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Abstract

Being able to select decoy structures that are closest to the native one is 
essential to any folding simulation. Indeed, modern algorithms use heuristics to 
quickly sample the conformational space, and as such, will generate a large 
number of candidate structures.

In this thesis, we create a new  statistical energy function to correctly discriminate 
near-native decoy structures, using three complementary approaches to derive 
energies from known conformations and decoys.

First, we used a classical definition, where the observed state is modelled by 
taking a set of  1078 short, well-resolved, non-redundant crystal structures from 
the PDB, and the reference state is taken as the distribution expected at random. 
In our second method, which we call “hybrid”, we used the native structures as 
the observed state, just as in the classical formulation, but this time using the 
worse generated decoys as the reference state. Finally, our third method, called 
“decoy-based”, uses only decoys, taking the better than average models as the 
observed state, and the worse than average as the reference state. 

Using the three methods above, we generated potentials to model solvation, 
hydrogen bonding, and pairwise atomic distances and orientation. We found that 
overall, combining solvation, atomic distance and orientation using the decoy-
based method produced the best results, with a 10% enrichment score of  0.73 
versus 0.51 for the classical formulation, and 0.41 for our benchmark potential, 
DFIRE2. 

Our final potential, called the DOS potential, was created by combining the 
classical, hybrid and decoy-based potentials, and achieved a 10% enrichment 
score of 0.75 versus 0.41 for DFIRE2.
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1.1 Protein structure

Ever since the original work of Mendel in the 19th century, the mechanisms 
underlying the transmission and modifications of traits in living organisms has 
been at the centre of  biological research. For the past fifty years, the effects of 
genetic mutations on the structure of biological molecules have been studied 
intensively, with the advent of fields such as biochemistry, biotechnology or 
bioinformatics. 

In living organisms, molecules called proteins, which are chains of amino acids 
folded into a compact and usually unique structure, perform most cell functions. 
These are generated in the cell by translating a given RNA sequence into its 
corresponding amino acid sequence. 

Protein structure can be described at four levels: its amino acid sequence, its 
secondary structure, which is the local arrangement of amino acids into sheets 
and helices, its spatial conformation (tertiary structure), and its quaternary 
structure which is the complex formed by different amino acid chains. 

One of the major challenges in modern biology has been to predict the tertiary 
structure from the sequence only (de novo folding, also called ab initio folding). 
The most accepted hypothesis is that an amino acid sequence will fold into a 
structure that lies at the bottom of the free energy landscape [Anfinsen 1973]. It is 
this principle that enables computational algorithms to be used to predict that 
conformation.

Chapter 1. General introduction and background 
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1.1.1 Chemical structure of proteins
Living organisms translate DNA codons into amino acids, which are chained to 
produce proteins. The covalent bond linking these amino acids is called the 
peptide bond. Chemically, amino acids share a common backbone, but have 
different side chains giving them their unique properties. Some common 
properties are listed in Table 1.1.

Table 1.1 Amino acids properties

Name Code Letter Polarity Aliphatic Aromatic Acidity
Alanine Ala A - Y N Neutral

Arginine Arg R + N N Basic
Asparagine Asn N + N N Neutral
Aspartate Asp D + N N Acid
Cysteine Cys C - N N Neutral
Glutamine Gln Q + N N Neutral
Glutamate Glu E + N N Acid
Glycine Gly G - Y N Neutral
Histidine His H + N N Basic
Isoleucine Ile I - Y N Neutral
Leucine Leu L - Y N Neutral
Lysine Lys K + N N Basic
Methionine Met M - N N Neutral
Phenylalanine Phe F - N Y Neutral
Proline Pro P - Y N Neutral
Serine Ser S + N N Neutral
Threonine Thr T + N N Neutral
Tryptophan Trp W - N Y Neutral
Tyrosine Tyr Y + N Y Neutral
Valine Val V - N N Neutral

Amino acid main chains are composed of 2 carbon atoms, 1 nitrogen atom, 1 
oxygen atom, and 2 hydrogen atoms (aside from Proline that only has one main 
chain hydrogen). The side chain is attached to the central carbon, with the 
exception of Proline, where a ring is formed between the side chain atoms and 
the main chain nitrogen. Figure 1.1 shows the different amino acid side chains.

Chapter 1. General introduction and background 
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Figure 1.1 Amino acids side chains [Andersen 2010]. Main chains are not represented 
here, as they all have the same form (shown boxed for the Alanine - Ala), aside from 
Proline, which is represented fully.
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The backbone in a protein can be described either by Cartesian coordinates for 
each main chain atom, or by the torsion angles, represented in Figure 1.2.

Figure 1.2 Amino acid backbone [Richardson 1981]. We can see that there are three 
torsion angles: the rotation about the carbonyl carbon and the alpha-carbon (the Ψ angle), 

the rotation about the alpha-carbon and the nitrogen (the φ angle), and finally the peptide 

bond rotation about the nitrogen and the carbonyl carbon from the residue before it (the ω 

angle). 

In nature, the peptide unit between two residues is planar, meaning that the ω 
angle is 180 degrees (trans isomer), although in some cases it can be 0 degrees 
(cis isomer). For the Ψ and φ angles, their values are constrained to specific 

regions, as can be observed in a Ramachandran plot (Figure 1.3). 

This arrangement of  the backbone into specific structural elements is referred to 
as the secondary structure of  the protein, and is mostly due to the hydrogen 
bonds occurring between different residue main chains. The two most common 
types of secondary structure elements are alpha-helices and beta-sheets, which 
are formed through hydrogen bonding between different amino acid main chain 
donors and acceptors [Bordo & Argos 1994]. 
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Alpha-helices form when the amine nitrogen from a residue forms a hydrogen 
bond with the carbonyl oxygen from an amino acid four residues earlier. Its 
topology is shown in Figure 1.4. 

The other common secondary structure element is the beta sheet, composed of 
two or more strands that are hydrogen bonding in at least 3 places. Depending 
on the orientation of the N-termini of  adjacent residues, they can be categorised 
as parallel, or anti-parallel. The anti-parallel arrangement is usually preferred 
since it allows for linear hydrogen bonds. Figure 1.5 shows an example of parallel 
and anti-parallel strands of a mixed beta sheet.

Figure 1.3 Ramachandran plot of φ / Ψ angles in proteins [Cooper 1995]. This plot 

shows strong clusters of φ and Ψ values, corresponding to local conformational 

arrangements known as the secondary structures. These arrangements define the 
secondary structure of the protein, and are important in stabilising it. Depending on the 
secondary structure element  considered, φ and Ψ angles cluster around different values 

[Ramachandran & Sasisekharan 1968]. 
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Figure 1.4 Alpha helix [Kimball 2011]. A right handed alpha helix.

Figure 1.5 Mixed beta sheet [Keates 1998]. Front  view, showing the hydrogen bonds 
(dotted) between NH and CO groups on adjacent strands. Arrows indicate chain direction. 
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In some proteins, certain conditions can induce switches from one secondary 
structure element to the other, for example in amyloids [Mimna et al. 2007]. Since 
the sequence residue separation between hydrogen bonding donors and 
acceptors is smaller in helices than sheets, the former can be thought of as a 
local stabilisation of the structure, whereas the latter will have a more global 
effect [Kamat & Lesk 2007]. 

The tertiary structure of a protein is defined as the three dimensional 
arrangement of  the atoms forming it, the quaternary structure being the 
arrangement of the different chains. It is believed that for each sequence there is 
usually one stable conformation [Anfinsen 1973], and this is what theoretical 
protein folding tries to reproduce. Figure 1.6 shows the tertiary structure of  the 
HIV-1 integrase protein.

Figure 1.6 Tertiary structure of HIV-1 integrase  [Protein Data Bank, 3OVN, 2010]. 
The twists represent the alpha-helices, while the arrows represent  the beta-sheet strands, 
with their direction.
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1.1.2 Experimental determination of protein structure
Protein structures can be resolved experimentally more easily than before, 
meaning that the number of  available structures increases faster with time [PDB 
statistics, 2010], requiring an efficient database to store and organise them. The 
largest one is the Protein Data Bank (PDB) [Bernstein et al. 1977], containing 
more than 60000 structures in 2010. 

These structures are usually resolved using X-ray crystallography or Nuclear 
Magnetic Resonance (NMR), but other experimental methods exist, such as 
using neutrons instead of X-rays in crystallography, which allows for hydrogen 
atoms to be resolved. This last method is usually used in combination with 
conventional x-ray crystallography to produce structures with good resolution, as 
well as the hydrogen atoms. 

The first and most widely used method for determining a protein structure 
experimentally is by X-ray crystallography, in which a protein structure is 
determined using the X-ray diffraction patterns from a crystal. Proteins are hard 
to crystallise well, often producing imperfect crystals, making this method 
inefficient for large-scale structure determination. The resolution of a structure is 
the principal parameter to consider when choosing a subset of protein structures, 
but other ones, such as the R-factor, corresponding to the agreement between 
the diffraction data and the model used, should be taken into account as well. 

Another experimental method called Nuclear Magnetic Resonance (NMR) 
spectroscopy exploits the magnetic properties of  certain atomic nuclei to 
determine physical and chemical properties of the molecules they are contained 
in. The advantage is being able to resolve proteins in solution, but the problem is 
that due to the dynamic nature of  those proteins in solution, it generates more 
than one possible conformation, making it impossible to choose only one position 
for every atom in the protein. 

Since experimental methods are still expensive and cannot be applied to all 
proteins, researchers have tried to simulate the folding process in order to 
theoretically predict the tertiary structure. The next section introduces the various 
categories of computational structure prediction methods, followed by an 
introduction to molecular dynamics.

Chapter 1. General introduction and background 

21 / 198



1.2 Protein folding

1.2.1 Computational protein folding 
Resolving the structure using experimental methods is not practical, as it is slow, 
expensive, and not always feasible. The gap between the number of  proteins that 
have been sequenced and the ones that have been structurally resolved is 
increasing fast [Levitt 1998]. Therefore, we need a way to predict this structure 
quickly from sequence using computational algorithms. This would allow  a full 
analysis of the structural properties of the genes being sequenced, and thus, a 
better understanding of  the interactions with them, leading to better and novel 
drug designs. 

Over the last twenty years, many methods have been developed to address this 
problem, with various results [Dill et al. 2007]. They can be divided into three 
categories, depending on the availability of a homolog. The different types of 
prediction methods are summarised in Figure 1.7.
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Figure 1.7 Methods of protein structure  determination [Baker and Sali 2001]. This 
figure shows different methods of protein structure determination, with the accuracy that 
can be expected from it, and the application that could arise from the model created.
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The first category is concerned with modelling proteins for which a homolog 
exists, in which case it is possible to use it as a template for the new  protein 
[Baker & Sali 2001]. As can be seen from the various CASP (Critical Assessment 
of Structure Prediction) experiments, this is still the best approach whenever it is 
possible to find a template [Moult 2005]. 

In order to do so, it is necessary to find a set of similar sequences, using 
programs such as PSI-BLAST [Altschul et al. 1997], which take the amino acid 
sequence as input, and return a multiple alignment and a profile by searching a 
given database. The profile is then compared to each entry in the same 
database, and the significance of each alignment is returned. This procedure 
runs iteratively until a number of epochs are reached, or the profile converged. 
Different criteria can then be used to select a template from the alignments. 

The most important factor to consider is the sequence similarity. Comparative 
modelling usually works when a template has more than thirty percent sequence 
identity, but some programs, such as MODELLER [Sali & Blundell 1993, Eswar et 
al. 2006], use more than one template to build a structure. This can be a useful 
approach when no highly similar structures exist. To build the model, various 
methods exist, such as rigid region assembly, where the model is built using 
fragments from the aligned templates and is then refined using a potential by 
searching for conformations with lower energies. The refinement step is 
necessary to model highly variable regions such as loops or side chains. 

The second most successful method is fold recognition, also called threading 
[Jones et al. 1992]. When there are no homologs in the PDB with more than thirty 
percent sequence identity, comparative modelling usually fails to generate a 
native like model. Because sequences change at a faster rate than structures 
[Chothia & Lesk 1986], it is possible to find a fold that corresponds to the protein 
we are modelling, even though there is not a large similarity between sequences. 
By using an energy function derived from the existing database of experimental 
structures, it is possible to compare folds and select the most likely one to use as 
template [Jones & Thornton 1996]. The folds having the lowest energies are 
selected as candidates, and a similar approach to comparative modelling is then 
used to build the model. One widely used threading program is GenTHREADER 
[Jones 1999], the practicality of which has been shown by carrying out structural 
prediction of entire genomes (although the method did not work for 
transmembrane proteins). 
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The third and final prediction category is called de novo protein folding (also 
called ab initio). It relies on the observation that all the information needed to fold 
a protein is contained in its sequence [Anfinsen 1973]. Without relying on a 
template, de novo methods try to build a structure by searching the 
conformational space with the help of  an energy function. There are various 
methods for generating conformations, the most widely used and successful one 
being fragment assembly [Moult 2005]. 

The underlying assumption behind fragment assembly methods is that local 
structures are more conserved than overall folds, and therefore it is possible to 
reuse fragments of known structures as a template for modelling. 

To do so, a list of  existing local conformations is extracted from the PDB, and 
stored in a fragment database. Fragments are sometimes selected by threading, 
with confirmation from the secondary structure predictions, allowing for fragments 
of different lengths to be selected for different motifs. Once a list of  fragments 
have been chosen, the method will go through combinations of them to generate 
tertiary structures by selecting fragments based on various criteria, such as 
secondary structure elements, paired beta strands, absence of steric clashes, 
and low energy features. 

If these criteria fail, then a new  conformation is generated until it satisfies the 
above requirements. Since the energy landscape is not smooth, the search 
method must be able to get out of local minimum traps in order to reach the 
global free energy minimum. Searching the energy landscape exhaustively would 
require enormous computing power, so heuristic algorithms are usually used 
instead. One such algorithm is simulated annealing, where at each step a 
neighbour of  the current state is considered. A probabilistic function then decides 
whether or not to switch to that neighbour, with the requirement that ultimately the 
states are driven towards lower energies. This step is then iterated a number of 
times, until there is a convergence or the number of  allowed steps is reached. By 
using fragments, it is possible to make large moves in one single step, allowing 
the search to be conducted more rapidly. But due to the heuristic nature of the 
algorithm, the final structure will often be one that was trapped in a local 
minimum, since the energy landscape is usually rugged. For that reason, it is 
very important to consider the energy function as one of  the core element of the 
folding process. Two of the most successful algorithms, according to CASP, are 
FRAGFOLD [Jones 2001] and ROSETTA [Simons et al. 1997]. 

Chapter 1. General introduction and background 

25 / 198



Simulated annealing is not the only existing search algorithm though. Another 
option is based on genetic algorithms [Unger 2004]. The energy function can be 
the same as the one used with simulated annealing, but the structure is 
generated by mutating intermediate conformations using different mutation 
operators, such as crossovers, where two models swap some parts of their 
structure, or pure mutations where structures are mutated directly by substituting 
one fragment by another from the selected database. 

One major problem with predicting protein folds is the enormous number of 
possible structures that need to be searched. An experiment has been conducted 
where a massive network of paralleled computers was used to search the 
conformational space exhaustively. The conclusions were that current algorithms 
have sampling bottlenecks, and thus, cannot effectively sample the entire 
conformational space [Kim et al. 2010]. This implies that whatever the available 
computing power, and however good the energy function is, there might be cases 
where the native structure cannot be reached. 
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1.2.2 Model quality measures
Measuring the quality of  a decoy structure can be done by comparing the position 
of the atoms in the decoys to those in the native structure, provided that the latter 
is available. The most widely used measure is the root mean square deviation 
(RMSD) between the atoms in the two structures. A very efficient algorithm for 
calculating it has been developed recently, using quaternions [Coutsias et al. 
2004]. 

The RMSD is commonly calculated from the position of the CA carbon on the 
backbone, but using all heavy atoms (ARMSD) can be more suitable when 
comparing high quality models that have only small differences, and almost 
identical folds. Moreover, the added information from the side chain positions 
means that the ARMSD will be sensitive to the quality of the side chain modelling, 
whereas C-alpha RMSD only detects backbone variations. 

The major drawback with RMSD (or ARMSD) is that it is very sensitive to local 
differences. RMSD works well when decoys are homogeneously deviating from 
the crystal structure, but not when they have large variations in few  places only. 
This locality problem has been addressed by other measures, and the most 
commonly used alternative is the Global Distance Test (GDT) [Zemla et al. 1999], 
where given two superposed structures and a threshold, it returns the length of  
the largest substructure in which the equivalent residues in the two superposed 
structures are at a distance below  the given threshold, divided by the total 
number of  residues. GDT-TS is an extension of GDT where the average of the 
GDT for thresholds of 1, 2, 4, and 8 Å are used. 

The TM score [Zhang & Skolnick 2004] has a similar formulation, but uses the 
distance between superposed residues as well as a length-based distance 
threshold to produce a score between 0 and 1, where 1 is the native structure. 
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1.2.3 CASP
In order to assess the efficiency of individual methods, a biennial blind test has 
been created to compare algorithms in different categories. The Critical 
Assessment of Structure Prediction (CASP) [Bourne 2003, Moult 2005, 
Kryshtafovych et al. 2009] has run nine times already, showing consistent 
improvement in protein folding predictions. The resulting competitiveness is 
boosting the field towards finding new approaches. 

Over the years, comparative modelling has produced the best results provided 
that a template was available, but the frontier between fold recognition and ab 
initio modelling has narrowed, to a point where some ab initio methods 
outperformed threading methods for some protein in the latter category [Moult 
2005]. 

The way in which each category is assessed varies; for comparative modelling, 
more attention is given to the structure alignments, the side chain building, and 
the accuracy of  fragment that cannot be copied from the template. In fold 
recognition, the criteria are the recognition of  folds, the quality of the model and 
the structural alignment to the related fold. It should be noted that the fold 
recognition category has been divided into two subfamilies, namely the 
homologous fold family, where an ancestor with a similar fold exists, and the 
analogous fold family, where the fold results from an evolutionary convergence. 
Finally, for ab initio modelling, the two important assessment factors are the 
fraction of correctly predicted regions, and the success in finding the overall fold. 

Chapter 1. General introduction and background 

28 / 198



1.3 Molecular dynamics

Another way of  doing de novo structure prediction or refinement is using 
Molecular Dynamics (MD), which takes a force field and a motion algorithm to 
simulate the Newtonian movement of particles during the folding process. 

The trouble is that the large number of atoms considered, combined with the little 
steps taken each time, makes the algorithm slow. To address this problem, 
purpose-specific machines for molecular dynamics have been built, optimising 
the entire process [Shaw  et al. 2007]. Although many algorithms exist for 
calculating the trajectory of atoms, the required number of  steps is too big to be 
tractable in the case of  large protein folding simulation. Typically, molecular 
dynamics simulations use explicit solvent to model the hydrophobic effect that is 
thought to be the main driving factor behind protein folding. Since most of the 
simulated system will be water, the cost of running the algorithms on the solvent 
will be big, and will considerably slow  down the procedure, making this unsuitable 
for large scale folding predictions. 

The interaction between the atoms is modelled by a force field, which is usually 
comprised of  five components: a bond stretching term, an angle bending term, a 
dihedral term, a van der Waals term, and an electrostatic term [Martin 2006]. 
Parameters for each of these terms are derived from empirical experiments 
conducted on usually small molecules. 

The most commonly used MD simulation programs are AMBER [Pearlman et al. 
1995], CHARMM [Brooks et al. 1983, Brooks et al. 2009] and GROMACS 
[Berendsen et al. 1995, Lindahl et al. 2001, Hess et al. 2008]. The latter is freely 
available, and thus, largely used in the literature. Available as part of the 
GROMACS package is the OPLS/aa force field [Jorgensen & Tirado-Rives 1988], 
which is often used in molecular dynamics studies of proteins. In fact, the 
parameters of each term are tuned for proteins, and should be used in 
conjunction with an explicit solvent model. The OPLS/aa force field can be 
defined as an all atom linear combination of the five terms stated above 
(Equation 1.1).
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€ 

EOPLS = EBond + EAngle + EDihedral + Evdw + Ecoulomb  (1.1)

EBond represents the bond stretching term, as defined in Equation 1.2.

    

€ 

EBond = kb l − l0( )2    (1.2)

In (1.2), kb is the force constant, and is dependent on the atoms being 
considered. Only covalently bonded atoms are considered here. l is the length of 
the bond, and l0 the equilibrium length. Our second term, the angle bending term, 
can be expressed similarly:

    

€ 

EAngle = ka θ −θ0( )2    (1.3)

In (1.3), ka is the force constant and is dependent on the triplet of atoms 
covalently bonded. θ is the angle, and θ0 is the equilibrium angle. The dihedral 

term is different, and typically hard to model due to the multiple minima that need 
to be accounted for. Here, a cosine functional form is used, as shown in (1.4).

   (1.4)
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In (1.4), Vn is a parameter defining each minimum, n is the phase number, φ is 

the dihedral angle, in radians, and φ0 the phase shift. This term is commonly 

used across all force fields, with differences being mostly in the values of the 
parameters. The last two terms deal with non-bonded interactions, composed of 
a Coulomb electrostatic term, and a van der Waals term, which is usually where 
each force field differs in terms of their functional form. In both terms, only atoms 
separated by at least 3 covalent bonds are included. A Coulomb potential 
represents the electrostatic term, shown in Equation 1.5.

     (1.5)

Here, qi and qj are the charges on atoms i and j, rij is the distance between atoms 
i and j, and e is the Coulomb constant, and ε0 the dielectric constant. The other 
non-bonded term in the OPLS/aa force field is the van der Waals interaction, 
which is modelled using a 6-12 Lennard-Jones potential (Equation 1.6).

