanaka, 2004). Arteriolar EC 

are involved in vasomotor tone (Aird, 2008). Biochemical and biomechanical signals received by 

the ECs from the microenvironment, including soluble mediators, temperature and pH, aid the 

functions carried out (Aird, 2004). Dysfunction of the endothelium is specific to the vascular tree 

location. For instance, in the brain dysfunction occurs when there is a loss of TJs at the BBB whilst 

the normally fenestrated liver sinusoids become dysfunctional following the formation of a tight 

barrier (Aird, 2004).  
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1.1.2 The blood brain and blood retinal barrier 

  

Vasculature heterogeneity is important for the many different functions and roles that arise 

throughout the whole vascular tree. Of particular interest in our laboratory is the BBB. 

The vast majority of the central nervous system (CNS) is separated from the blood circulatory 

system by the BBB which regulates the entry of immune cells, molecules and blood-borne ions 

(Hawkins and Davis, 2005). The discovery of the BBB was first shown in 1885 by Paul Ehrlich’s 

observation that water soluble dye, when injected into the blood, is taken up by all organs with 

the exception of the brain and spinal cord (reviewed by: Engelhardt, 2003; Hawkins and Davis, 

2005). The separation of the brain parenchyma from the circulatory system was further 

demonstrated by Ehrlich’s colleague Edwin E Goldmann who showed that injection of trypan blue 

dye in to the cerebral spinal fluid stained all cells in the brain but not cells of other organs 

(reviewed by: Engelhardt, 2003; Hawkins and Davis, 2005).  

The BBB has specialised fortified barrier properties resulting in the separation of the CNS 

from the blood circulation. A similar specialised barrier is seen in the retina due to the presence of 

the blood-retinal barrier (BRB). The BRB is maintained at two sites: the vasculature of the inner 

BRB is similar to that of the vascular BBB and is thought to have equivalent functions. The outer 

BRB, which is anatomically similar to the blood-cerebrospinal fluid barrier, is maintained by the 

retinal pigment epithelial cells on Bruch’s membrane (Crane and Liversidge, 2008)  

Both the BBB and BRB are selective barriers which permit the entry of nutrients, such as 

glucose, into the tissue whilst excluding harmful, toxic compounds (Abbott et al., 2006). The brain 

and retinal microenvironment is stringently controlled to mediate efficient signalling and maintain 

homeostatic conditions. The BBB has an increased concentration of mitochondria due to the high 

metabolic need of the tissue, and has low permeability due to the presence of TJs and lack of 

fenestrae (Hawkins and Davis, 2005). The brain vasculature has limited transcellular transport due 

to fewer vesicles present (Engelhardt and Sorokin, 2009; Daneman and Rescigno, 2009).  

 Small gases, such as oxygen and carbon dioxide, and small lipophilic molecules can diffuse 

freely through the lipid membrane of the BBB (Abbott et al., 2006). Trafficking of small hydrophilic 

molecules is regulated by the presence of specific transport systems on the luminal and abluminal 

membrane (Abbott et al., 2006; Daneman and Rescigno, 2009). GLUT1 transporter supplies the 
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brain with glucose which is its main energy source (Abbott et al., 2006; Zlokovic, 2008). The P-

glycoprotein (P-gp) efflux pump is also found at high concentrations in BBB ECs and is important in 

removing toxic lipophilic metabolites (Rubin and Staddon, 1999; Zlokovic, 2008). Mice lacking P-gp 

have an enhanced sensitivity to drugs and toxins which accumulate in high levels in the brain. 

Peptides and proteins, such as insulin, are generally excluded from the brain unless they enter by 

receptor-mediated transcytosis (Abbott et al., 2006; Zlokovic, 2008). The BBB is also a metabolic 

barrier due to the presence of intracellular and extracellular enzymes present in the EC membrane 

(Zlokovic, 2008). 

 

1.1.2.1 Neurovascular unit 

 

It is now accepted that the basic building block of the BBB is the neurovascular unit which 

consists of ECs, pericytes, astrocytes and microglia (Abbott et al., 2006). The BBB is formed of a 

single EC that surrounds the capillary circumference with the pericytes and EC covered by the 

basal lamina which is continuous with the astrocyte end-feet (Hawkins and Davis, 2005). Each cell 

type associated with the neurovascular unit contributes to the barrier properties of the BBB aiding 

in homeostasis, signalling or stability (Abbott et al., 2006). The blood vessel is innervated by 

neurones which also regulate the barrier function (Hawkins and Davis, 2005). The close proximity 

of these different cell types allows paracrine regulation which is important for both CNS function 

and disease pathology (Zlokovic, 2008). Gliovascular units, formed of the astrocytes and neurones, 

are also present which mediates communication between different segments of the vasculature 

(Abbott et al., 2006).  

 

1.1.2.1.1 Pericytes 

 

In the CNS pericytes contribute to the stability of microvessels (Guillemin and Brew, 2004; 

Hawkins and Davis, 2005) as they promote matrix deposition and EC differentiation (Zlokovic, 

2008). Blood flow is regulated in response to contraction and relaxation of pericytes surrounding 

the blood vessels (Peppiatt et al., 2006; Hamilton et al., 2010). In the CNS and retina pericyte-to-EC 
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ratios are considerably higher than in other tissues, with a greater pericyte-to-EC ratio observed in 

the BRB (Frank et al., 1990). In addition, close functional relationship is further guaranteed by the 

presence of TJs, AJs and gap junctions at pericyte-EC contact sites (Allt and Lawrenson, 2001; 

Zlokovic, 2008). 

 

1.1.2.1.2 Astrocytes 

 

Astrocytes are important for the association of pericytes with the endothelium (Abbott et al., 

2006). Many characteristics of the BBB have been attributed to astrocytes including 

communication (Zlokovic, 2008), high transendothelial electrical resistance (TEER) (Daneman and 

Rescigno, 2009) and its development and maintenance (Hawkins and Davis, 2005). Calcium (Ca2+) 

signalling between the astrocytes and endothelium regulates microvascular permeability. 

Astrocytes also lead to development of tighter junctions and a role in the expression and location 

of transporters found in the membranes which mediate uptake or removal of nutrients and toxins 

(Abbott et al., 2006). Electrolyte metabolism and a role in detecting salt concentrations are also 

contributed to astrocytes (Zlokovic, 2008).  

 

1.1.2.1.3 Microglia and macrophages  

 

 Microglia are derived from monocytes and mesenchymal progenitor cells that enter the brain 

during embryogenesis and remain present for a long period of time (Guillemin and Brew, 2004; 

Perry et al., 2010). Microglia are the CNS tissue-resident macrophages that continually survey the 

microenvironment becoming activated in response to homeostatic changes due to their sensitivity 

(Ransohoff and Perry, 2009; Perry et al., 2010). Microglia are highly sensitive to brain injury and 

disease and their main function is immune surveillance (Perry et al., 2010). Microglia have been 

shown to have a role in experimental autoimmune encephalomyelitis (EAE) contributing to 

autoimmune reactions targeting CNS antigens (Ransohoff and Perry, 2009). 
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 Perivascular macrophages (PVMs) are a population of migratory macrophages (Guillemin and 

Brew, 2004) continually entering the CNS as part of normal physiology (Hickey, 1999). PVMs are 

the principal antigen-presenting cell (APCs) in the CNS which have a phagocytic role ingesting and 

accumulating materials from the microenvironment to present antigens to T-lymphocytes (Hickey, 

1999; Ransohoff and Perry, 2009). They are also thought to have a role in maintenance and 

function of the BBB (Ransohoff and Perry, 2009).  

 

1.1.2.1.4 Basement membrane and extracellular matrix 

 

 The basement membrane maintains BBB integrity with contribution from the pericytes, 

astrocytes and the ECs (Zlokovic, 2008). Extracellular matrix (ECM) normally provides high tensile 

strength to the tissue. Since this is not required in the brain ECM levels at the BBB are low 

(Engelhardt and Sorokin, 2009). ECM proteins influence TJ protein expression and consequently 

play an important role in EC junction integrity and vessel permeability (Hawkins and Davis, 2005). 

BBB integrity is also maintained by matrix adhesion receptors (Zlokovic, 2008). 

 

1.1.2.2 Intercellular Junctions at the BBB 

 

 Cell-cell junction adhesion is mediated by homophilic interactions of transmembrane proteins 

which also interact with intracellular proteins and most importantly the actin cytoskeleton 

(Bazzoni and Dejana, 2004). The junctions of the brain EC are comprised of TJs, AJs and gap 

junctions which are important for adhesion, stability and communication. The presence of 

sophisticated TJs at BBB and BRB is unique within the vascular tree and the main reason (the other 

being low to absent vesicular transport) for the elaborate barrier properties at these sites.  

Endothelial distribution of TJs and AJs is not as defined as that seen in epithelial cells where TJs are 

found apically and AJs basolaterally. In contrast, in EC both junction types are found intermingled 

(Dejana, 2004). Each junction type is formed of transmembrane components, which mediate 

homophilic interactions and define adhesiveness, and of associated proteins, which are important 

in regulating junction properties and communication with the remainder of the cell (Bazzoni and 
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Dejana, 2004; Dejana, 2004). Dysfunction of junction components plays a major role in many brain 

and retinal pathogenesis (Abbott et al., 2006).  

Gap junctions, which are involved in cell communication, are formed of connexins (Imhof and 

Aurrand-Lions, 2004) and the vascular endothelium constitutively expresses connexins 37, 40 and 

43 (Bazzoni and Dejana, 2004; Abbott et al., 2006). Since little is known about gap junctions at the 

BBB and in particular their role in barrier function (Zlokovic, 2008) they will not be discussed 

further.  

 

1.1.2.2.1 Tight junctions 

 

TJs form a paracellular diffusion barrier restricting the movement of molecules including small 

ions across the cell monolayer (Tsukita et al., 2001; Matter and Balda, 2003). The TJs have a ‘gate’ 

(paracellular permeability) and a ‘fence’ (apical/basolateral polarity barrier) function (Balda and 

Matter, 2008) which are both important in keeping permeability low whilst providing a high TEER. 

Individual cells can regulate the ‘tightness’ of the junction depending on the physiological and 

pathological requirements of the cell (Tsukita et al., 2001). TJs are formed of a number of protein 

that interact in a heteropolymer complex (reviewed by: Tsukita et al., 2001; Matter and Balda, 

2003; Balda and Matter, 2008). The main transmembrane proteins, occludin, claudins and 

junctional adhesion molecules (JAMs), are linked to the actin cytoskeleton by a cytoplasmic plaque 

consisting of adaptor, scaffold and signalling proteins (Matter and Balda, 2003; Balda and Matter, 

2008). 

Proteins of TJs are subject to changes in their location, expression and protein-protein 

interactions which can be mediated by Ca2+ concentrations, phosphorylation and G-coupled 

proteins (Wolburg and Lippoldt, 2002; Hawkins and Davis, 2005). TJ proteins can alter a number of 

signalling pathways, including  protein kinase A (PKA), protein kinase C (PKC) and Rho GTPases, 

which influence TJ assembly, function and polarity (Wolburg and Lippoldt, 2002; Matter and Balda, 

2003). Gene expression can also be regulated by TJ proteins (Balda and Matter, 2000a; Balda and 

Matter, 2003; Balda and Matter, 2009). 
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 Occludin was the first integral membrane protein to be identified that localised to TJs (Furuse 

et al., 1993; reviewed in: Tsukita et al., 2001). The expression of occludin correlates with low 

endothelial permeability and- due to its high expression in BBB EC- in part explains their low 

permeability (Hawkins and Davis, 2005). However, mice lacking occludin do not have a deficient 

BBB (Saitou et al., 2000; Tsukita et al., 2001) suggesting that occludin may have more of a 

regulatory role in paracellular permeability, which can be compensated. Multiple domains, 

including cytoplasmic and transmembrane domains of occludin have been implicated in 

paracellular permeability regulation (Balda and Matter, 2000a). Anchorage of occludin to the 

junction can occur via either the C- or N-terminus (Wolburg and Lippoldt, 2002; Balda and Matter, 

2008) with each termini having a different functional role. The C-terminus of occludin associates 

with the cytoskeleton via accessory proteins, such as zonula occluden (ZO)-1 (Furuse et al., 1994; 

reviewed by: Balda and Matter, 2000b) and is important for paracellular permeability (Balda et al., 

1996). The N-terminus, on the other hand, is important for neutrophil transmigration (Huber et al., 

2000).  

 The phosphorylation status of occludin is important in the ability to associate with the cell 

plasma membrane (Hawkins and Davis, 2005). Phosphorylation of occludin is important for TJ 

formation (Sakakibara et al., 1997), increased barrier permeability (Antonetti et al., 1999; Harhaj 

et al., 2006) and TJ trafficking (Murakami et al., 2009). Numerous signalling cascades can also be 

regulated by occludin including those involving RhoA and mitogen activated protein (MAP) kinases 

(Balda and Matter, 2008).  

Claudins are another important transcellular component of TJs and thought to be the main 

structural components of intramembrane strands (Furuse et al., 1998; Tsukita et al., 2001; Furuse 

and Tsukita, 2006). They comprise a family of more than 20 proteins which through homophilic or 

heterophilic interactions form the primary seal in the junction (Tsukita et al., 2001; Krause et al., 

2008). Claudins establish barrier properties, restrict permeability to solutes and form charge 

specific pores which permit ion diffusion (Tsukita et al., 2001; Wolburg and Lippoldt, 2002; Balda 

and Matter, 2008; Krause et al., 2008). The function of the claudins is assumed to be specified by 

the extracellular loop; with the first loop involved in the tightness and ion selectivity whilst the 

second loop is important for interaction and adhesion of the two opposing membranes (Krause et 

al., 2008). 
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Claudins are expressed in a tissue-specific manner, with most cell types expressing more than 

one family member (Tsukita et al., 2001; Wolburg and Lippoldt, 2002; Balda and Matter, 2008). It 

is thought that the combination and ratio of TJ claudin composition determines both the 

‘tightness’ and ion selectivity of the junction (Liebner et al., 2000; Tsukita et al., 2001; Balda and 

Matter, 2008). In BBB ECs, claudin- 3, -5 and -12 are found and they collectively contribute to the 

very high TEER observed (Morita et al., 1999; Nitta et al., 2003; Wolburg et al., 2003; Krause et al., 

2008). Claudin-1 expression in the BBB varies among different species and it is debated whether it 

is required for TJ in the BBB (Wolburg and Lippoldt, 2002). Claudin-5 is expressed only on EC 

(Morita et al., 1999). Mice lacking claudin-5 show a size-selective increase (for small molecules up 

to 800 Da) in BBB permeability (Nitta et al., 2003). In fact, each claudin regulates the ion selectivity 

of a particular molecule across the junction barrier. A decrease in permeability can occur in 

response to overexpression of some claudins (McCarthy et al., 2000). 

ZO proteins are one of the cytoplasmic plaque proteins that form the structural link to the 

actin cytoskeleton (Wolburg and Lippoldt, 2002; Balda and Matter, 2008) with ZO-1 being the first 

TJ protein to be discovered in both epithelial cells and EC (Stevenson et al., 1986; Tsukita et al., 

2001). ZO-2 and ZO-3 were later discovered to localise to TJs with similar sequence homology to 

ZO-1 (Tsukita et al, 2001), although ZO-3 is not expressed in the TJs of the BBB (Hawkins and Davis, 

2005). ZO-1 is found in two isoforms with the α- form expressed in EC (Balda and Anderson, 1993). 

 All three ZO proteins are members of the membrane associate guanylate kinases (MAGUK) 

family sharing three defined core regions: SH3 domain, guanylate cyclase and PDZ domains, 

allowing a number of protein-protein interactions to arise (Wolburg and Lippoldt, 2002; Balda and 

Matter, 2008; Balda and Matter, 2009). ZO-1 interacts with ZO-2, ZO-3 and carboxyl termini of 

claudins via PDZ domains and to occludin via the guanylate cyclase domain (Tsukita et al., 2001; 

Balda and Matter, 2008). ZO-1 and ZO-2 can bind to a number of actin binding proteins including 

α-catenin and cortactin (Pachter et al., 2003). 

ZO-1 and ZO-2 have a role in gene transcription regulating transcription factors (Balda and 

Matter, 2009). ZO-1 binds to the Y-box transcription factor ZO-1-associated nucleic acid binding 

(ZONAB) via its SH3 domain (Balda and Matter, 2000a). ZONAB can localise to both the nucleus, 

where it regulates gene expression and intercellular junctions where it binds to ZO-1 (Balda and 

Matter, 2000a; Balda and Matter, 2003; Balda and Matter, 2009). Cell density determines ZONAB 
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distribution: cells at high density results in ZO-1-ZONAB interactions at the junctions whilst low cell 

density leads to accumulation of ZONAB in the nucleus (Balda and Matter, 2003; Balda et al., 2003; 

Balda and Matter, 2009). ZONAB can interact with CDK4 controlling the expression of cell cycle 

regulators including cyclin D1, therefore sequestration of ZONAB by ZO-1 regulates cell 

proliferation (Balda and Matter, 2003; Balda et al., 2003; Balda and Matter, 2009). A role of ZO-2 

in gene expression has been proposed in light of its capability of binding to the DNA scaffolding 

factor SAF-B and the transcription factors Fos, Jun, C/EBP and c-myc (Balda and Matter, 2009). 

Junctional adhesion molecules (JAMs) are important for formation of TJs (Ebnet et al., 2004), 

as well as regulating changes in permeability (Aurrand-Lions et al., 2001). JAM-A has been 

implicated in leukocyte trafficking as well as junction integrity (Woodfin et al., 2007; reviewed by: 

Zlokovic, 2008). Endothelial selective cell adhesion molecule (ESAM) localisation is supported by its 

interaction with ZO-1 in the brain capillaries (Nasdala et al., 2002).  

 

1.1.2.2.2 Adherens junctions 

 

The AJs stabilise cell-cell interactions and regulate paracellular permeability and contact 

inhibition (Rudini and Dejana, 2008). Cadherins are the transmembrane proteins that organise AJ 

protein complexes at the cell border (Bazzoni and Dejana, 2004). Vascular endothelial cadherin 

(VEC) is expressed specifically by all EC found in vessels (Dejana, 2004; Dejana et al., 2009) and is 

important for the integrity of the endothelium (Zlokovic, 2008). N-cadherin is found at comparable 

levels to VEC but is diffuse in the cell membrane (Dejana et al., 2008). N-cadherin does not localise 

to the AJs and is mainly found at the basolateral membrane in contact with pericytes and 

astrocytes (Bazzoni and Dejana, 2004; Dejana et al., 2009).  

VEC is found to associate via its intracellular C-terminus distal part with β-catenin and 

plakoglobin (γ-catenin) (Bazzoni and Dejana, 2004). The complex is further anchored to actin 

through the binding of α-catenin to β-catenin or plakoglobin. The complex is further stabilised by 

the ability of α-catenin to bind vinculin and α-actinin (Dejana et al., 2008). The juxta-membrane 

region of the intracellular domain of VEC can bind to p120-catenin and this association can be 

altered in response to phosphorylation of VEC (Potter et al., 2005; Allingham et al., 2007). When 
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dissociated from cadherin, all three catenins can also be found in the nucleus where they can 

modulate gene transcription (Bazzoni and Dejana, 2004). For instance, claudin-3 expression can be 

induced by β-catenin acting as a transcription factor which mediates BBB maturation and 

stabilisation (Liebner et al., 2008).  

 

1.1.2.2.3 Nectin-based junctions 

 

Nectin, in association with afadin, forms cellular adhesion sites that regulate the velocity and 

formation of AJs and TJs (Fukuhara et al., 2002a; Takai and Nakanishi, 2003; Honda et al., 2003a). 

Nectins are calcium-independent immunoglobulin-like intercellular adhesion molecules which 

were first described as virus receptors closely related to the poliovirus receptor (Morrison and 

Racaniello, 1992; Lopez et al., 1995; Eberle et al., 1995; Lopez et al., 1998). At least four family 

members comprise the nectin family with all, but nectin-4, expressed as at least two splice 

variants (Takahashi et al., 1999a; Satoh-Horikawa et al., 2000; Reymond et al., 2001; Takai and 

Nakanishi, 2003). Nectin-4 is found in ECs of the placenta whilst nectin-1, -2 and -3 are 

ubiquitously expressed (Satoh-Horikawa et al., 2000; Reymond et al., 2001; Takai and Nakanishi, 

2003).  

 Afadin links nectin to the actin cytoskeleton and is found in two splice variants which vary in 

their ability to bind F-actin along with their expression profile (Mandai et al., 1997; Takai and 

Nakanishi, 2003). The ubiquitously expressed l-afadin variant has the ability to bind both nectin 

and F-actin whilst s-afadin is expressed in neural tissue and lacks the appropriate F-actin binding 

domain. Nectin binds to the PDZ domain within the cytoplasmic tail of afadin via a conserved four 

residue motif (Takahashi et al., 1999a). The interaction of afadin with nectin is important for the 

complex to cluster at sites of cell-cell contact (Miyahara et al., 2000).  

 An initial ‘spot-like’ cell-cell junction is formed by nectins which lead to the recruitment of 

cadherins to sites of cell-cell contact to form AJs (Tachibana et al., 2000; Fukuhara et al., 2002a; 

Fukuhara et al., 2002b). The association occurring between nectin and cadherin is mediated by 

their associated proteins l-afadin and α-catenin, respectively, (Tachibana et al., 2000). 

Subsequently, JAMs, claudins and occludin accumulate at the apical side of AJs to form TJs 

(Fukuhara et al., 2002b; Takai and Nakanishi, 2003) requiring afadin, ZO’s and the actin 
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cytoskeleton (Kuramitsu et al., 2008). ZO-1 can bind afadin and is recruited to nectin-based 

adhesion sites in an α-catenin and ponsin- independent manner (Yokoyama et al., 2001).  

A number of structural proteins can interact and co-localise with nectin-afadin at AJs 

including ponsin (Mandai et al., 1999), vinculin (Mandai et al., 1999), afadin DIL domain interacting 

protein (ADIP) (Asada et al., 2003) and protein interacting with C-kinase-1 (PICK-1) (Reymond et 

al., 2005). It is still not yet certain the roles these proteins play in nectin-based junctions.  

Src activity can be induced by trans-interaction of nectins which leads to the phosphorylation 

of Vav2 (Kawakatsu et al., 2005; Takai et al., 2008). The small Rho GTPases Rac and Cdc42 have 

also been shown to be activated (Kawakatsu et al., 2002; Fukuhara et al., 2004) prior to MAP 

kinase activation (Honda et al., 2003b). Nectins have also been implicated in cell polarity due to 

their ability to interact with the partitioning defective (Par) proteins and cell migration (Takai et 

al., 2003; Takai et al., 2008).  

 

1.1.2.3 Disruption of BBB and BRB and inflammatory pathologies  

 

 The CNS and retina although considered immune privileged are routinely surveyed by 

immune inflammatory cells (Hickey, 2001). Activated T-lymphocytes are able to cross non-

inflamed BBB and BRB endothelium (Engelhardt and Ransohoff, 2005) regardless of their antigen 

specificity (Hickey, 1999). Immune surveillance is aided by the drainage of lymphocytes, and thus 

potential antigenic material, into the cerebral spinal fluid circulatory system (Hickey, 2001; 

Engelhardt and Ransohoff, 2005). There are a number of routes which can be utilised by 

leukocytes to enter the CNS and retina and the route used is determined by both the 

inflammatory stimulus and CNS compartment affected (reviewed in: Engelhardt and Ransohoff, 

2005; Zlokovic, 2008).  

In the brain and retina leukocyte trafficking occurs at lower levels than that observed in other 

organs (Hickey, 1999) as excessive infiltration of leukocytes can be detrimental rather than 

beneficial (Hawkins and Davis, 2005; Zlokovic, 2008). Diseases such as Multiple Sclerosis (MS) and 

Alzheimer’s Disease can occur following BBB disruption (Zlokovic, 2008) whilst damage to the 

retinal barrier can lead to development of diabetic retinopathy and the auto-immune disease 



39 
 

endogenous posterior uveoretinitis (Crane and Liversidge, 2008). In MS, autoaggressive T-

lymphocytes traverse the BBB accumulating in the brain where they induce an autoimmune 

response targeting the myelin white matter leading to tissue destruction and neural damage 

(Engelhardt and Ransohoff, 2005; Abbott et al., 2006; Frohman et al., 2006; Zlokovic, 2008).  

Disruption of the BBB and BRB occurs in response to TJ disruption, inflammatory responses or 

altered molecule transport across the barriers (Zlokovic, 2008). Inflamed endothelium upregulates 

its adhesion molecule expression and induction of chemokines which recruit leukocytes to the 

area (discussed in further detail in Section 1.2.2) (Hickey, 2001; Engelhardt and Ransohoff, 2005). 

In MS and diabetic retinopathy a loss of integral TJ proteins has been described including claudin-3 

(Wolburg et al., 2003), occludin (Antonetti et al., 1998; Zlokovic, 2008) and ZO-1 (Hawkins and 

Davis, 2005). Actin cytoskeletal alterations reducing association with TJ proteins (Zlokovic, 2008) 

and loss of basement membrane (Abbott et al., 2006) can also contribute to barrier disruption. 

These responses increase both permeability and leukocyte infiltration facilitating immune 

response initiation.    

The specialisation of the brain and retinal vascular beds makes investigating leukocyte 

trafficking relevant due to the limited immune surveillance and vesicular transport that occurs in 

these regions. The mechanisms of leukocyte migration at the BBB, or BRB, are likely to be 

important at non-BBB EC beds as well. Therefore these studies are important to understand BBB 

inflammatory immune functions, as inflammation has catastrophic effects in both acute and 

chronic neuropathologies, and provide a paradigm for leukocyte migration elsewhere.  

 

1.2 Leukocyte transmigration  

 

In response to infectious pathogens and tissue damage, leukocytes are recruited from the 

blood at postcapillary venules to the underlying tissue to initiate an immune response (Wittchen, 

2009). Leukocytes begin life in the bone marrow before they migrate into the bloodstream (Friedl 

and Weigelin, 2008; Carman, 2009). Lymphocytes then mature in the thymus before they enter 

the vascular circulation and continually enter and exit secondary lymphoid organs (SLOs) such as 

the spleen, Peyer’s Patch and peripheral lymph nodes (PLNs) (Miyasaka and Tanaka, 2004; 
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Carman, 2009). Lymphocytes continually recirculate between the blood and lymphoid tissue to 

seek out antigens and pathogens in the process of immune surveillance, also known as lymphocyte 

homing (Vestweber, 2007; Ward and Marelli-Berg, 2009). Naïve lymphocytes migrate into draining 

PLNs at HEVs where they are activated on encountering antigens presented by APCs (Cook-Mills 

and Deem, 2005). Lymphocytes are activated and differentiate into different effector or memory 

subsets prior to migrating to sites of inflammation or other tissue effector sites (Vestweber, 2007; 

Friedl and Weigelin, 2008; Ward and Marelli-Berg, 2009).  

The process of transendothelial migration (TEM) of leukocytes is evolutionary conserved. It is 

highly adapted to the specific needs of the underlying tissue through the properties of the EC. In 

fact, ECs induce specific expression of adhesion molecules in response to priming by a specific 

antigen in a particular environment (Springer, 1994). The endothelial adhesion molecules then 

signal to the appropriate subset of leukocyte. Each leukocyte subset functions in a different way; 

e.g. neutrophils internalise and degrade pathogens whilst B-lymphocytes produce antibodies 

neutralising bacteria and viruses (Luster et al., 2005). TEM can be separated into several key steps 

as shown in Figure 1.1. The leukocytes need to be captured initially from the blood flow. Following 

that, the leukocyte rolls along the blood vessel, slows its momentum before adhering firmly to the 

EC (reviewed by: Springer, 1994; Luster et al., 2005; Ley et al., 2007; Wittchen, 2009). Leukocytes 

then crawl along the blood vessel to the site of the endothelium where they are required. Once 

the leukocyte reaches the site of transmigration it undergoes diapedesis, i.e. the process of 

passing through the vasculature into the underlying tissue. This final step of TEM can occur in two 

ways, via a paracellular route where the leukocyte passes between the endothelial junctions or a 

transcellular route where it squeezes through the cell body of a single EC (Ley et al., 2007; Carman 

and Springer, 2008; Carman, 2009; Muller, 2010). Once the leukocyte has undergone TEM it can 

either carry out its response directly within the tissue or return to the lymph for recruitment of 

other leukocytes, particularly the B- and T-lymphocytes. 

Each of these steps of TEM involves different interactions between the endothelium and the 

leukocyte, which are mediated by adhesion molecules of the selectin, integrin and cell adhesion 

molecule (CAM) families (Table 1.1) (Luster et al., 2005; Ley et al., 2007). 
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Figure 1.1 Mechanism of leukocyte transmigration at the BBB 

Leukocyte transmigration is a multi-step process involving a number of interactions between the 

endothelium and the leukocyte mediated by selectins, integrins and cell adhesion molecules.  
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Table 1.1: Adhesion molecules used during leukocyte transmigration 

Transendothelial 

migration step 

Leukocyte Endothelium 

Rolling/Capture PSGL-1 

L-selectin 

 

α4β7 

VLA-4(α4β1) 

P-selectin/ E-selectin 

E-selectin/CD34/GlyCAM-1/MadCAM-1/  

PNAd 

MAdCAM-1/VCAM-1 

VCAM-1 

Chemokine activation G-protein coupled receptors 

(GPCRs) 

Chemokines 

Firm adhesion/arrest Activated VLA-4  (α4β1) 

LFA-1  (αLβ2) 

Mac-1 (αMβ2) 

Activated α4β7  

VCAM-1  

ICAM-1 (CD54)/ICAM-2 

ICAM-1 

MAdCAM-1/VCAM-1 

Crawling  ICAM-1/ICAM-2/Mac1 

Diapedesis: 

Paracellular 

Transcellular 

 

PECAM-1 

 

PECAM-1/CD99/JAMs/ESAM 

ICAM-1/PECAM-1 
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Trafficking of immune cells and metastatic cells appear to use similar migration pathways. 

Metastatic cancer cells use the circulatory system to migrate to other organs to form secondary 

tumours (Kobayashi et al., 2007). In a similar manner to leukocytes, cancer cells need to migrate 

across the vascular endothelium and the basement membrane to reach the underlying tissues. 

Cancer cells extravasate by binding to the activated/inflamed endothelium through CAMs and 

then migrate into the underlying tissue. Endothelial E-selectin has also been shown to bind to the 

siayl Lewis (a/x) antigens expressed on cancer cells. In fact, findings from leukocyte TEM have 

frequently been adapted to study and describe cancer cell TEM. 

 

1.2.1 Capture and Rolling 

 

First, weak, transient interactions mediated by selectins tether the leukocyte to the 

endothelium. This slows its movement allowing exposure to the local environment until stronger 

interactions can occur to facilitate firm arrest. This process is primarily mediated by multiple 

members of the selectin family that differ in their expression profile and their counter receptors. 

In the EC, both vascular platelet (P)- and endothelial (E)-selectin are the most important rolling 

molecules during the recruitment of neutrophils, monocytes, NK cells, eosinophils and lymphocyte 

subsets (Luster et al., 2005; Ley et al., 2007). P-selectin is often involved in early leukocyte 

recruitment (Patel et al., 2002) whilst E-selectin is responsible for stabilisation of leukocyte rolling 

and slowing the leukocytes momentum within the blood vessel (Vestweber, 2007). 

P-selectin is constitutively expressed in the α-granules of platelets and the Weibel-Palade 

bodies of the EC (Springer, 1994; Patel et al., 2002). P-selectin is mobilised from its pre-formed 

stores fusing with the plasma membrane within minutes in response to acute inflammatory 

mediators, such as thrombin and histamine. Expression of P-selectin at the plasma membrane 

mediates the initial capture of monocytes and neutrophils in response to the interaction with P-

selectin glycoprotein ligand (PSGL-1) (Springer, 1994; Ley et al., 2007; Vestweber, 2007).  

E-selectin expression on EC is transcriptionally regulated in response to cytokines, such as 

interleukin (IL)-1, tumour necrosis factor (TNF)-α or lipopolysaccharide (LPS) (Springer, 1994; Patel 

et al., 2002). E-selectin also binds to PSGL-1, as well as glycosylated CD44 and E-selectin ligand 1 

(Ley et al., 2007).  
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 Leukocyte (L)-selectin is expressed on most leukocytes, with an exception of a small 

population of memory lymphocytes (Springer, 1994). Rolling of the leukocyte is in part mediated 

by L-selectin presenting carbohydrates to the vascular P- and E-selectins (Butcher, 1991). 

Lymphocytes expressing L-selectin recognise peripheral node addressin (PNAd) on HEVs allowing 

migration to occur at the PLNs (Miyasaka and Tanaka, 2004). Although all leukocytes express L-

selectin and can roll on the HEV endothelium, only lymphocytes are capable of adhering and 

migrating. L-selectin is also capable of recognising the secreted glycosylation-dependent cell 

adhesion molecule (GlyCAM-1), Mucosal addressin cell adhesion molecule (MAdCAM-1) and CD34 

found on the cell surface of HEV in SLOs (Springer, 1994; Patel et al., 2002; Ley et al., 2007). L-

selectin also binds to PSGL-1 which is shown to be an important interaction for support neutrophil 

rolling (Patel et al., 2002; Luster et al., 2005). L- and P-selectins require shear stress to support 

leukocyte adhesion as in the absence of blood flow the cells detach (Ley et al., 2007).  

 

1.2.2 Chemokine activation  

 

Following the initial capture, rolling leukocyte ‘sense’ chemokines presented on the luminal 

side of the endothelium. They bind to and activate leukocyte G-protein coupled receptors (GPCRs) 

(Vestweber, 2007). During inflammation, cytokine-stimulated endothelium is activated to 

synthesise and secrete chemokines, such as platelet activating factor and leukotriene B4  (Imhof 

and Aurrand-Lions, 2004; Ward and Marelli-Berg, 2009). Leukocyte GPCRs can also bind lipid 

chemoattractants, such as sphingosine- 1-phosphate and eicosanoids for activation (Ley et al., 

2007). Chemokines can be derived from the underlying tissue and expressed following transcytosis 

(Ley et al., 2007; Ward and Marelli-Berg, 2009) whilst others are generated in response to 

proteolytic cleavage by mast cells and platelets (Ley et al., 2007). 

The chemokine interaction with GPCRs triggers the arrest of leukocytes on the endothelium 

(Cook-Mills and Deem, 2005; Ley et al., 2007) before directing the leukocytes migration in 

response to increasing chemokine concentration (Springer, 1994). GPCR-mediated signalling leads 

to a conformational change in β1 and β2 integrins on the leukocyte leading to their activation and 

an increased affinity for their counter EC CAMs (Springer, 1994; Imhof and Aurrand-Lions, 2004; 

Vestweber, 2007). Outside-in signalling can be induced within milliseconds through different 
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second messengers depending on the specific chemokine and GPCRs (Imhof and Aurrand-Lions, 

2004; Ley et al., 2007).  

Chemokines are defined according to the pattern of cysteine residues, or function and pattern 

of expression (Ward and Marelli-Berg, 2009). Specific leukocyte subfamilies are recruited in 

response to activation by distinct chemokines (Springer, 1994). CXC chemokines tend to attract 

neutrophils whilst CC chemokines act on monocytes, and in certain situations eosinophils and 

lymphocyte subsets. For example, monocyte rolling is arrested in response to platelets depositing 

CC-chemokine ligand (CCL)-5 and CXC chemokine ligand (CXCL)-5 onto inflamed endothelium (Ley 

et al., 2007). Organ specific trafficking is shown to be dependent on the expression of certain 

chemokine receptors. Lymphocyte migration into lymph nodes at HEVs depends on the expression 

of CCL21 and CCL19 which aids lymphocyte trafficking (Miyasaka and Tanaka, 2004). Chemokines 

involved in developmental processes are constitutively expressed whilst inducible chemokines are 

generated in response to inflammation to control recruitment of cells (Ward and Marelli-Berg, 

2009).  

 

1.2.3 Firm adhesion 

 

The local production of cytokines not only initiates a positive feedback loop to produce more 

cytokines but also upregulates the expression of CAMs on the EC surface. The expression of CAMs, 

specifically vascular cell adhesion molecule (VCAM-1) and intercellular adhesion molecule (ICAM-

1), are required for binding leukocyte integrins thus facilitating firm adhesion (Muller, 2009). 

ICAM-1 binds to β2 integrins: leukocyte-functional antigen-1 (LFA-1, αLβ2) and monocyte antigen-1 

(Mac-1, αMβ2) by a distinct site in its third immunoglobulin domain (Hubbard and Rothlein, 2000; 

Ley et al., 2007; Vestweber, 2007). VCAM-1 is an endothelial ligand for very late antigen-4 (VLA-4, 

α4β1) and α4β7 (Ley et al., 2007; Vestweber, 2007).  

Selectins and CAMs have overlapping functions when recruiting leukocytes to the tissue 

(Steeber et al., 1999). Migration at inflammatory sites is greatly inhibited when both L-selectin and 

ICAM-1 are lost. Adhesion molecules expression is upregulated in response to inflammation and 

on resting brain microvascular EC (BMVEC) it is lower than other organs (Hickey, 2001; Engelhardt 

and Ransohoff, 2005). Initial capture and rolling at the BBB may be mediated by different CAMs 
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compared to other vascular beds, although subsequent steps are thought to use the same CAMs. 

VCAM-1 mediates leukocyte adhesion at the BBB rather than selectins (Engelhardt, 2008; 

Daneman and Rescigno, 2009) and VLA-4 supports rolling (Engelhardt and Ransohoff, 2005; Ley et 

al., 2007). VLA-4-VCAM-1 interaction is critical for leukocyte recruitment to the CNS (Yednock et 

al., 1992) and different mechanisms are used for recruitment of distinct lymphocyte subsets across 

the BBB and BRB (Engelhardt and Ransohoff, 2005). The key interaction required for recruitment 

of leukocytes across the BRB into inflamed retina is that of PSGL-1 with P- or E-selectin.  

 

1.2.4 Crawling and diapedesis 

 

The interaction of integrins with their respective adhesion molecule can lead to clustering on 

the EC surface and initiate signals within the cell to mediate the final step of the cascade- 

diapedesis, also known as TEM. The clustering of integrins is important for the leukocyte to crawl 

along the blood vessel lumen as well as diapedesis.  

Before diapedesis and following firm capture, the leukocyte starts to crawl to the site of 

transmigration. In response to binding to the endothelium the leukocyte alters its appearance with 

notable actin polymerisation and actin cytoskeletal rearrangements (Springer, 1994; Nourshargh 

et al., 2010). The leukocyte becomes polarised forming a protrusive leading edge and a contractile 

uropod. The polarised leukocyte migrates laterally along the luminal surface of the vessels 

searching for sites that are permissive to transmigration (reviewed in: Carman, 2009; Nourshargh 

et al., 2010). At the BBB T-lymphocytes preferentially crawl against the blood flow to the site of 

recruitment (Matharu et al., 2008; Steiner et al., 2010). 

Lymphocytes and monocytes protrude and retract a number of ‘invadasome-like projections’ 

(ILPs) on the surface of the endothelium (Carman et al., 2007). The ILPs are thought to ‘probe’ the 

endothelium, forming podoprints, for regions that have low endothelial resistance and therefore 

might allow for easier transmigration (Carman, 2009). ILPs are formed with a rich inner core 

formed of F-actin and an outer core containing LFA-1 and talin-1 (Carman et al., 2007). Neutrophil 

protrusions can form in response to shear stress developing invaginations that aid TEM across the 

endothelium (Nourshargh et al., 2010).  
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Lymphocytes are capable of migrating within minutes across the endothelium in the presence 

or absence of flow in vitro; therefore including flow when interrogating lymphocyte TEM in vitro 

makes little difference (McGettrick et al., 2009). Flow conditions improve the specificity of 

lymphocyte adhesion in response to cytokines but do not influence initial migration.  

A transmigratory cup forms with ICAM-1 enriched projections rapidly surrounding the 

leukocyte following adhesion to the endothelium (Carman et al., 2003; Carman and Springer, 

2004). The projections have become synonymous for both transcellular and paracellular 

diapedesis, since they surround the leukocyte for the entire process and successful TEM does not 

occur in their absence.  

The TEM steps of adhesion, capture and rolling are all reversible. The leukocyte is not 

committed at this stage to undergo transmigration and interactions with the endothelium can be 

broken (Muller, 2010). In contrast, once the leukocyte has committed itself to diapedesis, TEM 

becomes an irreversible process (Muller, 2009).  

 

1.2.5 Targeting TEM for therapeutic intervention 

 

The interaction of leukocytes with ECs has been exploited for anti-inflammatory therapies. 

Extravasation of leukocytes is a key characteristic in several inflammatory pathologies, and in the 

case of neurological diseases such as MS it is vital to avoid leukocyte penetration and a strong 

inflammatory response (Turowski et al., 2005). Many of these therapies target the interaction of 

integrins with the appropriate CAMs, either targeting part of the integrin structure or the active 

conformation (Simmons, 2005). EAE was shown to be successfully attenuated following the 

targeting of the interaction of VLA-4 and VCAM-1 (Yednock et al., 1992) which prompted the 

development of therapies for MS, including natalizumab (Miller et al., 2003). Natalizumab, which 

binds to and neutralises interactions of VLA-4 and α4β7 (Mackay, 2008), limits T-lymphocyte 

migration into inflamed tissue in MS and Chron’s disease patients. Efulizumab specifically 

recognises the α-chain of LFA-1 preventing the activation, trafficking and reactivation of T-

lymphocytes for treatment of chronic plaque psoriasis (Simmons, 2005).  
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Both natalizumab and efulizumab were removed from the market due to serious side effects 

and occurrence of the rare neurological disease progressive multifocal leukoencephalopathy. 

Although natalizumab has in the meantime been reintroduced albeit in a restricted manner, these 

cases have illustrated that anti-adhesion therapy despite being extremely effective in restricting 

leukocyte recruitment are often associated with severe side-effects presumably because house-

keeping immunological functions will be altered as well. This also underscores the importance of 

clinical developments in targeting other aspects of the leukocyte migration cascade. The 

chemoattractant receptor inhibitor, FTY-720, was shown to successfully inhibit leukocyte 

migration to inflammatory sites by regulating retention within SLOs (Mackay, 2008). The tyrosine 

kinase inhibitors, Tyrphostin AG490, prevented development of EAE as both lymphocyte adhesion 

and accumulation were attenuated (Constantin et al., 1999). Statins have been shown to 

attenuate EAE by inhibiting T-lymphocyte migration (Greenwood et al., 2003b).  

A number of groups, including our own, have focused their attention on endothelial events 

downstream of leukocyte adhesion. It is hoped that by understanding specific processes drugable 

targets will be identified which are specific to a specific leukocyte subset and a particular vascular 

bed (reflecting the underlying tissue and disease state). Targeting such processes would exploit 

the demonstratable effectiveness of inhibiting TEM but presumably have less general 

immunological side effects since the target would be highly disease and tissue-specific. 

 

1.3 The role of EC in leukocyte transmigration 

 

Leukocytes undergoing TEM execute many steps of the transmigration process on their own. 

These include integrin activation (Ley et al., 2007), podosome probing (Carman et al., 2007), lateral 

migration on the endothelium towards sites of TEM or even endothelial junction breakdown in the 

case of neutrophils (Moll et al., 1998; Ionescu et al., 2003). At the same time it has become clear 

that TEM depends on the activity of the vascular EC: they regulate expression of adhesion 

molecules which not only selectivity recruit leukocytes adapted to the particular tissue 

inflammatory signal but also can initiate EC outside-in signalling. Such signalling has been shown to 

regulate a number of important steps of TEM, namely guiding leukocytes to sites of 

transmigration, opening a passageway and finally dispatching the leukocyte to the underlying 
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tissue (see below and Figure 1.2). Thus, numerous findings during the last decade have 

unequivocally shown that endothelial activity is important to leukocyte TEM and that the vascular 

endothelium should be viewed as a key part of the immune system and function.  

 

1.3.1 Endothelial Adhesion molecules 

 

Leukocyte interaction with endothelial adhesion molecules triggers signals within the EC. This 

paradigm is best demonstrated by endothelial ICAM-1 interaction with LFA-1 on leukocytes and 

many groups have contributed to our understanding of endothelial compliance TEM by focusing 

on the intraendothelial events following the engagement of ICAM-1. Other adhesion molecules 

such as selectins, VCAM-1 or platelet/endothelial cell adhesion molecule-1 (PECAM-1) also convey 

signals (Matheny et al., 2000; van Wetering et al., 2003; Deem and Cook-Mills, 2004; Couty et al., 

2007) but this has been less studied. 

 

1.3.1.1 Intracellular adhesion molecule (ICAM)  

 

ICAM is a member of the immunoglobulin- like superfamily and can be found in five different 

forms. Each form varies in cell and/or tissue expression and the number of immunoglobulin-like 

domains it contains. Generally, ICAMs span the cell membrane once and contain a short 

cytoplasmic tail. ICAMs vary in molecular weight, from 80-114 kilodaltons (kDa) dependent upon 

tissue specific glycosylation (Lawson and Wolf, 2009; Rahman and Fazal, 2009).  

 

1.3.1.1.1 ICAM-1 

 

ICAM-1 is formed of 5 immunoglobulin-like domains and a cytoplasmic tail consisting of 29 

amino acids in human (Turowski et al., 2005; Lawson and Wolf, 2009). It is constitutively expressed 

at low levels on vascular EC, as well as some lymphocytes and monocytes (Cook-Mills and Deem, 

2005; Lawson and Wolf, 2009). Expression of ICAM-1 is upregulated in response to  
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Figure 1.2 Endothelial compliance in leukocyte transmigration 

The involvement of the EC in leukocyte transmigration can be separated into a role in either 

adhesion or diapedesis. The process of diapedesis can be further separated into a role in guiding, 

opening or dispatching the leukocyte to the underlying tissue.  
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pro-inflammatory cytokines, including TNF-α, interferon (IFN) -γ and IL-1β, as well as LPS, phorbol 

esters, vascular endothelial growth factor (VEGF) and shear stress (Rahman and Fazal, 2009). Pro-

inflammatory cytokines also upregulate ICAM-1 expression in a concentration- and time-

dependent manner in BMVEC (Wong and Dorovini-Zis, 1992; Dietrich, 2002). Maximal expression 

was shown in response to LPS and a combination of IFN-γ and TNF-α, whilst IFN-γ on its own led to 

a minimal increase in expression (Wong and Dorovini-Zis, 1992). ICAM-1 expression requires NFκB 

binding to the ICAM-1 promoter and activity of the transcription factor activator protein 1 (AP-1) is 

also important in some cases (Rahman and Fazal, 2009). Inflammatory lesions in MS and EAE show 

both early and focal ICAM-1 upregulation correlating with adhesion and extravasation of 

leukocytes across the BBB (Sobel et al., 1990; Dietrich, 2002).   

The first and third immunoglobulin-like domain of ICAM-1 binds to leukocyte LFA-1 or Mac-1, 

respectively. ICAM-1 can also bind to fibrinogen, rhinoviruses and Plasmodium falciparum- 

infected erythrocytes (Cook-Mills and Deem, 2005; Lawson and Wolf, 2009). ICAM-1 has 

numerous functions depending on the cell type it is expressed in (Hubbard and Rothlein, 2000). 

These roles include trafficking of inflammatory cells, cell-cell interactions during antigen 

presentation, microbial pathogenesis and signal transduction through outside-in signalling events. 

The role of ICAM-1 in inflammatory cell trafficking and signalling events will be described in 

Section 1.4. Leukocytes are capable of migrating on a surface coated with ICAM-1 showing that 

ICAM-1 on its own is sufficient to direct migration (Smith et al., 2003).  

 

 1.3.1.1.2 Soluble ICAM-1 (sICAM-1) 

  

A soluble form of ICAM-1 (sICAM-1) has been described which is produced by a variety of 

different cell types including human umbilical vein EC (HUVEC) and hematopoietic cell line (Lawson 

and Wolf, 2009). The 5 immunoglobulin-like domains of ICAM-1 are present in sICAM-1 but the 

transmembrane and cytoplasmic domain is lacking. It has been detected in various body fluids, 

with elevated levels being observed in patients with atherosclerosis, autoimmune disease and 

heart failure. Increased levels of sICAM-1 have been shown in HIV-infected children, MS relapsing 

patients and correlated with BBB breakdown in meningitis (Dietrich, 2002). sICAM-1 could 

potentially act as a decoy binding to ICAM-1 ligands in a competitive manner (Lawson and Wolf, 
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2009). Signalling appears to be induced by sICAM-1 in astrocytes and BMVEC (Otto et al., 2000b; 

Otto et al., 2002) but how this is mediated is unclear as the receptor to which it binds has not yet 

been determined.    

 

1.3.1.1.3 ICAM-2 

 

ICAM-2 has 2 immunoglobulin-like domains and is constitutively expressed on ECs. ICAM-2 is 

found concentrated at EC borders and on mononuclear leukocytes (Hubbard and Rothlein, 2000; 

Muller, 2010). ICAM-2 is not involved in lymphocyte adhesion (Reiss et al., 1998) but is important 

for T-lymphocyte polarisation and crawling to permissive TEM sites (Steiner et al., 2010). In the 

absence of ICAM-1, ICAM-2 may contribute to adhesion to the BBB in vitro (Steiner et al., 2010).  

Leukocyte recirculation across lymph nodes is, in part, mediated by ICAM-2 due to its constitutive 

expression contributing to leukocyte TEM under non-inflammatory conditions (Lehmann et al., 

2003; van Buul et al., 2007b). Neutrophil transmigration across EC monolayers is mediated by 

ICAM-2 (Issekutz et al., 1999) in a stimulus-dependent manner (Huang et al., 2006; Woodfin et al., 

2009). ICAM-2 deficient mice show large numbers of arrested neutrophils at the interface 

between the lumen and EC junctions along with a delay in eosinophil airway infiltration (Woodfin 

et al., 2009). Attachment of leukocytes to junctional and luminal ICAM-2 could potentially mediate 

their movement from the lumenal wall to the junctions.  

 

1.3.1.1.4 ICAM-3, -4 and -5  

 

ICAM-3, ICAM-4 and ICAM-5 have more restricted profiles with expression on mononuclear 

and polymorphonuclear leukocytes, erythrocytes and erythroid precursors and strong expression 

in brain grey matter (Hubbard and Rothlein, 2000). These forms have not been shown to 

contribute to leukocyte TEM and therefore will not be discussed any further in this thesis.   
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1.3.1.2 Vascular cell adhesion molecule-1 (VCAM-1) 

 

Resting vascular endothelium generally does not express VCAM-1; its expression is regulated 

by inflammatory cytokine stimulation and adapted to needs of the underlying tissue (Springer, 

1994; Vestweber, 2007; van Buul et al., 2007b). The role of VCAM-1 in leukocyte TEM has not been 

studied as much as that of ICAM-1. However, VCAM-1 upregulation in response to inflammatory 

stimuli points to an important in leukocyte TEM. VCAM-1 has been shown to be important in 

several disease states and it is likely that it has a similar role as ICAM-1. VCAM-1 is recruited to 

sites of ICAM-1 clustering, independent of VLA-4 binding (van Buul et al., 2010). VCAM-1 mediates 

firm adhesion to monocytes and lymphocytes expressing VLA-4 and clustering of VCAM-1 is 

observed in the steps prior to diapedesis (Muller, 2010). VCAM-1 also plays a minor role in 

lymphocyte homing into primary lymphatic organs (Vestweber, 2007). 

VCAM-1 supports migration of lymphocytes on a solid support (Chan and Aruffo, 1993) and 

migration is inhibited when VCAM-1, α4-integrins or β1-integrins are targeted (Chan and Aruffo, 

1993; Matheny et al., 2000). Both adhesion and migration of lymphocytes is therefore dependent 

on VCAM-1 engagement.  

VCAM-1 engagement, following lymphocyte binding or use of anti-VCAM-1-beads, stimulates 

activation of endothelial nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Matheny 

et al., 2000). Activation of NADPH oxidase only occurs in response to VCAM-1 engagement and not 

in response to ICAM-1 or PECAM-1 engagement. VCAM-1 induced NADPH oxidase activation 

generates reactive oxygen species (ROS) which is important for lymphocyte transmigration. ROS 

production reduces cadherin cell-cell adhesion thus affecting EC function (van Wetering et al., 

2003). VCAM-1 expression on ECs is not altered by inhibition of endothelial NADPH oxidase and 

ROS. NADPH oxidase activation is dependent on GTPase Rac1 and the influx of Ca2+ (Cook-Mills and 

Deem, 2005; Muller, 2010). VCAM-1 signalling via Rac1 requires p38 MAP kinase to mediate 

endothelial ROS generation (van Wetering et al., 2003). VCAM-1 stimulated ROS production 

activates PKCα which is required for TEM, but not adhesion, and transient weakening of cell-cell 

contacts (reviewed in: van Buul et al., 2007b).  
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VCAM-1 engagement can activate intracellular tyrosine phosphatase PTP1B following serine 

phosphorylation (reviewed in: van Buul et al., 2007b; Wittchen, 2009). This response is mediated 

by the ROS-PKCα pathway although how this promotes TEM is still unclear.  

Actin stress fibre formation occurs in the region surrounding the attached lymphocyte or anti-

VCAM-1 beads in response to VCAM-1 binding (Matheny et al., 2000). Stress fibre formation leads 

to changes in the shape of the EC causing the EC to contract and intercellular gaps to form within 

the junction (van Wetering et al., 2003; Cook-Mills and Deem, 2005). These gaps provide a pore 

that could help aid migration across the endothelium.  

Endothelial associated matrix metalloproteinases (MMPs) can be activated by low 

concentrations of hydrogen peroxide generated in response to lymphocytes binding to VCAM-1 

(Deem and Cook-Mills, 2004). Endothelial associated MMPs, particularly MMP-2 and MMP-9, 

require NADPH oxidase for their activation. It is thought MMP-2 and MMP-9 degrade the cell 

matrix and EC junctions at sites of TEM making it easier for transmigration to occur (Cook-Mills 

and Deem, 2005). VCAM-1 binding leads to a delay in activation of lymphocyte-associated MMP 

with this delay being prevented in response to ROS inhibition (Deem and Cook-Mills, 2004). 

