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ABSTRACT 

 

The main issue associated with revision total hip replacements (rTHRs) is how to 

generate new bone and restore bone stock for fixation of the revision stem. Bone 

tissue engineering (BTE) seeks the generation of constructs ex vivo in order to replace 

damaged or lost bone. The aim of this thesis was to develop a bone tissue-engineered 

construct with a calcium-phosphate (CaP) coated porous metal scaffold seeded 

throughout its structure with mesenchymal stem cells (MSCs) in order to enhance new 

bone formation at rTHRs. The study had in vitro and in vivo phases.  

 

For the in vitro phase, CaP coatings by biomimetic and electrochemical methods on 

the surface of titanium and tantalum discs were investigated and seeded with MSCs 

under static culture conditions. Different coating methods produced different 

morphologies and compositions with biomimetic coatings enhancing MSCs growth 

while the electrochemical ones enhanced their osteogenic potential. An 

electrochemically CaP coated porous titanium cylinder was seeded with MSCs and 

dynamically cultured in a perfusion bioreactor, showing an increased MSCs 

proliferation and osteogenic differentiation and an even distribution of cells 

throughout the scaffolds compared to statically cultured constructs. 

 

Tissue-engineered constructs in the perfusion bioreactor were evaluated in vivo by 

implantation in the medial femoral condyle of sheep with and without gap. Their 

osseointegration and implant-bone fixation strength were compared to non tissue-

engineered constructs. The results showed that the addition of MSCs to the scaffolds 

did not significantly increase osseointegration or implant-bone fixation strength. 

However, in the defects with gap the tissue-engineered constructs showed a higher 

implant-bone contact area and therefore higher forces were necessary to push the 

tissue-engineered implants out of the bone in the defects with gap than for the non 

tissue-engineered ones. 

 

In conclusion, BTE can be applied in order to develop constructs with a clinical 

application in rTHRs where a lack of bone stock is problematic. 
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1.1 OVERVIEW 

 

Revision total hip replacements (THRs) due to aseptic loosening, account for 10% of 

the total hip replacement procedures, with over 7,000 operations per year in England 

and Wales (National Joint Registry for England and Wales: 7
th

 Annual Report, 2010). 

Aseptic loosening is caused by osteolysis, which is induced by wear particles from the 

joint bearing surface materials. It results in bone defects and a reduction of the bone 

stock necessary for implant fixation in revision THRs (Cooper et al. 1992; Harris 

1995; Harris 2001; Amstutz et al. 1992; Heisel et al. 2003; Shen et al. 2006). As a 

result, the clinical results for revision THRs are usually inferior to the primary THRs. 

Therefore, one of the main issues associated with revision THR is the generation of 

new bone and restoration of the bone stock for fixation of the revision stem.  

 

Several techniques are used today in order to reconstitute the bone stock at revision 

operations, such as bone impaction grafting using allograft or autograft (Vaccaro 

2002; Moore et al. 2001; Delloye et al. 2007; Gie et al. 1993a; Bohner 2000; 

Habibovic and de Groot 2007). However, these techniques present some 

disadvantages. For instance,  the supply of bone and donor site morbidity limit the use 

of autograft (Goulet et al. 1997; Moore et al. 2001), while the disadvantages 

associated with the use of allograft are disease transmission and differences in graft 

preparation techniques which lead to inconsistency and immune response (Delloye et 

al. 2007; Moore et al. 2001).  

 

Tissue engineering is a research field based on understanding how tissue formation 

and regeneration work and its aim is to induce new functional tissues (Langer and 

Vacanti, 1993; Lanza et al. 2000). Specifically bone tissue engineering (BTE) uses 

constructs generated ex vivo in order to replace damaged or lost bone (Rose and 

Oreffo 2002; Salgado et al. 2004; Karageorgiou and Kaplan 2005; Fröhlich et al. 

2008). Bone is a specialised three dimensional (3D) connective tissue, dynamic and 

highly vascularised involved in a constant cycle of renewal, undergoing continuous 

remodelling throughout life. Therefore a scaffold with a 3D structure that mimics 

bone is necessary to grow new tissue. In this structure cells can proliferate and 

produce matrix which forms a 3D structure.   
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Scaffolds for BTE should mimic bone morphology and mechanical properties. They 

must be biocompatible, porous with an optimum pore size, possess certain surface 

properties, osteoconductive and osteoinductive (Salgado et al. 2004; Fröhlich et al. 

2008; Yang et al. 2001; Lanza et al. 2000; Schieker et al. 2006; Rose and Oreffo 

2002). It is very important to select an appropriate material for the scaffold used for 

BTE purposes since its characteristics will affect the scaffold application. So far, 

several materials from both natural and synthetic origins have been investigated. They 

include biodegradable polymers, ceramics and metals. Combinations of these 

materials or composites, such as calcium-phosphate coating of metals, have also been 

proposed for BTE applications (Karageorgiou and Kaplan 2005). 

 

In the field of BTE there is a special interest in the adult stem cells located in the bone 

marrow, known as mesenchymal stem cells (MSCs) as they can differentiate into 

lineages of the mesenchymal tissues such as bone or tendon (Pittenger et al. 1999; 

Caplan 1991; Lanza et al. 2000).  

 

The biological environment within the bone tissue is a dynamic interaction between 

active cells that experience mechanical forces and a 3D matrix architecture that is in 

continuous change. Therefore, in order to engineer bone tissue constructs ex vivo it is 

necessary to develop culture systems that mimic the dynamics of the in vivo biological 

environment (Lanza et al. 2000; Kale et al. 2000). The current standard tissue culture 

techniques are not adequate for BTE purposes due to a lack of efficient transport of 

nutrients and removal of waste products. They are static and thus they do not mimic 

the dynamics found in vivo (Bancroft et al. 2003; Martin et al. 2004). A solution to 

overcome these issues is the design and development of bioreactors, which would 

provide an efficient mass transfer of nutrients and metabolites and mechanical 

stimulation to the cells by way of fluid shear stress for the engineering of bone tissue 

(Martin et al. 2004; Salgado et al. 2004; Ikada 2006). For example, perfusion 

bioreactor systems have been successfully used for the development of bone tissue-

engineered constructs as they provide an enhanced transport of nutrients to the interior 

of 3D scaffolds as well as mechanical stimulation to the cells by the fluid shear stress 

due to perfusion of the media (Bancroft et al. 2003; Sikavitsas et al. 2003). 
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Finally, the development of bone tissue-engineered constructs requires the evaluation 

of their performance on preclinical studies prior to evaluation in human subjects. The 

criteria associated with the choice of an experimental model must be related to the 

functional application of the construct: the animal model must be biologically 

analogous and recognizable as a suitable challenge to human physiology (Goldstein 

2002). 

 

This thesis proposes a novel tissue engineering approach to address the problem 

associated with poor bone stock and fixation of implants in patients undergoing 

revision operations. 
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1.2 BONE TISSUE 

 

1.2.1 Bone Definition and Function 

Bone is a specialised connective tissue which forms the basis of the skeleton. It serves 

to protect vital internal organs and provides a framework for physical support, 

locomotion and related movement. Bone tissue has a very important function as 

reservoir of inorganic ions, which are recruited by various and complex physiological 

systems when required. Bone provides a source of hematopoietic and mesenchymal 

stem cells. Bone is a dynamic and highly vascularised tissue involved in a constant 

cycle of renewal, undergoing continuous remodelling throughout life (Weiner and 

Wagner 1998; Palmer et al. 2008; Hayes and Bouxsein 1997).  

 

1.2.2 Bone Physiology 

Normal, mature bones in the human skeleton are composed of two types of bony 

tissue: cortical or compact bone and cancellous or trabecular bone (Figure 1.1). Both 

share an identical chemical composition but are macroscopically and microscopically 

different (Hayes and Bouxsein 1997).  

 

Cortical or compact bone is found along the shaft of the long bones and is the 

principal component of the flat bones. It has a very dense physical structure 

comprised of osteons, concentric cylinders of lamellae. Harvasian canals, which are 

responsible for providing cellular nutrition, can be found at the centre of these 

structures (Figure 1.1). Approximately 80% of skeletal mass is cortical bone.  

 

On the other hand, cancellous or trabecular bone is made of interconnected struts 

called trabeculae, and therefore this bony tissue is considerable finer in appearance 

(Figure 1.1). Its physical arrangement of struts interspersed with voids provides for 

maximum support with a minimum of material. The trabeculae adopt a preferential 

alignment along the direction of principal mechanical forces. A marrow reservoir and 

a medullary blood supply are interspersed between the trabeculae. Trabecular bone is 

found at the epiphyses of the long bones and in the vertebrae of the spinal column. 

 

As observed from Figure 1.1, the periosteum covers the external surface of long 

bones. The periosteum consists of a fibrous layer and an inner cambial layer and its 
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functions are to supply nerves as well as blood and lymphatic vessels to the bone. The 

periosteum is also a source of osteoblasts.  

 

 

Figure 1.1 Physiology of bone 

(http://www.web-books.com/eLibrary/Medicine/Physiology/Skeletal/Skeletal.htm) 

 

1.2.3 Bone Cells 

There are four cell types which have a specific function in bone formation, 

maintenance and removal: osteoblasts, osteocytes, bone lining cells and osteoclasts.   

 

Osteoblasts are mononuclear cells of mesenchymal origin which are responsible for 

the formation of the organic matrix of bone, the osteoid. Osteoblasts are also believed 

to be involved in the mineralization process through regulation of the local calcium 

and phosphate concentrations (Palmer et al. 2008). As the organic matrix becomes 

mineralised, some osteoblasts are trapped, differentiating into osteocytes. These cells 

appear to be responsible for detecting mechanical stress, then signalling for matrix 

formation or resorption as necessary (Palmer et al. 2008).  

 

Bone lining cells cover the surface of all bones and are involved in bone matrix 

production and degradation (Palmer et al. 2008).  

 

Osteoclasts are developed from a hematopoietic lineage; they are multinucleated, 

macrophage-like cells which are responsible for bone resorption. This process is 
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essential for bone remodelling, growth and healing as well as regulating some ions 

concentration, such as calcium, available to the body (Athanasou 1996; Palmer et al. 

2008).  

 

1.2.4 Molecular Level of Bone 

At a molecular level, bone is a complex mineralised matrix composed of biopolymer 

and biomineral.  

 

The biopolymer mostly consists of collagen type 1, the most abundant protein in the 

human body. Non-collagenous proteins (NCPs), including bone sialoprotein, 

osteonectin, osteopontin and osteocalcin, contribute to the biopolymer. NCPs may 

have a role in crystal nucleation and growth, cell signaling and ion homeostasis, 

although their specific functions are not well understood yet. Minor amounts of lipids 

and osteogenic factors, such as bone morphogenetic proteins (BMPs), are also found 

in this collagenous biopolymer (LeGeros 2008; Palmer et al. 2008; Weiner and 

Wagner 1998).  

 

The biomineral present in bone is a calcium phosphate that was identified as an 

apatite by X-ray diffraction analysis (Figure 1.2). Apatite is a group of phosphate 

minerals that are found naturally in the Earth’s crust. These minerals have an 

empirical formula: Ca5(PO4)3(OH,F,Cl). Their crystal structure is flexible and they are 

able to accommodate chemical substitutions (LeGeros 1993; Wopenka and Pasteris 

2005). Hydroxyapatite, Ca5(PO4)3(OH) with a Ca/P ratio of 1.67, is the apatite 

mineral of biological importance due to its similarity with the biomineral present in 

bone (Harper and Posner 1966; Posner 1969). More specifically, the bone mineral has 

been identified as a carbonate-substituted hydroxyapatite containing minor and trace 

substitutions with a Ca/P ratio below or above 1.67, depending on age, specie and 

type of bone (LeGeros 1993; Wopenka and Pasteris 2005; LeGeros 2008). Apart from 

carbonate (CO3
2-

), the most important minor substitutions are magnesium (Mg
2+

) and 

sodium (Na
+
). These substitutions occur because bone is used by the body as an ion 

reservoir to maintain homeostasis of elements such as calcium, phosphate or 

magnesium (LeGeros 1993; Wopenka and Pasteris 2005; LeGeros 2008). The crystals 

of bone mineral are plate-shaped and their dimensions are in the order of nanometers 

(30-50nm width and 1.5-5nm thick). This platelet morphology effectively interfaces 



28 

 

with collagen fibrils (Wopenka and Pasteris 2005; Weiner and Wagner 1998). The 

fact that they are in the nano-meter scale suggests there may be a biological advantage 

to nanocrystals, which may be the easiest to precipitate at body temperature. The 

number of substitutions found in bone mineral as well as its nano-sized crystals 

explain the poor resolution of peaks observed in the lower spectra of Figure 1.2, 

indicating the biomineral found in bone is not crystalline and it is composed of very 

small crystals:  

 

 

Figure 1.2 X-ray diffraction patterns of powdered bone from human femur diaphysis (lower 

pattern); 100% crystalline synthetic hydroxyapatite with crystal size comparable to bone 

biomineral (middle pattern); and crystalline synthetic hydroxyapatite with peaks indexed 

(upper pattern) (Harper and Posner 1966).  

Black arrows point to peaks with poor resolution. 

 

 

In conclusion, bone is formed of a biomineral, a collagenous biopolymer and cells, 

which combine to give this tissue its hardness, toughness and self-renewal capacity. 

(Weiner and Wagner 1998; Hayes and Bouxsein 1997; Posner 1969; Harper and 

Posner 1966; Wopenka and Pasteris 2005; Athanasou 1996; Palmer et al. 2008; 

LeGeros 1993; LeGeros 2008).  



29 

 

1.3 THE HIP JOINT: ANATOMY AND PATHOLOGY 

 

The anatomy of the hip joint constitutes a ball, known as the femoral head, and a 

socket, called the acetabulum. The femoral head is the proximal extension of the 

femur and fits closely into the acetabulum, a depression in the pelvic bone (Figure 

1.3). A thin layer of cartilage covers the articulating surfaces of both the femoral head 

and the acetabulum, allowing them to glide against one another. 

 

 

 

Figure 1.3 Anatomy of the hip joint 

(http://www.empowher.com/media/reference/hip-dislocation) 

 

 

 

The two main reasons to undergo hip surgery are pain relief and improvement in hip 

function. Hip pain and poor mobility is usually associated with diseases such as 

osteoarthritis, rheumatoid arthritis, trauma or osteonecrosis (Van Dijk et al. 2006). In 

a total hip replacement (THR) the damaged hip joint is removed and replaced with an 

artificial hip. The aim of this procedure is to eliminate pain, restore the resilience and 

range of movement as closely as possible to those of a fully functional natural hip 

joint.  
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1.3.1 Primary THR 

In this procedure the damaged parts of the hip joint, including the cartilage covering 

the articulating surfaces of the joint, are removed and replaced with a prosthetic 

implant. The prosthetic implant used in THR consists of the femoral component, 

composed of a stem and femoral head, and the acetabular component or cup usually 

comprised of a shell and liner (Figure 1.4). 

 

 

 

Figure 1.4 Components of the prosthetic implant used in total hip replacement:  

on the left side of the scheme the acetabular component or cup, composed of a shell 

and liner, is shown while the femoral component, consisting of a stem and femoral 

head, is observed on the right side of the scheme (http://evertsmith.com/innovations). 

 

 

The acetabular cup is the component placed into the hip socket. They can be 

monobloc or modular. Monobloc cups are either polyethylene, cemented in place, or 

metal, coated on its surface for direct bone apposition. Modular cups consist of two 

pieces: a shell and an inside liner. The shell is made of metal with a porous coating on 

the outside and a locking mechanism in the inside to accept a liner. The liner can be 

made of polyethylene, metal or ceramic (Heisel et al. 2003). 
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The femoral component fits in the femur, where the femoral head is removed and the 

femoral canal shaped to accept the femoral stem with modular femoral head. There 

are two types of fixation, cemented or uncemented. In cemented fixation acrylic bone 

cement is used to form a mantle between the stem and bone. In uncemented fixation 

the femoral stem has surface coatings that promote bone ingrowth so called 

osteointegration (Geesink 2002).  

 

The materials used for the stems are titanium, cobalt-chromium or stainless steel. The 

femoral component can be monolithic, with the femoral head and stem as one piece. 

More commonly the femoral component is modular, with an attached femoral head 

which can be made of metal or ceramic. The commonest combinations of bearing 

surfaces are metal on polyethylene, metal on metal, ceramic on ceramic and ceramic 

on polyethylene (Heisel et al. 2003; Amstutz and Grigoris 1996).   

 

Figure 1.5 shows a post-operative radiograph of a THR where the left hip has been 

replaced by a cementless modular implant. The femoral stem is made of metal while 

the femoral head is made of ceramic and articulates against a ceramic acetabular cup: 

 

 

Figure 1.5 Post-operative radiograph of a total 

hip replacement: the left hip has been replaced 

by a cementless prosthetic implant consisting of 

a metal femoral stem and ceramic head 

articulating against a ceramic acetabular cup. 

(http://manchesterhiparthroscopy.com/complex

-hip-replacements/protusio). 
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1.3.2 Failure of THRs by Osteolysis 

Osteolysis is induced by wear particles from the joint bearing surface materials’ 

prosthesis and results in a reduction of the bone stock necessary for implant fixation 

in THRs (Cooper et al. 1992; Harris 1995; Harris 2001; Amstutz et al. 1992; Heisel et 

al. 2003).  

 

Osteolysis is triggered by particles of polyethylene, cement and metal released by the 

articulating movement of the femoral head against the acetabular cup. These wear 

particles are able to travel between the implant interfaces coming into contact with 

biological tissues. Inflammatory cells such as macrophages and giant cells engulf 

these wear particles, thus activating the release of bone resorbing mediators 

interleukin-1 (IL-1) and tumour necrosis factor (TNF-α). These mediators stimulate 

monocytes and macrophages to differentiate into osteoclasts, which are 

multinucleated, macrophage-like cells responsible for bone resorption (Amstutz et al. 

1992; Athanasou 1996).  

 

There is also evidence in the literature that osteolysis is triggered by hydrostatic 

pressure around the prosthetic hip components after THR. Skoglund and Aspenberg 

2003 compared the resorptive effect of cement wear particles with pressure in a rat 

tibial dyaphisis model, and reported that the osteolytic process was more greatly 

influenced by biomechanical stimuli (pressurised fluid) than the cement wear 

particles. 

  

Erosive inflamed bone resorption is the most aggressive form of osteolysis where the 

loosened implant is eventually surrounded by a fibrous membrane. This fibrous 

membrane can be detected on radiographs by the formation of a progressive 

radiolucent line around the implant (Buma and Gardeniers 1996). Figure 1.6 displays 

a radiograph of a hip prosthesis showing aseptic loosening, where the radiolucent 

lines around the implant are indicated by the black arrows: 
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Figure 1.6 Radiograph of a total hip 

replacement showing aseptic loosening by 

osteolysis, indicated by the presence of 

radiolucent lines around the implant (black 

arrows).  

(Shen et al. 2006) 

 

  

 

 

 

 

 

 

 

Osteolysis can be observed in both cemented and uncemented femoral components 

indicating that the released wear particles can access the bone implant interface in 

spite of improvements in fixation techniques and surface coatings (Coathup et al. 

2005; Buma and Gardeniers 1995; Amstutz et al. 1992; Amstutz and Grigoris 1996).  

 

 

1.3.3 Revision THR 

In revision THRs the previously loosened stem is replaced in order to restore function. 

The main objectives in revision THRs are to achieve immediate fixation, long term 

stability and the restoration and maintenance of bone stock (Clohisy et al. 2004). The 

main issue associated with revision THR is insufficient bone stock available for 

fixation of the revision stem. Moreover, further loss of bone occurs when the primary 

prosthesis is removed during revision surgery, which constitutes an additional 

challenge for the surgeon in reconstituting bone stock. Several techniques are applied 

today in order to reconstitute the bone stock at revision operations: bone transplant of 

autograft or allograft, impaction grafting and use of bone substitutes (Leopold et al. 

2000; Goldberg 2000).  
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Autograft  

Autograft is transplanted fresh cortical or trabecular bone or a combination of both 

bony tissues from one site in the body, such as the iliac crest, to another within the 

same patient. Autograft is considered the “gold standard” and the most effective 

method for bone regeneration as it provides osteoconduction, to promote direct 

bonding with bone tissue, and osteoinduction, to induce local stem cells to 

differentiate into bone cells, without any associated immune response (Vaccaro 2002; 

Moore et al. 2001). However, this technique offers several disadvantages such as 

limited bone supply and donor site morbidity (Goulet et al. 1997; Moore et al. 2001). 

 

Allograft 

Allograft is transplanted cortical/trabecular bone or demineralised bone matrix from a 

living/cadaver donor to a patient. They are usually harvested from the removed 

femoral heads of patients undergoing primary THR or from sections of the pelvis 

from cadaveric donors. Allograft possesses osteoconductive properties and when used 

as fresh frozen or in a demineralised form also has osteoinductive properties (Delloye 

et al. 2007; Moore et al. 2001). The disadvantages associated with the use of allograft 

are disease transmission, bacterial infection, differences in graft preparation 

techniques which lead to inconsistency, immune response, fracture and non-union due 

to differences in bone quality between the donors and the patient (Delloye et al. 2007; 

Moore et al. 2001).  

 

Impaction Grafting 

Impaction grafting in the femur consists of implantation of bone graft by impaction 

into the endosteal cavity aiming at creating a neo-medullary canal in the femoral 

shaft. The loose prosthesis along with all cement, debris, granulomata and fibrous 

membrane is removed. The shaping of the neo-medullary canal comes from a series of 

tapers that allow the autograft or allograft to be impacted against the walls of the 

femoral canal by using force. The cemented component is then introduced (Gie et al. 

1993a; Gie et al. 1993b; Leopold et al. 2000; Sloof et al. 1984; Ling et al. 1993). In 

some instances uncemented implants are used.  The main drawbacks with the use of 

this technique are major complications of bone fracture and massive early subsidence 

of the femoral stem (Gie et al. 1993a; Ling et al. 1993; Ullmark and Linder 1998). 
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Bone Substitutes 

The use of bone substitutes aims at overcoming the disadvantages of using autograft 

and allograft. The mineral composition of natural bone and the structure of 

interconnected struts of trabecular bone have provided the model for the development 

of bone substitute materials.  

 

Calcium phosphate materials are the most popular bone substitutes due to their 

chemical similarity with bone mineral, low cost and plentiful amounts (Bohner 2000; 

Brandoff et al. 2008). Synthetic hydroxyapatite (HA), tricalcium phosphate (TCP) and 

combinations of them are widely used due to their biocompatibility and 

osteoconductive properties (Knaack et al. 1998; Moore et al. 2001). However, 

calcium phosphate materials are stiff compared to bone, brittle and present 

unpredictable dissolution rates in vivo (Moore et al. 2001; Salgado et al. 2004).  

 

Demineralised bone matrix (DBM) is a natural bone substitute which presents 

osteoinductive potential (Urist 1965; Urist 2002), although its materials properties 

make it not suitable as bone substitute in load bearing applications, such as revision 

THR. 

 

Growth factors or cytokines are found naturally in the bone matrix and are signalling 

molecules between cells (Rose and Oreffo 2002). Growth factors found in bone 

include bone morphogenetic proteins (BMPs) within the transforming growth factor β 

(TGF-β) superfamily, insulin-like growth factors (IGF-1, IGF-2) which are found in 

fracture healing sites and have a role in collagen synthesis, interleukins (IL-1, IL-6) 

which are associated with bone resorption or fibroblasts growth factors (FGFs) which 

are involved in bone remodelling (Rose and Oreffo 2002; Yoon and Boden 2002). 

BMPs have already been used in clinical trials with promising results: 82% of patients 

showed clinical and radiological union after application of BMP-7 in persistent 

fracture non-unions and other orthopaedic complications (Giannoudis and Tzioupis 

2005). However, better bone healing has often been observed in animal models than 

in human clinical trials (Einhorn 2003). Moreover, the application of large doses of 

BMPs has been linked to osteoclast recruitment which may lead to bone resorption 

(Lane 2001). In addition there is an issue over BMPs commercial availability and 

expenses (Lane 2001; Yoon and Boden 2002; Yoon and Boden 2004). 
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Novel Alternative Proposed in this Thesis 

All the techniques already discussed present some disadvantages. Therefore, in this 

thesis we propose a novel alternative for the reconstitution of bone stock at revision 

THRs: the incorporation of mesenchymal stem cells (MSCs) into the implant thus 

enabling the reconstitution of the adjacent bone. This approach will be used in order 

to engineer an implant into which MSCs are incorporated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 

 

1.4 TISSUE ENGINEERING 

 

In 1993 Langer and Vacanti defined tissue engineering (TE) as “an interdisciplinary 

field of research that applies the principles of engineering and the life sciences 

towards the development of biological substitutes that restore, maintain, or improve 

tissue function”. Indeed, the tissue engineering field is based on understanding how 

tissue formation and regeneration work and its aim is to induce new functional tissues 

(Langer and Vacanti, 1993; Lanza et al. 2000). 

 

The three key components for generating any given tissue are suitable cells, growth 

factors and an appropriate scaffold (Langer and Vacanti, 1993; Lanza et al. 2000). 

Figure 1.7 shows the TE process as well as its components. Cells, in this case 

autologous as they are taken from the patient, are grown in vitro under optimum 

conditions until desired numbers are achieved. They are then combined with growth 

factors and seeded on the scaffold, thus obtaining a tissue-engineered construct. The 

construct is further incubated in vitro until it is implanted back in the patient. 

 

 

 

Figure 1.7 The tissue engineering process and its components 

(http://biomed.brown.edu/Courses/BI108/BI108_2007_Groups/group12/Homepage.html) 
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1.4.1 Bone Tissue Engineering 

Bone tissue engineering (BTE) seeks the generation of constructs ex vivo in order to 

replace damaged or lost bone (Rose and Oreffo 2002; Salgado et al. 2004; 

Karageorgiou and Kaplan 2005; Fröhlich et al. 2008). To successfully create a bone 

construct it is very important to understand what it is required to grow new bone.  

 

First of all, bone is a 3D tissue. Therefore, a scaffold with a 3D structure that mimics 

bone is necessary to grow new tissue in 3D. In this 3D structure cells, extracellular 

matrix and growth factors can interact to grow new bone tissue. Secondly, suitable 

cells that can form new bone tissue are needed to generate a bone construct. Finally, 

growth factors are essential. They are signalling molecules that initiate intracellular 

events to promote cell adhesion, proliferation or differentiation (Lanza et al. 2000).  

 

1.4.2 Scaffolds Properties for BTE 

Scaffolds for BTE should mimic bone morphology and mechanical properties. They 

must be biocompatible, porous with an optimum pore size, possess certain surface 

properties, osteoconductive and osteoinductive. They can be either permanent or 

biodegradable (Salgado et al. 2004; Fröhlich et al. 2008; Yang et al. 2001; Lanza et 

al. 2000; Schieker et al. 2006; Rose and Oreffo 2002). 

 

Biocompatibility 

The material scaffold must not elicit an immune response in the host (Yang et al. 

2001). The biocompatibility of implanted biomaterials is controlled by the interaction 

between the host tissue and the biomaterial (Anderson and Miller 1984). However, 

biomaterials such as titanium implants, that do not elicit an immune response, do not 

interact with the host tissue (Niinomi 2008; Karageourgiou and Kaplan 2005). 

Therefore, it can be concluded that an interaction between the host tissue and the 

biomaterial is not necessary to elicit an immune response.  

 

Porosity and Pore Size 

Porosity is the percentage of void space in a solid. It is a morphological property 

independent of the material. Porosity is necessary for cell seeding and migration, 

nutrient transport, tissue ingrowth and vascularisation. Moreover, a porous material 

enhances mechanical connexion between the implanted tissue-engineered construct 
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and the host bone (Karageorgiou and Kaplan 2005). Kuboki and colleagues 

demonstrated the necessity for porosity in their work published in 1998. Solid and 

porous particles of hydroxyapatite were used for BMP-2 delivery in a rat ectopic 

model. It was observed that no new bone was formed on the solid particles while 

direct osteogenesis was seen in the porous hydroxyapatite particles (Kuboki et al. 

1998). Further support for this is found in published studies about metal implants with 

a porous coating compared to the non-coated implants. In these studies maximised 

bone ingrowth and enhanced mechanical properties of the porous-coated metal 

implants were observed (Chang et al. 1998; Harvey et al. 1999; Svehla et al. 2000). 

 

Pore size is an important issue to consider when choosing a material as scaffold for 

BTE purposes. If the pores are too small, the seeded cells on the implants will block 

them. As a result, tissue ingrowth and vascularisation will not occur. However, if the 

pores are too large the mechanical properties will become compromised, which is 

critical in regeneration in load bearing bones (Karageorgiou and Kaplan 2005; 

Salgado et al. 2004). Hulbert et al. in 1970 established that the minimum pore size in 

order to regenerate mineralised bone should be 100μm. In this study 46% porosity 

high-fired calcium aluminate cylindrical implants with different pore sizes were 

implanted in canine femora. The smaller pores tested, 10-44 and 44-75μm, were only 

penetrated by fibrous tissue. Pores between 75 and 100μm showed ingrowth of 

unmineralised osteoid tissue. On the other hand, the larger pores 100-150 and 150-

200μm resulted in substantial bone ingrowth. The authors correlated the observations 

with the approximate diameter of normal Harversian canals, which is between 100 

and 200μm (Hulbert et al. 1970). It is well accepted that materials as scaffolds for 

BTE should have a pore size between 200 and 900μm (Maquet et al. 1997; Burg et al. 

2000; Yang et al. 2001). 

 

Surface Properties 

Chemical and topographical surface properties affect adhesion, proliferation and 

phenotype of cells (Burg et al. 2000; Lanza et al. 2000; Curtis and Wilkinson 1997; 

Oh et al. 2006). Chemical properties are essential for protein adhesion, which is very 

important for cell attachment, growth and differentiation (LeGeros 2008; Vitte et al. 

2004; Hing 2005). Properties such as surface hydrophobicity or surface free energy 
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have been shown to affect cell attachment and spreading (Ponsonnet et al. 2003; De 

Bartolo et al. 2002). 

 

Topographical properties such as surface roughness are well known to affect ingrowth 

and fixation of implants, with rough implants showing better bone integration than 

smooth ones made of the same material (Predecki et al. 1972; Hilborn and Bjursten 

2007). Larsson and colleagues studied the bone formation around four different types 

of titanium implants that had different surfaces with essentially the same chemical 

composition: i) rough surface with thin oxide layer, ii) smooth, electropolished 

surface with thin oxide layer, iii) smooth, electropolished surface with an oxide layer 

of intermediate thickness and iv) smooth, electropolished surface with a thick oxide 

layer. They were implanted in the cortical bone of rabbits. The results showed that the 

smooth, electropolished implants with a thin oxide layer had significantly lower bone 

growth around the implants than the other types of implants in the early phase 

(Larsson et al. 1996). However, one year after implantation no significant differences 

were reported between the different groups. The study concluded that a reduction of 

surface roughness, that had a negative effect in the early phase, had no influence on 

the amount of bone formed after one year (Larsson et al. 1997).  

 

Osteoconductivity 

An osteoconductive surface promotes direct bonding with bone tissue (Albrektsson 

and Johansson 2001). An osteoconductive material allows the ingrowth of cells and 

capillaries from the host tissue in order to form new bone (Burg et al. 2000). Calcium- 

phosphate ceramics are an example of osteoconductive materials as they have been 

shown to form a direct bond with bone tissue (Blokhuis et al. 2000; LeGeros 2008). 

 

Osteoinductivity 

A material is osteoinductive when it induces undifferentiated and pluripotent cells to 

differentiate down the bone-forming cell lineage (Albrektsson and Johansson 2001). 

An osteoinductive material placed in an injured site that would not heal by itself will 

allow bone repair (Burg et al. 2000). In order to demonstrate the osteoinductivity of a 

material bone formation after implantation in non-osseous sites is studied (Harris and 

Cooper 2004).  
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Biodegradability 

If a material is resorbable, the rate at which it degrades must be synchronised with the 

growth rate of the newly formed bone: the scaffold should be totally degraded when 

the site of injury is totally regenerated (Langer and Vacanti 1993).  