  (1.6)

In this term, σij is the distance at which the potential is 0, rij is the distance 

between atoms i and j and εij is the depth of  the potential well. This formulation is 

most widely used because of its computational efficiency, and can sometimes be 
modified to only include atoms that are below  a certain cutoff  to speed up 
calculation, such as in CHARMM [Brooks et al. 1983]. 
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In order to generate structures from this force field, we need a search algorithm, 
of which the molecular dynamics (MD) one is the most widely used. The problem 
is that if  a starting configuration is very far from equilibrium, the forces may be 
excessively large and the MD simulation may fail. In those cases a robust energy 
minimization is required. Another reason to perform an energy minimization is to 
remove any steric clashes and normalize covalent bond lengths and angles. MD 
simulations are classical, in the sense that they solve the Newtonian equations of 
motion by running a numerical simulation. The equations of motion define the 
trajectory of the atoms in the protein, as shown in Equations 1.7 and 1.8.

        (1.7)

    

    

€ 

Fi = −
∂V
∂ri     (1.8)

Here, m is the mass of the atom considered, r is the spatial coordinate, t is the 
time, and V is the potential function, as defined previously. The simulation 
requires the force field to be differentiable, and simulates the trajectory by 
incrementing the time t by a little amount. The coordinates generated at each 
time step forms the trajectory. 
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1.4 Decoy sets

One of the major components of any ab initio algorithm is the energy function, 
which ideally maps the energy of  a conformation to its nativeness, which is how 
close the modelled conformation is compared to the native one. In order to test 
this correlation, we need a set of  non-native structures with associated RMSDs, 
for which we will calculate the energy of each structure and calculate various 
correlation statistics between the RMSD and energy. Such sets are called Decoy 
Sets, and are typically composed of  native structures, together with a preferably 
large number of misfolded structures (decoys). 

1.4.1 Existing decoy sets
Many decoy sets exist in the literature, and have often been designed with 
specific goals in mind. Decoy sets can be classified in two categories: the first 
where decoys are generated from folding simulations, and the other where 
decoys are generated by relaxing the native structure. Since it is usually 
impossible to get near the native structure in ab initio folding, most near-native 
decoys are generated by relaxing the native structure. A summary of the most 
common decoy sets is given in Table 1.2 [Park & Levitt 1996, Kaesar & Levitt 
1999, John & Sali 2003, Tsai et al. 2003, Rajgaria et al. 2006]. 

Table 1.2 Common decoy sets in the literature

Decoy set Targets Decoys / target RMSD range (Å) Generation method

Tsai 78 1400 1 - 13 Rosetta

LMDS 11 439 2 - 14 Random sampling

4statereduced 7 665 1.7 - 10 Relaxation of residues

Moulder 20 300 7 - 20 Comparative 
modelling

HRDECOY 1400 1000 1 - 8 Native Structure 
Relaxation
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In these decoy sets, very few  decoy sets have near native structures, but instead 
have average RMSD values of 4 Å or more. Thus, they would not be suitable for 
near native decoy analysis, as the number of close to native decoys might not be 
sufficient to draw significant conclusions. 

The main utility of  decoy sets is to assess the performance of energy functions at 
finding the best models. Indeed, if  many models are generated, it is important to 
know  how  to choose the best ones. Usually, three criteria are required when 
designing a potential [Gilis 2004]. First, the native structure should have the 
lowest energy (thermodynamic hypothesis). Second, each structure should have 
a unique energy (no tied energy ranks), allowing discriminating between 
individual decoys. Finally, the energy of the decoys should be correlated to their 
RMSD. If an energy function passes these three tests then it can be considered 
useful in selecting good candidate conformations. 

It has been observed that in most potential functions, the energy of  the native 
structure is not at the global minimum, and that near native decoys will often 
have the same or lower energies [Brooks & Karplus 1983]. This is due to the fact 
that there are many viable structures around the native conformation, and 
discriminating them tends to be difficult with a simplified representation of the 
protein. 

One consideration to keep in mind is that statistical potentials can only 
discriminate decoys if  the bin size used for the potential is small enough to 
separate them. For that reason, a model within that bin size distance from the 
native structure is usually considered a good model. To refine near-native decoys 
using a statistical potential, it is necessary to use smaller bin sizes to account for 
more subtle differences that would not otherwise be seen by a more approximate 
energy function, or use more features to filter out more decoys. 

Finally, it is important to distinguish decoys that are below  six Ångstroms RMSD 
from the native structure from the ones above since the overall fold of the protein 
is likely to be incorrect, and even more so when there are no obvious structural 
defects.
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1.4.2 Potential quality scores
When assessing the quality of  a potential function using a decoy set, one must 
choose how  to measure the correlation of the energy and similarity to the native 
structure. After choosing a method to measure the difference between the native  
structure and the decoy (such as RMSD), a good quality test should take the 
following into consideration: the energy should be correlated to the nativeness, 
i.e. the energy should decrease with increased nativeness. 

Various statistics exist, such as the Pearson correlation, the Kendal tau and the 
enrichment score. The Pearson correlation coefficient, defined in Equation 1.9, 
calculates the degree of  linear correlation between two random variables, and is 
the fraction of the covariance of variables X and Y over their standard deviations.

    

€ 

r =
cov X,Y( )
σXσY     (1.9)

The problem with this measure is that it assumes a linear correlation between the 
two variables, which is often not the case when comparing energies and 
nativeness. Moreover, it is very sensitive to outliers, and can thus show 
correlation when none exists. One way to overcome linearity problems is to use 
ranks rather than values, and measure the correlation between them. One of  the 
commonly used rank correlation statistic is the Kendall tau, which compares the 
correspondence between two rankings. It is defined in Equation 1.10, where P 
represents the number of concordant pairs, and n the total number of data points.

    

€ 

τ =
2P

1
2
n n −1( )

−1

   (1.10)
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Although the Kendall Tau addresses the issues of the Pearson correlation, in 
practice we may want to assess only the very best models, as they are those we 
want to choose. One measure that specifically addresses that problem is the  
enrichment score [Tsai et al. 2003]. Given a couple of random variables X and Y 
and an arbitrary ratio c, the enrichment is the fraction of values in the lowest c 
percent of  X that are also in the lowest c percent of  Y, divided by what would be 
expected from a uniform distribution. Values above one show  a better enrichment 
than that of  a uniform distribution. Equation 1.11 shows the functional form of  the 
enrichment.

    

€ 

enrich =
Nc

n × c 2    (1.11)

Here, Nc is the cardinality of the intersection of the c% best values in X and the c
% best values in Y (the ratio c is taken between 0 and 1 here), and n denotes the 
number of items. Figure 1.8 shows the enrichment score graphically.

Figure 1.8 Graphical  representation of the enrichment score. The enrichment  score is 
simply the proportion of points in the blue square compared to the total number  of points 
to the left and below of the dotted blue lines.
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1.5 Statistical energy functions

1.5.1 Deriving a free energy statistical potential
One of the key components of  any folding simulation is the potential function. We 
have seen that in molecular dynamics, a physical energy function is used to 
model the forces between the atoms. The problem with such potentials is that to 
extract the free energy of the system, a very thorough sampling of the potential 
energy landscape must be conducted, which is too computationally expensive. In 
order to address this problem, the free energy can be derived from statistical 
mechanics, by approximating the system to a perfect gas, and using an inverse 
Boltzmann potential [Sippl 1990, Sippl 1995, Hao & Scheraga 1999], which has 
the following functional form:

       (1.11)

In (1.11), T represents the temperature in degrees Kelvin, k is the Boltzmann 
constant, fobs is the frequency of the observed state, and fref is the frequency of 
the reference state. The frequency distribution of the observed state is derived 
from known protein structure, taken from databases such as the PDB (Figure 
1.9).
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Figure 1.9 From PDB structure to energy function [Boas & Harbury 2007]. Steps 
involved in extracting a statistical free energy function from a set of PDB protein 
structures.

Given a large enough set of known protein structures, this knowledge-based 
approach has been shown to be sufficient to solve protein folding [Zhang & 
Skolnick 2005], but is not without problems, as many biases can be introduced, 
producing wrong distributions. 

The major problem often comes from the limited number of structures available, 
which makes rare amino acid interactions harder to observe. Thus, some gap 
filling protocol must be defined, which could be as simple as adding a pseudo-
count to the distribution, using average energy values to fill the gaps [Zhou & 
Zhou 2002], or even using an empirical approximation in specific cases [Yang & 
Zhou 2008]. 

Other biases can be introduced, notably when deriving distance potentials. 
Indeed, distance distributions above 30 Å will typically be dominated by large 
proteins, and thus, would not accurately represent small to medium sized ones. 
Therefore, most statistical potentials use a cut-off  before that distance, 
sometimes in conjunction with a truncating function. Moreover, effects above 15Å 
are usually negligible, and thus, this is often used as a cutoff to reduce 
computation time.

The other major element, and active research topic, is the reference state. This 
can be defined as the probability of observing an interaction at random, or simply 
represents the distribution of all possible conformations. Since it is hard to 
generate every possible structure for proteins, a probabilistic approach is usually 
used instead, allowing us to derive an energy, which is in theory bias free. But the 
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distribution or functional form of the reference state is highly dependent on the 
type of  interaction being looked at, and often will not even be derivable. Several 
approaches exist, such as using Bayesian probability models [Shen & Sali 2006], 
using geometrical models [Zhou & Zhou 2002], or using decoys. The basis 
behind the later is that the reference state is originally defined as the total 
conformational space, and thus, given a large enough sample of  decoys, could 
be modelled statistically.  

Chapter 1. General introduction and background 

39 / 198



1.5.2 Atomic distance potentials from the literature  
Since its initial formulation [Sippl 1990], many pairwise distance potentials were 
created and applied to the folding problem. In such potentials, a distribution of 
atomic distances is taken from the PDB, and used in conjunction with a specific 
reference state to reverse engineer the free energy of interacting atoms. The two 
most common distance potentials, DFIRE [Zhou & Zhou 2002] and DOPE [Shen 
& Sali 2006], are very similar in their formulation, differing only in their reference 
state definition. 

DFIRE, which stands for Distance-scaled Finite Ideal-gas Reference state, uses 
a gas model to approximate the reference state, and normalises the distribution 
according to the last bin. In its initial formulation, it uses 167 atom types, 
corresponding to the heavy atoms in each residue, with 20 bins between 0 and 
15 Å. In comparison, DOPE uses a Bayesian probabilistic reference state 
corresponding to non-interacting atoms in a homogenous sphere, with the radius 
dependent on a sample of native structures. Both potentials perform similarly at 
decoy discrimination and identification of  the native structure [Rykunov & Fiser 
2010]. 

But distance potentials are not the only ones being developed, and more recent 
potentials such as OPUS-PSP [Lu et al. 2008] or DFIRE2 [Yang & Zhou 2008] 
integrate atomic orientation of polar atoms. Some potentials, such as the one 
used in Rosetta [Kortemme et al. 2003], uses a linear combination of different 
physically and statistically derived terms to compute an overall energy for a given 
conformation. This approach has proven to be successful, as can be seen from 
the recent performances of  various folding procedures in CASP [Kryshtafovych et 
al. 2009].
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1.6 Hydrogen bonds

1.6.1 Hydrogen bond definition
One of the main non-bonded cohesive forces in proteins is the hydrogen bond, 
which was first mentioned in 1912 [Moore & Winmill 1912]. Subsequently, it has 
been widely studied, first in water [Latimer & Rodebush 1920], then in proteins 
[Pauling 1960] to account for the existence of secondary structures such as the 
alpha-helix and the beta-sheet. 

Controversy exists regarding the nature of  hydrogen bonds, more specifically as 
to its partly covalent nature [Isaacs et al. 1999]. Nonetheless, it is still the 
strongest non-bonded interaction in proteins, with energies between 5 and 30 kJ/
mol. 

Hydrogen bonds occur when a hydrogen atom attached to an electronegative 
one, such as nitrogen or oxygen, interacts with another electronegative atom. In 
some cases, carbon atoms can act as hydrogen bond donors, especially when 
they are covalently bonded to another more electronegative atom. 

Thus, the hydrogen bond can be represented as a system of  3 atoms: the donor 
group, composed of a heavy electronegative atom covalently bonded to the 
hydrogen, and the acceptor, which is also an electronegative atom. 

Sometimes, a donor can also be an acceptor, as is the case in certain amino acid 
side chains, such as histidine, threonine and tyrosine. 

In potential energy models, two features commonly describe the hydrogen bond: 
the distance between the hydrogen and the acceptor, and the angle between the 
donor, hydrogen atom and acceptor. 

This definition has been extended to include the atoms bonded to the acceptor, 
as evidence suggests a preference on the acceptor side angle as well [Morozov 
et al. 2004]. A common representation of hydrogen bonding geometry is shown in 
Figure 1.10.
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Figure 1.10 Hydrogen bond geometry [Kortemme et  al. 2003]. D represents the donor 
atom, H the hydrogen, A the acceptor and AB the acceptor base. 

Here, the features described are the H-A distance, the D-H-A angle, the H-A-AB 
angle, and the A-AB axis dihedral. Due to the partly covalent nature of the 
hydrogen bond, there is a preference towards linearity for the D-H-A angle and a 
preference for short van der Waals H-A distances [Pimentel & McClellan 1971].
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1.6.2 Hydrogen bonds in proteins
Hydrogen bonds in proteins can be categorized as either strong or weak, the 
latter still being the subject of controversy. Strong hydrogen bonds are formed 
between oxygen and nitrogen donor and acceptor groups, both on main chains 
and side chains. The main chain NH group acts as a strong donor, while the 
carboxyl CO group acts as a strong acceptor. This peptide hydrogen bond is very 
important in proteins, as it is responsible for the secondary structure elements as 
well as stabilizing the core of  the protein [Myers & Pace 1996]. In alpha helices, 
the helical structure is due to the hydrogen bond occurring between the 
backbone NH group and the carboxyl CO group 4 residues earlier. In beta 
sheets, each strand is bonded to another one through backbone hydrogen 
bonds, giving it its flat topology. A study of  the fully buried atoms in 57 high-
resolution proteins [McDonald & Thornton 1994] has shown that strong hydrogen 
bonds in proteins have a coupled preference for HA distances around 2 Å and 
DHA angles around 180º, as shown in Figure 1.11.
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Figure 1.11 Distribution of hydrogen bond features in proteins [McDonald & 
Thornton 1994]. The (c) peak is the hydrogen bonding interaction, while the (a), (b) and 
(d) are due to longer-range van der Waals and electrostatic interactions.

Hydrogen bonds in simulations occur when the hydrogen atom enters the van der 
Waals radius of the acceptor atom, and as such, acts as an “on/off” interaction 
rather than one that decays with distance, as is the case for other electrostatic 
interactions. 

Therefore, in most hydrogen bond models, a cutoff is used for the HA distance, 
above which no donor and acceptor systems are considered. This cutoff  can vary 
depending on which study is considered, but mostly remains between 2.4 Å and 
3 Å. 

The partly covalent nature of  the hydrogen bond also puts constraints on the 
DHA angle which has a preference towards linearity. Although statistical 
distributions of  DHA angles show  a peak around 160º, applying a geometrical 
correction correctly produces the expected 180º  preference [Kroon & Kanters 
1974]. This correction term is shown in Figure 1.12.
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Figure 1.12 Cone  correction  of DHA angles in NH hydrogen bonds [Kroon & Kanters 
1974]. The basis behind the cone correction is that as the opening angle increases, the 
volume of the cone decreases proportionally to sin DHA. Thus, the probability of finding 
a hydrogen bond at  random is different  for different  angles, and the distributions must be 
adjusted accordingly. This is also true for the H-A-AB angle. Using this correction, the 
preference of NH bonds towards linearity is restored, as can be seen in the right  hand side 
histogram, which is the corrected version of the left one. 

Because of  this preference towards linearity, most models do not consider 
hydrogen bonds with angles less than 90º, and some even restrain the system to 
angles above 120º [Fabiola et al. 2002]. 

A study of  strong hydrogen bonds in proteins using the above formalism has 
been conducted in order to derive a statistical potential. The corrected distribution 
of backbone-backbone NH hydrogen bonds has been generated for each 
secondary structure type (Helix, Sheet, Coil), showing variability in distance, 
angle and dihedral preferences. This is shown in Figure 1.13.
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Figure 1.13 Distribution of backbone hydrogen bond features [Kortemme et al. 2003]
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We can see in Figure 1.12 that the backbone-backbone (bb-bb) hydrogen bond 
has its distance peaking at 1.9 Å, and its θ angle peaking at 160º. These values 
are observed across all secondary structures. As for the Ψ angle, its preference 
varies from 160º for helices and coils, to 180º for beta sheets. Finally, the Χ 
dihedral peaks at -140º in alpha helices, -100º in coils, and -140º, 0º  and 125º in 
beta sheets. 

Strong hydrogen bonds are also formed by electronegative side chain groups, 
but are not involved in secondary structure formation. The analysis of strong 
hydrogen bond satisfaction shows that almost all buried hydrogen bonds are 
satisfied, which is not necessarily the case for surface donors and acceptors 
[McDonald & Thornton 1994]. 

When the solvent is included in the analysis, most hydrogen bonds become 
satisfied, with many being in a bifurcated configuration [Jeffrey 2003]. In some 
cases though, some acceptors may still not be satisfied. Including weak 
hydrogen bonds involving CH groups completely resolves this, with all donors 
becoming satisfied [Wahl & Sundaralingam 1997]. Although CH hydrogen bonds 
in crystals have been widely studied, their existence in proteins is still 
controversial. Theoretically, a carbon could donate a hydrogen as it is 
electronegative, but in practice, that force might be so weak that it would not be 
stable, and thus cannot be considered a major factor. But in cases where the CH 
group is covalently bonded to a strongly electronegative atom such as oxygen or 
nitrogen, this bond can become stronger and play an important role in the overall 
stability of the protein, as well as in protein-protein interfaces [Jiang & Lai 2002]. 
The more electronegative the atoms next to it are, the stronger the hydrogen 
bond becomes. The distribution of  HA distance for CH hydrogen bonds is shown 
for chloroform (a), and acetone (b), in Figure 1.14, demonstrating the distance 
preferences of CH hydrogen bonds.
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Figure 1.14 HA distance  in  inorganic CH hydrogen bonds [Steiner 1997]. We can see 
that in both cases, many CH hydrogen bonds have been observed below the 2.8 Å cutoff 
used. Moreover, in accordance with theory, the distances for the chloroform bond are 
shorter than for acetone, as chlorine is strongly electronegative. 
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In organic crystals, as in proteins, the distribution of  the DHA angle for CH bonds 
follows the one for OH bonds, peaking at 180º once the cone correction has been 
applied. Additional studies have shown that there is a co-interaction between 
main chain CH donors and main chain NH donors from adjacent residues, with 
the linearity of the CH bond increasing as the linearity of the NH bond decreases 
[Fabiola et al. 1997] (Figure 1.15). 

Figure 1.15 Coupling of NH-O and CH-O main chain hydrogen bonds [Fabiola et al. 
1997]

Although this shows a correlation between the NH-O and CH-O angles, it does 
not necessarily imply a causation effect. Indeed, the planarity of the peptide bond 
means that adjacent CH and NH groups will point in a similar direction, thus 
making this correlation uniquely due to the position of  the oxygen acceptor 
relative to the two residues it is bonding to.
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1.6.3 Hydrogen bonding potentials
Using the formalism introduced previously, various potentials have been 
developed to assess the energy of  a given hydrogen bond. Although initially 
empirically derived, the increase in the number of  crystal structures available has 
allowed statistical potentials to be derived with high precision. 

Approximate potentials can be derived without the hydrogen position from the 
other atoms in the system, but it is always better to include all possible 
information. Hydrogens usually do not appear in NMR structures or in 
conventional crystallography, but do in crystal structures derived from neutron 
diffraction. Although the number of  non-similar structures showing such 
hydrogens is small, it still allows for an initial analysis to be conducted. Moreover, 
the position of some hydrogen atoms can be inferred with great accuracy from 
the chemistry of  the group it is attached to, as is the case for the main chain NH 
group. Since all main chain and some side chain CH and NH hydrogen positions 
can be inferred, a potential can then be used to assess the quality of a structure 
by looking at its hydrogen bond network. One empirical potential [Fabiola et al. 
2002] is shown in Figure 1.16. 

Figure 1.16 Switching (SW) truncation  function [Fabiola et al. 2002]. Here, a 6,4 
Lennard-Jones potential is used for the DA distance and a switching function to allow 
smooth truncation above 3.4 Å.
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The functional form of this potential is shown in Equation 1.12 below, where SW 
is the switching function [Brunger 1992].

  

   (1.12)

Here, r is the DA distance, σ is the point at which the potential is zero, θ is the D-

A-AA angle, θ0 is the equilibrium D-A-AA angle, and SW is the switching function. 

Although this potential assumes the hydrogen position is unknown, it can easily 
be modified to incorporate the other bonding features, as is the case in another 
potential using a 12-10 Lennard-Jones potential [Gordon et al. 1999]. Such 
potentials were initially included in force fields for molecular dynamics simulations 
[Brooks et al. 1983], but are now  replaced by more fine tuned electrostatic and 
van der Waals potential terms [Cornell et al. 1995]. 

The other way to determine the energy of a hydrogen bond is to use knowledge 
based potentials, usually in the form of an inverse Boltzmann energy function. In 
such statistical potentials, the distributions are extracted from a set of non-
redundant structures from the PDB. These can either be neutron-diffracted 
structures, showing the hydrogen position explicitly, or by only considering 
hydrogens that are geometrically fixed. The four geometrical features commonly 
used are then represented as separate energy terms, and weighted using an 
appropriate protocol. 

One of the main difficulties with statistical potentials is the necessity to derive a 
reference state. For the HA distance, a sphere packing model can be used, as 
shown in Equation 1.13.
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      (1.13)

Here, r is the HA distance, b is the bin being considered, rb and rb-1 are the 
maximum distances in bins b and b-1, and rmax is the cutoff distance for the 
potential. This probability represents the volume occupied by a specific bin 
relative to the maximum volume considered by the potential. As for the angle 
potentials, the reference state can be considered as being the cone correction. 
Some potentials don’t explicitly use these normalisation as reference states, but 
rather use them to correct the observed counts [Kortemme et al. 2003]. Although 
the hydrogen bonding potential alone is not always sufficient to identify the native 
structure, it dramatically improves the chances of  identifying it when combined 
with a van der Waals energy term (Figure 1.17).
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Figure 1.17 Hydrogen bonding potential  performance [Kortemme et al. 2003]. Here, 
a) and c) show the RMSD in Å of the decoys against  the hydrogen bonding term alone, 
whereas b) and d) show the same data with the added van der Waals term. The native 
structure is circled in red, while the green square shows the native structure after the side 
chain have been repacked.