 

1.3.1.3 Platelet/endothelial cell adhesion molecule-1 (PECAM-1) 

 

Another member of the immunoglobulin superfamily is PECAM-1 (CD31). It is expressed on EC 

concentrated at the cell borders along with leukocytes and platelets (Garrido-Urbani et al., 2008; 

Muller, 2010). Interruption of homophilic PECAM-1 interactions between the leukocyte and the EC 

by using anti-PECAM-1 antibodies results in the arrest of leukocytes on the apical surface of 

cytokine-stimulated EC (Cook-Mills and Deem, 2005; Muller, 2010). Homophilic interactions also 

arise between lateral borders of adjacent non-activated EC which form part of AJs (Cook-Mills and 

Deem, 2005). PECAM-1 can act as a scaffold recruiting signalling molecules and other junctional 

proteins which bind to the intracellular domain of PECAM-1 (Ilan and Madri, 2003). Association of 

phosphorylated β-catenin and γ-catenin with PECAM-1 can lead to relocalisation to cell junctions.  

Work carried out by William Muller’s group show that PECAM-1 recycles locally between the 

cell membrane and cytoplasmic compartment in a complex named the lateral border recycling 
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compartment (LBRC) (Mamdouh et al., 2003; Muller, 2009; Muller, 2010). The LBRC is enriched in 

phosphorylated PECAM-1 when compared to PECAM-1 residing on the cell surface (Dasgupta and 

Muller, 2008). Around 30% of EC PECAM-1 resides in the tubulovesicular structures found 

underneath the plasma membrane and the membrane is redirected to the cell border at sites of 

TEM when leukocytes are transmigrating (Mamdouh et al., 2003; Muller, 2010). The LBRC could 

provide the extra membrane needed to increase the surface area for the pore formation seen 

during paracellular and transcellular migration whilst providing molecules that the leukocyte 

needs to interact with on its passage (Mamdouh et al., 2003). The increased contact site induced 

by the LBRC is important in sealing the gap that forms as well as initiating responses required to 

propel migration of the leukocyte across the endothelium (Ager, 2003). The mobilisation of the 

LBRC to the plasma membrane is important for both paracellular (Mamdouh et al., 2008) and 

transcellular diapedesis (Mamdouh et al., 2009) of lymphocytes, monocytes and neutrophils. 

Importantly, both paracellular and transcellular leukocyte migration rely on LBRC activity. 

PECAM-1 engagement on BMVEC surface appears to have an inhibitory effect on multiple 

ICAM-1 signalling pathways (described in Section 1.4), counteracting ICAM-1-induced tyrosine 

phosphorylation of cortactin and actin rearrangements (Couty et al., 2007). PECAM-1 can 

associate with SHP-2 which is required for ICAM-1 signalling suggesting the two pathways may co-

operate to regulate the ECs response to leukocyte adhesion. 

 

1.3.1.4 CD99 

 

CD99 is an O-glycosylated protein expressed by most leukocytes, red blood cells and ECs 

(Garrido-Urbani et al., 2008). Homophilic interactions arise between CD99 on the endothelium and 

on monocytes or neutrophils. CD99 is important for TEM but believed to act at a later stage than 

PECAM-1 interactions (Muller, 2009; Muller, 2010). Antibody-mediated neutralisation of CD99 

causes monocyte to arrest between the EC junctions and an additive effect on the inhibition of 

TEM is observed following antibody blocking of both PECAM-1 and CD99 (Schenkel et al., 2002). 

CD99 has a role in monocyte and neutrophils migration at EC junctions (Schenkel et al., 2002; Lou 

et al., 2007) and also lymphocyte migration (Bixel et al., 2004). The functional relationship 

between PECAM-1 and CD99 also appears to be important in the LBRC (Mamdouh et al., 2008). 
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CD99 has been shown to activate MAP kinases in Jurkat cells and could potentially have the same 

function in EC, although this has not yet been clarified (Cook-Mills and Deem, 2005).  

A distant relative to CD99 is CD99L2 which is expressed on leukocytes and ECs (Bixel et al., 

2007). CD99L2 is involved in neutrophil TEM and recruitment into inflamed tissue but is not 

important for lymphocyte extravasation.  

 

1.3.1.5 Junctional adhesion molecule (JAM) and endothelial cell selective adhesion molecule 

(ESAM) 

 

JAMs are components of the TJ. JAM-A and JAM-C are concentrated at all EC cell borders 

(Muller, 2009) while JAM-B is highly expressed at intercellular junctions of HEVs (Garrido-Urbani et 

al., 2008). Brain ECs have a high level of JAM-A expression (Aurrand-Lions et al., 2001). JAM-A 

engages in homophilic interactions, although heterophilic engagement with LFA-1 occurs in 

response to inflammation (Muller, 2009). Inflammation and TEM is decreased greatly when JAM-A 

is blocked. JAM-A deficiency in mice leads to transmigrating neutrophils being trapped within EC 

junctions (Woodfin et al., 2009). JAM-A can interact with other TJ proteins and also binds to 

calcium/calmodulin-dependent protein kinase (CaMKK) and indirectly to PKC via Par3 (Cook-Mills 

and Deem, 2005). 

JAM-B interacts with VLA-4 on lymphocytes, monocytes and eosinophils (Garrido-Urbani et 

al., 2008) which is important for leukocyte rolling and adhesion (Ludwig et al., 2009). Inhibition of 

JAM-B inhibits cutaneous inflammation due to impaired leukocyte extravasation (Ludwig et al., 

2009). JAM-B is specifically expressed in HEV and lymphatic EC, with no expression in brain EC 

(Aurrand-Lions et al., 2001). 

JAM-C can form heterophilic interactions with JAM-B and Mac-1 (Muller, 2009). Interaction of 

JAM-C and Mac-1 has been implicated during leukocyte TEM. Lymphocyte TEM is increased in 

response to overexpression of JAM-C. Reverse transmigration is thought to involve JAM-C and this 

is an important mechanism for tissue clearance and subsequent inflammation resolution 

(Bradfield et al., 2007; Garrido-Urbani et al., 2008). 
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ESAM is closely related to JAM family members although it has a longer cytoplasmic domain 

(Muller, 2009). ESAM, like the JAMs, is mainly localised to endothelial junctions where it binds in a 

homophilic manner. Evidence suggests that ESAM is important for neutrophil migration but not 

lymphocyte extravasation (Wegmann et al., 2006). 

 

1.3.1.6 Other adhesion molecules  

 

Other endothelial CAMs that have recently been shown to be important in leukocyte 

transmigration are activated leukocyte cell adhesion molecule-1 (ALCAM-1) (Cayrol et al., 2008) 

and melanoma cell adhesion molecule (MCAM/CD146) (Guezguez et al., 2007; Bardin et al., 2009) 

but their role in TEM is still completely unclear. 

 

1.3.2 Role of the endothelium  

 

1.3.2.1 Guiding leukocytes to sites of TEM 

 

Leukocytes appear to have preferred sites of transmigration which occurs often near tri-

cellular junctions (Burns et al., 1997; Sumagin and Sarelius, 2010). During TEM, ICAM-1 is found 

enriched in these areas and this is thought to signal to leukocytes the location of an active portal. 

Blocking of the ICAM-1 extracellular domain significantly reduces the leukocytes ability to migrate 

to these portals. Tri-cellular junctions are regions of the cells were the junction proteins, including 

occludin and ZO-1, are found to be discontinuous (Burns et al., 1997) and therefore may allow 

easier transmigration. The observation that ICAM-1 redistributes from the luminal EC surface to 

juxta-junctional areas following antibody-mediated engagement and activation (Turowski et al., 

2008) (Figure 1.3), suggests that EC may contribute to leukocytes ‘sensing’ their way to TEM 

portals. Actin stress fibres guide ICAM-1 towards areas of the cell with a reinforced actin 

cytoskeleton (Millan et al., 2006). This is similarly seen with VCAM-1 but not E-selectin, which 

localises to the perinuclear region throughout TEM consistent with it role during crawling.  
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Figure 1.3 ICAM-1 receptors cluster in lateral areas following antibody engagement 

ICAM-1 is uniformly distributed on the EC surface and, following its cross-linking, is found 

clustered and translocated to lateral areas.   
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1.3.2.2 Opening a passageway 

 

Increasing evidence shows that the endothelium participates in formation of a channel used 

by the leukocyte for paracellular or transcellular diapedesis. The adherent leukocyte’s arrival to 

cell junctions leads to the formation of endothelial pores (Figure 1.4) (Shaw et al., 2001; Carman 

and Springer, 2004; Woodfin et al., 2011). The interaction of the leukocyte with the EC induces the 

formation of a small pore at the centre, of around 0.5-2µm in diameter which is devoid of ICAM-1 

(Carman and Springer, 2004). The pore is surrounded by endothelial ICAM-1 and enlarges in size as 

TEM progresses. The endothelium also has pre-existing gaps which are found to mediate 

diapedesis (Shaw et al., 2001). Pore formation is also seen in vivo in murine cremasteric venules as 

neutrophils migrate across the endothelium (Woodfin et al., 2011). The pore formed at cellular 

junctions reseals itself within minutes of the leukocyte completing TEM, demonstrating that the 

pore formation is a transient response (Shaw et al., 2001; Woodfin et al., 2011).  

 These pores form in both paracellular and transcellular migration and during TEM of many 

leukocyte subfamilies including lymphocytes, monocytes and neutrophils (Carman and Springer, 

2004; Woodfin et al., 2011). Multiple leukocytes can use the same pore in the endothelium to 

migrate, with the second leukocyte following the first leukocyte before the junction reseals itself 

(Shaw et al., 2001). The pores that form as leukocyte migrate via a transcellular route appear in 

close proximity to EC junctions (Carman and Springer, 2004; Woodfin et al., 2011) consistent with 

the LBRC playing an important role for all routes of TEM (Mamdouh et al., 2008; Mamdouh et al., 

2009). 

 ICAM-1 enriched endothelial projections form a cup-like structure upon engagement of 

leukocyte LFA-1 (Carman et al., 2003) and surround the site of diapedesis (Carman and Springer, 

2004). The projections are ‘microvilli-like’ and extend up around the adherent leukocyte, curving 

over the top of the cell forming a cup-like structure (Carman et al., 2003). Enrichment of ICAM-1, 

VCAM-1 and ezrin is observed around the cup-like projections (Carman et al., 2003) but not of 

ICAM-2, PECAM-1 or VEC (Carman and Springer, 2004). The interaction of ICAM-1 and LFA-1 

promotes the formation of the projections surrounding the leukocyte which has adhered (Carman 

et al., 2003). The ICAM-1 projections remain attached to the LFA-1 uropod of monocytes,  
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Figure 1.4 Channel opening in endothelium to facilitate leukocyte migration  

(A-C) Examples of leukocyte migration across the EC either via a paracellular or transcellular route. 

(A) Endothelial pore formation in the VEC junction (green) facilitates the paracellular 

transmigration of a monocyte (red). (B) Transcellular monocyte migration occurs via the formation 

of a pore in response to the interaction of ICAM-1 (green) and LFA-1 (red) in close proximity to EC 

junctions (VEC-blue). (C) Neutrophils (green) migrate in vivo across murine cremasteric venules 

through pores. The junction area is visualised by staining for PECAM-1 (red).  
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neutrophils and lymphocytes found in the subendothelial space (Carman and Springer, 2004) and 

are therefore found associated with all steps of transmigration.  

Several components of the EC are important for the formation of the projections following 

pharmaceutical disruption. The projections are enriched in actin, require intact microtubules, 

microfilaments, Ca2+ and the small GTPases Rac and Cdc42 (Carman et al., 2003; Carman and 

Springer, 2004). Disruption of the endothelial projections leads to less efficient leukocyte 

diapedesis, whilst adhesion is not altered showing the projections are important for diapedesis but 

not firm adhesion.  

 ICAM-1-mediated VEC phosphorylation is required for successful leukocyte transmigration 

(Allingham et al., 2007; Turowski et al., 2008). Since phosphorylation of VEC also results in an 

increase in transendothelial permeability it is assumed that junctional disruption occurs. Thus AJ 

modulation appears to be a molecular end point of ICAM-1 signalling in response to leukocyte 

adhesion. 

 VEC phosphorylation in response to ICAM-1 activation occurs in the binding areas for β-

catenin and p120-catenin (Potter et al., 2005; Allingham et al., 2007; Turowski et al., 2008), 

suggesting that VEC-catenin interaction may be compromised. In agreement, high expression of 

p120-catenin prevents the gap formation seen following VEC displacement and inhibits neutrophil 

TEM (Alcaide et al., 2008). Since dissociation of p120-catenin can lead to VEC internalisation via an 

endocytic pathway (Xiao et al., 2003), it is possible that junction internalisation is the driving force 

in gap/pore formation. 

Caveolae are membrane domains found in various cell types which may also be involved in 

TEM (Stan, 2002; Gratton et al., 2004). It is thought that they may control signalling in membrane 

microdomains of the endothelium (Gratton et al., 2004). It has been proposed that caveolae could 

fuse to form a transendothelial channel which could be utilised by leukocytes to cross ECs (Stan, 

2002). However, the role of caveolae in aiding transmigration is controversial. Millan et al. show 

ICAM-1 within caveolae can translocate across the endothelium potentially assisting in pore 

formation (Millan et al., 2006). In other cases caveolae are found to only be partially important 

(Carman and Springer, 2004) or not at all (Carman et al., 2007).  
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1.3.2.3 Dispatching leukocytes to the underlying tissue  

 

As well as aiding in the attraction, directing and channelling of leukocytes, the EC is also 

involved in dispatching the leukocyte across the basement membrane to the underlying tissue. 

This process is not as clearly understood. Work by Sussan Nourshargh’s group shows that the ECs 

appear to participate to this step by providing key signals early in TEM indicating areas of lower 

expression of basement components, including laminin 8 and laminin 10 (Wang et al., 2006). 

These low expression regions (LERs) are often found near tri-cellular or bi-cellular junctions, close 

to regions where pericyte coverage is low or absent. Significantly, neutrophils preferentially 

migrate within a distance of 0 to 3µm of LERs. LERs act as gates for migrating leukocytes in many 

tissues in a range of inflammatory reactions (Nourshargh et al., 2010).  Adhesive interactions 

between the neutrophils and basement membrane may play a role in guiding the cell to the site of 

LERs. The pattern of LER expression is directly associated with the number of gaps per unit area in 

pericyte sheath in different vascular beds (Voisin et al., 2010). PECAM-1 also has a role in 

dispatching leukocytes passing through the basement membrane as use of anti-PECAM-1 

antibodies inhibited the accumulation of leukocytes to inflammatory sites. The leukocytes are able 

to pass the EC barrier but became stuck within the vessel walls as they are unable to pass through 

the basement membrane (Wakelin et al., 1996). Domain 6 of PECAM-1 is important for traversing 

the basement membrane (Thompson et al., 2000).  

There are suggestions that additional signals are required for progression of lymphocytes 

from the EC subendothelial space (McGettrick et al., 2009). Lymphocytes are retained in the 

endothelium basement membrane but are able to migrate into tissue more effectively when 

stromal chemokines, such as CXCL10, are present. Neutrophils, on the other hand, do not appear 

to require additional signals for their migration into underlying tissue. As there is tissue 

heterogeneity it is likely that numerous chemokines are required to allow lymphocytes to migrate 

from the subendothelial space to the tissue.  
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1.4 Endothelial ICAM-1 signalling contributes to TEM 

 

Although ICAM-1 has classically been considered an adhesion molecule, experimental 

evidence points to a prevalent role during diapedesis (i.e. during the guiding, opening or dispatch 

steps). Work by Oppenheimer-Marks et al. has shown that antibodies targeting ICAM-1, or its 

counter-receptor LFA-1, results in inhibition of lymphocyte migration across HUVECs even when 

ICAM-1 was not involved in the initial adhesion step (Oppenheimer-Marks et al., 1991). 

Significantly, VCAM-1 did not play a role in T-lymphocyte transmigration under any condition 

tested. Similar results have been found for lymphocyte transmigration across BBB ECs. Activated T-

lymphocytes primarily use LFA-1 to adhere to BMVEC, however not via endothelial ICAM-1 (Male 

et al., 1994). In contrast, both anti-LFA-1 and anti-ICAM-1 blockage abrogate lymphocyte 

diapedesis indicating that whilst LFA-1 is important for adhesion and migration throughout TEM 

the main function of ICAM-1 is during the actual phase of transmigration (Greenwood et al., 1995; 

Pryce et al., 1997). In agreement, lymphocyte migration across BMVEC deficient for ICAM-1 is 

greatly attenuated (Lyck et al., 2003).  

Endothelial ICAM-1 is also important for diapedesis of leukocytes other than T-lymphocytes. 

Carman et al. show that ICAM-1 rich projections, which are synonymous for TEM, are rapidly 

formed in response to adhesion of monocytes to ECs (Carman et al., 2003; Carman and Springer, 

2004). This response occurs independently of VLA-4 and VCAM-1. Neutrophil diapedesis is also 

dependent on endothelial ICAM-1 activity similar to that seen during T-lymphocyte TEM 

(Allingham et al., 2007; Turowski et al., 2008). 

Taken together, available evidence clearly points towards an important contribution to TEM 

which goes beyond a role of providing an adhesion platform for leukocytes. In fact, these 

observations predict that EC signalling is triggered. Indeed, the intracellular domain and 

cytoplasmic tail of ICAM-1 are both important for leukocyte TEM and signalling responses (Sans et 

al., 2001; Lyck et al., 2003; Greenwood et al., 2003a). 
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1.4.1 Recruitment of other molecules 

 

Receptor multimerisation triggers ICAM-1 signalling (Martinelli et al., 2009). Activation and 

subsequent clustering of surface ICAM-1 receptor molecules can be modelled in a number of 

ways. These include using anti-ICAM-1-coated beads or using anti-ICAM-1 antibodies in solution 

(ligation) on their own or followed by the addition of a second antibody which cross-links the 

surface ICAM-1 molecules. However, unlike other cell surface receptors, it is not understood how 

ICAM-1 induces signalling. ICAM-1 has only a short cytoplasmic tail which lacks any known intrinsic 

enzyme activity or identifiable protein-protein interactions domains (Lawson and Wolf, 2009). It is 

therefore unknown what downstream molecules are recruited to the ICAM-1 cytoplasmic domain 

for signalling.  

The cytoplasmic tail of ICAM-1 associates with the actin cytoskeleton and this association is 

important for its localisation in microvilli (Carpen et al., 1992). Indeed, the majority of ICAM-1 

associated proteins identified by in vitro binding assays can also associate with actin, namely α-

actinin (Carpen et al., 1992), ezrin, radixin and moesin (ERM) proteins (Heiska et al., 1998), 

cortactin (Tilghman and Hoover, 2002) or filamin B (Kanters et al., 2008). ERM proteins form a 

structural link between transmembrane proteins and the cortical cytoskeleton regulating signalling 

pathways and cytoskeletal dynamics (Bretscher et al., 2002; Fehon et al., 2010). ERM proteins 

function as protein scaffolds interacting and associating with a number of proteins including 

several adhesion molecules such as VCAM-1 (Barreiro et al., 2002), ICAM-2 (Thompson et al., 

2002) and ICAM-1 along with F-actin (Romero et al., 2002). These interactions all play a role in cell 

adhesion, direction, cell spreading or TEM. Filamin B recruits ICAM-1 to the leukocyte docking 

structure, thereby having a role in leukocyte adhesion and TEM and lateral movement of ICAM-1 

in the plasma membrane (Kanters et al., 2008). Significantly, many of these actin 

interactors/regulators have also been found within the transmigration cup (Barreiro et al., 2002; 

Carman and Springer, 2004). Thus, available biochemical evidence points to a predominant role of 

the ICAM-1 cytoplasmic domain in organising the EC cortical actin. Furthermore, one of the 

primary responses of clustering ICAM-1 would be rearrangements of the actin cytoskeleton, and 

this has been described by many groups in many EC systems (see below Section 1.4.3).  

A 5 amino acid motif, 507RKIKK511, has been found in the N-terminal region of ICAM-1 

intracellular domain that regulates ICAM-1 surface distribution and association with F-actin, ezrin 
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and moesin (Oh et al., 2007). Deletion of this 5 amino acid motif decreases leukocyte adhesion and 

TEM along with a delay in formation of LFA-1 dependent membrane projections. The cytoplasmic 

tail also has one conserved tyrosine residue, Y512, which has been proposed to have a role in 

signalling. Indeed, its phosphorylation by Src increases ICAM-1 clustering and binding avidity (Liu 

et al., 2011). Furthermore, the expression of phosphorylation deficient mutants decreased ICAM-1 

association with the actin cytoskeleton and appeared to reduce TEM. It has been proposed that 

the protein tyrosine phosphatase (PTPase) SHP2 associates via one of its SRC-homology 2 (SH2) 

domains with phosphorylated ICAM-1 and thus initiates intracellular signalling (Pluskota et al., 

2000). In contrast, Lyck et al. show that the expression of ICAM-1 mutants in BMVEC lacking the 

phosphotyrosine site are still capable of triggering many signalling events and of facilitating TEM of 

T-lymphocytes to levels similar to wild-type cells (Lyck et al., 2003), suggesting that tyrosine 

phosphorylation of ICAM-1 was not required during TEM. Clearly, further work is required to 

understand how the immediate early events of ICAM-1 signalling work. 

 

1.4.2 Phosphorylation events 

1.4.2.1 Mitogen activated protein kinases (MAP kinase) 

 

Signalling induced by ICAM-1 receptor multimerisation utilises a number of different 

molecules and proteins. Many of these lead to protein phosphorylation events. The MAP kinase 

family has been implicated in mediating endothelial ICAM-1 signalling. The MAP kinase family 

include extracellular signal-regulated kinase (ERK), p38 and stress-activated kinase /c-Jun N-

terminal kinase (SAPK, JNK) (Chang and Karin, 2001; Roux and Blenis, 2004). 

MAP kinases are activated in response to different stimuli in a three-tiered cascade (Chang 

and Karin, 2001). Growth factors and phorbol esters generally activate ERK while JNK and p38 

respond to stress stimuli such as osmotic stress and cytokine stimulation (Roux and Blenis, 2004). 

MAP kinases regulate a number of cellular processes including gene expression, cell survival and 

motility linking receptors to downstream targets to induce signalling (Chang and Karin, 2001; Roux 

and Blenis, 2004). ERK is primarily involved in growth and cytoprotective functions whilst JNK and 

p38 are important in inflammatory and stress functions (Hoefen and Berk, 2002). Downstream 
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targets include transcription factors, enzymes and other kinases. MAP kinases can mediate gene 

expression on various levels, and play an important role in mediating the nuclear response of 

transcription factors such as AP-1, CREB and NFκB in ECs (Roux and Blenis, 2004). Most MAP 

kinases phosphorylate Ets transcription factors involved in Fos gene expression (Treisman, 1996; 

Chang and Karin, 2001). A further role of p38 has been described in post-transcriptional regulation 

of messages carrying AU-rich regions in their 3’ untranslated region (UTR) such as TNF-α and 

cyclooxygenase 2 (Clark et al., 2003). The AU-rich regions are thought to control mRNA 

degradation and translational arrest which can be overcome by p38 and its substrate MAPKAPK-2. 

A distinctive difference between the MAP kinases is the ability of ERK and p38, but not JNK, to 

phosphorylate and activate downstream MAP kinase activated protein kinase (MKs), further 

amplifying the signalling pathway (Roux and Blenis, 2004; Gaestel, 2006). Subfamilies of MKs 

include RSK, MNK and MK2/3 which are all important for all levels of gene expression, including 

regulation of transcription factors Jun, Fos and NFκB and stability and translation of proteins. In 

contrast, JNK regulates nuclear targets directly by phosphorylation. Localisation of the MAP kinase 

family members augments specificities in the induced signalling. The inflammatory state of the 

endothelium is thought to be determined by the balance of MAP kinase activation (Hoefen and 

Berk, 2002). 

 

1.4.2.1.1 ERK 

 

 In HUVECs ERK is activated within 30 minutes of ICAM-1 cross-linking (Lawson et al., 1999). 

ICAM-1 cross-linking induces an increase in VCAM-1 expression which is also inhibited by 

PD98059, an inhibitor of ERK activation, suggesting that ERK regulates ICAM-1-induced gene 

expression in EC. ERK has been shown to be important in neutrophil TEM (Stein et al., 2003). 
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1.4.2.1.2 p38 

 

Phosphorylation and activation of p38 occur within a few minutes of ICAM-1 cross-linking in 

TNF-α treated pulmonary microvascular EC (MVEC) (Wang and Doerschuk, 2001). Activation is 

prevented when the EC are pre-treated with a xanthine oxidase inhibitor or the p38 inhibitor 

SB203580. Xanthine oxidase-generated oxidant production precedes p38 activation as SB203580 

has no effect on oxidant production. Further studies by Wang et al. show that activation of Src 

tyrosine kinase occurs in response to ICAM-1 cross-linking which leads to the activation of p38 

(Wang et al., 2003). Inhibition of Src prevents p38 activation indicating that Src is an upstream 

mediator of p38 MAP kinase activity. ICAM-1 cross-linking induces phosphorylation of heat shock 

protein (Hsp)-27 that could have a role in changes of the actin cytoskeleton (Wang and Doerschuk, 

2001). Hsp-27, in response to oxidative stress, enhances and stabilises the F-actin network. 

Neutrophil migration and hsp-27 phosphorylation are dependent upon ICAM-1-mediated p38 

activation since both were inhibited by SB203580.  

 

1.4.2.1.3 JNK 

 

 Etienne and colleagues show JNK activation in two different rat BMVEC lines, GP8 and RBE4s, 

following ICAM-1 cross-linking (Etienne et al., 1998). In view of its usual role in regulating gene 

expression through phosphorylation of transcription factors (Treisman, 1996), JNK may regulate 

genes encoding inflammatory molecules such as cytokines and adhesion molecules (Manning and 

Davis, 2003). For example, JNK can bind and phosphorylate c-Jun, a component of the AP-1 

complex on serine residues 63 and 73, increasing transcription activity (Davis, 2000). JNK deficient 

cells are defective in IL-2 production and proliferation as it is important in RNA stabilization in 

activated T-lymphocytes (Chang and Karin, 2001). 
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1.4.2.2 Src and cortactin  

 

ICAM-1 cross-linking leads to the activation of Src (Etienne-Manneville et al., 2000; Pluskota 

et al., 2000; Tilghman and Hoover, 2002; Yang et al., 2006b; Allingham et al., 2007; Dasgupta and 

Muller, 2008; Liu et al., 2011). In BMVEC this has been shown to occur via a pathway involving 

phospholipase C (PLC), PKC and intracellular Ca2+ transients (Etienne-Manneville et al., 2000). Src 

activation clearly occurs very early in response to ICAM-1 activation since it has been shown that 

Src can phosphorylate endothelial ICAM-1 which promotes both ICAM-1 clustering and neutrophil 

adhesion (Liu et al., 2011). Also, the association of SHP-2 with ICAM-1 appears to be dependent on 

prior Src phosphorylation (Pluskota et al., 2000). Neutrophil TEM is inhibited when HUVECs are 

pre-treated with different Src inhibitors (Yang et al., 2006b; Allingham et al., 2007). Src inhibition 

blocks diapedesis of peripheral blood mononuclear cells across HUVEC as well as membrane 

recycling to TEM sites, suggesting the LBRC requires Src activity (Dasgupta and Muller, 2008). 

Cortactin is a prominent Src substrate and has been implicated in ICAM-1-mediated TEM. It 

re-distributes to regions where active neutrophil migration occurs (Yang et al., 2006b). ICAM-1 

cross-linking or addition of syngenic encephalitogenic T-lymphocytes in rat BMVEC induces Src-

dependent cortactin phosphorylation (Durieu-Trautmann et al., 1994). Similar observations have 

also been made in HUVECs, where Src and phosphorylated cortactin were also found to directly 

associate with E-selectin and ICAM-1 in response to leukocyte binding (Tilghman and Hoover, 

2002). Knock-down of cortactin in HUVEC inhibits both TEM and ICAM-1-mediated cytoskeletal 

reorganisation (Yang et al., 2006a; Yang et al., 2006b). Significantly, this absence of cortactin 

cannot be rescued by re-expression of Src mutated on three major Src phosphorylation sites, 

suggesting that Src phosphorylation of cortactin is indeed essential for endothelial compliance to 

TEM. In vivo, the absence of cortactin leads to reduced neutrophil extravasation (Schnoor et al., 

2011). Defects in TEM appear to occur on the level of ICAM-1 clustering. Taken together it appears 

that Src phosphorylation has an important role in ICAM-1 clustering and associated cytoskeletal 

remodelling, possible cup formation and TEM.  
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1.4.2.3 Vascular endothelial cadherin (VEC) 

 

VEC is the main constituent of endothelial AJs. VEC forms a complex with α-catenin, β-

catenin, and plakoglobin through the cytoplasmic tail connecting to the actin cytoskeleton whilst 

p120-catenin binds to a juxtamembrane domain of VEC (reviewed by: Bazzoni and Dejana, 2004; 

Dejana et al., 2008). This complex is required for barrier function with p120-catenin regulating 

stability rather than coupling the complex to actin (Xiao et al., 2003). In vitro the transient removal 

of VEC from junctions is thought to facilitate TEM (Shaw et al., 2001), presumably due to tyrosine 

phosphorylation of key residues of VEC that also correlate with the disassembly of junctions 

(Potter et al., 2005; Allingham et al., 2007; Turowski et al., 2008; Alcaide et al., 2008). 

A number of different phosphorylation sites and signalling pathways have been described in 

ICAM-1-dependent VEC phosphorylation. So far, all studies agree that phosphorylation occurs on 

Y731, a site which is found in the β-catenin binding domain (Allingham et al., 2007; Turowski et al., 

2008; Alcaide et al., 2008). Potter et al. have proposed that phosphorylation of Y731 abolishes the 

association of VEC with β-catenin (Potter et al., 2005). However, in BMVEC the amount of β-

catenin associated with VEC does not change in response to ICAM-1 cross-linking (Turowski et al., 

2008), suggesting that dissociation may not be an inevitable consequence of Y731 

phosphorylation. In HUVEC, but not BMVEC, Y658 has been shown to be phosphorylated in 

response to ICAM-1 cross activation or leukocyte adhesion (Allingham et al., 2007; Alcaide et al., 

2008) and this has been proposed to abolish binding to p120-catenin (Potter et al., 2005). 

Phosphorylation on either Y658 or Y731 inhibits endothelial barrier function, suggesting that this 

directly affects junction integrity (Potter et al., 2005). In BMVEC, the expression of Y to F VEC 

mutants at position 645, 731 and 733 leads to reduced lymphocyte TEM (Turowski et al., 2008). 

However, Y645 and Y733 may not be phosphorylated directly but their mutations could alter the 

overall phosphorylation pattern of VEC. In HUVEC, ICAM-1-dependent VEC phosphorylation is 

dependent on Src and proline-rich tyrosine kinase 2 (Pyk2) (Allingham et al., 2007) whilst in 

BMVEC, Rho GTPase, actin, Ca2+ (Turowski et al., 2008), CaMKKII, AMP-activated protein kinase 

(AMPK) and endothelial nitric oxide synthase (eNOS) (Martinelli et al., 2009) are involved (Figure 

1.5). These observations raise the possibility that different signalling pathways can mediate VEC 

phosphorylation during TEM and this may depend on the vascular bed and the leukocyte subset. 

However, more careful analysis will be required to confirm such a conclusion.  
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Figure 1.5 ICAM-1-mediated signalling leads to VEC phosphorylation. 

Schematic representation of events leading to phosphorylation of VEC at residues Y658 and Y731 

and the proposed dissociation of the AJs complex, which is thought to facilitate lymphocyte TEM.   
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Displacement of VEC from the cell junctions is regulated by p120-catenin which controls VEC 

surface expression through VEC internalisation and degradation (Xiao et al., 2003). Overexpression 

of p120-catenin in HUVEC increases VEC expression at cell-cell junctions, prevents VEC 

displacement from the junctions and inhibits neutrophil or mononuclear leukocyte TEM (Alcaide 

et al., 2008). p120-catenin overexpression is also linked to reduced tyrosine phosphorylation of 

VEC Y658 and Y731, suggesting that leukocyte passage at cell-cell junctions is dependent on the 

phosphorylation status of VEC and its association with p120-catenin.  

In BMVEC, a key regulator linking ICAM-1 engagement to VEC phosphorylation is eNOS 

(Martinelli et al., 2009). A variety of agonists, including VEGF, thrombin, insulin and shear stress, 

can modulate eNOS activity by inducing phosphorylation at serine or threonine residues 

(Dimmeler et al., 1999). Phosphorylation of eNOS on S1177 can occur in response to ICAM-1 

(Martinelli et al., 2009), insulin (Montagnani et al., 2001) and thrombin (Stahmann et al., 2006). 

ICAM-1 and thrombin activate eNOS in a signalling pathway requiring Ca2+, CaMKK and AMPK 

(Stahmann et al., 2006; Martinelli et al., 2009) whilst insulin activates eNOS via 

phosphatidylinositol 3-kinase (PI3K) and Akt (Montagnani et al., 2001). ICAM-1 activation or 

thrombin have clear pro-inflammatory roles whereas insulin acts as an EC survival factor. Since 

compartmentalisation is important for eNOS activation and nitric oxide (NO) production (Fulton et 

al., 1999), differences in eNOS subcellular location may explain how eNOS activation via different 

signalling pathways can lead to significantly different cellular responses. 

 

1.4.3 Rho GTPases and the actin cytoskeleton  

 

As described above the actin cytoskeleton appears to mediate important endothelial TEM 

functions, downstream and in conjunction with ICAM-1 clustering. Many actin regulators have 

been found to interact with ICAM-1. The actin cytoskeleton is also a major structural component 

of the transmigration cup which visually reflects successful TEM. Small Rho GTPases are major 

regulators of the actin cytoskeleton and unsurprisingly have been implicated in ICAM-1-mediated 

signalling and leukocyte TEM (Etienne et al., 1998; Adamson et al., 1999; Carman et al., 2003; 

Carman and Springer, 2004; Millan et al., 2006; Kanters et al., 2008). 
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Rho GTPases have been implicated in a number of EC processes including gene expression, 

junction integrity, permeability and cell migration (reviewed by: Wojciak-Stothard and Ridley, 

2002). The best characterised Rho GTPase family members RhoA, Rac-1 and Cdc42 influence the 

actin cytoskeleton by inducing the formation of stress fibres, lamellipodia and filopodia, 

respectively (reviewed by: Wojciak-Stothard and Ridley, 2002; Cernuda-Morollon and Ridley, 

2006). Rho GTPases are found in an active, guanosine triphosphate (GTP)-bound, and inactive, 

guanosine diphosphate (GDP)-bound form. Transition between the two forms is regulated by 

guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) (Millan and 

Ridley, 2005). GEFs promote the exchange of GDP for GTP whilst GAPs enhance transition back to 

GDP by stimulating intrinsic GTPase activity. In addition, guanine nucleotide dissociation inhibitors 

(GDIs) can directly influence the nucleotide state of the GTP-binding proteins as well as their 

cellular location. Rho GTPases act at cell membranes and this localisation is regulated by post-

translational prenylation which anchors Rho to the membrane (Wojciak-Stothard and Ridley, 2002; 

Cernuda-Morollon and Ridley, 2006).  

Stress fibre formation in response to Rho activation induces changes to cell junction integrity, 

cell contraction and increases in cell permeability (Millan and Ridley, 2005; Cernuda-Morollon and 

Ridley, 2006). Stress fibres are linked to focal adhesions where integrins are found to cluster and 

often appear at discontinuous AJs (Pellegrin and Mellor, 2007). Adhesion of leukocytes or antibody 

engagement of endothelial adhesion molecules induces stress fibre formation (Wojciak-Stothard 

et al., 1999; Wang and Doerschuk, 2001). In fact, ICAM-1 cross-linking activates Rho (A and/or B) 

(Etienne et al., 1998; Adamson et al., 1999) and this is dependent on the cytoplasmic tail of ICAM-

1 (Greenwood et al., 2003a). This leads to stress fibre induction along which ICAM-1 appears to be 

moved towards EC lateral areas and possibly sites of TEM (Millan et al., 2006). ERM protein may 

mediate the activation of Rho downstream of ICAM-1 by sequestration of RhoGDI (Bretscher et al., 

2002). Clustering of E-selectin, ICAM-1 and VCAM-1 is dependent on Rho activity and actin 

integrity (Wojciak-Stothard et al., 1999). Both are involved in the formation of the TEM docking 

structure (Barreiro et al., 2002; Carman et al., 2003; Carman and Springer, 2004; van Buul et al., 

2007a). Furthermore, RhoG, which colocalises with ICAM-1 at sites of adhesion, has also been 

shown to be required for docking structure formation downstream of RhoA (van Buul et al., 

2007a). Inhibition of Rho (ABC, using C3 transferase) or actin rearrangements inhibit leukocyte 
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TEM without altering leukocyte adhesion and endothelial integrity (Adamson et al., 1999; 

Turowski et al., 2008).  

ICAM-1-mediated Rho activation also controls tyrosine phosphorylation of the cytoskeletal 

proteins focal adhesion kinase (FAK), paxillin and p130cas (Etienne et al., 1998), further 

underlining the interdependence of Rho, the actin cytoskeleton and cell adhesion. JNK activation is 

also dependent on Rho activation; however, the function of this is unclear. Along with exerting 

direct effects in ICAM-1-mediated signalling and TEM, Rho GTPases play a role in adhesion 

molecule gene expression, in particular ICAM-1, VCAM-1 and E-selectin (Cernuda-Morollon and 

Ridley, 2006).  

 

1.5 Aims 

 

A number of components of the EC have been identified in mediating leukocyte 

transmigration including Rho GTPases, actin and several protein kinases such as the MAP kinases 

and Src. However, it is not yet known how these components work and interlink to facilitate 

leukocyte transmigration. Using the model system of rat BMVEC co-cultured with antigen-specific 

lymphocytes this thesis aims to identify a major EC protein kinase signalling pathway involved in 

ICAM-1-mediated leukocyte transmigration and to determine how any of the previously described 

components may be involved. Furthermore, it is expected that additional insight can be gathered 

into the functional consequence and mechanism of this pathway’s involvement in facilitating 

lymphocyte TEM across the EC barrier.                                                                                                                                                                                                                                                                                                                                                                 
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Chapter 2: Material and Methods 

 

2.1 Reagents 

2.1.1 General reagents 

 

Chemicals were purchased from Sigma (Poole, UK) unless otherwise stated. The 30% (w/v) 

acrylamide, 0.8% (w/v) bis-acrylamide stock solution was purchased from National Diagnostics 

(Fisher Scientific, Leicestershire, UK) along with Tris.acetate-EDTA (TAE) buffer. Calcein-AM and 

Dynabeads® Protein G were obtained from Invitrogen (Paisley, UK). The following reagents were 

purchased from GE Healthcare (Buckinghamshire, UK): Whatman Protran nitrocellulose 

membrane, high and low molecular weight maker and protein A/G Sepharose beads. Lumi-light 

western blot substrate and protease inhibitor pill were provided by Roche (Burgess Hill, West 

Sussex). Agarose was purchased from Bioline (London, UK) whilst Fluoresbrite YG Polystyrene 

microspheres were obtained from Polysciences Inc (Worthington, PA, USA). The Nucleofector™ 

Solution V was provided by Amaxa (Amaxa, Germany). Mowiol® 4-88 reagent was supplied by 

Merck (Nottingham, UK). 

 

2.1.2 Tissue Culture 

 

The following reagents were obtained from Invitrogen: Foetal Calf Serum (FCS: heat 

inactivated, European origin), Hanks’ Buffered Saline Solution (HBSS), Dulbecco’s Phosphate 

Buffered Saline (PBS) without Ca2+ and magnesium (Mg2+), F-10 with Glutamax™-1, RPMI with 

Glutamax™-1 and 25mM Hepes, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES), 

sodium pyruvate, gentamicin and Penicillin/Streptomycin. EMB®2 and EGM®2 MV Single Quots® 

were purchased from Lonza-Biowhittaker/Cambrex (Slough, UK). DNase I, concanavalin-A, 

puromycin, basic fibroblast growth factor (bFGF), trypsin (from porcine pancreas), collagen IV and 

fibronectin were purchased from Sigma. 22% bovine serum albumin (BSA) was obtained from First 

Link (Birmingham, UK), Collagen I from BD Biosciences (Oxford, UK) and Percoll from GE 
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Healthcare. Collagenase (CLS2) and Dispase (Neutral Protease, NPRO2) were provided by Lorne 

Laboratories (Reading, UK). 

Plastic tissue cultureware was supplied by Nunc (Rokslide, Denmark). 

 

2.1.3 Molecular Cell Biology 

 

All kits used were purchased from Qiagen (Crawley, UK) unless otherwise stated. The 

GenElute™ Plasmid Miniprep kit was provided by Sigma. XL1-Blue® Supercompetent cells were 

obtained from Stratagene (Cheshire, UK). The following reagents were purchased from Invitrogen: 

Reverse transcription kit containing Superscript ®III Reverse Transcriptase, RNase OUT 

recombinant ribonuclease inhibitor, oligo(dT) primer, TOPO TA cloning kit and 1Kb DNA ladder. 

The dNTP set was obtained from GE Healthcare whilst Taq DNA polymerase was purchased from 

Roche. Primers were supplied by Eurofins MWG Operon (Ebersberg, Germany). For gene cleaning, 

genCLEAN 96 well spin plates were provided by Genetix (Hampshire, UK). Restriction enzymes 

from either Roche (EcoR1) or New England Biolabs (Hertfordshire, UK) (AvaII, Bg1II, Pst1, Sac1) 

were used. 

During this study a number of different plasmids were used. The pEGFP C1 paxillin-β and 

pEGFP C1 paxillin-β S178A plasmids were kindly provided by Ken Jacobson, University of North 

Carolina, USA. The pRK5 FLAG-hCNK1 and pRK5 FLAG hCNK1 W493A plasmids were kindly 

provided by Alan Hall, Sloan-Kettering Institute, New York, USA. The pEGFP paxillin and pEGFP 

Y31F/Y118F plasmids were kindly provided by Alan Horowitz, University of Virginia, USA. The 

pcDNA3 FLAG MKK7 WT, pcDNA3 FLAG MKK7 (Ala) DN, pCMV-FLAG JNK1 and pcDNA3 JNK1 APF 

plasmids were all kindly provided by Roger Davis, University of Massachusetts Medical School, 

USA. The pEGFP N’ VEC and pEGFP N’ VEC Y731F plasmids were kindly provided by Patric 

Turowski, UCL- Institute of Ophthalmology, London, UK. 
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2.1.4 Antibodies 

 

Antibodies for phospho-ERK, -p38, -JNK and -tyrosine 118 paxillin were purchased from Cell 

Signaling Technology (Hertfordshire, UK). The anti-phosphotyrosine antibody 4G10 was purchased 

from Upstate (Millipore, Watford, UK). Antibodies against VEC, PKCβI, PKCβII, PKCδ, PKCε, PKCθ, 

PKCη, PKCμ and horseradish-peroxidase linked donkey-anti-goat secondary antibody were 

purchased from Santa Cruz (Insight Biotechnology, Middlesex, UK). Anti-tubulin antibody (clone 

DM1A) was from Sigma as was the anti-mouse IgG (whole molecule- GAM). Anti-phospho-S178 

paxillin was purchased from Abcam (Cambridge, UK). Anti-paxillin and -PKCι were obtained from 

BD Transduction Laboratories (Oxford, UK). Mouse anti-rat CD54 (ICAM-1, clone 1A29) was either 

purchased from AbD Serotec or purified from hybridoma cultures. Mouse anti-human CD54 

(ICAM-1), rabbit anti-human CD144 (VEC), CD18 (clone WT3), CD11α (clone WT1) and CD49 were 

purchased from AbD Serotec (Kidlington, UK). Alexa Fluor® 488 and rhodamine phalloidin were 

supplied by Molecular Probes, Invitrogen. Horseradish-peroxidase linked donkey-anti-rabbit and 

sheep-anti-mouse secondary antibodies were purchased from GE Healthcare. Cy™3-conjugated 

affinipure donkey anti-rabbit IgG, goat anti-mouse IgG and goat anti-rabbit IgG were purchased 

from Jackson ImmunoResearch Laboratories (Suffolk, UK). Fluorescein-conjugated goat affinity 

purified antibodies to rabbit IgG (whole molecule) was supplied by Cappel Laboratories (Malvern, 

PA, USA).  

Antibodies against PKCα (MC5a,) PKCγ (369G) and PKCζ/ι (524/i) were kindly provided by 

Peter Parker, Cancer Research UK, London, UK. Affinity purified VEC antibody was kindly provided 

by Patric Turowski, UCL-Institute of Ophthalmology, London, UK. 

 

2.1.5 Cell permeable small molecule inhibitors 

 

Gö6976, Gö6083, Calyculin A, PP2, SB202130 and SP600125 were purchased from Merck. 

GF109203X was supplied by Sigma, Cell permeable C3 transferase was obtained from Universal 

Biologicals (Cambridge, UK), UO126 was from Promega (Southampton, UK) whilst PF573228 and 

FAK inhibitor 14 were obtained from Tocris (Bristol, UK).   
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2.2 Methods 

 

2.2.1 Cell culture 

 

2.2.1.1 Immortalised rat brain microvascular endothelial cells  

Growth medium: F-10 supplemented with 10% FCS, 2µg/ml bFGF, 80µg/ml heparin, 100 i.u/ml 

penicillin, 100μg/ml streptomycin  

 

Immortalised rat BMVECs, GPNT, (Regina et al., 1999) were maintained in growth medium at 

37°C and 5% carbon dioxide (CO2). GPNTs were grown on collagen I coated plastic tissue culture 

flasks and dishes. Briefly, 0.1mM acetic acid was added to 22.5ml filtered water before addition of 

25mg/ml collagen I and added to a 500ml bottle of HBSS. The collagen was used to coat the 

appropriate tissue culture dishes and flasks and left for at least 30 min. The collagen was then 

aspirated off and the remaining film of collagen polymerised by alkalisation in a box containing 

ammonia vapour. Subsequently tissue culture plastic was washed twice with HBSS. The dishes and 

flasks are then ready for plating GPNT cells. 

GPNTs were passaged at confluency (usually every seven days) by trypsinisation: cells were 

washed twice with PBS before the addition of trypsin with excess solution being removed so that 

only a thin layer coated the bottom of the dish. These were placed back in the incubator until all 

the cells had detached from the bottom of the flask. The flasks were then washed twice with 10ml 

of growth medium and syringed three times through a 23G needle to produce a single cell 

suspension. The cells were plated at a density of 31250 ECs/cm2 onto collagen I-coated dishes.  

Stocks of cells were suspended in ice-cold relevant medium containing 10% dimethyl 

sulfoxide (DMSO) and frozen in cryotubes (usually at 1-5 X 106/ml). The cells were then stored 

long-term in liquid nitrogen following slow freezing at -20°C for 3 h and -80°C overnight. 
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2.2.1.2 hCMEC/D3 human brain microvascular endothelial cells 

 

Immortalised hCMEC/D3 human BMVECs were cultured and passaged as described for GPNT 

(Section 2.2.1.1) with the exception that the growth medium used was EGM®-2 MV growth 

medium: EBM®-2 MV supplemented with 5% FBS, gentamicin sulphate/ amphotericin-B (GA-1000) 

and growth factors (human fibroblast growth factor (hFGF), VEGF, ascorbic acid, human epidermal 

growth factor (hEGF), insulin growth factor (R3-IGF-1) and hydrocortisone) at 25% of the volume 

suggested by the manufacturers. 

 

2.2.1.3 Primary rat brain microvascular endothelial cell isolation 

Working Buffer: Ca2+/Mg2+- free HBSS, 10mM HEPES, 100 i.u/ml penicillin, 100μg/ml streptomycin, 

0.5% (w/v) BSA 

Digest Medium: Ca2+/Mg2+- free HBSS containing 1mg/ml collagenase/dispase, 10mM HEPES, 100 

i.u. penicillin, 100μg/ml streptomycin, 20 U/ml DNase I, 0.147μg/ml Nα-Tosyl-L-lysine chloromethyl 

ketone hydrochloride (TLCK) 

EGM®-2MV growth medium: EBM®2 MV supplemented with 5% FBS, hFGF, VEGF, ascorbic acid, 

hEGF, R3-IGF-1, hydrocortisone and GA-1000 according to manufacturer’s instructions  

Percoll Density Gradient: 50ml Percoll, 5ml 10X HBSS with Ca2+/Mg2+, 45ml HBSS with Ca2+/Mg2+ 

 

The protocol was adapted from the method of Abbott and colleagues (Abbott et al., 1992). 

Female Lewis rats up to six weeks of age were killed by CO2 asphyxiation, sprayed with ethanol and 

the head removed by severing the neck. The skin on the skull was pulled back and incisions of 3-

5mm were made in the skull at the centre and on either side of the cerebellum. Using coarse 

forceps, the cut parts were removed to reveal the entire brain. Using a spatula the brain was 

carefully removed, placed into working buffer and kept on ice. 

All dissection instruments were sterilised in alcohol. Dissections were performed on a piece of 

sterile lint, placed in a petri dish and moistened with working buffer. Using a scalpel the 

cerebellum was removed and the remaining brain cut in half to separate the two hemispheres. 
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One hemisphere was processed at a time whilst all others were in working buffer on ice. Using fine 

forceps the meninges, pia and choroid plexus were removed until the surface appeared 

featureless and free of surface vessels. The white matter from the hind- and mid-brain was 

carefully removed before the brain was transferred to a dry piece of lint and rolled to remove any 

remaining leptomeningial cells. The brain was transferred back to the moist lint to re-wet it before 

the white matter and striatum was removed. The remaining grey matter was then transferred to a 

sterile new universal tube containing 10ml working buffer and chopped up into small pieces using 

a scalpel. This was placed back on ice and the same procedure carried out for all other brain 

hemispheres.  

The chopped brains were triturated through a 5 ml pipette and then centrifuged at 600xg at 

4°C for 5 min. The medium was aspirated off and the tissue resuspended in 15ml of digest medium 

(per three brains). The tissue digest was incubated for 1 h at 37°C in a water bath, with agitation 

every 15 min by vigorous tapping of tubes. Subsequently, the tissue digests were further 

mechanically disrupted by two 5 min triturations: first through a Pasteur pipette, then through a 

Pasteur pipette which had been narrowed to about 1/3 in a flame. The suspension was transferred 

into a new universal tube and then centrifuged at 600xg at 4°C for 5 min. The supernatant was 

removed and the pellet resuspended in 20ml of 22% (w/v) BSA in PBS before centrifugation at 

1,000xg at 4°C for 20 min. The myelin plug which formed on top of the BSA gradient was carefully 

rolled away from the tube walls, retriturated and passed through a BSA gradient to recover extra 

microvessels. Tubes containing the vessel pellets were left inverted to prevent contamination by 

any myelin. Pellets were resuspended in 1ml of working buffer, transferred to a fresh universal 

containing 4ml of working buffer and centrifuged at 600xg at 4°C for 5 min. After centrifugation 

the supernatant was removed and the pellets resuspended in 5ml of digest medium (per three 

brains of starting material) and incubated at 37°C for 3 h with occasional agitation.  

 During the second digestion culture plasticware was coated by incubation with 100µg/ml 

collagen IV and 50µg/ml fibronectin in tissue-culture water. They were left to coat for at least 2 h 

in a humidified incubator at 37°C. Just before use the tissue cultureware was washed twice with 

PBS for 15 min.  

Percoll gradients were prepared in 10ml Du Pont centrifuge tubes. 7ml of 50% Percoll 

gradient solution was centrifuged at 25,000xg at 4°C for 1 h. Tissue digests were centrifuged at 

600xg for 5 min and the supernatant discarded. The pellet was resuspended in 1ml of working 
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buffer before being layered onto the Percoll gradients and centrifuged at 1,000xg at 4°C for 20 

min. Capillary fragments formed a hazy band above a pronounced layer of single cells consisting 

mainly of blood cells. They were removed using a Pasteur pipette, washed in 20ml working buffer 

and centrifuged at 600xg for 5 min. Each pellet (from 3 brains) was then resuspended in 10ml of 

EGM®-2 MV growth medium and this vessel fragments solution plated at 1ml/5 cm2 (or more 

concentrated if required ) and left to adhere and spread at 37°C/5% CO2 overnight.  

The next day medium was changed into growth medium containing 5μg/ml puromycin which 

is toxic to any residual contaminants and vessel-associated cells but not the BMVECs (Perriere et 

al., 2005). After three days the puromycin was removed, the cells were washed twice with PBS and 

normal EGM®-2 MV growth medium added.  

Primary BMVEC normally reached confluency 6 days after isolation and could be passaged up 

to three times as described for GPNT cells (Section 2.2.1.1). 

 

2.2.1.4 Production of anti-ICAM-1 antibody  

Growth Medium: RPMI with Glutamax™-1 and 25mM HEPES, supplemented with 10% FCS, 

50μg/ml gentamycin   

 

Mouse anti-rat ICAM-1 antibody was purified from the clone 1A29 hybridoma which was 

kindly provided by Dr M. Miyasaka (Osaka University, Osaka, Japan). 1 vial of 1A29 (1 X 107/ml) 

was thawed, cells placed into 50ml of growth medium and then cultured at 37°C/5% CO2 until they 

reached a density of 1 X 106/ml. At this point they were either diluted 1:10 and further amplified in 

growth medium or left to produce antibody. For this, the cells were resuspended in Opti-MEM 1 X 

106/ml. After around 5 days, when cells were clearly apoptotic, they were pelleted by 

centrifugation at 600xg at room temperature for 5 min. The supernatant was retained for further 

antibody purification (see Section 2.2.5).  
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2.2.1.5 Preparation and culture of Peripheral Lymph Nodes (PLN) lymphocytes 

Working Buffer: Ca2+/Mg2+- free HBSS containing 10mM HEPES, 100 i.u/ml penicillin, 100μg/ml 

streptomycin, 0.5% (w/v) BSA  

Growth medium: RPMI-1640 containing 2mM L-glutamine supplemented with 10% FCS and 100 

i.u/ml penicillin, 100μg/ml streptomycin  

 

Female Lewis rats up to the age of 3 months were asphyxiated by CO2 and peripheral lymph 

nodes removed and placed into working buffer on ice. The lymph nodes were disrupted by passing 

them through a cell strainer (70μm). The volume was made up to 20ml and then centrifuged at 

1500xg for 5 min. The supernatant was discarded and the pellet resuspended in 25ml of growth 

medium before a further 5 min centrifugation at 1500xg. The supernatant was removed and the 

cells dispersed by tapping the tube before the addition of 50ml of fresh medium. The cells were 

filtered once more through a 70µm cell strainer to remove any aggregates (mostly fat), counted 

and diluted to a density of 1 X 106/ml in growth media. Concanavalin-A (5µg/ml) was added to 

cells for stimulation and activation 24 h after isolation. 