 

1.4.3 Materials as Scaffolds for BTE  

It is very important to select an appropriate material for the scaffold used for BTE 

purposes since its characteristics will dictate the scaffold properties.  So far several 

materials from both natural and synthetic origins have been proposed. They include 

biodegradable polymers, ceramics and metals. Combinations of these materials or 

composites have also been proposed for BTE applications. Table 1.1 summarises the 

various materials used in BTE and their properties: 

 

MATERIALS ADVANTAGES DISADVANTAGES 

NATURAL 

BIODEGRADABLE 

POLYMERS 

Collagen, Fibrin, Chitosan 

Biocompatibility 

Biodegradability 

Bioactivity 

Unlimited source (some of them) 

Insufficient mechanical 

strength 

High rates of degradation 

SYNTHETIC 

BIODEGRADABLE 

POLYMERS 

Poly(α-hydroxyacids) 

Poly(ε-caprolactone) 

Versatility 

Biocompatibility 

Biodegradability 

 

Low mechanical properties 

High local concentration of 

acidic degradation products 

CERAMICS 

Coralline HA, Synthetic HA 

β-TCP 

BIOGLASSES 

Biocompatibility 

Biodegradability 

Bioactivity 

Osteoconductivity 

Osteoinductivity (subject to 

physical and chemical 

properties) 

Brittleness 

Low mechanical stability 

Degradation rates difficult to 

predict 

METALS 

Titanium and its alloys, 

Tantalum, Stainless Steel 

Excellent mechanical properties 

Biocompatibility 

Lack of tissue adherence 

Risk of toxicity 

COMPOSITES 

PLA/HA, CaP coating of metals 
Combination of the above Combination of the above 

 

Table 1.1 Materials used in BTE and their properties 

(Karageorgiou and Kaplan 2005; Schieker et al. 2006) 
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Natural Biodegradable Polymers 

Natural biodegradable polymers such as collagen, fibrin, starch, hyaluronic acid and 

chitosan have the advantage of good biocompatibility and biodegradability as they 

compose the structural materials of tissues. These materials are also bioactive as they 

have the potential to interact with the host’s tissue. Some materials such as starch or 

chitosan also offer the advantage of an almost unlimited source (Karageorgiou and 

Kaplan 2005; Schieker et al. 2006; Salgado et al. 2004; Hayashi 1994). 

 

Collagen is one of the most useful biomaterials with many biomedical applications 

such as drug delivery systems, nanoparticles for gene delivery and basic matrices for 

cell culture systems (Lee et al. 2001). Osteoconductivity of collagen scaffolds have 

been reported: anionic collagen matrices were able to heal bone defects in rats 

therefore demonstrating bone formation (Rocha et al. 2002).  

 

However, natural biodegradable polymers present the great disadvantages of 

insufficient mechanical strength and high rates of degradation. Thus, they are often 

used in composites, in combination with other materials, or are chemically modified 

in order to improve mechanical properties and degradation rates (Karageorgiou and 

Kaplan 2005; Schieker et al. 2006; Sachlos and Czernuszka 2003; Salgado et al. 

2004).   

 

Synthetic Biodegradable Polymers 

Synthetic biodegradable polymers are more commonly used for TE applications than 

the natural ones. They offer great versatility as they can have different porosities, pore 

sizes, degradation rates, mechanical properties and forms (Karageorgiou and Kaplan 

2005; Schieker et al. 2006; Sachlos and Czernuszka 2003; Salgado et al. 2004; 

Hayashi 1994). The most commonly used are poly(α-hydroxyacids), such as 

polyglycolic acid (PGA) and polylactic  acid (PLA), and poly(ε-caprolactone). The 

degradation products of these polymers are glycolic acid and lactic acid, which are 

naturally found in the human body and therefore are removed by natural metabolic 

pathways. 

 

Poly(lactide-co-glycolide), which is a copolymer formed by the poly(α-hydroxyacids) 

PLA and PGA, was used to fabricate scaffolds with 200µm mean pore size by Yang et 



43 

 

al. Human osteoprogenitor cells were able to grow and differentiate on these 

scaffolds, which was increased by protein and peptide surface modification on the 

scaffold, therefore showing their suitability as material for BTE scaffolds (Yang et al. 

2001). The effect of fabrication parameters on the scaffold properties of three 

different synthetic poly(α-hydroxyacids) was studied by Hu and colleagues. 

Poly(D,L-lactide), with 92% porosity and an average pore size of 118µm, and 

poly(lactide-co-glycolide), with 90% porosity and an average pore size of 78µm, were 

further investigated in regard to their cell properties in vitro. It was found that both 

polymers were able to support proliferation and differentiation of osteoprecursor cells 

(Hu et al. 2002).  

 

The main disadvantage of these materials is their poor mechanical properties, even 

when they are in the form of rods or solid screws, and have therefore been applied in 

low mechanical stress applications. Another potential disadvantage is high local 

concentrations of acidic degradation products that can affect cell differentiation on the 

scaffolds in vitro and could induce an inflammatory response in vivo. Moreover, 

dissolution of the polymer is often accompanied by breakup into smaller particles 

which then dissolve inducing an inflammatory reaction (Kohn et al. 2002; Santavirta 

et al. 1990). 

 

Ceramics 

Ceramics have been widely used in the biomedical engineering field and for clinical 

applications for many years. As biodegradable polymers they can be from a natural or 

a synthetic origin and can be synthesized to different forms, porosities, pore sizes or 

topographies. An example of natural ceramics is coralline hydroxyapatite (HA) while 

synthetic HA or β-tricalcium phosphate (β-TCP) are among the synthetic ceramics 

more commonly used (Blockhuis et al. 2000; Oh et al. 2006; Schieker et al. 2006; 

Karageorgiou and Kaplan 2005).  

 

Ceramics are calcium-phosphate (CaP) materials that are naturally found in the body 

as part of bone or teeth and are used to synthesize bone-like scaffolds. The main 

properties that these CaP materials offer are excellent biocompatibily, 

biodegradability and osteoconductivity (Blockhuis et al. 2000; Oh et al. 2006; 

Schieker et al. 2006; Karageorgiou and Kaplan 2005; LeGeros 1993; LeGeros 2008). 
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CaP materials have been shown to be able to form an apatite layer on their surfaces 

thus enhancing osseointegration (Ducheyne and Qiu 1999; Blockhuis et al. 2000; 

LeGeros 2008). Another reason for the good osseointegration shown by these 

materials in vivo is that natural cytokines and adhesive proteins such as fibronectin are 

able to bind to CaP materials. The proteins and cytokines adsorbed to a scaffold 

surface provide a matrix for cell attachment (Kilpadi et al. 2001; Hing 2005). As HA 

is known to be efficient at adsorbing many proteins it has been used for many years to 

purify proteins from solutions by adsorption in chromatographic columns (Tiselius et 

al. 1956; Bernardi and Kawasaki 1968).  

 

A very important property of bone is its osteoinductivity that allows this tissue to 

repair and regenerate. Generally, CaP materials are regarded as not osteoinductive as 

they are not able to form bone de novo (LeGeros 2008). However, Zhang et al. 

demonstrated that more bone formation in non-osseous as well as osseous sites was 

obtained using HA with 75-550µm pore size and 60% porosity (Zhang et al. 1992). 

Similarly, Yuan and colleagues reported bone formation in CaP materials with 

microporous structure when implanted in muscles of dogs. These results suggested 

that CaP materials can show osteoinductive properties when they exhibit specific 

chemical and structural characteristics (Yuan et al. 1998). Thus, it can be concluded 

that when CaP materials present certain topographies, geometries, pore sizes, 

percentages of porosity and composition they can show osteoinductive properties 

(LeGeros 2008; Ripamonti et al. 2008).  

 

Addition of mesenchymal stem cells (MSCs) to ceramics can improve bone 

formation. Petite et al. used a coral scaffold with added MSCs to treat lesions above a 

critical size of 25mm in sheep metatarsus. Coral alone, coral loaded with fresh bone 

marrow and coral loaded with MSCs were used to regenerate bone in a large 

segmental defect model in sheep. The results showed morphogenesis leading to 

complete recorticalization by the coral with MSCs combination (Petite et al. 2000). 

Further studies have agreed with these results (Eslaminejad et al. 2008). 

 

As bone mineral contains various ionic substitutions (i.e. magnesium, potassium, 

chlorine, silicon) they have been proposed for BTE. An example of these materials is 

silicate-substituted hydroxyapatite scaffolds (Si-HA) (Porter 2006), which improve 
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bone healing (Hing et al. 2006) and enhance the cellular activity of human MSCs 

(Samizadeh 2010). When implanted in paraspinous muscle of sheep Si-HA obtained 

higher new bone formation than HA, thus showing osteoinductive properties 

(Samizadeh 2010).  

 

In spite of the good properties for BTE purposes exhibited by ceramics, they present 

two major drawbacks. First, these materials are brittle and have a low mechanical 

stability, which prevent their use in load-bearing applications. Second, their 

degradation rates are difficult to predict and therefore if the material degrades too 

quickly once implanted the mechanical stability of the tissue-engineered construct 

would be compromised. Moreover, a fast degradation of the CaP material scaffold 

would dramatically increase the extracellular concentrations of calcium and 

phosphate, which may result in cell death as shown by Adams et al. (Adams et al. 

2001). 

 

Metals 

Titanium, titanium alloys (i.e. TiAl6V4) and stainless steel are the materials more 

commonly used in metal implants for bone surgical repairs. The main advantage of 

metal materials is their excellent mechanical properties which make them ideal 

candidates for load-bearing applications (Karageorgiou and Kaplan 2005).  

 

Titanium and its alloys are attractive materials for biomedical applications because of 

their biocompatibility, strength, lightness and high resistance to corrosion (Niinomi 

2008; Disegi 2000). The biocompatibility of the titanium materials is based on a thin 

titanium dioxide (TiO2) layer formed on the surface of the bulk material. Titanium is a 

very reactive element so, even at room temperature, a newly polished titanium surface 

will have a thin layer of TiO2. Thus coating of titanium implants with a TiO2 is of 

interest within the orthopaedic materials research field in order to improve cell 

adhesion and osseointegration (Yang et al. 2009). Porous titanium materials have 

been developed in order to achieve material properties compared to bone (Schuh et al. 

2007; Niinomi 2008) and new families of titanium alloys are constantly under 

research (Guillemot et al. 2004). 
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A biomaterial made of porous tantalum, trabecular metal, has recently been developed 

for potential application in orthopaedics. Trabecular metal is highly porous, 80%, and 

was approved by the Foods and Drugs Administration for use in acetabular cups in 

1997. The potential of this new material is its structural and mechanical resemblance 

with trabecular bone (Unger et al. 2005). The ingrowth potential of this material was 

demonstrated by Bobyn et al. (Bobyn et al. 1999). Porous tantalum has been used in 

primary and in revision total hip arthroplasty components with excellent early clinical 

results (Levine et al. 2006). Despite of these excellent preliminary results, the 

functionality and durability of acetabular cup components made of trabecular metal in 

revision total hip arthroplasty remain unknown.  

 

The main disadvantage of metals is the lack of tissue adherence, which may result in 

implant loosening with a necessary second surgery to remove it (Hulbert et al. 1970). 

If the implant gets permanently implanted in the body a risk of toxicity may arise due 

to accumulation of metal ions from corrosion (Jacobs et al. 2003; Hallab et al. 2001; 

Rubin and Yaremchuck 1997). 

 

Composites 

Each individual material discussed in this introduction chapter has its advantages and 

drawbacks. By combining different materials some of these drawbacks can be 

overcome.  

 

Kasuga et al. fabricated a composite consisting of the synthetic polymer PLA and 

calcium carbonate. The resulting composite showed no brittleness and an improved 

modulus of elasticity compared to that of PLA alone. Moreover, the composite was 

able to form a bone-like apatite layer on its surface when soaked in simulated body 

fluid, thus showing an osteoconductive potential (Kasuga et al. 2003). Poly(lactide-

co-glycolide)/HA composites has been shown to be osteoconductive (Kim et al.2006) 

and fibrin based scaffolds with incorporated nanocrystalline HA supported bone 

formation when used in a mouse calvarial defect model (Osathanon et al. 2008). 

Fibrin scaffolds have also been proposed as delivery systems for human MSCs. 

Bensaïd and colleagues observed that human MSCs were able to migrate out of the 

fibrin gel where they had been seeded on and invade a ceramic scaffold (Bensaïd et 

al. 2003). 
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Another example of composites is ceramic coatings in order to increase the 

biocompatibility and osseointegration of other biomaterials. Specifically, calcium- 

phosphate coating of metal implants is a subject of extensive research as the resulting 

material combines the excellent mechanical properties of metals with the excellent 

biocompatibility and osteoconductivity showed by ceramics (Karageorgiou and 

Kaplan 2005; Salgado et al. 2004). Plasma-spraying is the most common commercial 

method. However, other calcium-phosphate coating methods are currently under 

research such as the biomimetic (Habibovic et al. 2002; Ma et al. 2003) and the 

electrochemical depositions (Redepenning and McIsaac 1990; Han et al. 2001; Lopez-

Heredia et al. 2007). Barrère et al. showed significantly higher bone contact for 

biomimetic calcium-phosphate coated dense and porous metal implants compared to 

non-coated implants when implanted in the femoral diaphysis of goats (Barrère et al. 

2003). Electrochemically HA coated porous plugs implanted in the distal femoral 

metaphysis of pigs were shown to significantly increase bony ingrowth when 

compared with the uncoated implants (Redepenning et al. 1996). Biomimetic coatings 

are being used in order to incorporate growth factors into medical devices (Liu et al. 

2005). Finally, chitosan/HA composite coatings have been deposited on the surface of 

titanium substrates by electrochemical deposition (Redepenning et al. 2003; Wang et 

al. 2004). 

 

Materials Used as Scaffold in this Thesis and their Properties 

As the reconstruction used for repairing and regenerating bony defects in revision 

THR is likely to be load-bearing, the excellent mechanical properties offered by metal 

materials make them ideal candidates. Specifically, TiAl6V4, a titanium alloy 

extensively used in orthopaedic implants, and tantalum will be investigated 

(Karageorgiou and Kaplan 2005; Niinomi 2008; Disegi 2000; Unger et al. 2005). The 

metal materials will be coated with a calcium-phosphate layer to add biocompatibility 

and osteoconduction to the scaffold (Karageorgiou and Kaplan 2005; Salgado et al. 

2004; Blockhuis et al. 2000). Moreover, calcium-phosphate materials present good 

chemical properties for protein adhesion which is important for cell attachment, 

growth and differentiation (Kilpadi et al. 2001; Hing 2005; Ohgushi et al. 1993). The 

scaffold will be porous for bone ingrowth, with a pore size between 200 and 900µm 

(Maquet et al. 1997; Burg et al. 2000; Yang et al. 2001). 
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1.4.4 Cells for BTE 

Once an appropriate scaffold with adequate properties has been chosen the next step is 

to select an appropriate source of cells that is easily expandable to high numbers, non-

immunogenic and with a protein expression pattern similar to that of the bone tissue. 

 

Osteoblasts 

Osteoblasts are the most obvious choice for BTE because of their immunogenicity. 

They can be isolated from biopsies from the patients and expanded in vitro, thus they 

are autologous cells. However, this source of cells offers an important disadvantage: 

relatively low numbers are yielded after the dissociation of the tissue and their 

expansion rates are relatively low. Therefore the number of cells available to be 

seeded on the scaffolds is limited. Moreover, there are certain bone related diseases in 

which osteoblasts may not be used due to an insufficient protein expression pattern 

(Heath 2000). 

 

The use of xenologous osteoblasts, which are obtained from non-human donors, 

would solve the problem of low cell numbers just mentioned. However, the advantage 

of immunogenicity offered by the autologous osteoblasts would be lost. Furthermore, 

there would be a risk of transmission of infectious agents as well as ethical and social 

issues associated with the use of these cells (Heath 2000; Platt 1996).  

 

Stem Cells 

Stem cells are undifferentiated cells, capable of self-renewal and production of a large 

number of undifferentiated progeny. They have a high proliferation capability and 

multi-lineage differentiation potential, therefore they are involved in the regeneration 

of tissues (Blau et al. 2001; Lanza et al. 2000).  

 

Embryonic stem cells (ES) are pluripotent as they can differentiate into a wide range 

of cell types, a plasticity that is essential in the early development of the embryo 

(Wobus 2001; Heath 2000; Lanza et al. 2000). The extraordinary pluripotency 

exhibited by ES cells was beautifully shown in the experiments conducted by Dewey 

and colleagues. In these experiments teratocarcinoma cells, produced by ectopic 

injection of blastocysts into adult mice, were isolated, genetically marked and 

implanted into the blastocyst of a foster mother (Figure 1.8). Although the resulting 
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progeny was normal, chimeric mixtures of teratocarcinoma and wild type cells were 

found in virtually every tissue of their body as illustrated in Figure 1.8 (Dewey et al. 

1977). 

 

 

 

 

Figure 1.8 Experiments conducted by Dewey et al. showing the extraordinary 

pluripotency of ES cells (Dewey et al. 1977). 

 

 

 

The main issue associated with the use of ES cells for biomedical and TE applications 

is the potential tumorogenicity of these cells as it has been shown that when implanted 

in vivo undifferentiated ES cells give rise to teratomas and teratocarcinomas. This 

tumorogenicity potential is due to their unlimited proliferation potential. Moreover, 

there are ethical and social questions to answer in order to use ES cells in regenerative 

medicine (Wobus 2001). 

 

Adult stem cells (AS) are found in the fully differentiated tissues and are responsible 

for the regeneration of damaged tissue and the maintenance of tissue homeostasis. AS 

cells have been found in the bone marrow, periosteum, muscle, fat, brain or skin (Blau 

et al. 2001; Lanza et al. 2000). It was thought that AS cells were committed to  
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differentiate only into the cell lineages from the tissue in which they were found but 

recent reports have challenged this belief. Bjornson et al. showed that neural stem 

cells could give rise to lineage committed haematopoietic precursors (Bjornson et al. 

1999). Furthermore, Toma et al. reported that AS cells isolated from the dermis could 

be differentiated into brain, muscle and fat cells (Toma et al. 2001). Although AS 

cells need to be further investigated, many studies have shown the broad range of 

potential applications of these cells (Verfaillie 2002; Ferrari et al. 2007). 

 

Mesenchymal Stem Cells 

In the field of BTE there is a special interest in the adult stem cells located in the bone 

marrow, known as mesenchymal stem cells (MSCs). MSCs can differentiate into 

lineages of the mesenchymal tissues such as bone, thus the interest in these cells for 

BTE purposes (Pittenger et al. 1999; Caplan 1991; Lanza et al. 2000).  

 

The studies of Petrakova et al. suggested the idea that bone marrow contained some 

kind of osteogenic precursor cells. In these studies it was possible to obtain an osseous 

tissue when pieces of bone marrow were implanted under the renal capsule (Petrakova 

et al. 1963). Following this preliminary work, Friedenstein and co-workers published 

in the 1970s a series of studies in vitro in which they showed the possible existence of 

osteogenic stem cells in the bone marrow. They observed that these cells adhered to 

tissue culture plates and resembled fibroblasts in vitro (Friedenstein et al. 1970; 

Friedenstein et al. 1974).  

 

In 1991, almost 20 years later, Caplan gave these cells their current name (Caplan 

1991). The same author in 1994 described that, when placed under the appropriate 

culture conditions, MSCs were able to differentiate into cells with mesenchymal 

origin and lately give origin to bone, cartilage, fat, tendon and other mesenchymal 

tissues. He named this differentiating process as “The Mesengenic Process” (Caplan 

1994). Figure 1.9 below here shows a scheme of the mesengenic process. According 

to it, adult MSCs can differentiate into bone, cartilage, muscle, marrow stroma, 

tendon, ligament and other connective tissues through a series of lineage transitions 

(Caplan 2009). 
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Figure 1.9 The mesengenic process (Caplan 2009) 

 

Bone marrow cultures are heterogenic as hematopoietic and endothelial stem cells are 

also found in bone marrow (Rubin and Strayer 2007). Therefore, methods of MSCs 

isolation from bone marrow are important. Their isolation is generally based on their 

adhesive properties and their fibroblastic morphology (Friedenstein et al. 1970; 

Friedenstein et al. 1974; Haynesworth et al. 1992; Pittenger et al. 1999). Figure 1.10 

shows the morphology of a typical monolayer culture of MSCs: 

 

 

Figure 1.10 MSCs in monolayer culture under light microscopy  

(Pittenger et al. 1999) 
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Due to the lack of specific markers to distinguish MSCs from other cells in bone 

marrow, these cells are often characterised by their potential to differentiate into 

lineages of the mesenchymal tissues, as elegantly shown by Pittenger and colleagues 

in 1999. Figure 1.11 shows the results of specific stainings for the differentiation of 

MSCs into the adipogenic, chondrogenic and osteogenic lineages (Pittenger et al. 

1999): 

 

 

 

Figure 1.11 Staining results by Pittenger et al. showing the differentiation of MSCs 

down the adipogenic (left, red indicates lipid deposits), chondrogenic (middle, C4F6 

monoclonal antibody to type II collagen) and osteogenic (right, black indicates 

calcium deposition) pathways (Pittenger et al. 1999). 

 

 

Finally, MSCs not only have potential for engineering of musculoskeletal tissues but 

also can be used in cardiac tissue repair, as MSCs are also able to differentiate into a 

cardiac phenotype. MSCs have already been used in clinical trials for certain 

applications, including BTE (Le Blanc and Pittenger 2005; Caplan 2009). 
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Cells Used in my Thesis 

Autologus MSCs will be seeded throughout the porous scaffold. They will be isolated 

from bone marrow aspirates retrieved from the iliac crest. As they are autologous no 

immune response will be elicited when implanted back in the host (Lanza et al. 2000). 

In addition, MSCs have been shown to differentiate down the osteogenic lineage 

when cultured on calcium-phosphate materials (Ohgushi et al. 1993; Oreffo et al. 

1998; Nishio et al. 2000), like the coatings deposited on the surface of the metal 

scaffolds used in this thesis. 

 

1.4.5 Growth Factors in BTE 

Growth factors are cytokines secreted by many cell types that function as signalling 

molecules. They promote and/or prevent cell adhesion, proliferation, migration and 

differentiation. These events are affected by up-regulating or down-regulating the 

synthesis of proteins, growth factors and receptors. These molecules are essential for 

tissue formation and therefore play an important role in tissue engineering (Lanza et 

al. 2000; Rose and Oreffo 2002; Yoon and Boden 2002; Ikada 2006). 

 

Bone tissue posses a plethora of growth factors, including bone morphogenetic 

proteins (BMPs) within the transforming growth factor beta (TGF-β) superfamily, 

fibroblast growth factors (FGFs), insulin growth factor I and II (IGF I/II) and platelet 

derived growth factor (PDGF). These growth factors have been proposed for BTE 

applications, although the most heavily studied cytokines are BMPs (Yoon and Boden 

2002; Salgado et al. 2004). 

 

Bone Morphogenetic Proteins (BMPs) 

BMPs are grouped into the TGF-β superfamily due to their similarities in protein 

structure and sequence with TGF-β. Back in 1965, Urist discovered that 

demineralised bone matrix could induce bone formation when implanted ectopically 

in subcutaneous tissue (Urist 1965). This capability was later attributed to a protein 

called bone morphogenetic protein, which was purified in 1984 based on its potential 

to induce bone formation (Urist et al. 1983; Urist et al. 1984). In 1988, Wozney and 

colleagues cloned these molecules and since then over 30 different BMPs  have been 

identified with promising efficacy as therapeutic molecules for bone formation 

(Wozney et al. 1988; Kang et al. 2004; Rose and Oreffo 2002).  
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However, the failure to identify a suitable carrier for BMPs as well as dosage and 

maintenance of biological activity has hampered the potential benefits these 

molecules could offer for bone formation. Therefore, extensive research has been 

carried out in incorporating BMPs into tissue engineering scaffolds and delivery 

systems (Rose and Oreffo 2002; Yoon and Boden 2002; Suh et al. 2002). Another 

approach to eliminate the problems associated with the delivery of BMPs to the 

required site is gene therapy. Genetic modification of isolated and expanded cells is 

possible due to developments in gene technology. Populations of progenitor cells 

over-expressing selected signalling molecules can be engineered using this 

technology. Moreover, gene therapy offers the advantage of continuous delivery of 

cytokines during a prolonged period rather than just one dose of protein at the time of 

implantation (Rose and Oreffo 2002; Yoon and Boden 2002; Yoon and Boden 2004; 

Ho 2011; Kang et al. 2004; Conget and Minguell 2000). 

 

Growth Factors Used in this Thesis 

In my thesis I propose a self-regulating tissue-engineered construct (Lanza et al. 

2000) with chemical cues arising from the scaffold itself, as calcium-phosphate 

materials promote MSCs differentiation down the osteogenic lineage
 
(Ohgushi et al. 

1993; Oreffo et al. 1998; Nishio et al. 2000). 

 

1.4.6 The Role of Bioreactors in BTE 

As mentioned early in this introduction, bone is a mechanically active tissue arranged 

in a 3D manner. The biological environment within the bone tissue is a dynamic 

interaction between active cells that experience mechanical forces and a 3D matrix 

architecture that is in continuous change. Therefore, in order to engineer bone tissue 

constructs ex vivo it is necessary to develop culture systems that mimic the dynamics 

of the in vivo biological environment (Lanza et al. 2000; Kale et al. 2000). 

 

The current standard tissue culture techniques are not adequate for BTE purposes due 

to a lack of efficient transport of nutrients and removal of waste products. As a result, 

there is a lack of nutrients in the centre of the scaffold which leads to cell migration to 

the surface where fresh nutrients are more available. Ultimately, a non-even 

distribution of cells throughout the scaffold is obtained. Moreover, the current tissue 
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culture techniques are static and do not mimic the dynamics found in vivo (Bancroft et 

al. 2003; Martin et al. 2004). 

 

A solution to overcome these problems is the design and development of bioreactors. 

A bioreactor is generally defined as a device in which biological and/or biochemical 

processes take place under tightly controlled environmental and operating conditions. 

A bioreactor would provide an efficient mass transfer of nutrients and metabolites and 

the dynamic requirements for the engineering of bone tissue (Martin et al. 2004; 

Salgado et al. 2004; Ikada 2006). So far, three bioreactor systems have been used in 

BTE applications: spinner flasks, rotating wall vessel bioreactors and flow perfusion 

bioreactors.  

 

Spinner flasks (Figure 1.12) are very basic bioreactors where scaffolds seeded with 

cells are attached to needles hanging from the lid of the flask. The scaffolds are 

covered by medium that is mixed with a magnetic stirrer at the bottom of the flask. 

The convective forces generated by this magnetic stirrer improve the nutrient 

concentration gradients at the surface of the scaffolds (Martin et al. 2004; Bancroft et 

al. 2003; Ikada 2006). Vunjak-Novakovic and co-workers reported that when 

cell/polymer constructs for tissue regeneration were cultured in spinner flasks for five 

weeks they were larger and had more cells than the constructs cultured under static 

conditions in petri dishes (Vunjak-Novakovic et al. 1996). More recently, Mygind and 

colleagues found that dynamic culture of human MSCs on coralline hydroxyapatite 

scaffolds using a spinner flask resulted in increased proliferation, differentiation and 

distribution of cells in scaffolds (Mygind et al. 2007). 

 

 

Figure 1.12 Spinner flask scheme (www.currentprotocols.com) 
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Rotating wall vessel bioreactors (Figure 1.13) were originally designed to simulate 

microgravity effects. The most common type of rotating wall vessel bioreactor is 

composed of two concentric cylinders. The seeded scaffolds are placed in the annular 

space between them. The outer cylinder is impermeable and rotates in a controlled 

manner while gas exchange is allowed through the stationary inner cylinder. By 

carefully selecting the appropriate rotational rates the free falling of the scaffolds 

inside the bioreactor due to gravity can be balanced by the centrifugal forces 

originated due to the rotation of the outer cylinder. Thus, microgravity-like culturing 

conditions with laminar rotational flow fields and a low fluid shear stress are 

established (Martin et al. 2004; Bancroft et al. 2003; Ikada 2006). Botchwey and 

colleagues showed an increased alkaline phosphatase activity and mineralization 

when osteoblast-like cells seeded on lighter than water polymer scaffolds were 

cultured in a rotating wall vessel bioreactor (Botchwey et al. 2001). Sikavitsas, 

Bancroft and Mikos directly compared the performance of spinner flasks and rotating 

wall vessel bioreactors to static cultures. PLGA scaffolds were seeded with MSCs 

from the marrow of femurs and tibias of rats and cultured in six-well plates (static 

culture), spinner flasks and rotating wall vessel bioreactors for up to 21 days. The 

results showed that the constructs cultured in spinner flasks obtained higher 

proliferation rates and increased osteogenic differentiation. These results were 

attributed to a mitigation of external mass transport limitations in the spinner flask. 

On the other hand, constructs cultured in the rotating wall vessel displayed minimal 

osteogenic differentiation which the authors attributed to collisions of the constructs 

with the walls of the rotating bioreactor. In all three culture systems, a dense cellular 

layer on the surface of the scaffolds and a considerably lower cell distribution in the 

inside of the scaffold was revealed by histology, suggesting that the transport of 

nutrients to the interior of the scaffolds was limited to diffusion in all the cultures. The 

authors concluded that improved tissue culture conditions were needed in order to 

permit cellular growth throughout tissue-engineered constructs (Sikavitsas et al. 

2002). 
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Figure 1.13 Rotating wall vessel bioreactor scheme and forces 

(www.landesbioscience.com/curie/) 

 

 

Flow Perfusion Bioreactors 

The third bioreactor type used for BTE applications, flow perfusion, offers an 

improved as well as enhanced transport of nutrients to the interior of 3D scaffolds. 

This advantage comes from the fact that this bioreactor delivers medium through the 

interconnected pores of the scaffold. In these bioreactors, the seeded scaffolds are 

confined inside a chamber with the appropriate dimensions in order to force the 

continuously pumped culture medium flow through the interconnected porous 

network and not around it, as illustrated in Figure 1.14 (Bancroft et al. 2003; Martin et 

al. 2004). Due to this particular flow culture, an improved cellular distribution is 

achieved. 

 

 

Figure 1.14: Flow perfusion culture, where the culture medium is forced through the 

internal interconnected pores of the scaffold (Bancroft et al. 2003). 
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Another important advantage offered by these perfusion systems is that they provide 

mechanical stimulation to the cells by way of fluid shear stress (Bancroft et al. 2003). 

Since bone cells are known to be stimulated by mechanical signals (Hillsley and 

Frangos 1994; Sikavitsas et al. 2001) this is a very important advantage as it mimics 

the mechanical environment in which bone cells live. Sikavitsas et al. reported direct 

involvement of fluid shear stresses inside a perfusion bioreactor on the osteogenic 

differentiation of marrow stromal cells. They also showed that increased shear forces 

resulted in enhanced mineralised extracellular matrix deposition and improved spatial 

cellular distribution (Sikavitsas et al. 2003). By increasing the flow rate of the culture 

medium perfused through the constructs fluid shear forces are also increased, which 

presumably results in greater mechanostimulatory effect of these shear forces on the 

cells. This greater mechanostimulation may enhance the osteogenic differentiation of 

MSCs (Sikavitsas et al. 2003; Bancroft et al. 2002; Sikavitsas et al. 2005; Bancroft et 

al. 2003; Cartmell et al. 2003; Gomes et al. 2006a; Gomes et al. 2006b; Zhao et al. 

2007). 

 

Different designs can be found in the literature. However, all of them present the same 

components: a pump to deliver the flow of culture medium, a bioreactor chamber in 

which the construct is fitted, media containers and a tubing system (Bancroft et al. 

2003). Some of them incorporate a seeding loop for dynamic cell seeding of the 

scaffolds (Zhao and Ma 2005; Janssen et al. 2006; Zhao et al. 2007). 

 

Several types of scaffolds have been seeded with different cell types and cultured in 

flow perfusion systems for BTE purposes. Zhao and Ma used non-woven 

poly(ethylene terepthalate) fibrous matrices with human MSCs, the same cells that 

Bjerre et al. seeded on silicate-substitute tricalcium phosphate scaffolds (Zhao and Ma 

2005; Bjerre et al. 2008). Other ceramics, such as porous biphasic calcium phosphate, 

have been used by other authors (Holtorff et al. 2005; Wang et al. 2003). In all these 

examples increased proliferation, osteogenic differentiation and cell distribution were 

achieved under flow perfusion culture, setting flow perfusion systems as valuable 

tools for applications in BTE. 