Overall, many attempts have been made to model hydrogen bonds, but no 
approach seem to be predominantly better. Moreover, the existence and 
usefulness of  CH hydrogen bonds in proteins is still controversial, despite being 
accepted in some smaller crystals. 
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1.7 Solvation

Modelling solvation has been the subject of numerous studies, not only because 
of its importance to protein folding, but also because of  the remarkable properties 
of water as a fluid. Traditionally, there are two ways to model water: 1) by looking 
at each solvent molecule explicitly, and 2) by treating the solvent as a continuum. 
The latter has the advantage that it is much faster to compute, but the former is 
more representative of reality.

1.7.1 The hydrophobic effect
Ever since the formulation of  the thermodynamic hypothesis of protein folding 
[Anfinsen 1973], the solvent has been considered the main driving factor 
underlying protein folding, with other non-bonded interactions only participating in 
stabilising the protein [Myers & Pace 1996]. 

The initial question from which this hypothesis emanated was that proteins fold 
spontaneously into a single conformation, and as such, must have a maximal 
negative free energy change between its unfolded state and its folded state. 
During folding, the polar residues in the protein interact with the water through 
hydrogen bonds, whereas non-polar residues do not. Since water-water 
interactions are more favourable, the solvent will form a cage around non-polar 
residues. When two non-polar residues form a contact, the water in between is 
pushed out towards the bulk solvent, effectively increasing the entropy of the 
water. This is called the hydrophobic effect, and is believed to be the main force 
behind spontaneous protein folding.
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1.7.2 Water hydrogen bonds
Water surrounding the protein will interact with the polar surface atoms, and form 
hydrogen bonds with them [Radzicka et al. 1988]. In order to satisfy all donors 
and acceptors in water molecules, there must be 4 hydrogen bonds forming: two 
as an acceptor, and two as a donor [Rahman & Stillinger 1973], as shown in 
figure 1.18. 

Figure 1.18 Hydrogen bonds in water [Wikimedia 2010]

Because of the properties of  water, having polar residues on the surface will 
allow  the solvent hydrogen bonds to be satisfied through bonding with the polar 
groups on the side chains. It has been observed that when surface water 
molecules are not satisfied by surface hydrogen bonds, they form weak hydrogen 
bonds to CH groups [Steiner & Saenger 1993, Steiner 1995]. Thus, weak 
hydrogen bonds can be seen as complementary to conventional strong hydrogen 
bonds when interacting with water. 
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1.7.3 Explicit models
Molecular dynamics simulations, amongst others, often use an explicit 
representation of  water. Although many models exist, the most widely used are 
the TIP3P [Jorgensen 1981], TIP4P [Jorgensen et al. 1983] and SPC [Berendsen 
et al. 1981] models. 

The first difference between the TIP models and the SPC model is the preferred 
geometry of the water molecules. In TIP models, it is matched to known 
properties of water (105º angles), whereas in the SPC model, it assumes an ideal 
tetrahedral shape (109º angles). 

The other major difference is the force field used to model the interaction 
between water molecules. The TIP models use a 12,6 Lennard-Jones potential 
for van der Waals interactions and a Coulomb potential for electrostatic 
interactions. The SPC model uses the same formalism, but adds a corrective 
term to account for polarization. 

Both TIP3P and SPC models use 3 point charges, one on each atom, whereas 
the TIP4P assumes a fourth point near the oxygen, bisecting the HOH angle. 
Molecular dynamics mostly uses 3-point charge models because of  the 
decreased computational complexity and simplicity of the model. 

Other more complex models exist [Rahman & Stillinger 1973, Bernal & Fowler 
1933], with 5 or 6-point charges [Mahoney & Jorgensen 2000, Nada & van der 
Eerden 2003], but are seldom used in simulation because of the increased 
computational complexity.
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1.7.4 Implicit models
Despite many existing explicit water models, none are computationally practical 
for large scale full-atom simulations, and thus, simpler, faster models are needed 
for very long simulations or for ab initio folding. These models generally assume 
a continuous solvent around the protein, and allow  for a quick estimation of the 
solvation free energy. The first implicit solvation potentials used the solvent 
accessible surface area of  heavy atoms to derive their energy contribution 
[Eisenberg & McLachlan 1986], using the rolling ball algorithm to compute such 
surfaces [Lee & Richards 1971]. This potential can be written as follows:

       (1.14)

In this equation, ∆G is the free energy of solvation, Ai is the surface accessibility 
of atom i  and ∆σi is the solvation parameter, as defined in the original paper. The 

problem with this approach is that it only considers five types of atoms (carbon, 
oxygen/nitrogen, polar oxygen, polar nitrogen, sulphur), and completely excludes 
hydrogens. 

Another approach, part of the EEF1 potential [Lazaridis & Karplus 1999a], uses a 
Gaussian solvent-exclusion model to calculate the free energy of solvation of a 
protein. It is written as the sum of each group contribution to solvation, as shown 
in Equation 1.15 below.

 (1.15)
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Here, ∆G is the free energy of solvation, ∆Giref is the reference solvation free 
energy taken from a fully solvated small molecule, rij is the distance between 
atoms i and j, and Ri and Rj are the van der Waals radii of atoms i  and j, ∆Gifree is 
the solvation free energy of  isolated group i, and λi is a correlation length specific 

to group i. Overall, this formulation of the solvation free energy has been 
successful [Lazaridis & Karplus 1999b] at discriminating decoy structures, and 
has subsequently been used often in other similar studies.

Chapter 1. General introduction and background 

58 / 198



Chapter 2 

Generating a near-native decoy set

59 / 198



2.1 Introduction and background

Protein fold prediction is a very important open problem in biology [Kelly & 
Sternberg 2009], mostly because of the impact it would have on medical fields 
and because of  the difficulty and expensiveness of  current experimental 
methods. Although theoretical protein folding has been an active field of research 
for many years, current methods seldom generate a native structure [Zhang 
2008, Dill et al. 2008]. 

Non-native models, commonly called decoys, can be used as a benchmark to 
test energy functions [Rykunov & Fiser 2010, Gilis 2004]. Selecting the best 
candidate models from decoys is not trivial, and many methods have attempted 
to correlate the free energy to the nativeness of the decoys [Aloy & Oliva 2009, 
Sippl 1995, Ma 2009]. In order to facilitate and standardise the benchmarking of 
these methods, various sets of candidate structures, or decoy sets, have been 
created, using various folding packages. Here, we review  two of the most 
relevant sets, summarised in Table 2.1, below.

Table 2.1 Properties of common decoys sets

Decoy Set Targets # decoys All-Atom RMSD range
4statereduced 7 665 1.7 – 10 Å
LMDS 11 439 2 – 14 Å

We define a near native decoy as one having an all-atom RMSD to the crystal 
structure less than 2 Å. The problem with the two sets introduced here is that 
they do not have many structures below  that threshold. Figure 2.1 shows the all 
atom RMSD distribution for each target in the 4statereduced decoy set [Park & 
Levitt 1996].
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Figure 2.1 All Atom RMSD of the  decoys in the  4statereduced set. The average RMSD 
for this set is around 7 Å, with almost no decoys below 2 Å, aside from the crystal 
structure. The 4statereduced decoy set was generated using an off-lattice model and a 
relaxation method. The decoys are compact, have native-like secondary structures and are 
self-avoiding. 

Since we are testing the discriminatory power of  existing potentials, we want to 
avoid biases towards a certain defect that would be generated by a specific 
decoy generation method, so we have selected another decoy set, the LMDS set 
[Kaesar & Levitt 1999], which was generated by random sampling of 
conformational space followed by an energy minimization procedure. By looking 
at the RMSD distribution for that set, we came to the same conclusion as for the 
4statereduced, i.e. that there are not enough decoy structures with an RMSD below 
2 Å. 
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These sets are commonly used throughout the literature, and are often taken as 
benchmarks for new  energy functions [Gilis 2004]. What we are interested in, 
however, is the effectiveness of the current energy functions when applied to 
near native structures, which are by definition hard to discriminate from the 
crystal structure, but also from other decoys. 

The problem of selecting crystal structures from a set of decoys is trivial in some 
cases, mostly since they have been generated using a different method, and as 
such, do not resemble the decoys as much as the decoys resemble each other 
[Handl et al. 2009]. One of the reasons behind this is the packed surface side 
chains that are found in crystal structures, but which are sticking out in 
simulations, meaning the crystal structure will always be more compact than the 
decoys. 

All these considerations have led us to develop our own decoy set, with the 
intention of keeping the all-atom RMSD at an average of 2.0 Å for each target. To 
do so, we ran molecular dynamics on a set of target crystal structures, and 
sampled the trajectories at different temperatures. We chose to use OPLS/aa 
[Jorgensen & Tirado-Rives 1988] as it is freely accessible as part of  GROMACS 
[Berendsen et al. 1995, Lindahl et al. 2001, Hess et al. 2008]. 

In this chapter, we will show  how  molecular dynamics can help us generate a 
near-native decoy set, which will allow  us to test existing potentials on an atomic 
basis. Our goal is to produce a decoy set in the range of 0-5 Å All-Atom RMSD 
(ARMSD), which are all well-formed and structurally close to the native structure. 
We will then analyse the efficiency of  the DFIRE2 potential [Yang & Zhou 2008] 
taken from the literature, by applying it to the newly generated decoy set.
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2.2 Methods

In this section, we present the methods used to generate our decoy set and test 
the potentials. We first define a target selection protocol, which incorporates 
constraints such as spatial arrangement, ligands, resolution and sequence 
identity. We then introduce our decoy generation method, which is based on 
molecular dynamics runs and pairwise RMSD clustering. Finally, we introduce the 
correlation and fitness measures used throughout this thesis when assessing the 
discriminatory power of an energy function.

2.2.1 Choice of target proteins
In order to generate a good decoy set, we need to represent the existing folding 
landscape. Indeed, choosing similar structures will bias the results towards one 
type of protein, and won’t help us when assessing an energy function. Starting 
from the complete PDB database [Bernstein et al. 1977], we ended up selecting 
250 targets, representing the most common folds. The selection process involves 
a number of steps, which were conducted in the order shown in Table 2.2.

Table 2.2 Filters used to select decoy set targets

Selection Filters # Structures
PDB dataset 62430
Fewer than 200 residues 48216
Monomeric structures (PISA) 7032
No Ligands 2273
Less than 2.0 Å resolution 1408
No uncommon residue types 897
Less than 25% sequence identity 369
Single domain 250

Selecting structures from the PDB database isn’t trivial, and although it can be 
filtered directly through the website, some other criteria are not accessible and 
must be implemented separately. Each filter is described below.
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PDB dataset

We started by taking the complete set of structure from the Protein Data Bank 
[Bernstein et al. 1977], as of October 2009.

Sequence length

The trouble with molecular dynamics simulation is the long time it takes to run, 
which is related to the size of the protein. Since most methods do not try to fold 
large proteins, and since these would prove more difficult to model, we 
constrained our data set to relatively small proteins, having fewer than 200 
residues per chain.

Monomeric proteins

Multimeric proteins sometimes become unstable when taken out of  their original 
complex. As we do not model protein-protein interactions, nor take into account 
the lack thereof, we chose to remove all multimeric proteins from our dataset. To 
do this, we used an online tool called PISA [Krissinel & Henrick 2007], which 
uses crystallographic information to predict the quaternary structure of the 
protein.

No ligands

Omitting ligands that should be there will result in unstable conformations during 
molecular dynamics simulations. Moreover, by not explicitly including ligands in 
potentials when they are present, the predictive ability of energy functions cannot 
be properly assessed.

High-resolution structures

We chose only X-ray crystal structures with a resolution better than 2 Å.  NMR 
structures are not present in our dataset because they do not contain the 
information needed by PISA to derive the quaternary structure of the protein.
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No uncommon residue types 

The potentials used in this thesis, as well as the ones we will derive, assume that 
residues being considered are the naturally occurring ones, and thus, all 
structure containing rare, unknown or mutant amino acids are removed.

Sequence identity

A cutoff  of 25% sequence identity was chosen to remove homologs. The 
sequence alignment and clustering tool BLASTCLUST [Altschul et al. 1997] was 
used, with a 25% sequence identity threshold. 

Single domain

Multi-domain proteins might behave differently when submitted to molecular 
dynamics. Since we are only interested in small, single-domain proteins, we 
chose to remove all multi-domain proteins from our dataset. To do so, we used 
the CATH [Orengo et al. 1997] database, in conjunction with SCOP [Murzin et al. 
1995] when no entries were found for a PDB structure.
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2.2.2 Molecular dynamics runs
The choice of parameters in molecular dynamics simulations impacts the way the 
protein will move. In our case, we need to relax the native crystal structure in 
order to generate enough near-native decoys. Although many molecular 
dynamics packages would be fit for this experiment, one is commonly used and 
is freely available, GROMACS. We opted for the default water setting for OPLS/
aa, the SPC solvent model. 

Each run is conducted in three stages. First, the crystal structure is energy 
minimised, using 500 steps of steepest descent minimisation. Then the solvent is 
equilibrated by restraining the position of  the protein while running 20 ps of 
molecular dynamics. Finally, full, unrestrained dynamics is run for 200 ps, and 
sampled each ps to produce a trajectory file. This final step is repeated at various 
temperatures, ranging from 250 K up to 400 K, in increments of 25 K. 

Although we want the decoys to be different from the native structure, we don’t 
want them to be unfolded, so we discard decoys which are more than 4 Å RMSD 
away from the native structure. Each decoy is then energy minimised to remove 
possible steric clashes. 

For each of  the 250 targets, we generate 1200 decoys, which are then clustered 
at 0.5 Å RMSD to remove redundant structures. Since we do not want to bias our 
decoy set towards one target, we randomly sample 500 decoy structures per 
target (including the native structure), which brings our total number of  decoys to 
125000. 
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2.2.3 Measuring the fitness of an energy function
There are various ways of assessing the efficacy of an energy function. One of 
them being the use of  a decoy set to try to correlate the nativeness of each decoy 
to the energy calculated for it. 

Commonly, three criteria are used in determining the quality of  an energy 
function, with respect to a decoy set. First, as a consequence of  the 
thermodynamic hypothesis, it must have the native structure at the minimum of 
its energy landscape [Anfinsen 1973]. Secondly, decoys should have different 
energies to be able to differentiate them. Finally, there must be a correlation 
between the nativeness of the decoy and the energy function. 

Depending on the problem we are interested in, some of  these criteria might be 
less important [Gilis 2004]. Specifically, criterion 1 has been shown to be trivial in 
most cases since the crystal structure, usually considered to be the native 
conformation, is trivially found from the decoys generated [Handl et al. 2009]. 
Simply using a compactness term would prove sufficient, as the side chains in 
the crystal structure tend to be packed towards the centre of the protein, whereas 
they are sticking out in the solvent in simulations, hence increasing the size of the 
protein. As for criteria 3, one can either use a standard correlation coefficient 
such as the Pearson correlation, or use a more robust, less prone to outliers, 
rank based statistic such as the Kendall tau. 

Since we are only interested in selecting the best models, rather than generating 
them, we will be looking at another statistic, called the normalised enrichment 
[Tsai et al. 2003], which given a set of decoys, will tell us what proportion of the 
best N models we would successfully select. This will give us an indication of  the 
power of an energy function at discriminating near-native decoys. 

We decided to use the all-atom Root Mean Square Deviation (ARMSD) of the 
decoy to the crystal structure as the measure of nativeness. Other measures 
exist such as the GDT or TM score, but are not fit for all-atom comparison, as 
they have been parameterised on CA atoms only. Equation 2.4 shows the 
normalised enrichment functional form. This has been modified from Equation 1.1 
to have a range between [0, 1]. 
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(2.4)

In the above equation, e represents the enrichment score, Xc are the best  
structures in terms of  nativeness, and Yc are the best structures in terms of 
energy. The cardinality of the intersection of these two sets yields the number of 
structures that are both in the best nativeness and best energy sets. Dividing this 
by the total number of decoys N times the ratio c, gives the enrichment score, 
which can be interpreted as the probability of finding a structure that is in the 
given best subset of decoys. Since choosing structures randomly will yield a 
score of  c, anything above that will be better than random, provided the number 
of decoys is sufficient to allow this statistic to be significant. 
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2.3 Results & Discussions

We have generated a decoy set comprising of  250 targets, selected from the 
PDB database. Each target has 500 decoys, which is sufficient to give a 
statistically significant score in our analysis. We will now  describe the properties 
of our decoy set, and conduct an analysis of  the different sequential, structural 
and experimental features that might bias our decoy set.

2.3.1 Properties of the decoy set generated
Looking at the distributions of  ARMSD, we find that targets are normally 
distributed around 1.7 Å, with a standard deviation of  0.4 Å, and have a 
sequence length of 125 residues on average.  Table 2.3 summarises the 
properties of the decoy set.

Table 2.3 Properties of the decoy set.

Property Value
Targets 250
Decoys per target 500
Min RMSD between decoys 0.5 Å
Protein in class (Alpha / Beta / AlphaBeta / None) 72 / 78 / 91 / 9
X-ray resolution < 2.0 Å

Feature Average
ARMSD 1.7 (0.4 std) Å
Residues 125
Atoms 1961
Hydrogen bonds 152

Here, the minimum RMSD between decoys is taken from all heavy atoms. The “None” 
secondary structure class represents proteins where there are insufficient  residues in either 
classes to categorise them.

This table shows that the proportion of  proteins in each secondary structure 
category is consistent with those in the PDB database, with the exception of 
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those with few  secondary structures, which have been added in larger proportion 
to be significantly represented in our decoy sets. 

Hydrogen bonds are considered only when their planar angles are larger than 90 
degrees, and the hydrogen to acceptor distance is smaller than 2.5 Å. 

The PDB codes of the proteins included in this decoy set are 133l, 153l, 1aa2, 
1aaj, 1acf, 1agi, 1b8e, 1bd8, 1bea, 1bfg, 1bj7, 1bk7, 1bv1, 1bz4, 1c44, 1cei, 
1chd, 1dsl, 1e6h, 1e6k, 1ekg, 1enj, 1eq6, 1ew4, 1ey0, 1eyh, 1ezk, 1f32, 1faa, 
1fan, 1fas, 1faz, 1fl0, 1gak, 1goa, 1gxq, 1h75, 1hka, 1hoe, 1huf, 1i2t, 1iap, 1ifg, 
1igd, 1is5, 1j3a, 1jb3, 1jmw, 1jos, 1jpe, 1jyh, 1kn3, 1koe, 1kqx, 1kxo, 1l01, 1l2p, 
1lit, 1lki, 1ln4, 1lou, 1lpl, 1m5i, 1mbm, 1md6, 1mh7, 1mhn, 1mjc, 1mjs, 1mwp, 
1mzl, 1na5, 1nko, 1noa, 1ow1, 1oz9, 1p4p, 1pgv, 1pvx, 1pzc, 1q2y, 1q5z, 1qzm, 
1qzn, 1r69, 1r8n, 1r9h, 1rj1, 1roa, 1srv, 1t7a, 1tg0, 1txj, 1tzv, 1u9a, 1u9p, 1ua8, 
1uj8, 1ulr, 1unp, 1vcc, 1vfq, 1who, 1wm2, 1wou, 1wvh, 1x3o, 1yp5, 1yqb, 1yu5, 
1yw5, 1ywp, 1zeq, 1zzk, 2a4v, 2b1k, 2bk8, 2cgq, 2ckx, 2cov, 2cwr, 2cxc, 2czt, 
2d59, 2dyi, 2e7v, 2ehg, 2ejx, 2erw, 2evb, 2fd4, 2fi9, 2fjz, 2fk9, 2fl7, 2fph, 2fq3, 
2frg, 2fzp, 2gbn, 2gee, 2hdz, 2hlq, 2hp7, 2hwx, 2i1b, 2i6v, 2icc, 2in0, 2iug, 2j71, 
2jcp, 2lis, 2nx2, 2o2w, 2o37, 2obi, 2oix, 2op6, 2osa, 2ova, 2ovo, 2p52, 2p5d, 
2pcy, 2pko, 2pth, 2ptv, 2q5x, 2qhe, 2qr3, 2qt4, 2r2y, 2rb8, 2rer, 2rh3, 2rk5, 2rkq, 
2uwr, 2vc8, 2vga, 2vh7, 2w0g, 2wj5, 2ygs, 2ywd, 2ywk, 2yxm, 2z9t, 2zeq, 2zqe, 
2zrr, 3bci, 3bn6, 3bzr, 3cm0, 3co1, 3csp, 3csr, 3ctg, 3d79, 3dfg, 3dj9, 3dvw, 
3e21, 3e7u, 3ebk, 3eoi, 3etp, 3eye, 3fh2, 3frr, 3g9b, 3id1, 3id4.
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2.3.2 Distribution of amino acids
One of  the ideas behind using a large number of  targets was to properly 
represent less frequent residues. In order to verify this, we have computed the 
frequency of occurrence of each amino acid in the targets we selected, and 
compared it to the PDB. Table 2.4 summarises the differences. As can be seen, 
the absolute difference in frequencies is consistently small, and averages 0.6%, 
which shows that our decoy set is representative of  the PDB, in terms of the 
occurrence of residues.

Table 2.4 Amino acid frequencies in the decoy set and PDB

Residue Decoy set (%) PDB (%)
ALA 8 7
ARG 5 4
ASN 4 4
ASP 6 6
CYS 2 3
GLN 4 5
GLU 7 6
GLY 7 7
HIS 2 3
ILE 5 4
LEU 9 8
LYS 7 7
MET 2 2
PHE 4 4
PRO 4 5
SER 6 8
THR 6 6
TRP 1 1
TYR 3 3
VAL 8 7
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2.3.3 Impact of sequence features on average ARMSD distribution 
Biases towards frequent amino acids is just one of the possible problems that 
could emerge when generating a decoy set. For example, the average of the 
average ARMSD of decoys is at 1.7 Å, while the actual average ARMSD per 
target varies from 1.1 Å, up to 3 Å. This difference can either be due to some 
proteins being more stable than others, or to a difference in size in which case 
the ARMSD might be bigger for proteins with more atoms, as they would have 
more degrees of  freedom. If  indeed this is the case, then we should observe a 
correlation between the average ARMSD and the size of  the protein. This is 
shown in Figure 2.2.