 

2.2.1.6 MBP antigen specific T-lymphocytes (PAS) 

Growth medium: RPMI-1640 containing 2mM L-glutamine supplemented with 10% FCS, 1mM 

sodium pyruvate, 1mM  nonessential amino acids, 100 i.u/ml penicillin, 100μg/ml streptomycin, 

25μM β-mercaptoethanol.  

 

1 vial of PAS (Beraud et al., 1993) (1.5 X 106/ml) were thawed and resuspended in RMPI 

before being centrifuged at 1800xg for 5 min at room temperature. The pellet was resuspended in 

growth medium and supplemented with addition of 50 U/ml IL-2 for at least 24 h to activate the 

cells. PAS were resuspended to a density of 2 X 105/ml prior to use.  

 



82 
 

2.2.2 Nucleofection of BMVECs 

 

GPNT cells were grown to 75-80% confluency, trypsinised and pelleted at a density of 3 X 106 

GPNT cells per nucleofection. The supernatant was discarded and the cell pellet resuspended in 

100μl of Amaxa’s Nucleofector™ solution V. To the resuspended cells, 10μg (at a maximal volume 

of 5µl) of the required plasmid was added and the solution transferred immediately into 

electrocuvettes and nucleofected using programme U13 of the Nucleofector Device. The 

nucleofected EC were immediately resuspended in 2ml of pre-warmed GPNT medium using a 

sterile plastic pipette and mixed thoroughly. Transfected ECs were plated into appropriate dishes 

(at a density of 3 X 105/cm2) and kept at 37°C/5% CO2 before experimental analysis was carried out 

48 h later.  

 

2.2.3 T-lymphocyte endothelial transmigration 

 

ECs were passaged into wells of 96-well plates and grown to confluence. Cells were washed 

twice with HBSS prior to the addition of 100μl of IL-2 activated PAS (as prepared in Section 

2.2.1.6). PAS lymphocytes were then left to adhere to and transmigrate across EC monolayers at 

37°C/5% CO2. After 1 h lymphocyte-EC co-cultures were mounted on a phase contrast microscope 

(Zeiss 200 M- equipped with a humidified CO2/temperature chamber) and analysed by time-lapse 

microscope: images of an 672µm x 512µm area were taken every 10 sec for 5 min. Playback of 

such recordings at accelerated speed revealed adherent, non-migrated lymphocytes as phase-

bright and transmigrated lymphocytes as phase-dark and significantly flattened. Transmigration 

rates were determined by tracking adherent T-lymphocytes above and below the EC monolayers 

and expressed as number of transmigrated per total number of adherent cells. Mean migration 

rates and standard mean errors (SEM) were calculated from at least three independent 

experiments (each consisting of data from 6 wells). Statistical analysis was performed by Student’s 

t-test. 

Pathway analysis was performed by either pre-treating EC monolayers with small molecule 

inhibitors as detailed elsewhere (Section 2.1.5) followed by extensive washing to avoid any effects 

on T-lymphocytes or by using monolayers of transiently transfected EC (see Section 2.2.2). 
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2.2.2.3 PLN lymphocyte Adhesion assay 

 

Concanavalin-A stimulated PLNs were fluorescently labelled: PLN lymphocytes (as prepared in 

Section 2.2.1.5) were suspended at a density of 5 X 106/ml in growth medium containing 1µM 

calcein-AM and incubated for 30 min at 37°C. The cells were harvested by centrifugation at 1800xg 

and washed in growth medium. Labelled PLNs were counted under fluorescent light and 

resuspended to a final concentration of 1 X 106/ml.  

Calcein-labelled PLN lymphocytes were added to EC, grown to confluency in a 96-well plate at 

1 X 105 per well and left to adhere for 90 min at 37°C/5% CO2. At this point non-adhered PLN 

lymphocytes were washed off by washing each well 6 times with 200µl warmed Ca2+/Mg2+-free 

HBSS. Subsequently, 200µl of Ca2+/Mg2+-free HBSS was added to each well and fluorescence in 

each well determined by recording the light emission at 517 nm following excitation at 494 nm in a 

Saphire fluorescent multiwell plate reader.  

Pathway analysis was performed by either pre-treating EC monolayers with small molecule 

inhibitors as detailed elsewhere (Section 2.1.5) or by using monolayers of transiently transfected 

EC (see Section 2.2.2). 

Data analysis: average fluorescent values from 12 wells of identical conditions were used. 

Fluorescent values were corrected by subtracting average background (derived from wells 

incubated with medium alone). Values were then divided by the total fluorescence of the added 

PLN lymphocytes (derived from wells that had not been washed) to generate adhesion rates. 

Mean adhesion rates and SEM were calculated from at least three independent experiments (each 

consisting of data from 12 wells) and expressed as percent of control. Statistical analysis was 

performed by Student’s t-test. 

 

2.2.4 Functional blocking antibody experiment  

 

3 X 105/cm2 Concanavalin-A activated PLNs (prepared as detailed in Section 2.2.1.5) were 

resuspended in 500µl of ice-cold HBSS containing 20µg/ml of appropriate functional blocking 

antibody (CD11α and CD18 for LFA-1 and CD49 for VLA-4). PLNs were incubated on ice for 1 h with 
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gentle agitation to prevent internalisation. 4.5ml of pre-conditioned GPNT growth medium 

without FCS was added to the PLNs and incubated with serum-starved GPNT for 30 min. Adherent 

PLNs were extensively washed off with ice-cold PBS before dishes were lysed in an appropriate 

volume of lysis buffer.   

 

2.2.5 1A29 monoclonal antibody purification 

 

Protein G Sepharose beads were washed twice in 0.1M Tris/Cl (pH 8.0) in a 15ml 

polycarbonate tube and centrifuged at 600xg for 5 min. The supernatant was discarded and the 

beads resuspended 1:1 in 0.1M Tris/Cl (pH 8.0), placed into a fresh column and allowed to settle 

by gravity. The antibody to be purified (as described in Section 2.2.1.4) was equilibrated to 0.1M 

Tris (pH 8.0), added to the column and left to flow-through the column. The column was washed 

with 10 volumes of 0.1M Tris, 10 volumes of 0.01M Tris and 10 volumes of water. The antibody 

was eluted with 920μl 0.2M glycine/HCl, pH 1.9 into microfuge tubes containing 80μl of 2M Tris to 

neutralise the eluate immediately. 50μl of eluted antibody fractions were then taken and added to 

1ml of Bradford reagent to determine which fractions contained the antibody. Protein-containing 

fractions were pooled and dialysed against PBS overnight. Exact protein concentrations were 

determined by comparing the purified antibody against increasing amounts of a commercial IgG 

standard on Coomassie Blue stained SDS-PAGEs. 

 

2.2.6 ICAM-1 ligation and cross-linking 

 

Confluent GPNT cells were starved overnight in culture medium without FCS. Conditioned 

medium was removed, filtered and used to dilute antibodies; 5μg/ml of either antibody produced 

and purified in the laboratory or commercially bought anti-ICAM-1 antibody, 1A29, for different 

lengths of time. For cells to be subjected to cross-linking two washes with HBSS were carried out 

prior to addition of 10μg/ml of GAM for variable lengths of time. Once the cells had been 

stimulated the dishes were washed twice with HBSS before lysed in a buffer appropriate for 

subsequent processing.  
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2.2.7 Immunoprecipitation (IP) 

Ripa buffer: 1X TBS, 0.2% SDS, 1% Triton X-100, 1% (w/v) sodium deoxycholate (DOC), 1mM 

vanadate, 5μM E64, 1μM pepstatin A, 200μM tosyl phenyalanyl chloromethyl ketone (TPCK), 

0.3μM aprotinin, 4μM leupeptin, 1mM benzamidine, 100μM TLCK, 1mM 4-(2-Aminoethyl)-

benzenesulfonyl fluoride hydrochloride (AEBSF), 5mM ethylenediaminetetraacetic acid (EDTA) 

 

Cells, once stimulated and treated, were washed twice in ice-cold HBSS containing 10mM 

vanadate. Cells were lysed immediately on ice in 1ml of Ripa buffer and syringed through a 26G 

needle 5 times. The lysed samples were left on ice for 10 min with occasional gentle agitation 

before centrifugation at 20,000xg at 4°C for 10 min. Supernatant was transferred to new 

microfuge tube containing 2μg/ml of specific antibody and left on ice for 3 h. 50μl of protein A/G 

Sepharose beads were added and mixtures incubated with end over end rotation at 4°C for 1 h. 

Immunocomplexes were collected by centrifugation for 10 sec, and washed three times in 1ml of 

Ripa buffer before 50μl of lysis buffer was added. The samples were boiled and SDS-PAGE, western 

blotting and immunodetection carried out. 

 

2.2.8 Assessment of VEC internalisation by cell surface trypsinisation 

 

Confluent monolayers of GPNTs were serum-starved overnight before stimulation with ICAM-

1 primary antibody 1A29 or ICAM-1 cross-linking for appropriate lengths of time. Cells were 

washed twice in ice-cold PBS before the addition of 1.8ml of trypsin (1mg/ml). Cells were 

incubated on ice for 30 min before 100µl of soybean trypsin inhibitor (2.5mg/ml) was added to 

inhibit the trypsin. Cells were gently scraped off and centrifuged at 500xg at 4°C for 5 min. Dishes 

were washed in an additional 2ml of ice-cold PBS and combined with the cell pellet. The cells were 

subjected to centrifugation once again at 500xg at 4°C for 5 min. The supernatant was removed 

and the cell pellet re-suspended in 100µl PBS. Finally cells were lysed by the addition of 4X SDS-

PAGE sample buffer.  
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2.2.9 Cell Fractionation  

Wash Buffer: 1X TBS, 10% glycerol, 0.1mM EDTA 

Hypotonic Buffer:  20mM Tris/Cl pH 7.4, 5mM EDTA, 1mM DTT, protease inhibitor pill, 100nM 

calyculin A, 1mM vanadate 

Resuspension buffer:  20mM Tris/Cl pH 7.4, 1% Triton X-100, 5mM EDTA, 200mM NaCl, 1mM DTT, 

protease inhibitor pill, 100nM calyculin A, 1mM vanadate  

 

 Stimulated ECs were placed on ice and washed with ice-cold wash buffer before excess 

solution was removed. The ECs were scraped off in 1ml of hypotonic buffer and passed through a 

25G needle 8 times. Centrifugation at 800xg at 4°C for 5 min was carried out to produce a pellet 

containing the nuclei (pellet 1). The supernatant was transferred into a new microcentrifuge tube 

and centrifuged at 15,000xg at 4°C for 10 min to produce the organelle fraction (pellet 2). The 

supernatant was further centrifuged at 100,000xg at 4°C for 30 min to produce the membrane 

fragment fraction (pellet 3). The remaining supernatant contained the cytosol fraction. Each of the 

three pellets was resuspended in 500μl of resuspension buffer and left on ice with occasional 

gentle vortex. The pellet fractions were clarified by centrifugation at 25,000xg at 4°C for 10 min 

and an appropriate volume of SDS-PAGE sample buffer added. 

 

2.2.10 Sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE)  

Running buffer: 25μM Tris, 0.1% SDS, 192mM glycine  

 

The mini-gel system Protean II (Bio-Rad) was used for SDS-PAGE and set up according to the 

manufacturer’s instructions. Seperating and stacking gel solutions were set up as described in 

Table 2.1 and gels left to polymerise for at least 1 h. For a 0.75mm slab gel, 3.5ml of seperating gel 

solution was used. 15μl-30μl of boiled lysate were loaded per well along with either a low (97, 66, 

45, 30, 20.1 and 14.4 kDa) or high (220, 170, 116, 76 and 53 kDa) molecular weight marker. The gel 

tank chamber was filled with running buffer and the gel was run at constant amperage of 15mA 

for stacking gel and 30mA for seperating gel.  



87 
 

 

 

 

Table 2.1: Solutions used for SDS-PAGE 

Seperating gel  

 7.5% 10% 12.5% 

Acrylamide: bis-acrylamide (37.5:1) (ml) 2.5 3.34 4 

1.5M Tris pH 8.8 (ml) 2.5 2.5 2.5 

Pure Water (ml)  4.85 4 3.35 

10% SDS (μl) 100 100 100 

10% APS (μl) 80 80 80 

TEMED (μl) 4 4 4 

5% Stacking gel  

Acrylamide: bis-acrylamide (ml) 0.75 

1M Tris pH 6.8 (ml) 0.63 

Pure Water (ml) 3.4 

10% SDS (μl) 50 

10% APS(μl) 75 

TEMED (μl) 10 
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2.2.11 Western blotting 

Transfer buffer: 25μM Tris, 192mM glycine, 20% methanol 

  

 Following SDS-PAGE proteins were transferred onto nitrocellulose membrane using a Bio-Rad 

Semi-dry transfer cell. Gels were equilibrated in transfer buffer for 10 to 20 min. Subsequently, 

sandwiches consisting of five sheets of filter paper, the nitrocellulose membrane, the gel and 

finally a further five sheets of filter paper were set up all soaked in transfer buffer. Protein transfer 

was performed at a constant 12V for between 30 to 85 min depending on the molecular weight of 

the protein of interest. Once the transfer was completed the membrane was stained with 0.1% 

(w/v) Ponceau red (in 5% acetic acid) to verify successful protein transfer and identify the position 

of the molecular markers. 

 

2.2.12 Immunodecoration 

Blocking solution: 1% (w/v) BSA, 1X TBS, 0.2% Triton X-100, 0.1% Tween-20 

Secondary antibody solution: 1% (w/v) BSA, 1X PBS, 0.2% Triton X-100, 0.1% Tween-20 

 

The nitrocellulose membrane was incubated in blocking solution for 2 h at room temperature 

(or overnight at 4°C) to block non-specific binding. Primary antibody was diluted as stated in Table 

2.2 in blocking solution and added to the membrane for 1.5 h. The membrane was then washed 

twice for 10 min with blocking solution and once with secondary antibody solution. Subsequently 

membranes were incubated for 1 h with secondary antibody diluted in secondary antibody 

solution as stated in Table 2.2. The nitrocellulose membrane was then washed once again in 

secondary antibody solution, followed twice in 1X TBS,0.2% Triton X-100, 0.1% Tween-20 and once 

in 1X TBS. 

Enhanced chemiliminescence (ECL) was used to detect the presence of the HRP-conjugated 

secondary antibody complexes. The membrane was placed in 10ml ECL mix/membrane (5ml of 

each lumi-light western blot substrate solution) for 5 min. Excess solution was removed and the 

membrane placed in Saran wrap and membranes exposed to film. 
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Table 2.2: Antibodies used for immunodecoration 

 Primary 

Antibody 

Species raised in  Secondary 

Antibody 

Species raised in 

Phospho-JNK 

(Thr 183/Tyr 185) 

1:2000 Rabbit 1:10000 Donkey anti-rabbit 

Phospho-ERK 

(Thr 202/Tyr 204) 

1:2000 Rabbit 1:5000 Donkey anti-rabbit 

Phospho-p38 

(Thr180/Tyr 182) 

1:2000 Rabbit 1:5000 Donkey anti-rabbit 

Tubulin 1:10000 Mouse 1:10000 Sheep anti-mouse 

4G10 1:2000 Mouse 1:5000 Sheep anti-mouse 

VEC (Santa Cruz) 1:500 Goat 1:5000 Donkey anti-goat 

Anti-paxillin 1:2000 Mouse 1:10000 Sheep anti-mouse 

Phospho-Paxillin  

(Tyr 118) 

1:2000 Rabbit 1:10000 Donkey anti-rabbit 

Phospho-Paxillin  

(Ser 178) 

1:2000 Rabbit 1:10000 Donkey anti-rabbit 

MC5A (PKCα) 1:2000 Mouse 1:5000 Sheep anti-mouse 

PKCβI 1:2000 Rabbit 1:5000 Donkey anti-rabbit 

PKCβII 1:2000 Rabbit 1:5000 Donkey anti-rabbit 

369G (PKCγ) 1:2000 Mouse 1:5000 Sheep anti-mouse 

PKCδ 1:2000 Rabbit 1:5000 Donkey anti-rabbit 

PKCε 1:2000 Rabbit 1:5000 Donkey anti-rabbit 

PKCθ 1:2000 Rabbit 1:5000 Donkey anti-rabbit 

PKCη 1:2000 Rabbit 1:5000 Donkey anti-rabbit 
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PKCμ 1:2000 Rabbit 1:5000 Donkey anti-rabbit 

524/i (PKCζ/ι) 1:2000 Mouse 1:5000 Sheep anti-mouse 

PKCι 1:2000 Mouse 1:5000 Sheep anti-mouse 

VEC (affinity purified) 1:2000 Rabbit 1:5000 Donkey anti-rabbit 
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2.2.13 Loading of ICAM-1 antibody to green fluorescent protein (GFP) protein G beads 

  

20µl of Fluoresbrite YG Polystyrene Microspheres were washed in 1ml of PBS followed by 

centrifugation at 16,400xg at 4°C for 1 min. This was repeated twice. The beads were then 

incubated with 7.5mg/ml of 1A29 homemade ICAM-1 antibody at 4°C for 1 h with end over end 

rotation (25 rpm). The bead-antibody complexes were then washed three times in 1ml of PBS with 

centrifugation at 16,400xg at 4°C for 1 min. The pellet was resuspended in 1ml of tissue-culture 

PBS and a 1:10 dilution was counted to determine the concentration of the bead-antibody 

complex. Beads were used at a density of 0.36 X 106/cm2 for experimental analysis.  

 Dynabeads® Protein G were incubated and loaded with ICAM-1 antibody, 1A29, in a similar 

manner with the exception that beads were collected using a Dynal magnet. Experimental analysis 

was carried out in the same way as ICAM-1-coated GFP protein G beads. 

 

2.2.14 Immunofluorescence (IF) 

Formalin fix: 3.7% formaldehyde, 1X PBS 

Methanol fix: 80% methanol, 3.2% formaldehyde, 50mM HEPES  

Block solution: 0.2% BSA, 1X PBS 

  

GPNT cells were grown to confluency in 35mm² Petri dishes, stimulated and washed once 

with PBS. Cells were then fixed with either 3.7% formaldehyde for 15 min or in methanol fix for 10 

min before being replaced with block solution. Extraction was carried out using ice-cold acetone 

that was added to the dish with a residual amount of block solution remaining for 30 sec before 

being diluted out with 1X PBS. The acetone dilution was replaced with block solution and left for 

10 min. During this time the staining solution for the primary antibody was prepared and 

centrifuged at 9,300xg for 5 min. The blocking solution was removed and a central circle formed to 

which 95μl staining solution was added to the appropriate dishes. The dishes were placed in a 

37°C incubator for 1 h. The dishes were washed once with 1X PBS and excess solution removed 

before the addition of 95μl secondary antibody staining solution. Cells were incubated at 37°C for 
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45 min. Nuclei of cells were visualised by the addition of 1µg/ml Hoechst 33258 (bis-benzimide) in 

the secondary antibody staining solution. The dishes were washed once with block solution, once 

with 1X PBS and a final wash with water before a coverslip was mounted using a drop of 10% 

Mowiol® 4-88 reagent.  

Table 2.3 shows the primary and secondary antibodies dilutions used for IF during the studies. 

 

2.2.15 Visualisation of VEC internalisation  

 

Confluent monolayers of GPNT were washed twice in ice-cold HBSS. The cells were incubated 

with 5µg/ml rabbit anti-human CD144 (VEC) antibody (or rabbit IgG for control) diluted in F10 

medium containing 20mM HEPES and 3% BSA, on ice at 4°C for 1 h to prevent internalisation. 

Subsequently, the cells were washed again with ice-cold HBSS and stimulated with the 1A29, 

ICAM-1, antibody for appropriate lengths of time at 37°C for uptake of VEC to be internalised. The 

cells were then either fixed directly for 15 min in 3.7% formaldehyde in PBS or washed three times 

for 5 min with 25mM glycine, 3% BSA in PBS, pH 2.7 before fixation. Subsequently, cells were 

processed for IF (as detailed in Section 2.2.14).  

 

2.2.16 Molecular Biology  

2.2.16.1 Ribonucleic acid (RNA) isolation 

 

RNeasy Mini Kit 250 was used for the isolation of RNA from confluent ECs. The cells were 

washed once with PBS, lysed by scraping into lysis buffer RLT supplemented with 1% β-

mercaptoethanol. The lysate was further homogenised using QIA shredders. One volume of 

ethanol was mixed into the lysate and the mixture added to an RNeasy spin column (700µl at a 

time). The solution was centrifuged through for 15 sec and flow-through was discarded. 350μl of 

RWI wash buffer was centrifuged through the RNeasy spin column for 15 sec. 10μl of RNase-free 

DNase I stock solution was diluted in 70μl buffer RDD, added to RNeasy spin column and left at 

room temperature for 15 min. A further 350μl of RWI wash buffer was added, centrifuged through  
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Table 2.3: Antibody dilutions used for IF 

 Primary 

Antibody 

Species 

raised in 

Secondary 

antibody 

Secondary 

antibody used 

VEC (affinity purified) 1:50 Rabbit 1:100 DAR Cy3 

Phospho-paxillin (Tyr 118) 1:50 Rabbit 1:30 GAR FITC 

Anti-paxillin 1:100 Mouse 1:100 GAM Cy3 

 

PKCγ (369G) 1:100 Mouse 1:100 GAM Cy3 

PKCζ/ι (524/i) 1:100 Mouse 1:100 GAM Cy3 

PKCι  1:100 Mouse 1:100 GAM Cy3 

PKCβI  1:50 Rabbit 1:200 GAR Cy3 

PKCε 1:50 Rabbit 1:200 GAR Cy3 

PKCθ 1:50 Rabbit 1:200 GAR Cy3 

Rhodamine or Alexa Fluor® 

488 phalloidin 

1:50  n/a  
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and the flow-through discarded. The column was further washed using 2 times 500μl of buffer 

RPE. Centrifugation at 20,000xg for 2 min followed and a further 1 min to ensure complete 

elimination of buffer RPE and the ethanol it contains. Final RNA elution was performed by the 

addition of 30-50μl of RNase free water. RNA concentration was determined by UV spectroscopy 

at 260nm in a nano-drop spectrophotometer ND1000 (Labtech).   

 

2.2.16.2 First Strand complementary deoxyribonucleic acid (cDNA) synthesis 

 

Total RNA was reverse transcribed using a reverse transcription kit in reactions containing 

SuperScript® III Reverse Transcriptase. In a standard reaction 1μl of oligo(dT)12-18, 1μl of 10mM 

dNTP mix and 5μg total RNA was used in a final volume of 13μl. The reaction was then heated to 

65°C for 5 min and quenched immediately on ice for at least 1 min. The mixture was briefly 

vortexed before the addition of 4μl of 5X first strand buffer, 1μl of 0.1M DTT, 1μl of RNaseOUT™ 

recombinant ribonuclease inhibitor (40 U/μl) and 1μl of SuperScript® III Reverse Transcriptase (200 

U/μl). The reaction was mixed by gentle pipetting before incubation at 50°C for 60 min. The 

reaction was stopped by heat inactivation at 70°C for 15 min.  

 

2.2.16.3 Polymerase Chain Reaction (PCR) 

 

Amplification of DNA was carried out in standard reactions of 25μl that were formed of 12.5μl of 

mastermix 1 and mastermix 2 each.  

 

Mastermix 1:    10μl cDNA (or 1μl of amplified PCR product) 

  1.25μl of each appropriate 12.5μM forward and reverse primer  

  To volume 12.5μl with distilled water 

Mastermix 2:    2.5μl 10X PCR buffer + MgCl2 

  0.5μl MgCl2 
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  0.64μl dNTP (10mM each) 

  0.64μl Taq DNA polymerase (0.625 U/25µl reaction) 

  To volume 12.5μl with distilled water 

 

Table 2.4 shows the forward and reverse primers utilised to amplify DNA fragments. The 

primers were designed from the Rattus norvegicus sequences obtained via Blast. Some of the 

sequences used for the PKC isoforms were of a predicted sequence and hence not fully 

determined. The accession numbers of the sequences obtained from Blast are as follows:  

NM_001105713 (PKCα), NM_012713 (PKCβI), NM_012628 (PKCγ), NM_133307 (PKCδ), 

NM_017171 (PKCε), NM_022507 (PKCζ), XM_341553 (PKCθ variant 2) XM_234108 (PKCμ) and 

XM_342223 (PKCι). Predicted sequences were used for PKCι, PKCμ and PKCθ with the sequence 

for PKCι recently being replaced by NM_032059. ClustalW was used to align the 9 PKC isoforms to 

find regions of similarity and intron/exon boundaries determined (see Appendix 10.1). The 

accession number, NM_031085, for the sequence of PKCη was obtained from Blast. The sequence 

of PKCη was aligned with the sequences of PKCδ, PKCε and PKCθ using ClustalW as they all are 

from the same class of PKCs and therefore similar in sequence (see Appendix 10.2). The primers 

were designed within the coding sequence and designed to have roughly the same GC content and 

length. 

Reactions were carried out in an Eppendorf Mastercycler Gradient. The DNA was initially 

denatured by heating for 5 min at 95°C; these samples were then subsequently heated at 95°C for 

30 sec, 55°C for 60 sec and 72°C for 45 sec for 35 cycles. A final extension period was carried out at 

72°C for 7 min to ensure that full length products were produced and to increase the amount of 

amplified DNA products. 

Nested PCR was carried out to ensure specific DNA amplification had occurred. The same 

protocol as mentioned above for the mastermixes and programme for the denaturation, 

amplification and annealing temperatures was used to amplify the DNA using the new primers. 
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Table 2.4: Primers for PCR amplification 

Name Accession 

Number 

Primer Sequence Start  End 

PKCα NM_001105713 forward gagaagttggagaacagggag 1967 1987 

reverse tcaggcctctgtgtggaacaa 2280 2300 

PKCβ NM_012713 forward gaccggatgaaactgaccga 1687 1706 

reverse ggagtgccacagaatgtctt 2179 2198 

PKCγ NM_012628 forward gcagcggcgaaaactttgaca 2070 2090 

reverse atgctggggaacagcgtctag 2508 2528 

PKCδ 

 

NM_133307 forward gatcaccaaggagtccaagga 2066 2086 

reverse aagtactgtgagcccagccaa 2524 2544 

nested for ggagaagctcttcgagaggga 2093 2133 

nested rev agccagactctccgaggaaga 2499 2519 

PKCε NM_017171 forward ggggaagatgccatcaagcaa 2165 2185 

reverse agacctagcactgcacacaga 2642 2662 

PKCη 

 

NM_031085 forward gaatgaagatgacctttttga 1857 1878 

reverse ggctccccgggacttgacaga 2387 2407 

PKCθ XM_341553 forward agagattgacccacccttcag 2086 2106 

reverse gatcgggaaccatctttcaag 2336 2557 

nested for ggctatcgttcgctgacagag 2172 2192 

nested rev gatgccattagtgaaggagac 2443 2463 
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PKCμ 

 

XM_234108 forward aagaccttgagtcacccctgg 2633 2653 

reverse gagctggctctcaccaaaatg 3196 3216 

PKCι 

 

NM_032059 forward gagcagaagcaagtggttccg 2494 2514 

reverse agccttccatgccttaaccca 3011 3031 

PKCζ 

 

NM_022507 forward aggcctcacacgtcttgaaag 1598 2018 

reverse acaggaagtggttccttccag 2133 2152 

M13 (-20) Sequencing 

primer 

forward gtaaaacgacggccagt   

M13  Sequencing 

primer 

reverse ggaaacagctatgaccatg   
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2.2.16.4 Agarose Gel Electrophoresis 

 

DNA fragments were separated by agarose gel electrophoresis according to their molecular 

weight. Routinely, 2% (w/v) agarose gels were prepared by melting 2g agarose in 100ml TAE buffer 

(40mM Tris.acetate, 2mM Na2 EDTA). Ethidium bromide (0.5µg/ml) was added and then poured 

into a gel tray support and comb. DNA samples were prepared by the addition of 2μl of 6X loading 

dye (30% (w/v) glycerol, 0.25% xylene cyanol) to 10μl of PCR product. The samples, along with 6μl 

of 1Kb DNA ladder (1μg/μl), were loaded and electrophoresed in TAE buffer at a constant voltage 

(usually at 80V) until DNA fragments were sufficiently resolved. The gel was visualised at 320nm 

under a UV illuminator (Gene Genius Bio Imagine System, Syngene).  

 

2.2.16.5 Restriction Enzyme digest 

 

DNA was digested with restriction enzymes in a final volume of 20μl. Reactions contained 5-

10μl of PCR product, 2μl of appropriate 10X buffer, 0.5μl of restriction enzyme and BSA. The 

reactions were incubated at 37°C for 1.5 h. The reactions were then analysed on 2% agarose gels. 

 

 2.2.16.6 Cloning 

 

The QIAquick gel extraction kit was used to isolate and purify PCR fragments from agarose 

gels. The DNA fragment was excised from the agarose gel using a clean sharp scalpel. 3 volumes of 

Buffer QG was added and the gel completely dissolved by incubation at 50°C for 10 min. One 

volume of isopropanol was mixed in to increase the DNA yield. The resulting mixture was added to 

a QIAquick spin column placed in a 2ml collection tube and centrifuged at 16000xg for 1 min. The 

flow-through was discarded and the column washed by spinning through 500μl of Buffer QG. The 

column was further washed with 750μl of Buffer PE, which contains ethanol, and the flow-through 

discarded. The column was centrifuged again at 16000xg for 1 min to remove any residual ethanol. 

The spin column was transferred to a new microcentrifuge tube and the DNA eluted by adding 

50μl 10mM Tris.Cl pH 8.5 and centrifugation for 1 min. 



99 
 

2.2.16.7 Topo TA Cloning 

 

The Topo TA cloning kit was used according to the manufacturer’s instructions. Briefly, 

reactions were set up containing 4μl of DNA, 1μl of salt solution and 1μl of Topo vector. The 

reaction was gently mixed and left to incubate at room temperature for 30 min. Reactions were 

placed on ice until used for transformation 

 

2.2.16.8 Transformation of XL1-Blue® Supercompetent Cells 

2xYT medium: 1.6% (w/v) bacto-tryptone, 1% (w/v) bacto-yeast extract, 0.5% (w/v) NaCl, pH7.0, 

dissolved in 1l of deionised water. 

 

 One vial of XL1-Blue® Supercompetent cells was gently thawed on ice and for each reaction 

50μl of the cells was aliquoted to a pre-chilled, sterile polycarbonate tube. 0.85μl of β-

mercaptoethanol (provided with kit) was added to the bacteria and the mixture swirled gently 

before incubation for 10 min on ice. 5μl of plasmid DNA was added to the cells and incubated on 

ice for 30 min, with occasional agitation. The reaction was heat shocked at 42°C for 45 sec and 

immediately quenched on ice for 2 min. 900μl of pre-warmed 2xYT medium was added and the 

tubes incubated at 37°C for 1 h on a shaker at 230 rpm. The transformation reaction was 

centrifuged at 300xg for 10 min and around 850μl of supernatant was discarded. The remaining 

transformation reaction was plated onto a pre-warmed agar plate containing appropriate 

antibiotic (ampicillin or kanamycin) allowing recognition and selection. The plate was placed into 

an incubator at 37°C for 16 h for colonies to grow (afterwards the plates were placed at 4°C to 

prevent further growth).   

 

2.2.16.9 Small Scale Preparation of plasmid DNA 

 

In 3ml of LB medium containing 100μg/ml of ampicillin a single colony of XL1-Blue® 

Supercompetent cells was added and left to grow overnight in a shaking incubator at 37°C.  
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DNA was prepared using the GenElute™ plasmid miniprep kit according to the protocol 

provided. Briefly, 1.5ml of the overnight culture was pelleted by centrifugation at 12,000xg for 1 

min with the supernatant being discarded. The pellet was completely resuspended in 200μl of 

resuspension solution containing RNase. 200μl of lysis solution was added and mixed by gentle 

inversion 6-8 times for a maximum of 5 min incubation. Cell debris was precipitated by the 

addition of 350μl of neutralization/binding solution with the tube once again being gently inverted 

4-6 times. Cell debris was pelleted by centrifugation at 12,000xg for 10 min. During this time a 

Genelute miniprep binding column was prepared by insertion into a microcentrifuge tube with the 

addition of 500μl of column preparation solution and centrifuged at 12,000xg for 1 min with the 

flow-through being discarded. The cleared lysate was transferred to the prepared Genelute 

binding column and centrifuged at 12,000xg for 1 min. The flow-through was discarded prior to 

the addition of 750μl of wash solution (containing ethanol) and centrifuged at 12,000xg for 1 min. 

The flow-through was discarded and the column was centrifuged again at 12,000xg for a further 2 

min to remove any excess ethanol that might be present. The column was transferred to a new 

collection tube to which 100μl of elution buffer was added to elute the DNA from the column by 

centrifugation at 12,000xg for 1 min. Plasmid minipreps were either used directly or stored at -

20°C.  

 

2.2.16.10 Maxi preparation using Qiagen Endo-free plasmid maxi-kit 

 

A pre-culture of a single colony of XL1-Blue® Supercompetent cells was grown in 3ml of LB 

medium with appropriate antibiotic for 8 h in a shaking incubator at 37°C. The pre-culture was 

then added to a further 150ml of LB medium and antibiotic and left to grow overnight in a shaking 

incubator at 37°C.  

DNA was prepared using the Endo-free plasmid maxi kit according to the protocol provided. 

Briefly, 150ml of the overnight culture was pelleted by centrifugation at 6,000xg at 4°C for 15 min. 

The pellet was completely resuspended in 10ml of Buffer P1 supplemented with RNase A. 10ml of 

Buffer P2 was added and mixed by inversion 4-6 times before 5 min incubation at room 

temperature. During this incubation period the QIAfilter cartridge was prepared. 10ml of chilled 

Buffer P3 was added to the lysate and mixed immediately by vigorous inversion 4-6 times. The 
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lysate was poured into the barrel of the QIAfilter cartridge where it was left to incubate for 10 min 

at room temperature. After the incubation period the cell lysate was filtered into a 50ml 

polycarbonate tube. 2.5ml of Buffer ER was added to the filtered lysate and mixed by inverting 10 

times before 30 min incubation on ice. During this incubation period a QIAGEN-tip 500 was 

equilibrated with 10ml of Buffer QBT. The filtered lysate was passed through the QIAGEN-tip by 

gravity flow followed by two washes of 30ml Buffer QC. 15ml of Buffer QN was used for elution of 

DNA into endo-free polycarbonate tubes. The eluted DNA was split into 2 tubes and precipitated 

with 0.7 volumes of room temperature isopropanol. This was mixed and immediately subjected to 

centrifugation at 8,000xg at 4°C for 40 min. The supernatant was carefully decanted and each DNA 

pellet washed with 2.5ml of endotoxin-free room temperature 70% ethanol before further 

centrifugation at 8,000xg at 4°C for 20 min. The supernatant was carefully decanted and the pellet 

left to air-dry before the DNA was redissolved in a total volume of 200μl of Buffer TE. DNA 

concentration was measured using the spectrophotometer at wavelength 260nm. The maxi-preps 

were then used immediately or stored as 10µg aliquots, in 2.5 volumes of 100% ethanol and 0.1 

volume of 3M sodium acetate, at 4°C. 

 

2.2.16.11 Sequencing 

 

PCR reactions containing 0.5μl big dye reaction mix, 2μl big dye buffer, 1μl DNA and 6.5μl of 

each M13 primer (0.25μM) (as stated in Table 2.4) were set up. The mixture was denatured at 

96°C for 1 min, and then subsequently heated at 96°C for 10 sec, 50°C for 5 sec and 60°C for 4 min 

for 25 cycles. 10μl of water was added to each sample and reaction products purified using 

genCLEAN 96 well spin plates.  

Reactions were cleaned up using gene cleaning. A gene clean plate was brought to room 

temperature and centrifuged at 910xg for 5 min with a wash plate underneath to remove the 

liquid from the wells. 100μl water was added to the wells being used and the plate was spun again 

at 910xg for 5 min. The collection plate was aligned underneath and 20μl of the sequencing PCR 

sample was added to the wells before centrifugation at 910xg for 5 min. Reactions were 

transferred to the sequencing plate ready to be run on a Hitachi 3730 DNA analyzer (Applied 
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Biosystems). Sequencing traces were analysed and edited using chroma (weblink) software. 

Subsequently, sequences were identified using Blast. 

 

2.2.16.12 DNA precipitation 

 

To concentrate DNA 0.1 volume of 3M sodium-acetate and 2.5 volumes of 100% ethanol 

were added. After 30 min incubation on ice, samples were centrifuged at 25,000xg at 4°C for 10 

min. The supernatant was discarded and followed by a wash with 70% ethanol for 10 min before a 

further 10 min centrifugation. The supernatant was removed and pellets left to air dry before 

resuspension in a minimal volume of water. Samples were further heated at 55°C for 2 min to fully 

redissolve the DNA.  

 

2.2.17 Statistics/densitometry/quantification 

 

 Phosphorylation of ERK, p38, JNK and paxillin was quantified from immunoblots by 

densitometry. The western blots were scanned, images inverted and the intensity set so that 

background was absolutely black (pixel intensity of zero). Subsequently, signal bands were 

encircled and the mean pixel intensity and area determined using ImageJ. The absolute intensity 

was determined as the product of mean intensity and the area of the band. In most cases 

accumulation of phospho-proteins/cell mass was determined and tubulin used as a loading 

control. Previous experiments in the laboratory have shown that levels of key proteins (ERK, JNK 

and p38) did not alter in response to any ICAM-1 stimulation when compared to tubulin. It is 

understood that these results do not shown the proportion of protein being phosphorylated. 

Values were set to fold-increase and normalised to the tubulin/ total paxillin loading control. 

Means and SEM from at least three independent immunoblots were calculated. Statistical analysis 

was by Student’s t-test.  

 To determine the observed molecular weight of each of the PKC isoforms: the distance 

travelled by bromphenol blue and each molecular weight ladder marker was analysed and 

compared to the relative migration distance of the main band seen for each PKC isoform. These 
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values were then compared to those of the predicted molecular weight for each of the PKC 

isoforms for further verification.  
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Chapter 3: Activation of ECs following ICAM-1 engagement 

 

3.1 Introduction 

 

 The process of diapedesis can be separated into three distinct steps: guidance of leukocyte to 

TEM sites, channel opening and dispatch to the tissue (as described in detail in Section 1.3.2). In 

this part of the studies, I was interested in the EC contribution to guiding leukocytes to sites of 

preferential transmigration. Adherent leukocytes bind to CAMs on the EC surface and later, 

immediately prior to diapedesis, find themselves in lateral EC areas, often near tri-cellular 

junctions (Burns et al., 1997). Since leukocytes can crawl on CAM substrates (Smith et al., 2003) it 

is commonly assumed that leukocyte find their own way to these TEM sites. However, it has been 

noted that antibody-activated ICAM-1 lateralises toward the EC junction area along actin stress 

fibres (Millan et al., 2006; Turowski et al., 2008), suggesting that the EC contributes to leukocyte 

lateralisation as well. Definitive proof of a role of EC is difficult to obtain since in leukocyte-EC co-

cultures the contribution of the leukocyte cannot be eliminated. The use of antibody-coated beads 

may represent a satisfactory alternative: such anti-ICAM-1-coated beads have not only been 

shown to initiate EC signalling similar to that seen with soluble ICAM-1 (Allingham et al., 2007) but 

also to induce an adhesion structure which is reminiscent of a transmigration cup (Barreiro et al., 

2002; Carman et al., 2003; Carman and Springer, 2004; Allingham et al., 2007; van Buul et al., 

2007b). It therefore appears that such beads mimic TEM up to the moment when the process 

becomes irreversible (Muller, 2009) and could therefore also be used to study the endothelial role 

in lateralisation. Finally, antibody-coated beads are obviously more amenable to time-resolved 

microscopy.  

 

3.2 Aim 

 

 The aim of this part of the study is to investigate whether anti-ICAM-1 antibody-coated beads 

are lateralised when they contact ECs. The time course and functional consequences will also be 

analysed.  
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3.3 Results  

 

3.3.1 ICAM-1 engagement leads to its lateralisation to cell junctions  

 

 To investigate the involvement of ECs in directing leukocytes to preferential migration sites, 

anti-ICAM-1-coated fluorescent beads were added to GPNT BMVECs and left for various lengths of 

time before the cells were fixed and bead distribution analysed in relation to EC junctions. Figure 

3.1A shows that increasing number of anti-ICAM-1 beads clustered and accumulated near AJs in a 

time-dependent fashion. Hardly any beads were observed to accumulate near the nuclei. To 

quantify possible lateralisation of beads, the number of beads found within one bead diameter 

(1μm) of the cell junctions within a set area was quantified (Figure 3.1B). In samples fixed 10 min 

after bead addition 45% of adherent beads were found in proximity of the cell junction. 38% of 

beads were engaged in clusters of 2 or more beads. At 30 min this increased by nearly 2-fold to 

76% and 82% lateralisation and cluster formation, respectively. At 60 min, ca. 65% of beads were 

still found to be clustered and lateralised. Very few single beads were found near EC junctions, 

suggesting that beads do not lateralise unless they are found in clusters. The proportion of beads 

found to lateralise at tri-cellular junctions, sites of preferential transmigration, was also analysed 

from the same experimental series. A time-dependent increase in the number of beads found in 

the proximity of tri-cellular junctions was observed (Figure 3.1B). At 10 min after bead addition, 

16% of them were found near at tri-cellular junctions. This nearly doubled to 31% after 60 min. 

Thus, combined across the 60 min observation period around a third of lateralised beads were 

found at tri-cellular junctions. Taken together, these observations suggested that ECs actively 

move clustered ICAM-1 towards the cell edge. 

 

3.3.2 Anti-ICAM-1-coated beads induce luminal membrane ruffles 

 

 I next sought to investigate the dynamics of adhesion and lateralisation of anti-ICAM-1-coated 

beads on GPNT. For this, anti-ICAM-1 fluorescent beads were added to GPNT monolayers 

mounted on a fluorescent live imaging microscope. Beads were added and images taken every min 

for 1 h. Several areas of the cell monolayer were analysed simultaneously. During the entire 
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Figure 3.1 Anti-ICAM-1-coated beads lateralise and cluster at EC junctions in a time-dependent 

manner 
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Figure 3.1 figure legends 

(A) Anti-ICAM-1 fluorescent GFP coated beads (3 beads/EC) were incubated with confluent GPNT 

monolayers for the indicated times before the cells were washed twice with PBS to remove any 

excess, unbound beads and methanol fixed. The dishes were stained for VEC (red) to reveal the 

cell edge and AJs and with Hoechst to identify nuclei (green). In these merged images the beads 

appear yellow. (Scale bar: 10µm) 

(B) Quantification of bead localisation from experiments as in (A). Beads within 1 bead diameter 

(1µm) of VEC were counted as lateralised (open bars). If additionally they were found in tri-cellular 

areas they were recorded as such (grey bars). For bead clustering (black bars), at least two beads 

had to touch each other. Beads within 1 bead diameter (1µm) of VEC in tri-cellular areas were 

counted. Bead numbers per field (6 fields/experiment) were determined and expressed as 

percentage of the total number of adherent beads. Shown are means from 3 independent 

experiments +/- SEM.  
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 course of the experiment I observed that the majority of beads were not adherent (Figures 3.2). It 

was also clear that the EC monolayer did not become activated in the absence of bead adhesion 

(Figure 3.2). Furthermore, immobilisation of a single bead did not lead to any apparent EC 

activation (Figure 3.3). In clear contrast, activation occurred in response to the immobilisation of a 

cluster of anti-ICAM-1 beads on the endothelial surface. As shown in a representative example in 

Figure 3.4 a clear change of cell shape associated with what appeared to be a wave of luminal 

membrane ruffles occurred in the single cell that contained an immobilised bead cluster. In this 

specific case, the bead cluster was recruited to regions of the cell junctions within 12 min (Figure 

3.5), moved laterally to the site of immobilisation within 18 min. A change of cell morphology 

became apparent at around 22 to 24 min. Figure 3.6 clearly shows the activation period of EC from 

full immobilisation of the beads in more detail. The engagement of ICAM-1 on the endothelial 

surface with the anti-ICAM-1 beads induced membrane ruffling at the cellular junctions and the 

cell increased in size as time progressed. Noticeable differences also occurred in the cell nucleus 

from 28 min onwards as the nucleus became more defined in structure and appeared to shrink in 

size. Vesicular-like structures appear around the nucleus as time progresses and these appear to 

become denser in structure at around 46 min.  

A delay in activation of the EC is observed following immobilisation of the bead cluster to the 

GPNT EC (Figure 3.4 and 3.5). The time between immobilisation and cell activation was 

determined from a number of experiments and analysed in more detail (Figure 3.7). Bead cluster 

immobilisation was defined as the time when adherent beads did not move any further. Start of 

EC activation was defined as the time when the first clear morphological change was observed in 

the EC whilst full activation was taken as the time when maximal morphological changes were 

observed. Not all beads will immobilise to the EC surface, therefore from all 3 independent 

experiments (and 4 fields imaged for each) all immobilised bead clusters were analysed. Some of 

the fields did not have any observed immobilised beads whilst others had more than 1 bead 

cluster immobilised on the EC surface leading to EC activation. Overall 13 bead clusters were 

analysed. Following the immobilisation of a bead cluster it took an average of 14 min for visible EC 

changes to occur. Full cell activation was reached 21 min after bead attachment. Taken together, 

these results indicate that clusters of anti-ICAM-1-coated beads can lead to EC activation once 

completely immobilised in lateral areas of the cell. These observations also gave us a time frame in 

which to investigate EC signalling in response to ICAM-1 activation. 
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Figure 3.2 Activation of ECs does not occur when anti-ICAM-1-coated beads are not immobilised 

on the endothelial surface 
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Figure 3.2 figure legends 

Anti-ICAM-1 fluorescent beads (3 beads/EC) were added to confluent GPNT monolayers and cells 

imaged every min for 1 h on an automated time-lapse fluorescent live imaging microscope. Videos 

were analysed to determine the time of bead immobilisation on the EC surface. The phase 

contrast and fluorescent images show the EC monolayer and anti-ICAM-1-coated beads 

movement, respectively. (Scale bar: 10µm) 
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Figure 3.3 A single anti-ICAM-1-coated bead is insufficient in inducing EC activation 

As described in Figure 3.2 with a single immobilised bead as indicated by arrows (Scale bar: 10µm) 
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Figure 3.4 EC are activated following adhesion and immobilisation of an anti-ICAM-1 bead cluster 

on the endothelial surface 

Experiment was carried out as described for Figure 3.2. The adherent cluster of anti-ICAM-1-

coated beads is indicated by the arrow from the time of immobilisation. In preceding frames the 

beads were still moving on the EC surface (see Figure 3.5). (Scale bar: 10µm) 
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Figure 3.5 Lateralisation of beads to the cellular junctions  

Experiment was carried out as described for Figure 3.2. The movement of the anti-ICAM-1-coated 

bead on the EC surface was tracked (yellow line) every min until the bead was recruited and 

immobilised. (Scale bar: 10μm) 
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Figure 3.6 Activation of EC in response to immobilisation of anti-ICAM-1-coated beads on the 

endothelial surface  
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Figure 3.6 figure legends 

The images shown are as described in Figure 3.4 with the exception that the image is every 2 min 

and shows only the activation period following immobilisation of the bead to the EC lateral 

junction (as indicated by the arrow). Clear morphological changes within the EC can be observed 

including membrane ruffling, increase in EC size and changes to the nucleus. (Scale bar: 10μm) 
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Figure 3.7 Immobilisation of anti-ICAM-1-coated beads to the EC surface leads to delayed EC 

activation  

Experiments were carried out as described in Figure 3.2. All immobilised bead clusters leading to 

EC activation were analysed from 3 independent experiments (4 fields/experiment). Times were 

taken at bead immobilisation (‘attach’), start of cytologically visible cell activation (‘start’) and full 

cell activation (‘full’) when cell expansion and nuclear shrinkage appeared maximal. 13 bead 

clusters were analysed for both attach-start and start-full. Shown are mean time intervals +/- SEM 

in min.  
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3.4 Discussion  

 

Lymphocytes upon adhesion are directed to sites of transmigration, including tri-cellular 

junctions which are preferential sites used by leukocytes to cross into the underlying tissue (Burns 

et al., 1997). Previous work using anti-ICAM-1-coated beads shows that the EC responds and 

induces signalling cascades in response to CAM engagement on the cell surface (Allingham et al., 

2007; van Buul et al., 2007b).  

Lateralisation of antibody-coated beads to cellular junctions (Figure 3.1 and 3.5) occurs in 

agreement with antibody ligation cross-linking studies (Turowski et al., 2008) and with 

observations of preferential sites of TEM (Burns et al., 1997). Lateral localisation and clustering of 

the beads increases in a time-dependent manner. These observed results could be explained in 

two ways, either the antibody-coated beads could attach anywhere on the EC and then laterally be 

moved to the cellular junctions (lateralisation) or the beads direct attach to lateral areas of the EC. 

The latter idea is unlikely since the distribution of ICAM-1 on resting EC is ubiquitous across the 

entire luminal membrane (Figure 1.3 and Turowski et al., 2008) and as Figure 3.5 shows there is 

lateral movement of beads following attachment to the endothelium.  

To fully elucidate and understand the movement of beads towards lateral EC areas and the 

clustering of beads, high resolution time-lapsed microscopy is required followed by bead tracking. 

As we are unable to predict where firm adhesion will occur in the approach used so far, large 

regions of interest (ROIs) are required to be imaged which are incompatible with high resolution 

microscopy. A potential way to resolve this issue may be to alter the bead concentration used or 

to record higher numbers of ROIs in neighbouring regions Therefore, optimisation of the 

microscope settings and protocol is needed to easily visualise the beads recruitment to the cell 

junctions. 

Nevertheless, the observed results seem to imply that the EC is actively involved in 

lateralisation of beads. The EC activity is important for either moving the antibody-coated beads to 

the cellular junction regions of the cell or allows attachment only in these lateral areas.  

ICAM-1 antibody-coated beads were found to form clusters and aggregates in a time-

dependent manner (Figure 3.1), which is in agreement to ICAM-1 cross-linking studies (Martinelli 

et al., 2009). The EC is actively involved in inducing increased surface membrane area for the 
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adhesion of the anti-ICAM-1-coated beads. Cholesterol rich regions, also referred to as rafts, could 

be regions of the EC that are involved in the adhesion of anti-ICAM-1-coated beads (Dodelet-

Devillers et al., 2009). 

I observed noticeable EC activation in the model system used (Figure 3.4 and 3.6) and to my 

knowledge this is the first report of visual EC activation following ICAM-1 engagement. Previous 

experiments in the laboratory using soluble anti-ICAM-1 antibodies failed to visualise any such 

activation of GPNT (R. Martinelli and P. Turowski, unpublished observations).  

EC activation following ICAM-1 engagement led to changes within the EC including increased 

EC size, the nucleus becoming more defined in structure and a vesicular appearance around the 

nucleus (Figure 3.6). The most pronounced morphological change is the induction of luminal 

membrane ruffles in response to bead adhesion. Cortical actin and Rac has been implicated in the 

induction of membrane ruffling and subsequent signalling that is initiated (Ridley, 1994). Rac 

activity has not yet been described downstream of ICAM-1. Leukocyte migration has been shown 

to require the activity of Rac (Gismondi et al., 2003) but this role has been attributed to VCAM-1 

signalling (van Wetering et al., 2003). Interestingly our laboratory has recently found that ICAM-1 

ligation and cross-linking led to activated Rac in a reciprocal manner to Rho activation (R. 

Martinelli and P. Turowski, unpublished observations). Future studies could focus on ICAM-1-

induced Rac-mediated signalling during TEM, which could constitute a completely new and yet 

unexplored mechanism. 

The data all seems to imply that the time frame of EC activation occurs within 15 to 35 min 

(Figure 3.7) although this needs to be verified by other means. It has been described in this study 

that the start of activation is when visible changes are seen such as membrane ruffling (Figure 3.4 

and 3.6); however this could be in fact later than the actual activation start. It is highly possible 

that cell activation started immediately after beads adhesion but was not accompanied by 

microscopically visible changes. I did not look at recruitment of the antibody-coated beads to the 

tri-cellular regions in the video images. This could be of interest as around a third of beads that 

lateralise to EC junctions are found to accumulate at tri-cellular junctions (Figure 3.1B). More 

detailed analysis of bead recruitment could also determine if there are differences in recruitment 

of larger clusters in comparison to smaller clusters or single beads by the EC. The time frame of 1 h 

seems to be relevant for further investigation as beads were shown to adhere, lateralise, and 
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aggregate along with visible EC activation within this time frame. Therefore, future studies 

investigating ICAM-1-mediated signalling will focus at times frame between 0 and 60 min.  

 Anti-ICAM-1-coated beads mimic the adhesion of lymphocytes to the EC and hence it is 

reasonable to assume a similar response would be initiated upon lymphocyte adhesion to ECs. An 

advantage of using anti-ICAM-1-coated beads to lymphocytes means ICAM-1-mediated signalling 

can be specifically investigated rather than signalling induced by the interaction of the lymphocyte 

with other CAMs, including selectins and PECAM-1, on the EC surface. Therefore, antibody-coated 

beads are an appropriate way to study ICAM-1 signalling rather than classical methods of antibody 

ligation and cross-linking methods. Antibody-coated beads should certainly be used for many 

future studies. However, the use of antibodies in solution has the obvious advantage of inducing 

ICAM-1 activation more rapidly, thus producing crisper biochemical responses.  
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Chapter 4: PKC isoforms expression in BMVECs 

 

4.1 Introduction 

 

PKC is a family of serine/threonine kinases belonging to the AGC family, which represents two 

percent of the human kinome (Parker and Murray-Rust, 2004; Carmena and Sardini, 2007; Pearce 

et al., 2010; Rosse et al., 2010). Other AGC family members include PKA and cGMP-dependent 

protein kinase (PKG) (Pearce et al., 2010). PKC was originally identified by Nishizuka and colleagues 

in 1977 (Tan and Parker, 2003). PKC is found in all eukaryotes and has been found to have 

different functions in different cell types. Amongst other functions PKC has been shown to be 

involved in cell differentiation, cell proliferation, apoptosis, cell migration and cytoskeletal 

remodelling in response to different a wide variety of stimuli (reviewed in: Tan and Parker, 2003; 

Martelli et al., 2006). 

There are 10 isoforms of PKC which have been classified into three classes depending on their 

activation mode and substrate preference, all of which is a result of differences in their primary 

structure (Figure 4.1) (reviewed by: Parker and Murray-Rust, 2004; Carmena and Sardini, 2007). 