 

Janssen and colleagues designed a perfusion system for the production of clinically 

relevant volumes of tissue-engineered bone. Goat bone marrow stromal cells were 
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dynamically seeded on macroporous biphasic calcium phosphate granulated scaffolds 

and cultured in the perfusion system for up to 19 days.  A homogeneous and viable 

cell layer could be observed after 19 days of culture. However, subcutaneous 

implantation of the constructs yielded similar amounts of newly formed bone as the 

static controls (Janssen et al. 2006).  The same authors found very similar results with 

human bone marrow stromal cells seeded on the same scaffold and cultured in the 

same perfusion system. Dynamically and statically cultured constructs showed no 

statistical difference in terms of new bone formation when subcutaneously implanted 

in nude mice (Janssen et al. 2010). On the other hand, other in vivo studies have 

shown significantly enhanced bone formation when constructs developed in a 

perfusion bioreactor were also implanted subcutaneously in rats (Wang et al. 2003), 

showing that the generation of artificial bone tissue could be achieved with a 

perfusion bioreactor system. 

 

To conclude, perfusion bioreactor systems are also being used in intestinal TE (Kim et 

al. 2007), maxillofacial TE (Depprich et al. 2008) or cardiac tissue regeneration (Dvir 

et al. 2006). 

 

Bioreactor System Used in this Thesis 

A perfusion bioreactor system will be used in my thesis in order to enhance transport 

of nutrients to the interior of the porous scaffold seeded with MSCs (Bancroft et al. 

2003). Moreover, an effective removal of waste products is also achieved by using a 

perfusion bioreactor system (Bancroft et al. 2003). As a result, an even distribution of 

cells is achieved throughout the scaffold (Holtorff et al. 2005). The fluid shear forces 

generated inside a perfusion bioreactor will add to the effect of the calcium-phosphate 

coatings on the osteogenic differentiation of MSCs (Sikavitsas et al. 2003; Bancroft et 

al. 2002; Sikavitsas et al. 2005; Bancroft et al. 2003; Cartmell et al. 2003; Zhao et al. 

2007). 

 

1.4.7 Animal Models in BTE 

The development of bone tissue-engineered constructs requires the evaluation of their 

performance on preclinical studies prior to evaluation in human subjects. The first 

step usually taken in order to test the in vivo performance of newly developed 

constructs in to conduct preclinical trials in smaller animals to evaluate the proof of 
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concept. If the results of these trials on smaller animals are positive the next step is to 

proceed to larger animals. The option of working with larger animals is also closely 

related to the necessity of evaluating responses of the tissue-engineered construct 

under conditions that better resemble a physiological match with the human clinical 

conditions (Goldstein 2002). 

 

The appropriate choice of an experimental animal model is critical to the success of 

the preclinical studies. The criteria associated with the choice of an experimental 

model must be related to the functional application of the construct: the animal model 

must be biologically analogous and recognizable as a suitable challenge to human 

physiology.  

 

Ectopic Models 

Ectopic models are used when the aim of the project is to study whether the tissue-

engineered construct has an adequate porosity for osseoinduction of bone tissue and 

blood vessel ingrowth.  

 

The subcutaneous ectopic model is the most popular where rats are more often the 

chosen animals. Constructs are normally implanted in the back of the animal. Other 

ectopic sites often used are the muscle, peritoneal cavity or mesentery (An and 

Friedman 1998). Ectopic models are also chosen when the osteoconductivy and 

osteoinductivity of biomaterials are assessed (Fujita et al. 1991; Mankani et al. 2001; 

Harris and Cooper 2004). 

 

Critical Size Defect Models 

In a critical defect model the bone defect must fail to heal unless it is treated with the 

tissue-engineered construct under study. There are mainly four types of defects: 

calvarial, long bone or mandibule segmental, partial cortical and trabecular bone 

defects. The animals usually used with these models are rabbits, rats, dogs, sheep and 

non-human primates (An and Friedman 1998).  

 

Critical size defects in large animal models are also used in the biomaterials research 

field in order to evaluate the in vivo behaviour of the proposed materials (Constantz et 

al. 1997; Nakamura et al. 1998; Hing et al. 2005; Ripamonti et al. 2008). 
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Animal Model Chosen for this Thesis 

An ovine model was chosen for this thesis because a large animal model is more 

relevant than a small one in order to represent the human clinical situation (Goldstein 

2002). In this thesis, tissue-engineered constructs will be evaluated in a bony in vivo 

environment by implantation in the medial femoral condyle of sheep in a trabecular 

defect model (An and Friedman 1998). Their performance will be compared to non 

tissue-engineered constructs, which consist of calcium-phosphate coated porous metal 

scaffolds not seeded with cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 

 

1.5 AIM AND HYPOTHESES 

 

The aim of this thesis is to develop a bone tissue-engineered construct with a 

porous metal scaffold coated with a calcium-phosphate layer and seeded 

throughout its structure with MSCs, using a perfusion bioreactor system, in 

order to enhance rapid formation of bone within the implant, repair adjacent 

defect areas and increase fixation strength at revision total hip replacements. 

This approach could be used in porous metal acetabular cups as they could be 

coated with a CaP layer and cultured throughout with MSCs using a perfusion 

bioreactor system. 

 

The hypotheses explored in this thesis are: 

1. The addition of MSCs to a porous metal scaffold coated with a calcium-

phosphate layer can generate significantly increased new bone formation in 

gaps adjacent to implants and within the porous structure than using the 

scaffold alone. 

 

2. Tissue-engineered implants will achieve greater osseointegration and implant-

bone interface fixation than non tissue-engineered implants. 
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CHAPTER 2: 

Calcium-Phosphate Coating  

of Polished and Sand-Blasted Metal Discs  

by Biomimetic and Electrochemical Methods 
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2.1 INTRODUCTION 

 

Metals such as titanium alloys or tantalum are widely used in orthopaedic implants 

due to their excellent mechanical properties and biocompatibility
 
(Matter and Burch 

1990; Grübl et al. 2002; Unger et al. 2005; Levine et al. 2006). However, these 

materials are not osteoconductive as they do not promote direct bonding with bone 

tissue.  

 

On the other hand, calcium-phosphate (CaP) ceramics have been shown to form a 

direct bond with bone tissue through formation of an apatite layer when used for bone 

substitution, augmentation and repair
 

(Blokhuis et al. 2000; LeGeros 2008). 

Therefore, by coating the surface of metal implants with a CaP layer the implant 

becomes bioactive and osteoconductive.
 

Tisdel and co-workers, in 1994, 

demonstrated direct new bone apposition on CaP coated titanium fibre rods in rabbit 

femora compared with uncoated ones, to which no directly apposed new bone was 

found. They concluded that an enhancement of attachment of bone-forming cells to 

the CaP coatings may result in an increased bone formation (Tisdel et al. 1994). 

 

The most common commercial method for CaP coating of metal implants is plasma-

spraying, which is a line-of-sight process that takes place at high temperatures. 

Disadvantages of this method are the formation of easily dissolved phases that 

decrease bond strength, it does not allow the incorporation of bioactive molecules and 

cannot be applied to implants with complex morphology. Other methods of CaP 

coating have been developed to overcome these disadvantages, such as the 

biomimetic and electrochemical depositions. Both of these methods are based on 

precipitation from aqueous solutions (wet methods), take place at low temperature, 

allow the coating of complex shapes and are economical (Habibovic et al. 2002; 

Bharati et al. 2005; Lopez-Heredia et al. 2007; Han et al. 2001).  

 

The biomimetic method, originally developed by Kokubo and colleagues in the 1990s
 

(Kokubo et al. 1990; Kokubo 1998), uses simulated body fluids (SBF) that mimic the  

inorganic ions present in physiological solutions. SBFs have inorganic concentrations 

similar to those of human blood plasma and many procedures and recipes can be 

found in the literature
 
(Habibovic et al. 2002; Cuneyt Tas and Bhaduri 2004; Bharati 
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et al. 2005). Moreover, as SBFs mimic the physiological conditions found in vivo 

they have been widely used as an in vitro model to study apatite formation on the 

surface of different biomaterials, thus assessing their bioactive and osteconductive 

potential (Kokubo et al. 1990; Li et al. 1997; Zhang et al. 2003; LeGeros 2008). 

 

In a typical electrochemical deposition, a CaP precursor is first formed that is 

converted into hydroxyapatite (HA) through an ageing process (heat or alkaline 

treatment). Thus, this method offers more control over deposit crystallinity
 

(Redepenning and McIsaac 1990; Redepenning et al. 1996; Pongkao Kashima and 

Rakngarm 2008). In order to be able to deposit a CaP layer by this technique the 

surface of the material must be electronically conductive as the deposition takes place 

on the cathode of an electrochemical cell.   

 

The aim of this study was to produce, characterise and compare CaP coatings on 

the surface of polished and sand-blasted tantalum and TiAl6V4 discs deposited 

by biomimetic and electrochemical methods. 

 

The hypotheses were: 

1. Biomimetic and electrochemical methods can be applied in order to deposit a 

CaP layer on TiAl6V4 or tantalum surfaces. 

2. Biomimetic and electrochemical methods will produce different CaP coatings 

on the surface of TiAl6V4 or tantalum discs in terms of morphology and 

composition. 

3. Surface topography and type of metal will not affect the morphology and 

composition of CaP coatings deposited on TiAl6V4 or tantalum discs by the 

same method. 

4. CaP coatings deposited on the surface of TiAl6V4 or tantalum discs by 

biomimetic and electrochemical methods will develop an apatite layer when 

immersed in SBF.  
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2.2 MATERIALS AND METHODS 

 

2.2.1 Sample Preparation 

Pure Tantalum (Ta) and TiAl6V4 (Ti) discs used in this study were 10mm diameter × 

2mm thickness. 

 

The surfaces were initially polished using silicon carbide grinding papers (Buehler, 

Germany) in a grinding machine (EXACT, Germany). In order to create a rough 

surface, half of them were sandblasted by alumina particles (Al2O3) to obtain an 

average roughness of Ra=4.0μm (Plasma Biotal Limited, UK). Sandblasting is a 

generic term for the process of shaping, smoothing or cleaning hard surfaces by 

accelerating and forcefully directing solid particles against a hard surface (definition 

from Oxford English Dictionary). The differences between the polished and sand-

blasted surfaces can be seen in Figure 2.1. 

 

Samples were ultrasonically cleaned in acetone, 70% ethanol and distilled water for 

15 minutes and air dried prior to coating. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 A) Polished tantalum discs; B) sand-blasted tantalum discs; 

C) polished TiAl6V4 discs and D) sand-blasted TiAl6V4 discs. 
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2.2.2 Biomimetic Coating Process  

The biomimetic coating process was adapted from Habibovic et al. 2002, who used a 

two step biomimetic coating procedure on metal implants. Firstly, samples are soaked 

in a solution that is five times more concentrated than regular simulated body fluid 

(SBF-1). In this first step the authors reported a thin and uniform amorphous CaP 

layer was deposited on the metal surface. Secondly, samples are immersed in the 

SBF-2 solution, which has similar composition to that of SBF-1 but with decreased 

contents of crystal growth inhibitors (Mg
2+

 and HCO3
-
). During this second coating 

step, a fast precipitation of a 30μm thick crystalline CaP coating was observed. The 

biomimetic coating produced by this two step procedure was found to closely 

resemble bone mineral (Habibovic et al. 2002).  

 

Coating solutions SBF-1 and SBF-2 were prepared according to Table 2.1. Both 

solutions were prepared using reagent grade salts: NaCl (10241AP, BDH, UK), 

NaHCO3 (102474V, BDH, UK), Na2HPO4 (102494C, DBH, UK), MgCl2·6H2O 

(101494V, BDH, UK) and CaCl2·2H2O (100703H, BDH, UK). The appropriate 

quantities of the salts were dissolved in distilled water at 37ºC with a constant 5%CO2 

supply and stirring.  

 

Discs were firstly soaked in SBF-1 for 24h at 37ºC with constant stirring and 5%CO2 

supply. Secondly, discs were soaked in SBF-2 for 48h (Ta) or 18h (Ti) at 50ºC with 

constant stirring and 5%CO2 supply. Discs were not washed in between the two steps. 

Both steps were carried out inside a 37ºC with 5%CO2 incubator. For the second step, 

temperature was raised to 50ºC by using a hot plate and controlled with a 

thermometer.   Finally, discs were cleaned in distilled water for 1min and air dried.  

 

Ion Concentration (mM) 

Component Na+ K+ Ca2+ Mg2+ Cl- HPO4
2- HCO3

- SO4
2- 

HBP 142.0 5.0 2.5 1.5 103.0 1.0 27.0 0.5 

SBF 142.0 5.0 2.5 1.5 148.8 1.0 4.2 - 

SBF-1 714.8 - 12.5 7.5 723.8 5.0 21.0 - 

SBF-2 704.2 - 12.5 1.5 711.8 5.0 10.5 - 
 

Table 2.1 Inorganic composition of Human Blood Plasma (HBP), Simulated 

Body Fluid (SBF) and Coating Solutions SBF-1 and SBF-2. 

(Habibovic et al. 2002) 
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2.2.3 Electrochemical Coatings Process  

The electrochemical coatings process was adapted from Redepenning et al. 1996. The 

electrochemical coating method described by Redepenning and colleagues in 1996 is 

routinely used to coat metal implants with a HA layer at the John Scales Centre for 

Biomedical Engineering. The procedure involves a combination of different chemical 

reactions that lead to the deposition of a HA layer on the metal implant: 

 

1) Electrochemical reaction, where the pH is controlled by the electrical current 

passed through the solution:   

2H2O + 2e
-
 ↔ H2 + 2OH

-  
 

 

2) Acid-Base reaction, determined by the pH:   

OH
-
 + H2PO4

-
 ↔ H2O + HPO4

2- 

 

3) Precipitation reaction, influenced by the concentration of HPO4
2- 

:  

Ca
2+

 + HPO4
2-

 + 2H2O ↔ CaHPO4-2H2O↓ (Brushite) 

 

4) Conversion into HA by immersion in NaOH for 72h:  

5CaHPO4-2H2O + 6OH
-
 ↔ Ca5(PO4)3OH + 2PO4

3-
 + 15H2O 

A difference in morphology before and after the conversion can be observed with 

little overall change in the crystals sizes. 

 

Summing up, the deposition rate as well as the chemistry and the morphology of the 

deposited CaP can be controlled by controlling the electrical current.  

 

A CaP saturated solution was prepared by adding 30g of reagent grade Ca(H2PO4)2 

(C8017, Sigma-Aldrich, UK) to 1L of distilled water at room temperature. The 

solution was stirred vigorously for 1hour. Finally, the solution was filtered using 

Whatman 540 filter paper in order to remove suspended monobasic calcium 

phosphate crystals and obtain a clear solution. 

 

Discs were immersed in the CaP solution and attached to the negative terminal of a 

DC Dual Power Supply pack (Peak Tech, Telonic instruments Ltd, UK) to act as the 

cathode. A platinum ring (20mm diameter × 1.5mm thickness) acted as the anode. 
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Two different electrical currents of 20 and 6.5mA/cm
2
 of surface area were tested. 

20mA/cm
2
 was found to be optimum for current efficiency by Redepenning et al. 

1996. 6.5mA/cm
2
 was chosen so a thinner HA layer on the surface of discs could be 

produced, as the lower the electrical current the lower the deposition rate and 

therefore the thinner it is the deposited CaP precipitate (Redepenning et al. 1996). A 

FLUKE 867B Graphical Multimeter (Fluke Corporation, USA) was used to control 

the current. The electrical current was passed through the solution for 250 seconds. 

The deposition of a mineral layer could be observed over time. Figure 2.2 shows the 

equipment and setting used in the electrochemical depositions.  

 

In order to convert the initial CaP precipitate (CaHPO4-2H2O or Brushite) in HA 

[Ca5(PO4)3OH] the discs were soaked in 0.1M NaOH solution for 72 hours. In 

alkaline conditions brushite is converted into HA by deprotonation, expulsion of 

phosphate groups and rearrangement of the lattice. The alkaline solution was made by 

adding 2g of NaOH (480878, Sigma-Aldrich, UK) to 500ml of distilled water and 

vigorously stirred for 20 minutes. Finally, the coated discs were cleaned in distilled 

water and air dried. 

 

 

 

Figure 2.2 Equipment and setting for the electrochemical depositions of a CaP layer 

on the surface of titanium or tantalum discs. 
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2.2.4 Groups and Number of Discs  

Description of groups of samples tested are summarised in Table 2.2.  

 

12 groups were tested with n=3 per group: 

 

 

GROUP DESCRIPTION 

1 
PTa-BioM: Polished tantalum discs CaP coated by the biomimetic 

method 

2 
PTi-BioM: Polished titanium discs CaP coated by the biomimetic 

method 

3 
SBTa-BioM: Sand-blasted tantalum discs CaP coated by the 

biomimetic method 

4 
SBTi-BioM: Sand-blasted titanium discs CaP coated by the 

biomimetic method 

5 
PTa-E20: Polished tantalum discs CaP coated by the 

electrochemical method at 20mA/cm2 

6 
PTi-E20: Polished titanium discs CaP coated by the 

electrochemical method at 20mA/cm2 

7 
SBTa-E20: Sand-blasted tantalum discs CaP coated by the 

electrochemical method at 20mA/cm2 

8 
SBTi-E20: Sand-blasted titanium discs CaP coated by the 

electrochemical method at 20mA/cm2 

9 
PTa-E6.5: Polished tantalum discs CaP coated by the 

electrochemical method at 6.5mA/cm2 

10 
PTi-E6.5: Polished titanium discs CaP coated by the 

electrochemical method at 6.5mA/cm2 

11 
SBTa-E6.5: Sand-blasted tantalum discs CaP coated by the 

electrochemical method at 6.5mA/cm2 

12 
SBTi-E6.5: Sand-blasted titanium discs CaP coated by the 

electrochemical method at 6.5mA/cm2 

 

Table 2.2: Description of groups of samples for the study of CaP coating of 

metal discs with different topographic surface. 

 

 

In order to compare the first CaP mineral deposited on the metal discs to the 

converted CaP mineral after the ageing treatment, groups 5 to 12 were also prepared 

without immersion in 0.1M NaOH for 72h. 
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2.2.5 Characterisation of Coatings  

Morphology and crystal size of the coatings were characterised by scanning electron 

microscopy (SEM). Elemental analysis, phase composition and crystallinity were 

studied by energy dispersive X-ray spectroscopy (EDAX) and X-ray diffraction 

(XRD). Thickness of the CaP coatings was quantified by SEM. Finally, an apatite 

layer formation study was carried out by immersion of CaP coated discs in SBF and 

analysis by SEM and EDAX.  

 

2.2.5.1 Morphology and Crystal Size: Scanning Electron Microscopy 

(SEM) 

SEM is a useful technique for inspecting topographies of specimens at very high 

magnifications. Therefore, morphology and crystal sizes were analysed by observing 

the CaP coated metal discs by SEM.  

 

CaP coated Ta and Ti discs were mounted on stubs and gold/palladium sputtered 

coated (EMITECH K550, Emitech, UK) before observation by SEM (JEOL JSM 

5500 LV). Images were obtained at 15 to 20kV.  

 

2.2.5.2 Elemental Analysis: Energy Dispersive X-Ray Spectroscopy 

(EDAX) 

EDAX is a technique used to perform compositional analysis as well as to estimate 

relative concentrations of the elements on the surface of the specimens. In the present 

work, elemental composition of the CaP coatings as well as their calcium to 

phosphorous ratio (Ca/P) were investigated using this technique. 

 

The EDAX detector was filled up with liquid Nitrogen 30 to 60 minutes before the 

analysis. After observation of the CaP coated discs by SEM, the EDAX analysis was 

done (EDAX, EDAX Inc. USA). EDAX Genesis® software (EDAX UK, Cambs. 

UK) was used to acquire and analyse the data. EDAX spectra and analysis were 

printed out and scanned (CanoScan FB1200S, Canon UK) in order to convert them 

into a JPEG file.  
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2.2.5.3 Phase Composition and Crystallinity: X-Ray Diffraction (XRD) 

XRD techniques are used to study the phase composition and crystallographic 

structure of crystalline materials. In this thesis, XRD was chosen to find out the CaP 

phases formed on the surface of the metal discs as well as their crystallinity. This 

information was obtained from the XRD patterns of the samples, which are unique for 

each compound.  

 

XRD analysis was kindly performed by Professor Jonathan C. Knowles at the UCL 

Eastman Dental Institute. A Brüker D8 Advance Diffractometer (Brüker, UK) 

operated with Ni-filtered Cu Kα radiation was used. Data were collected from 2θ = 

10º to 100º with a step size of 0.02º and a count time of 12s per point with a Brüker 

Lynx Eye detector.  

 

In order to indentify the peaks in the samples’ diffraction patterns, pure Ti, Ta and 

HA discs were also analysed by XRD. A pure brushite XRD pattern was obtained 

from ICSD database.  

 

HA discs were kindly donated by Doctor Sorousheh Samizadeh. They were prepared 

using HA (Batch no. A00P0B06500) powder that was provided by ApaTech Ltd. 1 

gram of the powder was pressed at 1.5 tones/mg force using a mechanically operated 

press machine and metallic dyes specially designed for making dense discs of 11 x 3 

mm. The HA discs were then sintered in a furnace at 1250°C: the temperature of the 

sintering furnace was set to increase at a rate of 5°C/min up to the sintering 

temperature followed by 2 hours of dwell time. The temperature was then reduced 

down to 26°C at the rate of 10°C/min.  

 

2.2.5.4 Thickness of the CaP Coatings: SEM Analysis 

In order to quantify the thickness of the CaP coatings, discs were embedded in hard 

grade acrylic resin (LR White Resin, Agar Scientific) and transversely cut using 

EXACT diamond band saw (EXACT, Germany). They were then polished using 

silicon carbide grinding papers at increasing grades (240, 600, 1200, 2500 and 4000; 

Buehler, Germany) in a grinding machine (EXACT, Germany). In the last step, 

samples were polished on polishing cloth using AP-A suspension (5μm agglomerated 

α-alumina suspension, Struers, Denmark). Next, they were analysed by SEM, as 
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explained in section 2.2.5.1. Four to five photos per sample were printed out and their 

thickness was calculated using a ruler. The measurements in centimetres were 

transformed to micrometres by taking into account the magnification bar of the 

photos. 

 

2.2.5.5 Apatite Layer Formation Study 

As it has been shown that CaP materials promote direct bonding with bone tissue 

through formation of an apatite layer, in vitro models for studying apatite formation 

on the surface of different biomaterials are used as an assessment of their bioactivity 

and osteoconductivity. These in vitro models use the method developed by Kokubo 

and co-workers in the 1990s in which SBFs that mimic physiological solutions are 

used (Kokubo et al. 1990; Kokubo 1998; Kokubo et al. 2001): biomaterials under 

study are immersed in SBFs and the mineral layer formed on their surface is 

subsequently characterised. 

 

In this thesis, an apatite layer formation study was carried out by immersion of CaP 

coated discs in SBF. Since surface topography and metal type did not affect the 

morphology and composition of CaP coatings deposited on Ti and Ta discs by the 

same method, for this study only CaP coated polished Ti discs were used. Uncoated 

polished Ti and pure HA discs were used as controls. Pure HA discs were the same 

ones as in section 2.2.5.3.  

 

SBF was prepared according to Table 2.1 (Kokubo et al. 1990) using reagent grade 

salts: NaCl (10241AP, BDH, UK), KCl (101983K, BDH, UK), NaHCO3 (102474V, 

BDH, UK), K2HPO4 (17835, Sigma-Aldrich, UK), MgCl2·6H2O (101494V, BDH, 

UK) and CaCl2·2H2O (100703H, BDH, UK). The appropriate quantities of the salts 

were dissolved in distilled water with constant stirring. The solution was buffered at 

pH=7.25 with (CH2OH)3CNH2 50mM/HCl 45 mM buffer and kept at 37ºC.  

 

The buffer mentioned above was prepared by mixing 3.7mL of hydrochloric acid 

(HCl, 101256J, BDH, UK) and 1.51g of trishydroxymethyl-aminomethane 

[(CH2OH)3CNH2, 103153L, BDH, UK] in 1L of distilled water. 
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PTi, HA, PTi-BioM, PTi-E20 and PTi-E6.5 discs were immersed for up to 7 days in 

SBF at 37ºC. Discs surfaces were analysed by SEM and elemental composition by 

EDAX at days 0, 1 and 7 as already explained in sections 2.2.5.1 and 2.2.5.2.  

 

2.2.6 Statistics 

Statistical analysis was performed with SPSS 14.0 software. Non parametric tests 

were applied to the data as the sample number was small. Comparisons between 

groups were made using the Mann Whitney U test. A p-value≤0.05 was considered a 

significant result. 
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2.3 RESULTS 

 

2.3.1 Morphology and Crystal Size of Coatings 

SEM analysis revealed different morphologies and crystal sizes for the different 

coatings deposited by the three methods described, as seen in Figures 2.3 and 2.4.  

 

From Figure 2.3A it can be seen that biomimetic coating barely covered the discs 

surfaces. As it can be observed from the photos, patches of mineral are scattered over 

the discs surfaces, which were not completely covered and therefore were still visible 

after the biomimetic coating process (Figure 2.3). On the other hand, electrochemical 

depositions at 20 and 6.5mA/cm
2 

completely covered the discs surfaces with a CaP 

layer, as seen in Figure 2.4A and B.  

 

It can be observed from Figure 2.3 that the biomimetic coatings exhibited globular 

morphology composed of nanocrystals (a particle is considered to be within the 

nanometer scale when it measures less than 0.1μm, 

www.nanodic.com/Nanomaterial/Nanoparticle.htm), arranged in large globules. 

Globular morphologies for biomimetic coatings have already been described by other 

authors (Bharati et al. 2005; Kokubo et al. 2001). Photos in Figure 2.3 also show that 

the biomimetic coatings had the same morphology and crystal size on all the different 

discs, suggesting the surface topography and metal type did not have an effect on 

morphology and crystal size.  

 

The original brushite deposited on the metal discs by the electrochemical depositions 

at 20 and 6.5mA/cm
2
 displayed a typical plate-like morphology (Redepenning et al. 

1996; Pongkao Kashima and Rakngarm 2008) as shown by Figure 2.4C and D. After 

the ageing treatment, by immersion in alkaline solution for 72h, the electrochemical 

coatings had different morphologies with a combination of plate-like and needle-like 

crystals occurring with tiny globular crystals and also porous structures in some areas 

(Fig. 2.4E-H). Crystal sizes ranged from the micrometer to the nanometer scale. 

Surface topography and metal type did not appear to have an effect on morphology 

and crystal size.  
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Figure 2.3 SEM photos of biomimetic CaP coating on the surface of A) PTa; B) SBTa; C) 

PTa; D) SBTa; E) SBTi F) SBTi and G, H) PTi discs, showing the globular morphology 

exhibited by these coatings, with nanocrystals arranged in globules (yellow arrows).  

Red arrows show bare surface of metal disc. 

A 
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H G 
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Figure 2.4 SEM photos of electrochemical CaP coatings: A) SBTa-E6.5; B) SBTi-E20; C) 

PTi-E20 not immersed in 0.1M NaOH; D) PTa-E6.5 not immersed in 0.1M NaOH; E) PTi-

E20; F) SBTa-E20; G) PTa-E6.5 and H) SBTi-E6.5. (Arrows: green, plate-like crystals; blue, 

needle-like crystals; red, tiny globular crystals and yellow, porous structures). 
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H G 

D C 

B 
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2.3.2 Elemental Analysis and Ca/P Ratio 

EDAX spectra and analysis can be seen from Figures 2.5 to 2.8. 3 discs per group 

were used and 3 spectra per disc were taken. Therefore, n=9 for each group in EDAX 

analysis. 

 

The spectra showed that all the coatings deposited by the different methods contained 

calcium (Ca) and phosphorous (P) as main elements. For all the samples, carbon (C) 

and oxygen (O) peaks were present in the EDAX spectra. A constant peak for sodium 

(Na) was found for the electrochemically coated samples while it was not observed 

for the biomimetically coated ones. In some biomimetic samples spectra, a 

magnesium (Mg) peak was seen (Figure 2.5B). 

 

Ca/P ratios calculated for the different samples can be seen in Table 2.3. Before 

immersion in 0.1M NaOH for 72h, Ca/P ratios calculated for electrochemically 

coated Ta discs were 0.92 ± 0.03 and 1.01 ± 0.06 for Ti discs. In both cases they were 

very close to 1 which is the Ca/P for brushite. The Ca/P ratio of all coatings was 

below 1.67, that of pure HA, suggesting they were Ca deficient. No significant 

differences (p>0.05) in Ca/P ratios were found between Ta and Ti discs coated by the 

same method when statistical analysis was applied to the data. Similarly, no 

significant differences (p>0.05) were found between BioM and E20/E6.5 coatings. 

 

Finally, the spectra showed no differences in the coatings produced by the same 

method between polished and sand-blasted discs for a given metal surface. They also 

showed no differences in terms of elemental composition between E20 and E6.5 

coatings. 

 

Ca/P 

Coating BioM E20/E6.5 E no NaOH 

Ta 1.48 ± 0.03 1.47 ± 0.07 0.92 ± 0.03 

Ti 1.43 ± 0.08 1.47 ± 0.07 1.01 ± 0.06 

 

Table 2.3 Calculated Ca/P ratios by EDAX analysis for the Ta and Ti discs CaP coated by the 

biomimetic method (BioM), electrochemical depositions at 20 (E20) and 6.5 mA/cm
2 
(E6.5) 

and without immersion in 0.1M NaOH for 72h (E no NaOH).  

Results show averages ± standard deviation. 
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Figure 2.5 EDAX spectra and analysis of biomimetically coated  

A) polished Ta and B) sand-blasted Ti discs. 

A 

Ca/P = 1.43 

B 

Ca/P = 1.40 
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Figure 2.6 EDAX spectra and analysis of  

A) polished Ta and B) sand-blasted Ti electrochemically coated at 6.5mA/cm
2
, 

without immersion in 0.1M NaOH for 72 hours. 

A 

Ca/P = 0.90 

B 

Ca/P = 0.90 
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Figure 2.7 EDAX spectra and analysis of A) polished Ta electrochemically coated at 

20mA/cm
2
 and B) polished Ta electrochemically coated at 6.5mA/cm

2
. 

A 

Ca/P = 1.54 

B 

Ca/P = 1.36 
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Figure 2.8 EDAX spectra and analysis of A) polished Ti electrochemically coated at 

20mA/cm
2
 and B) sand-blasted Ti electrochemically coated at 6.5mA/cm

2
. 

 

A 

Ca/P = 1.51 

B 

Ca/P = 1.44 



83 

 

2.3.3 Phase Composition and Crystallinity 

XRD patterns and analysis can be seen from Figures 2.13 to 2.18. In all the XRD 

patterns a high background noise could be observed indicating the samples contained 

amorphous phases. They were compared to those of pure Ta, Ti, brushite and HA 

(Figures 2.9 to 2.12) in order to identify the peaks.  

 

For the biomimetically coated discs (Figures 2.13 and 2.14), no CaP phase was 

identified and only peaks from the metal discs could be observed, suggesting that the 

biomimetic CaP layers deposited were amorphous and composed of very small 

crystals.  

 

Electrochemically coated discs (Figures 2.15 to 2.18) exhibited brushite peaks (B) for 

those samples not immersed in 0.1M NaOH for 3 days. These brushite peaks were 

sharp, in contrast to those of the HA into it was converted after immersion in 0.1M 

NaOH for 3 days, which were broad. In some samples, brushite peaks were still 

visible after the NaOH treatment.  

 

EDAX and XRD results showed that for the same coating method composition was 

not affected by metal type or surface topography. 

 

 

 

Figure 2.9 XRD pattern of pure Ta disc. 
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Figure 2.10 XRD pattern of Ti disc. 

 

Figure 2.11 XRD pattern of pure hydroxyapatite disc. 

 

 

Figure 2.12 XRD pattern of pure brushite. 

XRD: Ti6Al4V disc
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Figure 2.13 XRD pattern of biomimetically CaP coated sand-blasted Ta disc. 

 

 

Figure 2.14 XRD pattern of biomimetically CaP coated polished Ti disc. 

 

 

Figure 2.15 XRD pattern of electrochemically CaP coated at 20mA/cm
2
 polished Ta disc. 
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Figure 2.16 XRD pattern of electrochemically CaP coated at 20mA/cm
2
 sand-blasted Ti disc. 

 

 

Figure 2.17 XRD pattern of electrochemically CaP coated at 6.5mA/cm
2
 polished Ta disc. 