Figure 2.2 Average  All-Atom RMSD versus Sequence Length. The ARMSD is 
calculated based on the 500 decoys in each target. Each point  represents a target. Targets 
have been separated according to their CATH class to show any bias towards a particular 
type.
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We can observe that the ARMSD is uniformly distributed across all sequence 
lengths, showing that there are near native decoys of all lengths in our decoy set. 
The only exceptional protein here is 1L2P, which is an outlier in terms of its 
average ARMSD, and is the only transmembrane protein in our set. Although it is 
not included in our analysis, we show  it here to demonstrate the robustness of 
our filters. Although the average ARMSD does not depend on the number of 
residues, there is a difference when considering the average per CATH class. 
Indeed, the average ARMSD for alpha proteins is larger than for beta ones, with 
the other two classes in-between. Distributions of mean ARMSD per CATH class 
are shown in Figure 2.3 below. 

Figure 2.3 Average RMSD distributions per CATH class. Here, the 1L2P outlier has 
been removed. The means of the distributions above are 1.88 for the alpha class, 1.57 for 
the beta class, 1.70 for the alphaBeta class, and 1.68 for the none class. 
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To assess the significance of these differences, we used a 2-tailed t-test on the 
difference between the mean of  the distributions. The p-value matrix is shown in 
Table 2.5.

Table 2.5 P-value of the ARMSD difference across CATH classes

CATH class Alpha Beta AlphaBeta
Beta 0.0001

AlphaBeta 0.005 0.008
None 0.22 0.32 0.83

From this table we can conclude that the difference between Alpha, Beta, and 
AlphaBeta classes are highly significant, while the difference to the None class is 
not, most likely because of the small number of  observations (there are only 9 
proteins in the none class). The difference between alpha and beta classes can 
be explained by the nature of the secondary structure of the proteins, where 
alpha-helices stabilise proteins locally and beta-sheets globally. Since the 
ARMSD is more sensitive to global differences than to local ones, a less globally 
stable protein will be expected to have a larger average ARMSD. When most 
hydrogen bonds are located in alpha helices, they only stabilise nearby residues, 
meaning there is a large freedom of movement for residues not in helices, 
analogous to the movement of a hinge. In beta sheets, residues between 
bonding groups are constrained geometrically, so the overall movement of the 
protein is limited. This locality of hydrogen bonding can be calculated by taking 
the average residue separation between donor and acceptor groups, and 
comparing these for Alpha and Beta proteins. A higher residue separation means 
more residues are located between the residues bonding, and thus, are more 
constrained. Results are shown in Table 2.6.
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Table 2.6 Average residue separation in hydrogen bonds

Class Mean Std Decoys
Alpha 11 5.5 28500
Beta 25 8.1 32500

AlphaBeta 19 6.4 42000
None 17 6.2 4500

Using a 2-tailed t-test, we obtain a p-value less than 0.0001 for the difference 
between the mean residue separation of Alpha and Beta proteins. This highly 
significant difference shows that there is indeed more global stability in Beta 
proteins. Since the ARMSD measure is sensitive to global changes, we can 
conclude that the difference observed between Alpha and Beta classes are 
indeed due to the hydrogen-bond network topology in secondary structures. 
Thus, the difference in the average ARMSD between secondary structure classes 
can be explained both from the topology of  the hydrogen bonding network, and 
from the geometrical properties of individual classes. Since these differences are 
expected in real proteins and well modelled by the force field, we can conclude 
that it is not penalising.
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2.3.4 Impact of simulation parameters on average ARMSD distributions
One of the main difficulties with molecular dynamics is to derive a force field that 
correctly assesses the energy of new  structures generated during simulations. 
Indeed, current force fields are incapable of  keeping the native structure as is, 
and as a consequence will drift away from it, producing decoys (Figure 2.4).
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Figure 2.4 All-Atom RMSD versus Simulation  time. Here, the ARMSD is taken as the 
average over all targets. The regression lines are fitted to the points for each temperature.

We observe here that as the simulation progresses, the average RMSD of  the 
trajectories snapshots increases. This effect can be observed independently of 
the temperature, with regression lines being almost identical, showing that the 
drift experienced from the native structure does not depend on the temperature of 
the system. Moreover, this behaviour is observed even when the ARMSD of the 
decoys are normalised to the average RMSD for that particular target, thus 
removing possible averaging effects. When we calculated the average Pearson 
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correlation for each temperature between the Time and ARMSD for each target, 
we still could not observe any significant difference. 

The drift is usually taken to be the time needed for the force field to find a stable 
structure. In order to test this, we have generated trajectories for the 1HKA 
protein, both starting from the crystal structure, and starting from a decoy 
corresponding to a minimised structure from a snapshot at 1 ns in the original 
simulation. The simulation time was 2 ns, at a temperature of 300 K. Figure 2.5 
shows the ARMSD to the native structure versus time for both trajectories. 
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Figure 2.5 ARMSD versus time for different starting structures. Here, the seed 
structure represents the initial structure used in the molecular dynamics simulation. The 
ARMSD of the red curve is calculated from the crystal structure, while the blue curve is 
calculated from the seed decoy structure.

We can see in the above trajectories that regardless of  the starting structure, we 
observe 2 regimes, one where the structure drifts away from the original one (0 to 
600 ps), followed by a fluctuation around a mean RMSD value (Time > 600 ps). 
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The decoy used to seed the second simulation was taken from a stable region in 
a previous simulation, and as such, the ARMSD should not have drifted so 
radically. Moreover, when looking at the ARMSD to the crystal structure of the 
second run, we observe that the trajectory stays stable within a specific range of 
ARMSD (Figure 2.6).
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Figure 2.6 ARMSD versus time  for the decoy seeded simulation. Here, RMSD to 
decoy means the seed decoy structure has been used to calculate the RMSD, whereas 
RMSD to native means the original crystal structure was used.

From a geometrical point of view, the conformational space gets larger as we drift 
away from the starting structure. This means that randomly sampling around the 
starting structure will produce more structures at 2 Å than at 1 Å for example. 
Therefore, the drift experienced is probably due to the random conformational 
sampling around the starting structure and not to the force field itself. 

Moreover, molecular properties are calculated as averaged ensembles, and 
therefore require more than one structure. Thus, our method is not biased by the 
time of  simulation, but rather accurately represents a random sampling around 
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the native structure, which is required by the simulation to calculate 
macromolecular properties. 

The only problem though is that since we cannot generate the actual native 
structure, but only drift from it, the conclusions drawn from this decoy set should 
not be interpreted as what is needed to fold a protein, but rather as what is 
needed to keep a protein folded. Furthermore, it shows that the OPLS/aa force 
field is not able to keep the native structure as it is, and can therefore be 
improved.
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2.3.5 Measuring compactness of decoys
One common assumption is that the native structure is the most compact 
structure. As such, we could expect the compactness of  the decoys to be 
correlated to their nativeness. To assess this, we compared the ARMSD of 
decoys to their average ratio of  the radius of gyration, expressed as the radius of 
gyration of the decoy divided by the one of the native structure. This is shown in 
Figure 2.7 below.
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Figure 2.7 Average radius of gyration vs. ARMSD. Here, the average radius of gyration 
ratio is taken by binning the decoy according to their ARMSD.

The first observation that stems from that plot is that the average radius of 
gyration ratio is correlated to the average RMSD of the decoy ensembles, for 
decoys that are less than 2 Å away from the native structure, before diverging 
and becoming randomly distributed for far away decoys. 
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Because of  the hydrophobic effect, if  there are no steric clashes, then the native 
structures should have a smaller radius of gyration than any other decoys. It is 
also known that side chains in crystal structures are packed against the protein, 
whereas they are sticking out in the solvent in simulations. This means that due 
to differences in the experimental methods used, we will observe a difference in 
compactness between crystal structures and decoys, that will not be caused by 
the simulation. 

Since finding the native structure is trivial [Handl et al. 2009] and not dependent 
on the decoy generation procedure used here, we have decided not to use the 
rank of the native structure as a measure of the quality of a potential. 

The second observation is that there is no correlation between the radius of 
gyration and the simulation temperature, as can be seen from the regression 
lines that are similar to each other, suggesting that the force field used in the 
molecular dynamics run is not sufficient to keep the crystal structure packed, 
even at temperatures of 250K. 

Since the temperature does not bias our data set, and since all targets are 
monomeric and should not interact with ligands, we can conclude that the decoys 
are unpacking because the force field used is not properly keeping the atoms 
together. Hence, the radius of gyration is an implicit measure of  the error in the 
force field, and will therefore be used as a benchmark measure. Table 2.7 shows 
the different average correlation measures for the radius of gyration against the 
all-atom RMSD, over our generated decoy set, which we call the MDSET.

Table 2.7 Average scores of the radius of gyration for the MDSET decoy set

Measure Score

10% enrich 0.24
15% enrich 0.28
Pearson R 0.27
Kendall Tau 0.28

From the table above, we can see that the enrichment performs more than twice 
as well as a random measure for a 10% enrichment, and almost twice as well as 
random for the 15% enrichment, showing that the radius of gyration is a good 
benchmark to test energy functions against.
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2.3.6 Performance of existing energy functions
Reading through the literature on energy functions, we have found that two of 
them are commonly used in decoy discrimination studies: DFIRE2 [Yang & Zhou 
2008] (all variants), and DOPE [Shen & Sali 2006] which are heavy atom 
distance and angle statistical potentials. Moreover, these potentials are 
considered the most successful ones when applied to decoy discrimination. 
Previous studies have shown that DOPE and DFIRE2 are highly correlated 
[Rykunov & Fiser 2010] so we will only use the latter as a benchmark. 

The energy function we have chosen to test (DFIRE2) is statistical in nature, 
meaning it was derived from observation rather than empirical forces. Because it 
uses an inverse Boltzmann formulation, it effectively models the free energy 
difference that arises when going from a random reference state to a protein-like 
observed state. 

DFIRE2 is distance and angle based, heavy atoms only, and is derived from a 
subset of  the PDB. Here, we assessed the performances of  DFIRE2 as well as 
the radius of  gyration, over our MDSET decoy set introduced previously. For each 
potential, the average enrichment scores at 10% and 15% are shown, as well as 
the average Pearson R and the average Kendall tau. Results are shown in Table 
2.8.

Table 2.8 Comparison of energy function on the MDSET

Measure RG DFIRE2
10% Enrichment 0.24 0.36
15% Enrichment 0.28 0.40
Pearson R 0.27 0.47
Kendall Tau 0.28 0.29

The p-value of  the Wilcoxon rank sum test of the difference between the means 
of the 10% enrichment for the radius of gyration and DFIRE2 was less than 
0.001. 
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2.4 Conclusions 

We have seen in this chapter that generating a decoy set using molecular 
dynamics allows for a good sampling of  the near-native basin, with structures 
generated below 4 Å RMSD, with an average of 1.7 Å. 

The decoys were generated from the native structure, which means that the 
potential used in the molecular dynamics simulation was not able to stabilise it. 
This implies that however long we simulate the proteins in our decoy set, we will 
never revert back to the native structure, or it would not have drifted in the first 
place. Therefore, this decoy set is not representative of methods used to actually 
fold proteins, and should not be used to assess potentials designed for ab initio 
folding. 

One could argue that near-native structures can sometimes be produced by ab 
initio method, and that these should be used as our near-native decoy set. But by 
looking at the recent CASP results, very few  algorithms actually folded protein to 
less than 2 Å RMSD, and even fewer to less than 1.5 Å RMSD. These algorithms 
also did not produce near-native structures for many targets, meaning the sample 
size and total number of decoys would be relatively small. This ultimately implies 
that if we did generate structures below  2 Å RMSD, we could probably not detect 
them, as the potentials would have been tuned on decoys with RMSDs mostly 
above 2 Å. Thus, relaxing the native structure is the only way we currently have 
to precisely and non-redundantly sample the 0 to 2 Å RMSD range.

Although there is a strong correlation between time of  simulation and RMSD, this 
was found to be not significant in our study, as it represents the conformational 
sampling, rather than any bias due to the potential, that could then have been 
trivially spotted. On the other hand, we have observed a significant correlation 
between the radius of  gyration of decoys, and their nativeness, with an average 
10% enrichment score of  0.24 over all targets. This score means that the radius 
of gyration can successfully detect 24% of the 10% best structures as being 
such. Thus, it is a good benchmark for testing energy functions.

We have then assessed the performance of  one of  the most successful potentials 
from the literature, DFIRE2, which scored an average 10% enrichment score of 
0.36. DFIRE2 is based on heavy atoms only, and includes four terms, one for the 
pairwise atomic distance, and three for the orientation between two atoms. In this 
thesis, we will use DFIRE2 as a base potential in order to develop a more 
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complete potential that includes hydrogen bonding, solvation, and information 
from decoy structures.  
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3.1 Introduction and background

Protein folding is in large part due to the hydrophobic effect, by which atom 
groups having no affinity to water are buried inside the protein [Anfinsen & 
Scheraga 1975, Karplus & Weaver 1976]. Thus, when simulating folding, it is 
important to take this into consideration, which can be done using various 
methods, one of which is by calculating the free energy associated with the 
solvent, by either using an implicit solvent model [Einsenberg & McLachlan 1986, 
Bhattacharyay et al. 2006, Lazaridis & Karplus 1999a], or by using explicit water 
molecules in conjunction with suitable energy functions [Zielkiewicz 2005, 
Jorgensen et al. 1983, Hermans et al. 2004]. 

Although extensive research has been conducted, there still is not a consensus 
as to which approach is better [Boas & Harbury 2007, Dill et al. 2005]. Using 
explicit solvent can be computationally expensive, which is why most approaches 
have looked more closely at implicit solvent models [Privalov & Gill 1988]. 

Various methods exist to approximate the solvation free energy from a 
continuum. One of  the first successful attempts called the Eisenberg-McLachlan 
(EM) potential [Einsenberg & McLachlan 1986] used all heavy atoms in the 
calculation, where the free energy is the sum of the individual contribution of 
each atom which is defined as its surface accessibility multiplied by a solvation 
parameter. 

Although this model has been widely accepted, other approaches have been 
used, the most notable, and probably the most popular being the Lazaridis-
Karplus (EEF1) potential [Lazaridis & Karplus 1999a]. Although the original paper 
describes the performance of the CHARMM+EEF1 potential, the solvation term 
alone has been used in other studies, and added to other potentials to model 
solvation. In essence, the EEF1 potential tries to model the exclusion and 
distribution of solvent around protein atoms by deriving a function representing 
the solvation free energy density. 

Solvation potentials are usually not sufficient to discriminate decoys correctly, and 
thus have to be added to other free energy potentials, such as pairwise atomic 
distance potentials, which have been extensively studied, and are now  being 
augmented to include other interactions and increase their discriminatory power. 
Of  the existing distance potentials, we found DOPE [Shen & Sali 2006] and 
DFIRE2 [Yang et Zhou 2008] to be equivalently good at discriminating decoys in 
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medium to low  resolution decoy sets [Rykunov & Fiser 2010]. Thus, in this 
experiment, we will be using DFIRE2 as the basis of our energy function. 

In order to derive our potentials, we have tested various protocols, all of which 
are statistical potentials based on an inverse Boltzmann potential that allows us 
to model the distribution of the energy function without knowing its functional form 
[Sippl 1990]. Statistical potentials require a reference state to be defined, which 
can be thought of  as the distribution expected at random or from unfolded 
conformations. Here, we study 2 approaches to deriving reference states, one 
based on decoy structures, and the other based on a statistical model of the 
expected randomness. 

Solvation was modelled implicitly by using the solvent accessible surface area 
(SASA). From it, we derived a statistical potential to model the free energy 
associated with the solvent exposure of specific atom types. 

We analysed the performances of  existing solvation potentials, and found that 
they did not significantly improve DFIRE2, which is why we decided to derive a 
new  one using a different approach. A the end of  this chapter, a comparison will 
be made between our own potentials and the ones commonly used in the 
literature.
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3.2 Methods

3.2.1 Hydrogen atom generation
In order to generate the hydrogens needed in the calculation of some potential 
functions, we have used the pdb2gmx tool from the GROMACS package [Hess 
et al. 2008], along with the OPLS/aa force field [Jorgensen & Tirado-Rives 1988]. 
This method was applied to the various protein crystal structures and decoys 
lacking explicit hydrogens. 

3.2.2 Protein sets
Crystal structures set

Starting from the PDB dataset [Bernstein et al. 1977], we used the PISCES 
server [Wang & Dunbrack 2003] to generate a subset of 4370 targets with less 
than 30% sequence identity, a resolution better than 2 Å, and an R-value better 
than 0.25. PDB files containing unknown residues or atom types were removed, 
and the structures minimized using GROMACS. This selection process yielded 
713 crystal structures. 

Decoy sets

Since we are only interested in near-native decoy discrimination, we have chosen 
2 decoy sets with an ARMSD range between 0 and 5 Å. Such sets are typically 
hard to produce, mostly because current ab initio methods cannot produce 
models of  that quality very often. Hence, the 2 sets used here have a common 
generation procedure in the sense that they are both based on a relaxation of the 
native crystal structure. 

The first set, MDSET, was introduced in the previous chapter, and was generated 
using molecular dynamics runs at various temperatures, and sampling along the 
trajectory. This was done for 250 targets, generating 2000 decoys each time. We 
then used a QT clustering algorithm with a 0.5 Å RMSD cut-off, which yielded 
between 600 and 1200 decoys for each target. 500 models were then taken at 
random for each target to avoid over representing a specific protein when we use 
them as a training set. 

In this decoy set, we have found that the ARMSD correlates to the time after 
which the snapshot was taken [Figure 2.4, chapter 2], and although this does not 
invalidate the approach, it limits the interpretation of  the results. Therefore, we 
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have used another decoy set from the literature, which we call the HRDECOY set 
[Rajgaria et al. 2006], that was generated by constraining the hydrophobic core 
and charged groups of the proteins according to the expected theoretical 
behaviour, and varying the amount by which they are allowed to deviate from 
their original position.  The NMR refinement package DYANA [Guntert 2004] was 
then used to generate the models according to various parameter sets. In total, 
this decoy set is comprised of 1400 targets, with 500 to 1000 decoys in each. 
Since we do not need that much data in our study, we have randomly selected 
150 targets that we will use in our analysis. These structures are comprised of X-
ray structures, and have a balanced distribution of alpha, beta, and alpha/beta 
proteins. 500 decoys per targets were then randomly selected.

3.2.3 Solvent model
We use an implicit solvent model based on the surface accessibility, defined as 
the percentage of an atom’s surface that is exposed to a probe representing a 
water molecule. Here, we used a program called NACCESS [Hubbard 1996] with 
default parameters and a probe radius of 1.40 Å. NACCESS is an 
implementation of the “rolling ball” algorithm, where the surface accessibility is 
taken by simulating a ball rolling on the surface of the protein [Lee & Richards 
1971]. 
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3.2.4 Statistical potentials
Boltzmann potentials

Knowledge based potentials have the useful property that they allow  the 
calculation of the free energy associated with a structure, without knowing the 
empirical functional form of the force being modelled. It assumes little about the 
force itself, aside that it should be represented in a non-redundant set of protein 
structures and that it can be modelled in the same way as a gas. These types of 
potentials are commonly derived using an inverse Boltzmann equation. 

The more data is in the protein set, the smaller the bins can be, as there is less 
chance that some would be empty. When this is the case, one has to define a 
protocol for handling such empty bins. We tested several pseudo-count 
protocols, and did not find any significant difference between methods when 
using the potential to discriminate our decoy sets, as we had relatively few  empty 
bins aside from extreme values. Thus, in this thesis, we add a pseudo count of 1 
to each bin, except for extreme values, which we decide to ignore completely, 
and assign to them an energy of 0. For example, in solvent accessibilities 
potentials, we ignore bins above 60%, while adding a pseudo-count of 1 to bins 
between 0% and 60%.

The observed state is taken from the set of proteins for which a structure is 
resolved to a good accuracy. The reference state will usually either be a model 
describing the probability of a specific bin occurring at random in proteins, or be a 
set of unfolded protein structures. The set of structures used to derive a statistical 
potential can be thought of as a training set, and the set used for testing the 
efficiency of this potential would be called a testing set.

Training and testing sets

In this experiment, we will look at various protocols for deriving the frequencies in 
the observed and reference states, some of which use decoy structures. 
Therefore, to avoid testing our potentials on the same data it was derived from, 
we have split our decoy sets randomly into two subsets, taking around 70% of 
the targets as the training set, and 30% as the testing set. For the MDSET, there 
are 180 targets in the training set, and 70 in the testing set. For the HRDECOY 
set, there are 110 targets in the training set and 40 targets in the testing set. 
When deriving classical reference states, we have used the native structures 
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from the decoy sets, and added the structures from the crystal structure data set 
introduced earlier, which gives us a total of 1003 native conformations. 

Potential parameters

In order to derive a solvation statistical potential, we need to define 3 features, 
namely the bin size, the range of values considered, and the grouping of  atoms 
involved. 

We have on average 2000 atoms per protein, giving us, for 1003 proteins, a total 
of about 2,000,000 atoms. This is the minimum number of  observation that we 
will have in our potentials, since adding decoys will increase it. Considering the 
large amount of  data available, we opted to choose bin sizes that would be fit to 
represent the small differences between decoys. 

For our SASA potential, we used 327 atom types, one for each atom in each 
residue, with a bin size of 2% in the range [0%, 60%], corresponding to the % 
surface accessibility of  the atom. 60% was used as a cutoff as it is the largest 
observed SASA in our set of proteins and decoys. 

Classical potentials

In this study, we define a classical reference state as being derived from crystal 
structures and probabilistic models only. The observed state in classical 
potentials is derived from the distribution of  features in a set of crystal structures 
resolved at a high resolution. The reference state is then derived using an 
theoretical model corresponding to the probabilities of  a specific bin occurring at 
random. 