The classical PKC (cPKC) isoforms, PKC alpha (α), beta (β) and gamma (γ) are activated by both 

diacylglycerol (DAG) and Ca2+ due to the presence of C1 and C2 domains that bind DAG and Ca2+, 

respectively. PKCβ exists as two splice variants differing in their C-terminus (Kawakami et al., 

2002). The novel PKCs (nPKC), delta (δ), epsilon (ε), eta (η) and theta (θ) lack a proper Ca2+ binding 

domain and are therefore Ca2+-insensitive whilst still retaining the capability of binding DAG. PKC 

zeta (ζ) and PKC iota (ι) are atypical PKC (aPKC) family members that are both Ca2+- and DAG- 

insensitive which reflects the absence of a C2 domain and the presence of a C1 domain incapable 

of DAG binding. Instead aPKCs are thought to be primarily regulated by protein-protein 

interactions in the N-terminal Phox and Bem 1p (PB1) domain (Parker and Murray-Rust, 2004; 

Corbalan-Garcia and Gomez-Fernandez, 2006; Sun and Alkon, 2009). Lastly, PKCμ/PKD contains a 

putative transmembrane domain and a pleckstrin homology (PH) domain and may be permanently 

anchored in the cell membrane (Rykx et al., 2003). 
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Figure 4.1 PKC structure for the different family members 
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Inactive PKC is mostly cytoplasmic. Upon activation PKC translocates to various membrane 

compartments, such as the plasma membrane (Carmena and Sardini, 2007). Phosphorylation of 

particular residues in PKC ultimately controls the function and alters both its activity and location 

(Roffey et al., 2009). Most PKCs are catalytically inactive due to being in a conformation where the 

pseudosubstrate domain sits within the substrate binding domain (Tan and Parker, 2003). A 

conformational change in the structure of PKC is required to lead to its activation (Pearce et al., 

2010). For cPKC and nPKC activation translocation to the plasma membrane is usually required 

where they allosterically bind DAG. Phosphoinositide-dependent kinase-1 (PDK1) phosphorylates 

the activation segment of PKC which triggers autophosphorylation on two further sites, the 

hydrophobic motif and turn motif (Carmena and Sardini, 2007; Pearce et al., 2010). The 

phosphorylation of the turn motif does not aid activation but helps to stabilise the active 

conformation of PKC and thus duration of activation (Carmena and Sardini, 2007). Evidence 

suggests that mammalian target of rapamycin complex 2 (mTORC2) is responsible for the 

phosphorylation of the hydrophobic motif (Parekh et al., 2000). 

PKCs have also been shown to bind to molecular scaffolds named receptors for activated C 

kinase (RACKs) which bind to a region distinct from the substrate binding domain (Mochly-Rosen 

et al., 1991). RACKs are membrane associated anchoring proteins influencing the localisation of 

particular isoforms to distinct microdomains (Steinberg, 2008).  

Although PKC isoform expression is mostly ubiquitous it can be restricted to certain tissues (as 

shown in Table 4.1). For example PKCθ is expressed only in skeletal muscle and T-lymphocytes 

(Altman and Villalba, 2003) whilst PKCγ is found predominantly in neuronal tissue (Martiny-Baron 

and Fabbro, 2007).  

Soon after its discovery PKC had been shown to be an important regulator of tumourigenesis 

since phorbol esters, such as PMA, have been shown to induce tumours through PKC activation 

(Griner and Kazanietz, 2007). Furthermore, mutations in all isoforms have all been shown to occur 

in various tumours potentially acting as tumour promoters, leading to the enhancement of 

signalling pathways (Martiny-Baron and Fabbro, 2007). Thus, PKC is a much-studied target for 

therapeutic intervention. Its various functions are thought to be mediated by different isoforms 

and consequently many isoform-specific PKC inhibitors are sought and developed. Apart from 

roles in tumourigenesis, PKCα, PKCβI, PKCβII and PKCδ have been shown to be chronically activated 

in response to hyperglycaemia caused by increased DAG concentrations (Geraldes and King, 2010). 
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Table 4.1: Tissue Expression of PKC isoforms 

Isoform Expression  Reference 

PKCα Ubiquitous (including brain, pineal 

gland, retina and spleen) 

Yoshida et al., 1988; Nakashima, 2002; 

Tan and Parker, 2003 

PKCβ Brain, pituitary and pineal gland, spleen, 

thymus, lung, intestine, pancreatic 

islets, human leukocytes, retina 

Yoshida et al., 1988; Way et al., 2000; Tan 

and Parker, 2003; Lang, 2007; Martiny-

Baron and Fabbro, 2007 

PKCγ Restricted mainly to CNS and spinal 

cord, specifically expressed in neuronal 

cells 

Yoshida et al., 1988; Way et al., 2000; 

Shirai and Saito, 2002; Martiny-Baron and 

Fabbro, 2007; Verbeek et al., 2008 

PKCδ Ubiquitous, widely distributed among 

cells and tissues 

Kikkawa et al., 2002; Tan and Parker, 

2003 

PKCε Ubiquitous Tan and Parker, 2003 

PKCη Highly expressed in lung and skin, 

slightly in brain, heart, spleen  

Predominantly expressed in epithelial 

tissue 

Osada et al., 1990; Suzuki et al., 2009 

PKCθ Skeletal muscle and T-lymphocytes 

 

Way et al., 2000; Tan and Parker, 2003; 

Altman and Villalba, 2003; Praveen et al., 

2009; Rosse et al., 2010 

PKCι Ubiquitous- widely distributed   Fields and Regala, 2007 

PKCζ Ubiquitous  Tan and Parker, 2003 

PKCμ Ubiquitous  Johannes et al., 1994 
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This can lead to both micro- and macrovascular complications in diabetes. For instance, the role of 

endothelial PKCβ in diabetic retinopathy has been recognised and selective inhibitors of this kinase 

isoform are currently being tested (Lang, 2007). Ruboxistaurin, one such PKCβ inhibitor, has shown 

significant improvements for diabetic non-proliferative retinopathy and endothelial dysfunction 

(Meier and King, 2000; Geraldes and King, 2010). Ruboxistaurin has also been shown to inhibit 

glucose-induced adhesion of monocytes to EC (Kunt et al., 2007). 

PKCs have been shown to mediate many diverse endothelial functions. PKCα appears to 

function in EC contraction and disassembly of VEC junctions along with having a role in the 

interaction and adhesion of leukocytes to the endothelium (Konopatskaya and Poole, 2010). The 

promotion of endothelial permeability is partly mediated by PKCα and PKCβ (Kumar et al., 2009). 

PKCα or PKCζ play a role in increasing endothelial permeability, in response to MCP-1 interaction 

with CCR2 or thrombin, leading to stress fibre formation and TJ protein redistribution (Stamatovic 

et al., 2006; Minshall et al., 2010). 

A number of publications have shown that PKC activity is important during the establishment 

of cell-cell contacts. In the pituitary gland, stimulation with thyrotropin releasing hormone (TRH) 

or the PKC activating phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA/PMA) regulates 

cell-cell contacts and AJ formation. This process is tightly regulated by a spatiotemporally 

coordinated cascade of PKC activation and translocation (Quittau-Prevostel et al., 2004; Collazos et 

al., 2006). Similar spatio-temporal co-ordinated PKC activation cascades have also been observed 

when cell-cell contacts form between different cell types. For instance, during the loose 

interaction of human fibroblast and cancer epithelial cells, PKCα and PKCε are recruited to the cell-

cell contact region and again PKCδ does not show a significant relocalisation (Louis et al., 2005). 

PKCθ also shows selective recruitment to cell-cell contacts. It is found to be recruited to the 

central supramolecular activation cluster (cSMAC) of the immunological synapse (IS) (Altman and 

Villalba, 2003; Yokosuka et al., 2008; Praveen et al., 2009). PKCθ regulates recognition of APC by T-

lymphocytes due to a number of cell-cell interactions forming between the two cells helping to 

integrate the signals of the T-cell receptor (TCR)/CD28 which activates the T-lymphocytes (Rosse et 

al., 2010).  

Importantly for this study, Etienne-Manneville and colleagues have shown that ubiquitous 

PKC inhibition in BMVEC significantly inhibited lymphocyte transmigration, suggesting that one or 
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several endothelial PKC isoforms are involved in ICAM-1-mediated TEM (Etienne-Manneville et al., 

2000). Other studies have implicated PKCα in VCAM-1-mediated (inflammatory) lymphocyte 

migration (Deem et al., 2007) or PKCδ in neutrophil migration (Carpenter and Alexander, 2008), 

suggesting that endothelial PKC regulation of TEM is not only a prerogative of BMVEC. 

 

4.2 Aim 

 

Endothelial PKC constitute a key intracellular regulator which has been shown to play an 

important role during TEM. However, it is unknown which PKC isoforms are expressed in ECs. I 

therefore aim at establishing the expression profile of PKC isoforms in the GPNT and hCMEC/D3 

cell lines. In addition, I aim to establish assays to test PKC isoform activation in EC.  

 

4.3 Results 

 

4.3.1 mRNA expression of PKC isoforms in BMVECs 

 

To determine expression of PKC isoforms in BMVECs I first looked for their presence on mRNA 

level in the GPNT cell line. Primers were designed that were specific to each isoform of Rattus 

norvegius PKC. Transcript sequences were taken from NCBI database sets. If transcripts were not 

found predicted transcript sequences based on genomic sequence data were used (as described in 

Section 2.2.16.3). Forward and reverse primers were designed to span at least one intron/exon 

boundary to avoid genomic DNA being amplified (Appendix 10.1 and 10.2). I also used DNAse 

treated RNA and performed RT-PCR using oligo(dT). Analysis for PKCη has not yet been completed 

since no annotated appropriate sequence was initially found in public databases. Recently a 

transcript/genomic sequence NM_031085 was identified which is likely to represent rat PKCη as it 

showed high sequence identity with rat PKCδ, PKCε and PKCθ, 50%, 59% and 47% respectively, 

(Appendix 10.2). However, so far RT-PCR analysis based on NM_031085 have proven unsuccessful.  
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RT-PCR analysis of GPNT mRNA produced DNA fragments of the expected size for PKCα, PKCβ, 

PKCγ, PKCε and PKCθ (Figure 4.2A and Table 4.2). The fragments detected for PKCμ, PKCζ and PKCι 

were smaller than expected. PKCβ and PKCζ did produce additional DNA fragments suggesting that 

RT-PCR was not specific for these isoforms. A fragment of the expected size for PKCδ was only 

detected following nested PCR (Figure 4.2B).  

The identity of PCR products was further verified by either restriction enzyme digest analysis 

(Figure 4.3) or sequence analysis (Figure 4.4). Restriction enzymes were chosen that were 

predicted to cut the expected product once and produce fragments of different noticeable sizes. 

Restriction enzyme analysis corroborated the identity of fragments for PKCα (Figure 4.3 and Table 

4.3). The reaction for PKCε partially worked as at least one of the observed bands corresponded to 

that expected whilst the small observed fragment was slightly larger than expected. Digest 

products for PKCζ and PKCι varied by between 30 and 50 base pairs from those anticipated. Full-

length PKCζ product could be seen alongside the digest fragments with the strongest band 

corresponding to the input material (as detected in Figure 4.2A). Thus, completely different size 

bands were produced although it could be considered that these bands closely resembled those 

expected following restriction digest analysis. 

For all other PKC isoforms the predicted bands did not match those that were observed 

(Figure 4.3 and Table 4.3). Restriction enzyme digest analysis for PKCβ, PKCγ and PKCμ did not 

appear to work at all. Only the full-length PKCγ was observed suggesting that the restriction 

enzyme (AvaII) did not cut the fragment. For PKCβ the digest was unsuccessful as a band 

corresponding to the entire fragment (as seen in Figure 4.2A) was seen along with a second band 

of around 280 base pairs which was entirely unexpected. Only one digest fragment for PKCμ was 

identified which appears to be more compatible to the full-length product rather than that of the 

expected digest fragments implying that the reaction was inefficient. To this end, PKCδ was not 

included in any further analyses as results have been unreliable and PCR did not always produce 

an amplification product. 

To find evidence of a transcript for PKCθ was unexpected since it has previously been 

reported to be only present in skeletal muscle and T-lymphocytes (Altman and Villalba, 2003). To 

verify that this fragment was indeed PKCθ, sequencing was carried out. The sequence of the 

putative PKCθ fragment was identical to the corresponding region of rat PKCθ in the NCBI 

databank (Figure 4.4), confirming that PKCθ was also expressed in GPNT ECs. 
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Figure 4.2 RT-PCR analysis of PKC isoform expression in rat GPNT EC 

(A) RT-PCR analysis was performed using RNA isolated from GPNT and the primers specified in 

Chapter 2. PCR reactions were analysed by agarose gel electrophoresis. The size (in base pairs) of 

the fragments of the ladder run in lane 1 is indicated on the left. The asterisks indicate the relative 

migration position of the expected PCR product. 

(B) As in (A), except that nested PCR was performed to detect PKCδ. Lane 1: sizing ladder 

(fragment size in base pairs indicated on the left), lane 2: RT-PCR using primer pair 1, lane 3: RT-

PCR using primer pair 1 and the nested pair 2. The asterisk indicates the size of the predicted PKCδ 

amplification product. 
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Table 4.2: Amplified PKC product and verification method 

Isoform Expected fragment 

size (base pairs) 

Observed fragment 

size (base pairs) 

Verification 

PKCα 333 333 Restriction enzyme (Bg1II) 

PKCβ 512 506, 260 Restriction enzyme (EcoR1) 

PKCγ 350 350 Restriction enzyme (AvaII) 

PKCδ 427* 427 Nested PCR/ Restriction enzyme (SacI) 

PKCε 497 497 Restriction enzyme (EcoRI) 

PKCθ 292* 292 Sequencing 

PKCη N/A N/A RT-PCR has not produced a product 

PKCμ 563 515 Restriction enzyme (Pst1) 

PKCζ 554 506, 344 Restriction enzyme (AvaII) 

PKCι 537 497 Restriction enzyme (PstI) 

*nested PCR 

  



132 
 

 

 

Figure 4.3 Restriction enzyme analysis of RT-PCR fragments 

Restriction enzyme analysis of putative PKC fragments shown in Figure 4.2A. The asterisks indicate 

the relative migration position of the expected fragments after restriction enzyme digest.  
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Table 4.3: Restriction enzyme digest verification 

Isoform Expected fragment size (base pair) Observed fragment size (base pair) 

PKCα 228, 105 228, 105 

PKCβ 358, 158   506, 280  

PKCγ 230, 138  320  

PKCε 298, 199  298, 220 

PKCμ 420, 143 506 

PKCζ 435, 119 506, 400, 150  

PKCι 348, 190  400, 228  
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Figure 4.4 Sequencing analysis of the putative PKCθ fragment 

(A) The putative PKCθ fragment amplified by RT-PCR (shown in Figure 4.2) was sub-cloned and 

subjected to DNA sequencing as detailed in Chapter 2. Shown is part of the sequence trace as 

analysed by Chromaslite. 

(B) Sequence data from (A) was used to interrogate the NCBI database using the BLAST algorithm. 

Shown is a sequence alignment of our amplified fragment with rat PKCθ.  
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4.3.2 Protein expression of PKC isoforms in BMVECs 

 

 Next, I analysed the presence of PKC protein isoforms in GPNT cell lysates by immunoblotting. 

I had assembled a collection of PKC antibodies with demonstrated specificity to the respective 

isoforms (detailed in Chapter 2). 

 Extracts of proliferating GPNT ECs were subjected to SDS-PAGE and western blotting using all 

PKC isoform antibodies available within the laboratory. As documented in Figure 4.5 and Table 4.4 

I observed bands of the predicted molecular weight for all PKC isoforms, apart from PKCγ, in GPNT 

extracts. Most of the antibodies produced a single clear band with the exception of the antibody 

against PKCη and PKCβI. PKCη in addition to the expected band also immunodecorated a band at 

ca. 70 kDa, possibly a degradation product. The antibody specific for PKCβI detected a strong band 

at the predicted molecular weight although a number of seemingly unspecific bands were also 

detected. A monoclonal antibody directed against a shared epitope of PKCζ and PKCι detected 

several bands, some of which were clearly unspecific. Nevertheless, three bands corresponded to 

the two forms of PKCι, which exists as a short and long form, and PKCζ. However, only the long 

form of PKCι was detected with an alternative antibody. 

 To validate the results seen in the GPNT cell line, expression of PKC isoforms in the human 

BMVEC cell line CMEC/D3 was also investigated. As shown in Figure 4.6 and Table 4.4 the majority 

of PKC isoforms was clearly detected. Antibodies against PKCα, PKCβI, PKCδ, PKCε, PKCθ and PKCι 

produced a single or predominant band(s) at the expected size(s). Blots for PKCβII, PKCγ and PKCμ 

showed many background bands. Nevertheless, a strong band at the expected size was detected 

for PKCμ. Due to numerous bands being immunodecorated for PKCβII and PKCγ it was difficult to 

confirm expression unambiguously. Similar to the results using GPNT, antibodies against PKCη and 

PKCζ/ι detected additional proteins which may represent shorter or degraded proteins. Unlike in 

GPNTs the antibody against PKCι detected two bands corresponding to the short and long form 

suggesting that short  
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Figure 4.5 Expression of PKC protein isoforms in GPNT 

Proliferating rat GPNT were lysed and subjected to SDS-PAGE, western blotting and 

immunodetection using anti-PKC antibodies specific to the isoforms indicated. Shown on the left 

of each immunoblot are the relative molecular mass (in kDa) of marker proteins run in parallel. 

Arrows indicate bands that match the predicted weight (as specified in Table 4.4) of the PKC in 

question.  
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Figure 4.6 Expression of PKC protein isoforms in hCMEC/D3  

Proliferating hCMEC/D3 were lysed and subjected to SDS-PAGE, western blotting and 

immunodetection using anti-PKC antibodies specific to the isoforms indicated. Shown on the left 

of each immunoblot are the relative molecular masses (in kDa) of marker proteins run in parallel. 

Arrows indicate bands that match the predicted weight (as specified in Table 4.4) of the PKC in 

question. 
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Table 4.4: Protein expression verification 

Isoform Predicted molecular 

weight (kDa) 

Observed molecular weight (kDa) 

GPNT hCMEC/D3 

PKCα  80 81 78 

PKCβI 79 84 88 

PKCβII 79 84 N/D 

PKCγ 82 N/D N/D 

PKCδ 78 79 80 

PKCε 82 87 88 

PKCη 82 86 88 

PKCθ 82 83 82 

PKCι 65 (short) 

74 (long) 

63 

78/ 80  

74/72  

85/87 

PKCζ 86 83 89 

PKCμ 115 95 94 

(Underlined values are the relative migration rates for the PKCι antibody, N/D- not determined) 
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PKCι was expressed in human but not rat BMVEC. These two bands appeared to be at the same 

molecular weight as two observed using the PKCζ/ι antibody demonstrating that this antibody 

could distinguish between PKCι and PKCζ. 

As illustrated in Table 4.4 there were also very little noticeable differences in the predicted 

and observed molecular weight as well as between the two cell lines. This is most probably due to 

inaccuracies that can occur when SDS-PAGE is performed on minigels (with total migration 

distances of ca. 6cm). A great difference between the predicted and observed molecular weight 

was observed for PKCμ in both cell lines. In fact, at ca. 95 kDa, the observed bands were 

significantly smaller than the predicted 115kDa. Degradation may have occurred during lysis. 

Alternatively, PKCμ may retain some folding during SDS-PAGE and thus appear smaller than 

predicted. 

 

4.3.3 Translocation of PKC isoforms in response to cytokine, phorbol ester or antibody 

stimulation  

 

It has been well documented that PKC activation coincides with its translocation to different 

membrane compartments of the cell (Quittau-Prevostel et al., 2004; Collazos et al., 2006). Thus 

translocation can be used to measure activation of PKC isoforms in response to a specific stimulus. 

To determine whether this method could be used in our cell systems I analysed PKC translocation 

following stimulation with classical PKC activators, namely the phorbol ester PMA and TNF-α, as 

well as with, more specifically to our research question, anti-ICAM-1 antibody 1A29.  

Initially, I analysed PKC translocation by immunocytochemistry and fluorescent microscopy. 

All available antibodies were tested in GPNT. Good signals were obtained using the antibodies 

against PKCγ, PKCι and PKCζ/ι (Figure 4.7). All other isoform-specific antibodies failed to produce 

good signals (data not shown). Refinement of staining condition may lead to better result but this 

was not tried due to pursuit of other avenues. Sub-confluent GPNTs were stimulated with TNF-α 

or PMA and then stained for PKCγ, PKCι and PKCζ/ι. For these three isoforms, I was unable to 

investigate the response to ICAM-1 stimulation since the 1A29 antibody and the three anti-PKCs 

were derived from mouse and cross-reactivity would have been observed. PKCγ displayed diffuse  
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Figure 4.7 PKC distribution in GPNT  

Sub-confluent GPNTs were either left untreated (NT) or stimulated with either 100 U/ml TNF-α or 

160nM PMA for 10 min before being fixed using 3.7% formaldehyde. Following acetone extraction, 

dishes were stained for PKCγ (A), PKCι (B) or PKCι/ζ (C) as detailed in Chapter 2. Images were taken 

on Zeiss Axiophot light microscope. (Scale bar: 10µm) 

(Images kindly provided by Keely Plewa, Masters Student under my supervision)  
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 distribution throughout the cell and redistributed to the perinuclear region following both TNF-α 

and PMA stimulation (Figure 4.7A). PMA appeared to induce a more pronounced, vesicular 

distribution in the perinuclear region than TNF-α. PKCι was found diffuse throughout the GPNT 

cells. No clear change of localisation was seen following PMA or TNF-α stimulation (Figure 4.7B). 

When the anti-PKCζ/ι antibody was used I observed diffuse cytoplasmic staining which became 

more vesicular and more concentrated in perinuclear areas following TNF-α but not PMA, 

suggesting that PKCζ rather than PKCι was activated (Figure 4.7C). 

I also analysed the distribution of PKCs in the hCMEC/D3 cell line. Again I tested all available 

antibodies and again only a few resulted in clear signals, with the others presumably requiring 

adjustments to the staining conditions. In hCMEC/D3 clear signals were found using antibodies 

against PKCβI, PKCε and PKCθ. Since all three antibodies were raised in rabbit, it was possible to 

study the response to ICAM-1 stimulation in addition to PMA or TNF-α (Figure 4.8). In 

unstimulated hCMEC/D3 cells PKCβI was mainly cytoplasmic with diffused staining. In response to 

PMA and anti-ICAM-1 the staining became more pronounced and more vesicular (Figure 4.8A). No 

clear change of distribution was seen in response to TNF-α. PKCε was also detected throughout 

the cytoplasm in a diffuse/punctate pattern with some concentrated on one side of the 

perinuclear region. Following stimulation with anti-ICAM-1 or TNF-α, this distribution did not 

change overtly but became much more pronounced in particular the perinuclear staining (Figure 

4.8B). In contrast, PMA treatment did not produce a significant change in PKCε staining. PKCθ was 

cytoplasmic and strongly punctate (Figure 4.8C). This staining remained unchanged in response to 

TNF-α but became more diffuse following ICAM-1 ligation. The strongest redistribution was 

induced following PMA stimulation, which induced strong nuclear stain.  

Another way to analyse PKC activation and translocation is by cell fractionation. In a series of 

pilot experiments, I used a sedimentation protocol which separated cytoplasm from three 

particulate fractions enriched in nuclei, organelles and membrane, respectively (see Section 2.2.10 

for further details). hCMEC/D3 were grown to confluence, serum-starved and subjected to ICAM-1 

stimulation. Lysates were fractionated and immunoblotted using anti-PKCα and anti-PKCβI 

antibodies (Figure 4.9). In non-treated cells, PKCα and PKCβI were mainly found in the cytoplasmic 

and organelle fraction (pellet 2). During ICAM-1 stimulation PKCα was increasingly found in the 

nuclear fraction (pellet 1) and the membrane fraction (pellet 3) with a concomitant reduction in 

the cytoplasm. At the same time, PKCβI primarily accumulated in the nuclear fraction but not the  
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Figure 4.8 PKC distribution in hCMEC/D3  

Sub-confluent hCMEC/D3 were either left untreated (NT)  or stimulated with either 5µg/ml 1A29 

anti-ICAM-1 antibody, 100 U/ml TNF-α or 160nM PMA for 10 min before being fixed using 3.7% 

formaldehyde. Following acetone extraction, dishes were then stained for (A) PKCβI, (B) PKCε or 

(C) PKCθ as detailed in Chapter 2. Images were taken on Zeiss Axiophot light microscope. (Scale 

bar: 10µm) 
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Figure 4.9 PKC translocation in response to ICAM-1 stimulation analysed by cell fractionation 

Confluent hCMEC/D3 were serum-starved overnight before stimulation by ICAM-1 ligation for the 

times indicated. Fractionation and immunoblot analysis was carried out as described in Chapter 2. 

Shown are analyses of PKCα (A) and PKCβI (B). 
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membrane fraction. Taken together, PKC translocation occurred in response to ICAM-1 stimulation 

and this could be measured by both immunocytochemistry and immunoblotting.   

 

4.4 Discussion 

 

Based on pharmacological inhibition, endothelial PKC is involved in controlling TEM (Etienne-

Manneville et al., 2000). However, so far the isoforms involved have not been identified. Before I 

looked further into the role of PKC in ICAM-1-mediated signalling and lymphocyte transmigration, 

the PKC expression repertoire of GPNT and hCMEC/D3 cells was analysed. Collectively, mRNA and 

protein analyses revealed that PKCα, PKCβ, PKCδ, PKCε, PKCθ, PKCι and PKCμ were expressed in 

GPNT and hCMEC/D3 cells. Restriction digest analysis was not always efficient and incurred 

problems for some PKC isoform analysis suggesting alternative restriction enzymes are required 

for use in the studies. Only PKCα, and to some extent PKCε transcripts were unambiguously 

identified. Restriction analysis of the other PKC isoforms often produced full-length fragments, 

suggesting that digests were incomplete and that there was either an issue with the restriction 

enzyme used, for example it may no longer have worked effectively or was not appropriate for 

that particular isoform in question or there may have been a problem with the DNA used in the 

reaction Alternatively, fragments were detected that varied by 30 to 50 base pairs from the 

predicted length, which were not too dissimilar from those expected. Variations in the bands may 

have arisen due to the agarose gel the digest was analysed on, for instance the bands may have 

migrated slighty faster or slower than anticipated or a problem with the gel may have been 

incurred. Another potential reason could be that for some of the PKC isoforms a predicted 

sequence was used from the NCBI database, thus potentially leading to miscalculations in the 

band sizes expected following the reaction with the restriction enzyme utilised.   

In some cases, such as for PKCβ and PKCδ, RT-PCR analysis proved difficult but immunoblot 

analysis was unambiguous. I was unable to detect PKCη by PCR but in western blots a band close 

to the predicted weight was observed. However, since other low molecular weight proteins were 

detected in the same immunoblots it cannot be concluded unequivocally that PKCη is expressed in 

BMVEC. The expression of PKCι, PKCζ and PKCμ in BMVEC is likely since clear evidence was found 

by RT-PCR, albeit the observed fragments were slightly smaller in size than expected. PKCζ could 
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not be unambiguously identified in western blots since the antibody also recognised the PKCι 

isoform. PKCμ immunoblots revealed a band which migrated significantly faster than predicted. 

Alone the expression of PKCγ could not be verified appropriately: RT-PCR produced a fragment of 

the predicted size which, however, was resistant to restriction enzyme digests. DNA sequencing 

should probably have been performed. Furthermore, immunoblot analyses did not detect any 

protein in GPNT and in hCMEC/D3 a high background was observed making it difficult to verify its 

expression within the cell line. However, a clear PMA-sensitive signal was detected by 

immunocytochemistry. Taken together, it appeared that most, if not all, PKC isoforms are present 

in BMVEC, in particular GPNT, and that PKCγ and PKCη require further investigation. Our results 

are in agreement with studies by Kizbai and colleagues who studied the expression of PKCα, PKCβ, 

PKCγ, PKCδ, PKCε, PKCη and PKCζ in rat BMVEC and found them all to be present (Krizbai et al., 

1995). Surprisingly clear evidence for PKCθ expression was found both on the mRNA and protein 

level. Its expression has so far been reported to be restricted to skeletal muscle and T-lymphocytes 

(Tan and Parker, 2003; Altman and Villalba, 2003; Quann et al., 2011). Clearly, the brain 

microvascular endothelium is another cell type that uses PKCθ. 

Studies demonstrating that PKC is involved in lymphocyte transmigration used different PKC 

inhibitors which show broad specificity towards the different isoforms. One rationale to study the 

expression of PKC isoforms in BMVEC was to possibly be able to restrict future analyses due to a 

restricted isoform expression profile. However, our results have shown that this is not possible 

since most, if not all, known PKC isoforms are expressed in BMVECs. Further functional activation 

studies or analyses using isoform specific RNA interference will be required to identify the PKC 

isoforms involved in TEM. 

Pilot experiments were performed to study PKC isoform activation through its intracellular 

localisation. For this, the translocation of PKC to cellular membranes during activation is exploited 

(Quittau-Prevostel et al., 2004; Louis et al., 2005; Collazos et al., 2006). These studies were 

initiated but not pursued to completion since other avenues (described in Chapters 5-8) took 

precedence. An important caveat for the following discussion is that none of the studies were 

performed systematically, i.e. only selected antibodies were used for each method of analysis. 

Immunocytochemical analysis worked for some antibodies. PMA stimulation induced the 

translocation of PKCγ in GPNT and PKCβI and PKCθ in hCMEC/D3. TNF-α stimulation led to 

translocation of PKCζ in GPNT and PKCε in hCMEC/D3. ICAM-1 stimulation in hCMEC/D3 produced 
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clear translocation of PKCβI, PKCε and PKCθ. These results were in line with the known activation 

modes of PKC isoforms (see Section 4.1.), e.g. PKCζ was found to translocate in response to TNF-α 

but not PMA, as would be expected since aPKC lack the appropriate DAG/phorbol ester binding 

domain. Importantly, these results also showed that different PKC isoforms translocate to 

different regions of the cell in response to the same stimuli. For instance, PMA induced 

cytoplasmic (possibly membrane) localisation and nuclear translocation of PKCα and PKCθ, 

respectively. 

Immunocytochemical analysis of PKC translocation was rapid, highly informative and required 

little starting material. However, since our objective was to study PKC activation during ICAM-1 

stimulation which is brought about by ligating surface ICAM-1 using high concentrations of a 

mouse monoclonal antibody, this method could not be used when only mouse PKC isoform 

antibodies were available. This problem could be solved by using directly labelled (with a 

fluorophore or biotin) PKC antibodies for staining or the Zenon method (Invitrogen) which utilises 

preformed primary-secondary antibody complexes. Initial trials have been started for both 

methods but optimisation would be needed for clear results.  

I also employed subcellular fractionation as an alternative method which would work with 

any antibody, even those that are not mono-specific as long as the isoform in question can be 

clearly identified. To prove that PKC translocation was detectable in response to ICAM-1 

stimulation fractionated cell extracts were immunoblotted using antibodies against PKCα and 

PKCβI. In both cases a clear shift of PKC from one subcellular fraction to another was observed, 

suggesting that ICAM-1 stimulation led to the activation of both PKC isoforms. In contrast, and in 

comparison to analysis by immunohistochemistry, fractionation protocols were drawn-out and 

required much more starting material. Furthermore, the information on the intracellular 

relocalisation was less specific. For instance, biochemically the majority of PKCβI was found in the 

nuclear fraction (pellet 1) following ICAM-1 ligation. Immunocytochemical analysis suggested that 

translocation occurred to a vesicular compartment in the cytoplasm or the perinuclear region. It is 

possible that fractionated nuclei were contaminated with other cellular components due to 

continued association with the cytoskeleton (in particular actin and intermediate filaments). 

Taken together, a combination of both immunohistochemistry and fractionation may be 

required to analyse PKC isoform activation following ICAM-1 stimulation. In our pilot studies, I 

found clear evidence for the activation of PKCα, PKCβI, PKCε and PKCθ in response to ICAM-1 
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ligation, suggesting that many endothelial PKC isoforms are involved during ICAM-1-mediated 

TEM.  
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Chapter 5: ICAM-1-mediated MAP kinase activation in BMVECs 

 

5.1 Introduction 

 

ICAM-1 has been shown not only to have a role in firm adhesion capturing the lymphocyte to 

the endothelium from the blood flow to recruit it to tissue underneath but also in rendering the 

endothelium compliant to transmigration. ICAM-1-mediated outside-in signalling is important for 

this to occur. A number of groups have investigated ICAM-1-mediated signalling in a number of 

model systems derived from different vascular beds. Within these studies three important MAP 

kinases, namely ERK, JNK and p38, have been shown to be activated in response to ICAM-1 

stimulation. MAP kinases respond to numerous extra- and intracellular stimuli that specifically 

direct their activity to regulating functions including growth control, cytoprotection and the 

cellular response to inflammation and stress (Hoefen and Berk, 2002). Generally, growth factors 

and phorbol esters lead to the activation of ERK1/2 whilst JNK and p38 respond to stress stimuli 

including cytokine stimulation and osmotic shock (Roux and Blenis, 2004). The response of each of 

the MAP kinases can lead to the phosphorylation of a number of downstream effector substrate 

including other kinases, cytoskeletal proteins and transcription factors.  

In HUVEC, sustained ERK activation occurs within 30 min of ICAM-1 cross-linking (Lawson et 

al., 1999). In pulmonary MVEC stimulated with TNF-α, p38 is activated within a few minutes 

following ICAM-1 cross-linking (Wang and Doerschuk, 2001). In immortalised rat BMVEC JNK 

activation occurs within 15 min of ICAM-1 cross-linking (Etienne et al., 1998). Thus, the activation 

of all three major MAP kinases is clearly part of ICAM-1 signalling in ECs. However, major 

questions remain: firstly, each of these studies has used fundamentally different EC (at different 

activation states) and therefore it is unclear if all three MAP kinases are activated within the same 

cell type in response to ICAM-1 activation or if individual MAP kinase activation is cell-type 

specific. Secondly, it is unclear whether comparable methods of ICAM-1 activation have been used 

in the aforementioned studies. ICAM-1 can be activated by simple antibody (or ligand) binding 

(Martinelli et al., 2009), by antibody-mediated cross-linking (Etienne et al., 1998; Lawson et al., 

1999; Wang and Doerschuk, 2001), by antibody-coated beads (van Buul et al., 2007b) or by direct 

T-lymphocyte adhesion (Greenwood et al., 2003a). Each of these activation methods can result in 



149 
 

different intracellular signalling and activation time courses. Taken together, a more detailed 

analysis in a single EC type should clarify how ERK, JNK and p38 signalling relates to ICAM-1 

activation. 

 

5.2 Aim 

 

The aim of this part of the study was to determine if ERK, JNK and p38 were activated in non-

cytokine stimulated BMVEC in response to ICAM-1 stimulation. Different ICAM-1 activation 

methods were to be used to ascertain that MAP kinase activation was relevant. Lastly, if activation 

occurred, I am interested in the timeframe of activation so that this could be correlated to other 

previously identified pathways.  

 

5.3 Results 

 

5.3.1 ICAM-1 stimulation mediates the phosphorylation of the endothelial MAP kinases ERK, p38 

and JNK 

 

Activation of the three MAP kinases in response to ICAM-1 stimulation was studied in 

confluent, contact-inhibited GPNT BMVECs which were made quiescent by serum starvation. In a 

first experimental setup I chose to stimulate ICAM-1 by antibody-mediated cross-linking. This is 

the most commonly used method of adhesion receptor activation and consists of a primary 

incubation with ICAM-1 specific antibodies followed by surface clustering of the antibody-ICAM-1 

complexes by the addition of secondary antibodies. As also discussed below, the primary 

incubation has erroneously been considered a neutral period when no signalling is triggered. 

Therefore investigators have never paid much attention to incubation times, which varied 

between a few minutes and 1 h. Instead, in such studies activation times relate to incubation with 

secondary antibody. I performed ICAM-1 cross-linking by incubation with anti-rat ICAM-1 antibody 

1A29 for 30 min (by which time primary signalling has usually subsided), followed by washes and 
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the addition of secondary antibody for different times (Figure 5.1). Lysates were analysed for MAP 

kinase activation by immunoblotting using specific anti-phospho-antibodies for ERK, JNK and p38 

(Figure 5.1A). MAP kinases are activated in response to dual phosphorylation of threonine (Thr) 

and tyrosine (Tyr) residues in conserved motifs (Thr-X-Tyr) located in the activation loop (Davis, 

2000; Clark et al., 2003; Roux and Blenis, 2004). Therefore, phosphorylation is commonly assumed 

to determine activation of MAP kinases. Antibodies for the specific dual phosphorylation sites for 

each MAP kinase were used to determine activation of each of the specific MAP kinases of 

interest: phospho-ERK (Thr 202/Tyr 204), phospho-JNK (Thr 183/Tyr 185) and phospho-p38 (Thr 

180/Tyr 182). Within 5 min, significant increases were detected in the cellular content of all three 

phospho-MAP kinases. ERK phosphorylation increased for 15 min and decreased after that. JNK 

phosphorylation followed a similar pattern to that of ERK whilst p38 phosphorylation was 

maintained for at least 45 min. Maximal phosphorylation was 3.5-, 2- and 3-fold for ERK, JNK and 

p38 respectively (Figure 5.1B). Phosphorylation was specific to ICAM-1 cross-linking since in 

control experiments using neural iso-type specific control IgG during the primary incubation 

neither JNK nor p38 displayed significant increases in phosphorylation (Figure 5.2). ERK appeared 

to display an increase in phosphorylation albeit less than that observed with ICAM-1 cross-linking.  

Previous work in the laboratory has shown that incubation of GPNT with primary antibody 

alone (termed ‘ICAM-1 ligation’) is sufficient to trigger microaggregation and also ICAM-1 

signalling (Martinelli et al., 2009). I therefore wanted to determine if the anti-rat ICAM-1 antibody 

1A29 was sufficient to induce phosphorylation of the three MAP kinases. As with the cross-linking 

experiment GPNT EC were grown to confluency, serum-starved and then stimulated with 1A29 

antibody for varying lengths of time before cell extracts were prepared. Immunoblot analysis 

showed that ERK, JNK and p38 were all strongly phosphorylated in response to ICAM-1 ligation. In 

fact, phosphorylation occurred more rapidly as when compared to the ICAM-1 cross-linking (Figure 

5.3A). ERK and p38 showed significant increase in phosphorylation within 1 min of ICAM-1 ligation 

whilst for JNK this was seen within 2 min. Maximal phosphorylation was greater than 4-fold for 

p38 and greater than 3-fold for ERK and JNK (Figure 5.3B). Activatory phosphorylation of all three 

MAP kinases was all transient and had reverted to control levels within 20 min. 

To confirm that the phosphorylation of endothelial ERK, JNK and p38 in response to ICAM-1 

stimulation was not species or cell line specific, the immortalised human BMVEC line, hCMEC/D3, 

and primary rat BMVEC were used to verify the results. MAP kinases of the human D3 cell line 
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Figure 5.1 Endothelial ERK, JNK and p38 are phosphorylated in response to ICAM-1 cross-linking 

(A) GPNT cells were grown to confluency and then stimulated with anti-ICAM-1 antibody (5μg/ml) 

for 30 min, washed once with HBSS and then stimulated with secondary antibody (10μg/ml) for 

time indicated before being lysed. Proteins of lysates were then subjected to SDS-PAGE, 

transferred to nitrocellulose membranes which were then probed with antibodies directed against 

phospho-ERK, -JNK, -p38 and tubulin as a loading control.  

(B) Densitometry quantification of 3 experiments including (A) represented as a fold increase of 

phosphorylation for the three MAP kinases compared to control. Results are expressed as average 

means +/- SEM. Student’s t test was used to analyse the variances of mean values. *, P < 0.05; **, 

0.001<P< 0.01; ***, P ≤ 0.001 
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Figure 5.2 Phosphorylation of endothelial ERK, JNK and p38 is a specific response to ICAM-1 cross-

linking 

GPNTs were grown to confluency, serum-starved and incubated with either anti-ICAM-1 antibody 

1A29 or control isotype-matched IgG (5μg/ml) for 30 min followed by a 5 min cross-linking with 

secondary antibodies. Cells were the lysed and subjected to immunoblotting as described for 

Figure 5.1. 
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Figure 5.3 ICAM-1 ligation leads to transient phosphorylation of endothelial ERK, JNK and p38.  

(A) GPNT cells were grown to confluency and then stimulated with anti-ICAM-1 antibody 1A29 

(5μg/ml) for the times indicated and then analysed by western blotting as described in Figure 5.1. 

(B) Densitometry quantification of the data from (A) and 2 other independent experiments 

represented as an average fold increase of phosphorylation for the three MAP kinases compared 

to control +/- SEM. Variances of mean values were statistically analysed by the Student’s t test. *, 

P < 0.05; **, 0.001<P< 0.01; ***, P ≤ 0.001 

 



154 
 

responded in a similar manner to that of GPNT following both ICAM-1 ligation and cross-linking 

(Figure 5.4). Phosphorylation of MAP kinases appears to be similar to that observed in GPNT EC for 

both ICAM-1 ligation and cross-linking. Each MAP kinase was phosphorylated within 5 min of 

stimulation by either ICAM-1 ligation or cross-linking. An apparent difference seems to suggest 

that ICAM-1 cross-linking in hCMEC/D3s is transient when compared to the sustained response 

seen in GPNT BMVEC. Overall, this suggested that MAP kinase activation is not cell or species 

specific.   

In primary rat BMVECs, I investigated time points that had previously shown significant 

phosphorylation of all three kinases following either ICAM-1 ligation or cross-linking in GPNT and 

hCMEC/D3. Specifically, I studied ICAM-1 ligation at 2 and 5 min and cross-linking at 10 and 20 

min. ICAM-1 mediated phosphorylation was observed for all three MAP kinases (Figure 5.5A). 

Within the time points chosen ERK phosphorylation was strongest following ICAM-1 ligation for 5 

min and cross-linking of ICAM-1 for 10 min (Figure 5.5B). Strong JNK activation was observed 

within 2 min of ICAM-1 ligation and at both times of cross-linking. p38 phosphorylation was 

equally rapidly induced following ligation and sustained at 10 and 20 min cross-linking. Thus for all 

three kinases activatory phosphorylation occurred in a similar way in primary and immortalised 

cells, suggesting that GPNTs were suitable for further studies of ICAM-1-mediated MAP kinase 

signalling networks.  

 

5.3.2 Lymphocyte adhesion results in the phosphorylation of endothelial ERK, p38 and JNK 

 

Physiologically, the activation and aggregation of endothelial ICAM-1 is triggered by 

interaction with leukocyte integrin LFA-1 (αLβ2 integrin) or MAC-1 (αMβ2 integrin) (Hubbard and 

Rothlein, 2000; Ley et al., 2007; Vestweber, 2007). Thus, I wanted to determine whether adhesion 

of lymphocytes to GPNTs induced MAP kinase activation and whether such activation was 

dependent on LFA-1 which is the dominant counter-receptor of ICAM-1 in lymphocytes 

(Greenwood et al., 1995; Pryce et al., 1997; Lyck et al., 2003). GPNT BMVEC were co-cultured with 

concanavalin A-activated PLN lymphocytes which adhere efficiently but do not transmigrate (since 

in contrast to circulating lymphocytes they are not antigen-activated). At various times thereafter 

adherent lymphocytes were washed off with ice-cold PBS, lysates were prepared and analysed by  
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Figure 5.4 ERK, JNK and p38 are phosphorylated in response to ICAM-1 ligation and ICAM-1 cross-

linking in human BMVEC (hCMEC/D3) 

Western blot analysis of ICAM-1 induced phosphorylation of MAP kinases performed as described 

in Figures 5.1 and 5.3 with the exception that the human BMVEC cell line hCMEC/D3 was used and 

mouse anti-human ICAM-1 (CD54) antibody. 
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Figure 5.5 ERK, JNK and p38 are phosphorylated in response to ICAM-1 ligation and cross-linking in 

primary rat BMVEC 

(A) Primary rat BMVEC were grown to confluency and stimulated by ICAM-1 ligation or cross-

linking as described in Figures 5.1 and 5.3. They were subsequently analysed by immunoblotting.  

(B) Densitometry quantification of data from (A) and two other independent experiments. Results 

are expressed as mean average of fold increase of phosphorylation of the three MAP kinases 

compared to control +/- SEM. Variances of mean values were statistically analysed by the 

Student’s t test. *, P < 0.05; **, 0.001<P< 0.01; ***, P ≤ 0.001 
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immunoblotting with phospho-specific antibodies. Figure 5.6A shows that phosphorylation of ERK, 

JNK and p38 occurred within 5 min of co-culture and was sustained for at least an hour. Within 15 

min of lymphocyte exposure endothelial ERK, JNK and p38 phosphorylation increased significantly 

by 4-, 2.5- and 2-fold, respectively (Figure 5.6B).  

To assess the contribution of the LFA-1-ICAM-1 interaction to MAP kinase activation GPNTs 

were co-cultured with PLN lymphocytes that had been pre-incubated with function-blocking 

antibodies to the ICAM-1-ligand LFA-1 (CD18 and CD11α). After 30 min of co-culture endothelial 

lysates were prepared and analysed. Figure 5.7A shows that incubation with PLN lymphocytes 

increases MAP kinase phosphorylation and is decreased when PLNs are incubated with function-

blocking antibodies. Phosphorylation for all three endothelial MAP kinases was reduced by around 

40% when LFA-1 was functionally blocked (Figure 5.7B), suggesting that the interaction with 

lymphocyte LFA-1 can play an important role in ICAM-1-mediated endothelial MAP kinase 

activation. 

In contrast, when pre-incubated with function-blocking antibodies to the VCAM-1 ligand VLA-

4 (CD49) PLN lymphocyte adhesion produced uninhibited MAP kinase phosphorylation (Figure 

5.8A and B). In fact, there was some increase in p38 phosphorylation (Figure 5.8B). 

 

5.3.2 Anti-ICAM-1-coated beads mimic receptor ligation and cross-linking 

 

I also used 1A29 antibody bound to fluorescent GFP beads to activate GPNT (as described in 

Section 2.2.14). Added to quiescent, confluent GPNT they induced rapid and sustained 

phosphorylation of ERK, JNK and p38 (Figure 5.9A). MAP kinase phosphorylation occurred (and for 

ERK and JNK peaked) within 5 min of bead addition and was sustained for at least 1 h. Similar 

results were obtained using 1A29 bound to protein G-Dynabeads (Figure 5.9B). Phosphorylation of 

p38 detected two distinct bands of different molecular weights. It is likely that these bands 

correspond to the isoforms p38α and p38β which have not been routinely separated on previous 

blots. In both sets of experiments MAP kinase phosphorylation seemed to be biphasic over time, 

with highest levels reached after a few minutes, decreasing thereafter and increasing again 

towards the latter part of the incubation period. This data suggested that biphasic activation may 

not be an artefact of the cross-linking strategy. 
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Figure 5.6 Lymphocyte adhesion results in endothelial ERK, JNK and p38 phosphorylation  

(A) GPNT BMVEC were grown to confluency, serum-starved and co-cultured with 2 X 106/ml 

concanavalin A-activated rat PLN lymphocytes for the times indicated. Lymphocytes were 

thoroughly washed off and lysates prepared from the remaining EC monolayers. Lysates were 

analysed by immunoblotting as described for Figure 5.1 using antibodies against phospho-ERK, -

JNK and -p38 and tubulin, JNK1/2 and p38 as loading controls.  

(B) Densitometry quantification of 3 experiments including (A) represented as a fold increase 

changes in the three MAP kinases in relation to control +/- SEM. Variances of mean values were 

statistically analysed by the Student’s t test. *, P < 0.05; **, 0.001<P< 0.01; ***, P ≤ 0.001 
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Figure 5.7 Interaction of endothelial ICAM-1 with its counter-receptor LFA-1 on lymphocyte is 

important for MAP kinase phosphorylation 

(A) PLN lymphocytes were pre-incubated with anti-LFA-1 blocking antibodies, CD18 and CD11α, 

(20µg/ml) for 60 min before addition to GPNTs. Control PLNs were incubated without any 

antibodies. Following co-culture with GPNT for 30 min PLNs were extensively washed off with ice-

cold PBS, lysates prepared and analysed by immunoblotting as described for Figure 5.1. High 

variability in MAP kinase phosphorylation was observed when compared to GPNT alone and hence 

the absolute values of inhibition differed greatly. The data shown in Figure 5.7B is expressed as a 

percent inhibition of maximal activation (PLN lymphocyte alone). 

(B) Densitometry quantification of data from (A) and 2 other independent experiments. Mean 

values are expressed as percent inhibition of maximal activation (-anti-LFA-1) +/- SEM.  Student’s t 

test was used for statistical analysis of mean value variance. *, P < 0.05; **, 0.001<P< 0.01; ***, P 

≤ 0.001 
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Figure 5.8 Interaction of endothelial VCAM-1 with its counter receptor VLA-4 on lymphocytes is 

insufficient to induce MAP kinase phosphorylation 

(A) As described in Figure 5.7 with the exception that PLN lymphocytes were pre-incubated with 

the anti-VLA-4 blocking antibody CD49 (20µg/ml). Lysates were prepared and analysed as 

described in Figure 5.1. 

(B) Densitometry quantification of data from (A) and 2 other independent experiments. Mean 

values are expressed as percent inhibition of maximal activation (-anti-VLA-4) +/- SEM. Variances 

of mean values were statistically analysed by the Student’s t test. *, P < 0.05; **, 0.001<P< 0.01; 

***, P ≤ 0.001 
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Figure 5.9 Anti-ICAM-1-coated fluorescent beads and protein G-dynabeads as a novel method to 

induce MAP kinase phosphorylation   

(A) Anti-ICAM-1-coated fluorescently labelled beads (0.36 X 106/cm2) were co-cultured with 

confluent, serum-starved GPNT EC monolayer for the indicated times. Lysates were prepared and 

analysed as described for Figure 5.1.   

(B) As in (A) with the exception GPNT EC monolayers were co-cultured with anti-ICAM-1-coated 

protein G-Dynabeads.  
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5.4 Discussion 

 

When lymphocytes adhere to the vascular endothelium the interaction of LFA-1 and ICAM-1 

also induces EC signalling. ICAM-1-mediated signalling causes the activation of the MAP kinases 

ERK, p38 or JNK; with each case studied in fundamentally different EC model systems (Etienne et 

al., 1998; Lawson et al., 1999; Wang and Doerschuk, 2001). I show that all three MAP kinases were 

phosphorylated in the same EC cell line with similar time courses in response to a variety of 

different ICAM-1 activation modes. Phosphorylation occurred on Thr 202/Tyr 204, Thr 183/Tyr 185 

and Thr 180/Tyr 182 for ERK, JNK and p38, respectively, which correlates to kinase activation 

(Davis, 2000; Roux and Blenis, 2004).  

 All three MAP kinases in this study were shown to be activated in response to ICAM-1 cross-

linking (Figure 5.1) which classically consists of an initial incubation period with primary antibody. 

Incubation periods with primary antibody have erroneously been considered not to trigger any 

receptor-dependent signalling. Thus little attention has been paid to primary incubation times 

which vary from 5 to 60 min dependent on the laboratory. However, work from our laboratory has 

shown that ligation using anti-ICAM-1 antibodies alone is sufficient to induce ICAM-1 

microaggregation and Ca2+, CaMKK, and AMPK signalling (Martinelli et al., 2009). ICAM-1 ligation 

using primary antibody alone induces ICAM-1 surface clusters which are smaller but more 

frequent than those seen following cross-linking using a secondary antibody, suggesting that 

ICAM-1 ligation is an intermediary step in receptor aggregation and cell activation. In support I 

found that ICAM-1 ligation was also sufficient to activate ERK, JNK and p38 (Figure 5.3). 

Phosphorylation of all three MAP kinases occurred within 1 to 2 min of ICAM-1 ligation and thus 

more rapid than compared to ICAM-1 cross-linking. Differences were also notable in the length of 

activation of the three kinases depending on whether ICAM-1 ligation or cross-linking was carried 

out. ERK, JNK and p38 showed transient activation which peaked at around 5 min following ICAM-

1 ligation, whereas activation was more sustained following cross-linking, with p38 

phosphorylation being high for at least 45 min. 

It is noteworthy that our experimental conditions of ICAM-1 cross-linking employed the 

secondary antibody only at a time when MAP kinase phosphorylation in response to activation by 

primary antibody had completely receded. Overall, our results investigating MAP kinase activation 
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following ICAM-1 cross-linking corroborate previous data in other model systems.  Notable 

differences were in the timing of MAP kinase phosphorylation and the length of activation. The 

transient nature of ERK phosphorylation following ICAM-1 cross-linking in GPNT differed to the 

activation of ERK seen in HUVECs which occurs later at 30 min and is sustained for at least an hour 

(Lawson et al., 1999). This difference in the activation profile could be due to HUVEC being derived 

from macrovasculature compared to brain microvasculature giving subtle differences in signalling 

properties. Alternatively, it may also be due to differences in the cross-linking protocol or the use 

of a different anti-ICAM-1 antibody. Etienne and colleagues investigated the activation of JNK 

using the GPNT parent cell line GP8 and the same anti-ICAM-1 antibody 1A29 (Etienne et al., 

1998). They observed maximal activation of JNK at 30 min as compared to 5 to 15 min in our 

study. However, this difference may be explained by differences in the duration with primary 

antibody. Etienne et al. added secondary antibody after 10 min as opposed to the 30 min in our 

study. Furthermore, these authors also measured c-Jun phosphorylation in JNK 

immunoprecipitates rather than JNK phosphorylation. As to ICAM-1-induced p38 activation in 

pulmonary MVEC, the study by Wang and Doerschuk looked at times up to 10 min and transient 

activation was seen within 2 to 6 min (Wang and Doerschuk, 2001). This is very similar to our 

observations although I observed much more sustained phosphorylation of p38. 

Primary rat BMVECs were also used to ensure that the activation profile seen using GPNTs was 

not due to their immortalisation. ERK, JNK and p38 phosphorylation in response to ICAM-1 ligation 

or cross-linking of primary BMVECs matched that of GPNT (Figure 5.5). Whether or not activation 

profiles were identical cannot be concluded from this data since I did not analyse full time courses. 

I also analysed MAP kinase activation in a human equivalent to GPNT, the BMVEC line, hCMEC/D3. 

MAP kinase phosphorylation appeared to occur at a similar rate following ICAM-1 ligation and 

cross-linking although responses to cross-linking appeared to be more short-lived (Figure 5.4).  