 

 

Figure 2.18 XRD pattern of electrochemically CaP coated at 6.5mA/cm
2
 sand-blasted Ti disc. 
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2.3.4 Thickness of Coatings 

Table 2.4 showed that E20 produced the thickest coatings, followed by E6.5. BioM 

coatings were the thinnest. These results were in line with the SEM observations 

summarised in Figures 2.3 and 2.4. Statistical analysis showed no significant 

differences (p>0.05) between E20 and E6.5 coatings. On the other hand, the thickness 

of both electrochemical coatings was significantly different (p<0.05) when compared 

to the thickness of BioM coating. 

 

Figure 2.19 displays the SEM analysis for the biomimetic coatings. The photos 

showed that the surface was not completely covered by a CaP layer. The globular 

nature of these coatings was also observed from the photos.  

 

Figures 2.20 and 2.21 display the SEM analysis for the electrochemical coatings. As 

it can be seen from them, the discs surfaces were completely covered with a CaP 

layer. Some photos reveal the porous nature of these coatings as well as a bigger 

crystal size compared to the biomimetic coatings. 

 

Variation in thickness for the sand-blasted discs was observed to be slightly higher 

than for the polished ones. Finally, thickness of CaP layers on either Ta or Ti discs 

were found to be very similar, with no statistical differences (p>0.05) between them, 

which suggests that metal type does not affect thickness of coating. 

 

 

Coating Thickness (μm) 

Coating BioM E20 E6.5 

PTa 3 ± 3 16 ± 5 14 ± 6 

PTi 4 ± 4 16 ± 6 14 ± 3 

SBTa 3 ± 2 18 ± 10 15 ± 8 

SBTi 5 ± 5 18 ± 7 14 ± 7 

 

Table 2.4 Calculated coating thickness by SEM for the Ta and Ti discs CaP 

coated by the biomimetic method (BioM) and electrochemical depositions at 

20 (E20) and 6.5 mA/cm2 (E6.5). 

Results show averages ± standard deviation. 
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Figure 2.19 Coating thickness SEM analysis for the biomimetic coating:  

polished Ta disc (A, B), sand-blasted Ta disc (C, D), polished Ti disc (E, F)  

and sand-blasted Ti disc (G, H). 
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Figure 2.20 Coating thickness SEM analysis for the electrochemical coating at 

20mA/cm
2
: polished Ta disc (A, B), sand-blasted Ta disc (C, D),  

polished Ti disc (E, F) and sand-blasted Ti disc (G, H). 
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Figure 2.21 Coating thickness SEM analysis for the electrochemical coating at 

6.5mA/cm
2
: polished Ta disc (A, B), sand-blasted Ta disc (C, D),  

polished Ti disc (E, F) and sand-blasted Ti disc (G, H). 
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2.3.5 Apatite Layer Formation Study 

SEM analysis revealed a mineral layer at day 1 on control polished Ti discs which 

became denser after 7 days (Figure 2.22), suggesting the process of deposition of a 

mineral layer on the surface of Ti discs from available ions in solution was continuos 

over 7 days. Close observation of the particles deposited on the surface of these 

uncoated Ti discs showed that they were 2 to 3μm diameter globular particles. 

Likewise, deposition of a mineral layer over time was observed for the HA control 

discs (Figure 2.23). Globular amorphous crystals in the micrometer scale were 

observed at day 7 (Figure 2.23). 

 

Biomimetic coating was observed to become denser after immersion in SBF for 7 

days. Figure 2.24 shows that the globules formed by the nanocrystals become larger 

and in some areas the morphology is observed to be different, with globular 

amorphous crystals in the micrometer scale observed at day 7. 

 

Figures 2.25 and 2.26 show how electrochemical coatings changed their morphology 

over time after immersion in SBF. Globular amorphous crystals in the micrometer 

scale, similar to those observed at day 7 on HA control discs and biomimetic 

coatings, were seen at day 7 for both electrochemical coatings (Figures 2.25 and 

2.26). 

 

From Figure 2.27 it can be seen how Ca and P peaks were barely detected by EDAX 

analysis on control polished Ti discs at day 1. However, they were clearly visible at 

day 7. A Mg peak was also detected at day 7 on these control discs. Calculated Ca/P 

ratios were 1.22 ± 0.08. EDAX spectra of HA discs at day 1 contained only Ca and P 

peaks. At day 7, Na and Cl peaks were also present besides those of Ca and P (Figure 

2.28). Ca/P ratios for the HA control disc were 1.63 ± 0.07. 

 

Figures 2.29 to 2.31 display the EDAX spectra and analysis for the coated polished Ti 

discs. At both time points, Na, Cl and Mg peaks were visible in the spectra as well as 

Ca and P peaks. Na and Cl peaks were higher in the biomimetically coated discs than 

in the electrochemically coated ones. Calculated Ca/P ratios were 1.39 ± 0.03 for 

BioM, 1.43 ± 0.06 for E20 and 1.44 ± 0.07 for E6.5, cery similar to those found for 

coatings without immersion in SBF, which can be seen summarised in Table 2.3.   
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Figure 2.22 Apatite layer formation study:  

SEM analysis for the control uncoated polished Ti discs after immersion in SBF  

for 1 (images on the left) and 7 days (images on the right). 
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Figure 2.23 Apatite layer formation study: SEM analysis for the control HA discs 

after immersion in SBF for 0, 1 and 7 days. 
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Figure 2.24 Apatite layer formation study: SEM analysis for the biomimetically 

coated polished Ti discs after immersion in SBF for 0, 1 and 7 days. 
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Figure 2.25 Apatite layer formation study: SEM analysis for the electrochemically 

coated polished Ti discs at 20mA/cm
2
 after immersion in SBF for 0, 1 and 7 days. 
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Figure 2.26 Apatite layer formation study: SEM analysis for the electrochemically 

coated polished Ti discs at 6.5mA/cm
2
 after immersion in SBF for 0, 1 and 7 days. 
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Figure 2.27 Apatite layer formation study: EDAX spectra and analysis of control 

polished Ti disc at A) day 1 and B) day 7 of immersion in SBF. 
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Figure 2.28 Apatite layer formation study: EDAX spectra and analysis of control HA 

disc at A) day 1 and B) day 7 of immersion in SBF. 
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Figure 2.29 Apatite layer formation study: EDAX spectra and analysis of 

biomimetically coated polished Ti disc at A) day 1 and B) day 7 of immersion in SBF. 
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Figure 2.30 Apatite layer formation study: EDAX spectra and analysis of 

electrochemically coated polished Ti disc at 20mA/cm
2
  

at A) day 1 and B) day 7 of immersion in SBF. 
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Figure 2.31 Apatite layer formation study: EDAX spectra and analysis of 

electrochemically coated polished Ti disc at 6.5mA/cm
2
  

at A) day 1 and B) day 7 of immersion in SBF. 
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2.4 DISCUSSION 

 

In the present chapter, three different methods were used to deposit a CaP coating 

layer on the surface of tantalum and TiAl6V4 discs which had different topography, 

polished and sand-blasted. The coating methods all used supersaturated solutions at 

room temperature. However, the coatings resulted in different characteristics, as 

shown in the results section of this chapter.   

 

Biomimetic coatings were composed of tiny crystals in the nanometer scale arranged 

in globules.  EDAX results showed these coatings were composed of Ca and P as well 

as C and O. Mg was barely detected in some spectra. Ca/P ratio was below 1.67, that 

for pure hydroxyapatite, indicating the biomimetic coatings were Ca deficient, like 

the bone
 
mineral (Wopenka and Pasteris 2005; Narasaraju and Phebe 1996; LeGeros 

1993). However, no CaP phase was detected by XRD, which means it is present as 

very amorphous phases composed of very small crystals (Suryanarayana and Grant 

Norton 1998; Hammond 2001; Nishio et al. 2000). All together, this data suggests 

that the biomimetic coatings are composed of a CaP phase or phases that are very 

amorphous, composed of nano-sized crystals and Ca deficient. Mg may be 

incorporated in the coatings, which is one of the reported substituting ions found in 

bone mineral (Wopenka and Pasteris 2005; LeGeros 1993; LeGeros 2008).  

 

Back in 1994, Kokubo and de Groot described the coating on a titanium substrate 

immersed in SBF as “carbonated, calcium-deficient, poorly crystallized 

hydroxyapatite”. This biomimetic coating was defined as “bone-like” due to its 

resemblance with the mineral found in bone (Li et al. 1994). Since then other authors 

have used the definition bone-like when their biomimetic coatings presented the 

mentioned characteristics (Yamashita et al. 1996; Ma et al. 2003; Oliveira et al. 

2003). The characteristic calcium-deficient and poorly crystallized coating described 

by Kokubo and de Groot in 1994 were observed in my study. However, the analytical 

methods used to characterise the biomimetic coatings did not reveal whether they 

were carbonated. Therefore the biomimetic coatings in my study cannot be classified 

as bone-like although further analysis may reveal the nature of their composition. For 

instance, an analytical technique such as Fourier transform infrared spectroscopy 
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(FTIR) would provide an infrared spectrum which is unique for each compound, thus 

revealing the carbonate groups in the coatings.   

 

The original brushite deposited on the metal discs by the electrochemical depositions 

displayed the characteristic plate-like morphology of this CaP mineral
 
as well as Ca/P 

ratio indicative of brushite (Redepenning et al. 1996; Pongkao Kashima and 

Rakngarm 2008). Moreover, XRD patterns showed the characteristic peaks of this 

mineral and were sharp indicating its crystalline nature (Suryanarayana and Grant 

Norton 1998; Hammond 2001). 

 

The morphology of the coating adopted several forms and crystal sizes ranged from 

the nanometer to the micrometer scale after immersion of samples in NaOH for 3 

days. EDAX revealed these coatings were also Ca deficient (Ca/P<1.67), 

characteristic of the synthetic CaP prepared by wet methods (Narasaraju 1996). XRD 

patterns displayed a characteristic broad peak for HA, indicating it was amorphous 

(Suryanarayana and Grant Norton 1998; Hammond 2001). This broad HA peak is 

similar to that obtained from a bone sample
 
(Narasaraju 1996; LeGeros 1993). The 

XRD patterns showed the electrochemical coatings were composed of HA as well as 

brushite, as peaks for this mineral remained after the ageing treatment, which in my 

thesis was by immersion in 0.1M NaOH for 72h. 

 

As mentioned in the introduction of this chapter, CaP materials promote direct 

bonding with bone tissue through formation of an apatite layer. SBFs have been used 

as an in vitro model to study apatite formation on the surface of different biomaterials
 

(Kokubo et al. 1990; Li et al. 1997; Kokubo et al. 2001; Zhang et al. 2003; LeGeros 

2008). In this chapter, to further understand these CaP coatings, their characterisation 

when immersed in SBF was studied as an indication of how they may behave when 

used in an in vivo environment.  

 

When the control uncoated Ti discs were immersed in SBF, the appearance of 

globular particles on their surface was observed after just 1 day of immersion. These 

particles multiplied and aggregated after 7 days (Figure 2.22). The morphologies of 

these samples resembled those described by Kokubo in 1998 and 2001 on the surfaces 

of ceramics, metals and polymers when immersed in SBF. Some photos taken at day 
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7 and displayed in Figure 2.32 showed very similar morphologies to those described 

for the biomimetically coated metal discs, summarised in Figure 2.3. The deposition 

of a mineral phase over time was observed on the pure HA control disc. However, the 

morphology of this mineral phase appeared different to the one on the uncoated Ti 

disc. Morphologies observed after very immersion of coated discs in SBF for 7 days 

were similar to those observed by Kokubo and co-workers in 1990. SEM analysis 

revealed a different appearance for these coatings after 7 days in the supersaturated 

solution. Biomimetic coatings looked denser and very amorphous morphologies were 

found in some areas (Figure 2.24), while electrochemical coatings were very different 

compared to their appearance at day 0: the plate-like crystals occurring with tiny 

globular ones observed at day 0 changed to globular amorphous crystals, seen at day 

7 (Figures 2.25 and 2.26)  

 

EDAX results for this study showed that after immersion in SBF the coated discs 

were able to incorporate Na, Cl and Mg. On the other hand, control HA discs only 

incorporated Na and Cl while Mg was the only element apart from Ca and P observed 

in the EDAX spectra of the uncoated Ti discs after 7 days. SEM and EDAX results 

suggest the coatings dissolved when immersed in SBF and subsequently mineralised 

incorporating Na, Cl and Mg as it has been previously described by
 
Zhang and co-

workers in 2003 (Zhang et al. 2003). Na, Cl and Mg are among the reported 

substituting ions in bone mineral
 
(Wopenka and Pasteris 2005; LeGeros 1993).  

 

Together, these findings may suggest the three coatings would be bioactive bonding 

directly with bone when used in vivo, via dissolution and subsequent mineralisation 

incorporating suitable and available ions in the surrounding environment.  

 

The results from this chapter show that the methods applied in order to deposit a CaP 

layer on the surface of Ti and Ta discs provided CaP coatings that were Ca deficient 

and would be able to directly bind with bone tissue. These coatings had different 

morphologies, compositions and thicknesses depending on the method applied.  In the 

next chapter of this thesis the same methods will be used to coat Ti and Ta discs as 

the ones used in this study. CaP coated Ti and Ta discs will be seeded with ovine 

MSCs in order to study how these coatings affect proliferation and differentiation of 

these cells. 
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2.5 CONCLUSION 

 

Biomimetic and electrochemical methods can be applied in order to deposit a CaP 

layer on the surface of tantalum and TiAl6V4 discs. Surface topography and metal 

type did not affect the morphology and composition of the CaP coatings deposited by 

the same method. Biomimetic coatings were composed of nano-sized globular 

crystals while electrochemical coatings produced nano to micro crystals with different 

morphologies. All the coatings were Ca deficient. No CaP phase was detected by 

XRD for the biomimetic coatings whereas the electrochemical ones contained HA 

and brushite. The coatings produced and characterised in this chapter altered their 

morphology and composition when immersed in SBF. In the next chapter of this 

thesis the three coatings will be seeded with ovine mesenchymal stem cells. The 

growth and osteogenic differentiation of these cells on the biomimetic and 

electrochemical coatings will be investigated. 
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CHAPTER 3: 

 Growth and Differentiation of  

Mesenchymal Stem Cells  

on Polished and Sand-Blasted Metal Discs  

Calcium-Phosphate Coated  

by Biomimetic and Electrochemical Methods 
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3.1 INTRODUCTION 

 

Bone marrow stromal cells or mesenchymal stem cells (MSCs) are ideal candidates 

for developing bone tissue-engineered constructs as they have been shown to 

differentiate into bone, as well as other lineages of mesenchymal tissues
 
(Caplan 

1991; Jaiswal et al. 1997; Pittenger et al. 1999; Bosnakovski et al. 2005; Csaki et al. 

2007; Janssen et al. 2006). This differentiation potential is often used to characterise 

MSCs after isolation from bone marrow aspirates (Hara et al. 2008; Eslaminejad et al. 

2008). 

 

When the supplements dexamethasone, ascorbic acid and β-glycerophosphate are 

added to the culture medium, MSCs change their typical fibroblastic morphology to a 

cuboidal shape and produce nodules that stain positively for calcium. As MSCs 

differentiate down the osteogenic lineage, they produce alkaline phosphatase (ALP) 

on their cell surface: ALP is the enzyme responsible for hydrolysing phosphate esters 

and inducing bone mineralisation. The ALP activity increases as MSCs differentiate 

and therefore it is a recognised marker for osteogenic differentiation (Ohgushi et al. 

1996; Jaiswal et al. 1997; Pittenger et al. 1999; Rust 2003).  

 

When MSCs are treated with culture medium supplemented with dexamethasone, 

indomethacin, 1-methyl-3-isobutylxanthine and insulin they differentiate down the 

adipogenic lineage. The MSCs-derived adipocytes accumulate lipid-rich vacuoles 

within them that can be detected using stains such as Oil Red O (Pittenger et al. 1999; 

Rust 2003). 

 

In my thesis, bone marrow isolated ovine MSCs were characterised by demonstrating 

their multipotency differentiating them down the adipogenic and osteogenic lineages. 

 

In the previous chapter, CaP coatings with different characteristics were successfully 

deposited on the surface of metal discs which had different topographic surface. It is 

well known that CaP materials promote MSCs differentiation down the osteogenic 

lineage
 
(Ohgushi et al. 1993; Oreffo et al. 1998; Nishio et al. 2000). Ohgushi and co-

workers in 1993 demonstrated osteogenic differentiation of MSCs in porous HA 

ceramics and when composites of porous HA and MSCs were implanted into ectopic 
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sites, bone formation occurred within the HA pores. They hypothesised that the 

bioactive material has the capability of differentiating MSCs and therefore causes the 

expression of the osteogenic phenotype on the material surface, which leads to 

integration of the material with the surrounding tissue (Ohgushi et al. 1993). In this 

chapter, the osteogenic potential of MSCs on the CaP coatings produced by the 

biomimetic and electrochemical methods will be investigated and will be used to 

indicate the potential of these surfaces to form new bone in vivo. 

 

It has been reported that surface topography and particle size have an effect on cell 

proliferation and differentiation
 
(Anselme et al. 2000; Weiβenböck et al. 2006; Chen 

et al. 2007). In an interesting paper by Dalby et al. published in 2007, it was 

demonstrated that nanoscale disorder could be used to stimulate human MSCs to 

produce bone mineral in vitro, without supplementing the culture medium with any 

osteogenic compounds (Dalby et al. 2007). Since one key difference between the CaP 

coatings characterised in chapter 2 was the crystal size, in this chapter MSCs 

proliferation and differentiation on these different coatings will be studied. Moreover, 

as the coatings were deposited on metal discs that had different topographic surface 

and composition, the influence of the substrate will be also investigated.   

 

The aim of this study was to investigate the effect on MSCs proliferation and 

osteogenic differentiation of CaP coatings with different crystal size that were 

deposited on different topographic surfaces of metal discs; and the hypotheses 

were: 

1. CaP coatings will significantly increase MSCs proliferation compared to 

uncoated Ta/Ti surfaces. 

2. CaP coatings will induce MSCs differentiation down the osteogenic lineage. 

3. Biomimetic coating will significantly enhance MSCs proliferation compared 

to electrochemical coatings. 

4. Flatter topographies will significantly increase MSCs proliferation compared 

to complex and rougher ones. 

5. Complex and rougher topographies will significantly increase MSCs 

differentiation compared to flatter ones. 

6. Ta and Ti will show no significant differences in terms of MSCs proliferation 

and differentiation. 
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3.2 MATERIALS AND METHODS 

 

3.2.1 Expansion and Characterisation of MSCs 

 

3.2.1.1 Cell Culture and Maintenance 

Ovine MSCs, isolated from bone marrow which was aspirated from sheep iliac crest 

using an aseptic technique, were kindly donated by Dr Priya Kalia.  

 

The growth medium for MSCs was Dubelcco’s modified eagles medium (DMEM, 

D6429, Sigma-Aldrich, UK) supplemented with 10% fetal calf serum (FCS, First 

Link, UK) and 100 Units/mL of the antibiotics penicillin and streptomycin (P/S, 

Gibco, UK) (DMEM+). 

 

MSCs were resuscitated by placing the cryovials stored in liquid Nitrogen in a water 

bath at 37ºC until thawed. DMEM+ was also warmed in a water bath at 37ºC. Thawed 

cells and warmed DMEM+ were placed inside a laminar flow hood which provides a 

sterile environment for cell culture work. 1mL of growth medium was gently added to 

the cells. They were left to stand inside the laminar flow hood for 5 minutes before 

they were transferred to a universal tube. Doubling volumes of DMEM+ were gently 

added to the universal tube containing the cells, with 5 minutes equilibration periods 

between each addition, until a total volume of 16mL was reached. The cell 

suspensions were centrifuged at 2,000rpm for 5 minutes. The supernatant was 

discarded and the pellet of cells was resuspended in 1mL of growth medium using a 

gauge needle (0.8 × 40mm, Becton Dickinson UK Ltd, UK) and 1mL syringe (Becton 

Dickinson UK Ltd, UK). Cells were transferred to T75 (75cm
2
 of growth area) 

polystyrene cell culture flasks (Corning, USA) with 10mL of DMEM+ and designated 

passage 2 (P2). Culture flasks were kept in incubators at 37ºC with 5% CO2 and 

regularly observed under a phase-contrast light microscope. Medium was changed 

every 3 to 5 days until the cultures were 80 to 90% confluent, ie when cells covered 

80 to 90% of the total growth area of the culture flask.  

 

When cultures reached 80 to 90% confluency they were passaged. Growth medium in 

the flasks was discarded and the cells were washed with cold phosphate buffered 

saline (PBS) which was also discarded. MSCs grew as adherent monolayers and 
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therefore need to be released from the flask surface. Enzymatic disaggregation is 

commonly used in order to break the cell adhesion interactions mediated by proteins 

such as cadherins which are Ca
2+

 dependent. On addition of trypsin/EDTA, a protease 

and a chelating agent for Ca
2+

, and subsequent incubation the cells are released from 

the flask surface and can be replated (Freshney 2000). Thus, the cells were trypsinised 

by addition of 1mL of 0.5% trypsin-5.3mM EDTA·4Na solution (Gibco, UK) and 

incubation at 37ºC with 5% CO2 for 5 minutes. Once the cells lifted off the surface the 

reaction was stopped by adding a 1:1 volume of DMEM+. The FCS added to the 

culture medium contains trypsin inhibitors that stop the reaction. All cells were 

transferred to a universal tube except a small amount that was used to determine cell 

viability and cell density. A 1/10 dilution of the cells in trypan blue (T8154, Sigma-

Aldrich, UK) was pipetted into a coverslipped haemocytometer which was then 

placed under a phase-contrast light microscope. Viable cells were rounded and bright 

while blue cells were considered as non-viable. Both viable and non-viable cells were 

counted in order to calculate the viability percentage and the number of viable cells in 

the cell suspension. Cells in the universal tube were centrifuged at 2,000rpm for 

5minutes, after which the supernatant was discarded and the pellet of cells 

resuspended in 1mL DMEM+ using gauge needle (0.8 × 40mm, Becton Dickinson 

UK Ltd, UK) and 1mL syringe (Becton Dickinson UK Ltd, UK). Approximately 

3,000 to 5,000 cells per cm
2
 of growth area were seeded in T225 (225cm

2
 of growth 

area) polystyrene cell culture flasks (Corning, USA) with 30mL of DMEM+ and 

designated passage 3 (P3). Culture flasks were kept in incubators at 37ºC with 5% 

CO2. Medium was changed every 3 to 5 days and the cultures passaged when 80 to 

90% of confluency was reached. MSCs were expanded until passage number 12 (P12) 

and routinely observed by phase-contrast light microscopy.  

 

3.2.1.2 Characterisation of MSCs 

Ovine MSCs were characterised by demonstrating their multipotency differentiating 

them down 2 cell lineages: adipogenic and osteogenic (Pittenger et al. 1999).  

 

3.2.1.2.1 Adipogenic Differentiation 

For the adipogenic differentiation cells at P5 were cultured under adipogenic 

conditions for 21 days on Thermanox™ coverslips (Nalge Nunc International, USA) 

in 12 well plates (Orange Scientifique, Belgium). Thermanox™ coverslips offer 
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optimum cell attachment and growth as its surface is treated to achieve a hydrophilic 

state for cell adherence and growth (from product technical data sheet: 

http://www.nuncbrand.com/files/en-626.pdf). 1×10
5
 cells per well were plated.  

 

Adipogenic medium was DMEM+ with 1μM Dexamethasone (D2915, Sigma-

Aldrich, UK), 200μM Indomethacin (I7378, Sigma-Aldrich, UK), 500μM 1-methyl-

3-isobutylxanthine (I5879, Sigma-Aldrich, UK) and 10μg/mL Insulin, (I0516, Sigma-

Aldrich, UK) (from Rust 2003).  Control cells were cultured in the same way but 

using DMEM+ instead of adipogenic medium. Media were changed every 3-5 days.  

 

After 21 days of culture in either DMEM+ or adipogenic medium, cellular 

morphology and presence of lipids by Oil Red O staining were studied.  Oil Red O is 

a fat-soluble dye used for staining of neutral triglycerides and lipids (Young et al. 

2006). 

 

3.2.1.2.2 Adipogenic Differentiation: Oil Red O Staining 

An Oil Red O stock solution was prepared by mixing 0.5g of Oil Red O (S267-2, 

Raymond A. Lamb, London, UK) with 100mL of absolute isopropyl alcohol 

(296946H, BDH, UK) and left to stand overnight. A dextrin stock solution was 

prepared by adding 1g of dextrin (D2256, Sigma-Aldrich, UK) to 100mL of distilled 

water. Oil Red O working solution was made by mixing 60mL of the Oil Red O stock 

solution with 40mL of the dextrin stock solution. This working solution was filtered 

before use using Whatman 540 filter paper. 

 

After 21 days of culture under either DMEM+ or adipogenic conditions, cells were 

washed with PBS and fixed in formal saline for 5 minutes, then rinsed with distilled 

water. They were covered with Oil Red O working solution for 20 minutes, rinsed 

with distilled water to remove excess stain and counterstained with Harris 

haematoxylin for 3 minutes. Finally, they were rinsed with distilled water and air 

dried. Thermanox™ coverslips were then observed under a phase-contrast light 

microscope. Oil Red O stains cell nuclei blue and lipids brilliant red. Photos were 

taken using an Olympus digital camera C-2020Z. 
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3.2.1.2.3 Osteogenic Differentiation 

For the osteogenic differentiation cells at P5 were cultured under osteogenic 

conditions up to 28 days on Thermanox™ coverslips (Nalge Nunc International, 

USA) in either 6, for ALP and DNA assays, or 12 well plates (Orange Scientifique, 

Belgium), for cell morphology and Von Kossa staining.  3×10
4
 cells per well were 

plated in both 6 and 12 well plates. The von Kossa stain is used to quantify 

mineralization in cell culture and tissue sections (Young et al. 2006). 

 

Osteogenic medium was DMEM+ with 0.1μM Dexamethasone (D2915, Sigma-

Aldrich, UK), 500μM Ascorbic Acid (A4544, Sigma-Aldrich, UK) and 10mM β-

glycerophosphate (G9891, Sigma-Aldrich, UK) (from Rust 2003). Control cells were 

cultured in the same way but using DMEM+ instead of osteogenic medium. Media 

were changed every 3-5 days.  

 

Cell proliferation was measured by DNA assay at days 7, 14, 21 and 28 of culture in 

either DMEM+ or osteogenic medium. ALP production per μg of DNA were 

analysed at the same time points. Changes in cellular morphology were regularly 

observed by phase-contrast light microscopy. Finally, mineral deposition by Von 

Kossa staining was checked at day 28 of culture. 

 

3.2.1.2.4 Osteogenic Differentiation: DNA Assay 

Cell proliferation was studied by quantifying the amount of DNA in the samples. The 

assay is based on the use of the fluorochrome bisbenzimidazole (Hoerchst 33258). 

Upon specifically binding cellular DNA its fluorescence is enhanced and emission 

wavelength shifted, resulting in a linear relationship between fluorescence and DNA 

concentration (Rago et al. 1990).  

 

Cells were washed in PBS and lysed by adding autoclaved distilled water at 37ºC. 

After frozen at -70ºC and thawed 3 times, samples were transferred to Eppendorf 

tubes and spun at 10,000 rpm for 10 min. 100μL of the supernatant were loaded in 

triplicate for each sample into a FluorNunc
TM

 white 96-well plate (Nalge Nunc 

International, USA). DNA standards, ranging from 20 to 0.3125μg/mL of DNA, were 

prepared by diluting the 1mg/mL DNA stock (Sigma-Aldrich, UK) in saline sodium 
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citrate buffer (SSC). 100μL of the standards were also loaded in triplicate into the 

FluorNunc
TM

 white 96-well plate. Finally, 100μL of 1μg/mL Hoerchst 33258 dye 

(Sigma-Aldrich, UK) were added to each sample. The original 1mg/mL concentration 

of Hoerchst 33258 dye stock was diluted in SSC. Fluorescence was read at 460 nm 

using a plate reader (Fluoroskan Ascent, Labsystems, USA).  

 

The amount of DNA in the samples was calculated as μg of DNA by multiplying the 

μg/mL value obtained for each sample by the volume of each sample used for the 

assay.  

 

3.2.1.2.5 Osteogenic Differentiation: ALP Activity Assay 

The assay is based on the enzymatic activity of ALP, which cleaves the phosphate 

group of the compound p-nitrophenol phosphate to produce p-nitrophenol. The 

production of p-nitrophenol can be monitored at 405nm as it is yellow at alkaline pH 

(Bowers and McComb 1966).  

 

50μL of the same supernatant used for the DNA assay were loaded into Cobas Bio® 

blue sample cups (AS Diagnostics, UK). Pre-weighed p-nitrophenol phosphate 

powder was mixed with 10mL of diethanolamine buffer (both Randox, UK) and pre-

heated to 37ºC to produce the working solution, which was loaded along with the 

samples into the Cobas Bio® analyser (Roche, UK) to run the assay. 250μL of 

working solution were used for each sample.  

 

The analyser calculates the reaction rate for each sample, i.e. the rate of appearance of 

the coloured product, by plotting absorbance readings against time. The slope of these 

graphs determines the enzymatic activity. The ALP activity was calculated as U/L 

and normalised for the number of cells in the sample using the DNA concentration 

calculated for each sample. ALP/DNA was expressed as U/μg. 

 

3.2.1.2.6 Osteogenic Differentiation: Von Kossa Staining 

After 28 days of culture under either standard or osteogenic conditions, cells were 

washed with PBS and fixed in methanol. They were covered with 1.5% silver nitrate 

solution (S2252, Sigma-Aldrich, UK. 1.5g of silver nitrate in 100mL of distilled 

water) and exposed to bright light for 1 hour. The cells were washed with distilled 
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water before covering them with 2.5% sodium thiosulphate (10268, BDH, UK. 2.5g 

of sodium thiosulphate in 100mL of distilled water) for 5 min. Finally, they were 

counterstained in Neutral Red (N6634, Sigma-Aldrich, UK) for 5 min, washed until 

clear with distilled water and air dried. The principle of the Von Kossa Staining is a 

precipitation reaction in which silver ions react with phosphate under acidic 

conditions. Then, photochemical degradation of silver phosphate to silver occurs 

under light illumination (Young et al. 2006). Thermanox™ coverslips were mounted 

on slides and observed by light microscopy. Cell nuclei were stained red and mineral 

deposits black or brown-black. Photos were taken using an Olympus digital camera 

C-2020Z. 

 

3.2.2 Culture of MSCs on CaP Coated Metal Discs with Different 

Topographic Surface 

 

3.2.2.1 Seeding and Culture of MSCs on Samples and Controls 

Description of groups of controls and samples tested are summarised in Table 3.1. For 

each group and assay performed n=3: 

 

GROUP DESCRIPTION 

C- Negative control for MSCs differentiation: Thermanox™ coverslips, DMEM+ 

C+ Positive control for MSCs differentiation: Thermanox™ coverslips, osteogenic medium 

PTa Control for MSCs proliferation and differentiation on uncoated polished tantalum discs, 
DMEM+ 

SBTa Control for MSCs proliferation and differentiation on uncoated sand-blasted tantalum 
discs, DMEM+ 

PTi Control for MSCs proliferation and differentiation on uncoated polished titanium discs, 
DMEM+ 

SBTi Control for MSCs proliferation and differentiation on uncoated sand-blasted titanium 
discs, DMEM+ 

PTa-BioM Polished tantalum discs CaP coated by the biomimetic method  

PTi-BioM Polished titanium discs CaP coated by the biomimetic method 

SBTa-BioM Sand-blasted tantalum discs CaP coated by the biomimetic method 

SBTi-BioM Sand-blasted titanium discs CaP coated by the biomimetic method 

PTa-E20 Polished tantalum discs CaP coated by the electrochemical method at 20mA/cm
2
 

PTi-E20 Polished titanium discs CaP coated by the electrochemical method at 20mA/cm
2
 

SBTa-E20 Sand-blasted tantalum discs CaP coated by the electrochemical method at 20mA/cm
2
 

SBTi-E20 Sand-blasted titanium discs CaP coated by the electrochemical method at 20mA/cm
2
 

PTa-E6.5 Polished tantalum discs CaP coated by the electrochemical method at 6.5mA/cm
2
 

PTi-E6.5 Polished titanium discs CaP coated by the electrochemical method at 6.5mA/cm
2
 

SBTa-E6.5 Sand-blasted tantalum discs CaP coated by the electrochemical method at 6.5mA/cm
2
 

SBTi-E6.5 Sand-blasted titanium discs CaP coated by the electrochemical method at 6.5mA/cm
2
 

 

Table 3.1: Description of groups of controls and samples  
for the study of MSCs growth and differentiation  

on CaP coated metal discs with different topographic surface. 
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CaP coated and uncoated discs were autoclaved before cell seeding which was 

performed under sterile conditions inside a laminar flow hood. Autoclaved discs were 

placed in 12 well plates (Orange Scientifique, Belgium) for cell seeding. Ovine MSCs 

were grown to confluency and used at P4 and P5. Each disc was seeded with 25,000 

cells (20,000 for SEM) in a total volume of 50μL of DMEM+ onto the centre of the 

disc. After incubation for 100min at 37ºC with 5%CO2, 2-3mL of DMEM+ were 

added to each well and plates kept in a 37ºC with 5%CO2 incubator. Medium was 

changed every 3-5 days.  