For our SASA potential, the reference state is not trivial, and as such, we opted 
for a statistical determination of it. We assumed a globular shape for proteins, 
and modelled the random chance of  a specific atom to be buried by creating a 
sphere of  radius 30 Å, and placing 2000 random atoms in it. This would 
correspond to a 200 residues long globular protein. Atoms were placed without 
overlap of  their van der Waals radii, and the proportion of  each element (N, C, O, 
S, H) in the sphere was taken from 1000 crystal structures of similar length. The 
surface accessibility was then calculated using NACCESS in the same way as for 
real proteins. We generated 10,000 such spheres, giving us a total of 20,000,000 
atoms with their respective SASA, and in proportions similar to what would be 
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found in real proteins. The only difference is that we assumed an ideal-gas 
model, where no covalent bonds exist between atoms in the sphere created. 
These random “proteins” were then used to model the reference state, by binning 
them in the same way as we would bin the real proteins in the observed state.

Decoy based potentials

Our decoy-based potentials are derived from decoys only, intentionally omitting 
native conformations. The potentials were derived by taking the decoys that are 
better than average as the observed state, and those that are worse than 
average as the reference state. The idea behind this formulation is that we 
noticed that decoys are normally distributed around a mean value, and thus, we 
are interested in knowing what the difference is between structures that are 
better or worse (in terms of RMSD) than others. These decoy-based potentials 
are thus dependent on the method used to generate the structures, and as such, 
potentials should not be expected to be transferable to other decoy sets. The 
naming convention used in this chapter for our potentials is given in Table 3.1 
below.

Table 3.1 Naming conventions for potentials

Method Subscript Observed State Reference State
Statistical C Crystal Structures Protein-like random spheres

Statistical D Better than average decoys Worse than average decoys
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3.2.5 Benchmarking potentials

All-Atom RMSD (ARMSD)

In this study, we measure the degree of nativeness of a structure by taking the 
root mean square deviation between a model and an experimental structure, 
using all heavy atoms. This gives us the level of  detail needed when considering 
near-native decoys. One of  the main drawbacks of  using RMSD measures is that 
it is very sensitive to local changes. But since all our decoys are created by 
relaxing the native structure, none of them will be subjected to this effect, as 
molecular dynamics does not allow  for huge spontaneous moves in the short 
time frame that we simulated, and at the temperatures that we used.

Radius of Gyration

As a benchmark in this study, and as a control to verify that the decoys do not 
simply expand in all direction (unfold), we have used the radius of  gyration, 
defined as the root mean square distance between atoms in a protein, as the 
minimal feature to outperform.

Total Surface Accessibility

Another control feature that was used is the total Solvent Accessible Surface 
Area (SASA) of  the protein. Indeed, the more compact, the smaller the exposed 
area will be, and thus, it is a measure of compactness as well as a measure of 
how solvated the protein is.

Potentials from the literature

To assess the performances of our potentials, we have compared them against 2 
other solvation energy functions taken from the literature, the Eisenberg-
McLachlan potential (shortened to EM in this study) [Eisenberg & McLachlan 
1986], and the Lazaridis-Karplus EEF1 solvation energy function [Lazaridis & 
Karplus, 1999a]. Each of  them has been used with varying success in other 
experiments, which is why we included them in our benchmark. Finally, DFIRE2 
will be used as the base potential on top of  which we will be adding our solvation 
term. 
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3.2.6 Combining energy terms 
Energy terms are linearly combined using a set of  weights optimised using R 
(optim function available in the stats library). We optimised the average 10% 
enrichment score over all targets in the decoy set, using the Nelder and Mead 
optimisation protocol, and calculated the other statistics using the weights 
derived from it.
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3.3 Results & Discussions

3.3.1 Generation of the classical reference state
In order to derive the probabilities of  the SASA potentials reference state, we 
computed the radius of each protein used to calculate the classical potentials. 
This is shown in Figure 3.1 below.
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Figure 3.1 Distribution of protein radius. Here, the proteins used are all crystal 
structures representing the native conformation. The radius is taken as the maximum 
distance between any atom and the centre of the protein it is in. 

As can be seen, the average radius is around 30 Å, and thus, we will use this as 
the radius of  the random spheres we will be creating. Using the same dataset, we 
calculated the proportions of each element in the proteins. Results are shown in 
Table 3.2. 
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Table 3.2 Proportions of elements in proteins

Element Proportion (%)
N 8.6
C 31.9
O 9.5
S 0.2
H 49.8

These probabilities of occurrence and radiuses are then used to randomly fill 
spheres of radius 30 Å with 2000 non-overlapping atoms. By doing so, we ensure 
that the contents of  our random protein-like spheres correspond to what would be 
expected in real proteins. This was then repeated to create 10000 spheres, and 
the distribution of  surface accessibility for each element was computed, as shown 
in Figure 3.2.

The reference state was then calculated from these distributions by binning them 
according to the same protocol as the crystal structure atoms in the observed 
state. From Figure 3.2, we can see that the distribution differs across different 
atom types. Generally, counts are peaking at 0% SASA, quickly drop, and 
stabilise around 20% SASA. It then stays relatively flat until 40% SASA, before 
dropping close to 0 for SASA > 60%. The difference between the different atoms 
comes from the relative proportions of each SASA counts. For hydrogens, the 
number of atoms on the surface drops very sharply, while they drop more 
smoothly for carbon and sulphur, and somewhere in between for nitrogen and 
oxygen. This is not surprising given that for a fixed number of atoms in a fixed 
size sphere, the larger atoms will require more overlaps to be buried than small 
atoms, and thus, this will happen less often at random.
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Distribution of surface accessibilities in random protein-like spheres
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Figure 3.2 Distributions of surface  accessibility for random atoms in protein-like 
spheres. The distributions were generated from 10000 protein-like spheres containing 
2000 atoms each, in the same proportions as real proteins.
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3.3.2 Classical potential
To generate our classical potential, we took crystal structures from the PDB, and 
energy minimised them using GROMACS and OPLS/aa in order to remove any 
steric clashes. The resulting structures were then used as the training set for our 
classical potentials throughout this thesis. 

Using an inverse Boltzmann formulation, and the reference state derived in the 
previous section, we generated a free energy of  solvation potential, using the 
solvent surface accessibility of  atoms. We treated each atom from each residue 
separately, in order to model more subtle differences that would be due to the 
chemistry of specific residues. 

To illustrate our method, we chose threonine, as it is relatively not too hydrophilic 
or hydrophobic (hydropathy index = -0.7), has relatively good side chain flexibility, 
and is a frequently occurring amino acid in natural proteins. Potentials for 
Threonine heavy atoms are shown in Figure 3.3, for accessibilities between 0 
and 60%, which is the maximum observed SASA in our protein set.

Potentials in Figure 3.3 show  a consistent preference for fully buried atoms with 
0% accessibility. Oxygen and side chain CG2 atoms also have a secondary 
preference for accessibilities above 13% to 15%. This shows that atoms are only 
stable in two states, one where they are fully buried, and the other where they 
are well exposed to solvent, with intermediate exposures not being favourable. 

Although we only show  potentials for threonine heavy atoms, every of  the 327 
atoms considered have clear favoured and disfavoured regions, and are used in 
the calculation of the total solvation free energy. 
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Figure 3.3 SASA Classical potentials for Threonine heavy atoms. The potentials were 
generated using crystal structures from the PDB, and the reference state derived from 
random spheres. A pseudo-count  was added to all bins in the observed state, which is why 
we observe some smoother regions.
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Using these potentials, we calculated the free energy for our MDSET decoy set, 
and added the new  term to DFIRE2. Results are shown for the MDSET in Table 
3.3 below.

Table 3.3 10% Enrichment score of the classical SASA potential

Potential 10% Enrichment W p-value (H0=DFIRE2)

DFIRE2 0.41
SASAC 0.20 2553 5e-9

DFIRE2 + SASAC 0.41 1568 0.50

The Wilcoxon rank sum test (W in the above table) was used to assess the 
significance of the difference between DFIRE2, and potentials including the 
classical SASA term (SASAC and DFIRE2+SASAC). As can be seen, there was 
no improvement after adding the solvation term. Thus, we can conclude that 
using a classically derived solvation potential does not help in discriminating 
near-native decoy structures. This was further verified by generating the classical 
potential with various pseudo-count protocols, and also by using a constant 
reference state. In all instances, the potential did not improve DFIRE2.
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3.3.3 Decoy-based potential
Since we could not improve DFIRE2 using a classical solvation potential, we 
derived another one, but this time only using decoys. Here, we define the 
observed state as the set of  decoys that are better than the average RMSD of 
decoys belonging to the same initial target. Thus, for our 250 targets, we have 
250 different means, although they are all around 2 Å RMSD. The reference state 
is then taken as the set of decoys that are worse than average. 

The resulting distribution represents the difference between the runs that ended 
in good models, and those that ended in bad ones, and should in theory measure 
the energy gain or loss for specific values of our potential. When we observe 
values for which the potential is negative, we can conclude that good models are 
more often occurring in that region, whilst when observing positive values, it’s the 
other way around, and bad models are more represented in that bin. 

We illustrate our method by showing the decoy-based SASA potentials derived 
from Threonine heavy atoms (Figure 3.4 on the next page).

Our first observation is the relatively flat bin for 0% accessibility for all atom 
types. This means that there is no observable difference between fully buried 
atom in good and bad models, and thus, we cannot gain information from only 
considering these atoms. 

Given that the 0% bin represents the lowest energy in all of our classical 
potentials, it is not surprising that we could not improve DFIRE2 by using them. 

On the other hand, clear favoured or disfavoured regions can be observed in our 
decoy-based potentials, such as for the Threonine CB atom, where we have a 
strong positive peak around 10% accessibility, implying bad decoys have more 
Threonine CB atoms in that range. Likewise, information is gained from the 
distribution of surface accessibility of the Threonine main chain N atom, which 
has a negative peak at 20%, implying good models have more atoms around that 
value than bad models.

Overall, calculating the energy for decoys using these potential should give us a 
measure of  how  good they are, or at least, if  they are better or worse than 
average.
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Figure 3.4 SASA Decoy-based potentials  for Threonine heavy atoms. The potentials 
were derived using decoys generated in molecular dynamics run. The observed state is 
composed of good quality decoys, while the reference state is composed of bad quality 
ones. Here, when no count  is observed in either the observed state or the reference state, 
or when the frequencies were equal, we assigned an energy of 0.
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Using the previously derived decoy-based potentials, we calculated the total 
solvation energy for each decoy in the MDSET, and compared it to DFIRE2 to 
assess whether it improved its discriminatory capabilities. Results are shown in 
Table 3.4 below.

Table 3.4 10% Enrichment score of the Decoy-based SASA potential

Potential 10% Enrichment W p-value (H0=DFIRE2)

DFIRE2 0.41
SASAD 0.37 1767 0.12

DFIRE2 + SASAD 0.50 1053 0.001

We can see that the SASAD potential is not significantly different from DFIRE2 in 
terms of  performance. On the other hand, combining the two makes the 10% 
enrichment score go from 0.41 for DFIRE2 alone, to 0.50 for DFIRE2+SASAD. 
The difference between these scores was assessed using a 1-tailed Wilcoxon 
rank sum test, which yielded a p-value of  0.001, making this improvement highly 
significant. We can therefore conclude that using a decoy-based potential 
significantly helps to improve the accuracy of  DFIRE2 when discriminating near-
native decoy structures.
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3.3.4 Comparison to potentials from the literature
In order to verify our results, we have compared our potentials to two of  the most 
used ones in the literature, namely the solvation term of  the EEF1 potential 
[Lazaridis & Karplus 1999a] and the EM potential [Eisenberg & McLachlan 1986]. 
We combined them to DFIRE2 using the same method as for our own potentials, 
and compared the accuracy of  the resulting energy function on the MDSET 
decoy set. We also included the results for the radius of gyration (Rg) and the 
total surface accessibility (ASA). The p-values are shown for the difference to 
DFIRE2 alone.

 

Table 3.5 10% Enrichment score of the different potential terms

Potential 10% Enrichment W p-value (H0=DFIRE2)
DFIRE2 0.41
SASAD 0.37 1767 0.12

SASAC 0.20 2553 5e-9

EEF1 0.28 2243 4e-5

EM 0.09 2943 5e-05

Rg 0.25 2302 1e-5

ASA 0.22 2416 4e-7

DFIRE2 + SASAD 0.50 1053 0.001

DFIRE2 + SASAC 0.41 1568 0.50

DFIRE2 + EEF1 0.43 1450 0.25

DFIRE2 + EM 0.42 1512 0.38

DFIRE2 + Rg 0.41 1577 0.49

DFIRE2 + ASA 0.42 1490 0.33

The only potential that significantly improved DFIRE2 was our decoy-based 
surface accessibility potential. As can be seen, neither the classical version, nor 
the potentials from the literature could augment the accuracy of  DFIRE2 when 
discriminating near-native decoys. 

We have further verified our results by applying it to the HRDECOY decoy set, 
which is comprised of  150 targets with 500 to 2000 decoys each. Since our 
method is specific to a given decoy generation method, we split the HRDECOY 
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set into 2, where 110 targets were used to generate the potentials, and 40 were 
used as an out sample to test them. Results are shown in Table 3.6.

Table 3.6 Performance of the Decoy-based SASA potential on the HRDECOY set

Potential 10% Enrichment W p-value (H0=DFIRE2)

DFIRE2 0.42
SASAD 0.35 1069 0.003

Rg 0.23 1334 1e-7

ASA 0.26 1287 1e-6

DFIRE2 + SASAD 0.47 643 0.06

Although the DFIRE2+SASAD performed better than any other potential for the 
HRDECOY set, the Wilcoxon 1-tailed test gave a p-value of 0.06, meaning this 
difference is not quite significant. Since we had a significant increase on the 
MDSET, we cannot decide purely based on the 10% enrichment, whether this 
method is useful. To address this, we calculated the Pearson correlation 
coefficient and the Kendall tau, and compared the results for both potentials, on 
both the MDSET and HRDECOY set. Results are shown in Table 3.7 below.
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Table 3.7 Performance scores of the DFIRE2 + SASAD potential 

DFIRE2
DFIRE2+SASAD W p-value 

(H0=DFIRE2)
MDSET
10% Enrichment 0.41 0.50 1053 0.001

15% Enrichment 0.45 0.54 1143 0.007

Pearson R 0.54 0.60 1292 0.05

Kendall Tau 0.36 0.41 1315 0.07

HRDECOY
10% Enrichment 0.42 0.47 644 0.06

15% Enrichment 0.49 0.55 600 0.03

Pearson R 0.73 0.82 488 0.001

Kendall Tau 0.55 0.65 421 0.0001

From Table 3.7, we can see that aside from the 10% enrichment on the 
HRDECOY, and the Kendall Tau on the MDSET, every other statistics show  that 
the improvement of  DFIRE2+SASAD over DFIRE2 is significant. Therefore, we 
can conclude that adding a solvation term derived from decoys significantly 
improves the ability of DFIRE2 at discriminating near-native decoy structures.
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3.4 Conclusions

In this chapter, we have studied how  using solvent accessible surface area as the 
basis for a knowledge-based solvation potential could significantly improve the 
ability of  DFIRE2 at discriminating near-native decoys. Using a new  potential 
generation method, we were able to improve the discriminative power of DFIRE2 
by 5% to 10%, depending on the decoy set chosen, and the score used. 

To achieve this, we tried several methods to pick an observed and reference 
state to be used in the inverse Boltzmann potential. The first is based on a 
conventional approach using crystal structures as the observed state, and a 
geometrical model for the reference state. 

To accurately represent the randomness expected for surface accessibilities, we 
randomly generated 10000 spheres with a radius of  30 Å, and randomly placed 
non-overlapping N, C, O, S and H atoms in the same proportions as real 
proteins. The resulting distribution of surface accessibilities was then used as the 
reference state in our classical potential. 

The analysis of the distribution of the classical potentials showed that most atoms 
have an almost binary state, preferring either to be fully buried with surface 
accessibilities of  0%, or be strongly exposed with accessibilities superior to 15%. 
This type of interactions tends to limit the accuracy of potentials, as it does not 
model small variations in the accessibilities, but rather only verifies that the right 
atoms are solvated or not. Thus, in a near-native decoy set such as the MDSET, 
the potential failed to improve DFIRE2, as all decoys are well solvated, and have 
native-like structures, meaning that using such a simple approach would not 
allow differentiating between closely related good and bad decoys.

To address this issue, we modelled the energy gained from having a better-
formed structure (good decoy) compared to having a worse one (bad decoys). 
Thus, however small the difference is, given a large enough sample size and 
small enough bin sizes, we can extract the difference between the two, and 
assess how  good a structure is, which should then be equivalent to its 
nativeness. 

This was done by taking the better than average decoys as the observed state, 
and the worse than average decoys as the reference state. When our potential is 
negative, then we have more good structures than bad ones in that specific 
region, and vice-versa for positive values. This approach allowed us to 

Chapter 3. Deriving a solvation free energy potential

 

107 / 198



significantly improve the power of  DFIRE2 when discriminating near-native 
decoys, and this, across multiple decoy sets, using multiple measures.
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Chapter 4 

Including C-H…X hydrogen bonds in 
statistical potentials
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4.1 Introduction

Before computational methods were accessible, and analysis of large dataset of 
proteins possible, the thermodynamics and geometry of  hydrogen bonds were 
studied in crystals of  small molecules [Sutor 1963, Pimentel & McClellan 1971]. 
Although the hydrophobic effect is considered the main factor behind protein 
folding, it has been suggested that hydrogen bonds play a key part in the process 
[Myers & Pace 1996]. 

Hydrogen bonds involve the interaction between two electronegative groups, one 
composed of a heavy atom bonded to a hydrogen atom (the donor) and the other 
composed of an electronegative heavy atom (the acceptor). Conventional 
“strong” hydrogen bonds have been extensively studied in proteins [Baker & 
Hubbard 1984, McDonald & Thornton 1994], and involve the interaction between 
nitrogen and oxygen donor and acceptor groups (NH-O, OH-O and NH-N). One 
feature owed to hydrogen bonding is the secondary structure of the protein 
[Pauling 1960]. Indeed, beta sheets and alpha helices are defined as regions 
where residues follow  a specific hydrogen-bonding pattern. Although various 
types of helices exist, the most common one found in proteins is the alpha-helix, 
which consists of 4 or more residues with their main chain nitrogen group 
hydrogen bonding to the main chain oxygen acceptor 4 residues earlier. Beta 
sheets on the other hand are adjacent strands of residues where the main chain 
nitrogen group on one strand hydrogen bonds with the carboxyl oxygen of an 
adjacent one. 

In addition to NH and OH donors, carbon groups involved in hydrogen bonding 
have been observed and studied in inorganic compounds and membrane 
proteins [Sutor 1962, Desiraju 1996, Mottamal & Lazaridis 2005]. Since they are 
at least as common as nitrogen and oxygen groups, they are thought to be 
participating in stabilising the protein [Fabiola et al. 1997, Wahl & Sundaralingam 
1997], as well as interacting with the solvent when no NH bond is [Steiner 1995].  

But one major difficulty in studying hydrogen bonds is the lack of available data. 
Indeed, current crystallographic and NMR methods very rarely resolve 
hydrogens, and their positions either have to be inferred from geometry, 
optimised according to a force field, or observed using other experimental 
methods such as neutron diffraction. As the number of structures resolved using 
neutron diffraction is small, the only way to analyse hydrogen bonds with 
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statistical significance and without bias towards a specific force field is to 
consider only those that are fixed by geometry. 

Previous studies have shown that an improvement over existing potentials can 
be achieved by adding a hydrogen bonding term derived from a statistical 
potential [Kortemme et al. 2003], but they all assumed linear separability of each 
geometrical feature, and thus independence. It has been shown that pairwise 
features cluster [McDonald & Thornton 1994], and as such, they should be 
treated together. Moreover, most potentials only treat NH bonds, even though it 
has been suggested that potential CH and NH main chain hydrogen bonds work 
in tandem in stabilising the backbone [Fabiola et al. 1997, Steiner 1995].  

In this experiment, we will study the impact of carbon donating groups on the 
discrimination of decoy structures, as well as deriving a multivariate statistical 
potential to account for dependence between bonding features, in order to try to 
improve the discriminatory power of DFIRE2.
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4.2 Methods

In this section, we will introduce the various data sets and methods used to 
generate hydrogen bond potentials. Moreover, we will enumerate the different 
groups being considered, and the different features being analysed. The newly 
derived energy function will then be combined with DFIRE2 to try to improve its 
discriminatory performances, assessed using various metrics.

4.2.1 Protein sets

Crystal structure sets

In order to study the properties of hydrogen bonds, we need to either use explicit 
hydrogen positions as seen in neutron diffracted structures, or use a procedure to 
place them. Considering the small amount of  neutron-diffracted structures, we 
opted for a larger decoy set where fixed hydrogens have been placed artificially. 
This protein set is the same one as used in generating the solvation potentials, 
and is comprised of  713 proteins resolved at a resolution of  2 Å or less. For more 
details on this protein set, refer to chapter 3, sections 3.2.1 and 3.2.2. 