Taken together and in combination with previous reports, this work suggests that similar MAP 

kinase signalling cascades act downstream of ICAM-1 in MVEC, irrespective of their origin and 

species. Thus GPNT cells appear appropriate to study the intricacies and role of endothelial ICAM-

1-mediated MAP kinase signalling.  

These results give rise to the idea that microaggregation is followed by macroaggregation in 

the physiological activation of ICAM-1 and that crucially our experimental conditions allow 

separation of the two activation states.  
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None of the aforementioned reports on ICAM-1-mediated MAP kinase activation in EC 

addresses the questions whether such activation can also be induced by the physiological 

stimulus, which is leukocyte adhesion. Here, I show that lymphocyte adhesion to GPNT induced 

ERK, JNK and p38 phosphorylation in an LFA-1- (but not VLA-4) dependent manner (Figure 5.7 and 

5.8). Phosphorylation of all three MAP kinases occurred within 15 min of lymphocyte adhesion and 

was sustained for at least 1 h (Figure 5.6). This sustained response was different to that when 

ICAM-1 antibodies were used. This may have been due to a number of factors. Firstly, lymphocytes 

do not only adhere to EC via ICAM-1 and adhesion via selectins and other CAMs may also induce 

MAP kinases (van Buul et al., 2007b; van Buul and Hordijk, 2009). Indeed, I only found a ca. 40% 

reduction in MAP kinase phosphorylation when LFA-1 was neutralised on lymphocytes. Although, 

such neutralisation can never be complete, the same treatment of lymphocytes leads to an 80-

90% inhibition of migration (Greenwood et al., 1995), suggesting that receptors other than ICAM-1 

contributed to MAP kinase activation in response to lymphocyte adhesion. Secondly, ICAM-1 

clustering on the EC surface was undoubtedly different in response to lymphocyte adhesion and 

antibody cross-linking. For instance, LFA-1-ICAM-1 interactions and clustering are restricted to 

specific areas of the advancing leukocyte (Smith et al., 2005). Similarly, it has also been observed 

that lymphocytes have preferentially sites of adherence on the EC. In clear contrast antibody-

mediated ligation does not occur at preferred areas of the EC cell surface (Turowski et al., 2008). 

Thus leukocyte adhesion may give rise to a more focused and consequently different MAP kinase 

response.  

Antibody-mediated ICAM-1 ligation or cross-linking are ways to mimic and study part of the 

lymphocyte adhesion process and ensuing EC signalling. However, they are clearly not reproducing 

EC signalling in its entirety. Another way to model leukocyte interactions with EC ICAM-1 is by 

using antibody-coated beads (van Buul et al., 2007b). As shown in Chapter 3, such beads appeared 

to trigger EC activation only after being lateralised and preferentially immobilised in tri-cellular 

junctions, areas reported to serve as preferential site of transmigration. Here, I show that the 

addition of anti-ICAM-1-coated beads to GPNT activated all three MAP kinases in a similar manner 

to that seen by ICAM-1 ligation and cross-linking. In fact, biphasic MAP kinase phosphorylation 

appeared to be observed, suggesting that antibody-coated beads mimic ligation 

(microaggregation) and cross-linking (clustering) of ICAM-1. To eliminate the possibility that this 

apparent biphasic activation is due to noise background further experiments would need to be 

carried out. Taken together these results indicate that whilst antibody-coated beads will be useful 
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to delineate spatio-temporal events of EC ICAM-1 by microscopy, the straightforward use of 

soluble antibody in ligation or cross-linking experiments is sufficient to study biochemical aspects 

of ICAM-1-mediated MAP kinase signalling networks.  

Overall the results presented in this chapter show that the interaction between LFA-1 and 

ICAM-1 is not only important for cell adhesion but also leads to significant EC MAP kinase 

activation. I observed clear differences in the time frame and duration of their phosphorylation, 

implying that ICAM-1-mediated activation of ERK, JNK and p38 uses distinct pathways and that 

MAP kinase have distinct roles in leukocyte-EC interaction.  
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Chapter 6: Upstream mediators of MAP kinase activation 

 

6.1 Introduction 

 

As shown in Chapter 5 MAP kinase activation occurred in response to both ICAM-1 ligation, 

cross-linking and lymphocyte adhesion. Since the timing and magnitude of ICAM-1-induced 

activation of the three MAP kinases differed, ERK, JNK and p38 may be operating in different 

signalling axes fulfilling distinct roles. 

Many studies have shown that ICAM-1-mediated signalling leads to activation and 

phosphorylation of numerous signalling proteins (Durieu-Trautmann et al., 1994; Etienne et al., 

1998; Adamson et al., 1999; Etienne-Manneville et al., 2000; Tilghman and Hoover, 2002; Yang et 

al., 2006a; Yang et al., 2006b). Important examples of components of the EC shown to respond to 

ICAM-1 stimulation and being involved in TEM include the small GTPase Rho, actin dynamics, Src 

and PKC. Src activation occurs in response to ICAM-1 engagement in HUVECs and rat BMVEC 

systems as well as in pulmonary EC suggesting that it is a key mediator of ICAM-1 signalling 

(Durieu-Trautmann et al., 1994; Etienne-Manneville et al., 2000; Tilghman and Hoover, 2002). Src 

inhibition using the specific inhibitor PP2 (Hanke et al., 1996) has been shown to abolish ICAM-1-

mediated phosphorylation of p38 in TNF-α stimulated pulmonary EC, suggesting Src operates 

upstream of p38 (Wang et al., 2003). 

Activation of endothelial Rho in response to ICAM-1 cross-linking mediates many functions 

including rearrangements of the actin cytoskeleton (Etienne-Manneville et al., 2000). The 

exoenzyme C3 transferase selectively inactivates the small GTPases RhoA, RhoB, and RhoC, by 

inducing ADP-ribosylation both in vivo and in vitro (Aktories and Hall, 1989). The use of C3 

transferase in GPNT cells showed that Rho also operates upstream of ICAM-1-induced JNK 

activation (Etienne et al., 1998).  

Other work by Etienne-Manneville and colleagues has shown that ICAM-1-dependent Src 

activation in GPNT is downstream of a pathway involving PLCγ, PKC and Ca2+ (Etienne-Manneville 

et al., 2000). Specifically, Src activity was inhibited by overnight incubation with the phorbol ester 

PMA. PMA stimulates PKC activity but long-term exposure of cells leads to downregulation of PKC 
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activity. GF109203X, a more specific, direct PKC inhibitor, also prevented the activation of Src in 

the study.  

 

6.2 Aim 

 

ERK, JNK and p38 are activated in response to ICAM-1 ligation and ICAM-1 cross-linking. 

Previous work suggests that Src and Rho are important for p38 and JNK activation, respectively, 

but this has not been fully studied within the same model system. The nature of ERK activation has 

not been investigated either. The aim of this part of the study is to identify whether Src, Rho, PKC 

or actin dynamics play a role in the activation of ERK, JNK and p38 during ICAM-1 stimulation of 

GPNT. 

 

6.3 Results 

 

6.3.1 Rho and Src are upstream of ICAM-1-mediated ERK, JNK and p38 activation  

 

GPNT BMVECs were grown to confluency, serum-starved and then pre-treated with 10μg/ml 

C3 transferase for 12 h. ICAM-1 was subsequently cross-linked for 10 min as described in Chapter 

5. Cells were lysed and phosphorylation of MAP kinases analysed by immunoblotting (Figure 6.1). 

ICAM-1 cross-linking induced ERK, JNK and p38 phosphorylation as previously described. ERK and 

p38 phosphorylation was not inhibited following pre-treatment with C3 transferase. In contrast, 

JNK phosphorylation was completely abolished in response to pre-treatment with C3 transferase. 

These results therefore implied that JNK, but not ERK or p38, was downstream of ICAM-1-induced 

Rho activation. 

I next tested the involvement of Src family kinases. For this, GPNT EC were grown to 

confluency, serum-starved and pre-treated with 10μM PP2, a small molecule inhibitor specific for 

Src family kinases (Hanke et al., 1996), for 30 min. Subsequently, ICAM-1 was cross-linked and EC  
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Figure 6.1 Rho and Src family kinase mediate ICAM-1-induced MAP kinase activation 
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Figure 6.1 figure legends 

GPNT were grown to confluency, serum-starved and pre-treated with 10μg/ml C3-transferase for 

12 h or 10μM PP2 for 30 min. EC monolayers were washed twice with HBSS and then subjected to 

ICAM-1 cross-linking for 10 min. Lysates were prepared and phosphorylation of ERK (A), JNK (B) 

and p38 (C) analysed by immunoblots (as described in Material and Methods and Chapter 5). 

Densitometric quantifications were derived from at least 3 independent immunoblot analyses, 

where the phospho-MAP kinase signal was normalised to cell mass (i.e. tubulin signal). Shown are 

means -/+ SEM. Variances of mean values were statistically analysed by the Student’s t test. *, P < 

0.05; **, 0.001<P< 0.01; ***, P ≤ 0.001
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MAP kinases analysed as described before (Figure 6.1 A-C). Pre-treatment with PP2 abolished 

ICAM-1-induced phosphorylation of ERK, JNK and p38, suggesting that Src or a related protein 

kinase acts upstream of ICAM-1-mediated MAP kinase activation. 

 

6.3.2 A PKC is upstream of ICAM-1-mediated ERK and JNK, but not p38 activation 

 

It has been suggested that PKC is involved in ICAM-1-induced Src activation in BMVEC 

(Etienne-Manneville et al., 2000). I tested the involvement of PKC in ICAM-1-induced MAP kinase 

activation using PKC isoform selective inhibitors. Table 6.1 shows the three different PKC 

inhibitors, Gö6976 (Martiny-Baron et al., 1993), GF109203X (Toullec et al., 1991)and Gö6983 

(Gschwendt et al., 1996)  that were used in this study. Importantly, Gö6976 inhibits the classical 

isoforms, whilst GF109203X and Gö6983 additionally inhibit the novel and atypical isoforms, 

respectively.  

 

Table 6.1: Inhibition profile of PKC inhibitors used in study 

Compound PKC isoform inhibited 

Gö6976 α, βI, βII, γ 

GF109203X α, βI, βII, γ, δ, ε, η, θ 

Gö6983 α, βI, βII, γ, δ, ε, η, θ, ι, ζ 

 

Confluent GPNT ECs were pre-treated for 30 min with 20μM Gö6976, GF109203X or Gö6983 

before the effect of ICAM-1 ligation was assessed on MAP kinase phosphorylation (Figure 6.2). 

ICAM-1-induced ERK and JNK activation was inhibited when EC were pre-treated with Gö6983 

(Figure 6.2G and 6.2H) whilst the activation of p38 was not affected (Figure 6.2I). In contrast pre-

treatment with Gö6976 and GF109203X did not influence the phosphorylation of ERK, JNK or p38 

at all. From this, it can be concluded that an aPKC (PKC or PKC) mediated the activation of ERK 

and JNK in response to ICAM-1 ligation.   
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Figure 6.2 The role of PKC in ICAM-1-induced MAP kinase activation 

GPNT were grown to confluency, serum-starved and pre-treated with either 20μM Gö6976, 

GF109203X or Gö6983 for 60 min. EC monolayers were washed twice with HBSS and then 

subjected to ICAM-1 ligation for 5 min. Lysates were prepared and phosphorylation of ERK, JNK 

and p38 analysed by immunoblots as described in Material and Methods and Chapter 5. 

Densitometric quantifications were derived from at least 3 independent immunoblot analyses, 

where the phospho-MAP kinase signal was normalised to cell mass (i.e. tubulin signal). Statistical 

analysis was unable to be carried out for effect of GF109203X and Gö6983 pre-treatment on JNK 

as data represents 2 independent experiments. Shown are means -/+ SEM. Student’s t test was 

used for statistical analysis of mean value variances. *, P < 0.05; **, 0.001<P< 0.01; ***, P ≤ 0.001 
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6.3.3 Actin dynamics control ICAM-1-induced ERK and p38 activation 

 

 A number of studies have shown that actin re-arrangements are a primary EC response to 

leukocyte adhesion or ICAM-1 engagement (Etienne et al., 1998; Adamson et al., 1999; Wojciak-

Stothard et al., 1999; Etienne-Manneville et al., 2000; Wang and Doerschuk, 2001; Millan et al., 

2006) and EC actin is undoubtedly an important regulator of TEM (Carman et al., 2003; Carman 

and Springer, 2004). I used cytochalasin D (Cyto D), an inhibitor of actin polymerisation (Brenner 

and Korn, 1979), to assess the importance of actin dynamics on MAP kinase activation. Serum-

starved GPNT EC monolayers were pre-treated using Cyto D for 30 min. ICAM-1 ligation was 

performed, lysates were prepared and MAP kinase phosphorylation analysed by immunoblots as 

described before. ERK and p38 phosphorylation was strongly inhibited following pre-treatment 

with Cyto D (Figure 6.3A). In contrast, ICAM-1-induced JNK activation was not affected (Figure 

6.3B). It can be concluded that actin dynamics played an important role in ICAM-1-induced ERK 

and p38 but not JNK activation.  

 

6.4 Discussion 

 

To understand the interconnection and divergence of ICAM-1-mediated networks I studied 

MAP kinase activation in relation to previously described mediators of ICAM-1 signalling, namely 

Src, actin dynamics, Rho and PKC (Etienne et al., 1998; Adamson et al., 1999; Etienne-Manneville 

et al., 2000; Carman et al., 2003; Carman and Springer, 2004; Millan et al., 2006; Yang et al., 

2006b). Actin dynamics were inhibited using Cyto D, which specifically prevents actin 

polymerisation. To expand these studies, other actin targeting drugs could be used such as 

jasplakinolide, which has been shown to disrupt filaments (Bubb et al., 1994), or blebbistatin, 

which inhibits actin myosin II-dependent contractility (Straight et al., 2003). To inhibit the function 

of Src and PKC, I used small molecule inhibitors, which have been shown to display high selectivity 

for their target molecules. However, specificity for a single protein kinase is rare (Bain et al., 2007), 

and accordingly PP2 has been shown to inhibit Src and Src family kinases Lck, Fyn and Hck, (Hanke 

et al., 1996) whilst the PKC inhibitors used show specificity for range of family members (see Table 

6.1). Inhibition of Rho GTPases was achieved using C3 transferase. Again related family members,  
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Figure 6.3 Actin dynamics are important for ICAM-1-induced ERK and p38 but not JNK activation 

(A) GPNT were grown to confluency, serum-starved and pre-treated with 2µM Cyto D for 30 min. 

EC monolayers were washed twice with HBSS and then subjected to ICAM-1 cross-linking for 10 

min. Lysates were prepared and phosphorylation of ERK, JNK and p38 analysed by immunoblots as 

described in Material and Methods and Chapter 5. 

(B) Densitometric quantification immunoblot analysis was derived from 3 independent 

experiments including (A). The phospho-MAP kinase signal was normalised to cell mass (i.e. 

tubulin signal). Shown are means -/+ SEM. Statistical analysis carried out using the Student’s t test 

for variance of mean values. *, P < 0.05; **, 0.001<P< 0.01; ***, P ≤ 0.001 
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namely Rho A, B, and C, are sensitive to C3 transferase treatment (Aktories and Hall, 1989). If 

more specific, and most importantly isoform-specific, inhibition was to be studied small 

interference RNA would need to be used. 

Activation of all three MAP kinases was sensitive to PP2 (or SU6656, data not shown), 

indicating that Src tyrosine kinase family members are central to ICAM-1 signalling (Figure 6.1). 

Our data also corroborated previous data showing that Src family kinase was required for p38 

activation following ICAM-1 cross-linking of pulmonary MVEC (Wang et al., 2003). Indeed, the 

involvement of Src family kinase has been demonstrated in many studies of ICAM-1 related 

signalling and TEM (Tilghman and Hoover, 2002; Yang et al., 2006b; Allingham et al., 2007; Liu et 

al., 2011). Src family kinases operate very early following ICAM-1 stimulation (Durieu-Trautmann 

et al., 1994) and could even operate on the level of ICAM-1 phosphorylation itself (Pluskota et al., 

2000). Taken together, Src appears to operate early during ICAM-1-induced signalling, regulating 

many divergent pathways, in particular ERK, JNK and p38. 

Beyond Src, as a common signalling denominator, divergence arose (see Figure 6.4). In 

particular, JNK activation was clearly different from that of ERK and p38. JNK was unique amongst 

the three MAP kinase as it was shown to be inhibited by C3 transferase, a finding which agrees 

with a previous study in BMVEC (Etienne et al., 1998). To find Rho as an upstream activator of JNK 

activity is unusual since in most cases Cdc42 or Rac have been implicated (Marinissen and Gutkind, 

2005). Under certain conditions, Rho-dependent activation of the JNK MAP kinase cascade can 

occur and appears to be primarily mediated by the guanine nucleotide exchange factors Net1 and 

p115RhoGEF, and the scaffolding protein CNK1 (Alberts and Treisman, 1998; Jaffe et al., 2005) (see 

also Chapter 9). Future studies will establish whether this ‘non-canonical’ pathway is also involved 

in mediating ICAM-1 signalling in BMVECs. 

 The activation of p38 and ERK, but not JNK, was sensitive to actin polymerisation. It is 

noteworthy that Rho (i.e. C3 transferase sensitive) activity was not required. This suggests that the 

EC stress fibres frequently reported to be induced following ICAM-1 stimulation (Adamson et al., 

1999; Wojciak-Stothard et al., 1999; Millan et al., 2006) are not involved in the activation of p38 or 

ERK. Instead, the actin-dependent activation of p38 and ERK could be related to our observation 

that anti-ICAM-1 beads induce luminal surface ruffles (see Chapter 3), which normally are Rac-

dependent.  Conversely, Rho-dependent activation of JNK did not require actin polymerisation,  
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Figure 6.4 Hypothetical signal divergence at the level of Src for MAP kinase activation in response 

to ICAM-1 stimulation in BMVEC 
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suggesting that here the GTPase acted directly on the organisation or activation of a MAP kinase. 

 Results using three different PKC inhibitors also agree with the idea that there is divergence in 

MAP kinase activation (Figure 6.3). The universal PKC inhibitor, Gö6983 which inhibits all PKC 

isoforms apart from PKCμ, impacted on the ICAM-1-induced activation of ERK and JNK but not 

p38. Gö6976 or GF109203X, inhibitors of cPKC or nPKC, respectively, did not affect the activation 

of any of the three MAP kinases, implying that an aPKC, either PKCι and/or PKCζ was involved in 

ERK and JNK activation. In contrast lymphocyte migration is sensitive to inhibition with GF109203X 

(Etienne-Manneville et al., 2000). This strongly suggests an additional GF109203X-sensitive PKC 

operates either downstream of MAP kinases or entirely independently of MAP kinase during TEM 

(see also Chapters 7 and 9).  

 The divergence in signalling from ICAM-1 to MAP kinases strongly suggests that each MAP 

kinase is involved in a different function within the EC. Given the individual requirements for actin 

polymerisation differential intracellular localisation of MAP kinase activation is very likely as well. 

Future studies should focus on determining the intracellular localisation of activated MAP kinase 

cascades. This could be achieved using bead-coupled rather than soluble antibodies. Furthermore, 

studies interrogating the functional role of ICAM-1-induced MAP kinase, such as the regulation of 

gene expression or of lymphocyte migration (see Chapter 7) should be conducted.  
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Chapter 7: Involvement of ICAM-1-mediated signalling in TEM 

 

7.1 Introduction 

 

 The results from Chapters 5 and 6 showed that ICAM-1 stimulation triggered MAP kinase 

activation with Src, Rho, the actin cytoskeleton and PKC involved upstream of the MAP kinase. As 

discussed in Chapter 1, endothelial ICAM-1 and downstream signalling makes an essential 

contribution to leukocyte TEM (reviewed in: Turowski et al., 2005). However, endothelial ICAM-1 

signalling also regulates functions which are not directly involved in TEM.  

 ICAM-1-mediated signalling is important for gene expression. For instance, ICAM-1 

engagement can activate the transcription factor AP-1 leading to transcription of IL-1β (Koyama et 

al., 1996) and ERK-dependent VCAM-1 expression (Lawson et al., 1999). ICAM-1-induced 

activation of ERK also leads to the induction of IL-8 and RANTES production (Sano et al., 1998). 

 Another role contributed to ICAM-1 engagement is the regulation of endothelial permeability 

(Williams and Luscinskas, 2011). ICAM-1-induced permeability arises in response to the interaction 

formed with its counter β2 integrin receptor on leukocytes (Sumagin et al., 2008; DiStasi and Ley, 

2009) or ICAM-1 antibody ligation (Sumagin et al., 2011). Rolling and adherent leukocytes 

(Sumagin et al., 2008) which often secrete factors such as neutrophil elastase, ROS and cytokines 

(DiStasi and Ley, 2009) that lead to localised permeability increases. ICAM-1 cross-linking is 

sufficient to induce increases in permeability in the absence of leukocyte adhesion and the 

subsequent activation of EC signalling, even in arterioles which normally are unable to support EC-

leukocyte interactions (Sumagin et al., 2011). Increased permeability does not occur following 

cross-linking of VCAM-1. Different signalling pathways regulate permeability depending on the 

inflammatory status and degree of ICAM-1 engagement on the endothelium (Williams and 

Luscinskas, 2011). Dermal MVEC TEER can be altered by expression levels of ICAM-1 which can 

alter the actin cytoskeleton, TJ and AJ proteins (Clark et al., 2007).  

 A number of protein kinase signalling pathways have been shown to be involved in 

endothelial permeability modulation including PKC, Src and the MAP kinases ERK and p38 (Yuan, 

2002) which have all been shown to be activated downstream of ICAM-1 engagement (Chapter 6). 
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Many of the effects are mediated either directly by phosphorylation of other proteins such as FAK, 

myosin light chain kinase (MLCK) or ERM proteins or indirectly acting on other protein kinases 

(Yuan, 2002; Koss et al., 2006). 

 Some of the signal transducers identified in Chapter 5 and 6 have previously been shown to 

be important in ICAM-1-mediated leukocyte TEM. Neutrophil transmigration across a HUVEC 

monolayer is significantly inhibited when pre-treated with the Src inhibitors PP2 or SU6656 (Yang 

et al., 2006b; Allingham et al., 2007). Src plays a role in the adhesion of THP-1 cells to HUVECs and 

ICAM-1 mediates Src -dependent phosphorylation of cortactin (Tilghman and Hoover, 2002). 

ICAM-1-mediated cortactin phosphorylation induces actin cytoskeletal changes and facilitates 

neutrophil TEM across cytokine-stimulated HUVEC monolayers (Yang et al., 2006a; Yang et al., 

2006b).  

 Inhibition of Rho GTPase following pre-treatment of BMVEC with C3 transferase inhibits 

lymphocyte transmigration (Adamson et al., 1999). Both clustering of cell surface adhesion 

molecule and monocyte adhesion and spreading is dependent on Rho activity (Wojciak-Stothard et 

al., 1999). Surprisingly, the endothelial projections that form in response to leukocyte adhesion to 

the endothelial surface do not require Rho (Carman et al., 2003) although Rac or Cdc42 are 

important for the transcellular pore formation and subsequent TEM (Carman and Springer, 2004). 

Another Rho GTPase, RhoG, has also been shown to be important for both the formation of the 

docking structure and leukocyte TEM acting downstream of RhoA (van Buul et al., 2007a). 

 The regulation of leukocyte TEM by endothelial actin and actin-based contractility have been 

extensively studied (reviewed by: Millan and Ridley, 2005). Actin has also been shown to the main 

cytoskeletal regulator of the transmigration cup and is found enriched in the ICAM-1 projections 

that form upon leukocyte adhesion, the structural equivalent to committed TEM (Carman et al., 

2003; Carman and Springer, 2004; Millan et al., 2006). Inhibition of TEM (Adamson et al., 1999) 

and adhesion of leukocytes (Wojciak-Stothard et al., 1999) occurs in response to pre-treatment of 

the endothelium with Cyto D.  

 PKCs have also been implied to be important in lymphocyte transmigration across BMVEC 

(Etienne-Manneville et al., 2000). Lymphocyte adhesion to endothelial VCAM-1 generates ROS 

that activates PKCα involving PTP-1B which is important for TEM (Deem et al., 2007). PKC, acting 

via a pathway involving RhoA and Src, can also induce actin reorganisation (Brandt et al., 2002).  
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 Of the three MAP kinases, only p38 has been shown to have a role in ICAM-1-mediated TEM. 

Wang et al. show p38 plays a role in the migration of neutrophils to junctions of pulmonary MVEC 

(Wang and Doerschuk, 2001). Whether p38 inhibition results in inhibition of actual TEM rates has 

not been addressed in this study. ERK has been proposed to play a role in neutrophil TEM (Stein et 

al., 2003) although this has not been shown to be dependent upon ICAM-1 engagement.  

  

7.2 Aim 

 

The main aim of this part of the study is to determine whether ICAM-1-mediated activation of 

the three MAP kinases, ERK, JNK and p38, is involved in TEM. This analysis will be extended to their 

upstream mediators of MAP kinases, as defined in Chapter 6. 

 

7.3 Results 

 

7.3.1 Endothelial JNK and its upstream kinase, MKK7, regulate lymphocyte transendothelial 

migration 

 

To analyse whether MAP kinase activation in EC was required for successful lymphocyte 

migration, GPNT EC were grown to confluency and co-cultured with migratory myelin basic 

protein-specific IL-2 activated T lymphocytes (PAS) (Beraud et al., 1993). Diapedesis was assessed 

by time-lapse video microscopy as described in Chapter 2 (Section 2.2.3). Prior to adding T-

lymphocytes, GPNT EC were pre-treated with three different kinase inhibitors: UO126 (which 

inhibits the ERK activating kinase MEK) (Favata et al., 1998), SP600125 (which shows some 

specificity for JNK) (Bennett et al., 2001) and SB202190 (which is highly specific inhibitor for p38α 

and β) (Lee et al., 1994). Concentration of treatment was set to 50μM for 1 h, conditions which 

have been shown to strongly inhibit the respective kinase in GPNT during the treatment and for at 

least 30 min after withdrawal (including washing of the cells) (R. Blaber and P. Turowski, 

unpublished results). After 1 h of pre-treatment, inhibitors were washed off to avoid the possibility 
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of affecting T-lymphocyte function. Then PAS were added and allowed to migrate for 1 h prior to 

assessing migration rates. Inhibition of ERK and p38 using UO126 and SB202190 did not affect 

transmigration of lymphocytes (Figure 7.1, black bars). In contrast, pre-treatment of GPNT with 

SP600125 reduced transmigration of lymphocytes to approximately 40% of control levels, 

suggesting that JNK, but not ERK or p38, was involved in regulating TEM. SP600125 only inhibited 

diapedesis not adhesion of lymphocytes to EC (Figure 7.1, grey bars).  

SP600125 strongly inhibits JNK in vitro and in living cells but has been shown recently to 

inhibit a variety of other protein kinases, suggesting that SP600125 may not be as specific for JNK 

as previously thought (Bain et al., 2007). To corroborate a role of JNK in lymphocyte 

transmigration dominant-negative MAP kinase components were expressed in GPNT. GPNT were 

transfected using wild-type and dominant-negative versions of MAP kinase kinase 7 (MKK7), one 

of the specific JNK activating kinases (Yao et al., 1997), and of JNK1/2 plasmids (as described in 

Section 2.2.2). Two days post-transfection migration was assessed by the standard method 

described above and in Chapter 2 (Section 2.2.3). Expression of dominant-negative but not wild-

type MKK7 and JNK1 significantly reduced migration by around 60% of control levels, similar to 

what was observed with SP600125 (Figure 7.2, black bars). JNK2 expression did not significantly 

alter lymphocyte diapedesis, suggesting that JNK1 and one of its activating kinases MKK7 were an 

important part of ICAM-1-mediated TEM. Again adhesion was not significantly affected by 

expressing any of the kinases (Figure 7.2, grey bars). 

 

7.3.2 Endothelial Src and Rho are involved in ICAM-1-mediated lymphocyte transmigration  

 

 Src and Rho were identified as upstream regulators of JNK (Chapter 6). Both have previously 

been shown to regulate TEM (Adamson et al., 1999; Greenwood et al., 2003b; Yang et al., 2006b; 

Allingham et al., 2007). Next, I wanted to confirm that Src and Rho played a role in lymphocyte 

migration in our model system. GPNT EC monolayers were pre-treated with either 10μg/ml C3 

transferase for 16 h or 10µM PP2 for 1 h (Figure 7.3, black bars). Inhibition of Rho using C3 

transferase resulted in an 80% inhibition of PAS transmigration, whilst pharmacological inhibition 

of Src reduced transmigration by 40%, corroborating that both Rho and Src are involved in 

regulation of ICAM-1-mediated lymphocyte transmigration. Adhesion was not significantly  
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Figure 7.1 Effect of endothelial MAP kinase inhibition on leukocyte transmigration  

GPNT cells were grown to confluency in wells of a 96 well plate and then treated with either 50M 

UO126 (ERK), SP600125 (JNK), and SB202190 (p38), for 1 h.  The cells were washed twice with 

HBSS before PAS lymphocyte were added. These were left to migrate for 1 h before one field per 

well was analysed by time-lapsed microscopy. Video recordings were analysed and quantified 

comparing the number of cells that had migrated under the endothelium to the number that were 

found above (black bars). Adhesion (grey bars) was analysed by measuring the adhesion of 

concanavalin-A stimulated PLNs to GPNT pre-treated or not as specified for the migration assay. 

Values for migration and adhesion are expressed as mean percentages of control from at least 4 

independent experiments +/- SEM. Variances of mean values were statistically analysed by the 

Student’s t test. *, P < 0.05; **, 0.001<P< 0.01; ***, P ≤ 0.001 

Adhesion data was kindly provided by Patric Turowski. 
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Figure 7.2 Endothelial MKK7 and JNK1 are involved in lymphocyte transmigration 

GPNT were nucleofected with 10μg of either wild-type or dominant-negative MKK7, JNK1 or JNK2 

and plated into a 96 well plate. Migration (black bars) was assessed as described in Figure 7.1. 

Adhesion (grey bars), following nucleofection, was determined by comparing the average total 

number of PAS in the field of view for each transfection. Average values for both migration and 

adhesion are expressed as a percentage of mock control from 3 independent experiments +/- 

SEM. Variances of mean values were statistically analysed by the Student’s t test. *, P < 0.05; **, 

0.001<P< 0.01; ***, P ≤ 0.001 

  



184 
 

 

Figure 7.3 Endothelial Src and Rho are important for leukocyte transmigration 

GPNT cells were grown to confluency in wells of a 96 well plate and then pre-treated or not with 

10μg/ml C3 transferase (Rho) for 16 h or 10M PP2 (Src) for 1 h. Lymphocyte migration (black 

bars) and concanavalin-A stimulated PLN adhesion (grey bars) was analysed as described in Figure 

7.1. Values are expressed as percentage of control from 3 independent experiments +/- SEM. 

Variances of mean values were statistically analysed by the Student’s t test. *, P < 0.05; **, 

0.001<P< 0.01; ***, P ≤ 0.001 

Migration and adhesion data for C3 transferase was kindly provided by Patric Turowksi.  
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affected by inhibition of Rho or Src (Figure 7.3, grey bars). 

 

7.3.3 PKC isoforms involved in transmigration  

 

PKC family members are involved in lymphocyte transmigration across rat BMVEC. This has 

been conclusively shown using GF109203X (Etienne-Manneville et al., 2000). I found that Gö6983 

but not Gö6976 or GF109203X inhibited ICAM-1-induced MAP kinase activation (Chapter 6) and 

wanted to determine if they had a similar effect on lymphocyte transmigration. GPNT monolayer 

was pre-treated with 20μM Gö6976, GF109203X or Gö6983 for 1 h before the PAS migration was 

assessed (Figure 7.4A). Migration was inhibited following pre-treatment with any of the three 

compounds to at least 54% of control levels, indicating that at least one PKC isoform was involved 

in TEM (see discussion). The universal PKC inhibitor Gö6983 did not have an effect on adhesion 

(Figure 7.4B); demonstrating TEM was inhibited on the level of diapedesis.  

 

7.3.4 JNK and PKC are important for lymphocyte transmigration across primary rat BMVEC  

 

Next I wanted to corroborate the role of endothelial PKC and JNK during TEM across primary 

rat BMVECs. Cells were isolated from rat brains and grown to confluency (as described in Section 

2.2.1.3). Primary rat BMVECs were then pre-treated using Gö6983 and SP600125 as described 

before and PAS migration rates were assessed. Similarly to our results using GPNT, migration was 

inhibited by 63% and 60% following pre-treatment using SP600125 and Gö6983, respectively 

(Figure 7.5).  
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Figure 7.4 PKC is involved in lymphocyte migration  

(A) GPNT cells were grown to confluency in wells of a 96 well plate and then treated in presence or 

absence of 20M Gö6976, GF109203X or Gö6983 for 1 h. Migration was analysed as previously 

described in Figure 7.1 and data from 4 independent experiments was expressed as means -/+ 

SEM.  

(B) Confluent GPNT were either left untreated (NT) or pre-treated using 20M Gö6983 for 1 h. 

Subsequently PLN adhesion was assessed as described in Figure 7.1. Shown are means -/+ SEM 

from 3 independent experiments.  

Variances of mean values were statistically analysed by the Student’s t test. *, P < 0.05; **, 

0.001<P< 0.01; ***, P ≤ 0.001 
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Figure 7.5 Endothelial JNK and PKC are involved in TEM across primary rat BMVEC 

Primary rat BMVEC were grown to confluency and PAS transmigration assessed as described for 

GPNT (Figure 7.1). Prior to addition of T-lymphocytes, the EC were pre-treated with 50M 

SP600125 or 20M Gö6983 for 1 h. Shown are mean migration rates +/- SEM from 3 independent 

experiments. Student’s t test was used for statistical analysis of mean value variance, * P < 0.05; 

** 0.001<P< 0.01; ***, P ≤ 0.001 
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7.4 Discussion 

 

Here, I showed that ICAM-1-induced JNK, but not ERK or p38, played a key role in lymphocyte 

transmigration across established or primary BMVECs. This was surprising as it has been reported 

previously that ERK (Stein et al., 2003) and p38 (Wang and Doerschuk, 2001) are important for 

neutrophil transmigration. To our knowledge, this is the first report, which implicates endothelial 

JNK in leukocyte TEM. Involvement of JNK was confirmed by the use of SP600125 and the 

expression of dominant-negatives of JNK1 and MKK7. In fact the latter experiment did not only 

provide additional specificity but also indicated that the pathway regulating TEM consists of MKK7 

and JNK1 rather than JNK2. The expression of JNK1 and MKK7 dominant-negative inhibited 

migration to similar levels as seen following EC pre-treatment with SP600125 and hence it is 

unlikely another SP600125-sensitive kinase, other than JNK, is involved in lymphocyte TEM. 

Therefore, this experiment justifies the simple use of SP600125 for all future investigations into 

the involvement of JNK since if another kinase was involved SP600125 would result in greater 

inhibition than that seen with the dominant-negative expression of JNK1 and MKK7. Furthermore, 

mediators of ICAM-1-induced activation of JNK as defined in Chapter 6 were also found to be 

essential for TEM, namely Src family kinases, Rho GTPase and Gö6983-sensitive PKC. In light of 

publications by Wang et al. (Wang and Doerschuk, 2001; Wang et al., 2003) I was surprised not to 

find an involvement of p38. This discrepancy may reflect a difference of signalling in pulmonary 

MVEC and BMVEC. Alternatively, Wang et al. conducted their study in cytokine- stimulated ECs 

whilst our analysis focused on TEM across resting, unstimulated EC monolayers. Thus, endothelial 

p38 may play a differential role during TEM depending on the vascular or inflammatory 

environment. Unpublished work from our laboratory suggests that ERK and p38 activation is 

important for inflammatory gene expression and message stabilisation (R. Blaber, Y. Gill and P. 

Turowski, unpublished). 

In line with previous reports, inhibition of Rho using C3 transferase resulted in the greatest 

inhibition of lymphocyte transmigration (Adamson et al., 1999; Greenwood et al., 2003b). 

Inhibition of endothelial Src, PKC or JNK reduced TEM to similar levels (by ca. 40 to 50 %). Our data 

for Src inhibition is in agreement with a recent report showing a similar effect of endothelial Src 

inhibition on migration of neutrophils across HUVECs (Yang et al., 2006b; Allingham et al., 2007). 

The only previous study using PKC inhibitors on EC during TEM does not report as strong an 
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inhibition by GF109203X as I observed (Etienne-Manneville et al., 2000). Our experimental 

protocol may explain this notable difference: the effect of protein kinase inhibitors targeting the 

ATP-binding sites is rapidly lost from GPNT as soon as drugs are withdrawn from the culture 

medium (P. Turowski, unpublished data), presumably due to the presence of highly active drug 

efflux pumps (Demeuse et al., 2004). Therefore I used higher, but tolerable, drug concentrations 

and performed the TEM assay within 1 h of withdrawal of the drug, a time when kinase inhibition 

was still at least 30-50% compared to when the drug was left in the culture medium. Etienne-

Manneville et al. performed the TEM assay 4 h after withdrawal of PKC inhibitors and may 

therefore have observed a less potent inhibition of TEM (Etienne-Manneville et al., 2000).  

Overall the question remained, why Src, PKC or JNK inhibition led to less potent reduction of 

TEM as when e.g. Rho GTPase was inhibited using C3 transferase or when ICAM-1 is neutralised 

using antibodies (Greenwood et al., 1995). For the reason detailed above protein kinase inhibition 

using ATP-binding site inhibitors was never complete. Even when dominant-negative plasmids 

were transfected targeting was well below 100% due to limited transfectability of GPNT (on 

average 60%). Inhibition using C3 transferase or ICAM-1 antibodies presumably induces more 

complete inhibition since they induce covalent modification or tight binding neutralization, 

respectively. Alternatively, signalling from other adhesion molecules on the EC have been shown 

to contribute to TEM (Matheny et al., 2000; Adamson et al., 2002; Mamdouh et al., 2003; van 

Wetering et al., 2003; Deem and Cook-Mills, 2004; Mamdouh et al., 2008; Mamdouh et al., 2009; 

Woodfin et al., 2009; Steiner et al., 2010) and may even compensate for the loss of ICAM-1-

mediated signalling. Importantly, the use of primary rat BMVEC corroborated the inhibitory effect 

of SP600125 and Gö6983 on TEM (Figure 7.5), demonstrating that it was not an artefact linked to 

the immortalised GPNT cell line.  

Unexpectedly, all three PKC inhibitors inhibited lymphocyte transmigration to similar levels 

even Gö6976 and GF109203X which did not have an effect on ICAM-1-JNK signalling (Chapter 6). 

ICAM-1-JNK signalling was exclusively sensitive to Gö6983, which inhibits also aPKCs in addition to 

cPKCs and nPKCs, suggesting that either PKCι or PKCζ are involved in the activation of JNK. This 

suggests that other endothelial PKCs either classical and/or novel are involved in TEM. They could 

operate in parallel to the ICAM-1-JNK pathway or act downstream of it. Recently, Martinelli et al. 

identified a pathway ICAM-1-induced eNOS activation to VEC phosphorylation (Martinelli et al., 

2009). Since this pathway is Ca2+-dependent it is possible that cPKC family members could be 



190 
 

involved. To further investigate which particular PKC isoform(s) are involved more specific tools 

would need to be utilised. This might be achieved using PKC inhibitors that inhibit only one 

isoform rather than a whole family, for example the PKCβ specific inhibitor ruboxistaurin (also 

known as LY333531), or RNAi.  

In conclusion, I have shown that endothelial JNK and important upstream regulators are 

essential for ICAM-1-mediated lymphocyte transmigration. Our results point to an involvement of 

PKCs at several distinct points of ICAM-1-mediated endothelial compliance to TEM. In fact, our 

data clearly demonstrates the existence of ICAM-1-induced signalling pathway which has yet to be 

characterised: in addition to another PKC, Rho-independent actin dynamics have been shown to 

be important for TEM (Adamson et al., 1999; Carman et al., 2003) but not JNK activation. At this 

point, it was still unclear what the potential downstream targets of ICAM-1-JNK were and how 

activation of JNK leads to endothelial compliance to lymphocyte transmigration.  
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Chapter 8: Paxillin as downstream effector of the ICAM-1-induced 

JNK pathway 

 

8.1 Introduction  

 

 As shown in Chapters 5-7, JNK is an important mediator of endothelial ICAM-1 signalling and 

of lymphocyte TEM. The downstream target of JNK in this process is unknown. Previously it has 

been shown that cross-linking of ICAM-1 in BMVEC leads to Rho-dependent tyrosine 

phosphorylation of the focal adhesion proteins paxillin, FAK and p130Cas (Etienne et al., 1998). 

Since actin cytoskeletal rearrangements are also important for ICAM-1-mediated TEM (Adamson 

et al., 1999) and paxillin is a prominent target of JNK (Bogoyevitch and Kobe, 2006), paxillin could 

be a downstream effector of the ICAM-1-JNK pathway.  

 Paxillin is a cytoplasmic protein that localises to focal adhesions, primarily to sites of cell 

adhesion, providing a structural link between the actin cytoskeleton and the ECM (Turner, 1998; 

Turner, 2000b; Deakin and Turner, 2008). In higher eukaryotes paxillin is found in 3 alternate 

spliced isoforms, with the principal alpha isoform having a more ubiquitous expression profile than 

beta or gamma (Schaller, 2001; Brown and Turner, 2004). Paxillin is highly conserved between 

species, with 90 percent identity found between human and chicken (Turner, 2000a).  

 Paxillin function is clearly important since mice lacking paxillin are embryonically lethal 

(Deakin and Turner, 2008). Cells deficient in paxillin have an altered actin cytoskeleton and are 

unable to spread and migrate normally (Webb et al., 2004). In fact, paxillin has many functions 

within different cell types which are mediated by multiple protein-protein interaction sites. Paxillin 

acts as a multi-domain scaffold protein which can interact with numerous structural and signalling 

proteins including FAK, Src and α4 integrins (Liu et al., 1999; Turner, 2000b; Deakin and Turner, 

2008). The C-terminus of paxillin contains LIM domains that mediate protein-protein interactions 

and localisation to both the actin cytoskeleton and focal adhesion (Turner, 1998; Brown and 

Turner, 2004; Deakin and Turner, 2008). Within the N-terminus of paxillin 5 leucine- and 

aspartate-rich (LD) motifs are present which control most of the signalling activity of paxillin 

(Brown and Turner, 2004). The LD motifs are specific interaction sites for particular proteins, for 
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example the LD2 domain provides an interaction site for vinculin, FAK and Pyk2. Paxillin can bind 

to α4 integrin and this interaction is important for establishing cell adhesion under conditions of 

shear stress (Rose, 2006; Manevich et al., 2007) as well as enhancing rates of cell migration (Liu et 

al., 1999). It has been proposed that paxillin promotes the disassembly of focal adhesion at the 

leading edge (Deakin and Turner, 2008) or invadopodia (Badowski et al., 2008) thus promoting cell 

migration.  

Phosphorylation of paxillin plays a major role in recruiting signalling components in mediating 

interactions with focal adhesions and the cytoskeleton (Turner, 1998; Brown and Turner, 2004; 

Deakin and Turner, 2008). For instance, focal adhesions actively mediate integrin signalling 

following paxillin phosphorylation in response to cell adhesion (Burridge et al., 1992a; Burridge et 

al., 1992b; Schaller, 2001; Deakin and Turner, 2008). Consequently, multiple tyrosine, serine and 

threonine residues of paxillin can be phosphorylated by a plethora of protein kinases, including 

Src, FAK and members of the MAP kinase family (Deakin and Turner, 2008). Key sites on paxillin 

involved in its functional activation are Y31 and Y118 which are phosphorylated by FAK and Src 

(Turner, 1998). In addition, JNK has been shown to phosphorylate S178 (Bogoyevitch and Kobe, 

2006).  

Paxillin has a central role in co-ordinating and regulating Rho GTPase signalling by indirectly 

recruiting GEFs, GAPs, small GTPases and other effector proteins (reviewed by: Deakin and Turner, 

2008). This is in part mediated by phosphorylation of paxillin. For instance, the adaptor protein 

CrkII can bind to phosphorylated Y31 and Y118 in response to integrin binding to fibronectin or 

collagen. This then promotes Rac1-dependent relocalisation of paxillin to focal contacts (Lamorte 

et al., 2003). Modulation of Rac and Rho signalling can also facilitate the role of paxillin in EC 

barrier regulation in response to protective or disruptive growth factors (Birukova et al., 2007). 

Paxillin may also be recruited to sites where FAK and Src are found to interact with ERK which in 

turns regulates contractility mediated by MLCK (Webb et al., 2004; Deakin and Turner, 2008; 

Huveneers and Danen, 2009). 

Paxillin phosphorylation at residues S178, Y31 or Y118 is important for cell migration in a 

number of model systems, including normal rat kidney (NRK) cells and human corneal epithelial 

(HCE) cells (Huang et al., 2003; Kimura et al., 2008; Huang et al., 2008; Rosse et al., 2009). 

Enhanced migration following phosphorylation has been observed in a number of cell types 

(Zaidel-Bar et al., 2007) including HCE cells after induction with EGF (Huang et al., 2008). Activated 
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JNK co-localises with paxillin at focal adhesions in wound margins (Kimura et al., 2008) and pre-

treatment of keratocytes and NBT-II cells with SP600125 inhibits migration (Huang et al., 2003). 

Expression of a non-phosphorylatable mutant of paxillin, S178A, markedly reduces paxillin 

phosphorylation by MKK7-activated JNK (Huang et al., 2003) and inhibits migration (Huang et al., 

2004). PKC is important for JNK-mediated phosphorylation of paxillin in NRK cells and migration as 

large static focal adhesions form when aPKC is inhibited or siRNA used (Rosse et al., 2009). Neurite 

extension is mediated by a JNK pathway as inhibition is observed in response to expression of 

S178A paxillin or pre-treatment with SP600125 (Yamauchi et al., 2006). JNK-mediated 

phosphorylation of paxillin also reduces its ability to promote microtubule assembly (Bogoyevitch 

and Kobe, 2006).  

It has been hypothesised that S178 paxillin phosphorylation by JNK is a pre-requisite to 

render paxillin receptive to phosphorylation on residues Y31 and Y118 (Huang et al., 2008). 

Suppression of JNK activity or expression of S178A paxillin prevents FAK association with paxillin 

and results in reduced level of tyrosine phosphorylation and inhibition of migration. However, this 

contradicts work by Ken Jacobson’s group as they see no effect on paxillin tyrosine 

phosphorylation in the presence of S178A paxillin expression (Huang et al., 2003).  

 

8.2 Aim 

 

 I hypothesise that paxillin is a downstream effector of ICAM-1-JNK signalling. The aims of this 

part of the study are to investigate if paxillin is phosphorylated in a JNK-dependent manner during 

ICAM-1 activation and if paxillin phosphorylation is important for lymphocyte TEM. Lastly, if 

paxillin is found to be involved in ICAM-1-dependent TEM I would be interested to understand 

how this relates to the ICAM-1-VEC pathway previously identified in the laboratory.  
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8.3 Results 

 

8.3.1 ICAM-1-mediated tyrosine phosphorylation of paxillin is dependent on JNK 

 

ICAM-1 cross-linking leads to tyrosine phosphorylation of paxillin in BMVEC (Etienne et al., 

1998). I determined the time course of phosphorylation of Y118 in response to ICAM-1 ligation. 

Confluent GPNT EC were subjected to ICAM-1 ligation for varying lengths of time and then to 

western blotting using a phospho-specific Y118 paxillin antibody (Figure 8.1A). A 2-fold increase in 

paxillin phosphorylation occurred within 2 min of primary antibody ligation increasing to a 10-fold 

increase after 30 min ligation (Figure 8.1B). Cross-linking of ICAM-1 induces a significant 7-fold 

increase in paxillin phosphorylation. These results show that ICAM-1 engagement, either by 

ligation or cross-linking, leads to a time-dependent increase of paxillin phosphorylation on Y118. 

 Since phosphorylation of paxillin on the JNK site S178 has been proposed to be a pre-requisite 

for phosphorylation on Y31 and 118 by FAK (Huang et al., 2008) I re-examined the GPNT extracts 

shown in Figure 8.1 using anti-phospho-S178 antibodies. Phosphorylation on S178 was not 

consistently observed, either following ICAM-1 ligation or cross linking (data not shown). 

Antibodies from two different suppliers were used without any further success. The inclusion of 

PP1 and PP2A inhibitor calyculin A during cell lysis did not make any difference to our attempts to 

detect phosphorylation on S178. A signal was detected in a single experiment using ICAM-1 

antibody-coated beads (Figure 8.2). Phosphorylation on S178 was strong at 5 and 60 min of ICAM-

1 engagement and appeared to precede Y118 phosphorylation which was strong in the same cell 

samples at 10-30 min and 60 min. However, this result could never be repeated.  

 Despite the inability to deliver clear evidence of phosphorylation of paxillin on S178 in 

response to ICAM-1 activation, tyrosine phosphorylation of paxillin on Y118 could still be 

dependent on JNK activity. Indeed, pre-treatment of confluent GPNT EC with SP600125 prior to 

ICAM-1 ligation or cross-linking inhibited Y118 paxillin phosphorylation (Figure 8.3A). SP600125 

pre-treatment did affect basal Y118 phosphorylation. Nevertheless, it also prevented anti-ICAM-1 

from inducing a quantitative increase of Y118 phosphorylation (Figure 8.3B), suggesting that 

ICAM-1-mediated paxillin phosphorylation on Y118 is dependent on JNK and that transient S178 

phosphorylation could be a pre-requisite. 
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Figure 8.1 ICAM-1 mediates phosphorylation of paxillin Y118  

(A) GPNT ECs were grown to confluency, serum-starved and stimulated with anti-ICAM-1 antibody 

1A29 to induce ICAM-1 ligation for the indicated times or  ICAM-1 cross-linking for 10 min (XL10) 

as described for Figure 5.1. Cells were lysed and subjected to western blot analysis using phospho-

Y118 paxillin antibodies and, as a loading control, anti-paxillin antibodies. 

(B) Densitometry quantification of 4 independent experiments as shown in (A). Shown is 

normalised mean Y118 phosphorylation +/- SEM. Statistical analysis of the variance of mean values 

was carried out by the Student’s t test. *, P < 0.05; **, 0.001<P< 0.01; ***, P ≤ 0.001 
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Figure 8.2 Anti-ICAM-1-coated beads can induce phosphorylation of paxillin on Y118 and S178  

Confluent, serum-starved GPNT ECs were incubated with 3 anti-ICAM-1-coated beads/EC for the 

indicated times. Lysates were prepared and analysed as described in Figure 8.1 with the exception 

that tubulin was used as loading control.  
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Figure 8.3 ICAM-1-mediated Y118 phosphorylation of paxillin is dependent on JNK   

(A) Confluent GPNT EC were serum-starved and pre-treated in the presence or absence of 50µM 

SP600125 for 1 h before ICAM-1 was ligated or cross-linked (XL) for 10 min. Protein lysates were 

analysed by western blotting as described in Figure 8.1.  

(B) Densitometry quantification of the immunoblots shown in (A) and two other independent 

experiments. Basal levels of Y118 phosphorylation varied following pre-treatment with SP600125. 

Therefore, to determine how strongly ICAM-1-induced paxillin phosphorylation was inhibited, 

densitometric values were normalised and mean -/+ SEM expressed in relation to values obtained 

from SP600125 treated BMVEC. 
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8.3.2 Phosphorylation of paxillin is important for lymphocyte TEM 

 

Paxillin was phosphorylated on Y118 in response to ICAM-1 stimulation and in a JNK-

dependent manner, suggesting it could mediate endothelial ICAM-1 signalling during TEM. Next, I 

examined whether paxillin phosphorylation was important for successful lymphocyte TEM. GPNT 

BMVEC were transfected with plasmids encoding either 10µg of wild-type or phosphorylation-

deficient mutants of paxillin, namely the double mutant Y31F/Y118F or S178A. Expression of 

Y31F/Y118F or S178A paxillin significantly inhibited lymphocyte transmigration (Figure 8.4A, black 

bars). Inhibition of migration was slightly greater following expression of Y31F/Y118F (58%) than of 

S178A (68%). Importantly, expression of Y31F/Y118F or S178A paxillin did not inhibit adhesion 

(Figure 8.4A, grey bars) suggesting that paxillin plays an important role in lymphocyte 

transmigration, potentially as downstream effector of the JNK pathway. Y118 is efficiently 

phosphorylated by FAK (Turner, 1998). Inhibition of FAK, using two different pharmacological 

inhibitors, significantly reduced lymphocyte TEM by at least 50% (Figure 8.4B) further underlining 

the importance of paxillin phosphorylation on Y118 during TEM.  

 

8.3.3 The JNK-paxillin and eNOS-VEC pathways converge to mediate lymphocyte transmigration  

 

Our laboratory has previously identified a pathway linking AJ modulation to ICAM-1 

stimulation during TEM. This pathway involves Ca2+, CaMKK, AMPK and eNOS leading to tyrosine 

phosphorylation of VEC which in turn regulates TEM (Turowski et al., 2008; Martinelli et al., 2009). 

Expression of VEC mutated at Y731 is sufficient to inhibit TEM by ca. 40% (Allingham et al., 2007; 

Turowski et al., 2008). Here, I was interested in the relationship between the phosphorylation of 

VEC and paxillin during regulation of lymphocyte TEM across GPNT.  

I co-transfected plasmids encoding wild-type or phosphorylation-deficient paxillin 

(Y31F/Y118F or S178A) in combination with wild-type or phosphorylation-deficient (Y731F) VEC 

(Turowski et al., 2008) into sub-confluent GPNTs. Two days post-transfection lymphocyte 

transmigration was assessed. As shown before, expression of phosphorylation-deficient VEC or 

paxillin resulted in significant inhibition of migration. Significantly, the co-expression of VEC and  
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Figure 8.4 Paxillin phosphorylation is important for lymphocyte transmigration 
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Figure 8.4 figure legends  

(A) GPNT EC were transfected with 10µg of each CMV expression plasmid encoding chicken 

paxillin, either wild-type or with the double phosphorylation site mutations Y31F and Y118F, or 

human paxillin, either wild-type or phosphorylation-deficient in S178 (S178A). After two days 

lymphocyte transmigration (black bars) and adhesion (grey bars) were analysed as described in 

Figure 7.2. Results are shown as mean percentage of control from 3 independent experiments +/- 

SEM. Statistical analysis of mean value variances was undertaken using the Student’s t test. *, P < 

0.05; **, 0.001<P< 0.01; ***, P ≤ 0.001 

(B) GPNT were grown to confluency in wells of a 96 well plate and pre-treated with either 10μM 

PF573228 (PF) or 50M FAK inhibitor 14 (C-14) for 1 h. Migration was assessed as described in 

Figure 7.1 with values expressed as percentage of control from 3 independent experiments +/- 

SEM. Variances of mean values were statistically analysed by the Student’s t test. *, P < 0.05; **, 

0.001<P< 0.01; ***, P ≤ 0.001 
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paxillin phosphorylation-deficient mutants did not result in further inhibition (Figure 8.5). 