 

C- (Thermanox™ discs and DMEM+) and C+ (Thermanox™ discs and osteogenic 

medium) controls were seeded following the same procedure as for the CaP coated 

and uncoated discs. Osteogenic medium for control C+ was prepared as described in 

section 3.2.1.2.3. 

 

3.2.2.2 Analysis of Cytotoxicity, Cell Proliferation, Cell Differentiation, 

Cell Morphology and Interaction with the Material 

At days 4, 7 and 14 of culture cytotoxicity, cell proliferation, cell differentiation into 

the osteogenic lineage and interaction with the material were studied for all samples 

and controls.  

 

Cell proliferation was quantitatively measured by AlamarBlue® activity and DNA 

assays and qualitatively by observation under SEM. AlamarBlue® activity assay was 

also a measurement of cytotoxicity of the different coatings and materials. ALP 

production per μg of DNA was measured in order to check cell differentiation into the 

osteogenic lineage.  Changes in cell morphology and the interaction of the cells with 

the different coatings and materials were studied by SEM. 

 

3.2.2.2.1 AlamarBlue® Activity Assay 

AlamarBlue® (AbD Serotec, UK) is a biochemical indicator of metabolic activity 

that changes its colour from blue to pink when it is reduced as a result of a redox 

reaction in the cytochrome oxidase chain. This redox reaction is related to metabolic 

activity and cell growth and therefore this assay is an indicator of cell proliferation as 

well as cytotoxicity (from online product manual: 

http://www.abdserotec.com/about/company_profile-483.html).  
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AlamarBlue® was diluted in phenol free Dubelcco’s modified eagles medium 

(D5921, Sigma-Aldrich, UK) to make a 10% working solution. Wells were washed 

with PBS and 3mL of the AlamarBlue™ working solution added to them. Plates were 

incubated at 37ºC with 5%CO2. After 4 hours, 100μL from each sample were loaded 

in triplicate into a FluoroNunc
TM

 white 96-well plate and absorbance measured at 590 

nm using a plate reader (Fluoroskan Ascent, Labsystems, USA). Results were 

compared to those of an empty well to which 3mL of 10% Alamar Blue® working 

solution had been added at the beginning of the assay. 

 

3.2.2.2.2 DNA Assay 

The DNA assay followed the same procedure as in section 3.2.1.2.4. 

 

3.2.2.2.3 ALP Activity Assay 

The ALP activity assay and calculations to find out the ALP activity per μg of DNA 

followed the same procedures as in section 3.2.1.2.5. 

 

3.2.2.2.4 SEM Analysis 

The controls and samples in 12 well plates were washed with PBS and fixed in 2.5% 

glutaraldehyde (Agar Scientific, UK) overnight. They were then washed for 10 

minutes with 0.1M sodium cacodylate (Agar Scientific, UK) buffer and post-fixed in 

1% osmium tetraoxide (Agar Scientific, UK) in 0.1M sodium cacodylate buffer for 1 

hour. After washing with 0.1M sodium cacodylate buffer for 2×5 minutes, specimens 

were dehydrated through a graded series of industrial methylated spirit (IMS) (20-

60%) and ethanol (70-100%) each for 2×5 minutes. Finally, specimens were treated 

for 2×4 minutes with hexamethyldisalazane (Agar Scientific, UK), a transition 

solvent, and left to dry overnight. 

 

Specimens were mounted on stubs and gold/palladium sputtered coated (EMITECH 

K550, Emitech, UK) before observation under SEM (JEOL JSM 5500 LV). 

 

3.2.3 Statistics 

Statistical analysis was performed with SPSS 14.0 software.  As the sample number 

was small non parametric tests were applied to the data. Multiple comparisons were 
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made using the Kruskal-Wallis test and comparisons between groups were made 

using the Mann Whitney U test. A p-value≤0.05 was considered a significant result. 
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3.3 RESULTS 

 

3.3.1 Expansion and Characterisation of MSCs 

 

3.3.1.1 In vitro Observations of MSCs 

Monolayer cultures of MSCs consisted of adherent, flat cells which were long and 

spindle-like in shape. This fibroblastic morphology was observed to persist for 12 

passages (Figure 3.1A-C). Cells possessed large nuclei with multiple nucleoli and 

some of them could be seen to be in contact between them (Figure 3.1D). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Phase-contrast light microscopy photos of monolayer cultures of MSCs at 

different passage numbers and states of confluency: A) P3 (magnification ×4); B) P5 

(magnification ×10); C) P9 (magnification ×4) and D) P9 (magnification ×20) where 

large nuclei containing multiple nucleoli can be observed (red arrows) and cells can 

be seen in contact (white arrows). 
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3.3.1.2 Characterisation of MSCs 

 

3.3.1.2.1 Adipogenic Differentiation 

Oil Red O staining revealed numerous red spots, indicating the presence of lipids, 

only in the cultures treated with adipogenic medium for 21 days (Figure 3.2B). 

Moreover, a clear change in morphology could be observed as cells under adipogenic 

conditions had become less spindle-like shaped and shorter with long extensions 

(Figure 3.2). 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Oil Red O staining results after MSCs were cultured for 21 days in 

A) DMEM+ or B) adipogenic medium (magnification ×20). 

 

 

 

 

3.3.1.2.2 Osteogenic Differentiation 

Changes in cell morphology could be observed as early as day 4 of culture under 

osteogenic conditions as some individual cells became less spindle-like and more 

cuboidal (Figure 3.3D-F). From day 9 multiple cuboidal cells could be seen in the 

osteogenic cultures. By day 21 the osteogenic cultures had become confluent and 

displayed a different appearance to the confluent control cultures (Figure 3.3C and F).  
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Figure 3.3 Phase-contrast light microscopy photos of MSCs cultured in 

A-C) DMEM+ or D-F) osteogenic medium (magnification ×10). 

Black arrows show cuboidal cells. 

 

 

 

Results for Von Kossa staining at day 28 of culture showed black deposits indicating 

mineral deposition only in the cultures treated with osteogenic supplements (Figure 

3.4B). Besides, morphology of the osteogenic cultures appeared different to that of the 

control cultures (Figure 3.4). 
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Figure 3.4 Von Kossa staining results after MSCs were cultured for 28 days in 

A) DMEM+ or B) osteogenic medium (magnification ×10). 

 

Figure 3.5 shows the results for the DNA assay. The amount of DNA quantified in the 

osteogenic cultures was always greater than in the control cultures, which was 

statistically significant at days 7, 21 and 28 (*p≤0.05). The growth curve in the MSCs 

treated with osteogenic supplements was steady during the time of the study. MSCs in 

the control cultures grew very slowly until day 21. An increase in cell growth was 

observed between days 21 and 28. The results displayed below suggest that the 

osteogenic supplements added to the medium may be mitogenic as well, as they 

promote cell growth, as already described by other authors (Jaiswal et al. 1997; 

Bruder et al. 1997).  
 

 

Figure 3.5 Results for the DNA assay in MSCs treated with (MSCs Ost Med) and 

without (MSCs control) osteogenic medium at days 7, 14, 21 and 28 of culture. 
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Figure 3.6 displays the results for the ALP assay. The calculated ALP activity was 

normalised by the amount of DNA in the sample. At all time points the enzyme 

activity was higher in the osteogenic cultures than in the control samples. The results 

were statistically significant at days 14, 21 and 28 (*p≤0.05). The pattern of 

production of ALP in the osteogenic cultures showed a significant increase between 

days 7 and 14 followed by a decrease in the enzyme production, which slightly 

increased between days 21 and 28. The control MSCs, not treated with osteogenic 

medium, produced relatively low levels of ALP. An increase in the ALP activity 

between days 7 and 14 and almost no changes between time points from day 14 until 

the end of the study were observed.  

 

The results show that in osteogenic medium the cells had increased ALP activity 

therefore suggesting that MSCs underwent osteogenic differentiation. The observed 

ALP activity trend, with a peak at day 14, has already been described in the literature 

and it is characteristic of MSCs undergoing osteogenic differentiation (Lian and Stein 

1992; Jaiswal et al. 1997). 

 

 

 

Figure 3.6 Results for the ALP activity assay in MSCs treated with (MSCs Ost Med) 

and without (MSCs control) osteogenic medium at days 7, 14, 21 and 28 of culture. 
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3.3.2 Culture of MSCs on CaP Coated Metal Discs with Different 

Topographic Surface 

 

3.3.2.1 Analysis of Cytotoxicity and Cell Proliferation: AlamarBlue® 

Activity Assay 

Results from the AlamarBlue® activity assay can be seen in Figure 3.7. The positive 

control for osteogenic differentiation C+ had higher absorbance values than the 

negative control C-, indicating the cells under osteogenic conditions had an increased 

metabolism compared to the cells cultured in standard DMEM+. These results are in 

agreement with the ones previously observed in Figure 3.5, again suggesting that the 

osteogenic supplements added to DMEM+ may be mitogenic (Jaiswal et al. 1997; 

Bruder et al. 1997). 

 

For the uncoated discs, AlamarBlue® activity was higher in the polished discs than in 

the sand-blasted ones (p≤0.037 at all time points). Regarding the type of metal, higher 

absorbances at 590nm for titanium compared to tantalum were measured, although no 

statistical significance was found. 

 

The highest AlamarBlue® activities were observed for the cells cultured on 

biomimetically coated discs. These results were statistically significant as p<0.001 at 

all time points when biomimetic coating was compared with the electrochemical 

coatings or the uncoated discs. Very similar results were found for the two classes of 

electrochemical coatings. When these two coatings were compared with each other, 

only a statistically significant difference (p=0.013) was found at day 4 where cells on 

electrochemical coating at 20mA/cm
2
 had higher activities than at 6.5mA/cm

2
. For all 

types of coatings, AlamarBlue® activity was higher in polished discs than in sand-

blasted ones (p≤0.037) except for biomimetic coating at day 14 and both 

electrochemical coatings at day 4. Activities in the titanium discs were higher than in 

the tantalum samples. However, these results were not statistically significant.  

 

Results from the AlamarBlue® activity assay suggest that the biomimetic coating is 

the best for MSCs growth. Moreover, they proliferate less on complex topographies, 

defined as less organised surfaces such as those of the electrochemical coatings and 

sand-blasted discs, than on flatter topographies. 
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Figure 3.7 AlamarBlue® activity assay results for MSCs cultured on controls for 

osteogenic differentiation (C- and C+), uncoated tantalum and titanium discs (PTa, 

SBTa, PTi, SBTi), biomimetically coated discs (BioM), electrochemically coated 

discs at 20mA/cm
2
 (E20) and at 6.5mA/cm

2
 (E6.5) at 3 time points (4,7 and 14 days). 
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3.3.2.2 Analysis of Cell Proliferation: DNA Assay 

Results from the DNA assay can be seen in Figure 3.8. As in the AlamarBlue® 

activity assay, C+, positive control for osteogenic differentiation, had higher amounts 

of DNA at the three time points of measurement than C-, supporting the suggestion 

that the osteogenic supplements used in this chapter may be mitogenic (Jaiswal et al. 

1997; Bruder et al. 1997).   

 

For the uncoated discs, the DNA concentration was higher in the polished discs than 

in the sand-blasted ones. These results were statistically significant (p≤0.025) at all 

time points, supporting the findings already discussed for the AlamarBlue® activity 

assay results: MSCs proliferate more on flatter topographies. Higher amounts of DNA 

were measured for titanium discs than for tantalum ones, although no statistical 

significance was found for these results. 

 

The highest amounts of DNA were measured for the biomimetically coated discs, as 

seen in the AlamarBlue® activity assay. These results were statistically significant 

when biomimetic coating was compared with the electrochemical coatings (p≤0.001) 

or the uncoated discs (p≤0.013). Comparing the two electrochemical coatings, a 

higher variance between the 4 samples at day 14 could be observed for the 

electrochemical coating at 20mA/cm
2
 than for the coating at 6.5mA/cm

2
. However, no 

statistical significance was found at any time point when these two coatings were 

compared. For all types of coatings, the DNA concentration was higher in polished 

discs than in sand-blasted ones which was statistically significant (p≤0.037) except for 

the following groups: biomimetic coating at day 14, electrochemical coatings at day 4 

and electrochemical coating at 6.5mA/cm
2
 at day 14.  

 

Although the AlamarBlue® results (Figure 3.7) and the level of DNA in cells growing 

on the titanium discs were generally higher than in the tantalum samples, the results 

were not statistically significant.  This shows that there is no difference in terms of 

cell proliferation between titanium and tantalum.  

 

Results from the DNA assay support those of the AlamarBlue® activity assay and 

also show that the biomimetic coating is the best for cell proliferation and that they 

proliferate less on complex topographies. 
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Figure 3.8 DNA assay results for MSCs cultured on controls for osteogenic 

differentiation (C- and C+), uncoated tantalum and titanium discs (PTa, SBTa, PTi, 

SBTi), biomimetically coated discs (BioM), electrochemically coated discs at 

20mA/cm
2
 (E20) and at 6.5mA/cm

2
 (E6.5) at 3 time points (4, 7 and 14 days). 
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3.3.2.3 Analysis of Cell Differentiation down the Osteogenic Lineage: 

ALP Activity Assay 

Figure 3.9 displays the results from the ALP activity assay. As already showed in 

Figure 3.6, C+ had higher enzyme activity than the negative control for osteogenic 

differentiation C-. The ALP activity increased throughout the study for both controls. 

No peak in the enzyme activity was observed for C+, suggesting that it may have 

happened in between days 7 and 14 or would have happened at a later time point. 

 

Uncoated polished discs had very similar values to those of C-. Although it was not 

statistically significant, activities for the uncoated sand-blasted discs were found to be 

slightly higher than for the uncoated polished samples.  

 

The calculated ALP activity per μg of DNA was higher in coated discs than in 

uncoated ones. Statistical analysis revealed that p<0.001 at all time points for each 

coating group when compared with the uncoated discs.  

 

Figure 3.9 also shows ALP activity was higher in electrochemically coated samples 

than in biomimetic ones (p<0.001). The difference in ALP activity between the last 

two time points in the electrochemical samples was lower than in the biomimetic 

discs. The enzyme activity was higher in sand-blasted discs than in polished ones, 

although these differences were only significant (p≤0.01) for biomimetically coated 

discs at days 7 and 14 and electrochemical coatings at day 7.  

 

Finally, no statistical differences were found between Ta and Ti in terms of ALP 

activity. 

 

These results show that MSCs differentiated down the osteogenic lineage when 

cultured on the biomimetic and electrochemical CaP coatings. As the ALP activity 

was higher in the electrochemical coatings and sand-blasted discs, the results also 

suggest that MSCs began to differentiate earlier when cultured on surfaces with more 

complex topographies. 
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Figure 3.9 ALP activity assay results for MSCs cultured on controls for osteogenic 

differentiation (C- and C+), uncoated tantalum and titanium discs (PTa, SBTa, PTi, 

SBTi), biomimetically coated discs (BioM), electrochemically coated discs at 

20mA/cm
2
 (E20) and at 6.5mA/cm

2
 (E6.5) at 3 time points (4, 7 and 14 days). 
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3.3.2.4 Analysis of Cell Morphology and Interaction with the Material: 

SEM Analysis 

Figure 3.10 shows SEM photos of the controls for osteogenic differentiation C- and 

C+ at days 4, 7 and 14. As it can be seen from the photos, cells in C- at day 4 

displayed a spindle or bipolar morphology, characteristic of MSCs in monolayer 

culture (Friedenstein et al. 1970; Friedenstein et al. 1974). Cells in C+ start to look 

more polygonal by day 4, which has been described as an osteoblast feature 

(Vrouwenvelder et al. 1993). In cells becoming more cuboidal, cytoplasmic organules 

are more visible than in spindle shaped cells. In both controls, cytoplasmic processes 

of attachment to the Thermanox™ surface of the discs and to each others can be 

observed (Figure 3.10A-F). 

 

At day 7, cells in C- retained a spindle morphology, as shown by Figure 3.10G to I. 

Cells in C+ were cuboidal with very visible cytoplasmic granules (Figure 3.10J-L).  

Figure 3.10K shows two cuboidal cells interacting through long cytoplasmic 

processes or filopodia. At day 14, cells covered the disc surface in both controls. In C- 

cells kept the bipolar morphology while in C+ were cuboidal. In both controls cells 

were seen to be in contact between them (Figure 3.10M-R). The SEM analysis show 

that cells in C+, under osteogenic conditions, become cuboidal with visible 

cytoplasmic granules and interact between them and with the disc surface through 

long cytoplasmic processes or filopodia. 

 

Figure 3.11 shows SEM photos of MSCs cultured on the control uncoated discs at 

days 4, 7 and 14. On the polished Ti and Ta discs, cells were orientated to one another 

and displayed a flattened morphology. Cells could be seen to be in contact between 

them and with multiple cytoplasmic processes extending at attaching the cell. (Figure 

3.11A-F). On the other hand, patches of cells were observed covering the disc surface 

of the sand-blasted uncoated discs. They can also be seen in contact between them and 

long cytoplasmic processes of attachment and interaction are visible (Figure 3.11G-

L). The SEM analysis shown in Figure 3.11 suggests that when MSCs are cultured on 

flat surfaces they displayed a flattened morphology and orientate to one another in a 

parallel way while on complex topographies they form patches of cells. 
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Figure 3.10 SEM analysis of MSCs cultured on Thermanox™ discs in either 

DMEM+ (C-) or osteogenic medium (C+): C- at day 4 (A-C), C+ at day 4 (D-F),  

C- at day 7 (G-I), C+ at day 7 (J-L), C- at day 14 (M-O) and C+ at day 14 (P-R). 
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Figure 3.11 SEM analysis of MSCs cultured on uncoated polished (PTi and PTa) and 

sand-blasted (SBTi and SBTa) discs in DMEM+: 

PTi at day 4 (A), 7 (B) and 14 (C); PTa at day 4 (D), 7 (E) and 14 (F); SBTi at day 4 

(G), 7 (H) and 14 (I); SBTa at day 4 (J), 7 (K) and 14 (L).  

Blue arrows show cytoplasmic processes of interaction and cells in contact. 
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SEM analysis of MSCs cultured on CaP coated Ti and Ta discs showed the growth of 

MSCs on the three different coatings deposited on the metal surfaces.  

 

Figure 3.12 shows SEM photos of MSCs cultured on CaP coated metal discs at day 

4.At this time these cells display, different morphologies -with long and spindle 

(Figure 3.12A, C, E, F, G), squarer or cuboidal (Figure 3.12D, F,H)- observed on the 

three different coatings. Figure 3.12B shows a cell adapting its morphology to the 

complex surface topography of the sand-blasted disc.  

 

Figure 3.13 shows SEM photos of MSCs cultured on CaP coated metal discs at day 7. 

As before, different morphologies could be observed on different coatings (Figure 

3.13D-H). In some regions, a dense cell coverage could be seen (Figure 3.13A-C). 

Figure 3.13D shows two cuboidal cells interacting through long cytoplasmic 

processes and a spindle shaped cell next to one of them.  

 

SEM analysis of MSCs cultured on CaP coated metal discs at day 14 is shown in 

Figure 3.14. A dense cell coverage of the disc surface could be observed for all the 

samples (Figure 3.14A-C). Different morphologies could still be seen in some areas 

(Figure 3.14D-H). Figure 3.14D shows a spindle shaped cell interacting with a more 

polygonal cell.  

 

At the three time points analysed the plasticity of MSCs was revealed as they adapted 

their morphology to the complex topographies of the sand-blasted discs and 

electrochemical coatings. However, two main morphologies for these cells could be 

distinguished: bipolar, long, spindle shaped cells and squarer, cuboidal cells. 

 

The photos showed these cells were able to interact with the different CaP minerals 

deposited on the discs surfaces through long cytoplasmic processes or filopodia, 

which they also used to interact with each others.  
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Figure 3.12 SEM analysis of MSCs cultured on CaP coated discs in DMEM+ at day 

4: (A) PTa-BioM, (B) SBTa-BioM, (C); SBTi-BioM, (D) PTi-E20, (E) PTa-E20,  

(F) PTi-E6.5, (G) SBTa-E6.5 and (H) SBTa-E6.5. 
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Figure 3.13 SEM analysis of MSCs cultured on CaP coated discs in DMEM+ at day 

7: (A) SBTa-BioM, (B) PTa-BioM, (C); PTi-E20, (D) PTi-E20, (E) PTa-E20, 

 (F) SBTa-E20, (G) SBTa-E6.5 and (H) PTi-E6.5. 
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Figure 3.14 SEM analysis of MSCs cultured on CaP coated discs in DMEM+ at day 

14: (A) SBTa-BioM, (B) PTa-E20, (C); PTi-E6.5, (D) SBTa-BioM, (E) SBTa-E20, 

(F) SBTi-E20, (G) SBTa-E6.5 and (H) PTi-E6.5. 
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3.4 DISCUSSION 

 

3.4.1 Expansion and Characterisation of MSCs 

MSCs were first described by Friedestein and co-workers in the 1970s, who observed 

that these cells adhered to tissue culture plates and resembled fibroblasts in vitro 

(Friedenstein et al. 1970; Friedenstein et al. 1974). In the present work, routine 

observations of MSCs in monolayer cultures by phase-contrast light microscopy 

revealed these characteristics: photos seen in Figure 3.1 show that monolayer cultures 

of MSCs were composed of cells with a fibroblastic or spindle morphology. The 

typical spindle shape of these cells was observed to persist for 12 passages, 

suggesting MSCs were able to replicate as undifferentiated cells and kept their 

phenotype, as previously described by Jaiswal et al. 1997 and Pittenger et al. 1999.  

 

As MSCs have the potential to differentiate into lineages of mesenchymal tissues, 

these cells are often characterised by demonstrating their multipotency differentiating 

them down two or more mesenchymal lineages (Pittenger et al. 1999; Erices et al. 

2000; Rust 2003; Hara et al. 2008). In my study, MSCs were characterised by 

differentiating them into adipocytes and osteocytes. Other cell lineages of 

mesenchymal tissues into which they have been shown to differentiate are 

chondrocytes, fibroblasts and myoblasts (Verfaillie 2002; Pittenger et al. 1999). 

 

After 21 days of culture under adipogenic conditions, Oil Red O staining showed the 

presence of lipids as well as a clear difference in morphology, as seen on Figure 3.2. 

These results indicate the cells had undergone adipogenic differentiation
 
(Erices et al. 

2000; Rust 2003).  

 

Changes in morphology were also observed in MSCs cultured under osteogenic 

conditions with cells becoming polygonal, which has been described as osteoblast 

feature
 
(Vrouwenvelder et al. 1993). Mineral deposits, representative of mineralised 

matrix formation, another indicator of osteoblastic differentiation, were stained in the 

osteogenic samples after 28 days (Erices et al. 2000). The results displayed in Figure 

3.5 showed that the DNA concentration of MSCs in osteogenic medium was higher at 

all time points than that of the control samples. Jaiswal et al. 1997 and Bruder et al. 

1997 found very similar results in their studies of osteogenic differentiation of human 
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MSCs and concluded that the osteogenic supplements added to the culture medium 

stimulated cell proliferation as well as differentiation. Figure 3.6 showed that 

ALP/DNA of osteogenic cultures was also higher at all time points. MSCs in 

osteogenic medium showed a characteristic trend already described in the literature
 

(Lian and Stein 1992; Jaiswal et al. 1997): ALP activity elevates when MSCs begin to 

differentiate and peaks between days 8 and 12, which coincides with their 

commitment to become osteoblasts. Thus, ALP expression is an early marker of 

osteogenic differentiation. In the present study, this peak could be seen at day 14, 

although it could have happened sometime in between days 7 and 14 as no 

measurements were taken in between these two time points. Other markers of 

osteogenic differentiation could have been analysed in order to show that the MSCs 

used in this study differentiated along the osteogenic pathway, such as Runx2, a 

transcriptional activator essential for initial osteoblast differentiation and subsequent 

bone formation (McCarthy et al. 2000), or osteocalcin, a late marker that binds HA 

and is expressed by osteoblasts just before and during extracellular matrix deposition 

and mineralisation (Lian and Stein 1992). As mentioned in the introduction chapter of 

this thesis there is a lack of a specific marker or combination of markers that 

specifically define MSCs. Pittenger and colleagues in 1999 showed that expanded and 

attached human MSCs were uniformly positive for the following markers: SH2, SH3, 

CD29 CD44, CD71, CD90, CD106, CD120a, CD124 and many other surface proteins 

(Pittenger et al. 1999). However, it has been reported that MSCs populations are often 

heterogeneous between species (Colter et al. 2000; Javazon et al. 2001; Peister et al. 

2004). Therefore it is necessary to characterise MSCs through a combination of 

physical, phenotypic and functional properties such as the differentiation potential 

into different lineages study found throughout the literature and used in this thesis 

(Hara et al. 2008; Maeda et al. 2007; Eslaminejad et al. 2008).  

 

Together, all the findings showed that MSCs were able to differentiate into two 

different cell lineages, thus demonstrating their multipotency (Pittenger et al. 1999). 

 

3.4.2 Culture of MSCs on CaP Coated Metal Discs with Different 

Topographic Surface 

In order to create new bone tissue-engineered constructs it is very important to 

understand how the scaffold properties may affect the cells with which it is being 
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seeded. Thus, once MSCs and the CaP coatings had been fully characterised, the next 

step of my thesis was to study the effect of these coatings on MSCs behaviour in 

terms of proliferation and differentiation. When comparing the different samples 

between each others, three properties were considered: coating type, surface 

topography and metal type. From the findings of this study, the best metal type and 

coating method for cell proliferation and differentiation would be chosen to carry on 

with the rest of my thesis.  

 

Cytotoxicity is widely used for the initial screening of materials for biocompatibility 

(Salgado et al. 2006; Chen et al. 2006). In this work, cytotoxicity was measured by 

AlamarBlue® activity assay. As AlamarBlue® is a biochemical indicator of 

metabolic activity the results show that all the samples had viable cells able to 

proliferate. SEM analysis of the coated discs, shown in Figures 3.12, 3.13 and 3.14, 

further supported these results.  

 

The DNA assay used in this study quantifies the amount of DNA in the sample and 

thus it is a measurement of cell proliferation. Results from AlamarBlue® activity and 

DNA assays agreed and showed that the biomimetic coating was the best at all time 

points when compared to the uncoated discs and the electrochemically coated 

samples. However, the electrochemically coated discs were very similar to the 

uncoated ones. Therefore, the first hypothesis of this chapter was proved to be false: 

CaP coatings will increase MSCs proliferation compared to uncoated Ta/Ti surfaces. 

A possible explanation for the observed increase in MSCs proliferation on the 

biomimetically coated discs could be the nano-scale of these coatings. Nano-scale 

CaP more closely resembles the size and properties of CaP crystals in natural bone
 

(Wopenka and Pasteris 2005) and it has been shown to increase cell proliferation 

when compared to micro-scale coatings
 
(Chen et al. 2007). Proliferation was also 

significantly greater on polished discs than on sand-blasted ones. These results 

suggest that complex topography, defined as less organised surfaces like those of the 

electrochemical coatings and sand-blasted discs, significantly decreases cell 

proliferation.
 
Anselme et al. in their work published in 2000 observed lower adhesion 

and proliferation of human osteoblasts on less organised surfaces, which supports the 

data presented in this chapter. 
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In the ALP/DNA assay results displayed in Figure 3.9 it can be seen that the uncoated 

discs had very similar values to the C- ones. Maeda et al. in 2007 showed that 

titanium surfaces are comparable to tissue culture polystyrene dishes in terms of 

osteogenic differentiation: MSCs only differentiated on Ti surfaces when treated with 

osteogenic supplements. At day 4 all the CaP coated samples showed higher activities 

than C-, indicating that MSCs differentiated down the osteogenic lineage. Moreover, 

for all the electrochemically coated samples and SBTi-BioM the activities are higher 

than for C+. As ALP activity elevates when MSCs begin to differentiate these results 

suggest that MSCs cultured on CaP coated discs began to differentiate before than in 

C+. At day 7 the electrochemically coated samples had higher activities than C+ 

while the biomimetically coated discs had activities in between C- and C+, suggesting 

MSCs were more differentiated on electrochemical coatings than on biomimetic ones. 

At day 14 all the samples had enzymatic activities in between C- and C+. The fact 

that the increment in activity between days 7 and 14 was higher for the biomimetic 

samples than for the electrochemical ones which suggests that MSCs began to 

differentiate earlier on electrochemically coated discs than in C+ or biomimetic 

samples and therefore the peak in ALP activity is sometime in between days 7 and 14.  

 

In summary, results for the ALP/DNA assay show that MSCs differentiate down the 

osteogenic lineage when cultured on CaP coatings
 
(Ohgushi et al. 1993; Ohgushi et 

al. 1996; Nishio et al. 2000). They also suggest that MSCs begin to differentiate 

earlier when cultured on surfaces with more complex topographies, as the ALP 

activity was higher on sand-blasted samples compared with polished surfaces (Jäger 

et al. 2008). Electrochemically coated samples showed significantly more ALP 

activity per μg of DNA than biomimetically coated samples which could be a 

combination of both factors described above: electrochemical samples contain more 

amount of CaP and their surface is less organised than that of the biomimetic samples.  

 

SEM analysis confirmed the coatings were biocompatible and images taken showed a 

dense coverage of cells on the discs surfaces after 14 days. Spindle-shaped cells as 

well as with cuboidal morphology could be observed on all the coatings, confirming 

MSCs underwent osteogenic differentiation on the CaP coated discs. On the uncoated 

polished discs, cells displayed a flattened morphology (Vrouwenvelder et al. 1993) 

and they grew in a parallel way. However, on the uncoated sand-blasted discs patches 
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of cells were observed covering the disc surface. This difference in morphology 

between polished and sand-blasted surfaces was also observed by Anselme et al. 

2000. From the photos it was observed that MSCs adapted their morphology to the 

complex topography of sand-blasted and electrochemically coated discs. Finally, cells 

were seen to be interacting with the material and with each other through long 

cytoplasmic processes or filopodia, already described in the literature
 
(Vrouwenvelder 

et al. 1993). 

 

Statistical analysis of the results revealed no significant differences between Ta and 

Ti discs in terms of MSCs proliferation and differentiation for either the uncoated 

discs or the coated ones. These results indicate that tantalum and titanium offer very 

similar characteristics for MSCs. 
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3.5 CONCLUSION 

 

Different crystal-sized CaP coatings were deposited on different topographical metal 

surfaces using biomimetic and electrochemical methods. When MSCs were cultured 

on these coatings, the nano-sized crystals of the biomimetic coatings significantly 

increased cell growth compared to the electrochemical ones and the uncoated discs. 

MSCs were also shown to proliferate more on polished discs than on sand-blasted 

ones. All the coatings induced differentiation of MSCs down the osteogenic lineage, 

which was significantly greater on electrochemical coatings and complex 

topographies. Finally, no significant differences were found between tantalum and 

TiAl6V4 discs in terms of MSCs growth and differentiation.  

 

The findings from this study will be used in the next chapter of my thesis in order to 

create a bone tissue-engineered construct seeded throughout its structure with MSCs. 

The construct will have a porous metal scaffold coated with a CaP layer throughout. 
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CHAPTER 4: 

Tissue Culture 

of Mesenchymal Stem Cells 

Seeded on a Calcium-Phosphate Coated 

Porous Metal Scaffold 

         using a Perfusion Bioreactor System
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4.1 INTRODUCTION 

 

So far my thesis has investigated different CaP coatings and their effect on MSCs 

growth and osteogenic differentiation on flat Ta and Ti surfaces. Using 

electrodeposited and biomimetic CaP coatings is advantageous because it allows the 

coating of porous structures.  However, cell growth into porous structures is difficult 

to accomplish using static culture systems and for this reason a perfusion bioreactor 

system was investigated.  