Decoy set

In order to assess the performances of the potentials, we tested them on a decoy 
set composed of native structures and decoy structures exhibiting near-native 
features.  This decoy set has been introduced in a previous chapter, and is 
labelled MDSET. It has structures with all-atom RMSDs between 0 and 4 Å away 
from the crystal structure, and exhibits no obvious defects. There are 250 targets 
with 500 decoys for each, 70 of  which are used as out-sample testing set. The 
results are then validated using the HRDECOY decoy set, comprised of  150 
targets, each with 500 decoys. We will use 40 of these targets for testing, and 
110 for training. The targets used in this experiment are different from chapter 2, 
which is why different results for DFIRE2 are observed.
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4.2.2 Hydrogen bond definitions

Hydrogen bonding groups considered

As it is impossible to generate the position of  rotating side chain hydrogen bonds, 
we only consider groups where the hydrogen is constrained by the geometry of 
the residue. This means that no OH, NH2, NH3 or CH3 groups will be included in 
this analysis, as the position of the hydrogen atoms cannot be inferred by 
geometry alone. The result is that our potential will only consider specific carbon 
and nitrogen donors. Only carbons that are covalently bonded to an 
electronegative oxygen or nitrogen will be considered potential hydrogen bond 
donors. This is because the presence of a nearby electronegative atom can 
modify the charge distribution around the carbon, making it a potential donor, as 
observed in some crystals [Sutor 1963]. Figure 4.1 shows the different CH 
donating groups in amino acids.
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Figure 4.1 CH donor groups. Main chains are not represented, but  they all donate 
hydrogen bonds on their C-alpha main chain carbon, as depicted for alanine. The original 
image is taken from the Andersen lab at Washington University [Andersen 2010].
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Hydrogen bond geometry

Hydrogen bonds can be described using various features, the most common 
being the hydrogen acceptor distance (HA) and the donor, hydrogen, acceptor 
angle (DHA). But other possible geometrical features exist, as shown in Figure 
4.2 below.

Donor

Acceptor Atoms

H

DHA

DHAX

HAX
HA

Figure 4.2 Hydrogen  bond geometry. In this diagram, “Atoms” represents the weighted 
average position of all atoms covalently bonded to the acceptor.

As can be noted from this diagram, a hydrogen bond is expressed by 4 features, 
the DHA angle, the HA distance, the HAX angle and the DHAX torsion angle. For 
this experiment, we define a hydrogen bond as a pair of  non-bonded donor and 
acceptor groups having a DHA angle larger than 90° and an HA distance below 
2.5 Å. 
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4.2.3 Hydrogen generation

In this study, we generated hydrogen positions for our decoys and crystal 
structures using the GROMACS pdb2gmx tool. It places the atoms according to 
the residue topology, thus, when the hydrogen is fixed, it should accurately 
represent what can be seen in the experimental structure. The efficiency of this 
method was assessed by comparing the position of hydrogen atoms in neutron-
diffracted structures to the same ones with generated hydrogens. 

4.2.4 Hydrogen bonding potentials

Using statistical mechanics principles, we can approximate the functional form of 
an interaction using an inverse Boltzmann potential derived from a sample of 
protein conformations. Although theoretically based on the probability of  the 
interaction considered in a specific range, given a large number of observations, 
we can approximate it using the frequency of  occurrences in our training set of 
proteins. The more data is available, the smaller the bins can be, and the less 
information will be lost by the discretisation of the original probability function. 
This is shown in Equation 4.1, below.

     (4.1)

In (4.1), h is the hydrogen bond being considered, n represents the feature being 
considered, T represents the temperature in Kelvin, k is the Boltzmann constant, 
xh is the feature value, and th represents the type of the hydrogen bond. Feature 
n can be either the DHA angle, HAX angle, HA distance or DHAX dihedral. 
Hydrogen bond type th is either CH for carbon bonds, or NH for nitrogen bonds. 
The OH-X bond is not represented since it is impossible to position the hydrogen 
without making assumptions about the actual geometry of the bond, which is 
what we are investigating here. 
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As seen from our study on solvation, we can generate a reference state by taking 
a random model, or by using decoy structures. Thus, two kind of  potentials will be 
derived here.

The first has a crystal structure based observed state, and a geometrical model 
of randomness as a reference state. These classical potentials (subscripted C in 
this thesis) require us to derive the reference state as a probability function 
modelling the randomness of  the feature being considered, which is sometimes 
hard or impossible to do. 

Our second approach, which is conformation generation method specific, uses 
large number of decoy structures generated by the method being explored, and 
uses the best decoys as the observed state, and the worse ones as the reference 
state (subscripted D). Here, best decoy means the decoys have an RMSD below 
the mean for that specific target, whilst bad decoys mean they have a larger 
RMSD to native. 

Conventional hydrogen bonding statistical potentials assume linear separability 
between the various geometrical quantities observed, simply calculating a 
potential for each of  them, and taking the weighted sum as the overall hydrogen 
bonding energy, as expressed in Equation 4.2 below.

      (4.2)

Here, wnh is the weight associated with specific hydrogen bonding types and 
features. Therefore, when optimising weights, we will optimise on 4 parameters 
for each bond type. Assuming linear separability might not be the most natural 
approach though, since variables might be clustered around certain regions, thus 
meaning they are in fact coupled. Assuming that each feature is independent in a 
random gas state, extending the Boltzmann formulation to account for multiple 
variables is easy, and is shown in Equation 4.3 below. We call these potentials 
“multivariate” potentials, as opposed to “univariate” potentials when only one term 
is used.
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   (4.3)

Here, h is the hydrogen bond being considered and Xh is a vector containing the 
values for the features being studied. The reference state is as defined in 
univariate potentials (Equation 4.1). Since we assumed the features are 
independent in a random conformation, we defined the reference state as being 
the joint probability of each individual feature, and express it as the product of the 
probability of each independent feature for that hydrogen bond. For clarity, 
multivariate statistical potentials are superscripted “+”, while univariate (also 
called linear) potentials are not superscripted. 

One major problem though arises from the increased number of observation bins, 
and thus, we either need to generate more data, use larger bins in our 
calculations or use pseudo-counts to prevent gaps in the potential. Here, we 
added a pseudo count to all bins in multivariate potentials by taking the smallest 
non-zero count in any observed state bin. Combining all four terms would require 
an enormous amount of  data if a precision similar to the linear terms is desired, 
and thus, will not be part of  our study. Here, we will derive potentials with one or 
two features only, and only consider two types of  hydrogen bonds, (CH and NH) 
without distinguishing between secondary structure location or acceptor type. 
The weighting scheme is as previously stated, with one weight for each potential 
term being combined. Table 4.1 gives the bin size and range for each feature. 
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Table 4.1 Potentials bin size and range

Feature Type Bin size Range Bins
DHA Angle 2° [90, 180]° 45
HA Distance 0.05 Å [1.5, 2.5] Å 20
HAX Angle 4° [0, 180]° 45
DHAX Dihedral 8° [-180, 180]° 45

The reference states are defined as the probability of observing a specific range 
of value at random. For distances, we use the formalism of DFIRE, but with the 
bin values given above. For angles, we use the cone correction as the reference 
state, integrating over the range that we are in. This is given in Equation 4.4 
below.

    (4.4)

Here, θ is the bin floor, and Δθ is the bin size, with θ ∈ [90, 180]°. The reference 

state for the HAX angle is defined similarly. Finally, the DHAX torsion angle has 
an equal probability for all bins, as no geometrical bias is present. One problem 
though with these reference states is that they assume the atoms in the protein 
behave like a gas, which is not the case here.

Table 4.2 summarises the naming conventions for the potentials derived in this 
study. Throughout, (NH) will refer to NH hydrogen bonds, while (CH) will refer to 
CH hydrogen bonds.
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Table 4.2 Naming conventions for potentials

Protocol Superscript Subscript Observed State Reference State

Statistical C Crystal Structures Geometrical

Statistical D Better than average 
decoys

Worst than average 
decoys

Multivariate + C Crystal Structures Geometrical

Multivariate + D Better than average 
decoys

Worst than average 
decoys

4.2.5 Performance measures

Here, as before, we are interested mostly in the discriminatory capabilities of our 
potential, and as such, we will put emphasis on the 10% enrichment score when 
analysing intermediate results. Final results will be given for 10 and 15% 
enrichment scores, Pearson R and Kendall Tau. The performance of  potentials is 
assessed by comparing the energy function values to the All-Atom RMSD.

4.2.6 Combining energy terms 

As before, we combined energy terms using R and the optim function available in 
the stats library to derive the weights introduced earlier. We optimised the 
average 10% enrichment score over all targets in the decoy set, using the 
Nelder-Mead optimization protocol, and calculated the other statistics using the 
weights derived from it. 
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4.3 Results & Discussions

In this section, we will review  the results of our experiments on hydrogen bonds. 
First, we will analyse the distributions of the different features for both NH and 
CH hydrogen bonds. Using these results as well as geometrical considerations, 
we will derive both linear and multivariate potentials, using the different protocols 
introduced in the methods section. The results of the best terms will then be 
compared to DFIRE2 to assess whether it could help increase its performance for 
decoy discrimination, and whether CH hydrogen bonds are useful in doing so.

4.3.1 Accuracy of the hydrogen atoms generation method

To avoid biasing our results towards specific potentials, hydrogen positions were 
created geometrically using GROMACS, but without running molecular dynamics. 
To assess the efficiency of this method, we have removed the hydrogens atoms 
from a set of 13 neutron resolved structures, and regenerated them to compare 
their position. The RMSD of the “real” to the virtual hydrogen position are given 
for geometrically fixed and non-fixed atoms in Table 4.3.

Table 4.3 RMSD of real vs. virtual hydrogens

Protein Fixed H Rotating  H
1G66 0.59 1.36
1HJE 0.10 1.44
1IXH 0.53 1.48
1L9L 0.38 1.36
1MUW 0.49 1.32
1RTQ 0.43 1.34
1TT8 0.43 1.36
1UCS 0.39 1.40
2B97 0.46 1.37
2BF9 0.12 1.35
2ERL 0.40 1.45
2FDN 0.45 1.51
2VB1 0.11 1.35
Average 0.37 1.39
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We can see in the table above that although the fixed hydrogens are modelled 
well, with an average RMSD of 0.37 Å, the rotating hydrogens are far less 
reliable and are on average 1.39 Å RMSD away from their experimental position, 
as seen in neutron diffracted structures. Therefore, we have decided not to 
include rotating hydrogens in our studies. 
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4.3.2 Univariate statistical potentials

Conventionally, only OH and NH hydrogen bonds have been considered in 
potentials used to discriminate decoy structures. There are different ways to 
represent hydrogen bonds and assess their energy, most of them being through 
electrostatic interactions, empirical distance and angle potentials, or statistical 
potentials derived from known crystal structures. In this last instance, aside from 
some rare cases, the hydrogen positions are not resolved, and thus, one has to 
either fix them from geometry, or make assumptions about their position. 
Considering that we are trying to model an interaction, we want to minimise the 
number of assumptions we make about it, and thus, we only include bonds that 
have a fixed geometry. 

Hydrogen bonds are conventionally defined by their HA and DHA distance, but in 
this study we looked at two other features as well: the HAX angle, which is the 
angle between the hydrogen atom from the donor group, the heavy atom from 
the acceptor group, and the centroid of the atoms covalently bonded to the 
acceptor [Kortemme et al. 2003] and the DHAX torsion angle representing the 
planarity of the hydrogen bond.

In order to derive statistical potentials, we took a set of  high-resolution crystal 
structures from the PDB, and generated decoy structures using molecular 
dynamics. We then generated two types of potentials for each of the four features 
(HA, DHA, HAX and DHAX). The first is a classical potential where the observed 
state is modelled from the crystal structures, and the reference state is taken 
from the expected frequencies in a random state. The second potential is based 
only on decoys, and attempts to extract differences in the distributions of better 
than average and worse than average structures. By better than average, we 
mean that the RMSD to native is less than the average value, and vice versa for 
worse than average decoys. Therefore, our observed state will be derived from 
those good decoys, while our reference state will be derived from the bad ones. 
The distributions of values for hydrogen bonds in crystal structures are shown in 
Figure 4.3 for the NH hydrogen bonds, and Figure 4.4 for CH hydrogen bonds.
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Figure 4.3 NH bonds classical observed states. These distributions were generated from 
the crystal structures, and only show hydrogen bonds with fixed hydrogen positions. 

These distributions for the NH bonds show  strong preferences for specific values. 
For the HA distance, the distribution peaks at 1.9 Å, and remains relatively flat 
above 2.2 Å. The DHA angle peaks in two places, the main one being at 160º, 
and the second one, much smaller, at 95º. The other angle, HAX, also peaks in 
two places, with the main one at 145º, and the second one, much sharper, at 85º. 
Finally, the DHAX torsion angle peaks in two places, at -160º and 0º. 

The same features were calculated for the CH bonds, and are shown in Figure 
4.4.
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Figure 4.4 CH bonds classical observed states. Some other studies have included bonds 
with HA distances above 2.5 Å, but  we have chosen not to, as there is little evidence that 
hydrogen bonds exist at such distances.

Here, we can observe that the HA distance do not peak at a specific value, but 
instead increases and becomes maximal at the boundary. The DHA angle peaks 
in two places, the main one at 105º, and the other one at 140º. As for the HAX 
angle, it has a very sharp peak at 80º, followed by a smaller one at 140º. These 
values are similar to the ones observed in NH bonds, but with different relative 
frequencies. Finally, the DHAX dihedral is mainly around 0º, with a small peak 
around 160º.

Overall, both NH and CH hydrogen bonds have preferred values, although the 
HA distance for the CH bonds are not peaking in the range that we consider in 
this analysis. Using these different distributions as the observed state of our 
classical potentials, and using the distributions taken from good and bad decoys, 
we have generated 16 statistical potentials, one for each feature (HA, DHA, HAX, 

Chapter 4. Including C-H...X hydrogen bonds in statistical potentials

125 / 198



DHAX), for each bond type (NH, CH) and for each generation protocol (Classical, 
Decoy-Based). The energies are shown in Figure 4.5 for NH bonds, and 4.6 for 
CH bonds.

The potentials displayed on the left hand side of Figure 4.5 and Figure 4.6 are 
the ones derived from crystal structures, and are similar to those used in the 
literature. In them, the HA has its lowest energy at 1.9 Å, the DHA at 160º, the 
HAX at 150º, and the DHAX at -170º. On the other hand, the decoy-based 
potentials on the right have quite different distributions, and much smaller 
energies, implying a lesser difference in the distributions of the good and bad 
decoys. This is expected since all decoys are close to native, and thus, would 
show  subtle differences. To interpret these potentials, one needs to think of  them 
as representing the differences between the good and bad decoys, rather than 
the difference between real interactions and random ones. Thus, when the 
energy is positive, there are fewer good decoys found in that region compared to 
bad decoys, and vice versa for negative energies. In essence, the lower the 
energy is of a given bin, the larger the proportion of good to bad decoys that will 
be in that bin. 

In NH decoy-based potentials, the HA term strongly disfavours very short 
distances. The DHA favours 120º angles, as well as linear ones, while 
disfavouring those below  120º. As for the HAX angle, it is less and less 
unfavourable until 125º, before becoming favourable around 150º. Finally, the 
DHAX term favours planar angles, and strongly disfavours those around -60º. 

CH hydrogen bond potentials shown in Figure 4.6 are significantly different from 
the NH ones seen previously. The first difference is for the HA distance energy, 
where none of the values in the range considered are favourable. This means 
that a protein would not spontaneously form such hydrogen bonds from an 
unfolded state. This is observed both for the classical potential, and for the 
decoy-based one. 

The classical DHA potential shows a favourable region between 92º and 112º, 
and becomes unfavourable for distance above that, with a significant decrease in 
unfavourableness centred around 140º. The decoy-based DHA potential shows 
unfavourableness for angles between 100º and 115º, approximately in the same 
region that the classical potential was favourable. This means that bad decoys 
are found at the lowest energies of this classical potential, but good decoys 
aren’t. 

Chapter 4. Including C-H...X hydrogen bonds in statistical potentials

126 / 198



The classical HAX angle potential troughs sharply around 77º, while being 
decreasingly unfavourable as the angle approaches linearity. On the other hand, 
the decoy-based potential only shows unfavourableness for angles below  75º, 
and remains relatively flat and negative for angles above. 

Finally, the DHAX dihedral has a preference for a wide region between -50º and 
50º, and decreasingly becomes unfavourable as planarity is approached. For the 
decoy-based term, the potential is unfavourable around -60º, and is slightly 
favourable below -60º and above 50º.

Considering that each of the potentials shown here have very different 
distributions, we will compare each of them, and combine them to create a full 
hydrogen bonding potential that will be applicable to the discrimination of near-
native decoys. In order to do so, we have selected 50 random targets from the 
MDSET decoy set, and calculated the 10% enrichment score for each of  them. 
The average enrichment score is then taken as the statistic representing the 
ability of a potential to correctly identify the best 10% models. 

To test the validity of our results, we used the Wilcoxon signed rank test to 
compare the average score against the random score of 0.10. When combining 
potentials and comparing them to DFIRE2, or when comparing potentials against 
each other, we will be using a two-tailed Wilcoxon rank sum test. In both cases, 
the W statistic and the p-value will be shown. Table 4.4 shows the result for 
independent potential terms.
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Figure 4.5 NH bonds potentials. The subscript “C” on the left  plots represents the 
classical potentials derived from crystal structures, while the “D” subscript  on the right 
ones represents potentials derived from decoys. These histograms only include fixed 
hydrogen bonds.
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Figure 4.6 CH bonds potentials. Here, potentials shown on the left  are derived from 
crystal structures, while those on the right  are derived from decoys alone. These 
histograms only include fixed hydrogen bonds.
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Table 4.4 10% enrichment score for univariate potential terms

Potential 10% enrichment W p-value (H0=0.10)
Classical
HAC (NH) 0.18 1017 1e-05
DHAC (NH) 0.17 1274 5e-07
HAXC (NH) 0.19 1238 7e-9
DHAXC (NH) 0.21 1400 1e-8
HAC (CH) 0.09 264 0.04
DHAC (CH) 0.08 413 0.01
HAXC (CH) 0.09 519 0.18
DHAXC (CH) 0.09 440 0.03

Decoy-based
HAD (NH) 0.13 788 0.04
DHAD (NH) 0.16 1219 8e-6
HAXD (NH) 0.21 1399 2e-8
DHAXD (NH) 0.22 1522 3e-10
HAD (CH) 0.09 348 0.01
DHAD (CH) 0.12 942 0.08
HAXD (CH) 0.14 1013 0.0003
DHAXD (CH) 0.13 1040 0.0003

We can see that all classical NH potentials, as well as the decoy based NH 
potential are significantly better than random (random is 0.10 for the 10% 
enrichment). The best performing ones are the classical NH potentials, and the 
decoy-based NH HAX and DHAX terms. The classical CH terms are all worse 
than random, while the decoy based ones are slightly better than random for the 
HAX and DHAX angles.

In order to test the usefulness of including CH bonds in full potential, we have 
computed 4 different potentials: An NH classical potential, combining all four 
classical NH term, an NH+CH classical potential, combining all classical NH and 
CH terms, and two similar combinations of decoy-based terms. Table 4.5 shows 
the results, with the Wilcoxon (W) statistic and the p-value of  the difference to the 
corresponding NH potential alone.
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Table 4.5 10% Enrichment score for univariate potential combinations

Potential 10% enrichment W p-value (H0=NHX)
NHC 0.27
NHC + CHC 0.27 1559 0.48
NHD 0.23
NHD + CHD 0.24 1524 0.40

It follows from this analysis that including CH hydrogen bonds in univariate NH 
potentials do not improve at all the enrichment score. Thus, we can conclude that 
linear combinations of CH terms are not useful for discriminating near-native 
decoy structures.
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4.3.3 Bivariate statistical potentials

We have seen that using CH hydrogen bonding terms in a linearly combined 
hydrogen bond potential did not significantly improve its discriminatory 
capabilities. In this experiment, we will analyse the effect of  grouping potential 
terms 2 by 2, in order to capture any coupling between them. 

First, we will analyse the distribution of each potential terms combination, both for 
NH and CH hydrogen bonds. We will then combine them, and compare these full 
potentials to those derived previously. Finally, we will assess the usefulness of 
including CH hydrogen bonds in these bivariate potentials.

Although the coupling between the HA distance and DHA angle has been studied 
in the literature [McDonald & Thornton 1994], little emphasis has been put on the 
coupling between the other 2 terms, namely the HAX angle, and the DHAX 
torsion. Thus, we start by generating the data points for each pair of features, 
giving us 6 different distributions: HA-DHA, HA-HAX, HA-DHAX, DHA-HAX, 
DHA-DHAX, and HAX-DHAX. These are shown for NH hydrogen bonds in Figure 
4.7.
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Figure 4.7 NH paired terms distributions  The level plots show the counts using heat 
colours, white being no counts, and red being maximal count. 
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It is apparent from Figure 4.7 that the terms have a largely preferred region in 
each case (yellow  to red regions). The centres of such regions are given for each 
pair in Table 4.6 below.

We can also observe secondary peaks, at HA = 2.4 Å and DHA = 100º, HAX = 
80º and DHAX = 0º, which are occurring in alpha helices between the ith and ith+4 
residues. Given that we overrepresented alpha helices compared to their 
frequency in nature, we observe more of these interactions that we would expect. 

Table 4.6 Preferred regions centres of pairwise features of NH bonds

Feature pair Centre value (A, B)
HA, DHA 2 Å, 160º
HA, HAX 2 Å, 145º
HA, DHAX 2 Å, -160º
DHA, HAX 160º, 145º
DHA, DHAX 160º, -160º
HAX, DHAX 145º, -160º

The fact that each pair of  terms has such strong preference for specific regions 
means that by treating each of  them independently, we might end up loosing 
information in our potentials, which in turn would decrease the probability of 
detecting defects in decoys. We will compare the linear and multivariate forms of 
our hydrogen bonding potential, but first, we will analyse the coupling of terms in 
CH hydrogen bonds. Using the same protocol, bin sizes and number of samples, 
we have generated similar level plots for CH hydrogen bonds. The plots are 
shown in Figure 4.8, next.
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Figure 4.8 CH paired terms distributions  The level plots show the counts using heat 
colours, white being no counts, and red being maximal count.
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The patterns showing for the CH hydrogen bonds are very different from those 
observed for NH hydrogen bonds, which have less concentrated regions in the 
pairwise plots. First, we can see that the HA-DHA pair shows 2 different clusters, 
one around 2.25 Å and the other around 2.4 Å. A more detailed analysis showed 
that the 2.4 Å cluster corresponds to main chain CA carbon atoms, while the 
other one correspond to side chain CH hydrogen bonds. This difference is most 
likely due to the strong neighbouring NH hydrogen bond on the main chain, which 
would then drive the position of  the CH bond when forming secondary structures. 
The centres of the main clusters are given in Table 4.7 below.