Inhibition of TEM was greater following co-expression of Y31F/Y118F paxillin and Y731F VEC than 

with any other combination. However, this difference was not significant and appeared to be due 

to adhesion of lymphocytes also being reduced by ca. 20 % (Figure 8.5A). These results showed 

that the two pathways, namely JNK-paxillin and eNOS-VEC, were not additive suggesting that they 

converged to regulate a common effector mechanism.  

I also tested whether the JNK pathway regulated VEC phosphorylation. For this GPNT EC 

monolayers were stimulated using anti-ICAM-1 antibodies following pre-treatment with the MAP 

kinase inhibitors UO126, SP600125 and SB202190 (see Chapter 6). VEC was then 

immunoprecipitated from lysates and its tyrosine phosphorylation analysed by immunoblotting 

(Figure 8.6A). ICAM-1 mediated around a 2.5-fold increase in tyrosine phosphorylation of VEC 

(Figure 8.6B) in agreement with previous reports (Allingham et al., 2007; Turowski et al., 2008). 

However, this was not affected by any of the three MAP kinase inhibitor treatments (Figure 8.6B). 

This data suggests that VEC phosphorylation is not modulated by the JNK-paxillin pathway. 

 

8.3.4 ICAM-1 stimulation mediates association of paxillin and VEC  

  

VEC has been shown to associate with paxillin and FAK in human pulmonary artery EC treated 

with sphingosine-1-phosphate (Sun et al., 2009). Similarly, oxidized-1-palmitoyl-2-arachidonyl-sn-

glycero-3-phosphorylcholine induced junctional recruitment of paxillin and association with VEC 

(Birukova et al., 2007).  

I therefore investigated whether paxillin and VEC physically interacted during ICAM-1 

stimulation. For this, GPNTs were grown to confluency, serum-starved and subjected to antibody-

mediated ICAM-1 ligation. Lysates were prepared at various times and VEC immunoprecipitated 

using an affinity purified VEC antibody. Subsequently, the association of VEC with paxillin was 

analysed by immunoblotting immunoprecipitates for the presence of paxillin. As shown in Figure 

8.7A, ICAM-1 stimulation induced VEC association with paxillin in a time-dependent manner. 

Maximal association occurred at 10 min. Furthermore, I found that the association of VEC and 

paxillin was dependent on JNK activity since it was sensitive to pre-treatment of GPNTs with 

SP600125 (Figure 8.7B). 
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Figure 8.5 Paxillin and VEC converge to mediate lymphocyte transmigration  

(A) 10µg of plasmid encoding wild-type or phosphorylation-deficient (Y31F/Y118F) chicken paxillin 

was co-transfected with 10µg of plasmid encoding wild-type or dominant-negative (Y731F) mouse 

VEC plasmids into GPNT BMVEC. (B) 10µg of plasmid encoding wild-type or phosphorylation-

deficient (S178A) human paxillin was co-transfected with 10µg of plasmid encoding wild-type or 

dominant-negative (Y731F) mouse VEC plasmids into GPNT BMVEC. (A and B) Two days post-

transfection lymphocyte TEM across the transfected EC monolayer was assessed. Migration (black 

bars) and adhesion (grey bars) were analysed as described in Chapter 7. Results are shown as 

mean percentage of control from 3 independent experiments +/- SEM. Students t test was used 

for statistically analysis of the mean value variance. *, P < 0.05; **, 0.001<P< 0.01; ***, P ≤ 0.001 
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Figure 8.6 VEC phosphorylation is not mediated by endothelial MAP kinases 

(A) GPNT cells were grown to confluency, serum-starved and treated with 50M UO126, SP600125 

and SB202190 for 1 h. Cells were subsequently subjected to ICAM-1 ligation for 15 min before they 

were lysed and VEC immunoprecipitates analysed by western blotting using antibody against 

phospho-tyrosine (4G10) and VEC.  

(B) Densitometry quantification of (A) and three other independent experiments. Results are 

shown as mean (-/+ SEM) fold increase in VEC phosphorylation compared to control. Variance of 

mean values was statistically analysed by Students t test. *, P < 0.05; **, 0.001<P< 0.01; ***, P ≤ 

0.001 
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Figure 8.7 ICAM-1 mediates the association of VEC and paxillin in a time- dependent and JNK-

dependent manner  

(A) Confluent GPNT were serum-starved and subjected to ICAM-1 ligation for the indicated lengths 

of time before the cells were lysed and VEC immunoprecipitates analysed by western blotting 

using antibody against anti-paxillin and VEC. Densitometry quantification of five independent 

experiments expressed as average mean +/- SEM fold increase in paxillin association compared to 

control. Variance of mean values was statistically analysed by Students t test. *, P < 0.05; **, 

0.001<P< 0.01; ***, P ≤ 0.001 

(B) As in (A) with the exception that confluent GPNT were pre-treated with 50M SP600125 for 1 h 

and subjected to ICAM-1 ligation for 15 min before analysis. Densitometry quantification of three 

independent experiments is expressed as an average mean +/- SEM. Mean value variance was 

statistically analysed by Students t test. *, P < 0.05; **, 0.001<P< 0.01; ***, P ≤ 0.001 
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Immunocytochemical analysis of the localisation of paxillin in response to ICAM-1 stimulation 

also suggested its association with AJ (Figure 8.8). In unstimulated GPNT, diffuse staining of paxillin 

was found concentrated around the nuclei. Little staining was found resembling classical focal 

adhesions. Instead some staining appeared to be concentrated at lateral membranes (Figure 8.8 

A). Co-staining for phospho-Y118 paxillin revealed that the majority of this form of paxillin was 

found at lateral membranes. In fact its staining was reminiscent of AJ staining in GPNT (see Figure 

3.1, Chapter 3). In response to ICAM-1 engagement for 20 min, the phospho-paxillin staining 

associated with AJs was strongly induced (Figure 8.8B), corroborating our biochemical association 

data.  

 

8.3.5 ICAM-1 induces VEC internalisation  

 

At this point, I wanted to elucidate the functional consequence of the VEC-paxillin interaction. 

In HUVECs, VEGF induces removal of VEC from the cell surface and its accumulation in intracellular 

vesicles (Gavard and Gutkind, 2006). Here, I tested whether VEC was internalised in GPNT 

following ICAM-1 stimulation. 

Using a protocol adapted from (Gavard and Gutkind, 2006) I studied VEC internalisation 

biochemically. This protocol assesses the amount of internalised VEC following exposure of live 

cells to surface proteolysis using trypsin. Surface VEC is completely degraded whilst internalised 

VEC is protected from proteolysis. Confluent GPNT were serum-starved and subjected to ICAM-1 

ligation or cross-linking. Subsequently, cells were placed on ice and treated with trypsin for 30 

min. As shown in Figure 8.9 trypsin treatment nearly completely abolished the detection of full-

length VEC (instead smaller polypeptides were detected). ICAM-1 ligation rapidly induced the 

amount of trypsin-protected VEC, suggesting that the full-length protein had been internalised. 

The amount of trypsin-protected VEC increased 2.5 fold after 5 min. Importantly, the ICAM-1-

induced increase in trypsin-protected VEC was sensitive to pre-treatment of GPNT with SP600125, 

suggesting that JNK induced VEC internalisation. 

To further corroborate this, I studied the surface and vesicular immunolocalisation of VEC 

during ICAM-1 ligation using a protocol adapted from Xiao et al. (Xiao et al., 2003). Confluent and 

serum- starved GPNT were incubated in the presence or absence of VEC at 4°C for 1 h. GPNTs  
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Figure 8.8 Phosphorylated paxillin association with AJs is enhanced following ICAM-1 stimulation   

(A)  GPNT ECs were grown to confluency, fixed for 15 min in 3.7% formaldehyde followed by ice-

cold acetone extraction. ECs were stained for either total paxillin (red) or phospho-paxillin Y118 

(green) as described in Section 2.2.14. Staining was analysed by confocal microscopy using the 

Zeiss LSM 700. (Scale bar: 20μm) 

(B) As in (A) except GPNT were stimulated with 5μg/ml ICAM-1 antibody for 20 min before fixation 

and stained for phospho-paxillin Y118. Immunofluorescence was analysed by epi-fluorescent 

microscopy using the Zeiss Axiophot (Scale bar: 10μm)  

 

 

 



207 
 

 

 

Figure 8.9 VEC is internalised following ICAM-1 stimulation 

(A) Confluent, serum-starved GPNT were pre-treated in the presence or absence of 50μM 

SP600125. Cells were then stimulated with primary anti-ICAM-1 antibody, or subjected to ICAM-1 

cross-linking (XL) for the length of times indicated. Trypsinisation was carried out as described in 

Section 2.2.8. As a control one cell sample was treated with ice-cold PBS for the 30 min incubation 

rather than trypsin. Lysates were analysed by western blotting for internalised VEC with tubulin as 

loading control.  

(B) Densitometry quantification of (A) and two other independent experiments expressed as a 

mean average +/- SEM. Variance of the mean values was statistically analysed using the Student’s t 

test. *, P < 0.05; **, 0.001<P< 0.01; ***, P ≤ 0.001 
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were then placed at 37°C to allow the antibody bound to VEC to internalise. Cells were fixed and 

stained for the presence of primary VEC antibody. To distinguish between surface and internalised 

VEC antibody, cells were also subjected to acid washes before fixation to release surface bound 

antibody. As shown in Figure 8.10, VEC antibody distribution was primarily junctional when cells 

were fixed immediately and no acid wash performed (Figure 8.10A), indicating that the antibody 

bound to VEC in live GPNT cells. In cells that had been returned to 37°C (and VEC allowed to 

internalise), ICAM-1 ligation led to strong accumulation of the antibody within cells (Figure 8.10C). 

Indeed, after acid wash VEC antibody was mainly found in cytoplasmic vesicular structures, 

suggesting that ICAM-1 indeed induced internalisation of VEC. 

 

8.4 Discussion 

 

 Within this study I have observed a time-dependent increase in Y118 paxillin phosphorylation 

in response to ICAM-1 stimulation (Figure 8.1) corroborating the work by Etienne and colleagues 

who observed significant tyrosine phosphorylation following ICAM-1 cross-linking (Etienne et al., 

1998). Maximal phosphorylation of Y118 paxillin occurs at 30 min, a later time point to that 

observed for JNK phosphorylation in response to ICAM-1 (as shown in Chapter 5). Unfortunately 

attempts to investigate ICAM-1-mediated S178 paxillin phosphorylation, a designated JNK target 

(Bogoyevitch and Kobe, 2006) were problematic and were only able to detect it in a one off 

experiment using anti-ICAM-1-coated beads (Figure 8.2). Phosphorylation of S178 may be too 

transient and a rapid response to ICAM-1 stimulation which we are unable to detect, although in 

our lysis buffer calyculin A was included to inhibit phosphatase activities. Nevertheless, S178 

phosphorylation appeared to be important for TEM since both phosphorylation-deficient paxillin 

mutants, namely S178A and Y31F/Y118F, significantly inhibited lymphocyte transmigration but not 

adhesion (Figure 8.4A). Surprisingly, the paxillin mutants acted as dominant-negatives in the 

presence of endogenous paxillin. A similar effect of dominant effect of phosphorylation site 

mutation has also been shown for VEC (Turowski et al., 2008). Migration using both paxillin 

mutants inhibited migration to similar levels as seen with JNK1 and MKK7 dominant-negative 

expression and pharmacological inhibitors, such as SP600125. This suggests that paxillin is the only 

downstream effector of JNK in ICAM-1-mediated TEM.  
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Figure 8.10 VEC becomes internalised in response to ICAM-1 ligation 

Confluent and serum-starved GPNT were incubated in the presence (A-C) or absence (D) of 5µg/ml 

anti-VEC antibody at 4°C for 1 h as described in section 2.2.15. Cells were either (A) fixed 

immediately or returned to 37°C in absence (B) or presence of (C) anti-ICAM-1 antibody (1A29) for 

20 min. Cells were subjected to acid wash (B-D) to release surface bound VEC before cells were 

fixed and (A-D) processed for IF of primary VEC antibody (as detailed in Section 2.2.14). (Scale bar: 

10µm) 
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ICAM-1-mediated phosphorylation of Y118 paxillin has not been previously studied in 

conjunction with the potential involvement of JNK. Etienne and colleagues suggested that the 

focal adhesion proteins, paxillin, FAK and p130cas acted in a Rho-dependent manner to activate 

JNK (Etienne et al., 1998). From this study I conclude that Y118 phosphorylation is downstream of 

JNK (Figure 8.3) because it was sensitive to SP600125 treatment (with the assumption that mainly 

JNK was inhibited as suggested by our transmigration experiments). Our data is in agreement with 

results from Ken Jacobson’s group who show paxillin to be phosphorylated in an MKK7-activated 

JNK-dependent manner (Huang et al., 2003). This implies that Rho signals via JNK (as shown in 

Chapter 6 and Etienne et al., 1998) to phosphorylate paxillin on S178 which could either be direct 

or indirect by phosphorylation of p130cas and FAK which mediate Y118 phosphorylation. Further 

work is required to analyse whether S178 phosphorylation is a pre-requisite for Y118 paxillin 

phosphorylation, a hypothesis that has been put forward by Huang and colleagues (Huang et al., 

2008).  

 One caveat of this work is that the involvement of FAK in this pathway has only been studied 

in TEM assays. FAK has multiple substrates (Guan, 1997; Schlaepfer et al., 1999) which it could be 

acting on to exert its effects on TEM. Paxillin phosphorylation would need to be studied following 

EC pre-treatment with the two different FAK inhibitors to corroborate the involvement of FAK.  

 Some phosphorylated paxillin was already found at the cell junctions (Figure 8.8A) and this 

increased upon ICAM-1 stimulation (Figure 8.8B). The location of paxillin to the cell junctions put 

forth the idea that paxillin may play a role in modulating AJs, for example normal turnover of VEC 

at the AJs. Indeed, VEC and paxillin were found to associate in an ICAM-1-mediated JNK-

dependent manner. The two pathways, namely JNK-paxillin and eNOS-VEC, acted independently 

of one another since VEC phosphorylation was independent of MAP kinase activation (Figure 8.6) 

and the two pathways were not additive in inhibiting transmigration (Figure 8.5). Therefore, 

paxillin and VEC cooperated and converged to regulate a common mechanism that leads to 

internalisation of VEC (Figure 8.9 and 8.10), and thus aiding lymphocyte TEM.    

 Although I have observed internalisation of VEC it is still not clear where in the EC and within 

what structures VEC is found. Future work should determine if VEC is recruited to a particular 

vesicle or cellular compartment and what happens to the VEC when it is there. It is possibly that 

VEC gets recycled to the AJs following lymphocyte transmigration in a similar manner to the 

recycling of PECAM-1 via the LBRC (Mamdouh et al., 2003; Muller, 2009; Muller, 2010) or found in 
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the LBRC itself. Internalised VEC may get degraded via the endosome-lysosomal pathway as 

dissociation from p120-catenin can lead to clathrin-dependent endocytosis (Xiao et al., 2005).  

From these studies I have also not yet determined whether phosphorylation of Y118 occurs 

before or after association with VEC. It is possible that the phosphorylation of paxillin at this 

residue could provide a docking structure/interaction site that supports the association of the two 

proteins. Furthermore, I have not analysed the phosphorylation status of paxillin when associated 

with VEC, although the immunofluorescence data appeared to suggest that only Y118 

phosphorylated paxillin associates with the AJs. To characterise the phosphorylation of paxillin in 

more detail analysis using S178 detection would be required since I believe that phosphorylation 

of this residue precedes that of Y118. Using anti-ICAM-1-coated beads may be a more relevant 

experimental system to use rather than soluble anti-ICAM-1 antibody as it may induce greater 

phosphorylation via clustering. If S178 phosphorylation is transient I may have to alter the lysis 

buffer and protocol used as well as looking at earlier time points.  

The signalling pathway I have described appears to regulate internalisation of VEC from the 

AJs. It is still unknown whether the interaction that occurs between paxillin and VEC regulates the 

internalisation process or whether this interaction occurs in response to the internalisation.  

 VEC internalisation has been shown previously before in response to leukocyte 

transmigration (Alcaide et al., 2008), however I show for the first time that this mechanism occurs 

in an ICAM-1-dependent manner. I have yet to show that internalisation of VEC, via its association 

with paxillin, is important for lymphocyte TEM. To verify this I would need to test a internalisation 

resistant VEC mutant where the important EMD motif at residues 562-564 is substituted by a triple 

alanine substitution (EMD-AAA) (Xiao et al., 2003; Xiao et al., 2005).    

 Future work would also include studying the effect of transfecting all possible combinations 

of paxillin phosphorylation-deficient and constitutively-active (Y to E) mutant with 

phosphorylation-deficient (Y731F) and constitutively-active (Y731E) VEC. This would allow us to 

determine whether VEC Y731E is capable of driving internalisation on its own or whether paxillin is 

definitely required for this mechanism.    
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9. Discussion and Outlook 

 

9.1. Expansion and annotation of the ICAM-1 signalling network regulating TEM  

 

 In this thesis the role of endothelial MAP kinases in ICAM-1-mediated lymphocyte TEM has 

been investigated. A co-culture system of BMVEC and antigen-specific lymphocytes, which is 

entirely dependent on ICAM-1 but not VCAM-1 activation for TEM (Greenwood et al., 1995), has 

been used in combination with biochemical and cytological methods interrogating ICAM-1 

signalling following antibody ligation.  

Through this work I have been able to establish a signalling network which interlinks and 

assigns roles to many proteins previously recognised to act downstream of endothelial ICAM-1 

including Rho, actin, Src, JNK, PKC, paxillin, FAK and VEC (Turowski et al., 2005; Wittchen, 2009). 

Although many of these proteins have already been shown to be important for TEM, I show 

mechanistic interaction and expand on their role during TEM (see Figure 9.1 for a schematic 

summary). JNK was found to be central to this network. In fact, endothelial JNK is the MAP kinase 

that had previously not been implicated in TEM. In terms of mediating dynamic movement JNK has 

so far been shown to mediate cell migration, i.e. locomotion of cells during dorsal closure in 

drosophila (Xia and Karin, 2004; Bogoyevitch and Kobe, 2006) and wound closure in NRK cell 

cultures (Rosse et al., 2009). Although our findings assign an apparently different and new role to 

JNK it was striking to find essentially the same regulation of paxillin phosphorylation during TEM. 

JNK and aPKC also control paxillin phosphorylation in NRK cell wound closure (Rosse et al., 2009). 

However, whilst in this pathway MKK4 mediates JNK activation I found evidence that MKK7 was 

the kinase responsible for JNK1 activation during TEM. Nevertheless, MKK4 may still be important 

in signalling since for maximal activation phosphorylation of both threonine and tyrosine is 

required with each site being preferentially phosphorylated by MKK4 or MKK7 (Cuenda, 2000). 

 Upstream of JNK I found Src, Rho and aPKC. Whilst Src and Rho have frequently been 

implicated in TEM and endothelial ICAM-1 signalling, the involvement of aPKC was a novel finding. 

Previous studies by Etienne et al. identified a GF109203X sensitive PKC, i.e. not the PKCι or PKCζ  
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Figure 9.1 Schematic summary of endothelial signalling initiated following ICAM-1 engagement 
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isoform. In many systems aPKC has been shown to act upstream of JNK activation (Rosse et al., 

2009). It has also been found to cooperate with Rho in the activation of many signalling pathways. 

Obviously our studies do not identify the precise linkage of Src, Rho, aPKC and JNK. Additional 

studies using RNAi and interaction analysis would be required for that. 

Etienne et al. proposed an activation mechanism by which Rho-regulated paxillin, FAK and 

p130cas acted upstream of JNK (Etienne et al., 1998). Indeed, it has been shown that the adaptor 

protein CrkII can mediate JNK activation in a p130cas-dependent manner (Girardin and Yaniv, 

2001). Here I show that Rho was instrumental in the activation of JNK. This was somewhat 

surprising since JNK signalling is normally found downstream of activated Rac or Cdc42 

(Marinissen and Gutkind, 2005). This suggested that other scaffolds and adaptors may be involved 

during ICAM-1-induced JNK phosphorylation. The non-canonical scaffold CNK1 interacts with the 

Rho-specific GEFs as well as MLK3 or MKK7, in the regulation of JNK (Jaffe et al., 2005). Thus CNK1 

could be the link between Rho and JNK in ICAM-1-mediated TEM. I performed experiments which 

suggest that this could indeed be the case: preliminary assays showed that the expression of 

dominant-negative (W493A) CNK1 in GPNT inhibited lymphocyte TEM to similar levels than seen 

following neutralisation of JNK1 (Figure 9.2A). Moreover, expression of dominant-negative 

(W493A) CNK1 appeared to inhibit ICAM-1-induced JNK phosphorylation (Figure 9.2B). Further 

work should consolidate this data and interrogate the biochemical interaction of CNK1 and JNK 

and the potential role of GEFs such as Net1 or p115RhoGEF, both of which have been shown to 

regulate the JNK cascade under certain circumstances (Alberts and Treisman, 1998; Marinissen 

and Gutkind, 2005). Scaffolds, such as CNK1 are important in compartmentalising signalling 

modules so that they act only in areas of the cell where required. 

 FAK has been shown to be phosphorylated in response to ICAM-1 cross-linking in a Rho-

dependent manner (Etienne-Manneville et al., 2000). Although I have not formally shown that FAK 

phosphorylated paxillin in response to ICAM-1 activation, I have detected phosphorylation at Y118 

which has been identified as a bona fide site for FAK (Turner, 1998; Deakin and Turner, 2008). In 

support of a role for FAK in ICAM-1-mediated paxillin phosphorylation I found that 

pharmacological FAK inhibition suppressed lymphocyte TEM (Figure 8.4B). Taken together the 

data from this study and that by Etienne-Manneville and colleagues (Etienne-Manneville et al., 

2000) indicates that Rho regulates paxillin tyrosine phosphorylation through JNK (via S178) and 

FAK. Further work into the role of FAK in lymphocyte TEM is required to verify its role and its 



215 
 

 

 

Figure 9.2 The non-canonical scaffold protein CNK1 appears to be important for lymphocyte TEM 

and ICAM-1-mediated JNK phosphorylation 

(A) As described in Figure 7.2 GPNT were nucleofected with 10μg of either wild-type or dominant-

negative (W493A) hCNK1. Migration (black bars) was assessed as described in Figure 7.1. Adhesion 

(grey bars) was determined as described in Figure 7.2. Average values for both migration and 

adhesion are expressed as a percentage of mock control from 3 independent experiments +/- 

SEM. Variances of mean values were statistically analysed by the Student’s t test. *, P < 0.05; **, 

0.001<P< 0.01; ***, P ≤ 0.001 

 (B) GPNT were transfected with 10μg of either wild-type or dominant-negative (W493A) CNK1, 

serum-starved overnight and subjected to ICAM-1 ligation for 5 min. Cells were lysed and 

subjected to immunoblotting as described for Figure 5.1.   
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position downstream of Rho in the regulation of paxillin. Phosphorylated FAK has been shown to 

interact with Src (Guan, 1997; Schlaepfer et al., 1999) and could therefore be part of the 

immediate early activation similar to cortactin (see below).  

 Ultimately our data demonstrated that the JNK-paxillin pathway regulated VEC 

internalisation. Therefore this signalling axis converges with that regulating VEC phosphorylation 

(Turowski et al., 2008; Martinelli et al., 2009) which is also required for its internalisation (Alcaide 

et al., 2008). Since JNK did not modulate VEC phosphorylation but enhanced association with 

paxillin, I postulate that paxillin and the actin cytoskeleton play an important part in AJ 

internalisation during TEM. Taken together, our findings of converging pathways also suggest that 

AJ modulation is highly important in facilitation of leukocyte migration across EC barriers.  

 VEC phosphorylation in response to ICAM-1 appears to be mediated by Pyk2 (Allingham et al., 

2007) but a direct role for Src cannot be excluded (Adam et al., 2010). Our laboratory has shown 

that VEC phosphorylation is downstream of localised NO production by eNOS (Martinelli et al., 

2009). NO has been shown to regulate PTPases directly by reversible oxidation of the active site 

cysteine (i.e. by S-nitrosylation) (Barrett et al., 2005). Thus a number of AJ-associated PTPases 

could be locally and transiently inactivated, triggering VEC hyperphosphorylation and 

internalisation. Prominent AJ-associated PTPases are VE-PTP (Nottebaum et al., 2008), DEP-1 

(Density enhanced PTP-1) (Grazia et al., 2003) and Pez (Wadham et al., 2003), which have been 

shown to regulate proteins in VEC complexes including β-catenin, plakoglobin and p120-catenin 

and potentially AJ protein kinases (Takahashi et al., 1999b; Holsinger et al., 2002; Grazia et al., 

2003; Wadham et al., 2003; Jandt et al., 2003; Nottebaum et al., 2008). It will be important to 

determine whether VEC hyperphosphorylation is predominantly regulated through the activation 

of protein kinases or the inactivation of protein phosphatases. The low cellular content in 

phospho-tyrosine (0.1 % or less) suggest that in most cases dephosphorylation is heavily regulated 

(Sun and Tonks, 1994).  
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9.2. Unassigned Signalling 

 

9.2.1. ICAM-1-induced membrane ruffling  

 

I provide the first report of visual ICAM-1-stimulated EC activation following bead 

engagement on the EC surface. The induction of membrane ruffles are linked to Rac activation 

(Ridley, 1994), suggesting that Rac also operates downstream of ICAM-1. Preliminary biochemical 

analysis by pull-down assays showed the rapid activation of Rac1 following ICAM-1 ligation (R. 

Martinelli and P. Turowski, unpublished). Rac has not yet been found downstream of ICAM-1-

mediated TEM and future studies could focus on the role of this GTPases. 

 Recently, Rac has been shown to form a complex with RhoGDI and aPKC which induces 

membrane ruffling in response to Src activation and plasma membrane recruitment of DAG kinase 

(DGKα) (Chianale et al., 2010). Rac is also required for cortactin translocation to the cell 

membrane where it can interact with the actin cytoskeleton (Weed and Parsons, 2001). Cortactin 

can bind to actin related protein (Arp) 2/3 complex which has been shown to be activated by 

Wiskott - Aldrich syndrome proteins (WASp) that are effector proteins of Rac-mediated actin 

polymerisation. Thus cortactin may be involved in the response typified by the induction of 

membrane ruffles. Src-mediated cortactin phosphorylation is important for TEM and thought to be 

an immediate early event in ICAM-1 signalling, occurring in seconds rather than minutes (Durieu-

Trautmann et al., 1994; Tilghman and Hoover, 2002; Yang et al., 2006a; Yang et al., 2006b). In 

contrast I have observed membrane ruffles after ca. 15 min suggesting they may not be part of the 

immediate-early ICAM-1 signalling. Paxillin has also been shown to regulate Rac1 signalling via 

CrkII (Petit et al., 2000; Deakin and Turner, 2008). Thus Rac1 activation and the induction of 

membrane ruffles could be a slightly later response downstream of JNK activation. Only careful 

time course analysis and specific neutralisation experiment will distinguish between these 

different possibilities.  
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9.2.2 Rho-independent actin rearrangements 

  

 Another open question is how the membrane ruffling may be related to other Rho-

independent actin re-arrangements. These include the formation and the dynamics of the 

transmigration cup (Barreiro et al., 2002; Carman et al., 2003; Carman and Springer, 2004) and the 

regulation of VEC (Turowski et al., 2008; Martinelli et al., 2009) and ERK and p38 phosphorylation 

(Chapter 5).  

Based on the identification of a number of actin-associated proteins in physical contact with 

the cytoplasmic tail of ICAM-1, it has been suggested that a primary signal of ICAM-1 activation 

could be generated by the actin cytoskeleton (Etienne et al., 1998; Adamson et al., 1999; Carman 

et al., 2003; Carman and Springer, 2004; Millan et al., 2006; Kanters et al., 2008). For instance, 

filamin B is important for both TEM and the lateral motility of ICAM-1 to the site of adhesion and 

docking structure that forms (Kanters et al., 2008). Filamin B influences the localisation and 

activity of Rac1 altering the EC signalling involved in cell adhesion and migration (Valle-Perez et al., 

2010). Thus it appears filamin B could potentially act at several different levels in migration and 

may influence Rho-independent signalling downstream of ICAM-1.  

Other filamins may be involved. Another family member, filamin A, can simultaneously bind 

MKK4, MKK7γ and MKK7β bringing them into close proximity enhancing stress-induced JNK 

activation in vivo, without directly binding JNK (Nakagawa et al., 2010). Rho GTPases, including 

Rac, Rho, Cdc42 and Ral1, can bind to filamin A (Ohta et al., 1999) and therefore it seems that 

filamins can integrate cell adhesion and signalling molecules acting as a scaffold (Kim and 

McCulloch, 2011).  

The possible involvement of filamin A and/or filamin B in the different pathways detailed 

above and shown in Figure 9.1 could be studied using siRNA for particular isoforms as described 

(Kanters et al., 2008). Other ICAM-1-associating proteins could obviously also be involved such as 

α-actinin (Carpen et al., 1992), ERM proteins (Heiska et al., 1998) or indeed cortactin. The use of 

other actin drugs such as jasplakinolide, latrunculin (Spector et al., 1983) or blebbistatin during 

TEM and cytological analysis of ICAM-1 signalling could also shed further light on the role of actin 

dynamics. 
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9.2.3 Classical and novel PKC isoforms 

 

 From transmigration assays I observed that all PKC inhibitors led to a significant inhibition in 

TEM although not all inhibitors influenced inhibition of MAP kinases ERK and JNK. The universal 

inhibitor Gö6983 influenced ERK and JNK phosphorylation suggesting multiple PKCs may regulate 

TEM due to differences in the upstream signalling between these two MAP kinases. A cPKC and/or 

nPKC could well be involved in the regulation of VEC phosphorylation since that also requires Ca2+ 

(Martinelli et al., 2009). Indeed, preliminary data also showed that inhibition of cPKC prevented 

ICAM-1-mediated eNOS activation (unpublished data). 

Cell-cell interactions have been shown to be regulated by cPKC and nPKCs. This is mediated 

by a regulated spatio-temporal cascade of PKC activation and translocation to cell contact sites 

(Quittau-Prevostel et al., 2004; Collazos et al., 2006; Diouf et al., 2009). In the pituitary gland PKCβI 

is generally translocated and activated to the plasma membrane followed by specific recruitment 

of PKCα and then PKCε to the cell-cell contacts. Cell-cell contact sites forming between different 

cell types also have similar spatio-temporal co-ordinated PKC activation cascades. For example a 

PKC cascade occurs during the loose interaction of human fibroblast and cancer epithelial cells, 

(Louis et al., 2005) and recruitment of PKCθ to the cSMAC when APCs and T-lymphocytes interact 

(Altman and Villalba, 2003; Yokosuka et al., 2008; Praveen et al., 2009). Recently, a PKC cascade 

involving PKCε, PKCη and PKCθ has been described during MTOC reorganisation towards the APC 

at the IS in response to DAG (Quann et al., 2011). Involvement of PKCα, PKCε and PKCδ has been 

shown during respiratory burst and phagocytosis in RAW264.7 cells (macrophage-like) and hence 

found to accumulate at these sites after rapid translocation to the membrane (Larsen et al., 2000). 

Indeed, I have started to explore the possibility of such a PKC signalling cascade operating during 

leukocyte-EC interactions by using plasmids encoding GFP tagged versions of PKC isoforms. 

 

9.2.4 The role of ERK and p38 during ICAM-1-mediated TEM  

 

ERK and p38 were found not to play a role in lymphocyte TEM or actin rearrangements even 

though they were found to be phosphorylated downstream of ICAM-1 stimulation. This was in 

contrast to other work showing the involvement of ERK (Stein et al., 2003) and p38 (Wang and 
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Doerschuk, 2001) in neutrophil TEM. The discrepancy of these observations may lie in the different 

EC systems used. Our data was generated using ECs which were not subjected to inflammatory 

cytokine prior to TEM assays or signalling studies whilst neutrophil TEM is dependent on exposing 

the endothelium to strong cytokine stimulation. Thus, our co-culture systems models basic TEM, 

also utilised during immune-surveillance, when JNK but not ERK or p38 appeared to be involved.  

Since MAP kinases have been implicated in inflammatory gene expression (Roux and Blenis, 

2004; Gaestel, 2006), work in the laboratory has focused on such a potential role of ICAM-1-

induced ERK and p38 signalling. The result of this work has shown that ERK and p38 regulate 

ICAM-1-induced gene expression of inflammatory genes such as VCAM-1, Cox-2 or ICAM-1 itself. 

Regulation was found to occur on both the transcriptional (involving ERK and p38 driven 

transcription) and post-transcriptional level (via p38-mediated mRNA stabilisation) (R. Blaber, J. 

McKenzie and P. Turowski, unpublished observation). Thus, it appears possible that lymphocyte 

adhesion through engagement of ICAM-1 mediates further expression of endothelial inflammatory 

(and adhesion) proteins resulting to recruitment of further immune cells to an inflamed region. 

Indeed, multiple leukocytes can cross the same region of the endothelium (Shaw et al., 2001). 

However, if this is true a number of observations could be predicted for TEM in vitro. 1. Early but 

not late TEM is independent of EC gene expression. 2. Late TEM rates are higher than early rates. 

3. ERK and p38 inhibition (or the general inhibition of gene expression) inhibits the late increase in 

TEM rates. 4. Prior TEM renders the EC area where TEM occurred more ‘permissive’ to subsequent 

TEM. Preliminary results from our laboratory demonstrated that hypothesis 1, 2 and 3 were 

correct for TEM across GPNT, (Y. Gill, J. Greenwood and P.Turowski, unpublished), suggesting that 

ERK and p38 could play an instrumental role in orchestrating differential leukocyte egress at the 

BBB (and possibly other vascular beds).  

 

9.3. VEC internalisation  

 

The activity of the eNOS-VEC and JNK-paxillin pathways lead to the internalisation of VEC. This 

could facilitate the transmigration of leukocytes via a paracellular route or even transcellular route 

(Mamdouh et al., 2003; Mamdouh et al., 2008; Mamdouh et al., 2009). VEC has been shown to be 

internalised in response to VEGF stimulation (Gavard and Gutkind, 2006), dissociation from p120-
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catenin (Xiao et al., 2003) and in response to EC infected with viruses (Gorbunova et al., 2010). 

Dissociation of VEC homophilic interactions is important for VEC displacement and the subsequent 

gap formation during TEM (Shaw et al., 2001; Carman and Springer, 2004; Woodfin et al., 2011). 

Therefore internalisation of VEC appears to be the driving force in pore formation and could 

involve other AJ complex proteins such as β-catenin and p120-catenin, which have already been 

shown to be important in VEC displacement (Xiao et al., 2003; Alcaide et al., 2008). JNK can bind 

and phosphorylate β-catenin controlling cell adhesion and AJ formation (Lee et al., 2009).  

 To our knowledge this is the first experimental demonstration of the involvement of paxillin 

in VEC internalisation and turnover. However this novel role of paxillin is consistent with other 

observations. A similar JNK-paxillin pathway has been described in the regulation of the exocyst 

complex during NRK cell migration (Rosse et al., 2009). The exocyst is an octameric protein 

complex involved in vesicle trafficking and has also been implicated in establishing and 

maintaining epithelial polarity by regulating the delivery of membrane to the basolateral plasma 

membrane (Nejsum and Nelson, 2009). Moreover, exocyst-mediated vesicular trafficking also 

regulates E-cadherin delivery to the plasma membrane (Langevin et al., 2005). It is conceivable 

that JNK-paxillin plays a prominent role in all of these processes. I have observed the induction of 

distinctive filamentous actin in cortical areas of ICAM-1 stimulated GPNT (Figure 9.3).  Induction 

was sensitive to SP600125, but not UO126 or SB202190, suggesting that it was also regulated by 

JNK. This cortical actin was also sensitive to blebbistatin (but not other actin drugs; P.Turowski, 

unpublished data) and thus reminiscent of the cortical actin seen during the maturation of 

epithelial cell-cell contacts (Zhang et al., 2005). Since this coincides with exocyst activity and 

vesicular trafficking being initiated (Nejsum and Nelson, 2009) it is likely that this fine contractile 

cortical actin network plays a dynamic role during this process. Our current working model going 

forward is the hypothesis that vesicular transport which is regulated by the exocyst or an exocyst-

like complex works in cooperation with paxillin and cortical actin regulates AJ internalization 

during TEM (and other processes affecting EC barrier function). 

 It is still not clear how JNK could influence the cortical actin ring induction. A structural link 

between JNK and actin could be provided by p150-Spir, a member of the WASp family protein 

(Otto et al., 2000a). JNK may simply regulate the spatial organisation of cortical actin by paxillin 

phosphorylation (Xia and Karin, 2004) whilst Rho via Rho kinase (ROCK) or MLCK induces 

contractile fibres (see also Figure 9.3) (Pellegrin and Mellor, 2007). Thus paxillin would act as an 
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Figure 9.3 Cortical actin rearrangements occur in a Rho- and JNK-dependent manner 

(A) Confluent GPNT cells were serum-starved and either left untreated (NT) or ICAM-1 cross-linked 

(XL) for the indicated lengths of time. Alternatively, GPNT were pre-treated with 10μg/ml C3 

transferase for 12 h prior to ICAM-1 XL. At the indicated times cells were fixed and stained for F-

actin (as described in Section 2.2.14).  

(B) As described in (A) except confluent GPNT EC monolayers were left untreated or pre-treated 

with 50µM UO126, SP600125 or SB202190 for 1 h before ICAM-1 cross-linking for 20 min.   

Figure kindly provided by Patric Turowski 
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anchor for the actin cytoskeleton during VEC internalisation (see also Figure 9.1). 

 Internalised VEC could be part of the same recycling compartment described for PECAM-1 

and named the LBRC (Mamdouh et al., 2003; Mamdouh et al., 2008; Mamdouh et al., 2009; 

Muller, 2009; Muller, 2010). A similar compartment, the vesiculo-vacuolar organelles (VVO) may 

also be related to the mechanism observed for VEC internalisation (Dvorak et al., 1996; Dvorak 

and Feng, 2001). These membrane compartments are found concentrated near lateral EC borders 

and are intimately involved in the passage of macromolecules and leukocytes across the 

vasculature. The presence of VVO is often associated with increased vascular permeability. 

The use of anti-ICAM-1-coated beads should allow investigation into the spatial details of VEC 

internalisation. Soluble anti-ICAM-1 antibodies are likely to induce universal changes such as an 

actin ring forming along the entire cortical area of the cell. It is highly likely that ICAM-1 clustering 

with beads would induce a localised actin and endocytic response and their interaction with any of 

the players of the pathway discussed in this thesis will be highly informative. Further mechanistic 

information could also be obtained by assessing VEC-paxillin complex formation and VEC 

internalisation after the transfection of dominant-negative, non-phosphorylatable versions of VEC 

and/or paxillin. This would show whether internalisation is dependent on phosphorylation on both 

proteins and whether the requirement for phosphorylation is gradual or simultaneous. 

 

9.4. Location, location, location 

 

 This thesis did not address where proteins phosphorylated in response to ICAM-1 are 

localised and whether translocation from one cellular compartment to another is required. Due to 

the observed differences in activation kinetics in response to ICAM-1 ligation and ICAM-1 cross-

linking, it is likely that endothelial ERK, JNK and p38 are activated and operate within different 

areas of the EC. Given their role in inflammatory gene expression ERK and p38 are likely to be 

translocated to the nucleus in response to ICAM-1 activation. JNK would be expected to 

translocate to (or be activated near) AJs. Localisation studies could be performed following ICAM-1 

activation by soluble antibodies. However, this is likely to lead to uniform and ubiquitous EC 

activation and occlude the spatio-temporal restrictions that may operate during TEM. Ideally 
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leukocyte should be used to undertake such studies but this approach is complicated by the 

majority of proteins to be studied being present in both the leukocyte and the EC. Therefore it is 

believed that addition of anti-ICAM-1-coated beads constitute the best available experimental 

model to study the spatial arrangement of the MAP kinase in relation to VEC internalisation and 

the actin cytoskeleton.  

 Other important technologies to be used for future EC spatio-temporal analysis during TEM 

are undoubtedly fluorescent energy transfer methods which allow us to interrogate the 

interaction of our main players in living cells. For instance it is unclear whether paxillin and VEC 

interact directly or via a third protein.  

 

9.5 Final Summary 

 

In conclusion I have determined a functional link between many components previously 

found to be phosphorylated, and subsequently activated, downstream of ICAM-1 engagement. I 

have demonstrated that divergence arises at the level of Src leading to an aPKC-JNK pathway that 

is important in mediating lymphocyte TEM whilst ERK and p38 have been shown by others in the 

laboratory to be important in ICAM-1-mediated gene expression. JNK activation, which normally is 

found downstream of Rac or Cdc42, is found to be dependent on Rho. Due to this I hypothesise 

that the non-canonical scaffold CNK1 may be the functional linker between Rho and JNK with 

preliminary work showing CNK1 to be important in TEM. JNK can phosphorylate the focal adhesion 

protein paxillin which converges with the eNOS-VEC pathway to aid transmigration by a novel 

mechanism in which VEC becomes internalised. This occurs in response to ICAM-1 inducing the 

association of paxillin and VEC, which I have shown both biochemically and by 

immunohistochemistry. Internalisation of VEC may involve the exocyst, or an exocyst-like complex, 

which is important for vesicular transport and may be important in aiding the delivery of extra 

membrane to the site of TEM, in a similar way to the LBRC which recycles PECAM-1 to the 

junctions.  

I further demonstrated the first visual evidence of EC activation in response to ICAM-1 

engagement on the endothelial surface that induces membrane ruffling, a response often 
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associated to Rac activation. This suggests that Rac is activated in response to ICAM-1 and may be 

mediated via a novel pathway or converges with the pathway I have described.  

This study has contributed to a better understanding of lymphocyte TEM across the 

specialised BBB or BRB which is a more tightly regulated process due to the presence of TJs. 

Excessive infiltration of lymphocytes into the brain can have detrimental, rather than beneficial, 

effects leading to development of autoimmune diseases such as MS. The pathway I have 

established is likely to be important in other vascular beds as well as being utilised by other 

leukocyte sub-sets, such as neutrophils and monocytes. The involvement of CNK1, due to it 

appearing to have restricted non-ubiquitous functions, and the potential involvement of an 

exocyst-like structure could constitute novel therapeutic targets which could be exploited for 

treatment of inflammatory disorders. However, the main contribution of this study has been to 

structure the role of known downstream targets of ICAM-1 during lymphocyte TEM.  
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10. Appendices 

 

10.1 Rattus norvegius PKC isoform alignment 

 

 
alpha           ------------------------------------------------------------ 

beta            -----------------------AGGCTCTCTCAAACTTCTGCCGCAGCTCTTCATTGCC 37 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            ATGTTTCTACTCCGTCTTTTTACACGGTGTGCATTTATCATTGTAACATCCCAGAAAAGT 60 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              -----------------------------------CCGGGCCGCGCGCCCTGTCCCCGCG 25 

                                                                             

 

alpha           ------------------------------------------------------------ 

beta            CTCGCTTCCTTCCGGCGGCACCGGCACATTAAAGTACTCGCCTTCTTCCTGGCTTAGTAA 97 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            TTTGAGCAGCGTGGCTTTAGAATGAAGCCAATTTCGGTTCTCATTCTGTCGTACCGTCAC 120 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              CGCGGACTTTCCCGGAAAGTTTGGTGGTTGTTTTCGGCCGCCGCAGGCAGCGGCGCCGCG 85 

                                                                             

 

alpha           ------------------------------------------------------------ 

beta            CTTGAACCCTCATCTCCTTGAACCTTCGGGTACTTAGGCGTTCAATCCTTTCTTGGGCAC 157 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            CTGCGAACCCCTGAAATCCATTCCGCTCCACCTTCAACTACTACCATCACCTCTGGCTCC 180 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              CCCCACCTCCGCCAAACTTTGGGGCTCACTCGCGCCATGAGCGCCCCTCCGCTACTACGG 145 

                                                                             

 

alpha           ------------------------------------------------------------ 

beta            CCGAGGTGCTCATCTTAACGCACCCCAGGGCCTAGGACAGGGTGCCAGGGGCGCGGCTCA 217 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            GCCACCAAGGGCACAATGGATTTGCCAAAATGCAAAGGAAAACCCAAGAAAGGACGGTCG 240 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              CCGCCTAGCCCGCTGCTGCCCGCCGCGGCCGCTGTGGCCGC-CGCCGCTGCTGCGCTGGT 204 

                                                                             

 

alpha           ------------------------------------------------------------ 

beta            GATCTGTCCAGCGCAGTCTGCGGTCCTCGCGCCGCAGCGTGCGGCTAAGAACACTTGGCT 277 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            GAAGAAATTCGAAAGGACCGCTGCGCAGTTAAATTCCAGCGAGATGTCACTGGTGCATCT 300 

delta           ---GAATTCCGGGGCGGCGGCCGCGGGGATCCCGCGAGCGGCCCCTGAACATCTACCCTT 57 

theta           ------------------------------------------------------------ 
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epsilon         ------------------------------------------------------------ 

mu              CCCGGGCTCCGGGCCCGCGCCCTTCCCAGCGCCTGGGGCCGCCCCGGCGGGGGGCATCTC 264 

                                                                             

 

alpha           ------------------------------------------------------------ 

beta            GGGGGGCCTGCGGGTTGCGGTGTGTGTGTATATGTGTGTGTGTCTGAGTCTGTGTGTGCG 337 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            CTTGCTAATATAATCGCCGAGAGGAATCAGAAACTAGAGGTTCCCAGTGTGGGAGGAGGG 360 

delta           CTTGCCGGGACCCGGGAGGTCCCCACTGGCCTCCGGGCCCGTCCTGATCAGACTCGTGTC 117 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              GTTCCATCTGCAGATCGGCCTGAGCCGCGAGCCGGTGCTGCTCCTTCAGGACTCCTCTGG 324 

                                                                             

 

alpha           ------------------------------------------------------------ 

beta            TTTGCTGGTGGTGCCGATATGTAAAGCAGCTGGCGGCTCTGGGCGGGGCCTGGGTTCCAT 397 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            GCACAGAATCCTATAATTCTAAACTGCTGTGGGTCCTGGAGATCATCAATCCTGCCTTCT 420 

delta           GACCTCCCCGTCCACGCGCATCCGGGAGAGCCGCGCCACGAGACGGACCCGGGCCCGCCG 177 

theta           ------------------------------------------------------------ 

epsilon         -----GAATTCCGGAATCCGGCGAGGAAATACATGCACTCGCTGAGAATCGCCGGCGCCA 55 

mu              CGACTACAGCCTGGCGCATGTCCGGGAGATGGCTTGCTCCATCGTGGACCAGAAGTTCCC 384 

                                                                             

 

alpha           ---------------GCCGCGAGTAGGAAGCGCGAGCGCCAGGCGCCG-GGCTG---TCA 41 

beta            GCAAATGAAGGAGGAGGGGCTACCCTGGGGCTCCGCCTCCCTCCCCCGCAGCTGGGGCCA 457 

gamma           -------------------------------------CCTAGATGCCCCAGTCT---TCT 20 

zeta            ------------------------------------------------------------ 

iota            GCTGAGGAAAAGCGAAGTGGAAAAGCCAGTAACAGCCCTTACCCTATCACGTGTGAAATG 480 

delta           GGACCCCTGGTGTCTGGCCCTGCGTCGAGAGGCTGGTGACTGCCACCCATAAGCTCCAGC 237 

theta           -------AGGCGCGCGTCCCTGAGCCGGC------GTGGCGAGCGCCCTCTGGCCGGTGT 47 

epsilon         GGACGC--AGCGCCACAAGGTGTAGCGAGTGAGTGGGGTGGGGCAAGAGGGGACCCAGGA 113 

mu              TGAATGTGGCTTCTATGGACTCTATGACAAGATCCTGCTTTTCCGTCACGATCCTGCCTC 444 

                                                                             

 

alpha           GTGAGCGTGGGGCCAGCCAGAG--AGCGAGAGAGCCGGAGAGAGCCAGAGAGAGC--CAG 97 

beta            GCGGTGCCAAGCACAGCTGGACC-AGCGGCAGCAGCTGGGCGAGTGACAGCCCAG--CAA 514 

gamma           ACTGCTCTGACCCCACCCGCTT----TCTCCCGGCTCGGTACAGCTGGTGCC-------- 68 

zeta            ------------------------------------------------------------ 

iota            AGGGTCCTGGCGGTCTTTGAAC-----TTAGATACTCAAGCTGTTCTCAGGACTT--CTA 533 

delta           TTCAGCCTCGGCTTACTCCCCT-----CAGGGGCTTGCAGGCTGAGGCCTGCCCT--CGG 290 

theta           CGCCGCC-CGGAGTACCCTC----------GGGTCGCCAGGCCCGCGCCAGTCCC--CGC 94 

epsilon         GTCCCCC-CAGGCTCCCAGCGC-----GCCTGCTCCTGCTCTTCAATCCTGCCCT--CGG 165 

mu              TGAAAACATCCTTCAGCTGGTAAAAATCGCAAGTGACATTCAGGAGGGCGATCTTATTGA 504 

                                                                             

 

alpha           AGAGAGCGGCTCAGCTCCCAGCTCCAAGCAGCGCAGCGCCC-GCCCGGCTCTCCCCGGCC 156 

beta            CGCGCGCGCGGCCGCCGCCAGAGCCGGC--GCGAAGGGGCA-GCGCGGCCCTGCGGTCCC 571 

gamma           ---GGGGGGTGCTGCTTTCTGCCCTGCGCTGCGCACCGTTA-GTGC--CCTGCCCCTGTC 122 

zeta            ------------------------------------------------------------ 

iota            TGCCTACAAGTCCCGGGAAGCGC----AAGACAGAAAAC-G-CGGCACCCTGTACCTAAG 587 

delta           ACGCGGCTGACCAGCCTCTCCCTCTCTTCCACACTTTGG-A-CTTCTCTTTGGACCTCCT 348 

theta           CATCGGAGCAGCAGCGGC---------ACTGCGCTG-GG-A-CTGCGGCCACGACACC-- 140 

epsilon         GGCGGACGGAGTGACCCCCGC------CCCGACCATGGT-A-GTGTTCAATGGCCTTCTT 217 

mu              AGTGGTCCTGTCAGCTTCAGCCACCTTCGAAGACTTCCAGATCCGGCCTCACGCTCTCTT 564 

                                                                             

 

alpha           ACCGCCGCCACCACCGCACCTCA-GCACCGC-CACCTCGGCCGCCGCCCCCGCCCACCCC 214 

beta            CGGGCGGCAGCAGCGGCCGCCTA-GTCCCGCGCCTCTCCGGGCTTACAGCCCCCGGTCCC 630 

gamma           CTTCCGATCTCAGAGTCTGCGGA-GTGCCCC-------------TATCGCCGTCCA-CCT 167 

zeta            ------------------------------------------------------------ 
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iota            GAACAAATCCCAGAATCCCACCG-GGACTCCAAATCCCAGAATCCCGCGCAGCAAATACA 646 

delta           AAAAAGGCTCCATCATGGCACCG-TTCCTGCGCATCTCCTTCAATTCCTATGAGCTGGGC 407 

theta           ---AGGGAACAACCATGTCACCG-TTTCTTCGAATTGGTTTATCCAACTTTGACTGTGGG 196 

epsilon         ----AAGATCAA---AATCTGCG-AGGCCGTGAGCTTGAAGCCCACAGCCTGGTCGCTGC 269 

mu              CGTTCATTCATACAGAGCCCCTGCTTTCTGTGATCACTGTGGAGAAATGCTGTGGGGACT 624                                                                            

alpha           GGCCCTCCCCGGC---TGCTGCTCCCCGGCGGAGGCAAGAGGTGGTTGGGGGGGACCATG 271 

beta            GCCGCCCCGGGGC---CGCCACCTCTCGGGGCTCCCCCCAGTCCCCGCGCGCGCAAGATG 687 

gamma           GTTTCCTCAGAAA---AAAGGCCAGCTCGTGATCCCT---GCTGCGTTCCTGGGGCCATG 221 

zeta            ------------------------------------------------------------ 

iota            TCCCGGAAGCGTGGCGGGAGCGAACGTGGTGGGAGGGGCCGTGGCGGGAGGCGTGTTGTG 706 

delta           TCCCTGCAGGCGG---AGGACGACGCAAGCCAGCCTTTCTGTGCCGTGA--AGATGAAGG 462 

theta           ACCTGTCAAGCTTGTCAGGGAGAGGCGGTGAACCCCTACTGTGCCGTGC--TTGTCAAAG 254 

epsilon         GCCATGCGGTGGG---ACCCCGGCCCCAGACGTTCCTTCTGGACCCCTACATTGCCCTTA 326 

mu              GGTGCGCCAAGGC----CTTAAATGTGAAGGATGTGGCCTGAATTACCATAAGAGATGTG 680 

                                                                             

 

alpha           GCTGAC--GTTTACCCGGCCAACGACTCCACGGCGTCTCAGGACGTGGCCAACCGCTTCG 329 

beta            GCTGACCCGGCTGCGGGGCCGCCG--CCGAGCGAGGGCGAGGAGAGCACGGTGCGCTTCG 745 

gamma           GCGGGTCTGGGT-CCTGGCGGGGG---CGACTCAGAAGGGGGACCCCGACCCCTGTTTTG 277 

zeta            ------------------------------------------------------------ 

iota            CAGAGCGGAGGGAGGAGCGCCGGGGCTCGGGCTGTGGCGGCGAAGCGACCCTTCGCTCGC 766 

delta           AGGCACTCACCACAGACCGAGGGAAGACTCTGGTACAGAAGAAGCCCACCATGTACCCTG 522 

theta           AGTATGTGGAATCAGAAAACGGGCAGATGTACATCCAGAAAAAGCCGACCATGTACCCGC 314 

epsilon         ACGTGGACGACTCGCGCATCGGCCAAACAGCCACCAAGCAGAAGACCAACA---GTCCGG 383 

mu              CATTTAAAATCCCCAACAATTGCA-GTGGAGTGAGAAGGAGAAGGCTCTCAAATGTTTCC 739 

                                                                             