   

As a key component of bone tissue engineering, the perfusion bioreactor system 

provides an optimised environment for functional 3D tissue development. Important 

advantages offered by the perfusion system are enhanced delivery of nutrients 

throughout the entire scaffold, which ultimately results in a construct with an even 

distribution of cells throughout, and mechanical stimulation to the cells by means of 

fluid shear stress, which enhances osteoblastic differentiation of mesenchymal stem 

cells (Bancroft et al. 2003; Martin et al. 2004; Sikavitsas et al. 2003). 

 

In the absence of a vascular blood supply in vitro, the delivery of nutrients to cells 

seeded on 3D scaffolds and cultured under static conditions occurs by diffusion. Due 

to static culture conditions, cells on the surface of the constructs are typically viable 

and proliferate readily, while cells within the construct may be less active, necrotic or 

the inner construct may not be colonised. Therefore, a dynamic culture system is 

necessary in order to obtain an even distribution of cells throughout 3D scaffolds 

(Holtorf et al. 2005; Sikavitsas et al. 2005). 

 

MSCs are mechanosensitive as in vivo they are involved in the transduction of 

mechanical stimulation to bone cells necessary for the continuous bone remodelling 

process (Sikavitsas et al. 2001). Mechanical stimulation provided by a flow perfusion 

system enhances the osteogenic differentiation potential of these cells (Sikavitsas et 

al. 2003; Bjerre et al. 2008). Mechanical stimulation by means of fluid shear stress 

closely resembles the in vivo situation in bone: the mechanical loading of the skeleton 

causes interstitial fluid flow throughout the lacunar and canalicular spaces in bone, 

where the bone cells lining these spaces respond to this mechanostimulation. This 

response is mechanotransducted into alterations in biochemical behaviour, which is 
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thought to be directly involved in bone remodelling in response to mechanical stress 

(Hillsley and Frangos 1994; Sikavitsas et al. 2001). 

  

In the previous chapter 3 of this thesis Ta and Ti alloy discs with different surface 

topography (polished and sand-blasted) were CaP coated using different methods 

(biomimetic and electrochemical depositions) and cultured with MSCs in order to 

study how these coatings affected the proliferation and osteogenic differentiation 

potential of these cells. The study was carried out using a 2D experimental model 

under static culture conditions. From this study it was concluded that MSCs were able 

to proliferate and differentiate on both Ta and Ti surfaces. For this investigation I 

chose to use Ti because of its proven biocompatibility, strength, lightness and high 

resistance to corrosion when used in orthopaedic applications and availability 

(Niinomi 2008; Disegi 2000). 

 

For this chapter, a porous Ti material coated with CaP was used as scaffold. Porous 

metals are becoming increasingly popular in orthopaedic surgery because they offer 

excellent mechanical properties, biocompatibility and bone ingrowth potential 

(Karageorgiou and Kaplan 2005; Niinomi 2008; Bobyn et al. 1999). By coating metal 

materials with a CaP layer bioactivity and osteconductivity properties are added 

(Karageorgiou and Kaplan 2005). The porous scaffolds were seeded with MSCs and 

dynamically cultured in a perfusion bioreactor system. Proliferation, osteogenic 

differentiation and cellular distribution were compared to those of constructs statically 

cultured. The outcomes of this chapter will be used in order to design an in vivo study 

where tissue-engineered constructs will be implanted and compared to non tissue-

engineered ones. 

 

The aim of this study was to design a perfusion bioreactor system in order to 

culture MSCs seeded on a porous scaffold and study their proliferation, 

osteogenic differentiation and distribution throughout the scaffold. 

 

The hypotheses were: 

1. A perfusion bioreactor system will enhance MSCs proliferation when cultured 

on a CaP coated porous Ti scaffold compared to statically cultured cells on the 

same scaffold. 
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2. A perfusion bioreactor system will enhance MSCs differentiation down the 

osteogenic lineage when cultured on a CaP coated porous Ti scaffold 

compared to statically cultured cells on the same scaffold. 

3. A perfusion bioreactor system will provide a more even distribution of MSCs 

throughout a CaP coated porous Ti scaffold when compared to statically 

cultured MSCs on the same scaffold. 
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4.2 MATERIALS AND METHODS 

 

4.2.1 Perfusion Bioreactor System Design 

The perfusion bioreactor system used in this thesis was designed following the 

requirements outlined by Bancroft et al. 2003. As explained in section 1.4.6 of this 

thesis, different designs for perfusion systems can be found in the literature. However, 

all of them present the same components: a bioreactor chamber in which the construct 

is fitted, a pump to deliver the flow rate, media containers and a tubing system. Figure 

4.1 shows a scheme depicting the design and components of the perfusion bioreactor 

system used in this thesis: 

 

 

Figure 4.1 Perfusion bioreactor system scheme. 
 

 

The first requirement outlined by Bancroft et al. 2003 is that the flow must be 

delivered through the scaffolds, trying to avoid non-perfusion flow going around 

them. Therefore, a bioreactor chamber was made out of polycarbonate, a transparent, 

durable, tough and autoclavable material, with 45mm length and 10mm inner 

diameter that optimized the delivery of the flow through the scaffolds (Figure 4.2B).  

 

The second requirement, the flow rate delivered to the scaffolds must be consistent, 

repeatable and controllable, was met by using a multichannel peristaltic pump 

(Masterflex L/S 07523-Series, Cole-Parmer®, UK) (Figure 4.2A). To test whether the 
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flow rate delivered by the pump was consistent, repeatable and controllable an 

experiment was carried out using distilled water. A 25mL universal tube was filled 

with distilled water and a 25mL universal tube was left empty for collection of the 

outflow. A tube (Masterflex® 06409-13, Tygon®, Cole-Parmer®, UK) was immersed 

in the universal with water, connected to the pump and then to the inflow of a 

bioreactor chamber containing a scaffold. Another tube was connected to the outflow 

of the bioreactor chamber and its other end placed inside the empty universal for 

collection of the outflow. A flow rate of 1mL/min was set and the pump was left to 

run for 5min, after which the volume of water collected in the outflow tube was 

measured using a 10mL measuring cylinder. This test was carried out 3 times, always 

collecting 5mL of distilled water after it, indicating the delivered flow rate was 

consistent, repeatable and controllable. 

 

Third, the perfusion system must be able to be sterilised and kept in sterile conditions 

throughout the duration of the culture. To meet this requirement, a medium reservoir 

and a tubing system that are autoclavable were chosen. The medium reservoir 

(KIMAX® GL-45 Media/Storage Bottles with Color Polypropylene Caps, General 

Laboratory Supply, USA) had air ventilation system (two sterile 0.22μm filters per 

reservoir, Millex®GP, Millipore, Ireland), to allow gas exchange (Figure 4.2C). The 

tubing system (Masterflex® 06409-13, Tygon®, Cole-Parmer®, UK) connected the 

different parts and sealed the system so it could be kept sterile (Figure 4.2D). 

Moreover, it is long-lasting and crack-resistant. The components were easily 

assembled inside a laminar flow hood.  

 

The last requirement is that the perfusion system must be simple and operable by one 

person. All the different parts of the system were connected in an easy manner, 

making the whole system simple to work with. Moreover, four perfusion systems 

could run in parallel due to the multichannel capability of the peristaltic pump.  

 

Figure 4.2E shows a photo of the chamber containing the construct where the 

construct tightly fits inside the chamber and that some medium is always above the 

top of the construct. Figure 4.2F shows the whole system in operation, with 3 

chambers and 3 medium reservoirs inside the 37ºC with 5%CO2 incubator with the 

peristaltic pump outside the incubator delivering a flow of 0.75mL/min.  
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Figure 4.2 Photos showing the different 

components of the perfusion bioreactor 

system:  

A) multichannel peristaltic pump,  

B) bioreactor chamber, C) medium reservoir 

with 0.22μm filters, D) tubing,  

E) construct inside the bioreactor chamber  

and F) whole system in operation. 

A 

C 

B 

F 

D E 
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4.2.2 Scaffolds 

The scaffolds used in this thesis were porous TiAl6V4 (Ti) cylinders coated with a 

calcium-phosphate (CaP) layer, as explained at the end of section 1.4.3. 

 

The porous Ti cylinders were 9mm diameter and 11mm length (Figure 4.3A), 

manufactured by Eurocoating S.p.a, Ciré-Pergine, Italy. Figure 4.2B shows the 

measurements taken for the voids and the struts of the material as supplied by the 

manufacturer. As it can be seen from it, the voids are ~700-850μm while the struts are 

~350-480μm. The material has a porosity of 70%. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Ti cylinders used in this study: A) macroscopic and B) microscopic views. 

 

 

4.2.2.1 CaP coating of Ti cylinders 

Ti cylinders were coated with a CaP layer using two different methods, biomimetic 

and electrochemical at 20mA/cm
2
. As already mentioned in section 2.2.3, 20mA/cm

2
 

was found to be optimum for current efficiency by Redepenning et al. 1996. In order 

to make a comparison between the two types of coatings, Ti cubes (~1cm length each 

side) from the same material shown in Figure 4.3 were used for this purpose (Figure 

4.4). The criteria in order to choose one coating method over the other were fully and 

uniform covering of the outside and inside of the Ti blocks with a CaP layer.  
 

 

A B 
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Figure 4.4 Ti cubes used to compare the biomimetic versus the electrochemical 

coating at 20mA/cm
2
. 

 

 

The biomimetic coating was carried out as previously explained in section 2.2.2 of 

this thesis, according to the procedure described by Habibovic et al. 2002. The 

electrochemical depositions at 20mA/cm
2
 were done according to section 2.2.3, 

following the procedure described by Redepenning et al. 1996. For each type of 

coating 3 Ti cubes were sued (n=3 for each coating). 

 

Morphology and crystal size of the coatings were characterised by scanning electron 

microscopy (SEM). In order to find out whether the inside of the material was coated 

with a CaP layer and how thick this layer was, samples were embedded in hard grade 

acrylic resin, transversely cut using EXACT diamond band saw and polished as 

explained in section 2.2.5.4. The sections were then visualised by SEM. Finally, 

elemental analysis of the successful coating (n=9 as 3 spectra per sample were 

obtained) was carried out by energy dispersive X-ray spectroscopy (EDAX) as 

already explained in section 2.2.5.2. 

 

4.2.3 Cells 

Cells used for this study were ovine mesenchymal stem cells, aspirated from the iliac 

crest using an aseptic technique. The cells used in this chapter were the same ones as 

in previous chapter 3, and therefore their multipotency was demonstrated (see section 

3.3.1). Ovine MSCs were chosen for this study because ultimately the construct with 

cells will be tested in an ovine in vivo model.  
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Cell culture and maintenance was carried out as detailed in section 3.2.1.1. Standard 

DMEM+ was used for culturing the cells as well as throughout the study described in 

this chapter. Culture flasks were kept in incubators at 37ºC with 5% CO2. Medium 

was changed every 3 to 5 days and the cultures passaged when 80 to 90% of 

confluency was reached. MSCs were routinely observed by phase-contrast light 

microscopy.  

 

4.2.4 Cell Seeding Study of MSCs on CaP Coated Porous Ti Scaffolds 

In order to test the optimum incubation time for the cells once inoculated on the 

scaffolds, a cell seeding study was carried out. The ideal incubation time allows the 

cells to attach to the scaffold without the medium evaporating dry, which would result 

in cell lysis. 

 

Calcium-phosphate coated porous titanium cylinders were sterilised in an oven at 

160ºC for 1 hour prior to cell seeding, which was carried out under sterile conditions 

inside a laminar flow hood.  

 

The MSCs were trypsinised and a viable cell count was performed using a 

haemocytometer as described in Chapter 3. 1×10
6
 cells (Rust 2003) in a total volume 

of 0.2mL of medium were seeded onto each scaffold, which had been placed in 24 

well plates (Orange Scientifique, Belgium). The cells were incubated with the porous 

cylinders for 60, 90 and 120 minutes at 37ºC with 5% CO2. 3 scaffolds per time point 

were used. After the incubation times, 2mL of DMEM+ were added per well. After 

further incubation of the cells for 24 hours at 37ºC with 5% CO2, a cell count with 

trypan blue was done on the medium in order to count unattached cells. An 

AlamarBlue® activity assay was done on each sample as a measurement of cell 

metabolism which relates to cell number.  

 

A 1/2 dilution of the cells in trypan blue was prepared and pipetted into a cover-

slipped haemocytometer which was then placed under a phase-contrast light 

microscope.  

 

For the AlamarBlue® activity assay, the working solution was prepared as specified 

in Chapter 3 and 2mL of it were added per well. Samples were incubated at 37ºC with 
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5% CO2. After 4 hours, 100μL from each sample were loaded in triplicate into a 

FluoroNunc
TM

 white 96-well plate and absorbance measured at 590 nm using a plate 

reader (Fluoroskan Ascent, Labsystems, USA). Results were compared to those of an 

empty well to which 2mL of working solution had been added at the beginning of the 

assay. 

 

From this seeding study, 90 minutes was chosen as the optimum incubation time for 

the cells as it obtained the highest AlamarBlue activity (see results section 4.3.4. of 

this chapter). 90 minutes incubation time was applied for the rest of the work 

described in this chapter.  

 

4.2.5 Perfusion Flow Rates Study 

A study in order to choose an appropriate flow rate for the perfusion bioreactor 

system designed in this chapter was carried out. The perfusion flow rates study was 

based on the work conducted by Cartmell and colleagues, where the effect of four 

different perfusion flow rates on cell viability, proliferation and osteogenic 

differentiation of immature osteoblasts-like cells was assessed (Cartmell et al. 2003). 

The chosen flow rates, normalised per solid volume of material, were 0.33, 3.3, 6.6 

and 33mL/min/cm
3
. Since Cartmell and co-workers reported that 33mL/min/cm

3 

resulted in substantial cell dead throughout the constructs, this perfusion flow rate 

was not investigated in the present study.  

 

The autoclaved components of the perfusion bioreactor system were placed inside a 

laminar flow hood and soaked in 70% industrial methylated spirit (IMS, BDH 

laboratory supplies, UK) in distilled water prior to assemble and culture. The different 

parts were left to dry and then very carefully put together, always inside the hood. 

The remaining alcohol that may be left inside the tubing was washed out by flowing 

PBS using a syringe and needle. The seeded implants were taken out of the incubator 

and placed inside the hood. Using sterile tweezers the implants were placed inside the 

bioreactor chambers and all the connections tightly closed. The perfusion bioreactor 

system was then transferred to a 37ºC with 5%CO2 incubator and connected to the 

peristaltic pump, which was placed outside, through a hole on the wall of the 

incubator. The flow was perfused through the samples at 0.33mL/min/cm
3
 



153 

 

(0.07mL/min), 3.3mL/min/cm
3
 (0.7mL/min) and 6.6mL/min/cm

3
 (1.4mL/min) for up 

to 14 days.  

 

The highest flow rate of 1.4mL/min resulted in constant cracking (appearance of thin 

splits) of the bioreactor chamber after only one day of culture, probably due to an 

increment in pressure. The lowest flow rate of 0.07mL/min had the same effect on the 

bioreactor chamber after 3-4 days of perfusion culture. On the other hand, the flow 

rate of 0.7mL/min allowed the system to run for up to 14 days. A test was carried out 

in order to determine the volume of medium necessary to just cover the whole 

scaffold. This volume was of 0.75mL (Figure 4.4) and therefore the flow rate of 

0.7mL/min was adjusted to 0.75mL/min in order for the construct to renew the 

medium every minute. The perfusion bioreactor system was successfully run with a 

flow rate of 0.75mL/min for up to 14 days and therefore this flow rate was chosen to 

carry out this study. 

 

Figure 4.5 Scheme of bioreactor chamber containing the scaffold:  

measurement of volume up to the top of the scaffold. 

 

 

4.2.6 Static Cultures (Controls) 

After the 24 hours incubation to ensure cell attachment (see section 4.2.4), the seeded 

implants were transferred to 12 well plates (Orange Scientifique, Belgium). 

Approximately 5mL of medium were added to each sample and the plates placed 

inside a 37ºC with 5%CO2 incubator. Medium was changed every 3 to 5 days. 

 

 

Scaffold 

Volume up to top of scaffold=0.75mL 
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4.2.7 Bioreactor Culture 

The autoclaved components of the perfusion bioreactor system were placed inside a 

laminar flow hood, soaked in 70% industrial methylated spirit (IMS, BDH laboratory 

supplies, UK) in distilled water and assembled as already explained in section 4.2.5. 

The seeded implants (see section 4.2.4) were taken out of the incubator and inside the 

hood and using autoclaved tweezers placed inside the bioreactor chambers. The 

connections were tightly closed. The perfusion bioreactor system was then transferred 

to a 37ºC with 5%CO2 incubator and connected to the peristaltic pump, which was 

placed outside, through a hole on the wall of the incubator. The flow was perfused 

through the samples at 0.75mL/min.  

 

4.2.8 Analysis 

At days 4, 7 and 14 the bioreactor was stopped and the constructs were retrieved. 

Along with the controls, the constructs were analysed for cell proliferation 

(AlamarBlue® activity and DNA assays, n=3 each), cell differentiation down the 

osteogenic lineage (ALP assay, n=3), cell interaction with the material (SEM, n=1) 

and cell distribution throughout the scaffold (Toluidine Blue staining, n=1). 

 

4.2.8.1 AlamarBlue® Activity Assay 

AlamarBlue® (AbD Serotec, UK) was diluted in phenol free Dubelcco’s modified 

eagles medium (D5921, Sigma-Aldrich, UK) to make a 10% working solution. 

Samples and controls were transferred to 24 well plates. Wells were washed with PBS 

and 2mL of the AlamarBlue™ working solution added to them. Plates were incubated 

at 37ºC with 5%CO2 for 4 hours, after which 100μL from each sample were loaded in 

triplicate into a FluoroNunc
TM

 white 96-well plate. Absorbance was measured at 

590nm using a plate reader (Fluoroskan Ascent, Labsystems, USA). Results were 

compared to those of an empty well to which 2mL of 10% Alamar Blue® working 

solution had been added at the beginning of the assay. 

 

4.2.8.2 DNA Assay 

The constructs from the bioreactors and static controls were placed in 24 well plates 

and washed in PBS. Cells were lysed by adding 2mL of autoclaved distilled water at 

37ºC. After frozen at -70ºC and thawed 3 times, constructs along with the distilled 

water were transferred to sterile tubes and sonicated for 1min. 0.5mL of each sample 
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and control were then transferred to Eppendorf tubes and spun at 10,000 rpm for 10 

min. 100μL of the supernatant were loaded in triplicate for each sample into a 

FluorNunc
TM

 white 96-well plate (Nalge Nunc International, USA). DNA standards, 

ranging from 20 to 0.3125μg/mL of DNA, were prepared by diluting the 1mg/mL 

DNA stock (Sigma-Aldrich, UK) in saline sodium citrate buffer (SSC). 100μL of the 

standards were also loaded in triplicate into the FluorNunc
TM

 white 96-well plate. 

Finally, 100μL of 1μg/mL Hoerchst 33258 dye (Sigma-Aldrich, UK) were added to 

each sample. The original 1mg/mL concentration of Hoerchst 33258 dye stock was 

diluted in SSC. Fluorescence was read at 460nm using a plate reader (Fluoroskan 

Ascent, Labsystems, USA).  

 

The amount of DNA in the samples was calculated as μg of DNA by multiplying the 

μg/mL value obtained for each sample by the total volume of each sample (2mL). 

 

4.2.8.3 ALP Activity Assay  

50μL of the same supernatant used for the DNA assay were loaded into Cobas Bio® 

blue sample cups (AS Diagnostics, UK). Pre-weighed p-nitrophenol phosphate 

powder was mixed with 10mL of diethanolamine buffer (both Randox, UK) and pre-

heated to 37ºC to produce the working solution, which was loaded along with the 

samples into the Cobas Bio® analyser (Roche, UK) to run the assay. 250μL of 

working solution were used for each sample. The ALP activity was calculated as U/L 

and normalised for the number of cells in the sample using the DNA concentration 

calculated for each sample. ALP/DNA was expressed as U/μg. 

 

4.2.8.4 Scanning Electron Microscopy (SEM) 

The constructs from the bioreactors and static controls were placed in 12 well plates, 

washed with PBS and fixed in 2.5% glutaraldehyde (Agar Scientific, UK) overnight. 

They were then processed for SEM analysis as explained in section 3.2.2.2.4. 

Specimens were mounted on stubs and gold/palladium sputtered coated (EMITECH 

K550, Emitech, UK) before observation under SEM (JEOL JSM 5500 LV). 

 

4.2.8.5 Histology and Toluidine Blue Staining 

The constructs from the bioreactors and static controls were placed in 12 well plates, 

washed with PBS and fixed in formal saline overnight. They were then dehydrated 
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through a graded series of industrial methylated spirit (IMS, BDH laboratory 

supplies, UK) (50-100%) in distilled water, each for one day. 100% IMS step was 

repeated twice. 50%IMS-50% LR white resin (Agar Scientific Ltd, UK) was next 

added to the samples for one day. Finally, 100% LR white resin was added to the 

samples for one day. This final step was repeated twice before embedding. The 

samples were longitudinally sectioned using the Exakt saw and ground to a thickness 

of 100μm using the Exakt micro-grinding system and polished on the Motopol 2000 

(Buehler, Coventry, UK).  

 

The sections were stained with Toluidine Blue, which stains cell nuclei blue, for 20 

minutes and then rinsed with running water. Sections were observed by light 

microscopy and photos acquired using Axiovision Release 4.5 image analysis system 

software. 

 

4.2.9 Statistics 

Statistical analysis was performed with SPSS 14.0 software. Non-parametric data was 

analysed using the Mann Whitney U test. A p-value≤0.05 was considered a 

significant result. 
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4.3 RESULTS 

 

4.3.1 CaP Coating of Porous Ti Cylinders 

Both methods applied, biomimetic and electrochemical deposition at 20mA/cm
2
, were 

able to coat the outside as well as the inside of the Ti blocks. As it can be seen from 

Figure 4.7C and D the biomimetic coating presented the globular morphology and the 

nano-sized crystals already discussed in chapter 2 (2.3.1). Similarly, the 

electrochemical CaP layer observed in Figure 4.7E and F was similar to that seen on 

the surface of the Ta and Ti discs used in chapter 2, where different morphologies 

were observed as well as crystal sizes ranging from the nano to the micro scale 

(2.3.1). When the CaP coated Ti blocks were embedded in hard grade acrylic resin, 

polished and analysed by SEM it was observed that the biomimetic method did not 

deposit a continuous CaP layer (Figure 4.7G). On the other hand, the electrochemical 

method was able to provide a uniform coating with a measured thickness of 3 to 15μm 

(Figure 4.7H). Therefore, the electrochemical coating was used with this study 

presented in this chapter. 

 

Further EDAX analysis of the electrochemical coating confirmed that the main 

elements present were Ca and P, with a calculated Ca/P of 1.50 ± 0.04, in the range of 

those calculated in Chapter 2 (see Table 2.3). Other elements present in the spectra 

were C, O and Na (Figure 4.6).  

 

 

Figure 4.6 EDAX spectra and analysis of porous Ti block electrochemically 

coated at 20mA/cm
2
. 

Element      At% 
Ca               14.14      
P                  9.36 
C                 28.97 
O                 36.86 
Na                7.81 
Cl                 0.77 
Ti                 1.23 

 

Ca/P=1.51 
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Figure 4.7 SEM analysis of A, B) uncoated porous Ti block; C, D) BioM-porous Ti 

block; E, F) E20-porous Ti block; G) BioM coating thickness and H) E20 coating 

thickness. 
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4.3.2 Cells 

As it was observed in previous chapter 3 (3.3.1.1), monolayer cultures of MSCs 

consisted of adherent, flat cells which were long and spindle-like in shape (Figure 

3.1). 

 

4.3.3 Cell Seeding Study of MSCs on CaP Coated Porous Ti Cylinders 

No cells were counted by trypan blue staining in the medium, suggesting that most of 

the cells adhered to the scaffold as there were too few cells left in the medium to be 

counted by this method. 

 

AlamarBlue® activity assay results are displayed in Figure 4.8. These results showed 

that the optimum incubation time for the cells was 1 hour and 30 minutes as 

AlamarBlue® activity was highest at this time period. 1 hour incubation time resulted 

in a low AlamarBlue® activity, suggesting this time period was not long enough for 

the cells to attach to the scaffold. Finally, 2 hours incubation time also showed low 

AlamarBlue® activity, suggesting the medium evaporated and therefore the cells 

died. 

 

 

 

Figure 4.8 Results for the AlamarBlue® activity assay on MSCs seeded on CaP 

coated Ti cylinders and incubated for different time periods. 
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4.3.4 Cell Proliferation: AlamarBlue® Activity and DNA Assays 

Increased cell proliferation for the samples cultured under flow perfusion conditions 

was observed by AlamarBlue® activity assay (Figure 4.9). These results were 

statistically significant (*p=0.05) at all time points. 

 

 

Figure 4.9 AlamarBlue® activity assay results for MSCs cultured either under static 

conditions or in the perfusion bioreactor system. 

 

By plotting the same results as a scatter plot against time to analyse rate of cell growth 

Figure 4.10 was obtained. As it can be observed, cells in the static control grew 

steadily over time. However, cells under perfusion conditions grew abruptly between 

days 4 and 7 and then decreased growth.  

 

 

Figure 4.10 Cell growth by AlamarBlue® activity assay over the period of culture 

monitored in this study. 
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DNA assay results agreed with those from the AlamarBlue® activity assay and 

showed increased proliferation for the flow perfusion cultures except at day 4, where 

proliferation was observed to be almost equal for both types of culture (Figure 4.11). 

Only at day 7 there was statistical difference (*p=0.05) between static control cultures 

and those in the perfusion bioreactor. 

  

 

Figure 4.11 DNA assay results for MSCs cultured either under static conditions or in 

the perfusion bioreactor system. 

 

Rate of cell growth over time showed a similar trend to that observed with cell 

proliferation as measured by the Alamar blue assay. Cells in the static control cultures 

grew steadily over the culture period while cells in the bioreactor grew abruptly 

towards the end of the first week and then decreased their proliferation (Figure 4.12). 

 

 

Figure 4.12 Cell growth by DNA assay over the period of culture monitored in this 

study. 
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4.3.5 Cell Differentiation down the Osteogenic Lineage: ALP Activity 

Assay 

As it can be seen from Figure 4.13 the ALP activity measured for the flow perfusion 

samples was higher at all time points than those of the static controls. Differences 

were only statistically significant at days 4 and 7 (*p=0.05). For the flow perfusion 

samples ALP was observed to be highest at day 7 and slowly decreased after that. For 

the static controls ALP activity grows until day 7 and then remains constant. 

 

 

 

Figure 4.13 Cell differentiation down the osteogenic lineage by ALP activity assay, 

normalised by the amount of DNA in each sample, over the period of culture 

monitored in this study for MSCs cultured either under static conditions or in the 

perfusion bioreactor system. 
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where the development of a cellular layer over time was observed (Figure 4.14A-F). 
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Figure 4.14 SEM analysis showing good proliferation of MSCs on the scaffolds of:  

A) static control at day 4, B) flow perfusion sample at day 4,  

C) static control at day 7, D) flow perfusion sample at day 7,  

E) static control at day 14 and F) flow perfusion at day 14. 

(Red arrows point to cellular sheets)  
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Figure 4.15 SEM analysis showing cytoplasmic processes of MSCs on the surface of 

the scaffolds of interaction with the material and with other cells:   

A) flow perfusion sample at day 4, B) static control at day 4,  

C) static control at day 7, D) flow perfusion sample at day 7,  

E) flow perfusion sample at day 14 and F) detail of E. 
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4.3.7 Cell Distribution throughout the Scaffold: Histology and Toluidine 

Blue Staining 

As it can be seen from Figures 4.16 to 4.18, samples cultured in the perfusion 

bioreactor system developed a uniform cellular layer over time. This cellular layer 

was observed to be present on the edges as well as inside of the scaffold, indicating 

cells grew throughout the entire scaffold. The thickness of this cellular layer was of 

40-90µm at day 4, 110-200µm at day 7 and 290-400µm at day 14 of flow perfusion 

culture.  

 

On the other hand, constructs developed under static conditions displayed either no 

cellular layer or very thin inside the scaffold. On the edges of the scaffolds, the cell 

layer grew thicker over the culture period with a measured thickness of 30-50µm at 

day 4, 40-60µm at day 7 and 50-100µm at day 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 Histological analysis at day 4 of culture of:  

A) static control at the edge, B) static control in the middle,  

C) flow perfusion sample at the edge and D) flow perfusion sample in the middle. 
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Figure 4.17 Histological analysis at day 7 of culture of:  

A) static control at the edge, B) static control in the middle,  

C) flow perfusion sample at the edge and D) flow perfusion sample in the middle. 
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Figure 4.18 Histological analysis at day 14 of culture of:  

A) static control at the edge, B) static control in the middle,  

C) flow perfusion sample at the edge and D) flow perfusion sample in the middle. 
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4.4 DISCUSSION 

 

4.4.1 Perfusion Flow Rates Study 

In order to choose an appropriate flow rate for the perfusion bioreactor system 

designed in this chapter work conducted by Cartmell et al. in 2003 where the effect of 

flow rates was investigated in a perfusion bioreactor was used. In their work the effect 

of four different medium perfusion flow rates (0.33, 3.3, 6.6 and 33mL/min/cm
3
) on 

cell proliferation, viability and osteoblastic gene expression was investigated 

(Cartmell et al. 2003). The highest flow rate of 33mL/min/cm
3
 resulted in nearly 

complete cell death throughout the constructs after 7 days of culture. Cell viability 

and proliferation throughout the constructs was increased by lowering the flow rate, 

with 0.33mL/min/cm
3
 giving a high proportion of viable cells on the surface as well 

as inside the constructs. No statistical differences in terms of cell proliferation were 

found between 0.33 and 3.3mL/min/cm
3
 flow rates. However, both of these flow rates  

were statistically significant higher compared to 6.6mL/min/cm
3
. The authors 

concluded that the observed trend in cell viability and proliferation was due to the 

increased shear stresses at the higher perfusion flow rates which may shear the cells 

off the constructs. In terms of osteoblastic gene expression the trend was observed to 

be reversed, with constructs cultured under a flow rate of 6.6mL/min/cm
3
 obtaining 

the highest ALP, Runx2 and osteocalcin gene expression. These results are in 

agreement with other studies that have reported a direct effect of increased flow rates 

on the increment of osteogenic differentiation of marrow stromal osteoblasts 

(Sikavitsas et al. 2003; Bancroft et al. 2002) and human MSCs (Zhao et al. 2007). 

 

In my study, the higher flow rate of 6.6mL/min/cm
3
 (1.4mL/min) cracked the 

bioreactor chamber after just one day of perfusion culture as a result of an increased 

pressure inside the system. The high shear forces generated by this flow rate may have 

sheared the cells off the scaffold. These sheared cells blocked the outflow of the 

chamber resulting in an increment in pressure, which ultimately cracked the 

polycarbonate cylinder. The lower flow rate of 0.33mL/min/cm
3
 (0.07mL/min) had 

the same effect on the bioreactor chamber after 3-4 days of perfusion culture. In this 

case the flow rate may not have been efficient enough in removing waste products and 

supplying fresh nutrients to the cells. Under these conditions, the cells died and 

blocked the outflow of the bioreactor chamber, which ultimately cracked.   
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The flow rate of 3.3mL/min/cm
3
 allowed the system to run for up to 14 days without 

the complications observed with the other two flow rates tested and therefore was 

chosen to carry out the rest of the work presented in this chapter. Further support for 

this flow rate came from the studies by Zhao and colleagues. Zhao and Ma reported 

the highest seeding efficiencies when a flow rate of 3.77mL/min/cm
3
 (0.79mL/min if 

used in my system) was assessed for the dynamic cell seeding of human MSCs on 

poly(ethylene terephthalate) (PET) fibrous matrices (Zhao and Ma 2005). This flow 

rate was used in their next study to dynamically seed human MSCs on PET matrices, 

maintained for 20 days and compared to a perfusion flow rate of 56.6mL/min/cm
3
. As 

in the described study by Cartmell et al., Zhao and colleagues observed increased cell 

numbers at the lower flow rate and increased ALP activity and calcium deposition 

(markers for osteogenic differentiation) at the higher flow rate (Zhao et al. 2007). 