Table 4.7 Preferred regions centres of pairwise features of CH bonds

Feature pair Centre value (A, B)
HA, DHA 2.35 Å, 105º
HA, HAX 2.35 Å, 80º
HA, DHAX 2.35 Å, 0º
DHA, HAX 105º, 80º
DHA, DHAX 105º, 0º
HAX, DHAX 80º, 0º

Using the same protocol as for univariate potentials, we have derived a statistical 
potential for each of  the pairs, for both CH and NH bonds. The level plots of the 
classical potentials are shown in Figure 4.9 for the NH bonds, and 4.10 for the 
CH bonds.
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Figure 4.9 NH classical bivariate  potentials. The level plots show the energies of the 
bivariate potentials, ranging from green for favourable energies, to red for unfavourable 
ones. The darker the colour, the more extreme the energy is on the scale. The same scale 
has been used for all plots.
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Figure 4.10 CH classical bivariate potentials. The same energy scale has been used as 
for NH bonds.
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There are several interesting patterns emerging from the NH classical potentials. 
Namely, the terms including the HA distance do not exhibit negative energies as 
low  as terms not including it. This can be explained by the different reference 
state used, where the sum of the reference state in all bins does not equal 1 (we 
used the DFIRE reference state for the HA distance). Nonetheless, we can 
observe preferred regions at HA = 1.9 Å, DHA = 170º, HAX = 155º and DHAX = 
-170º. For the pure angle terms, we can observe a favourable region in every 
case, clearly showing the contrast of  energies for different values. The DHA-HAX 
term is more favourable as both DHA and HAX approach linearity. The DHA-
DHAX term has a preferred region for linear DHA angles and planar DHAX 
torsions, but still is favourable for all DHA angles above 160º. A similar pattern is 
observed for the DHAX-HAX term, with a preference for planar torsions, and HAX 
angles above 140º.

The classical CH bonds on the other hand show  different patterns, with very faint 
favourable regions in terms involving the HA distance. For angle terms though, 
we can see several clusters. In the DHA-HAX potential, we can see 3 clusters: 
one at DHA=100º and HAX=80º, one at DHA=140º and HAX=140º, and one at 
DHA=180º and HAX=0º or HAX=180º. The last two clusters are very interesting, 
as they do not show  favourableness in univariate potentials introduced earlier. 
This shows how  coupling features can impact the overall potentials. The DHA-
DHAX term shows preference for DHA=100º and DHAX=0º, but also for 
DHA=140º, and DHAX = ±180º. Again, this second cluster does not show  in 
univariate potentials. Finally, the HAX-DHAX term show  two clusters, one at 
HAX=80º and DHAX=0º, and one at HAX=140º and DHAX = ± 180º. 

From this analysis, we can see that there is clearly two interactions being 
captured in classical CH bivariate potentials, while only one is accurately 
represented in the univariate potentials. This could potentially impact the results 
of decoy discrimination, which we will test now. Results for the 10% enrichment is 
shown in Table 4.8 below.
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Table 4.8 10% enrichment score for bivariate potential terms

Potential 10% enrichment W p-value (H0=0.10)
Classical 
HA-DHAC (NH) 0.19 1277 8e-8
HA-HAXC (NH) 0.24 1393 2e-9
HA-DHAXC (NH) 0.21 1340 3e-9
DHA-HAXC (NH) 0.23 1389 2e-9
DHA-DHAXC (NH) 0.24 1398 2e-9
HAX-DHAXC (NH) 0.23 1466 5e-9

HA-DHAC (CH) 0.09 486 0.15
HA-HAXC (CH) 0.09 519 0.12
HA-DHAXC (CH) 0.09 365 0.11
DHA-HAXC (CH) 0.10 593 0.51
DHA-DHAXC (CH) 0.10 490 0.58
HAX-DHAXC (CH) 0.10 575 0.71

Decoy-based 
HA-DHAD (NH) 0.17 1274 5e-6
HA-HAXD (NH) 0.22 1458 7e-10
HA-DHAXD (NH) 0.18 1374 4e-10
DHA-HAXD (NH) 0.18 1161 4e-7
DHA-DHAXD (NH) 0.17 1162 5e-8
HAX-DHAXD (NH) 0.21 1479 2e-10

HA-DHAD (CH) 0.11 613 0.42
HA-HAXD (CH) 0.12 772 0.11
HA-DHAXD (CH) 0.11 580 0.66
DHA-HAXD (CH) 0.12 759 0.06
DHA-DHAXD (CH) 0.12 587 0.09
HAX-DHAXD (CH) 0.11 711 0.20

Results in Table 4.8 show  that all NH terms are significantly better than random, 
while most CH terms are either worse, or not very much better than random. In 
fact, NH terms largely outperforms CH terms, both for classical and decoy based 
potentials. 
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The second observation is that the scores for NH terms are generally better than 
the univariate scores, independently of the terms chosen. In order to compare the 
bivariate and univariate potentials, we need to generate full potentials. Results for 
NH and NH+CH potentials are shown in Table 4.9 below. 

Table 4.9 10% Enrichment score for bivariate potential combinations

Potential 10% enrichment W p-value (H0=NHX+)
NHC+ 0.27
NHC+ + CHC+ 0.28 1480 0.31
NHD+ 0.27
NHD+ + CHD+ 0.27 1553 0.47

We can observe no significant improvement after adding CH hydrogen bonding 
potentials compared to NH only potentials, regardless of the protocol used for 
deriving them. Thus, we can conclude that, as for univariate potentials, adding 
CH bonds do not improve the discriminatory power of our potential when applied 
to near native decoys. 

In order to decide which of the univariate or bivariate version of  our potential to 
use, we have compared the NH full potentials derived using the univariate terms, 
versus the bivariate ones. The comparison was made between classical 
potentials, and separately between decoy-based potentials. Results are shown in 
Table 4.10.

Table 4.10 Comparison of univariate and bivariate NH potentials

Potential 10% enrichment W p-value (H0=NHX)
NHC 0.27
NHC+ 0.27 1533 0.42
NHD 0.23
NHD+ 0.27 1150 0.005
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We can see that there is no significant difference between univariate and 
bivariate potentials when derived using a classical reference state. On the other 
hand, using bivariate terms does improve the decoy-based term, going from 0.23 
to 0.27, with a p-value for that difference of 0.005. Thus, we can conclude that 
bivariate potentials are at least as good as univariate ones, but can also 
outperform them in specific cases.

4.3.4 Inclusion in the DFIRE2 potential

The DFIRE2 potential is a heavy atom pairwise distance potential including 3 
orientation dependent terms. Since it does not explicitly model hydrogen atoms, it 
fails to capture the contribution of hydrogen bonds to the total free energy of  the 
protein. Thus, adding a hydrogen bonding term might in principle increase the 
precision of  DFIRE2. The results are shown in Table 4.11 below, with the one-
tailed Wilcoxon rank sum test for the difference to DFIRE2.

Table 4.11 10% enrichment of DFIRE2 with and without hydrogen bonds

Potential 10% enrichment W p-value (H0=DFIRE2)
DFIRE2 0.41
DFIRE2 + NHC 0.42 1521 0.38
DFIRE2 + NHC+ 0.43 1463 0.28
DFIRE2 + NHD 0.42 1530 0.41
DFIRE2 + NHD+ 0.43 1463 0.28

After adding the hydrogen bonding terms to DFIRE2, we could observe no 
significant difference in the 10% enrichment score, regardless of the type of 
potential used. Therefore, we can conclude that hydrogen bonding, including or 
excluding NH bonds, does not significantly improve the existing DFIRE2 
potential.
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4.4 Conclusions

In this chapter, we have studied various aspects related to hydrogen bonding 
potentials, and more specifically to the inclusion of  CH hydrogen bonds. We have 
seen that although showing preference for specific regions, there was no 
improvement when deriving potentials using CH and NH bonds, compared to 
using only NH hydrogen bonds. 

In our first study, we looked at individual NH and CH terms, which all showed 
specific peaks in the distribution of observations, and in their potentials. Thus, 
hydrogen bonds were successfully detected by our protocol, but still failed to 
improve DFIRE2, implying that they did not add any information to it. When 
taking a closer look at DFIRE2, we see it includes distance and angles 
components for each pair of  heavy atoms. As we are only considering fixed 
hydrogen position, these would implicitly be modelled from their covalently 
bonded heavy atoms, and as such would be partially represented in DFIRE2. 
Moreover, we are only interested in near-native decoys, which are by definition 
very well formed structures, with many native-like properties, including their 
hydrogen bonding pattern. The precision gain from adding an explicit hydrogen 
bonding term, with or without CH bonds, and derived from crystal structures or 
decoys, would therefore not be significant, as it would be adding redundant 
information on little varying features.

This redundancy was partially tested by using bivariate potentials, where we 
paired features describing hydrogen bonds. Since considering each feature 
separately would be an approximation of reality, by using coupled terms, we 
should, in theory, observe subtler patterns that would be lost otherwise. Given the 
relatively small sample size in our crystal structure, we could not couple more 
than 2 features together, as we would end up having a combinatorial explosion, 
and many empty bins in our potentials. The analysis of the level plots for the 
combined terms revealed regions of  coupled preference that did not show  in the 
univariate potentials. This was both observed for NH and CH hydrogen bonds, for 
which the potentials outperformed or did as good as their univariate counterparts. 
But despite this, neither the classically derived or decoy-based potentials showed 
a significant improvement over DFIRE2.

This analysis led us to conclude that NH+CH hydrogen bonding potentials are not 
useful at discriminating near-native decoys compared to pure NH potentials, both 
when deriving them using decoys or using crystal structures. Moreover, the 
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information gained from pairwise coupling of features still did not add enough 
information to compensate for the small variability in the hydrogen bonding 
patterns of our near-native decoys. 
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5.1 Introduction

Conventionally, atomic distance potentials have considered mostly long-range, 
omnidirectional atomic interactions, with a cutoff distance at 15 Å. Energy 
functions such as DFIRE [Zhou & Zhou 2002] even increase the bin width as the 
distance decreases, effectively preventing more detailed modelling of short-range 
regions. DFIRE2 (and in its first version, dDFIRE), is a significant improvement 
over DFIRE, as it both models more bins at short distances, but also includes 3 
angle terms to account for the orientation dependency of interacting polar atoms. 
The decoy discriminating performances increased after including the orientation 
terms, as shown in Figure 5.1. 

Figure 5.1 DFIRE versus  dDFIRE [Yang & Zhou 2008]. This plot shows that  dDFIRE 
performs better for decoys less than 6 Å away from the native structure, but  becomes 
random for the remaining. 

There are limitations to this approach though, as the DFIRE2 potential assumes 
that only polar atoms are orientation dependent. Moreover, it does not include 
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hydrogen atoms, and as such, can only model heavy atoms, which might not be 
sufficient for near-native decoy discrimination. 

DFIRE2 also uses a 4 dimensional energy function, which for hydrogen bonds in 
chapter 4 did not provide any significant improvement over a simpler linear 
combination of each term. For DFIRE2, this combinatorial explosion led to a 
simplification of  the potential, both by using a smaller number of bins (only 6 per 
angle), and assuming dependencies between the angles modelled. 

In this chapter, we have studied how  using different potential derivation protocols 
could improve the performances of DFIRE2 on near-native decoy sets. To do so, 
we generated potentials for four geometrical features of pairwise atomic 
interactions, in the same fashion as for hydrogen bonds, meaning one distance 
term, two angle terms, and one dihedral term. Each of these features was 
generated from a different method, using combinations of  crystal structures and 
decoys. Moreover, a distinction was made between non-bonded atomic 
interactions within the same residues, or across different residues.  
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5.2 Methods

5.2.1 Protein sets

Crystal structure sets

Since this is an all-atom study, we need to generate explicit hydrogen positions 
for the crystal structures that we use when training the potential. This was done 
in a similar fashion as for the hydrogen bonding and solvation potential, using the 
pdb2gmx tool. The crystal structure set selected from the PDB is the same one 
as used in generating the solvation and hydrogen bonding potentials, and is 
comprised of 713 proteins resolved at a resolution of 2 Å or less. 

Decoy sets

We have considered various decoy sets, but mainly focused our efforts on the 
MDSET. 70 targets with 500 decoys were selected at random, the remaining 180 
being used in conjunction with the crystal structure set to produce the potential 
distributions. The results obtained are validated using the HRDECOY decoy set, 
comprised of 150 targets, each with 500 decoys. We will use 40 of  these targets 
for testing, and 110 for training. 
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5.2.2 Interaction model
One of  the hypotheses of  this experiment is that interactions between pairs of 
atoms are similar to hydrogen bonds, in the sense that they are directional, prefer 
a specific dihedral value, and equilibrate at a certain distance. A non-bonded 
interaction can be described using four points, as shown in Figure 5.2 below.

Figure 5.2 Atomic interaction model. In this system, B and C are the atoms interacting, 
A is the centroid of atoms covalently bonded to B, and D is the equivalent for atom C. 
ABC represents the angle at atom B, BCD the angle at  atom C, ABCD is the torsion angle 
along the BC axis, and BC is the distance between atoms B and C. 
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5.2.3 Statistical potentials
We looked at various ways of deriving energies in our potentials, as well as 
various ways of selecting which atoms are interacting. All of  our potentials are 
derived using the inverse Boltzmann formulation introduced previously in this 
thesis. The energy derivation protocols used are defined in Table 5.1 below.

Table 5.1 Potential generation methods

Protocol Subscript Observed State Reference State

Classical C Crystal structures Geometrical model

Hybrid H Crystal structures
Decoys with RMSD > 
average

Decoy-based D
Decoys with RMSD < 
average

Decoys with RMSD > 
average

The Classical method is the one conventionally used in the literature, where 
crystal structures are used as the observed state, and a model of randomness is 
used for the reference state. Here, we used the method from DFIRE to derive our 
reference state.

The Decoy-based approach is the same as the one used in previous chapters, 
and uses better than average decoys as the observed state, and worse than 
average decoy as the reference state. 

The hybrid method is a combination of  both, and uses crystal structures as the 
observed state, and decoys that are worse than average as the reference state.

Each potential was then split into two parts, one representing non-bonded intra-
residue interactions, and the other representing non-bonded interactions between 
atoms in different residues. We decided to separate the two because non-bonded 
interactions in the same residue are subjected to local topology constraints, and 
as such, are likely to have a different distribution. The intra-residue term therefore 
mostly represents the side chain packing of  individual residues. The 
nomenclature used in this study is shown in Table 5.2 below.
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Table 5.2 Potentials residue separation

Type Superscript Residue separation
Inter-residue >= 1

Side chain packing (intra-residue) res 0

The interaction model represented in Figure 5.2 includes 4 geometrical features 
to represent the interaction between two non-bonded atoms. We will derive a 
potential for each of them, and refer to them using the formalism in Table 5.3.

Table 5.3 Geometrical features modelled

Name Type
BC Distance
ABC Angle
BCD Angle
ABCD Dihedral 

These features model the interaction between atoms “B” and “C”, with “A” being 
the centroid of atoms covalently bonded to “B”, and “D” the centroid of  atoms 
covalently bonded to “C”.

Since we generate a potential for each feature (BC, ABC, BCD, ABCD), for each 
generation protocol (classical, hybrid, decoy-based) and for both inter and intra-
residues, we end up having 24 different energy terms, which we will have to 
choose from, and combine in order to produce a full potential.

The binning protocol used was derived by taking the minimal bin size that is 
reasonable given the number of data points we have. Since the crystal structure 
set used to derive the classical potentials is the smallest, we used it as the basis 
to define our bins. In this set, there are 713 proteins to which we add the 400 
crystal structures from the decoy sets, giving us 1113 proteins from which to 
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derive the observed state. Each protein has an average of 2000 atoms in them, 
giving us a total of 2 billion unique pairwise atomic interactions. 

Given that tryptophan is the rarest amino acid with a frequency of occurrence of 
1.3%, the rarest interaction will be between two tryptophans, which will represent 
0.017% of  the data points. Thus, we can expect around 340,000 data points to 
model TRP-TRP interactions. Since tryptophan contains 24 atoms (aside from 
termini ones), we have 300 unique TRP-TRP interactions, giving us an average 
of 1133 data points (340,000 atoms divided by 300 interactions) for any two 
tryptophans. Thus, by using a maximum of  100 bins for the distance potentials, 
we have an average of 12 data points in each bin, for the rarest interaction 
occurring in proteins. Any other interaction should be expected to have 
significantly more data points. Using this logic, we defined the bins as shown in 
Table 5.4.

Table 5.4 Value range for each feature

Potential Range Bins Bin size

BC [0, 15] Å 100 0.15 Å

ABC [0, 180] º 90 2º

BCD [0, 180] º 90 2º

ABCD [-180, 180] º 90 4º

This binning protocol was applied to each different potential generation method, 
for both residue separations considered.

5.2.4 Combining potential terms
As previously, we use the optim function in R, with a Nelder-Mead steepest 
descent search algorithm to find a good set of parameters. This is optimised to 
maximise the average 10% enrichment score over a training set taken from the 
MDSET.
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5.2.5 Performance measures
To assess the performances of our potentials, we used the average 10% 
enrichment score over the out-sample set of  our decoy sets. The 15% 
enrichment, Pearson correlation coefficient and Kendall tau are also used as an 
additional validation in the final assessment. 
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5.3 Results & Discussions

5.3.1 Component analysis of DFIRE2 
DFIRE2 is composed of  four energy terms: a distance term and three angle 
terms. The distance term is equivalent to the original DFIRE, with the difference 
that the bins all have equal sizes, and thus, short distances are better modelled. 

The four terms composing DFIRE2 are referred to as DFIRE for the distance 
term, and A1, A2, A3 for the angle terms. The performance of each component, 
as well as DFIRE2, is shown in Table 5.5 for the MDSET. There has been no 
optimisation done on weights, each term being taken from the published 
implementation.

Table 5.5 DFIRE2 energy terms scores

Potential 10% Enrichment
DFIRE 0.34
A1 0.35
A2 0.35
A3 0.36
DFIRE + A1 0.38
DFIRE + A2 0.38
DFIRE + A3 0.39
DFIRE + A1 + A2 0.39
DFIRE + A1 + A3 0.40
DFIRE + A2 + A3 0.40
DFIRE2 0.41

We see above that overall, DFIRE2 performs better than any of its constituents, 
and correctly identifies 41% of  the 10% best decoys. This will serve as our 
benchmark for assessing the performances of our potentials.
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5.3.2 Distance potentials
The first potential terms we considered are derived from the distance between 
two non-bonded atoms. As explained in the methods section, we will consider 
atoms in the same residue separately from atoms in different residues. 

This was done because atoms within a specific residue are constrained to 
specific positions due to the residue topology. The intra-residue term mostly 
represents the side chain packing, while the inter-residue non-bonded term 
represents the long-range van der Waals and electrostatic interactions. We 
derived three distance potentials for each residue separation, using a different 
protocol to define the observed and reference states. 

The classical potential uses crystal structures as the observed state, and a 
geometrical reference state modelling the probability of  each bin at random. 
Here, we used the formalism of DFIRE for the reference state. 

The decoy-based potential uses the decoys that are better than average as the 
reference state, and the decoys that are worse than average for the reference 
state. In chapter 3, we showed that this approach successfully generates a 
solvation term, so we are now interested in generalising it.

Finally, our third approach uses the crystal structures as the observed state, and 
the decoys that are worse than average as the reference state. 

For each of  these potentials, we used the training set for the MDSET, and 
calculated the 10% enrichment to assess how  well they perform at discriminating 
the near-native decoys in our test-set. We then combined the intra-residue and 
inter-residue potentials for each method. Results are shown in Table 5.6, along 
with the Wilcoxon statistic and the p-value of the difference to a random 
distribution.
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Table 5.6 Distance potentials 10% enrichment for the MDSET

Potential 10% Enrichment W P-value (H0=0.10)
BCC 0.34 1499 1e-9
BCD 0.53 1594 8e-11
BCH 0.52 1596 7e-11

BCCres 0.42 1376 4e-10
BCDres 0.69 1596 7e-11
BCHres 0.52 1596 7e-11

BCC + BCCres 0.48 1596 7e-11
BCD + BCDres 0.72 1596 7e-11
BCH + BCHres 0.61 1596 7e-11

We can see that every term derived here is significantly better than random, with 
scores ranging from 0.34 to 0.72. As in previous chapters, the highest score was 
achieved by the decoy-based potential.

We can also observe that intra-residue interaction score consistently higher than 
inter-residue ones. This can be explained by the fact that side chains are easier 
to unfold than the main chain, and thus, more differences between good and bad 
structures will be observed in the side chain packing, leading to better 
discrimination.

Finally, we can notice that combining the inter- and intra-residue terms produce a 
better score than each term alone. To verify this, we calculated the p-value of the 
difference between the combination, and the intra-residue term alone, using a 1-
tailed Wilcoxon rank sum test. We obtained p-values of 0.05, 0.05 and 0.0001 for 
the classical, decoy-based and hybrid potentials respectively.

Therefore, we can conclude that combining inter- and intra-residue distance 
terms is useful for discriminating near-native decoys.
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5.3.3 Angle potentials
We have seen that we could successfully derive a combination of distance 
potentials that would perform reasonably well on a near-native decoy set. 

In order to further improve the performance of  our full potential, and in order to 
account for the relative orientation of the different atoms, we derived two angle 
terms, one for each atom interacting. This is similar to our definition of hydrogen 
bonds introduced in Chapter 4, but applied to unconstrained, long-range and 
short-range interactions.

The ABC and BCD angles are expected to be very similar in performance, given 
that we only consider each pair of atoms once, and as such, the ABC angle 
would be the BCD angle if  we had inverted the order of  the two atoms 
considered. Any difference would be due to the ordering that we arbitrarily chose 
(in our case, we chose the B atom name to be alphabetically before the C atom), 
rather that any difference in the interaction.