 

alpha           CCCGCAAAGGGGCGCTGAGGCAGAAGAACGTGCATGAGGTGAAAGACCACAAATTCATCG 389 

beta            CCCGCAAAGGCGCCCTCCGGCAGAAGAACGTGCACGAGGTGAAGAACCACAAATTCACCG 805 

gamma           CA-GAAAGGGGGCGCTGAGGCAGAAGGTGGTCCACGAGGTGAAGAGCCACAAGTTCACCG 336 

zeta            -----CGAGGCGGGTGCCGTCGGTCC------CGCGCTGCGC--GCTCCCTTCCGCGTTC 47 

iota            TCTGGCGGGTTAGGCGT-GTTGGTCCGGGAGGCGGGCGGCCACGGCTTCCCGACAGGCTC 825 

delta           AGTGGAAGTCAACATTC-GACGCCCACATCTATGAAGGCCGTGTCATCCAGATCGTGCTG 581 

theta           CTTGGGACAGCACCTTT-GATGCCCACATTAACAAGGGAAGGGTGATGCAGATCATCGTG 373 

epsilon         CCTGGCACGATGAGTTC-GTCACTGATGTGTGCAATGGGCGCAAGATCGAGCTGGCTGTC 442 

mu              CTCACTGGACTGGGTACTGTCCGCACAGCGTCTGCGGAGTTCTCCACC-AGTGCCCCCGA 798 

                                  *                                          

 

alpha           CCCGCTTCTTCAAGCAACCCACCTTCTGCAGCCACTGCACCGACTTCATCTGGGGGTTTG 449 

beta            CCCGCTTCTTCAAGCAGCCCACCTTCTGCAGCCACTGCACCGACTTCATTTGGGGCTTCG 865 

gamma           CTCGTTTCTTCAAGCAGCCAACCTTCTGCAGTCACTGTACCGACTTCATCTGGGGCATTG 396 

zeta            CGCCGTCTGC--CCCGCCTGGCAACCCGGCCCTGCTCGGGGGCCGCTAGCCATGGCCGGA 105 

iota            GGGAGGCCGAGACCCTCGCGGCG-CCCGGCGCTGCCCGGATCCCCTCAGCCTCCAGCGGA 884 

delta           ATGCGGGCAGCTGAAGACCCCATGTCGGAGGTGACCGTGGGCGTGTCAGTGCTGGCTGAG 641 

theta           AAAGGCAAAAATGTAGACCTCATATCAGAAACCACCGTGGAGCTCTACTCCCTGGCAGAG 433 

epsilon         TTTCACGATGCTCCTATCGGCTACGACGACTTCGTGGCCAACTGCACCATCCAGTTCGAG 502 

mu              TGAGCCTCTACTGTCTCCTGTGAGCCCTGGCTTTGAGCAAAAGTCTCCATCTGAGTCATT 858 

                                                                             

 

alpha           GAAAACAAGGCTTCCAGTGCCAAGTTTGCTGTTTTGTGGTTCACAAGAGGTGCCATGAGT 509 

beta            GGAAACAGGGATTCCAGTGTCAAGTCTGCTGCTTTGTTGTACACAAGCGCTGCCATGAAT 925 

gamma           GAAAGCAGGGCCTGCAATGTCAAGTCTGCAGCTTTGTGGTTCACCGCCGATGCCACGAAT 456 

zeta            GTGCCCTGGACACA--GCGCTGACGGC--GGCTGGCGGAGT-GCGCCATGCCCAGCAGGA 160 

iota            GAGGCGGGGGAGTGAGGAGATGCCGACCCAGAGGGACAGCA-GCACCATGTCTCACACGG 943 

delta           -CGCTGCAAGAAGA--ACAACGGCAAGGCTGAGTTCTGGCT-GGACCTGCAGCCTCAGGC 697 

theta           -AGATGCCGCAAGA--ACAATGGGCGGACAGAAATATGGTT-AGAGCTGAAACCTCAAGG 489 

epsilon         GAGCTGCTGCAGAATGGGAGCCGTCACTTCGAGGACTGGAT-TGATCTGGAGCCAGAAGG 561 

mu              TATCGGTCGTGAGAAGAGGTCAAATTCTCAGTCATATGTTGGACGGCCGATTCAGCTCGA 918 

                                              *                              

 

alpha           TTGTTACTTTCTCT---TGTCCGGGTGCGGATAAGGGACCTGACACTGATGACCCCAGAA 566 

beta            TCGTCACGTTCTCC---TGCCCTGGTGCAGACAAGGGCCCGGCCTCTGATGACCCACGGA 982 

gamma           TTGTGACCTTCGAG---TGTCCAGGAGCTGGAAAGGGCCCCCAGACGGACGACCCTCGCA 513 
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zeta            CCGACCCCAAGATG---GACCGGAGCGGCGGCCGC---GTCCGTCTGAAGGCGCACTACG 214 

iota            TCGCGTGCGGCGGC---GGCGGGGACCATTCCCACCAGGTCCGGGTGAAAGCCTACTACC 1000 

delta           CAAGGTGCTGATGT---GTGTGCAGTATTTCCTGGAGGATGGGG----ATTGCAAACAGT 750 

theta           CCGAATGCTAATGA---ATGCAAGATACTTTCTGGAA-ATGAGT----GACACAAAGGAC 541 

epsilon         --AAAAGTCTACGT---GATCATCGATCTCTCGGGATCATCGGGCGAAGCCCCTAAAGAC 616 

mu              CAAGCTCCTGATGTCTAAGGTGAAGGTGCCACACACCTTTGTCATCCACTCCTACACACG 978 

                                                                             

 

alpha           GCAAGCACAAGTTCAAAATCCACACCTATGGAAGCCCTACCTTCTGTGA--------TCA 618 

beta            GCAAACACAAGTTTAAGATCCACACCTACTCCAGCCCTACCTTCTGTGA--------CCA 1034 

gamma           ACAAGCACAAGTTCCGTCTGCACAGCTACAGCAGTCCCACCTTCTGCGA--------CCA 565 

zeta            GCGGGGACATCCTGATTACCAGCGTGGACCCCACGACAACTTTCCAGGA--------CCT 266 

iota            GCGGGGATATTATGATAACACACTTCGAGCCTTCCATCTCCTTTGAAGG--------ACT 1052 

delta           CCATGCGTAGTGAGGAGGAGGCCATGTTCCCAACTATGA-ACCGCCGTG--------GAG 801 

theta           ATGAGTGAATTTGAGAACGAAGGATTCTTTGCACTGCATCACCGCCGAG--------GCG 593 

epsilon         AATGAAGAACGAGTGTTTAGGGAGCGGATGCGGCCAAGGAAGCGCCAAG--------GGG 668 

mu              GCCCACGGTCTGCCAGTTCTGTAAGAAGCTCCTCAAGGGCCTCTTCCGGCAGGGTTTGCA 1038 

                                                                             

 

alpha           CTGTGGGTCCCTGCTCTAC--GGACTTATCCACCAAGGGATGAAATGCGACACCTGCGAC 676 

beta            CTGTGGATCACTGCTGTAT--GGGCTCATCCACCAGGGGATGAAATGCGACACCTGTATG 1092 

gamma           CTGTGGTTCCCTCCTCTAC--GGGCTGGTGCACCAGGGCATGAAATGTTCCTGTTGCGAA 623 

zeta            CTGTGAGGAAGTGCGAGACATGTGTGGCCTGCACCAGCAGCACCCACTCACCCTCAAGTG 326 

iota            TTGCAGTGAGGTTCGAGATATGTGTTCTTTTGACAATGAGCAGCCATTCACCATGAAATG 1112 

delta           CCATTAAACAGGCCAAGAT-----TCACTACATCAAGAACCACGAGTTCATCGCCACCTT 856 

theta           CCATCAAACAAGCCAAAGT-----CCACCACGTCAAGTGTCACGAGTTCACAGCCACCTT 648 

epsilon         CTGTCAGGCG---CAGGGT-----CCACCAGGTCAATGGCCACAAGTTCATGGCCACCTA 720 

mu              GTGCAAAGATTGCCGATTCAACTGTCACAAACGCTGTGCACCAAAAGTACCAAACAACTG 1098 

                             *                   *                           

 

alpha           ATG--AATGTTCACAAGCAGTGCG-----TGATCAATGTCCCCAGCCTCTGCGGAATGGA 729 

beta            ATG--AATGTCCACAAGCGCTGCG-----TGATGAACGTCCCCAGCCTCTGTGGCACCGA 1145 

gamma           ATG--AATGTGCACCGACGCTGTG-----TGCGCAGCGTGCCCTCCCTTTGCGGCGTGGA 676 

zeta            GGTGGACAGTGAAGGTGACCCTTG-----TACTGTGTCCTCACAGATGGAGCTGGAGGAG 381 

iota            GATAGATGAGGAAGGAGACCCGTG-----CACAGTGTCTTCTCAGTTGGAGTTGGAAGAG 1167 

delta           CTT---TGGGCAGCCCACCTTCTG-----TTCTGTGTGCAAAGAGTTTGTCTGGGGCCTC 908 

theta           TTT---CCCTCAACCCACGTTCTG-----CTCTGTCTGCCATGAATTTGTCTGGGGGCTG 700 

epsilon         CTT---GCGGCAGCCCACCTACTG-----CTCCCACTGTAGGGATTTCATCTGGGGTGTC 772 

mu              CTTGGGCGAAGTGACCATCAATGGAGAATTGCTTAGCCCTGGGGCAGAGTCTGATGTTGT 1158 

                                       *                                     

 

alpha           TCACACAGAGAAGAGGGGGCGGATTTACCTGAAGGCAGAGGT---CACAGATGAAAAGCT 786 

beta            CCACACAGAACGCCGTGGCCGCATCTACATCCAGGCCCACAT---CGACAGGGAGGTCCT 1202 

gamma           CCATACAGAGCGCCGTGGACGTCTGCAACTGGAAATCCGGGCTCCCACATCAGATGAGAT 736 

zeta            GCCTTCCGCCTGGCCTGTCAGGGCAGGGACGAAGTGCTCATCATCCACGTTTTCCCAAGC 441 

iota            GCTTTCAGGCTGTATGAGTTGAACAAGGATTCTGAACTCCTGATCCACGTGTTCCCGTGT 1227 

delta           A---ACAAGCAAGGCTACAAATGCAGGCAATGCAACGCTGCCATCCATAAGAAATGCATC 965 

theta           A---ACAAGCAGGGCTACCAGTGCCGACAATGTAATGCAGCGATTCACAAGAAGTGCATC 757 

epsilon         ATAGGAAAACAGGGATATCAATGTCAAGTTTGTACCTGCGTCGTCCACAAACGATGCCAT 832 

mu              CATGGAAGAAGGGAGCGATGACAATGACAGCGAACGGAACAGTGGACTCATGGATGACAT 1218 

                                                                             

 

alpha           GCACGTCACCGTACGAGATGCAAAAAATCTAATC---CCTATGGATCCAAATGGG----- 838 

beta            CATCGTTGTTGTAAGAGATGCTAAAAATCTGGTA---CCTATGGACCCCAACGGC----- 1254 

gamma           CCATATTACTGTGGGTGAGGCCCGGAACCTCATT---CCTATGGACCCCAATGGC----- 788 

zeta            ATCCCAGAACAACCGGGCATGCCTTGTCCTGGAG---AAGACAAGTCCATCTACC----- 493 

iota            GTACCAGAGCGTCCTGGAATGCCTTGCCCAGGGG---AAGACAAGTCCATTTACC----- 1279 

delta           G-ACAAGATTATCGGCCGCTGCACTGGCACTGCT---ACCAATAGCCGGGACACC----- 1016 

theta           G-ATAAAGTGATAGCCAAGTGCACAGGATCGGCG---ATCAATAGTCGAGAGACC----- 808 

epsilon         G-AGCTCATTATTACGAAGTGCGCTGG----GCT---A--AAGAAACAGGAAACC----- 877 

mu              GGACGAGGCCATGGTCCAGGACACTGAGATGGCTTTGGCGGAGGGTCAGAGTGACGGTGC 1278 

                                                              *              
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alpha           ----CTTTCGGATCCTTACGTGAAGCTGAAACTTATTCCTGACCC-CAAGAATGAGAGCA 893 

beta            ----TTGTCAGATCCCTACGTAAAACTGAAACTGATCCCTGATCC-CAAAAGTGAGAGCA 1309 

gamma           ----CTGTCTGATCCCTATGTGAAACTGAAGCTCATCCCGGACCC-TCGGAACCTGACAA 843 

zeta            ----GCCGTGGAGCCAGAAGATGGAGGAAGCTATACCGAGCCAACGGC-CACCTCTTCCA 548 

iota            ----GCAGAGGGGCGCGCAGGTGGAGAAAGCTGTATTGTGCAAATGGC-CACACTTTTCA 1334 

delta           ----ATCTTCCAG---AAAG------AACGCTTCAACATCGACATGCCTCACCGATTCAA 1063 

theta           ----ATGTTCCAC---AAGG------AGAGATTCAAGATCGACATGCCACACAGATTCAA 855 

epsilon         ----CCTGACGAG---GTGGGCTCCCAACGCTTCAGCGTCAACATGCCCCACAAGTTCGG 930 

mu              AGAGATGCAGGATCCAGACGCAGACCAGGAGGACTCCAACAGAACCATCAGCCCTTCTAC 1338 

                                   *                                         

 

alpha           AACAGAAAAC-CAAAACCATCCGATCCACACTGAACCCTCAGTGGAATGAGTCCTTCACG 952 

beta            AGCAGAAGAC-CAAGACTATCAAATGCTCCCTCAACCCGGAGTGGAACGAAACCTTCAGA 1368 

gamma           AACAGAAGAC-AAAGACCGTGAAAGCCACACTGAATCCCGTGTGGAACGAGACCTTCGTG 902 

zeta            AGCCAAGCGC-TTTAACAGGAGAGCGTACTGTGGCCAGTGCAGCGAAAGGATATGGGGCC 607 

iota            AGCCAAACGC-TTTAACAGGCGTGCCCACTGTGCCATCTGCACAGACAGGATCTGGGGAC 1393 

delta           GGTCTATAAC-TACATGAGCCCCACCTTCTGTGACCACTGTGGCACTTTGCTCTGGGGAT 1122 

theta           AGTCTACAAC-TACAAGAGTCCAACCTTCTGTGAGCACTGTGGTACCCTGCTATGGGGGC 914 

epsilon         GATCCACAAC-TACAAGGTCCCCACGTTCTGTGACCACTGTGGCTCCCTGCTCTGGGGCC 989 

mu              GAGCAACAACATACCGCTTATGAGGGTAGTGCAGTCTGTCAAGCACACAAAGAGGAGAAG 1398 

                     *   *                                                   

 

alpha           TTCAAATTAAAACCTTCAGACAAA--GACCGGCGACTGTCCGTAGAAATCTGGGACTGGG 1010 

beta            TTTCAGCTGAAGGAATCAGACAAA--GACAGAAGACTGTCCGTAGAGATCTGGGATTGGG 1426 

gamma           TTCAACCTGAAGCCGGGGGATGTG--GAGCGCCGGCTCAGTGTGGAGGTGTGGGATTGGG 960 

zeta            TCGCGAGGCAGGGGTACAGGTGCATCAACTGCAAGCTGCTTGTCCATAAACGCTGCCACG 667 

iota            TTGGACGACAAGGATATAAATGCATCAACTGCAAACTGCTGGTTCATAAGAAGTGCCACA 1453 

delta           TGGTGAAACAGGGATTAAAGTGTGAAGACTGCGGCATGAATGTGCACCACAAATGCCGGG 1182 

theta           TGGCGAGGCAAGGTCTCAAGTGTGATGCATGTGGCATGAACGTCCACCACCGATGCCAGA 974 

epsilon         TCTTGCGGCAGGGCCTGCAGTGTAAAGTCTGCAAAATGAATGTTCACCGTCGATGCGAGA 1049 

mu              CAGCACAGTGATGAAGGAAGGGTGGATGGTCCACTACACCAGCAAGGACACACTGAGGAA 1458 

                                                         *                   

 

alpha           ATCGGACGACACGGAATGACTTCATGGGCTCCCTTTCCTTCGGCGTCTCA---------- 1060 

beta            ACCTGACCAGCAGGAATGACTTCATGGGATCTCTGTCGTTTGGGATTTCA---------- 1476 

gamma           ATAGGACATCCCGAAATGACTTCATGGGTGCCATGTCCTTTGGTGTCTCA---------- 1010 

zeta            TCCTCGTCCCGCTGACCTGCAGGAGGCATATGGATTCTGTCATGCCTTCC---------- 717 

iota            AGCTTGTCACAATTGAGTGTGGGCGGCAT----TCTTTGCCACCGGAACC---------- 1499 

delta           AGAAGGTGGCCAACCTGTGTGGTATCAACCAAAAGCTCTTGGCTGAGGC----------- 1231 

theta           CAAAGGTTGCCAACCTCTGTGGTATAAACCAGAAGCTAATGGCTGAAGCGCTAGCAATGA 1034 

epsilon         CCAACGTGGCTCCCAATTGTGGGGTGGACGCCAGAGGAATTGCCAAGGTGCTGGCCGATC 1109 

mu              AAGGCATTACTGGAGACTGGACAGCAAAAGCATCACACTCTTCCAAAACGACACAGGCAG 1518 

                                                                             

 

alpha           -------------GAGCTGATGAAGATGCCAGC-----CAGTGGA--TGGTACAAGTTGC 1100 

beta            -------------GAACTACAGAAAGCCGGAGT-----GGATGGC--TGGTTCAAGTTAC 1516 

gamma           -------------GAGCTACTCAAGGCTCCTGT-----GGATGGA--TGGTACAAGTTAC 1050 

zeta            -------------------CAAGAGCCTCCAGT-----AGATGAC-AAGAACGATGGTGT 752 

iota            -------------------CATGA--TGCCAAT-----GGACCA-----------GTCAT 1522 

delta           -------------------CTTGAACC--AAGT-----GACCC----AGAA---AGCTTC 1258 

theta           TTGAAAGCACTC-AACAGGCTCGCACCTTAAGA-----GATTC----AGAACACATCTTC 1084 

epsilon         TTGGCGTTACTC-CAGACAAAATCACCAACAGT-----GGCCAGAGAAGGAAAAAGCTCG 1163 

mu              CCGGTACTACAAGGAAATTCCTTTATCAGAAATTTTATGTCTGGAACCAGCAAAACCTTC 1578 

                                                                             

 

alpha           TC-AACCAAGAGGA--GGGTGAATACTACAATGTGCCCA---TTCCAGAAGGAGATGAA- 1153 

beta            TA-AGCCAGGAAGA--AGGCGAGTACTTTAATGTGCCGG---TGCCGCCGGAAGGAAGC- 1569 

gamma           TG-AACCAGGAGGA--GGGCGAGTATTACAATGTACCGG---TGGCCGATGCTGACAACT 1104 

zeta            AG-ACCTTCCTTCA--GA----AGAAACTG----------------ATGG-AATT----- 783 

iota            CC-ATGCACCCAGA--CC----ACACACAG----------------ACAGTAATT----- 1554 

delta           CC-GGAAG---CCA--GA----GACACCAG--------A---GACTGTCGGAA------- 1290 

theta           CG-AGAAGGACCAA--TT----GAAATCAGTTTCCCGCG---CTCCATCAAAAGTGAAAC 1134 

epsilon         CT-GCTGGTGCTGA--GTCCCCACAGCCGGCTTCTGGAAACTCCCCATCAGAAGACGACC 1220 
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mu              AGCATTAATTCCCACTGGAGCTAACCCTCATTGTTTTGAAATCACTACAGCAAACGTAGT 1638 

                             *                                               

 

alpha           --------------------GAAGGCAACGTGGAACTCAGGCAGAAGTTCGAGAAAGCCA 1193 

beta            --------------------GAGGGCAATGAAGAGCTGCGGCAGAAGTTTGAGAGAGCCA 1609 

gamma           GCAGCCTCCTCCAGAAGTTTGAGGCCTGTAATTACCCCTTGGAATTGTATGAGAGAGTGC 1164 

zeta            ---------------GCTTATATTTCTTCATCTCGGAAACATGACAATATCAAAGATGAT 828 

iota            ---------------CCATATAATCCTTCA------AGTCATGAGAGTTTGGACCAAGTT 1593 

delta           --------------------TATACCAGGGATTCGAGA--AGAAGACAGCTG------TC 1322 

theta           CA--------GGCCACCATGCGTACCAACACCTGGGAA--AAAAGAACCCCAGGGAATTT 1184 

epsilon         GATCCAAGTCAGCGCCCACCTCCCCTTGTGACCAGGAACTAAAAGAACTTGAAAACAACA 1280 

mu              GTATTATGTGGGAGAAAACGTGGTCAACCCTTCAAGCCCCCCACCAAACAACAGCGTCCC 1698 

                                                                             

 

alpha           AGCTGGGCCCCG--------------CTGGAAACAAAGTCATCAGCCCTTCAGAA----- 1234 

beta            AGATTGGCCAAGGTACCAAGGCT---CCAGAAGAAAAGACAGCGAACACTATATC----- 1661 

gamma           GGATGGGCCCCTCTTCCTCTCCCA--TTCCTTCTCCATCCCCCAGTCCCACGGAC----- 1217 

zeta            TCTGAGGA-------CCTTA---------AGCCTGTC----------------------- 849 

iota            GGTGAAGA-------AAAGG---------AGGCAATG----------------------- 1614 

delta           TCTGGGAA----TGACATCC--------CAGACAACAACG-----------GG------- 1352 

theta           GCTGGGAG----TCCCCTTTGGATGGGGCAGATAAAACGGCCCAGCCTCCTGA------- 1233 

epsilon         TCCGGAAGGCCTTGTCATTTGACAACCGAGGAGAGGAGCACCGAGCCTCGTCGTC----- 1335 

mu              CCCGAGCGGCATCGGTACCGATGTGGCGAGGATGTGGGAGGTCGCCATCCAGCACGCTCT 1758 

                                                                             

 

alpha           GACAGGAAGCAGCCATCTAA------------------CAACCTGGACAGGGTGAAAC-- 1274 

beta            CAAATTTGACAACAAT--GG------------------CAACAGGGACCGGATGAAAC-- 1699 

gamma           TCCAAGAGATGCTTCTTCGGT---------------GCCAGCCCAGGACGCCTGCATA-- 1260 

zeta            -ATCGATGGGGTGGATGGGAT--------------CAAAATCTCTCAGGGGCTGGGGC-- 892 

iota            -AACACCAGGGAGAGTGGGA-----------------AGGCGTCATCAAGCTTAGGTC-- 1654 

delta           -ACCTATGGCAAGATCTGGGA--------------GGGGA-----GCAA--CCGGTGC-- 1388 

theta           -ACCTGAAGTGAACTTGCAAA--------------GGGCTTCTCTGCAA--CTGAAAC-- 1274 

epsilon         TACTGATGGCCAGCTGGCAAGCCCTGGCGAGAACGGTGAAGTCCGGCAAGGCCAGGCCAA 1395 

mu              CATGCCTGTCATCCCCAAGGGCTCCTCTGTGGGTTCCGGAACCAACTCACACAAAGATAT 1818 

                                                                             

 

alpha           -----------TCACAGACTT-------CAACTTCCTCATGGTGC-----TGGGGAAGGG 1311 

beta            -----------TGACCGATTT-------TAACTTCCTGATGGTGC-----TGGGGAAAGG 1736 

gamma           -----------TCTCTGACTT-------CAGCTTCCTCATGGTTC-----TAGGGAAAGG 1297 

zeta            -----------TGCAAGACTT-------TGACCTCATCAGAGTCA-----TCGGGCGTGG 929 

iota            -----------TCCAGGATTT-------CGATTTGCTTCGAGTTA-----TAGGGAGAGG 1691 

delta           -----CGCC--TTGAGAACTT-------CACCTTCCAGAAAGTAC-----TTGGCAAAGG 1429 

theta           -----TGAAGATCGATGACTT-------CATCCTGCACAAGATGC-----TGGGGAAAGG 1317 

epsilon         GCGCTTGGGCCTGGATGAGTT-------CAACTTCATCAAGGTGT-----TAGGCAAAGG 1443 

mu              TTCGGTGAGCATTTCCGTTTCGAATAGCCAGATTCAGGAAAATGTGGATATCAGCACAGT 1878 

                           *       *             *        *       *  *    *  

 

alpha           G----AGTTTTGGAAAGGTGATGCTTGCTGACAGGAAGGGAACAGAGGAACTGTACGCCA 1367 

beta            C----AGCTTTGGCAAGGTCATGCTCTCAGAGCGGAAGGGTACAGATGAACTCTATGCCG 1792 

gamma           C----AGTTTTGGGAAGGTGATGCTGGCAGAGCGCAGAGGATCCGATGAACTCTATGCCA 1353 

zeta            A----AGCTATGCCAAGGTCCTCCTGGTGCGGTTGAAGAAAAACGACCAGATTTACGCCA 985 

iota            A----AGTTACGCCAAAGTACTGCTGGTTCGATTAAAAAAGACAGATCGCATTTATGCAA 1747 

delta           C----AGCTTTGGCAAGGTACTGCTTGCAGAACTGAAGGGCAAGGAAAGGTACTTTGCAA 1485 

theta           A----AGTTTTGGCAAGGTCTTCCTGGCAGAGTTCAAGAGAACCAAACAGTTTTTCGCAA 1373 

epsilon         C----AGCTTTGGCAAGGTCATGCTGGCCGAGCTCAAGGGTAAGGATGAAGTCTATGCTG 1499 

mu              CTATCAGATTTTCCCGGATGAGGTTCTGGGTTCTGGACAGTTCGGAATTGTTTATGGAGG 1938 

                     ** *         *     *                    *          *    

 

alpha           TCAAAATCCTGAAG-----AAGGACGTGGTGATCCAGGATGACGACG---TGGAGTGCAC 1419 

beta            TGAAGATCCTGAAG-----AAAGATGTGGTGATCCAAGATGACGATG---TGGAGTGCAC 1844 

gamma           TCAAGATACTGAAA-----AAAGACGTCATTGTCCAGGATGATGATG---TAGACTGCAC 1405 

zeta            TGAAGGTGGTGAAG-----AAGGAGCTCGTCCACGACGATGAGGATA---TCGACTGGGT 1037 

iota            TGAAGGTTGTGAAG-----AAAGAGCTCGTCAATGACGATGAGGATA---TTGATTGGGT 1799 
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delta           TCAAGTACCTGAAG-----AAGGACGTGGTGTTGATCGACGATGACG---TGGAGTGCAC 1537 

theta           TAAAAGCCTTAAAG-----AAAGATGTGGTGTTGATGGACGATGACG---TCGAGTGCAC 1425 

epsilon         TGAAGGTCTTAAAG-----AAGGACGTCATCCTGCAGGATGACGACG---TGGACTGCAC 1551 

mu              TAAACATCGTAAAACAGGAAGAGATGTAGCTATTAAGATTATTGACAAATTAAGATTTCC 1998 

                * **     * **      *  **  *                **     *    *     

 

alpha           CATGGTG-GAGAAGCGGGTTCTGGCCCTG------------CTCGACAA-----GCCCCC 1461 

beta            AATGGTG-GAGAAGAGGGTGCTGGCCCTG------------CCTGGGAA-----GCCCCC 1886 

gamma           CCTTGTG-GAGAAGCGTGTGCTGGCATTGGGAGGCCGAGGTCCTGGAGGC--CGGCCACA 1462 

zeta            GCAGACA-GAGAAGCACGTGTTCGAGCAGG-----------CATCCAGC------AACCC 1079 

iota            ACAGACA-GAAAAGCATGTGTTTGAGCAGG-----------CGTCCAAT------CACCC 1841 

delta           CATGGTG-GAGAAGCGGGTGCTGGCGCTCG-----------CCTGGGAG------AATCC 1579 

theta           GATGGTG-GAGAAGAGAGTTCTGTCCTTGG-----------CCTGGGAG------CATCC 1467 

epsilon         GATGACA-GAGAAGAGGATTTTGGCTCTGG-----------CGCGGAAA------CACCC 1593 

mu              AACAAAACAAGAAAGTCAGCTTCGTAATGAGGTTGCAATTTTACAGAACCTTCATCACCC 2058 

                         * **        *                                    *  

 

alpha           GTTCCTGACACAGCTGCACTCCTGCTTCCAGACAGTGGACCGGCTGTACTTCGTCATGGA 1521 

beta            ATTCCTGACTCAGCTCCATTCCTGCTTCCAGACCATGGACCGCCTCTACTTTATGATGGA 1946 

gamma           CTTTCTCACACAACTTCATTCCACCTTTCAGACTCCGGACCGCCTGTATTTTGTGATGGA 1522 

zeta            CTTCCTGGTTGGCTTACACTCCTGCTTCCAGACAACGAGCCGGTTGTTCCTGGTCATCGA 1139 

iota            TTTCCTTGTTGGTCTGCATTCCTGCTTCCAGACAGAAAGCAGGCTGTTTTTTGTCATAGA 1901 

delta           CTTCCTCACCCATCTCATCTGTACCTTCCAGACCAAGGACCACCTCTTCTTTGTGATGGA 1639 

theta           GTTTCTTACACACATGTTCTGCACATTCCAGACCAAGGAAAATCTCTTTTTCGTGATGGA 1527 

epsilon         TTATCTAACCCAACTCTATTGCTGCTTCCAGACCAAGGACCGGCTCTTCTTCGTCATGGA 1653 

mu              TGGTGTTGTAAATTTGGAGTGTATGTTTGAGACGCCTGAAAGAGTGTTTGTTGTTATGGA 2118 

                     *        *    *     **  ****           * *   *  * ** ** 

 

alpha           ATACGTCAACGGTGGGGACCTC---ATGTACCACATTCAGCAAGTCGGAAAATTTAAGGA 1578 

beta            GTATGTGAACGGGGGTGACCTC---ATGTACCACATCCAACAAGTTGGCCGTTTCAAGGA 2003 

gamma           GTACGTCACTGGGGGCGATTTA---ATGTACCACATTCAGCAACTGGGCAAGTTTAAGGA 1579 

zeta            GTATGTCAACGGGGGGGACCTC---ATGTTCCACATGCAGAGGCAGAGGAAGCTTCCAGA 1196 

iota            ATATGTGAATGGAGGGGATCTC---ATGTTTCATATGCAGCGGCAAAGAAAACTTCCTGA 1958 

delta           GTTCCTCAATGGGGGCGATCTG---ATGTTCCACATTCAGGACAAAGGCCGCTTCGAACT 1696 

theta           GTATCTCAATGGAGGAGACTTA---ATGTACCACATCCAAAGTTGCCACAAATTTGATCT 1584 

epsilon         ATATGTAAACGGTGGAGACCTC---ATGTTCCAGATTCAGCGGTCCCGAAAATTCGATGA 1710 

mu              AAAACTCCATGGAGACATGCTGGAGATGATCCTGTCAAGTGAAAAGGGCAGGTTGCCAGA 2178 

                     *    ** *      *    ***   *                     *       

 

alpha           GCCACAAGCAGTATTCTATGCAGCCGAGATCTCCATCGGACTGTTCTTTCTTCACAAAAG 1638 

beta            GCCCCATGCTGTATTTTACGCTGCAGAGATTGCCATCGGTCTTTTCTTCTTGCAGAGCAA 2063 

gamma           GCCCCACGCAGCATTCTATGCCGCGGAAATCGCCATAGGCCTCTTCTTCCTTCACAACCA 1639 

zeta            GGAACACGCCAGGTTCTATGCTGCTGAGATCTGTATCGCTCTCAACTTCCTACATGAGAG 1256 

iota            AGAACATGCCAGGTTTTACTCAGCAGAAATCAGTCTAGCACTAAATTATCTTCATGAGCG 2018 

delta           CTACCGGGCTACGTTTTATGCAGCTGAGATCATCTGCGGACTGCAGTTTCTACATGGCAA 1756 

theta           TTCCAGAGCCACGTTTTATGCTGCTGAGATCATCCTTGGTCTACAGTTCCTTCATTCCAA 1644 

epsilon         GCCTCGTTCCGGGTTCTATGCTGCCGAGGTCACATCTGCTCTCATGTTTCTCCACCAACA 1770 

mu              ACACATAACGAAGTTTTTAATTACTCAGATACTAGTGGCTTTGCGACATCTTCATTTTAA 2238 

                        *    ** *      *  *  *       *   *        * **       

 

alpha           AGGAATCATTTACAGGGATCTGAAGCTGGACAACGTCATGCTGGACTCAGAAGGGCATAT 1698 

beta            GGGCATCATTTACCGTGACCTGAAACTTGACAACGTGATGCTGGATTCCGAGGGGCACAT 2123 

gamma           GGGCATCATCTACAGGGACCTCAAGTTGGATAATGTGATGCTGGATGCTGAAGGACACAT 1699 

zeta            AGGGATCATCTACCGGGACCTAAAACTGGACAACGTCCTCCTCGATGCCGATGGACACAT 1316 

iota            AGGGATAATTTATAGAGATTTGAAGTTGGACAATGTACTGCTGGACTCTGAAGGACACAT 2078 

delta           AGGCATCATTTACAGGGACCTCAAGCTAGACAATGTAATGCTGGACAAGGATGGCCACAT 1816 

theta           AGGAATTGTCTACAGGGACCTGAAGCTAGATAATATCCTGTTAGACAGAGATGGCCATAT 1704 

epsilon         TGGAGTGATCTACAGGGATTTGAAACTGGACAACATCCTTCTAGATGCAGAAGGTCACTC 1830 

mu              AAACATCGTTCACTGTGACCTCAAGCCAGAAAATGTGTTGCTGGCATCAGCAGACCCTTT 2298 

                     *  *  *  * **  * **    ** **  *  *  * *     *  *  *     

 

alpha           CAAAATCGC-CGACTTCGGGAT----GTGCAAGGAACACATGATGGACGGGGTCACGACC 1753 

beta            CAAAATCGC-TGACTTTGGCAT----GTGTAAAGAGAATATCTGGGATGGGGTGACAACC 2178 
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gamma           CAAGATCAC-AGACTTCGGCAT----GTGTAAAGAGAATGTCTTCCCTGGGTCCACAACC 1754 

zeta            TAAGCTGAC-GGACTACGGCAT----GTGCAAGGAAGGCCTAGGCCCCGGCGACACAACA 1371 

iota            CAAACTCAC-TGACTACGGCAT----GTGTAAGGAAGGATTACGGCCCGGAGATACAACC 2133 

delta           CAAGATTGC-TGACTTCGGGAT----GTGCAAAGAGAATATATTTGGGGAGAACCGGGCC 1871 

theta           CAAAATAGC-AGACTTTGGGAT----GTGCAAAGAGAATATGCTGGGAGATGCGAAGACA 1759 

epsilon         CAAGCTGGC-TGACTTTGGGAT----GTGCAAGGAAGGGATTCTGAATGGCGTGACAACT 1885 

mu              CCCTCAGGTGAAACTTTGTGATTTTGGTTTTGCCCGGATCATTGGCGAGAAGTCTTTCCG 2358 

                            ***  *  **    **                    *         *  

 

alpha           AGGACCTTCTGTGGG-ACTCCGGATTACATTGCCCCAGAGATAATCGCTTACCAGCCATA 1812 

beta            AAGACATTCTGTGGC-ACTCCAGACTACATTGCCCCAGAGATCATTGCTTATCAGCCCTA 2237 

gamma           CGCACCTTCTGTGGG-ACCCCAGACTACATAGCACCTGAGATCATTGCCTATCAGCCCTA 1813 

zeta            AGCACTTTTTGTGGA-ACCCCGAACTATATCGCCCCCGAAATCCTGCGAGGAGAAGAGTA 1430 

iota            AGCACCTTCTGTGGG-ACTCCCAATTACATTGCTCCTGAGATCTTAAGAGGAGAAGACTA 2192 

delta           AGCACATTCTGCGGC-ACTCCTGACTACATCGCCCCTGAGATCCTGCAGGGCCTGAAGTA 1930 

theta           AATACTTTCTGTGGG-ACGCCTGACTACATCGCTCCGGAGATCTTGCTGGGTCAGAAATA 1818 

epsilon         ACCACCTTCTGTGGG-ACTCCTGACTACATAGCTCCAGAGATCCTGCAGGAGTTGGAGTA 1944 

mu              GAGATCAGTGGTGGGTACCCCAGCCTACCTGGCACCTGAGGTTCTGAGGAACAAGGGCTA 2418 

                   *      * **  ** **    **  * ** ** **  *  *             ** 

 

alpha           TGGAAAGTCTGTGGACTGGTGGGCGTACGGCGTGCTCCTGTATGAGATGCTAGCTGGGCA 1872 

beta            CGGGAAGTCTGTGGACTGGTGGGCGTTTGGAGTCCTGCTGTATGAAATGTTGGCTGGCCA 2297 

gamma           TGGGAAGTCTGTCGACTGGTGGTCCTTTGGAGTCCTGCTGTATGAGATGTTGGCAGGACA 1873 

zeta            CGGGTTCAGCGTGGACTGGTGGGCGCTGGGTGTCCTTATGTTTGAGATGATGGCTGGGCG 1490 

iota            TGGCTTCAGCGTTGACTGGTGGGCTCTTGGAGTACTCATGTTTGAGATGATGGCGGGAAG 2252 

delta           CTCATTTTCCGTGGACTGGTGGTCTTTTGGGGTCCTCCTCTATGAGATGCTCATTGGCCA 1990 

theta           CAACCATTCCGTTGACTGGTGGTCCTTTGGGGTTCTTCTTTACGAGATGCTGATTGGCCA 1878 

epsilon         CGGCCCCTCAGTGGACTGGTGGGCCCTGGGCGTGCTGATGTACGAGATGATGGCCGGGCA 2004 

mu              TAACCGCTCGCTAGACATGTGGTCTGTTGGGGTCATCATCTATGTGAGCCTGAGTGGCAC 2478 

                           * ***  **** *    ** **  *  * *  *  *   *    **    

 

alpha           GCTTATGACCAAACA------------CCCTGCC---------------AAGCGGCTGGG 1905 

beta            GGCACCTTTTGAAGG------------GGAGGAT---------------GAGGATGAACT 2330 

gamma           GCCACCCTTTGATGG------------GGAAGAT---------------GAGGAGGAGCT 1906 

zeta            CTCCCCCTTTGACATCATCA------CAGACAACCCTGACATGAATACTGAAGACTACCT 1544 

iota            GTCTCCATTTGATATCGTTGGGAGCTCTGACAATCCTGACCAAAACACAGAGGATTATCT 2312 

delta           GTCCCCCTTCCATGG------------TGATGAT---------------GAGGACGAGCT 2023 

theta           GTCGCCTTTCCACGG------------GCAGGAC---------------GAAGAGGAGCT 1911 

epsilon         GCCCCCCTTTGAAGC------------TGACAAC---------------GAGGACGACTT 2037 

mu              CTTCCCTTTTAATGAAGATGAAGATATCCACGATC-------AGATCCAGAACGCAGCCT 2531 

                           *                                      *          

 

alpha           CTGCGGGCCCGAGGGGGAAAGGGATGTCAGAGAGCATGCCTTCTTTAGGAGGATCGACTG 1965 

beta            CTTCCAGTCAATCATGGAGCACAACGT---GGCGTATCCCAAGTCCATG----TCTAA-G 2382 

gamma           GTTTCAAGCCATCATGGAACAAACTGTC---ACCTATCCCAAGTCACTT----TCCCG-G 1958 

zeta            TTTCCAAGTTATCCTGGAAAAGCCAATT----CGGATTCCCCGTTTCCT----GTCTGTC 1596 

iota            GTTCCAAGTCATTTTGGAGAAGCAGATT----CGCATACCGCGCTCCCT----GTCTGTG 2364 

delta           CTTTGAGTCCATCCGGGTGGACACACCA----CACTACCCGCGCTGGAT----CACCAAG 2075 

theta           TTTCCACTCCATCCGCATGGACAATCCC----TTTTACCCAAGGTGGCT----AGAAAGG 1963 

epsilon         GTTTGAATCCATCCTTCACGATGACGTT----CTCTACCCTGTCTGGCT----TAGCAAG 2089 

mu              TCATGTATCCACCCAATCCCTGGAAGGA----GATTTCTCATGAAGCCATTGATCTTATC 2587 

                                                       *                     

 

alpha           GG-AGAAGTTGGAGAACAGGGAGATCCAACCGCCATTCAAGCCCAAAGTGTGCGGCAAAG 2024 

beta            GA-AGCTGTGGCAATCTGCAAAGGGCTAATGACCA---AACACCCAGGCAAGCGCCT--- 2435 

gamma           GA-AGCTGTGGCCATCTGCAAGGGGTTCCTGACCA---AGCACCCAGGAAAGCGCCT--- 2011 

zeta            AA-GGCCTCACACGTCTTGAAAGGATTTTTAAATA---AGGATCCCAAAGAGAGGCTTGG 1652 

iota            AA-AGCAGCAAGTGTGCTGAAGAGTTTCCTCAACA---AGGACCCAAAGGAACGATTGGG 2420 

delta           GA-GTCCAAGGACATCATGGAGAAGCTCTTCGAGA---GGGACCCTGCCAAGAGGCTGGG 2131 

theta           GA-GGCCAAGGATCTTCTAGTGAAGCTTTTTGTGA---GAGAGCCTGAAAAGAGGCTGGG 2019 

epsilon         GA-GGCTGTCAGCATCCTGAAAGCTTTCATGACCA---AGAACCCGCACAAGCGCCTGGG 2145 

mu              AATAACTTGCTACAAGTGAAAATGAGAAAACGCTA----CAGTGTGGACAAGACCTTGAG 2643 

                                                  *                          
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alpha           GAGCAGAAAA---CTTTGACAAGTTCTTCACACGAGGGCAGCCTGTCTTAACACCACCAG 2081 

beta            GGGTTGTGGG---CCTGAAGGGGAACGAGACATTAAGG-AGCATGCATTT-TTCCGGTAT 2490 

gamma           GGGCTCAGGG---CCAGATGGGGAACCCACCATCCGGG-CTCATGGCTTT-TTCCGTTGG 2066 

zeta            CTGCCGGCCG---CAGACTGGGTTTTCCGACATCAAGT-CCCATGCCTTC-TTCCGAAGC 1707 

iota            TTGTCACCCT---CAAACTGGATTTGCTGACATCCAAG-GACACCCATTC-TTCCGTAAT 2475 

delta           --------------AGTAACAGGAAA----CATCAGGC-TTCACCCCTTT-TTCAAGACT 2171 

theta           --------------AGTGAGAGGAGA----CATCCGCC-AGCATCCTTTG-TTTCGAGAG 2059 

epsilon         CTGCGTGGCAGCACAGAACGGGGAAGATGCCATCAAGC-AACATCCATTC-TTCAAGGAG 2203 

mu              TCACCCC------TGGCTACAGGACTACCAGACCTGGT-TAGATTTACGCGAGCTGGAAT 2696 

                                               *                             

 

alpha           ATCAG-CTGGTCATCGCTAACATAGACCAGTCTGATTTTGAAGGGTTCTCGTATGTCAAC 2140 

beta            ATCGA-CTGGGAGAAACTCGAACG---CAAGGAGATTC---AGCCACCTTATAAACCAAA 2543 

gamma           ATCGA-TTGGGAGAGGTTGGAGAG----ACTGGAAATT--GCGCCTCCTTTTAGACCACG 2119 

zeta            ATAGA-CTGGGACCTGCTTGAAAA----GAAGCAGACC--CTGCCTCCCTTCCAGCCCCA 1760 

iota            GTGGA-TTGGGACATGATGGAGCA----GAAGCAAGTG--GTTCCGCCCTTTAAACCAAA 2528 

delta           ATCAA-CTGGAACCTGCTGGAGAA----GCGGAAGGTG--GAGCCGCCCTTTAAGCCCAA 2224 

theta           ATCAA-CTGGGAAGAGCTTGAGAG----AAAAGAGATT--GACCCACCCTTCAGACCAAA 2112 

epsilon         ATTGA-CTGGGTACTGCTGGAGCA----GAAGAAAATG--AAGCCCCCCTTCAAGCCGAG 2256 

mu              GCAGAATTGGAGAACGCTATATTA--CCCATGAAAGCGATGACTCGAGGTGGGAACAGTA 2754 

                       ***       *                                           

 

alpha           CCCCAGTTTGTGCACCCAATCTTGCAAAGTGCAGTATGAAACTCAGAAACAAAAGATCTA 2200 

beta            ----AGCTTGTGGGCGAAACGCTGAAAACTTCGACCGGTTTTTCA----CCCGCCATCCA 2595 

gamma           TC----CGTGTGGCCGCAGCGGCGAAAACTTTGACAAGTTCTTCA----CGCGGGCAGCG 2171 

zeta            GAT-CACAGATGACTATGGCCTGGACAACTTCGACACGCAGTTCA----CCAGCGAGCCC 1815 

iota            CAT-TTCTGGAGAATTTGGTTTGGATAACTTTGACTCCCAGTTTA----CCAACGAACCA 2583 

delta           AGT-GAAATCCCCTTCAGACTACAGCAACTTTGACCCAGAGTTCC----TGAATGAGAAA 2279 

theta           AGT-GAAATCACCATATGACTGTAGCAATTTCGACAAGGAATTCC----TAAGTGAGAAA 2167 

epsilon         AAT-TAAAACCAAGAGAGATGTCAATAACTTTGACCAAGACTTTA----CCCGGGAAGAG 2311 

mu              TGC---AGGCGAGCAGGGACTGCAGTATCCCGCGCACCTGATCAATCTGAGTGCTAGCCA 2811 

                                          *                                  

 

alpha           ATGCCTCCCTAGCCCC-CAATCTCCCCAGCAGTGGGAAGTGATTCTTAACCATA--AAAT 2257 

beta            CCAGTCCTAACACCTC-CTGACCAGGAAGTCATCAGGAATATTGACCAATCA----GAAT 2650 

gamma           CCAGCCTTGACCCCGC-CAGACCGCTTGGTCCTAGCCAGCATCGACCAAGCT----GATT 2226 

zeta            GTACAGCTGACCCCAG-ATGATGAGGACGTCATAAAGAGGATCGACCAGTCC----GAGT 1870 

iota            GTCCAGCTCACTCCAG-ATGATGATGACATCGTGAGGAAGATTGATCAGTCT----GAAT 2638 

delta           CCCCAACTTTCCTTCA-GTGACAAGAACCTCATCGACTCTATGGACCAGACA----GCCT 2334 

theta           CCCCGGCTATCGTTCG-CTGACAGAGCACTCATCAACAGCATGGACCAGAAC----ATGT 2222 

epsilon         CCAATACTTACACTTG-TGGATGAAGCAATCGTGAAGCAGATCAACCAGGAA----GAAT 2366 

mu              TGGCGACAGTCCTGAGGCTGAAGAGAGAGAGATGAAAGCCCTCAGTGAGCGTGTCAGCAT 2871 

                                                *              *           * 

 

alpha           TTTAAGGCTATAGCCTTGTATTTTGTTCCACA---------CAGAGGCCTGAAAATTCTG 2308 

beta            TCGAAGGATTTTCCTTTGTTAACTCTGAATTT---------TTAAAACCCGAAGTCAAGA 2701 

gamma           TCCAGGGCTTTACTTATGTGAACCCGGACTTC---------GTGCACCCAGATGCCCGCA 2277 

zeta            TCGAAGGCTTCGAGTACATCAACCCGCTTCTGCTGTCTGCTGAGGAGTCCGTGTGAGGCC 1930 

iota            TTGAAGGTTTCGAGTATATCAACCCTCTCTTGATGTCTGCAGAAGAGTGTGTCTGATTCT 2698 

delta           TCAAGGGCTTCTCCTTTGTGAACCCCAAATAT---------GAGCAATTCCTGGAATAGT 2385 

theta           TCAGCAACTTCTCCTTCATTAACCCGGGGATG---------GAGACTCTCATTTGCTCCT 2273 

epsilon         TCAAAGGCTTCTCCTACTTTGGT------------------GAAGACCTGATGCCCTGAG 2408 

mu              CCTCTGATTCCCTCCCCTCTAATCTGTCAAAAC-----ACTGTGGAATTAATAAATACAT 2926 

                        *                                                    

 

alpha           GGGATATTA-------GTCCATAAGTGATCA------ACTTTC--TTCCCCCACCCAATC 2353 

beta            GCTAAGTAG-------ATCTGTAGACCTCCG------TCCTTCATTTCTGTCATTCAAGC 2748 

gamma           GCCCCACAA-------GCCC-TGTGCCTGTG------CCCGTCA----TGTAATCTCATC 2319 

zeta            ATGAGCATC-TCTGTTGTGGACACGTCTGTGAATGACCCTGTCACT-TTACCCTTAACTA 1988 

iota            GCTTACTGC-CATTTAGTGCATGGATCAACCGTTAGCCCGGTCACAGTTAGCATTTTATG 2757 

delta           G--AGCT------------CCCAGACCTG--------CTTTTAATG----CCCCGGCAGA 2419 

theta           G--AACCTCATCCCTCTTCCCCAGACTGGAAG--AAATTCGCCTTC----TCTCTGGGAA 2325 
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epsilon         A--AACTGC----------TTCACATGGA-----------GTTAGC----TCACTGCAAG 2441 

mu              ACGGTCAGG----TTTAACATTTGCCTTGCAGAACTGCCATTATTTTCTGTCAGATGAGA 2982 

                                                                             

 

alpha           CCAAACCAAAAAACATTATCTTAGTGGATGATGACATAATATACAGAGTATAGT--TTAA 2411 

beta            TCAA--CAGCTATCATGAGAGACAAGCGAGACACCTCCAACTTCGACAAAGAGT--TCA- 2803 

gamma           TGCTGCCGCTAGGTGT--TCCCAGTGC-TCCCTCCGCCAAGTTGGCTGTAACTC--CCAT 2374 

zeta            CAG--CATATGCATGCCAGGCCAGACACCGAGGCTCCAAGCAGCCAGAGAGGG---ATGC 2043 

iota            TTGTCCCTACAGAAATCTCTCTCAATATC----CTGTTAGCGACTATAGGAATC--ATAT 2811 

delta           GTAGGCCCATCTGCCCTGGTTTGCATCCT----CACTGCCCAT-GAAGAAGAGT--GGGT 2472 

theta           CTGGTTCAAGTAACACTTCTGGGGGTCTC----TTTTTCACGTTGGAGAAGAG---AAGA 2378 

epsilon         GAGGGT------------GTTGAGA---C----AATCCCGTGTTGCAGAGG--------- 2473 

mu              ACAAAGCTGTTAAACTGTTAGCACTGTTGATGTATCTGAGTTGCCAAGACAAATCAACAG 3042 

                                                                             

 

alpha           TTATGTA-GAAGTCACATCTGGCTTCAAGTTAATTCTTTCTAGGAAACAAAGAGACTTGG 2470 

beta            CCAGGCA-GCCTGTGGAACTGACTCCCA-CTGACAAACTCTTCATCATGA----ACTTGG 2857 

gamma           CCACCCCCATCCCCGCCTCTAGTCCGAATTTTAGGTCTCTTAAACCACCCAA--CCTTCT 2432 

zeta            TGGCCACCAAGACCGCAGAGGGGGCACCCAACAGGCACTTCTAGACAGAGCA-ATCTC-- 2100 

iota            AGCTAAGCAGAGCTAAAAAAACAGAAACTAGTT--TCCTGACAGTCATGTCA-AACTCCA 2868 

delta           GACTGGTGATTCCTGCTGCTG-------CCCCCTCTTCCTCGGAG--------AGTCTGG 2517 

theta           AACACTCAACCTCGAAAGCAGGGAGGACCGCTGAGCTCCTCGAGGGACACGC-AGCACAA 2437 

epsilon         --CTCAGAATGTCTCGAACTA--------TTCGTCCTCCCCAGAGC---CCC-AGTCCCA 2519 

mu              AAGCATTTGTATTTTGTGTGACCAACTGTGTTGTATTAACAAAAGTTCCCGGAAACACTA 3102 

                                                                             

 

alpha           ACCCTATTT--TTTGGTACGATTTAATATATTCTCCATACCTTTCATATT-TTGGATTTT 2527 

beta            ACCAAAATGAATTTGCTGGCTTCTCGTATACTAACCCAGAGTTTGTCATT-AATGTGTAG 2916 

gamma           GGCCTCTTTCACGCGCCCCAAGTGGGTTCTAGACGCTGTTCCCCAGCATTGCTGGCATTT 2492 

zeta            -TTGTGTCCAGGC-CCCAGAGGCTGGCTTTGTGCTGGAAGGAACCA-CTTCCTGTGCCCA 2157 

iota            GTTATGCTTGCTC-TCCAGAGGCT--CCTAATGAGAAAGGACAGTGTCTTTGTGTAAAGG 2925 

delta           CTCCTGTTGGCTGGGCTCACAGTACTTCCTCTGTGAACTGTTTGTGAATTTGCCTTCCTT 2577 

theta           ACCATGTCTCCTTCACTAATGGCA-TCATCCTGTTATATCTCCTGGAATCTCTCTCACCG 2496 

epsilon         CATCTGCTCTCTT-ATTTATTGCA-TCCCCTCATCCCAGGCCCTG-----TCCTTCCCCA 2572 

mu              AACTTGTTA---TTGTGAATGATTTATGTTATATTTAATACATTAAACCTGTCTCCACTG 3159 

                                                                             

 

alpha           CACTATCCAAATCAAC-CAGAGATAATAAAGTGAACCCACCTGAA---CTCAAGGGATGG 2583 

beta            GTGAATGCAGATT--C-CATCGCTGAGCCTGTGTGTAAGGCTGCAG-GCTGAATGTCTAT 2972 

gamma           TAAACTTCAAACAGTCTCTAGGGCCTTTCTGTGTTCTAGGTTCGTT-GTGCTGAGCCCTG 2551 

zeta            TGGCGGCCC----TACCAGAGGGTGAGACAGCCACGCCGT----CTTGAAAGGCGCACAT 2209 

iota            AAACAGCCTAGCTTGTCAAAGAAAGCCTCTGCTGCGTTGTGACACTCAGTGGGATGACAT 2985 

delta           TTGC--CATCG------GAGGGAAACTGTAAATCCTGTGTGTCATT-ACTTGAATG-TAG 2627 

theta           CAGC--CCTAG------AAGTTAGACCATTGTTAACTCTAGTCATTTACTTGAAAGATGG 2548 

epsilon         CCCT--CCCAG------TGACCAGAAGGCCCTCTTTGGTCCAGACTCACCAAGATCACAG 2624 

mu              TGCCTTTGCAA------ATCAGTGTTTTTCCTACCAGAGCCTCATTTTGGTGAGAGCCAG 3213 

                                                                             