Further adjustment of the flow rate to 0.75mL/min allows the construct to ideally 

renew the culture medium every minute and is in between 0.7mL/min 

(3.3mL/min/cm
3
, Cartmell et al. 2003) and 0.79mL/min (3.77mL/min/cm

3
, Zhao and 

Ma 2005; Zhao et al. 2007). 

 

4.4.2 Cell Proliferation, Differentiation down the Osteogenic Lineage and 

Distribution throughout the Scaffold 

In perfusion bioreactors, as the one used in this chapter, the culture medium flows 

through the pores of the scaffold enabling local supply of nutrients and removal of 

waste products (Bancroft et al. 2003). Results from the AlamarBlue® and DNA 

assays show that the constant supply of medium to and through the porous constructs 

has a beneficial effect on cell proliferation as constructs cultured under flow perfusion 

had an increased proliferation compared to constructs cultured under static conditions. 

Several studies have reported the beneficial effects of flow perfusion culture on 

proliferation, as observed in this study (Sikavitsas et al. 2005; Bjerre et al. 2008; 

Bancroft et al. 2002).  

 

Similarly, the ALP activity assay results showed an increased activity for the flow 

perfused constructs with a peak in activity at day 7, while no peak was observed for 

the static controls. The results suggest that the fluid shear forces experimented by the 

cells cultured in the bioreactor system had a mechanostimulatory effect on them that 
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enhanced the osteogenic differentiation potential of MSCs, as already described by 

other authors (Sikavitsas et al. 2003; Sikavitsas et al. 2005; Zhao et al. 2007; Bancroft 

et al. 2002). 

 

Lian and Stein described that the temporal expression of cell growth and osteogenic 

phenotype has three distinct periods. First, a period of strong proliferation and 

formation of collagenous extracellular matrix up to day 13 of culture. Second, a 

period of extracellular matrix maturation with decreased proliferation and increased 

ALP expression was observed between days 13 and 21 of culture. Finally, 

mineralisation with decreased proliferation and ALP expression and increased 

osteoblastic proteins expression was observed from day 21 until day 35 of culture 

(Lian and Stein 1992). In my study, during the first week of perfusion culture the cell 

number increased and then stayed almost constant until the end of the experiment. 

These results suggest that the cells had an early stage of increased proliferation during 

the first week of the experiment followed by a period of decreased proliferation and 

increased ALP expression, with a final stage of decreased proliferation and ALP 

expression. The peak in ALP activity was observed at day 7, however it could have 

happened between days 7 and 14. In this study, no analysis of extracellular matrix was 

conducted, which could have helped to further characterise these periods in the 

constructs. 

 

On the other hand, the histology results suggest that MSCs were able to proliferate 

over the perfusion culture period, as a uniform cellular layer developed over time with 

a final thickness of approximately 290-400µm on the surface and inside the 

constructs. As toluidine blue stains dead cells as well, the thicker cellular layer 

observed at day 14 may be composed of viable and non-viable cells. This would 

explain the lower AlamarBlue® reading at day 14 indicating a decrease in cell 

viability. However, the fact that DNA concentration stayed constant between days 7 

and 14 would not be explained as the DNA assay would also quantify the DNA of the 

dead cells. As the cellular layer at day 14 was too thick the process of DNA extraction 

may have not been successful and therefore a lower amount of DNA was measured. 

For the static controls the proliferation assays and the histology results agree: the cell 

layer for the static controls at day 14 is thinner and therefore the DNA was correctly 

extracted from the constructs. Other authors have encountered similar problems when 
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performing quantitative DNA assays, which were attributed to the large amounts of 

extracellular matrix deposited by the cells, that may interfere with the recovery of 

DNA (Holtorf et al. 2005; Mygind et al. 2007).  

 

Some studies have reported a clear influence of perfusion rate on cell viability. As 

already discussed in section 4.4.1, Cartmell and co-workers found that constructs 

under higher flow rates resulted in a mixture of viable and dead cells on the constructs 

surface with a limited cell viability observed in the centre of the constructs. However, 

lower flow rates provided a high proportion of viable cells on the surface as well as at 

the centre of the constructs (Cartmell et al. 2003). Similarly, although in a different 

kind of tissue application, Kalyanaraman and colleagues concluded that perfusion 

culture of engineered skin substitutes at lower flow rates increased cell viability 

(Kalyanaraman et al. 2008). In my study, the chosen flow rate had a beneficial effect 

on cell proliferation and viability until day 7, as evidenced by the AlamarBlue® and 

DNA assays, but resulted in a decrease of cell viability between days 7 and 14 as 

shown by the AlamarBlue® assay.  

 

4.4.3 Cell Interaction with the Material 

To assess cell morphology and interaction with the material SEM was performed on 

the surfaces of scaffolds. The SEM analysis support the AlamarBlue® assay results as 

cells proliferated well on the scaffolds. MSCs arranged in cellular sheets, already 

observed by other authors (Mygind et al. 2007; Gomes et al. 2006). The long 

cytoplasmic processes, or filopodia, attached to the scaffold have also been observed 

in other studies (Mygind et al. 2007). Dalby and colleagues reported that human bone 

marrow cells responded to nanotopography by filopodial interactions which 

stimulated osteoblastic differentiation, while cells on the flat controls were observed 

to be well spread with fewer and shorter filopodia (Dalby et al. 2006). In my study, 

the topography of the scaffolds was not flat and the CaP coating deposited on the 

surface of the porous Ti cylinders contained nanosized crystals. 

 

4.4.4 Choice of Time Point for in vivo Study 

For the next in vivo chapter of this thesis, day 7 will be chosen as the culture time 

inside the perfusion bioreactor system for the tissue-engineered constructs before 

implantation. Under the conditions tested in this study, day 7 provides the best results 
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for MSCs proliferation and differentiation as well as a uniform cellular distribution 

throughout the scaffold compared to static controls and the other time points.  Day 4 

resulted in an early time point for cell proliferation, with a thin cellular layer 

observed. At day 14 the cellular layer was composed of a mixture of viable and dead 

cells with a mean value thickness of 345µm, which would greatly narrow the pore 

size of the construct (mean value of 765µm after the CaP coating) and therefore 

compromise in vivo ingrowth. 
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4.5 CONCLUSION 

 

A perfusion bioreactor system was designed in order to culture MSCs in CaP coated 

porous TiAl6V4 cylinders. When compared to constructs cultured under static 

conditions, constructs cultured in the flow perfusion bioreactor had increased 

proliferation and osteogenic differentiation. An even distribution of cells throughout 

the scaffolds was observed for the samples cultured under flow perfusion. Under the 

conditions tested in this study, day 7 provides the best results for MSCs proliferation 

and differentiation as well as a uniform cellular distribution throughout the scaffold 

compared to static controls and the other time points. This time point is therefore 

chosen to carry out the next in vivo chapter of this thesis. 
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CHAPTER 5: 

Comparison of Osseointegration  

and Implant-Bone Interface Fixation  in vivo  

Between Tissue-Engineered  

       and Non Tissue-Engineered Constructs 
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5.1 INTRODUCTION 

 

The clinical problem addressed in this thesis is the reduction of the bone stock 

necessary for implant fixation in revision THRs (Cooper et al. 1992; Harris 1995; 

Harris 2001; Amstutz et al. 1992; Heisel et al. 2003), where the main issue is how to 

generate new bone and restore bone stock for fixation of the revision implant. A novel 

tissue engineering approach was proposed in this thesis to address this clinical 

problem: the incorporation of MSCs into a porous implant thus enabling the 

reconstitution of bone. 

 

The development of bone tissue-engineered constructs requires the evaluation of their 

performance in vivo (Goldstein 2002). In the previous chapter of this thesis a tissue-

engineered construct using a perfusion bioreactor system was developed. This tissue-

engineered construct consists of a CaP coated porous Ti scaffold seeded throughout 

with ovine MSCs. In the present chapter this tissue-engineered construct will be 

evaluated in vivo by implantation in the medial femoral condyle of sheep and their 

performance will be compared to non tissue-engineered constructs, which consist of a 

CaP coated porous Ti scaffold not seeded with cells.  

 

Sheep was chosen as the animal model to carry out this project because a large animal 

model is more relevant than a small one in order to represent the human clinical 

situation. Moreover, Pastoureau and colleagues reported in 1989 a resemblance 

between the iliac crest of sheep and the human one in terms of access for biopsies 

(Pastoureau et al. 1989). Aerssens and co-workers studied the ash, hydroxyproline, 

extractable protein and IGF-1 content of trabecular and cortical bone in sheep and 

humans. It was shown that trabecular bone from sheep was very similar to humans 

while main differences in the contents of the above parameters were found in cortical 

bone between both species (Aerssens et al. 1998). The femoral condyle was chosen as 

the site of implantation for this study because it contains the mostly trabecular bone.  

 

When using a defect to evaluate a tissue-engineered construct, as the one used in this 

study, the bone defect must fail to heal unless it is treated with the tissue engineering 

strategy under study (Salgado et al. 2004). The trabecular bone defect is made by 

drilling a hole, for example, in the femoral condyle of the sheep. Thus, the tissue-
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engineered construct behaviour is evaluated within a bony environment namely the 

osteoconduction level and the new bone ingrowth and formation. 

 

In order to analyse the outcomes of the in vivo tests histological staining followed by 

histomorphometric analysis is the common methodology used to asses new bone 

formation (Salgado et al. 2004). Mechanical tests are also commonly used to assess 

implant-bone interface shear stress by pushing out the section of the implant (Svehla 

et al. 2000). In this chapter new bone formation will be analysed by 

histomorphometric analysis and implant-bone interface fixation by mechanical push 

out tests. 

 

The aim of this study was to compare osseointegration and implant-bone 

interface fixation in vivo between tissue-engineered and non tissue-engineered 

implants.  

 

The hypotheses were: 

1. Tissue-engineered implants using a perfusion bioreactor system will achieve 

greater osseointegration when implanted in vivo than non tissue-engineered 

implants. 

2. Tissue-engineered implants using a perfusion bioreactor system will achieve 

greater implant-bone interface fixation when implanted in vivo than non 

tissue-engineered implants. 
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5.2 MATERIALS AND METHODS 

 

5.2.1 Study Design 

Twenty skeletally mature mule sheep were used in order to compare osseointegration 

and implant-bone interface fixation between tissue-engineered and non tissue-

engineered constructs. As in revision THRs the implant will be either in contact with 

the host bone or at a gap distance from the host bone, two models were studied: a 

direct contact model in which the constructs were in direct contact with the host bone 

and a gap model in which a 2.5mm gap was created between the constructs and the 

host bone.  

 

For the direct contact model, ten female sheep were implanted with CaP coated 

porous Ti cylinders either with no cells or cultured with MSCs in a perfusion 

bioreactor. On both right and left sides of the sheep, defects of 10mm diameter were 

created in the medial femoral condyle and the constructs inserted. In each sheep one 

condyle served as a control, with no cells, and the other condyle contained the 

construct cultured with cells in a perfusion bioreactor (Figure 5.1A). 

 

For the gap model, ten female sheep were implanted with CaP coated porous Ti 

cylinders with either no cells or cultured with MSCs in a perfusion bioreactor and 

mounted onto 14.0mm rings at both ends to create a 2.5mm gap (Figure 5.1B). For 

this model, defects of 14mm were created. As before, in each sheep one condyle 

served as a control, with no cells, and the other condyle contained the construct 

cultured with cells in a perfusion bioreactor. 

  

Figure 5.1 Scheme of the implants used in this study:  

A) 9mm diameter and 11mm length CaP coated TiAl6V4 cylinders used in the direct contact 

model, B) 9mm diameter and 11mm length CaP coated TiAl6V4 cylinders with 14mm 

diameter and 2mm length rings used in the gap model. 

A B 
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The animals were euthanized at six weeks. The femoral condyles were removed and 

processed for either hard grade histology and histomorphometric analysis or 

mechanical push-out tests. 

 

Table 5.1 summarises the study design and specifies groups and n numbers: 

 

Number 
of Sheep 

Construct 
Type 

Femoral 
Condyle: 
Right or 

Left 

Femoral 
Condyle: 
Right or 

Left 

Histology and 
Histomorphometric 

Analysis 

Mechanical 
Push-out 

Tests 

n=5 
CaP-Ti 

cylinders 
Control MSCs YES NO 

n=5 
CaP-Ti 

cylinders 
Control MSCs NO YES 

n=5 
CaP-Ti 

cylinders 
with rings 

Control MSCs YES NO 

n=5 
CaP-Ti 

cylinders 
with rings 

Control MSCs NO YES 

 

Table 5.1: Study Design 

 

 

5.2.2 Harvesting Autologous MSCs 

 

5.2.2.1 Obtaining Bone Marrow 

Bone marrow was aspirated from the iliac crest of twenty skeletally mature Mule 

sheep. All procedures took place at the Royal Veterinary College, North Mymms, in 

accordance with the Animals (Scientific Procedures) Act 1986. Home Office Licences 

were held by all those taking part in any surgical procedure. The procedures were 

carried out 2 months before implantation in the femoral condyles.   

 

Intramuscular Xylazine at 0.1 mg/kg 10 minutes before induction of anaesthesia was 

used to premedicate the sheep. The animal was then intravenously administered 

Ketamine (2mg/kg) and Midazolam (2.5mg) to induce anaesthesia. The animal was 

intubated and maintained on 2% Halothane and oxygen for the duration of the 

procedure, which was monitored by pulse oximetry, ECG and end tidal carbon 

dioxide.  
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The sheep were placed in the lateral position. The fleece above either the right or the 

left iliac crest was shaved to the skin. Approximately, 10cm
2
 area of skin were 

prepared by treatment with Pevidine scrub and antiseptic solution. The entire area was 

further sterilised with Hydrex solution-chlorohexidine and covered with a drape. 

 

A small incision was made on top of the iliac crest and a bone marrow gauge needle 

was used to reach the intramedullary cavity of the iliac crest. A 10mL syringe that had 

been loaded with 1mL of heparin at 1000 iu/mL was attached to the bone marrow 

gauge needle. A minimum of 2mL but no more than 6mL of bone marrow were 

aspirated, gently mixed with the heparin to prevent clotting and transferred into a 

sterile universal tube. The aspirates were kept at 4ºC until taken to tissue culture 

facilities. The incisions were sutured using a resorbable zero cirylTM suture. Finally, 

animals were given 0.6mg Buprenorphine as an analgesic and 15 mg/kg Amoxicillin 

as a long-acting antibiotic.  

 

5.2.2.2 MSCs Isolation, Culture and Cryopreservation 

The bone marrow aspirates were transferred to tissue culture facilities and were 

always manipulated inside a laminar flow hood. The growth medium for MSCs was 

Dubelcco’s modified eagles medium (DMEM, D6429, Sigma-Aldrich, UK) 

supplemented with 10% fetal calf serum (FCS, First Link, UK) and 100 Units/mL of 

the antibiotics penicillin and streptomycin (P/S, Gibco, UK) (DMEM+).  

 

2mL of each aspirate were plated in T225 (225cm
2
 of growth area) polystyrene cell 

culture flasks (Corning, USA) with 30mL of the above medium. Cultures were 

designated P0. Flasks were kept in incubators at 37ºC with 5% CO2 and regularly 

observed under a phase-contrast light microscope. Medium was changed every 3 to 5 

days until the cultures were 80 to 90% confluent.  

 

In order to ensure the autologous MSCs were all used at the same passage number, 

cells were cryopreserved in liquid Nitrogen. When cultures reached 80 to 90% 

confluency medium was removed from the flasks and the cells were washed with cold 

PBS. The cells were then trypsinised and incubated at 37ºC with 5% CO2 for 5 

minutes. Once the cells have lifted off the surface the trypsin was neutralised by 

adding a 1:1 volume of DMEM+. All cells were transferred to a universal tube except 
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a small amount that was removed to perform a cell count in order to calculate cell 

density to be stored in each cryovial. A 1/10 dilution of the cells in trypan blue 

(T8154, Sigma-Aldrich, UK) was done and pipetted into a cover-slipped 

haemocytometer which was then placed under a phase-contrast light microscope. 

Viable cells were rounded and bright while blue cells were considered as non-viable. 

Cells in the universal tube were centrifuged at 2,000rpm for 5minutes, after which the 

supernatant was discarded. The pellet of cells was resuspended in a 10% dimethyl 

sulfoxide (DMSO, D5879, Sigma-Aldrich, UK) solution in FCS. 2×10
6
 cells in 1mL 

of 10% DMSO in FCS were added per cryovial and stored overnight at -70ºC in a 

“Mr Frosty” 5100 Cryo 1ºC freezing container (Fisher Scientific, UK) containing 

isopropan-2-ol. The vials, containing cells at P1, were then transferred to liquid 

nitrogen.  

 

5.2.3 Preparation of Constructs 

 

5.2.3.1 Calcium Phosphate Coating of Porous Ti Cylinders 

TiAl6V4 porous cylinders (Figure 4.2), 9mm diameter and 11mm length, were coated 

with a calcium phosphate layer as already explained in sections 2.2.3 and 4.2.2.1.  

 

The scaffolds were sterilised in an oven at 160ºC for 1 hour prior to cell seeding, 

which was carried out inside a laminar flow hood to ensure sterile conditions. 

 

5.2.3.2 MSCs Resuscitation and Seeding on the Scaffolds 

MSCs were resuscitated from liquid Nitrogen as detailed in section 3.2.1.1. Cells were 

kept in T225 culture flasks at 37ºC with 5% CO2 until they were about 80% confluent.  

 

The MSCs were then trypsinised and a viable cell count was performed using a 

haemocytometer as described in Chapter 3. 1×10
6
 cells in a total volume of 0.2mL of 

medium were seeded onto each scaffold, which had been placed in 24 well plates. 

Therefore, all the cells were seeded at passage number 2. The plates were incubated 

for 90 minutes at 37ºC with 5% CO2, after which 2mL of DMEM+ were added per 

well. After further incubation of the cells for 24 hours at 37ºC with 5% CO2, the 

seeded scaffolds were transferred to bioreactor chambers. 
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5.2.3.3 Dynamic Cell Culture in a Perfusion Bioreactor System 

After the seeded scaffold was placed inside the bioreactor chamber, the whole system 

was assembled as described in section 4.2.5. Flow was perfused through the seeded 

scaffolds at 0.75mL/min.  

 

After 7 days of dynamic perfusion cell culture, the flow was stopped and the system 

dismantled inside a laminar flow hood. The construct was transferred to a sealed 12 

well plate with approximately 5mL of DMEM+, ready for the surgical procedure. 

 

5.2.3.4 Controls: Unseeded Scaffolds 

As mentioned in section 5.2.1, the controls for this study were CaP coated porous Ti 

cylinders with no cells. Section 4.2.2 of this thesis details the properties and CaP 

coating of the scaffolds. Control scaffolds were sterilised at 160ºC for 1 hour and 

transferred to sealed 12 well plates with approximately 5mL of DMEM+ per scaffold, 

ready for the surgical procedure. 

 

5.2.3.5 Rings 

TiAl6V4 rings used in the gap model were 14mm diameter and 2mm length (Figure 

5.2). The same steps previously described in section 5.2.3.4 were followed to sterilise 

the rings and get them ready for the surgical procedure. 

 

 

 

Figure 5.2 14mm diameter and 2mm length TiAl6V4 ring used in the gap model 
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5.2.4 Surgery 

All procedures took place at the Royal Veterinary College, North Mymms, in 

accordance with the Animals (Scientific Procedures) Act 1986. Home Office Licences 

were held by all those taking part in any surgical procedure. 

 

5.2.4.1. Analgesia 

Intramuscular Xylazine at 0.1 mg/kg 10 minutes before induction of anaesthesia was 

used to premedicate the sheep. The animal was then intravenously administered 

Ketamine (2mg/kg) and Midazolam (2.5mg) to induce anaesthesia. The animal was 

intubated and maintained on 2% Halothane and oxygen for the duration of the 

procedure, which was monitored by pulse oximetry, ECG and entidal carbon dioxide.  

 

5.2.4.2 Insertion of Constructs 

Animals were placed in supine position and an area over the medial aspect of both 

knee joints and an area extending proximally over the medial aspect of the stifle joint 

and lower abdomen was shaved. Betadine surgical scrub, which is a broad spectrum 

topical iodophor microbicide, was applied followed by Betadine antiseptic solution.  

The animal was moved in to the operating theatre. Prior to draping the site was further 

cleaned with Hydrex Surgical Scrub (MidMeds Ltd, Loughton, UK) which contains 

chlorohexidine, an alkaline aqueous antimicrobial.  

 

Sterile drapes were used to cover the area around the wound site. 4cm longitudinal 

incisions were placed over the medial aspect of the distal femoral condyles. The 

femoral condyles were exposed and the periosteum was then scraped from the surface 

exposing the underlying bone. The bone was drilled (Figure 5.3A) to create a 

cylindrical defect of 10mm diameter and 11mm depth (Figure 5.3B and C). In the gap 

model cylindrical defects of 14mm diameter and 15mm depth were created (Figure 

5.4A). The defects were flushed with sterile saline to remove debris. The implants 

with or without cells were inserted into the created defects in either the right or the 

left femoral condyle (Figures 5.3B-D and 5.4B-D). The wound was closed in layers 

with resorbable Vicryl™ sutures. Post-operatively the animals were allowed full 

mobilisation as tolerated.  
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Figure 5.3 illustrates A) bone being drilled, B) defect created within the femoral 

condyle, C) insertion of construct and D) construct fully inserted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 illustrates A) defect created within the femoral condyle, B) first ring inside 

the defect, C) insertion of construct and D) construct fully inserted with second ring. 

A B 

C D 

D C 

B A 
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5.2.5. Histology 

Six weeks after the surgical procedures the sheep were euthanized with 

Phenobarbitone (50mL of 20% solution) intravenously. Femurs were removed, 

debrided of soft tissue and cut down on the bandsaw until the femoral condyles 

containing the implants remained, which were fixed in 10% buffered formal saline. 

They were then dehydrated with solutions of ascending concentrations of industrial 

methylated spirit (IMS, BDH laboratory supplies, UK) in distilled water. After 

dehydration, the samples were defatted with chloroform to allow adequate penetration 

of the solutions prior to embedding in LR white resin (Agar Scientific Ltd, UK). 

Infiltration of the resin into the samples was aided by application of a vacuum. One 

drop of catalyst (LR White Accelerator, Agar Scientific Ltd, UK) per 10mL of resin 

was added to initiate polymerisation. The samples were placed in a 4ºC refrigerator to 

allow slow setting and dissipation of heat produced by the exothermic reaction. Table 

5.2 details the histology processing protocol: 

 

Steps Number of Days 

10% buffered formal saline 3 

50% IMS 50% distilled water 3 

75% IMS 25% distilled water 3 

85% IMS 15% distilled water 3 

95% IMS 5% distilled water 3 

100% IMS 

(repeat step twice) 
3 

Chloroform 

(repeat step twice) 
3 

100% IMS 

(repeat step twice) 
3 

50% IMS 50% LR White resin 3 

LR White resin, with one change of resin at day 3 and 

under vacuum every day 

(repeat step twice) 

7 

Cast in LR White resin, using 1 drop of accelerator per 

10mL of resin. 

Leave in fridge 

24 hours 

 

Table 5.2: Histology Processing Protocol 
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The samples were longitudinally sectioned using the Exakt saw (EXACT, Germany) 

and ground to a thickness of 100μm using the Exakt micro-grinding system (EXACT, 

Germany) and polished on the Motopol 2000 (Buehler, Coventry, UK). The sections 

were stained with Toluidine Blue for 20 minutes, which stains cell nuclei blue, and a 

Paragon stain for 15 minutes, which stains new bone bright pink. The stained sections 

were analysed by histomorphometry.  

 

5.2.5.1 Histomorphometry 

Comparison of the amount of new bone formation within the tissue-engineered and 

non-tissue engineered constructs was made using histomorphometry techniques. The 

percentage area occupied with new bone over total available area and the percentage 

of new bone in contact with the material surface were quantified with the Axiovision 

Release 4.5 image analysis system (Zeiss, Germany). Three images were taken at 5× 

magnification, two from the edges and one from the centre, of each stained thin 

section. Figure 5.5 details the areas where the photos were taken. The images were 

then overlaid with a grid (14×14units). The line-intercept method was used for 

quantification of the percentage of new bone area and bone-material contact where 

each line crossed the type of feature being measured.  

 

 

 

Figure 5.5 Scheme showing the areas of stained thin sections at which photos were 

taken for histomorphometric analysis. 

 

 

Area at edge 1 

Area at the centre 

 

Area at edge 2 

 

STAINED THIN SECTION 
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5.2.6 Mechanical Push-Out Tests 

Implants were tested for implant-bone interface shear strength by mechanical push-

out test. The experiments were performed on a Zwick-Roell Z005 mechanical test 

instrument. Specimens were tested at a rate of 10mm/min (Nordström et al. 2002; 

Santoni et al. 2009; Fakhouri et al. 2011), with a pre-load of 15N at 5mm/min. The 

maximum load at which the implant was pushed out of the specimen was recorded. 

Figure 5.6 shows the setting for the mechanical push out tests with a specimen at the 

end of the test. 

 

 

Figure 5.6 Setting for the mechanical push out tests with a specimen from which the 

implant has been pushed out. 

 

 

 

5.2.7 Statistics 

Statistical analysis was performed with SPSS 14.0 software. Non-parametric data was 

analysed using the Mann Whitney U test. A p-value≤0.05 was considered a 

significant result. 
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5.3 RESULTS 

 

5.3.1 Mechanical Push-Out Tests 

The results showed that the implants were very well fixed and integrated with the 

surrounding bone and it required 3500N forces in order to push the implants out 

(Figure 5.7). However, there were no statistical differences between the tissue-

engineered and the non-tissue engineered implant (p>0.05). The forces required to 

push the implants out in the gap model were significantly lower (Figure 5.8). 

 

 

Figure 5.7 Direct contact model mechanical push-out tests results for CaP-Ti 

implants with or without cells at 6 weeks after implantation in vivo. 

 

 

Figure 5.8 Gap model mechanical push-out tests results for CaP-Ti implants with or 

without cells at 6 weeks after implantation in vivo. 

p=0.624 

p=1.000 
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5.3.2 Histomorphometry: New Bone Formation 

The results showed that there were no significant differences in new bone formation 

between the tissue-engineered and the non tissue-engineered implants (p>0.05). New 

bone formation was between 40% and 50% (Figures 5.9 and 5.11). For the gap model, 

new bone formation was lower but it was still over 20% (Figure 5.10 and 5.12).  

 

 

Figure 5.9 Comparison of total new bone area between tissue-engineered and non 

tissue-engineered constructs in the direct contact model, 6 weeks after surgery.  

 

 

 

Figure 5.10 Comparison of total new bone area between tissue-engineered and non 

tissue-engineered constructs in the gap model, 6 weeks after surgery. 

p=0.754 

p=0.602 
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Figure 5.11 Comparison of new bone area at the middle (left) and edges of implants 

(right) between tissue-engineered and non tissue-engineered constructs in the direct 

contact model, 6 weeks after surgery. 

 

 

 

 

 

 

   

  

 

 

 

 

 

 

Figure 5.12 Comparison of new bone area at the middle (left) and edges of implants 

(right) between tissue-engineered and non tissue-engineered constructs in the gap 

model, 6 weeks after surgery. 
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5.3.3 Histomorphometry: Bone-Implant Contact 

For bone-implant contact, both implants showed similar results with bone attached to 

over 50% of the implants’ surface (Figures 13 and 15).  However, no statistical 

differences were found between the two types of implants (p>0.05). In the gap model, 

the tissue-engineered implants showed slightly more bone contact than the non tissue-

engineered implants but the difference was insignificant (p>0.05) (Figures 14 and 

16). Overall, the new bone formation occurred more on the periphery of the implant 

than in the centre (Figures 15 and 16).  

 

 

Figure 5.13 Comparison of total bone-implant contact area between tissue-engineered and 

non tissue-engineered constructs in the direct contact model, 6 weeks after surgery. 

 

 

Figure 5.14 Comparison of total bone-implant contact area between tissue-engineered and 

non tissue-engineered constructs in the gap model, 6 weeks after surgery. 

p=0.754 

p=0.917 
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Figure 5.15 Comparison of bone-implant contact area at the middle (left) and at the 

edges (right) of implants between tissue-engineered and non tissue-engineered 

constructs in the direct contact model, 6 weeks after surgery. 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.16 Comparison of bone-implant contact area at the middle (left) and 

at the edges (right) of implants between tissue-engineered and non tissue-engineered 

constructs in the gap model, 6 weeks after surgery. 
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5.3.4 Histological Analysis 

For all the samples bone ingrowth into the pores was observed as well as direct bone-

implant contact. The new bone tissue was well vascularised (Figures 17 to 20). 

 

 

 

Figure 5.17 Histological analysis of non-tissue engineered (top) and tissue engineered 

(bottom) implants at the edge section. (Black: implant; bright pink: new bone; rest: 

soft tissue; yellow arrows: blood vessels; dark blue arrows: alignment of cells). 
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Figure 5.18 Histological analysis of non-tissue engineered (top) and tissue engineered 

(bottom) implants at the middle section. (Black: implant; bright pink: new bone; rest: 

soft tissue; yellow arrows: blood vessels). 
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Figure 5.19 Histological analysis for the gap model of non-tissue engineered (top) 

and tissue engineered (bottom) implants at the edge section. 

 (Black: implant; bright pink: new bone; rest: soft tissue). 



195 

 

 

 

Figure 5.20 Histological analysis for the gap model of non-tissue engineered (top) 

and tissue engineered (bottom) implants at the middle section. (Black: implant; bright 

pink: new bone; rest: soft tissue; dark blue arrows: alignment of cells). 
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5.4 DISCUSSION 

 

5.4.1 New Bone Formation and Ingrowth 

In terms of new bone formation implants with no cells added showed a slightly higher 

percentage compared to tissue-engineered implants for both models of study. 

However, this was not significant. New bone formation was high, around 50% for the 

direct contact model and around 30% for the gap model. When Bobyn and colleagues 

implanted porous tantalum cylinders of two different pore sizes of 430 and 650µm in 

a transcortical canine model, percentages of 52.9% for the large pore size and 41.5% 

for the small pore size after 4 weeks of implantation were reported (Bobyn et al. 

1999). These values are very similar to the ones found in my study.  

 

Bone ingrowth into the porous implants, with or without cells, was demonstrated by 

the histological results (Bobyn et al. 1999; Ducheyne et al. 1990; Schliephake et al. 

1991; Scliephake and Neukam 1991; Galois and Mainard 2004). Bone ingrowth 

potential is important for early implant fixation thus decreasing the incidence of 

implant loosening (Engh et al. 1987; Ducheyne et al. 1990; Bobyn et al. 1999). 

Ducheyne and colleagues demonstrated that the deposition of CaP coatings on 

titanium plugs increased bone ingrowth in the immediate post-operative period of 2, 4 

and 6 weeks after surgery (Ducheyne et al. 1990). However, in my thesis implants 

without a CaP coating were not used and therefore it is not known whether the 

electrochemical deposition of a CaP layer on the surface of the porous Ti cylinders 

increased bone ingrowth.  

 

The addition of MSCs to different materials has been shown to increase new bone 

formation and ingrowth as the added MSCs can differentiate into bone cells (Wolff et 

al. 1994; Petite et al. 2000; Eslaminejad et al. 2008; Kruyt et al. 2004). However, the 

results found in this chapter suggest that addition of MSCs to CaP coated porous Ti 

implants may not improve new bone formation and ingrowth into the implants. 

Location and vascularisation of the constructs, a decreased pore size and the length of 

the study may be the reasons why the added MSCs did not significantly contribute to 

new bone formation and ingrowth. 
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5.4.1.1 Location and Vascularisation of the Constructs 

The diameter of the defects in the direct contact model was of 10mm and of 14mm in 

the gap model. Therefore the cells in the middle of the construct would be 5mm and 

7mm respectively away from the nutrient supply in the adjacent host bone. In this 

situation the blood supply from the host is relatively accessible to the construct and 

therefore new bone formation by the added MSCs may have been masked by 

osteoconduction from the host (Kruyt et al. 2004). However, another explanation may 

be that vascularisation is more difficult in larger implants (Deleu and Trueta 1965) 

which would lead to a low oxygen tension and poor nutrient supply that may cause 

death of the MSCs in the tissue-engineered constructs.  