To illustrate how  angles can have a preference, even at longer ranges, we 
generated plots for the ABC angles in crystal structures, for the Threonine-
Threonine interactions between the side chain OG1 and main chain H atoms, 
and between the side chain CG2 and main chain O atoms. This is shown in 
Figure 5.3, while the potentials are shown in Figure 5.4 for the classical ones, 5.5 
for the decoy-based ones, and 5.6 for the hybrid ones. We chose Threonine 
because it is neither too hydrophilic nor hydrophobic, and has a flexible side 
chain with a hydrogen bond donor and acceptor. 
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ABC Angle Distributions In Crystal Structures
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Figure 5.3 ABC angle distributions. This plot  shows the distribution of inter- (upper 
graphs) and intra-residue (lower graphs) ABC angle for the Threonine-Threonine H…
OG1 interaction, and the CG2…O interaction. We can observe that the inter-residue 
distribution is slightly skewed towards smaller angles, while the intra-residue angles have 
distinct preferences in various regions. The H…OG1 intra-residue interaction shows a 
preference at 90º, but  also has a secondary plateau between 40º and 65º. As for the 
CG2…O interaction, it has three very strong peaks, at  20º, 55º and 80º. Few potentials 
consider intra-residue non-bonded angles, but we can see here that  they are actually very 
strongly constrained to specific regions, and should therefore be taken into account. 
Moreover, we observe no angles at all in some regions, suggesting that  steric effects are 
preventing these angles from being accessible.
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ABC Angle Classical Potentials
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Figure 5.4 ABC angle  classical potentials. This plot  shows the distribution of inter- 
(upper graphs) and intra-residue (lower graphs) ABC angle classical potentials for the 
Threonine-Threonine H…OG1 interaction, and the CG2…O interaction. The classical 
potentials are derived using crystal structure as the observed state (Figure 5.3) and a 
random geometric probability model as the reference state. The inter-residue H…OG1 
potential has 3 distinct  preferred regions at  16º, 50º and 80º, while it  disfavours angles 
above 90º and below 10º. The intra-residue though has a major preference for angles 
around 90º, and largely disfavours angles below 45º and above 100º. The CG2…O 
potential has a different distribution, and has a preference for linear angles in the inter-
residue potential, while it  shows an alternating preference at 20º, 55º and 80º for the intra-
residue potential, which is consistent with the observations in Figure 5.3.
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ABC Angle Decoy-based Potentials
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Figure 5.5 ABC angle decoy-based potentials. This plot  shows the decoy-based 
potentials for the Threonine-Threonine H…OG1 interaction, and the CG2…O 
interaction. The decoy-based potentials are derived using better than average decoys as 
the observed state and worse than average decoys as the reference state. We can see here 
that the H…OG1 intra-residue potential has a large preference for very short angles (10º), 
while it disfavours angles above 90º. The CG2…O potential has a preference for linear 
angles in inter-residue interactions, while it  largely disfavours angles around 80º in the 
intra-residue ones.
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ABC Angle Hybrid Potentials
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Figure 5.6 ABC angle  Hybrid potentials. This plot shows the ABC angle hybrid 
potentials for the Threonine-Threonine H…OG1 interaction, and the CG2…O 
interaction. The hybrid potentials are derived using crystal structures as the observed state 
and worse than average decoys as the reference state. We observe disfavour towards very 
small angles in the H…OG1 inter-residue interactions. On the other hand, the intra-
residue H…OG1 potential shows a large preference for angles around 10º, and has two 
other favourable regions at 60º and 90º, while strongly disfavouring angles above 100º, 
and between 16º and 45º. The CG2…O intra-residue potential has a preference for very 
short angles at 5º, and another between 75º and 90º.
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We can see from the examples given previously that all three methods produce 
very different potentials, suggesting there might be different information to extract 
from each of them, and thus, it might be useful to eventually combine them to 
produce a more precise potential. Indeed, the more information is accessible to 
describe decoys, the more differences will be spotted, and thus, the better we 
should be able to discriminate them. 

In every case seen here, the intra-residue potentials gave more information, as 
they showed clearer favourable and unfavourable regions, whereas the inter-
residue potentials had overall trends observable, but less finer details.

The potentials for the ABC and BCD angles are then used to discriminate decoys 
in the MDSET. We tested each individual term as well as the combination of the 
intra- and inter-residue terms. Results for the 10% enrichment, with the p-value to 
random calculated from a Wilcoxon test, are shown in Table 5.7.

Table 5.7 Angle potential 10% enrichment for the MDSET

Potential 10% Enrichment W P-value (H0=0.10)
ABCC 0.24 1540 1e-10
ABCD 0.38 1596 7e-11
ABCH 0.31 1540 1e-10
BCDC 0.22 1431 2e-10
BCDD 0.38 1596 7e-11
BCDH 0.41 1596 7e-11

ABCCres 0.37 1596 7e-11
ABCDres 0.70 1596 7e-11
ABCHres 0.58 1596 7e-11
BCDCres 0.34 1540 1e-10
BCDDres 0.67 1596 7e-11
BCDHres 0.53 1596 7e-11

ABCC + ABCCres 0.40 1596 7e-11
ABCD + ABCDres 0.71 1596 7e-11
ABCH + ABCHres 0.60 1596 7e-11
BCDC + BCDCres 0.35 1540 1e-10
BCDD + BCDDres 0.68 1596 7e-11
BCDH + BCDHres 0.57 1596 7e-11
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Here, ABC represents the angle about the B atom, BCD the angle about the C 
atom. The p-value is for the difference to the enrichment score of a random 
distribution. 

We can see that, as for distance potentials, the best performing terms are the 
intra-residue ones, with scores between 0.37 and 0.70. The combination of inter- 
and intra-residue terms did not have much better scores compared to the intra-
residue terms alone. 

From these results, we can conclude that using angle potentials is useful at 
discriminating near-native decoys, even without combining them with a distance 
potential.
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5.3.4 Dihedral potentials
Most potentials in the literature don’t include a dihedral term for non-bonded 
interactions, as they do not consider it as being representative of an existing 
interaction. DFIRE2 partly models the dihedral angle by including a third angle 
term, representing the angle between the vectors defined by the atoms and their 
covalently bonded atoms.

The performance of these potentials was assessed by calculating the 10% 
enrichment score over the MDSET decoy set, for each term derived using the 
same protocol that was used for distance and angle terms. The results, as well 
as the p-value and Wilcoxon test are shown in Table 5.8.

Table 5.8 Dihedral potentials 10% enrichment for the MDSET

Potential 10% Enrichment W P-value (H0=0.10)
ABCDC 0.28 1540 1e-10
ABCDD 0.28 1596 7e-11
ABCDH 0.32 1596 7e-11

ABCDCres 0.36 1485 2e-10
ABCDDres 0.70 1596 7e-11
ABCDHres 0.56 1596 7e-11

ABCDC + ABCDCres 0.40 1593 9e-11
ABCDD + ABCDDres 0.70 1596 7e-11
ABCDH + ABCDHres 0.58 1596 7e-11

As is the case for distance and angle potentials, the best performing single terms 
are the intra-residue decoy-based and hybrid potentials, with scores of 0.70 and 
0.56 respectively. The combination of intra- and inter-residue terms did not 
significantly score higher compared to the intra-residue terms alone, suggesting 
that for this decoy set, the intra-residue interactions are a better indicator of the 
nativeness of the structure.
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5.3.5 Comparison to DFIRE2
In order to compare the efficiency of  our potential to DFIRE2, and to assess 
whether including DFIRE2 is useful, we combined the solvation, distance, angle 
and dihedral terms into several groups. We will combine all terms, including 
solvation, into three potentials, one composed of  all the classically derived terms, 
one composed of  the decoy-based terms, and finally a third one composed of 
hybrid terms. The solvation potential was regenerated in order to create the 
hybrid version that was not studied previously. 

Results for the 10% enrichment for the MDSET decoy set are shown in Table 5.9. 
A one-tailed Wilcoxon test was used to assess the p-value of  the difference of  our 
potentials to DFIRE2, and is shown in Table 5.9 as well. The FULL potentials are 
composed of the distance, angles and dihedral terms, and are derived for inter- 
and intra-residue interactions. We then combine the full inter-residue, intra-
residue and solvation terms to produce our complete potential, which we call the 
Distance, Orientation and Solvation (DOS) potential. 

Table 5.9 Full potentials 10% enrichment for the MDSET

Potential 10% Enrichment W P-value (H0=DFIRE2)
DFIRE2 0.41

FULLC 0.41 1580 0.53
FULLD 0.60 638 3e-8
FULLH 0.59 679 1e-7

FULLCres 0.44 1390 0.15
FULLDres 0.71 243 6e-15
FULLHres 0.63 485 1e-10

DOSC 0.51 1066 0.002
DOSD 0.73 194 6e-16
DOSH 0.67 355 8e-13

We can see from this table that aside from the classical intra- and inter-residue 
combinations, all other full potentials are significantly better than DFIRE2. In 
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particular, the combination of  the decoy-based intra-residue, inter-residue and 
surface accessibility yielded the best score, with an average enrichment of 0.73. 
The best scoring potentials are always the decoy-based ones, followed by the 
hybrid ones, and finally the classical ones. Thus, we can conclude that using 
decoys as part of a potential is useful when discriminating near-native decoys.  

It is not surprising that the FULLC term has the same score as DFIRE2, 
considering they both are formulated and derived in the same way, use the same 
reference state, and have almost the same combination of terms, the main 
differences being the number of  angle bins, the angle between the vectors in 
DFIRE2 that has been replaced by the dihedral term here, and the inclusion of 
non-polar atoms in the angle terms. 

DFIRE2 was derived as a multivariate potential, where the three angles and 
distance are used to produce a 4 dimensional potential. From this experiment, we 
can see that there is no benefit in the increased complexity compared to the 
simple linear combination of each independent term, as in the FULLC potential. 
This is in line with our conclusion of  Chapter 4, where we found that bivariate 
hydrogen-bonding potentials did not outperform a linear combination of  single 
terms.

To verify our results, we generated the potentials using another decoy set, the 
HRDECOY set, and combined the DOSC, DOSD and DOSH potentials into a 
single one, which we simply call the DOS potential. This was done to benefit from 
the information extracted from native structures, but also from the decoys that are 
representative of a specific generation method. To avoid over-fitting due to the 
large number of terms, we optimised using the total value of the DOSC, DOSD 
and DOSH instead of  their individual components, thus only having 3 terms for 
which to optimise the weights.

We calculated the 10% enrichment, 15% enrichment, Pearson correlation, and 
Kendall Tau, with the significance of  the difference to DFIRE2 assessed using the 
p-value of the one-tailed Wilcoxon rank sum test. Results are shown in Table 
5.10 below. 
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Table 5.10 DOS potential scores

DFIRE2 DOS W P-value (H0=DFIRE2)
MDSET
10% Enrichment 0.41 0.75 164 2e-16
15% Enrichment 0.45 0.75 253 9e-15
Pearson R 0.54 0.79 424 1e-11
Kendall Tau 0.36 0.54 567 3e-9

HRDECOY
10% Enrichment 0.42 0.47 662 0.09
15% Enrichment 0.49 0.55 618 0.04
Pearson R 0.73 0.83 456 0.0004
Kendall Tau 0.55 0.66 369 9e-6

The analysis of  the DOS potential showed that it consistently and significantly 
outperformed DFIRE2, on both decoy sets and using different correlation 
measures. The only exception was the 10% enrichment on the HRDECOY set, 
where the p-value was 0.09. 

The difference in performance between the two decoy sets probably comes from 
the fact that there are 100 less targets used in the HRDECOY set than in the 
MDSET. Given that the decoy-based potentials are generated for each set, we 
could expect less details in the HRDECOY one, and thus, a lesser performance. 
Further work will examine the effect of varying the number of  targets used to 
generate the potentials, and determine the minimum number of structures 
required to derive precise potentials for near-native decoy discrimination studies.

Nonetheless, we can say that overall, the DOS potential is more useful than 
DFIRE2 at discriminating near-native decoy structures, as seen in Table 5.11 for 
the MDEST targets, and illustrated for targets 1JYH and 3EOI in Figure 5.7.
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Table 5.11 DOS and DFIRE2 MDSET targets scores

TARGET DOS DFIRE2 TARGET DOS DFIRE2
133L 0.80 0.34 1UA8 0.88 0.38
153L 0.76 0.36 1UJ8 0.78 0.54
1AA2 0.68 0.24 2B1K 0.80 0.54
1AAJ 0.74 0.20 2BK8 0.88 0.46
1ACF 0.74 0.58 2CGQ 0.72 0.54
1AGI 0.80 0.42 2CKX 0.58 0.54
1EW4 0.82 0.70 2COV 0.68 0.28
1EY0 0.78 0.40 2CWR 0.72 0.28
1EYH 0.80 0.58 2FZP 0.84 0.66
1EZK 0.82 0.40 2GBN 0.76 0.32
1F32 0.70 0.46 2HDZ 0.76 0.58
1FAA 0.72 0.60 2HLQ 0.72 0.20
1JB3 0.66 0.64 2HP7 0.80 0.44
1JMW 0.86 0.40 2OVO 0.66 0.22
1JOS 0.54 0.36 2P5D 0.78 0.46
1JPE 0.66 0.38 2PCY 0.68 0.40
1JYH 0.82 0.06 2PKO 0.80 0.50
1KN3 0.82 0.42 2PTH 0.76 0.86
1MWP 0.84 0.26 2YGS 0.58 0.44
1MZL 0.46 0.08 2YWD 0.78 0.32
1NA5 0.84 0.30 2YWK 0.70 0.30
1NKO 0.74 0.24 2YXM 0.66 0.36
1NOA 0.66 0.26 2Z9T 0.66 0.14
1OW1 0.86 0.64 2ZEQ 0.50 0.30
1TXJ 0.74 0.54 3EOI 0.92 0.26
1TZV 0.82 0.82 3EYE 0.82 0.20
1U9A 0.84 0.52 3FH2 0.88 0.62
1U9P 0.82 0.32 3G9B 0.78 0.28
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Figure 5.7 Performance  of DFIRE2 and DOS on targets 1JYH and 3EOI. We can see 
that the DOS potential vastly outperforms the DFIRE2 potential on both targets, and at  all 
ranges of All-atom RMSD. We can also note that  all potentials successfully place the 
native structure at the lowest energy point.
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5.4 Conclusions

In this chapter, we have studied how  distance and orientation potentials could 
help discriminate near native decoys. In order to do so, we have generated 
potentials to model four features describing the interactions between two atoms, 
namely the distance between them, the planar angle about each atom, and the 
dihedral angle along their axis. This interaction model is similar to the one used 
for hydrogen bonds in Chapter 3 in terms of the features described. 

The potentials were generated for both non-bonded intra-residue interactions, 
modelling the side chain packing, and for non-bonded inter-residue interactions, 
representing the van der Waals and electrostatic interactions occurring at longer 
ranges, thereby modelling the larger scale structural features such as alpha-
helices and beta-sheets. We could observe that across all features described 
here, there were clear preferences for specific regions. This is even truer for 
intra-residue interactions, where the range of  allowed values is constrained due 
to the residue topology. 

To extract the energies from the observed distribution of features, we used three 
methods, and assessed the performance of each one independently, then 
combined them to produce a complete potential. The potentials were derived 
using both crystal structures and decoys. Although the classical formulation 
performed slightly better than DFIRE2 (0.51 vs 0.41), the decoy-based potential, 
derived using decoys only for both the observed and reference states, performed 
much better on the MDSET, with a 10% enrichment score of 0.73. 

The combination of  the classical, hybrid and decoy-based potential further 
increased this score to 0.75, meaning that 3 out of 4 of  the 10% best decoys will 
be successfully identified. This performance difference with DFIRE2 can be seen 
across different measures (0.75 vs 0.45 for 15% enrichment, 0.79 vs 0.54 for the 
Pearson correlation, and 0.54 vs 0.36 for the Kendall tau), showing that this 
method is highly effective at discriminating near-native decoys. Moreover, we 
have tested our potential on a second set of  decoys, and it consistently 
outperformed DFIRE2, scoring as much as 0.83 for the Pearson correlation, and 
0.66 for the Kendall tau.

From our results, we can conclude that a combination of distance, angle, dihedral 
and solvation potentials derived both using crystal structures and decoys, is 
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useful at discriminating near-native decoys, and outperforms the most successful 
potentials from the literature.
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Chapter 6 
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In this thesis, our goal was to develop a new  energy function that could be used 
to correctly identify the best protein models generated by folding simulations. 

Folding algorithms such as comparative modelling, and recently even ab initio  
simulations, are generating an increasing number of  near-native structures. As 
such, it is important that a method exists to differentiate between these high 
quality predictions, so that only the very best models are kept for further analysis. 
Thus, our work is increasingly gaining value, as the more we approach the near-
native region, the more we will need accurate methods to discriminate the best 
structure.

Many potentials already exists, but we found that none of  them performed well 
when discriminating near-native decoy structures. The best one we found was 
DFIRE2, which we then selected as our benchmark potential. The DOS potential 
derived in this thesis has largely outperformed DFIRE2, and is thus more likely to 
be useful for discriminating decoys in future folding simulations and in blind tests 
such as the biannual CASP competition. 

Of  the existing methods, comparative modelling has already been producing sub- 
2 Å models, and can therefore already benefit from our approach. In some cases, 
threading will as well, but ab initio simulation are still mostly trying to find the right 
fold, which our method is not designed to do.

One reason for the relatively low  precision of existing potentials is the lack of 
decoy sets published that contains decoys with an RMSD to native below  2Å, as 
potentials could only have been tested and optimised for that range.

In order to address this problem, we generated our own near-native decoy set 
using molecular dynamics to relax non-redundant, monomeric crystal structures 
from the PDB. The trajectory was then sampled at regular intervals, and decoys 
clustered to remove any structural redundancy. This process was repeated for 
various temperatures and 250 different proteins. In the end, we kept 125000 
decoys between 0 and 4Å, 30% of which were set aside as an out-sample to test 
our potentials. 

Using this decoy set, as well as another near-native one from the literature, we 
studied the performance of three different potential generation methods. The first, 
which we call the “classical” method, is the conventional way of  deriving 
statistical potentials, using crystal structures as the observed state, and a 
probability model as the reference state. This approach generates potentials that 
theoretically yield the energy difference between native structures and unfolded 
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ones, and thus, should be expected to easily identify the native structures in the 
decoy sets, as they would most resemble those used to generate the potentials. 

Our second approach, which we call “decoy-based”, uses the mean RMSD of a 
decoy set to separate good decoys from bad ones, using the former as the 
observed state, and the latter as the reference state, effectively modelling the 
structural differences between these two groups. Thus, we can expect it to be 
more detailed than the classical potentials, although the smaller the differences 
between decoys, the more structures will be needed to model them, and thus, we 
can easily end up with potentials that do not exhibit any particular performance.

Finally, our third method, called “hybrid”, uses native structures as its observed 
state, and the worse than average decoys as its reference state. The assumption 
behind this approach is that a large enough number of decoys should statistically 
represent the reference state, and as such we do not need to know  its distribution 
in advance, as is the case in the classical potentials. 

These three approaches are then used to generate potential for four different 
interactions, namely solvation, hydrogen bonding, pairwise atomic distance, and 
atomic orientation. We found that hydrogen bonding was not useful, and is thus 
not included in our final potential, called DOS, which is created by combining the 
classical, hybrid and decoy-based potentials for the distance, orientation and 
solvation terms. This effectively keeps the precision of the decoy-based approach 
and the generality of  the classical potentials. In a sense, the classical terms add 
robustness and generality to our potential rather than precision.

In terms of performance, DOS achieved a 10% enrichment score of 0.75 on our 
near-native decoy set (MDSET), meaning that 3 out of 4 of the 10% best decoys 
will be successfully identified. In contrast, our benchmark potential from the 
literature, DFIRE2, only scored 0.41. Furthermore, this performance difference 
can be seen across different metrics (0.75 vs 0.45 for the 15% enrichment, 0.79 
vs 0.54 for the Pearson correlation, and 0.54 vs 0.36 for the Kendall tau). To 
validate our results, we tested DOS on a second decoy set, and it still 
consistently outperformed DFIRE2, scoring as much as 0.83 for the Pearson 
correlation, and 0.66 for the Kendall tau.

Although we only tested our method on two decoy sets, it is easy to derive the 
DOS potential for any decoy sets. To do so, we suggest using the following 
protocol (7 steps):
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1. Choose a large number of non-redundant targets (> 150) with a sequence 
identity less than 30%.

2. Generate at least 500 decoys per target, with an RMSD between decoys 
larger than 0.5 Å.

3. Minimise the structures to remove clashes

4. Generate the decoy-based potentials by taking the decoys that are better 
than average as the observed state, and worse than average as the 
reference state

5. Pick a large number of crystal structures (> 1000) and minimise them.

6. Generate the classical and hybrid potentials.

7. Combine the classical, hybrid and decoy-based potentials using a suitable 
weighting scheme to produce the DOS potential.

There are limitations to our approach that we have not considered though. 
Namely, we did not try it on non-native decoys sets, and we assumed that all 
decoys have the same overall fold.

Indeed, the fact that all of  our targets have RMSDs normally distributed means 
that we will have a clear cutoff  to use in our analysis. For decoy sets with different 
distributions of RMSDs and thus probably different fold groups within targets, 
using the mean as the threshold between good and bad decoys might not be the 
best choice. One way to work around this problem would be to sort decoys by 
fold, so that we only compare the good and bad decoys within a specific fold 
group. This should in theory allow  us to select the best structures for each of  the 
different folds, the task of  determining the correct fold group being left to another 
method.

Furthermore, our decoy-based potentials are derived using only one cutoff, 
meaning that it will assess the energy difference between decoys on either side 
of the mean RMSD. In reality, we could probably extend this idea, and generate 
potentials for different RMSD cutoffs, thereby modelling different conformational 
spaces regions. For example, we could generate a potential for decoy between 0 
and 1Å, 1 and 2Å, 2 and 3Å, and so on so forth. We would then either find a way 
to select one of these potentials or combine them to recreate the overall energy 
function.
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As a general conclusion to this thesis, we can say that using decoys as both the 
observed state and reference state in statistical potentials is more useful than 
existing potentials from the literature when used in near-native decoys 
discrimination studies, and could probably be used on non-native decoy sets if  a 
suitable fold detection method is used to cluster decoys with similar folds.
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