 

alpha           AAACATTTCTG----CCCAAGATATCTTTGGAATTAAAGAACAGGAAGCCCAAACAGAAA 2639 

beta            TATCAATTCCAGTCTTCCAGGATTCATGGTGCCTCTGTTGGCATCCGTCATGTGGAGAGC 3032 

gamma           GTTTTTCCCCA----CCCCCAACATCTGGATGCTGTTCCAACTCTTCCCAGAAACCCCAC 2607 

zeta            CTTCCACAGAGACAGAACTCGATGCACTGATCCGCTCCAGGAAAAGTTAGCGTGTAATGC 2269 

iota            CATCAGTCT--CCCACAGTTGTCACTTTGGGTTAAGGCATGGAAGGCTTAATTGTAGAGT 3043 

delta           TTATTGA---------AATATATATTATATATATGCACATATATATAATAGGCTGTATAT 2678 

theta           TTCCCGATC---CTGCGAACGATTCGAAATGTAATTCTGCTCTTGTCGTTGACAAGAGCT 2605 

epsilon         ATTTGAACT---G---CGTCTGCTCTGTGTGCAGTGCTAGGTCTGGAGTAGCC---GTCC 2675 

mu              CTCCAAT---------CCATGACACCATTGTGTTTGGTGTGCCCCTATTGATAGTGGTGT 3264 

                                                                             

 

alpha           ACAAAGAGAGGCAGAGTCTCATATATTCAAGACCTCGTTGCTTCTATTTTCT------GC 2693 

beta            TTGTCTTAGAGGGCTTTTCTTTGTATGTATAGCTTGCTAGTTTGTTTTCTAC------AT 3086 

gamma           TCCGTGTGGGGTTCTAGACTCTATCTTGGTAGTTTTATGCCTTCTCTCTCCCTAGACCAC 2667 

zeta            CCTGAGGAATA--AAGTGTA-CTGATGATGTCGAAGCTTCCTCTGATGCCTTTTTTCTGT 2326 
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iota            GGAGGGCCATGCTAAATATATCTGCTAGTGTTACTGGTTTCTG-AGTTCCCTCAGTTTGA 3102 

delta           ATTGCTCAGTATAGAAAGCATGTAGGAGACTGGTGATGTGTTGACCTTTTTTTAAAAAAA 2738 

theta           GCTGGTTGGTG-ACGAACCAAGGTGCAAGTGGAACAGATTTCTCAAGACCGGGAGGGCAG 2664 

epsilon         ACCCACAACCC--TGAAGCAGCCCGGAATTC----------------------------- 2704 

mu              TGTAAGCAAACTCTTGAAGAGTAGATAATCTGCCGGTGTTCTGTGAACAACTCAA---AA 3321 

                                                                             

 

alpha           TTCAATGGAAACAGTCCCTAGAGTCTGAG-AGGGCAGGATGA---ACCTGAT-CACTGTT 2748 

beta            TTCAAAATGTTTAGT--TTAGAATAAGTGCATTGCCCACTGA---TAGAGGTACAATTTT 3141 

gamma           GTTGGGAGAAATAGTCTCATGAGATTGCCTGCTCCAGACTAAGATTCCAGATCAGCTCTC 2727 

zeta            GGCACCCGCCTGATGTCCCCAATGCAGCCCCCCACACGAGGAGGAGCTGCGCTTTCCAAG 2386 

iota            ATCCTCCTATAAATCTTCTCATTACTTTGGGTAATTTAAAGAA-----GCAGTTATCAAA 3157 

delta           ACCATATGT-ATACGTGTGTATGT-ATACATCTACACACGTATA---CATATATGTATGT 2793 

theta           ATTGCCTGTCATGGAAGTCGATTCCACTCAACCACAGAGAAGGA---CCCACTAACCCGC 2721 

epsilon         ------------------------------------------------------------ 

mu              TGCACAGTGGGTGGGGTGGGGGGGGAGAATGAAAGATGAGGAGAAGGCGTATAAGTGCTA 3381 

                                                                             

 

alpha           CCCAATCATCATAG-CACAACCATAGTGC--ATAGTTTGAAAATGAAAGAAAACTTCAGA 2805 

beta            CCAGACTTCCAGAAACTCATCCAATGAACCAACAGTGTCAAAACTTAACTGTGTCCGATA 3201 

gamma           TGCATCCTTCAAGGCCCCTCCTACCTCCACTTCAGTTGTAGAATTAAGTGGGAGGCTGGG 2787 

zeta            CAGGCAGAACGTAGGCAGGGGACGGGCACCCAAGTGCCTGCAGGGATGTTGTGC-TGCAA 2445 

iota            TTGATACACAATTGACTTGTTTTATTAA--GAATTGGGTTCTAAGTTATTATCTGTGTTT 3215 

delta           ATGTATGTATGTATGTATGTATATATGACCAAAAGAAAAGAGAGCACAAGCTACCTGAAC 2853 

theta           ATCGTCCTGCGCATGTCTGTGGAAATGTCGATGGCAGAAGGGAGGGAAAGGGATGTGA-T 2780 

epsilon         ------------------------------------------------------------ 

mu              AGATTGACTTGCATGAAAACAGTTCTACTGTGTGGTGTCAGATCCTCTGCCTGTCTGGTG 3441 

                                                                             

 

alpha           CAGATGTTCGTTGAATCTATCATATGTACTCCCCTGCTCGGTTGATAACTATCTCGATAA 2865 

beta            CCAAAATGC-TTCAGTAT-TTGTA---ATTTTTAAAGTCAGATGCTGATGTTCCTGGTCA 3256 

gamma           CTC-CGTGT-TCCAGGCCACCTCC----CTTCCATGTTCTGGGGATTCCTGGCATGCACG 2841 

zeta            CAAGAATTGTTACAG--ATTCGGAACGTTTTCTAAATCCCGGTAAGTTCTGTTGTTAATA 2503 

iota            CAAAAACTAACACAGTGATTTATTTTGTGTTTTTAATTTTTCTTTTTCTTTTTTTTTACA 3275 

delta           CACAGGATTGTTTATGTGTGTATAAATAAACACTGAATGGTAAAAAACCGGA-ATTC--- 2909 

theta           GGGATGTTCTCCAATAAACTTA-GCGTGAAACTTGAGATTTACAAACCCGTTCGTTCTGG 2839 

epsilon         ------------------------------------------------------------ 

mu              TGCCTCAGTGTATTTAACTCTAGTGAGTGCACCTCATTATGTGGAGCCACTGCACTAAGC 3501 

                                                                             

 

alpha           CTCATTCTTTTTAAGAGGCCAAAATCATCTAAGGACTTTGCTAA-ACAAACATG--TGAA 2922 

beta            --AAGTTTTTACAGTTACTCTCGAATATCTCCTTTGAATGCTAC-CTAAGCATGACCGGT 3313 

gamma           GAGGATTCTCTC------CCCGACTTTTCTCAGTCAGCTTTTGTTCTAGATTTGTTCCAG 2895 

zeta            TTTAACAAGTATTTTCATACCTAGGG----CAGCTAACCGTGGT-AGGCTGAAGCCGAAG 2558 

iota            ATAAGGGGTTAGCTTCTGAGCTTGCCTCTTCCGTGAATACTAGC-ATAATGATACCTGAC 3334 

delta           ------------------------------------------------------------ 

theta           CCAGCCCTGAAATTCACAAGGCAGCGG---AAAGTAAGGGGTGA-GGTGCAGAGCCTTTG 2895 

epsilon         ------------------------------------------------------------ 

mu              CTAAATGCCTTAG---ACTGTAAACTGCTTTACATACCAGATGCATTTCCTCCTTTCTTA 3558 

                                                                             

alpha           ATCATTTCAGATCAAGGATAAACCATGTG--TA-TGTTCATTTTAATCTCTGGGAGATGA 2979 

beta            ATTTTTAAAAGTTGTGAGTAAGCTTTGCAGTTACTGTGAACTCTTGTCTCTTGGAGGAAA 3373 

gamma           AACCCTTCACTGCTCACCTGCCCCGTGCA--TGGCTCCAGCCTTGGTCGGAATCACACAC 2953 

zeta            G----GACACCCCGGCCAGGTTGGT---GGC-GCTGTTCCCACCAGCCCA-------GCC 2603 

iota            GTGCAGAGACCCAGGCTGCATGGGAATAGGCAGCTGCTCAGGTAAAGGAGAAAGGAGGAG 3394 

delta           ------------------------------------------------------------ 

theta           TCACCAACAGGAAGGGTAAGGATGTTTCGGATGTGGTGCATCTCATTCCCACAGAAGTAA 2955 

epsilon         ------------------------------------------------------------ 

mu              CAATAGCAACTGTATCAAGGAAAACCAGCAACCCACCAAATGTTGGCCTTTTGTGTATTT 3618 

                                                                             

 

alpha           CTCTTCAATCCAGGGT-GCCATCAGTAATCATGCCACTG---TTCACGAGTGTTGTTAGC 3035 

beta            CTTTTTGTTTAAGAATTGGTATGATTAAATGAATTCATA---TATGC------------- 3417 
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gamma           ACACACACACACACACACACACACACACACACACACACA---CACACACCCCTTGTCCTC 3010 

zeta            CGTTCGGACTCTGAAGGGGGGGAAATTGGATCACGGAGA---TTCTAAAACATTGCTCAC 2660 

iota            TGTACCGTAGCTGCAGAAAGAACAATGGTAGTATTCTGTCTCTTCTGGAGAATGAGTCCT 3454 

delta           ------------------------------------------------------------ 

theta           AGTCCAACCAACGAAGGCAGGGCAGTTTACTGCTGCCAA----TCAAACCTTCTCTTCCC 3011 

epsilon         ------------------------------------------------------------ 

mu              TTGAATAATAAGAAATAAATACTCTTTTCAAAGTT------------------------- 3653 

                                                                             

 

alpha           CA-ACCCCCCGCCACATAATAATATTTTGCTACCTTTGTGGGTACCCTTCCTAGGAAGCT 3094 

beta            ------------------------------------------------------------ 

gamma           CGCAGTGCCTGCCACTTTCTGGGACTTTCTCATCCCCCACGCCCTTCCTTTATCCTCTCC 3070 

zeta            C----------------------------------------------------------- 2661 

iota            GTAGCTGGTGGTTAAGATTTGATGTAAATAATGAGGAGGCTCTCGCTTCTTACCCTACTT 3514 

delta           ------------------------------------------------------------ 

theta           TCTTGTTCTGGCTGATTTCTCTGTCAGCGTCGGCATTCGTCATCGTCCTCCCGTTGCACA 3071 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           AAAATGTATGCCCCATCCCCTTTTGTACTATTTATTTAATAAGCCGCAGTGTCGTTTATG 3154 

beta            ------------------------------------------------------------ 

gamma           CACCCAGACACAGCTGCTGGAGAATAAATTTGGAGCTCTCGAG----------------- 3113 

zeta            ------------------------------------------------------------ 

iota            AGAAAAGCATTCCATGTCTTCAGGGGAGGCGGAGTGAATATATTTTTATTATTTAGTATA 3574 

delta           ------------------------------------------------------------ 

theta           AGAAATGAAGTACATGACTCTTGTGAGAGAAAGAAAACCAATCCCATATCATGTTGCTCC 3131 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           AAAGTACAATGTATAGTAACTTAATCAAAGTACTGACTAGCATCAGTCCCTATAGGTTGA 3214 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            TGGGAAAATAATTTATCTGCTAAGTAGAATGTCTTAACTACTTGTGATTCCTTCCCCAGA 3634 

delta           ------------------------------------------------------------ 

theta           TGGTGATTCGGTGACAAATAAGTCCCTCTTTAGGCATCCTGCAAGACAAACGACCCACGC 3191 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           TTTTCCTCCTTTCTCTAGCCCCACATCCACTTAGAGATGAGAAAAAAAAGAGTATATTTT 3274 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            GTACATTATCTGTACTTTGAGAGCTTTTCGTGGAGTCTGCAGTGAAGCTCAAGACCAGTA 3694 

delta           ------------------------------------------------------------ 

theta           ATGCTATTTCCACTAGTCAGCCCTGTTGAGTTGGAGTACTAATTAGACACTTAGAGTCTC 3251 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           GGGTTCCAATTCCCAGTTCTAATTGAATGGCACACATGGAGCTGTAGGATCAAGACACTT 3334 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            CTGGTGACTTGATAGCTGTGTGACACATCCAGTACAGACCAGTACTGGTGACTTGATAGC 3754 

delta           ------------------------------------------------------------ 

theta           GCGTGCTGTTTGTATATTTTGATGGGATGTTGTGATGATGACGTACGTGGACGTGTAAAA 3311 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             



238 
 

 

alpha           TATGCTTATATCAACTCAAAGATGTTTTCTTGCTAGAAGGATTTTAATATGTTTTGCGAG 3394 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            TGTGTAACACATCCCAGTTCGGGCTCTTCCTGAGTTTTTGTGTCTAGGTAACAAGTGTGA 3814 

delta           ------------------------------------------------------------ 

theta           CGGAATAAAAGAAGAAAAGAAAGATG---------------------------------- 3337 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           TGCATCATGCAATGGATTTTGCATGTTTATAATAAACCTTAATAACAAGTTAATCTATAT 3454 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            TACAGTACAGTCCATTCAGGGCAGAGTCTTCAGTTCTCCACAATATTTTTATTAACAGTA 3874 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           TATTGATATAATTGTATCAAGTATAAAGAGTATTATGATAATTTTATAAGACACAATTGT 3514 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            GTATTTAGCAATCTTTTATTTAAAGAAGCACCATTTTAAGCACCATTCTGCTGTTTATTT 3934 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           GCTATATTTGTGATGCTCATGTTTCCAGTCTGCTTTAAGATTAAGTGTTAGCTTTATTCA 3574 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            TAAATATTTTTATATAAAGGACTTTAAAATGGTCACCTAAACAAGCTACCATTGTCAAAT 3994 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           TTGCTGCTGGGGCCTCTATTACCCGCTACCCCACACACTGGCACTCTATCAGATATATTA 3634 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            CAGTAGACTTAGTTTCATGAATGCTGTACGGTGTTGAGCTTATAAGGCTTCAAACACGTA 4054 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           ATTTTTTAATGTAGATGTAATTTTAAAATGAATGGCTACTTTACACGTTTAACTAGGCTT 3694 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            GTCATTGAAGACATCTCTGAGGATGCCACATTTCATTACAAGTGTAAGTTGTGTCAAGTT 4114 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 
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epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           TTACTATA---------------------------------------------------- 3702 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            GGGTCGTGCATTTTCTTAAATAATGAAAGACTGGGAGCCGTGAAAACCTCCACTGAGGAA 4174 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           ------------------------------------------------------------ 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            AGCCAACCAGGGACCATCAGTCGGTCGAGGCAGCTCAGCACCTGATGACCTGATGCCTGG 4234 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           ------------------------------------------------------------ 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            AACCCACAAGCTGAGAGGAAGGACAGACCAGCTCCCACAGGCTGGCACCCGTGGCACGCA 4294 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           ------------------------------------------------------------ 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            CGAGGCCCTCCCTGCAGGACATAACTGTGAGGGAGCAGACAAGGGAGTGCAGTGAATGCA 4354 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           ------------------------------------------------------------ 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            CACCTAGAGGCAGATGTTTGTGCACACTTCATGTTTAAGAAGCGCGGGTTTCCCTGAGAT 4414 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           ------------------------------------------------------------ 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 
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iota            CTAGAACATTCTTAAATCAAAAGGCAGTGTTCACGTCCTAAGCTTGTGGGGAGTTCTGAG 4474 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           ------------------------------------------------------------ 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            ATATCTATGACCTAAGTGGGGCTTCTCCCTTGGGGCACTTCAGACTGAGCCTTGTTAAAG 4534 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           ------------------------------------------------------------ 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            TGCAGTGCCGAGCCTGCCTGGGAGTCTTCTGGGACTTGATATTTCATCGTGAGAAGCATT 4594 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           ------------------------------------------------------------ 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            TTCGTCAAGGTATTCTTTATCTTGTGGCCATATTTCTTACTGGAGTGTGAGTCTGTGTTT 4654 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           ------------------------------------------------------------ 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            TTTGTGATAAAACATTTTAAGAAGGGGAAATCAGTAAATTATCATGCATTTATCAACAAA 4714 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           ------------------------------------------------------------ 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            TTTAGATGAATAAATTCAAGTTATATGTCTTCCCTGCCCTCATCCCCAACAAAACTTATC 4774 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           ------------------------------------------------------------ 
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beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            CGTTTCTGCCAATACCGTACAAATGATGAACATTTTTCTATGATGAGGTTCTCACCATAA 4834 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           ------------------------------------------------------------ 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            TTAAGGTGGTCTTTGTTTTTAAATCTTTCTGTTGTTGTTGATAACTAATAAGACAACGTA 4894 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           ------------------------------------------------------------ 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            CTATGTATGCTTTATACAGAATTATTACAATGATTTTAGTTCCGTTCTTGTTTTCTGTCC 4954 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           ------------------------------------------------------------ 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            TTCCGAGCCATGCCAAATCTGTATGTTATGGAAATGTTCTCAGAATCCTGCCAGGGGAAT 5014 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           ------------------------------------------------------------ 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            GCAGTGTGGACGGGCAGTGATTGGCACTTGGTGTCATAGAAATTACTTACCTTGCATAAG 5074 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           ------------------------------------------------------------ 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            CTCGTGGTTGGATCGGTTATCACGTGTAGCTGGATGGATATCTAGTCCTGTGTTCTTGTT 5134 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 
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alpha           ------------------------------------------------------------ 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            GTCGGTACTCACCTTAGAAACTTGTTTTGATTTTTGTCATGTAGAACACTGCCTTGTTCA 5194 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------ 

                                                                             

 

alpha           ------------------------------------------------------------ 

beta            ------------------------------------------------------------ 

gamma           ------------------------------------------------------------ 

zeta            ------------------------------------------------------------ 

iota            CTATAATGTAACTGTATTTGTATAATTTTTTTACATTAAGATCTTAAAATAAAATGTTTA 5254 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

mu              ------------------------------------------------------------                                                                          

 

alpha           --------- 

beta            --------- 

gamma           --------- 

zeta            --------- 

iota            ATACCTATG 5263 

delta           --------- 

theta           --------- 

epsilon         --------- 

mu              --------- 

Start/stop codon   

Intron/exon boundary 

Primer Set 1 

Primer Set 2 
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10.2 Rattus norvegius PKC isoform alignment  

 

 

delta           GAATTCCGGGGCGGCGGCCGCGGGGATCCCGCGAGCGGCCCCTGAACATCTACCCTTCTT 60 

theta           ------------------------------------------------------------ 

eta             ------------------------------------------------------------ 

epsilon         ------------------------------------------------------------ 

                                                                             

 

delta           GCCGGGACCCGGGAGGTCCCCACTGGCCTCCGGGCCCGTCCTGATCAGACTCGTGTCGAC 120 

theta           ------------------------------------------------------------ 

eta             ------------------------------------------------------------ 

epsilon         ----------------------------------------------------------GA 2 

                                                                             

 

delta           CTCCCCGTCCACGCGCATCCGGGAGAGCCGCGCCACGAGACGGACCCGGGCCCGCCGGGA 180 

theta           ------------------------------------------------------------ 

eta             ----GGGAAGGAGGGGAGGGGA-AGGTCCCTCGGAGGAGGCGGAATGGCCGGTCGCAGGG 55 

epsilon         ATTCCGGAATCCGGCGAGGAAATACATGCACTCGCTGAG----AATCGCCGGCGCCAGGA 58 

                                                                             

 

delta           CCC----CTGGTGTCTGGCCCTGCGTCGAGAGGCTGGTGACTGCCACCCATAAGCTCCAG 236 

theta           --------AGGCGCGCGTCCCTGAGCCGGC------GTGGCGAGCGCCCTCTGGCCGGTG 46 

eta             GGCTTGGGTGCTGCTTCTCCCGGGAGCTGCCTCCACGAGCGTGGCTGCGGAGAGGACTGC 115 

epsilon         CGC---AGCGCCACAAGGTGTAGCGAGTGAGTG---GGGTGGGGCAAGAGGGGACCCAGG 112 

                         *            *             * *     *                

 

delta           CTTCAGCCTCGGCTTACTCCCCTCAGGGGCTTGCAGGCTGAGGCCTGCCCTCGGACGCGG 296 

theta           TCGCCGCC-CGGAGTACCCTC-----GGGTCGCCAGGCCCGCGCCAGTCCCCGCCATCGG 100 

eta             CTTGAGCCCGGGCTCTCCGTTCCCCGGTGCCAGCCAGCCCG-GCC--CCCTCGGGGCTCC 172 

epsilon         AGTCCCCCCAGGCTCCCAGCGCGCCTGCTCCTGCTCTTCAA-TCCTGCCCTCGGGGCGGA 171 

                      **  **    *         *      *         **   ** **        

 

delta           CTGACCAGCCTCTCCCTCTCTTCCACACTTTGGACTTCTCTTTGGACCTCCTAAAAAGGC 356 

theta           AGCAGCAGCGGCAC-------TGCGC---TGGGACTGCGGCCACGACACC-----AGGGA 145 

eta             GGCAGCAGCGCCAGCATGTCGTCCGG-CACGATGAAGTTCAATGGCTATCT----GAGGG 227 

epsilon         CGGAGTGACCCCCG-----CCCCGAC-CATGGTAGTGTTCAATGGCCTTCT----TAAGA 221 

                   *    *  *                                *    *        *  

 

delta           TCCATCATGGCACCGTTCCTGCGCATCTCCTTCAATTCCTATGAGCTGGGCTCCCTGCAG 416 

theta           ACAACCATGTCACCGTTTCTTCGAATTGGTTTATCCAACTTTGACTGTGGGACCTGTCAA 205 

eta             TCCGC---ATCGGAGAGGCAGTGGGGCTGCAGCCCACCCGCTGGTCCCTGCGGCACTCGC 284 

epsilon         TCAAA---ATCTGCGAGGCCGTGAGCTTGAAGCCCACAGCCTGGTCGCTGCGCCATGCGG 278 

                 *        *   *   *   *                  **      *   *   *   

 

delta           GCG---GAGGACGACGCAAGCCAGCCTTTCTGTGCCGTGAAGATGAAGGAGGCACTCACC 473 

theta           GCTTGTCAGGGAGAGGCGGTGAACCCCTACTGTGCCGTGCTTGTCAAAGAGTATGTGGAA 265 

eta             T----CTTCAAAAAGGGCCACCAGCTGCTGGACCCCTACCTGACGGTGAGCGTAGACCAG 340 

epsilon         TGGGACCCCGGCCCCAGACGTTC-CTTCTGGACCCCTACATTGCCCTTAACGTGGACGAC 337 

                                        *         **                         

 

delta           ACAGACCGAGGGAAGACTCTGGTACAGAAGAAGCCCACCATGTACCCTGAGTGGAAGTCA 533 

theta           TCAGAAAACGGGCAGATGTACATCCAGAAAAAGCCGACCATGTACCCGCCTTGGGACAGC 325 

eta             GTACGCGTGGGCCAGACCAGCACAAAGCAGAAGACTAACA---AACCCACCTACAACGAG 397 

epsilon         TCGCGCATCGGCCAAACAGCCACCAAGCAGAAGACCAACA---GTCCGGCCTGGCACGAT 394 

                         **  * *         ** * *** * * **     **    *   *     

 

delta           ACATTCGACGCCCACATCTATGAAGGCCGTGTCATCCAGAT---CGTGCTGATGCGGGCA 590 

theta           ACCTTTGATGCCCACATTAACAAGGGAAGGGTGATGCAGAT---CATCGTGAAAGGCAAA 382 
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eta             GAGTTCTGCACCAATGTCTCCGACGGCGGCCACCTGGAGCTAGCCGTCTTCCACGAGACG 457 

epsilon         GAGTTCGTCACTGATGTGTGCAATGGGCGCAAGATCGAGCTGGCTGTCTTTCACGATGCT 454 

                   **     *  *  *     * **  *     *  ** *     *  *           

 

delta           GCTGAAGACC----CCATGTCGGAGGTGACCGTGGGCGTGTCAGTGCTG-GCTGAGCGCT 645 

theta           AATGTAGACC----TCATATCAGAAACCACCGTGGAGCTCTACTCCCTG-GCAGAGAGAT 437 

eta             CCCCTGGGCTATGACCACTTTGTGGCCAACTGCACGCTGCAGTTCCAGGAGCTGTTGCGC 517 

epsilon         CCTATCGGCTACGACGACTTCGTGGCCAACTGCACCATCCAGTTCGAGGAGCTGCTGCAG 514 

                      * *       *  *        ** *                * ** *       

 

delta           GCAAGAAGAACAACGGCAA-GGCTGAGTTCTGGCTGGACCTGCAGCCTCAGGCCAAGGTG 704 

theta           GCCGCAAGAACAATGGGCG-GACAGAAATATGGTTAGAGCTGAAACCTCAAGGCCGAATG 496 

eta             ACGGCCGGCACATCGGACACCTTCGAGGGCTGGGTGGATCTGGAGCCTGAGGGGAAAGTG 577 

epsilon         AATGGGAGC-CGTCA-----CTTCGAGGACTGGATTGATCTGGAGCCAGAAGGAAAAGTC 568 

                       *  *             **    *** * ** *** * **  * *      *  

 

delta           CTGATGTGTGTGCAGTATTTCCTGGAGGATGGGGATTGCAAACAGT--CCATGCGTAGT- 761 

theta           CTAATGAATGCAAGATACTTTCTGGAA-ATGAGTGACACAAAGGAC--ATGAGTGAATTT 553 

eta             TTCGTG-GTAATAACCCTAACAGGGAGCTTCACTGAAGCCACTCT---CCAGAGAGACCG 633 

epsilon         TACGTG-ATCATCGATCTCTCGGGATCATCGGGCGAAGCCCCTAAAGACAATGAAGAACG 627 

                    **  *              *              *                 *    

 

delta           GAGGAGGAGGCCATGTTCCCA-ACTATGAACCGCCGTGGAGCCATTAAACAGGCCAAGAT 820 

theta           GAGAACGAAGGATTCTTTGCA-CTGCATCACCGCCGAGGCGCCATCAAACAAGCCAAAGT 612 

eta             CATCTTCAAGCATTTTA------CCAGGAAGCGCCAACGGGCTATGCGAAG---GAGAGT 684 

epsilon         AGTGTTTAGGGAGCGGATGCGGCCAAGGAAGCGCCAAGGGGCTGTCAGGCG---CAGGGT 684 

                       * *                   * ****   * **  *          *   * 

 

delta           TCACTACATCAAGAACCACGAGTTCATCGCCACCTTCTTTGGGCAGCCCACCTTCTGTTC 880 

theta           CCACCACGTCAAGTGTCACGAGTTCACAGCCACCTTTTTCCCTCAACCCACGTTCTGCTC 672 

eta             CCATCAAGTCAACGGACACAAGTTCATGGCCACATACCTGAGGCAGCCCACCTACTGCTC 744 

epsilon         CCACCAGGTCAATGGCCACAAGTTCATGGCCACCTACTTGCGGCAGCCCACCTACTGCTC 744 

                 **  *  ****    *** ******  ***** *   *    ** ***** * *** ** 

 

delta           TGTGTGCAAAGAGTTTGTCTGGGG---CCTCAACAAGCAAGGCTACAAATGCAGGCAATG 937 

theta           TGTCTGCCATGAATTTGTCTGGGG---GCTGAACAAGCAGGGCTACCAGTGCCGACAATG 729 

eta             TCACTGCCGGGAGTTCATCTGGGGAGTATTTGGGAAACAGGGTTATCAATGCCAAGTGTG 804 

epsilon         CCACTGTAGGGATTTCATCTGGGGTGTCATAGGAAAACAGGGATATCAATGTCAAGTTTG 804 

                    **    ** **  *******     *    ** ** ** **  * **       ** 

 

delta           CAACGCTGCCATCCATAAGAAATGCATCGACAAGATTATCGGCCGCTGCACTGGCACTGC 997 

theta           TAATGCAGCGATTCACAAGAAGTGCATCGATAAAGTGATAGCCAAGTGCACAGGATCGGC 789 

eta             CACCTGCGTCGTCCATAAACGCTGCCATCACCTAATTGTTACAGCCTGCACTTGCCAAAA 864 

epsilon         TACCTGCGTCGTCCACAAACGATGCCATGAGCTCATTATTACGAAGTGCGCTGGGCTAAA 864 

                 *     *   * ** **    ***    *     *  *       *** *  *       

 

delta           TACC---AATAGCCGGGACACCATCTTCCAGAAAGAACGCTTCAACATCGACATGCCTCA 1054 

theta           GATC---AATAGTCGAGAGACCATGTTCCACAAGGAGAGATTCAAGATCGACATGCCACA 846 

eta             CAATATTAACAAAGTGGATGCCAAGATCGCAGAGCAACGGTTTGGCATCAACATCCCACA 924 

epsilon         GAAA---CAGGAAACCCCTGACGAGGTGGGCTCCCAACGCTTCAGCGTCAACATGCCCCA 921 

                 *      *            *    *        *  * **     ** **** ** ** 

 

delta           CCGATTCAAGGTCTATAACTACATGAGCCCCACCTTCTGTGACCACTGTGGCACTTTGCT 1114 

theta           CAGATTCAAAGTCTACAACTACAAGAGTCCAACCTTCTGTGAGCACTGTGGTACCCTGCT 906 

eta             CAAGTTCAACGTTCACAACTACAAGGTGCCCACGTTCTGCGACCACTGTGGCTCCCTGCT 984 

epsilon         CAAGTTCGGGATCCACAACTACAAGGTCCCCACGTTCTGTGACCACTGTGGCTCCCTGCT 981 

                *   ***    *  * ******* *   ** ** ***** ** ********  *  **** 

 

delta           CTGGGGATTGGTGAAACAGGGATTAAAGTGTGAAGACTGCGGCATGAATGTGCACCACAA 1174 

theta           ATGGGGGCTGGCGAGGCAAGGTCTCAAGTGTGATGCATGTGGCATGAACGTCCACCACCG 966 

eta             CTGGGGGATAATGCGACAAGGACTTCAGTGTAAAATATGTAAGATGAACGTACATATTCG 1044 

epsilon         CTGGGGCCTCTTGCGGCAGGGCCTGCAGTGTAAAGTCTGCAAAATGAATGTTCACCGTCG 1041 

                 *****  *   *   ** **  *  ***** *    **    ***** ** **       
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delta           ATGCCGGGAGAAGGTGGCCAACCTGTGTGGTATCAACCAAAAGCTCTTGGCTGAGGC--- 1231 

theta           ATGCCAGACAAAGGTTGCCAACCTCTGTGGTATAAACCAGAAGCTAATGGCTGAAGCGCT 1026 

eta             GTGTCAGGCGAACGTGGCCCCAAACTGCGGGGTGAACGCCGTGGAGCTTGCCAAGACCCT 1104 

epsilon         ATGCGAGACCAACGTGGCTCCCAATTGTGGGGTGGACGCCAGAGGAATTGCCAAGGTGCT 1101 

                 **   *   ** ** **       ** **  *  **          * **  *       

 

delta           --------------------------CTTGAACC--AAGTGACCCAGAA----------- 1252 

theta           AGCAATGATTGAAAGCACTCAACAGGCTCGCACCTTAAGAGATTCAGAACA--------- 1077 

eta             GGCAGGGATGGG-----------------TCTCCAAC-----CCGGAAA----------- 1131 

epsilon         GGCCGATCTTGGCGTTACTCCAGACAAAATCACCAACAGTGGCCAGAGAAGGAAAAAGCT 1161 

                                                **              *            

 

delta           -------------AGCTTCCCGGAAG----CCAGAGACACCAG------------AGACT 1283 

theta           ------------CATCTTCCGAGAAGGA-CCAATTGAAATCAGTTTCCCG----CGCTCC 1120 

eta             ------------TATTTCTCCAA--------CCTCGAAACTCATT--------------- 1156 

epsilon         CGCTGCTGGTGCTGAGTCCCCACAGCCGGCTTCTGGAAACTCCCCATCAGAAGACGACCG 1221 

                                *  *               ** *                      

 

delta           GTCGGAA-------------------TATACCAGGGATTCGAGAAGAAGACAGCTG---- 1320 

theta           ATCAAAAGTGAAACCAGGCCACCATGCGTACCAACACCTGGGAAAAAAGAACCCCAGGGA 1180 

eta             -TCCAGGTCTACGC------------------------TGAGACGGCAGGGGAA------ 1185 

epsilon         ATCCAAGTCAGCGCCCACCTCCCCTTGTGACCAGGAACTAAAAGAACTTGAAAACAAC-A 1280 

                 **                                   *                      

 

delta           --TCTCTGGGAATGACATCC--------CAGACAACAACG-------------------- 1350 

theta           ATTTGCTGGGAGTCCCCTTTGGATGGGGCAGATAAAACGGCCCAGCCTCCT--------- 1231 

eta             ---GGAGGGCT--------------CCAAAGAAGGAAATG-------------------- 1208 

epsilon         TCCGGAAGGCCTTGTCATTTGACAACCGAGGAGAGGAGCACCGAGCCTCGTCGTCTACTG 1340 

                       **                     **    *                        

 

delta           --GGACCTATGGCAAGATCTG---GGAGGGGA-----GCAACCGGTG------------C 1388 

theta           --GAACCTGAAGTGAACTTGC---AAAGGGCTTCTCTGCAACTGAAA------------C 1274 

eta             --GGATCGGTGTTAATTCTT-----------------CCAGCAGA--------------T 1235 

epsilon         ATGGCCAGCTGGCAAGCCCTGGCGAGAACGGTGAAGTCCGGCAAGGCCAGGCCAAGCGCT 1400 

                  *           *                       *  *                   

 

delta           CGCC--TTGAGAACTTCACCTTCCAGAAAGTACTTGGCAAAGGCAGCTTTGGCAAGGTAC 1446 

theta           TGAAGATCGATGACTTCATCCTGCACAAGATGCTGGGGAAAGGAAGTTTTGGCAAGGTCT 1334 

eta             TCGGCATCGACAACTTTGAGTTCATCCGGGTGTTGGGGAAGGGGAGCTTCGGGAAGGTGA 1295 

epsilon         TGGGCCTGGATGAGTTCAACTTCATCAAGGTGTTAGGCAAAGGCAGCTTTGGCAAGGTCA 1460 

                      * **  * **     *        *  * ** ** ** ** ** ** *****   

 

delta           TGCTTGCAGAACTGAAGGGCAAGGAAAGGTACTTTGCAATCAAGTACCTGAAGAAGGACG 1506 

theta           TCCTGGCAGAGTTCAAGAGAACCAAACAGTTTTTCGCAATAAAAGCCTTAAAGAAAGATG 1394 

eta             TGCTCGCCAGAATAAAGGAGACAGGAGAGCTGTACGCTGTGAAGGTGCTGAAGAAGGACG 1355 

epsilon         TGCTGGCCGAGCTCAAGGGTAAGGATGAAGTCTATGCTGTGAAGGTCTTAAAGAAGGACG 1520 

                * ** **     * ***   *           *  **  * **     * ***** ** * 

 

delta           TGGTGTTGATCGACGATGACGTGGAGTGCACCATGGTGGAGAAGCGGGTGCTGGCGCTCG 1566 

theta           TGGTGTTGATGGACGATGACGTCGAGTGCACGATGGTGGAGAAGAGAGTTCTGTCCTTGG 1454 

eta             TCATCCTGCAGGATGACGATGTGGAATGCACCATGACTGAGAAGAGGATCCTCTCCTTGG 1415 

epsilon         TCATCCTGCAGGATGACGACGTGGACTGCACGATGACAGAGAAGAGGATTTTGGCTCTGG 1580 

                *  *  **   ** ** ** ** ** ***** ***   ****** *  *  *  *  * * 

 

delta           CCTGGGAGAATCCCTTCCTCACCCATCTCATCTGTACCTTCCAGACCAAGGACCACCTCT 1626 

theta           CCTGGGAGCATCCGTTTCTTACACACATGTTCTGCACATTCCAGACCAAGGAAAATCTCT 1514 

eta             CCCGCAACCACCCCTTCCTCACCCAGCTCTTCTGCTGCTTTCAGACTCCTGACCGTCTGT 1475 

epsilon         CGCGGAAACACCCTTATCTAACCCAACTCTATTGCTGCTTCCAGACCAAGGACCGGCTCT 1640 

                *  *  *  * ** *  ** ** **  *    **    ** *****    **    ** * 

 

delta           TCTTTGTGATGGAGTTCCTCAATGGGGGCGATCTGATGTTCCACATTCAGGACAAAGGCC 1686 

theta           TTTTCGTGATGGAGTATCTCAATGGAGGAGACTTAATGTACCACATCCAAAGTTGCCACA 1574 
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eta             TCTTTGTCATGGAGTTTGTGAACGGAGGTGACCTGATGTTCCACATCCAAAAGTCCAGGC 1535 

epsilon         TCTTCGTCATGGAATATGTAAACGGTGGAGACCTCATGTTCCAGATTCAGCGGTCCCGAA 1700 

                * ** ** ***** *   * ** ** ** **  * **** *** ** **            

 

delta           GCTTCGAACTCTACCGGGCTACGTTTTATGCAGCTGAGATCATCTGCGGACTGCAGTTTC 1746 

theta           AATTTGATCTTTCCAGAGCCACGTTTTATGCTGCTGAGATCATCCTTGGTCTACAGTTCC 1634 

eta             GTTTCGATGAAGCCCGAGCTCGTTTCTACGCTGCAGAGATCATTTCTGCACTCATGTTCC 1595 

epsilon         AATTCGATGAGCCTCGTTCCGGGTTCTATGCTGCCGAGGTCACATCTGCTCTCATGTTTC 1760 

                  ** **        *  *    ** ** ** ** *** ***     *  **   *** * 

 

delta           TACATGGCAAAGGCATCATTTACAGGGACCTCAAGCTAGACAATGTAATGCTGGACAAGG 1806 

theta           TTCATTCCAAAGGAATTGTCTACAGGGACCTGAAGCTAGATAATATCCTGTTAGACAGAG 1694 

eta             TCCACGAGAAAGGCATCATCTACAGAGACTTGAAACTGGACAACGTACTACTGGACCACG 1655 

epsilon         TCCACCAACATGGAGTGATCTACAGGGATTTGAAACTGGACAACATCCTTCTAGATGCAG 1820 

                * **     * **  *  * ***** **  * ** ** ** **  *  *  * **    * 

 

delta           ATGGCCACATCAAGATTGCTGACTTCGGGATGTGCAAAGAGAATATATTTGGGGAGAACC 1866 

theta           ATGGCCATATCAAAATAGCAGACTTTGGGATGTGCAAAGAGAATATGCTGGGAGATGCGA 1754 

eta             AAGGCCACTGTAAACTGGCCGACTTCGGAATGTGCAAGGAGGGCATTTGTAACGGGGTCA 1715 

epsilon         AAGGTCACTCCAAGCTGGCTGACTTTGGGATGTGCAAGGAAGGGATTCTGAATGGCGTGA 1880 

                * ** **    **  * ** ***** ** ******** **    **       *       

 

delta           GGGCCAGCACATTCTGCGGCACTCCTGACTACATCGCCCCTGAGATCCTGCAGGGCCTGA 1926 

theta           AGACAAATACTTTCTGTGGGACGCCTGACTACATCGCTCCGGAGATCTTGCTGGGTCAGA 1814 

eta             CCACAGCCACCTTCTGCGGCACGCCTGACTACATTGCCCCAGAGATCCTTCAGGAGATGT 1775 

epsilon         CAACTACCACCTTCTGTGGGACTCCTGACTACATAGCTCCAGAGATCCTGCAGGAGTTGG 1940 

                   *    ** ***** ** ** *********** ** ** ****** * * **    *  

 

delta           AGTACTCATTTTCCGTGGACTGGTGGTCTTTTGGGGTCCTCCTCTATGAGATGCTCATTG 1986 

theta           AATACAACCATTCCGTTGACTGGTGGTCCTTTGGGGTTCTTCTTTACGAGATGCTGATTG 1874 

eta             TGTATGGACCTGCAGTAGACTGGTGGGCCATGGGCGTGTTGCTTTATGAGATGCTGTGCG 1835 

epsilon         AGTACGGCCCCTCAGTGGACTGGTGGGCCCTGGGCGTGCTGATGTACGAGATGATGGCCG 2000 

                  **        * ** ********* *  * ** **  *  * ** ****** *    * 

 

delta           GCCAGTCCCCCTTCCATGGTGATGATGAGGACGAGCTCTTTGAGTCCATCCGGGTGGACA 2046 

theta           GCCAGTCGCCTTTCCACGGGCAGGACGAAGAGGAGCTTTTCCACTCCATCCGCATGGACA 1934 

eta             GACATGCGCCCTTCGAGGCTGAGAATGAAGATGACCTTTTTGAGGCCATACTGAATGATG 1895 

epsilon         GGCAGCCCCCCTTTGAAGCTGACAACGAGGACGACTTGTTTGAATCCATCCTTCACGATG 2060 

                * **  * ** **  * *   *  * ** ** **  * **  *  **** *     **   

 

delta           CACCACACTACCCGCGCTGGATCACCAAGGAGTCCAAGGACATCATGGAGAAGCTCTTCG 2106 

theta           ATCCCTTTTACCCAAGGTGGCTAGAAAGGGAGGCCAAGGATCTTCTAGTGAAGCTTTTTG 1994 

eta             AAGTTGTCTACCCTACCTGGCTCCATGAAGATGCCACAGGGATCCTCAAATCTTTCATGA 1955 

epsilon         ACGTTCTCTACCCTGTCTGGCTTAGCAAGGAGGCTGTCAGCATCCTGAAAGCTTTCATGA 2120 

                        *****    *** *       **  *        *  *        *  *   

 

delta           AGAGGGACCCTGCCAAGAGGCTGGG--------------AGTAACAGGA----AACATCA 2148 

theta           TGAGAGAGCCTGAAAAGAGGCTGGG--------------AGTGAGAGGA----GACATCC 2036 

eta             CCAAGAACCCCACCATGCGCTTGGGCAGCCTGACT---CAGGGAGGCGAGCATGAGATCT 2012 

epsilon         CCAAGAACCCGCACAAGCGCCTGGGCTGCGTGGCAGCACAGAACGGGGAAGATGCCATCA 2180 

                  *   * **    * * *  ****              **      **       ***  

 

delta           GGCTTCACCCCTTTTTCAAGACTATCAACTGGAACCTGCTGGAGAAGCGGAAGGTGGAGC 2208 

theta           GCCAGCATCCTTTGTTTCGAGAGATCAACTGGGAAGAGCTTGAGAGAAAAGAGATTGACC 2096 

eta             TGAGACATCCTTTCTTTAAGGAAATCGACTGGGTCCAGTTGAACCATCGCCAGCTAGAAC 2072 

epsilon         AGCAACATCCATTCTTCAAGGAGATTGACTGGGTACTGCTGGAGCAGAAGAAAATGAAGC 2240 

                     ** ** ** **       **  *****     * *  *        *  *  * * 

 

delta           CGCCCTTTAAGCCCAAAGTGAAATCCCCTTCAGACTACAGCAACTTTGACCCAGAGTTCC 2268 

theta           CACCCTTCAGACCAAAAGTGAAATCACCATATGACTGTAGCAATTTCGACAAGGAATTCC 2156 

eta             CGCCTTTCCGACCCAGAATCAAATCCCGAGAAGACGTCAGCAATTTTGACCCAGACTTCA 2132 

epsilon         CCCCCTTCAAGCCGAGAATTAAAACCAAGAGAGATGTCAATAACTTTGACCAAGACTTTA 2300 

                * ** **    ** * * * *** *       **    *  ** ** ***   ** **   
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delta           TGAATGAGAAACCCCAACTTTCCTTCAGTGACAAGAACCTCATCGACTCTATGGACCAGA 2328 

theta           TAAGTGAGAAACCCCGGCTATCGTTCGCTGACAGAGCACTCATCAACAGCATGGACCAGA 2216 

eta             TAAAAGAAGAGCCTGTTTTAACTCCGATCGATGAGGGACATCTTCCTATGATTAACCAGG 2192 

epsilon         CCCGGGAAGAGCCAATACTTACACTTGTGGATGAAGCAATCGTGAAGCAGATCAACCAGG 2360 

                     **  * **     *  *       **           *       **  *****  

 

delta           CAGCCTTCAAGGGCTTCTCCTTTGTGAACCCCAAATATGAGCAATT------CCTGGAAT 2382 

theta           ACATGTTCAGCAACTTCTCCTTCATTAACCCGGGGATGGAGACTCT------CATTTGCT 2270 

eta             ATGAGTTTAGAAACTTTTCCTATGTGTCACCAGAATTGCAACCGTA-------GCCTTAT 2245 

epsilon         AAGAATTCAAAGGCTTCTCCTACTTTGGTGAAGACCTGATGCCCTGAGAAACTGCTTCAC 2420 

                     ** *    *** ****   *                                    

 

delta           AGTGAGCT------------CCCAGACCTG------CTTTTAATGCCCCGGCAGAGTAGG 2424 

theta           CCTGAACCTCATCCCTCTTCCCCAGACTGGAAGAAATTCGCCTTCTCTCTGGGAACTGGT 2330 

eta             GGGAAGC-AACAAAGAGAAAGGGGGATCTTTCCAGAGATTTCTTGTGTGGGAAGTCCCCA 2304 

epsilon         ATGGAGTTAGCTCACTGCAAGGAGGGTGTTGAGACA-ATCCCGTGTTGCAGAGGCTCAGA 2479 

                    *                   *                  *      *          

 

delta           CCCATCTGCCCTGGTTTGCATCCTCACTGCCCAT-GAAGAAGAGTGGGTGACTGGTGATT 2483 

theta           TCAAGTAACACTTCTGGGGGTCTCTTTTTCACGTTGGAGAAGAGAAGA-AACACTCAACC 2389 

eta             GCTCCT---GCCTTTTAACACCACCTTCACCTTC-ACGGAGCAAATGTTCACAACTCTGC 2360 

epsilon         ATGTCTCGAACTATTCGTCCTCCCCAGAGCCCCA-GTCCCACATCTGCTCTCTTATTTAT 2538 

                          *   *      *       *            *   *    *         

 

delta           CCTGCTGCTG-------CCCCCTCTTCCTCGGAG-------AGTCTGGCTCCTGTTGGCT 2529 

theta           TCGAAAGCAGGGAGGACCGCTGAGCTCCTCGAGGGACACGCAGCACAAACCATGTCTCCT 2449 

eta             -GAAGGGCGGAGCCTCAAGAGAGCCACTCTGTCAA-----GTCCCGGGGAGCCATGGTAC 2414 

epsilon         TGCATCCCCTCATCCCAGGCCCTGTCCTTCCCCAC-----CCTCCCAGTGACCAGAAGGC 2593 

                       *                  *                                  

 

delta           GGGCTCACAGTACTTCCTCTGTGAACTGTTTGTGAATTTGCCTTCCTTTTGCCATCGGAG 2589 

theta           TCACTAATGGCATCATC-CTGTTATATCTCCTGGAATCTCTCTCACCGCAGCCCTAGAAG 2508 

eta             ACTTCGGTAGTTGATACTGAGGTAAGATGTTACAGAGACGTGCACCGCCCACCCCGGAGT 2474 

epsilon         -CCTCTTTGGTCCAGACTCAC-CAAGAT--CACAGATTTGAACTGCGTCTGCTCTG---T 2646 

                         *      *      *           *         *     *         

 

delta           GGAAACTGTAAATCCTGTGTGTCATT-ACTTGAATG-TAGTTATTGA------AATATAT 2641 

theta           TTAGACCATTGTTAACTCTAGTCATTTACTTGAAAGATGGTTCCCGATCCTGCGAACGAT 2568 

eta             CTCCATGGCTTTCAGGCTTGGAGTAAAGGACAGAAGCCAAAAGAAGAG-----ATGCTGG 2529 

epsilon         GTGCAGTGCT---AGGTCTGGAGTAGCCGTCCACCCACAACCCTGAAG-----CAGCCCG 2698 

                    *               *                         *              

 

delta           ATTATATATATGCACATATATATAATAGGCTGTATATATTGCTCAGTATAGAAAGCATGT 2701 

theta           TCGAAATGTAATTCTGCTCTTGTCGTTGACAAGAGCTGCTGGTTGGTG-ACGAACCAAGG 2627 

eta             GTAACACAGGAGGTCCTAGGGATCCTCAGCCAAACAGGCTTCTTGTTTTTAACTTCAAGA 2589 

epsilon         G-AATTC----------------------------------------------------- 2704 

                   *                                                         

 

delta           AGGAGACTGGTGATGTGTTGACCTTTTTTTAAAAAAAACCATATGT-ATACGTGT-GTAT 2759 

theta           TGCAAGTGGAACAGATTTCTCAAGACCGGGAGGGCAGATTGCCTGTCATGGAAGTCGATT 2687 

eta             GACAAATCTAGACTTTCCGTGGAGCACCCCACACTGTTCTTCACGCCAATAGTGCAGTCT 2649 

epsilon         ------------------------------------------------------------ 

                                                                             

 

delta           GTATACATCTACACACGTATACATATATGTATGTATGTATGTATGTATGTATGTATATAT 2819 

theta           CCACTCAACCACAGAGAAGGACCCACTAACCCGCATCGTCCTGCGCATGTCTGTGGAAAT 2747 

eta             GCGAAAGATCAAATGCTGATGAAGAAGTTAAAAGTCTCTCTAGGGAAACGGACGGCATTC 2709 

epsilon         ------------------------------------------------------------ 

                                                                             

 

delta           GACCAAAAGAAAAGAGAGCACAAGCTACCTGAACCACAGGATTGTTTATGTGTGTATAAA 2879 

theta           GTCGATGGCAGAAGGGAGGGAAAGGGATGTGA-TGGGATGTTCTCCAATAAACTTAGCGT 2806 
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eta             TAAGCAGACTGATTCGCTTCGAAGAAACCGCAGTTGGGCGTCCTTCAAGCTCCCAACCTA 2769 

epsilon         ------------------------------------------------------------ 

                                                                             

 

delta           TAAACACTGAATGGTAAAAAA-CCGGA-ATTC---------------------------- 2909 

theta           GAAAC-TTGAGATTTACAAAC-CCGTTCGTTCTGGCCAGCCCTGAAATTCACAAGGCAGC 2864 

eta             AACCCAGTGTTGAGAACAGAGGTTGGACACCACGACGACCTCTGTTGTCTTGACAACAGC 2829 

epsilon         ------------------------------------------------------------ 

                                                                             

 

delta           ------------------------------------------------------------ 

theta           GGAAAGTAAGGGGTGAGGTGCAGAGCCTTTGTCACCAACAGGAAGGGTAAGGATGTTTCG 2924 

eta             TCAAGTGTCTTGAGTCTCTTCCTTCCAGTAACTAGATATTTATTGAGTGTCAAATAAAAA 2889 

epsilon         ------------------------------------------------------------ 

                                                                             

 

delta           ------------------------------------------------------------ 

theta           GATGTGGTGCATCTCATTCCCACAGAAGTAAAGTCCAACCAACGAAGGCAGGGCAGTTTA 2984 

eta             GGTGCCATACTCTTCAGTAGTGTACACGGTAGAGTCACCTTCATGATGCCTTTACTCGTT 2949 

epsilon         ------------------------------------------------------------ 

                                                                             

 

delta           ------------------------------------------------------------ 

theta           CTGCTGCCAATCAAACCTTCTCTTCCCTCTTGTTCTGGCTGATTTCTCTGTCAGCGTCGG 3044 

eta             CTGGGGTCCACCTAATGGTGTTCGCACTCTGCGAAAGGCCTCTCCACATTGCATATAGGT 3009 

epsilon         ------------------------------------------------------------ 

                                                                             

 

delta           ------------------------------------------------------------ 

theta           CATTCGTCATCGTCCTCCCGTTGCACAAGAAATGA-AGTACATGACTCTTGTGAGAGAAA 3103 

eta             CTGTCTTCTTTGTCTCCTGTTCATAGAAGGGCCACCACCACAGTAGTGCGGTCAGCAGGC 3069 

epsilon         ------------------------------------------------------------ 

                                                                             

 

delta           ------------------------------------------------------------ 

theta           GAAAACCAATCCCATATCATGTTGCTCCTGGTGATTCGGTGACAAATAAGTCCCTCTTTA 3163 

eta             GGGCTTCCGCTGCATGCCACCTGCTGACTGGCCGGTGGAATCTAATCTCCACATCCTTCA 3129 

epsilon         ------------------------------------------------------------ 

                                                                             

 

delta           ------------------------------------------------------------ 

theta           GGCATCCT--GCAAGACAAACGACCCACGCATGCTATTTCCACTAGTCAGCCCTGTTGAG 3221 

eta             TCCCACGTCGACTCATTGGCGAAGAAGTCCGTGCCACTCCCATCCTCGAACACGTGTGTG 3189 

epsilon         ------------------------------------------------------------ 

                                                                             

 

delta           ------------------------------------------------------------ 

theta           TTGGAGTACTAATTAGACACTTAGAGTCTCGCGTGCTGTTTGTATATTTTGATGGGATGT 3281 

eta             GCAGGTCCATCGGCCGCCTACTTGAGTTATGTTTCAGAGACAAAGAAGGTTGTTTGATAC 3249 

epsilon         ------------------------------------------------------------ 

                                                                             

 

delta           ------------------------------------------------------------ 

theta           TGTGATGATGACGTACGTGGACGTGTAAAACGGAATAAAAGAAGAAAAGAAAGATG---- 3337 

eta             TCACATTAATAAGAAGCTCTGGGTCTTGTAAACAAGGCCGACGACAGAGGTGTACCTTTT 3309 

epsilon         ------------------------------------------------------------ 

                                                                             

 

delta           ------------------------------------------------------------ 

theta           ------------------------------------------------------------ 

eta             CATGTGTAACCATATATACAGTTGAAAAAATTTTATCTGGCTGGAAATAAAGGCATTTTT 3369 

epsilon         ------------------------------------------------------------ 
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delta           ----------------------------- 

theta           ----------------------------- 

eta             TAGCAAAAAAAAAAAAAAAAAAAAAAAAA 3398 

epsilon         ----------------------------- 

                                              

 

Start/stop codon   

Intron/exon boundary 

Primer Set 1 from original alignment 

Primer Set 2 from original alignment 

PKC Eta primers 
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