 

5.4.1.2 Pore Size 

The reduction in pore size after the addition of MSCs to the implants may also be 

accounted for the slight decrease in new bone formation shown by the tissue-

engineered constructs compared with the non tissue-engineered ones. The original 

mean pore size of the CaP coated porous Ti cylinders was of 766µm. After the 

seeding and culture of MSCs for seven days using a perfusion bioreactor system the 

mean pore size of the constructs was of 611µm. Thus, a 20% reduction in pore size 

was exhibited by the tissue-engineered implants compared to the non tissue-

engineered ones.  

 

Several examples across the literature can be found showing that a reduction in pore 

size for a given material has an effect on bone ingrowth, with larger pore sizes 

showing more bone ingrowth. Schliephake and colleagues implanted HA blocks of 

150 and 260µm pore sizes in alveolar ridge bone defects in minipigs. After five 

months, a high rate of implant loss was observed for the 150µm HA blocks and 

260µm HA blocks showed three times more bone ingrowth than the HA blocks with 

smaller pore size (Schliephake et al. 1991). The same authors reported very similar 

results when the same HA blocks were used as bone graft substitutes in defects 

created in the endentulous mandibles of minipigs and fixed with two titanium screws. 

Histological analysis revealed that the HA blocks with larger pore size were evenly 

penetrated by bone that extended into the central pores while a high rate of implant 

loss occurred with the HA blocks with smaller pore size (Schliephake and Neukam 

1991). Galois and Mainard implanted HA or TCP cylinders with pore sizes of 45-
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80µm, 80-140µm, 140-200µm and 200-250µm in femoral condyles of rabbits. After 

12 months the amount of newly formed bone was statistically smaller into the ceramic 

implants with 45-80µm pore size than with larger pore sizes (Galois and Mainard 

2004). Finally, bone ingrowth into tantalum implants with different pore sizes of 430 

and 650µm inserted in a transcortical canine model showed statistically significant 

more bone formation for the large pore size implants at 4 and 16 weeks after the 

surgical procedures (Bobyn et al. 1999). 

 

5.4.1.3 Length of the Study 

The question remains whether more bone formation in the tissue-engineered implants 

than in the non-tissue engineered ones would have been seen at a longer time point. In 

this study the samples were harvested at six weeks after surgery so that early bone 

ingrowth could be investigated, which is important for implant fixation. Other studies 

looking at tissue-engineered constructs to treat critical-size defects in large animals 

harvested their samples at 9 and 12 weeks (Kruyt et al. 2004) or 16 weeks (Bruder et 

al. 1998). Bruder et al. found that after 16 weeks of implantation the amount of bone 

was significantly greater in the tissue-enginereed implants than in the implants not 

loaded with cells when used in segmental defects in the femora of adult female dogs 

(Bruder et al. 1998). On the other hand, Kruyt and colleagues found significantly 

more bone apposition for the tissue-engineered constructs after 9 weeks of 

implantation while after 12 weeks the critical sized iliac wing defects created in goats 

were almost filled with bone with no significant advantage of the tissue-engineered 

constructs compared with the non tissue-engineered ones (Kruyt et al. 2004).  

 

5.4.2 Implant-Bone Contact Area 

In my study histological evidence of direct bonding between the implant and bone 

was found, thus demonstrating the osteoconductive potential of the CaP coating 

deposited on the surface of the porous metal Ti cylinders. CaP materials and coatings 

onto metal implants have long been regarded as osteoconductive in the literature. As 

in this chapter, Rivero and colleagues in 1988 demonstrated the osteoconductive 

properties of a CaP coating deposited on titanium fiber metal implants by bone 

forming in direct contact with the CaP coatings after implanted in the humeri and 

olecranons of adult dogs (Rivero et al. 1988). Similarly Geesink et al. also in 1988 

found histological proof of direct bonding between bone and the apatite coating 
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deposited on cylindrical rods of TiAl6V4 alloy after inserted into canine femurs 

(Geesink et al. 1988). Buser and co-workers evaluated how different surface 

characteristics influenced bone integration of titanium implants. Six groups were 

studied with various surface modifications including a HA coating. The study showed 

the highest direct bone contact on the HA coated titanium group compared with any 

other surface modification (Buser et al. 1991). 

 

Interestingly the addition of MSCs to the scaffolds appeared to improve bone-implant 

contact area in the gap model (Figures 5.14 and 5.16). In the gap model a 2.5mm gap 

was created between the implant and the surrounding bone tissue and thus the implant 

was not in direct contact with the existing bone tissue as in the direct contact model. 

The results suggest that in the defects with gap the MSCs added to the scaffolds 

differentiated to osteoblasts, with concomitant bone tissue formation on the surface of 

the implant taking place (Ohgushi et al. 1993; Ducheyne et al. 1990). 

 

5.4.3 Implant-Bone Interface Fixation  

The results showed no significant differences between the tissue-engineered implants 

and the implants without cells for both models (Figures 5.7 and 5.8). However, the 

addition of MSCs to the implants showed a beneficial trend on the mechanical 

performance in the gap model. These results agree with the observations discussed 

above for implant-bone contact area: as the MSCs added differentiated into 

osteoblasts subsequently forming bone on the surface of the implant the forces 

necessary to push the tissue-engineered implants out of the bone were higher than 

with the non tissue-engineered ones. 
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5.5 CONCLUSION 

 

The addition of MSCs to a CaP coated porous Ti scaffold did not significantly 

increase new bone formation, implant-bone contact area or implant-bone fixation 

strength when implanted in defects created in the medial femoral condyle of sheep 

and compared to CaP coated porous Ti scaffolds without cells. Bone ingrowth into the 

porous implants was demonstrated by histology. Location and vascularisation of the 

constructs, a 20% reduction in pore size exhibited by the tissue-engineered implants 

compared to the non-tissue engineered ones and the length of the study may be 

accounted for the slight decrease in new bone formation shown by the tissue-

engineered constructs.  

 

Histological evidence of direct bonding between the implant and bone was found, thus 

demonstrating the osteoconductive potential of the CaP coating deposited on the 

surface of the porous metal Ti cylinders. In the defects with gap the MSCs added to 

the scaffolds differentiated to osteoblasts with concomitant bone tissue formation on 

the surface of the implant taking place, thus showing a higher implant-bone contact 

area than the non-tissue engineered constructs implanted in defects with gap. 

Therefore, the forces necessary to push the tissue-engineered implants out of the bone 

were higher than with the non tissue-engineered ones. 

 

In conclusion, the two hypotheses explored in this chapter were not confirmed as 

tissue-engineered implants using a perfusion bioreactor system did not achieve greater 

osseointegration and implant-bone interface fixation when implanted in vivo than non 

tissue-engineered implants. 
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CHAPTER 6: 

General Discussion and Conclusions 
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6.1 GENERAL DISCUSSION 

 

Aseptic loosening of THRs due to osteolysis results in a reduction of the bone stock 

necessary for implant fixation in revision THRs (Cooper et al. 1992; Harris 1995; 

Harris 2001; Amstutz et al. 1992; Heisel et al. 2003). Several techniques such as 

impaction allografting are used today to overcome the problem associated with poor 

bone stock at revision operations. However, all of these the techniques present 

disadvantages, from limited bone supply and donor site morbidity to bacterial 

infection and immune response (Goulet et al. 1997; Moore et al. 2001). This thesis 

proposes bone tissue engineering (BTE) as strategy to address the issue of poor bone 

stock at revision THRs. BTE is a novel and promising research field which combines 

biomaterials science with cell biology techniques to generate bone tissue constructs ex 

vivo in order to replace damaged or lost bone (Salgado et al. 2004; Rose and Oreffo 

2002; Karageorgiou and Kaplan 2005).  

 

The aim of this thesis was to develop a bone-tissue engineered construct to 

enhance new bone formation in revision THR and the overall hypothesis was 

that the addition of MSCs to a porous metal scaffold coated with a CaP layer will 

enhance rapid formation of bone within the implant, thus repairing adjacent 

defect areas and increasing fixation strength at revision THRs. The main 

application of this thesis approach would be in acetabular cups, which could be made 

of porous metal, coated throughout with a CaP layer and seeded throughout with 

MSCs using a perfusion bioreactor system. Figure 6.1 shows the flow diagram for my 

thesis summarising the tissue engineering process to develop the bone tissue-

engineered construct, the in vitro and in vivo phases of study and the questions and 

conclusions from each chapter that led to answering the overall hypothesis. 

 

The first step of my thesis was to choose an appropriate material as scaffold for 

the bone tissue-engineered construct. As revision THR is a load-bearing application 

the excellent mechanical properties offered by metals such as TiAl6V4 (Ti) or 

tantalum (Ta) make them the ideal materials to be used as scaffolds in this thesis 

(Karageorgiou and Kaplan 2005; Niinomi 2008; Disegi 2000; Unger et al. 2005). 

Titanium and its alloys are widely used for biomedical applications because of their 

biocompatibility, strength, lightness and high resistance to corrosion, while porous 
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structures with similar material properties to those of bone have been developed 

(Niinomi 2008; Schuh et al. 2007). Similarly, a biomaterial made of porous tantalum, 

called trabecular metal has recently been developed and used in primary and revision 

THRs components with very promising early clinical results (Levine et al. 2006). 

Osteoconduction and bioactivity can be added to these metals scaffolds by coating 

them with a CaP layer (Karageorgiou and Kaplan 2005; Blockhuis et al. 2000). 

Plasma-spraying is the most common commercial method for coating metals with a 

CaP layer. However, this method takes place at high temperatures and does not allow 

the coating of complex shapes as it is a line-of-sight process. Several methods that 

overcome these disadvantages can be found in the literature in order to deposit a CaP 

layer on the surface of metal implants. Specifically the biomimetic and 

electrochemical methods allow the coating of complex shapes, such as porous 

structures, at low temperature and are economical. Biomimetic and electrochemical 

coatings onto metal implants have been used in vivo with promising results: Barrère 

and colleagues showed significantly higher bone contact for biomimetic CaP coated 

dense and porous metal implants compared to non-coated implants when implanted in 

the femoral dyaphisis of goats (Barrère et al. 2003) and electrochemically HA coated 

porous plugs implanted in the distal femoral metaphysic of pigs were shown to 

significantly increase bony ingrowth when compared with the uncoated implants 

(Redepenning et al. 1996). Therefore, the first question to answer in my thesis was 

whether biomimetic and electrochemical methods can be applied to deposit a 

CaP layer on the surface of Ta and Ti discs. In order to answer this question 

Chapter two was carried out using Ta and Ti discs with different topographical 

surfaces, polished and sand-blasted. They were CaP coated using the biomimetic 

coating process described by Habibovic et al. in 2002 and the electrochemical 

deposition process described by Redepenning et al. in 1996, using two different 

electrical currents of 20 and 6.5mA/cm
2
 of surface area.  

 

Data presented in Chapter two showed that biomimetic and electrochemical methods 

can be applied in order to deposit a CaP layer on the surface of metal discs. However, 

the biomimetic method did not deposit a uniform CaP layer on the surface of the discs 

while electrochemical coatings covered the whole surface. Surface topography and 

metal type do not affect the morphology and composition of the CaP coatings 

deposited by the same method. Biomimetic coatings are composed of a CaP phase or 
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phases that are very amorphous, composed of nano-sized crystals and Ca deficient 

(Wopenka and Pasteris 2005; Narasaraju and Phebe 1996; LeGeros 1993; 

Suryanarayana and Grant Norton 1998; Hammond 2001; Nishio et al. 2000). Mg may 

be incorporated into the biomimetic coatings, which is one of the reported substituting 

ions found in bone mineral (Wopenka and Pasteris 2005; LeGeros 1993; LeGeros 

2008). Electrochemical coatings produced nano to micro crystals with different 

morphologies. They were also Ca deficient (Narasaraju 1996) with XRD patterns 

displaying a characteristic broad peak for HA, indicating it was amorphous 

(Suryanarayana and Grant Norton 1998; Hammond 2001). The XRD patterns also 

showed the electrochemical coatings were composed of HA as well as brushite, as 

peaks for this mineral remained after the ageing treatment. The coatings produced and 

characterised in Chapter two altered their morphology and composition when 

immersed in SBF, suggesting the three coatings would be bioactive bonding directly 

with bone when used in vivo, via dissolution and subsequent mineralisation 

incorporating suitable and available ions in the surrounding environment (Zhang et al. 

2003). Therefore, by coating metal implants with a CaP layer by the methods used in 

this thesis osteconductive and bioactive properties would be added to the materials, 

both of them very important for implant fixation and osseointegration (Karageorgiou 

and Kaplan 2005; Salgado et al. 2004). 

 

The next step of my thesis was to choose an appropriate source of cells for the 

bone tissue-engineering construct under development. The ideal source of cells for 

BTE should be easily explandable to high numbers, non-immunogenic and with a 

protein expression pattern similar to that of the bone tissue (Heath 2000; Salgado et 

al. 2004). Osteoblasts are the most obvious choice due to their immunogenicity, as 

they can be isolated from biopsies from the patients and expanded in vitro. However, 

relatively low numbers are yielded after the dissociation of the tissue and their 

expansion rates are relatively low (Heath 2000; Salgado et al. 2004). One promising 

possibility for BTE is to use stem cells, which are undifferentiated cells, capable of 

self-renewal and production of a large number of undifferentiated progeny (Blau et al. 

2001; Lanza et al. 2000). Embryonic stem cells are pluripotent as they can 

differentiate into a wide range of cell types (Heath 2000; Salgado et al. 2004; Blau et 

al. 2001). However, it has been shown that when implanted in vivo undifferentiated 

embryonic stem cells give rise to teratomas and teratocarcinomas, thus showing 
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potential tumorogenicity, probably due to their unlimited proliferation potential 

(Wobus 2001). Adult stem cells, which are found in the fully differentiated tissues, 

are responsible for the regeneration of damaged tissues and therefore could be used 

for TE applications (Blau et al. 2001; Heath 2000). Specifically, for BTE purposes 

there is a special interest in the adult stem cells located in the bone marrow: 

mesenchymal stem cells (MSCs). MSCs are ideal candidates for developing bone 

tissue-engineered constructs as they have been shown to differentiate into bone, as 

well as other lineages of mesenchymal tissues
 
(Caplan 1991; Jaiswal et al. 1997; 

Pittenger et al. 1999; Bosnakovski et al. 2005; Csaki et al. 2007; Janssen et al. 2006). 

Moreover, MSCs are already being used in clinical orthopaedic applications, such as 

non-union in long bone fractures where injection of concentrated bone marrow has 

been shown to be effective, with healing associated with the number of MSCs within 

the concentrated bone marrow (Sensebé et al. 2010). Therefore, MSCs were chosen 

as the source of cells in this thesis.  

 

Once biomimetic and electrochemical CaP coatings had been deposited and 

characterised on the surface of Ta and Ti discs with different topographies, the next 

question to answer in my thesis was how do MSCs grow and differentiate down 

the osteogenic lineage when cultured on these coatings? Chapter three was 

carried out in order to answer this question by seeding and culturing MSCs for 4, 7 

and 14 days on biomimetic and electrochemical coatings deposited on polished and 

sand-blasted Ta and Ti discs.  

 

First of all MSCs were characterised by demonstrating their multipotency 

differentiating them down the osteogenic and adipogenic lineages (Pittenger et al. 

1999; Erices et al. 2000; Rust 2003; Hara et al. 2008). After 21 days of culture under 

adipogenic conditions, Oil Red O staining showed the presence of lipids as well as a 

clear difference in morphology (Erices et al. 2000; Rust 2003). Changes in 

morphology were also observed in MSCs cultured under osteogenic conditions with 

cells becoming polygonal, an osteoblast feature
 
(Vrouwenvelder et al. 1993). Mineral 

deposits, another osteoblastic feature, were stained in the osteogenic samples after 28 

days (Erices et al. 2000). The osteogenic supplements added to the culture medium 

stimulated cell proliferation as well as differentiation (Jaiswal et al. 1997; Bruder et 

al. 1997). ALP/DNA of osteogenic cultures was higher at all time points, with a peak 
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in ALP activity observed at day 14
 
(Lian and Stein 1992; Jaiswal et al. 1997). 

Together, all the findings showed the multipotency of MSCs.  

 

When MSCs were cultured on the coatings, the nano-sized crystals of the biomimetic 

coatings provided the best conditions for cell proliferation (Chen et al. 2007) 

compared to the crystals deposited by the electrochemical process and the uncoated 

discs. MSCs were also shown to proliferate more on polished discs than on sand-

blasted ones (Anselme et al. 2000). All the coatings induced differentiation of MSCs 

down the osteogenic lineage, agreeing with the results of Ohgushi et al. 2003, 

Ohgushi et al. 2006 and Nishio et al. 2000. Osteogenic differentiation was greater on 

electrochemical coatings and complex topographies (Jäger et al. 2008). Finally, no 

significant differences were found between Ta and Ti discs in terms of MSCs growth 

and differentiation.  

 

A perfusion bioreactor system is a valuable tool in BTE as it provides an optimised 

environment for functional 3D tissue development. It offers important advantages 

such as enhanced delivery of nutrients throughout the entire scaffold, which 

ultimately results in a construct with an even distribution of cells throughout, and 

mechanical stimulation to the cells by means of fluid shear stress, which enhances 

osteoblastic differentiation of MSCs (Bancroft et al. 2003; Martin et al. 2004; 

Sikavitsas et al. 2003). Once cells and scaffold had been characterised using a 2D 

experimental model in chapters two and three of this thesis, the next step was to 

develop a 3D construct in which MSCs are uniformly distributed throughout the 

scaffold. The question to answer was whether a perfusion bioreactor system can 

be used in order to evenly culture MSCs throughout a porous CaP coated metal 

scaffold. Chapter four was carried out in order to answer this question.  

 

As Ta and Ti were shown on Chapter three to offer very similar characteristics for 

MSCs growth and osteogenic differentiation, Ti was chosen over Ta because of its 

proven biocompatibility, strength, lightness and high resistance to corrosion when 

used in orthopaedic applications (Niinomi 2008; Disegi 2000). An electrochemical 

CaP coating was chosen over a biomimetic one as the electrochemical method was 

able to coat the outside as well as the inside of the porous metal scaffold with a 

uniform CaP layer. The perfusion bioreactor system used in this thesis was designed 
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following the requirements outlined by Bancroft, Sikavitsas and Mikos in 2003 

(Bancroft et al. 2003) and consisted of a multichannel peristaltic pump that allowed 

control of the flow rate, a bioreactor chamber with dimensions that optimised the 

delivery of the flow through the scaffolds, a medium reservoir with air ventilation and 

a tubing system that connected the different parts and sealed the system so it could be 

kept sterile. In this perfusion bioreactor system, seeded scaffolds were cultured for up 

to 14 days and cellular proliferation, osteogenic differentiation and the distribution of 

cells throughout the scaffold were compared to constructs cultured under static 

conditions.  

 

First of all, a study in order to choose an appropriate flow rate for the perfusion 

bioreactor system designed was carried out. The perfusion flow rates study was based 

on the work conducted by Cartmell and colleagues, where the effect of four different 

perfusion flow rates (0.33, 3.3, 6.6 and 33mL/min/cm
3
) on cell viability, proliferation 

and osteogenic differentiation of immature osteoblasts-like cells was assessed 

(Cartmell et al. 2003). However, 33mL/min/cm
3
 was not investigated since Cartmell 

and co-workers reported that this flow rate
 
resulted in substantial cell dead throughout 

the constructs. In my study, the higher flow rate of 6.6mL/min/cm
3
 (1.4mL/min) 

cracked the bioreactor chamber after just one day of perfusion culture. The high shear 

forces generated by this flow rate may have sheared the cells off the scaffold, which 

blocked the outflow of the chamber resulting in an increment in pressure, which 

ultimately cracked the polycarbonate cylinder. The lower flow rate of 

0.33mL/min/cm
3
 (0.07mL/min) may not have been efficient enough in removing 

waste products and supplying fresh nutrients to the cells. Thus, the cells died and 

blocked the outflow of the bioreactor chamber, which ultimately cracked after 3-4 

days of culture. The flow rate of 3.3mL/min/cm
3
 allowed the system to run for up to 

14 days and therefore was chosen to carry out the rest of the work presented in 

Chapter four. Furthermore, Zhao and Ma reported the highest seeding efficiencies 

when a flow rate of 3.77mL/min/cm
3
 (0.79mL/min if used in my system) was 

assessed for the dynamic cell seeding of human MSCs on poly(ethylene terephthalate) 

(PET) fibrous matrices (Zhao and Ma 2005). This flow rate was also used in their next 

study to dynamically seed human MSCs on PET matrices, maintained for 20 days and 

compared to a perfusion flow rate of 56.6mL/min/cm
3
. Increased cell numbers at the 

lower flow rate and increased ALP activity and calcium deposition, which are markers 
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for osteogenic differentiation, at the higher flow rate was observed (Zhao et al. 2007). 

The flow rate was further adjusted to 0.75mL/min in order to allow the construct to 

ideally renew the culture medium every minute. 0.75mL/min is in between 

0.7mL/min (3.3mL/min/cm
3
, Cartmell et al. 2003) and 0.79mL/min 

(3.77mL/min/cm
3
, Zhao and Ma 2005; Zhao et al. 2007). 

 

Results from the AlamarBlue® and DNA assays show that the constant supply of 

medium to and through the porous constructs has a beneficial effect on cell 

proliferation as constructs cultured under flow perfusion had an increased 

proliferation compared to constructs cultured under static conditions, as previously 

reported in the literature (Sikavitsas et al. 2005; Bjerre et al. 2008; Bancroft et al. 

2002). Similarly, ALP showed an increased activity for the flow perfused constructs 

with a peak in activity at day 7. This may be associated with the faster rate of 

proliferation leading cells to differentiate quicker but could also be due to the fluid 

shear forces experimented by the cells cultured in the bioreactor system which may 

have had a mechanostimulatory effect enhancing their osteogenic differentiation 

(Sikavitsas et al. 2003; Sikavitsas et al. 2005; Zhao et al. 2007; Bancroft et al. 2002). 

Histology results showed that constructs cultured in the perfusion bioreactor 

developed a uniform cellular layer on the external as well as internal surfaces over 

time. Results showed that the chosen flow rate had a beneficial effect on cell 

proliferation and viability until day 7, as evidenced by the AlamarBlue® and DNA 

assays, but resulted in a decrease of cell viability between days 7 and 14 as shown by 

the AlamarBlue® assay (Cartmell et al. 2003). Under the conditions tested in this 

study, day 7 provided the best results for MSCs proliferation and differentiation as 

well as a uniform cellular distribution throughout the scaffold compared to static 

controls and the other time points. Therefore, this time point was chosen to carry out 

the next in vivo phase of this thesis. 

 

Chapters two to four comprise the in vitro phase of this thesis (Figure 6.1), where 

the scaffold and cells chosen to develop a bone tissue-engineered construct to enhance 

new bone formation in revision THRs were characterised and studied. Furthermore, a 

3D construct was developed in Chapter four, where a perfusion bioreactor system was 

designed and implemented for the culture of MSCs throughout CaP coated porous Ti 

scaffolds. During this in vitro phase growth was studied by DNA and AlamarBlue® 
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assays. Further analysis of viability could have been done with a live-dead assay 

which showed the percentage of live cells in the samples as it could have helped to 

further understand the toxicity of these coatings on MSCs. As it is well known that 

CaP materials and coatings promote MSCs differentiation down the osteogenic 

lineage (Ohgushi et al. 2003; Ohgushi et al. 2006; Nishio et al. 2000) and that the 

shear forces generated inside the perfusion bioreactor may also promote MSCs to 

differentiate down the osteogenic pathway (Sikavitsas et al. 2003; Sikavitsas et al. 

2005; Zhao et al. 2007; Bancroft et al. 2002), in my project only one early marker for 

osteogenic differentiation was studied, ALP (Lian and Stein 1992). However, other 

markers of osteogenic differentiation such as osteocalcin or Runx2 could have been 

analysed in order to characterise the differentiation process of these cells along the 

osteogenic pathway in this in vitro phase of my thesis.  

 

The last step in the development of bone tissue-engineered constructs is the 

evaluation of their performance on preclinical studies prior to evaluation in 

human subjects (Salgado et al. 2004; Goldstein 2002). The final in vivo phase of 

this thesis was carried out to answer the question: can the tissue-engineered 

constructs generated using a perfusion bioreactor system achieve better 

osseointegration and therefore increase fixation strength than non tissue-

engineered constructs when implanted in vivo? The aim of Chapter five was to 

answer this question. Twenty skeletally mature mule sheep were used with two 

different models of study: a direct contact model with a defect of 10mm in which the 

constructs were in direct contact with the host bone and a gap model with a defect of 

14mm in which a 2.5mm gap was created between the constructs and the host bone. 

The gap model simulates defects in revision THRs. Each sheep was implanted 2 

constructs in both left and right medial femoral condyles, with one of them acting as 

control. Controls, or non tissue-engineered constructs, were acellular CaP coated Ti 

porous cylinders. Tissue-engineered constructs were seeded with autologous MSCs 

aspirated from the iliac crest about 2 months before implantation and cultured for 7 

days in a perfusion bioreactor system. 6 weeks after the surgical procedures the sheep 

were euthanized, samples retrieved and either processed for hard grade histology or 

mechanical push-out tests.   
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Results showed that in terms of new bone formation implants with no cells added had 

a slightly higher percentage compared to tissue-engineered implants for both models 

of study. However, this was not significant. New bone formation was high, around 

50% for the direct contact model and around 30% for the gap model, similar to values 

reported by other authors (Bobyn et al. 1999). Bone ingrowth into the porous 

implants, with or without cells, was demonstrated by histology (Bobyn et al. 1999; 

Ducheyne et al. 1990; Schliephake et al. 1991; Scliephake and Neukam 1991; Galois 

and Mainard 2004), which is important for early implant fixation thus decreasing the 

incidence of implant loosening (Engh et al. 1987; Ducheyne et al. 1990; Bobyn et al. 

1999). Although the addition of MSCs to different materials has been shown to 

increase new bone formation and ingrowth (Wolff et al. 1994; Petite et al. 2000; 

Eslaminejad et al. 2008; Kruyt et al. 2004), the results found in this chapter suggest 

that addition of MSCs to CaP coated porous Ti implants may not improve new bone 

formation and ingrowth into the implants. Factors such as location and vascularisation 

of the constructs (Kruyt et al. 2004; Deleu and Trueta 1965), a decreased pore size for 

the tissue-engineered constructs (Schliephake et al. 1991; Schliephake and Neukam 

1991; Galois and Mainard 2004; Bobyn et al. 1999) and the length of the study (Kruyt 

et al. 2004; Bruder et al. 1998) may affect bone ingrowth but were not studied in  my 

project.  

 

Histological evidence of direct bonding between the implant and bone was found, thus 

demonstrating the osteoconductive potential of the CaP coating deposited on the 

surface of the porous metal Ti cylinders (Rivero et al. 1988; Geesink et al. 1988; 

Buser et al. 1991). Interestingly the addition of MSCs to the scaffolds appeared to 

improve bone-implant contact area in the gap model, suggesting that in the defects 

with gap the MSCs added to the scaffolds differentiated to osteoblasts, with 

concomitant bone tissue formation on the surface of the implant taking place 

(Ohgushi et al. 1993; Ducheyne et al. 1990). The results from the mechanical push-

out tests showed no significant differences between the tissue-engineered implants 

and the implants without cells for both models. However, the addition of MSCs to the 

implants showed a beneficial trend on the mechanical performance in the gap model, 

which agrees with the observations discussed for implant-bone contact area. 
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The work presented in this thesis did not confirm the overall hypothesis that the 

addition of MSCs to a porous metal scaffold coated with a CaP layer will 

enhance rapid formation of bone within the implant, thus repairing adjacent 

defect areas and increasing fixation strength, as no statistical differences were 

found between tissue-engineered and non tissue-engineered constructs in terms of 

new bone formation and implant-bone contact area. However, in the defects with 

gap, the tissue-engineered constructs showed a higher implant-bone contact area 

and therefore higher forces were necessary to push the tissue-engineered 

implants out of the bone than for the non tissue-engineered ones. Since the gap 

model is representative of the bone defects found in revision THRs the results suggest 

a beneficial trend in the addition of MSCs to porous CaP coated Ti scaffolds for the 

regeneration of the bone stock at revision THRs. These results suggest that bone 

tissue engineering can be applied in order to develop constructs with a clinical 

application in rTHRs where a lack of bone stock is problematic. 
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6.2 GENERAL CONCLUSIONS 

 

 Biomimetic and electrochemical methods can be applied in order to deposit a CaP 

layer on the surface of tantalum and TiAl6V4 discs, where surface topography and 

metal type do not affect the morphology and composition of the CaP coatings 

deposited by the same method. 

 

 The nano-sized crystals of the biomimetic coatings significantly increase MSCs 

growth compared to the electrochemical coatings and the uncoated discs.  

 

 Biomimetic and electrochemical coatings induce MSCs differentiation down the 

osteogenic lineage, which was greater on electrochemical coatings and complex 

topographies.  

 

 No significant differences were found between tantalum and TiAl6V4 in terms of 

MSCs growth and differentiation. 

 

 3D tissue-engineered constructs based on a CaP coated porous TiAl6V4 scaffold 

and cultured with MSCs using a perfusion bioreactor system for 7 days had 

increased proliferation and osteogenic differentiation as well as an even 

distribution of cells throughout the scaffolds compared to constructs cultured under 

static conditions.  

 

 Tissue-engineered constructs did not significantly increase new bone formation, 

implant-bone contact area or implant-bone fixation strength when implanted in 

defects created in the medial femoral condyle of sheep and compared to non tissue-

engineered constructs. 

 

 In the defects with gap the MSCs added to the scaffolds differentiated to 

osteoblasts with concomitant bone tissue formation on the surface of the implant 

taking place, thus showing higher implant-bone contact area and interface fixation 

strength than the non-tissue engineered constructs. 
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6.3 FUTURE WORK 

 

 A flow rates study in order to find out the optimum one for the perfusion bioreactor 

system designed in this thesis. 

 

 An investigation into the optimum culture time inside the perfusion bioreactor 

system for the cells to deposit a mineralised extracellular matrix. 

 

 Addition of osteogenic supplements to the culture medium used in the bioreactor 

system and study of the ostegenic differentiation of mesenchymal stem cells. 

 

 Use of allogenic cells instead of autologous cells to eliminate donor-dependent 

factors. 

 

 Implantation of constructs in an ectopic site to compare osteoinduction between 

tissue-engineered and non tissue-engineered ones. 

 

 To choose a porous metal material with larger pore size to maximise cell growth. 
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Figure 6.1 Thesis Flow Diagram 

Can the addition of MSCs to a CaP coated porous metal 

scaffold enhance rapid formation of bone within the implant, 

thus repairing adjacent defect areas and increasing fixation 

strength at revision THRs? 

CHAPTER 1: 

Introduction 

Can biomimetic and 

electrochemical methods be 

applied to deposit a CaP layer 

on the surface of metal 

discs? CHAPTER 2: 

CaP Coating of Polished and 

Sand-Blasted Metal Discs by 

Biomimetic and 

Electrochemical Methods 

CHAPTER 3: 

Growth and differentiation of 

MSCs on Polished and Sand-

Blasted Metal Discs CaP 

Coated by Biomimetic and 

Electrochemical Methods 

CHAPTER 4: 

Tissue Culture of MSCs 

Seeded on a CaP Coated 

Porous Metal Scaffold using a 

Perfusion Bioreactor System 

CHAPTER 5: 

Comparison of 

Osseointegration and Implant-

Bone Interface Fixation in 

vivo Between Tissue-

Engineered and Non Tissue-

Engineered Constructs 

Yes, both methods can be 

applied to deposit a CaP layer 

on metal discs 

How do MSCs grow and 

differentiate down the 

osteogenic lineage when 

cultured on these coatings? 

Biomimetic coating enhances 

MSCs growth and 

Electrochemical coatings 

enhance MSCs osteogenic 

differentiation 

Can a perfusion bioreactor 

system be used to evenly 

culture MSCs throughout a 

porous CaP coated metal 

scaffold? 

Yes, a perfusion bioreactor 

system provides an even 

distribution of cells 

throughout the porous 

scaffold 

Can the tissue-engineered 

constructs in the perfusion 

bioreactor system achieve 

better osseointegration and 

therefore increase fixation 

strength than non tissue-

engineered constructs when 

implanted in vivo? 

Tissue-engineered constructs did not significantly increase bone 

formation, implant-bone contact area or implant-bone fixation 

strength. 

In the gap model the tissue-engineered constructs showed 

higher implant-bone contact area and interface fixation strength. 
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