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Abstract 
Optical biopsies interrogate microscopic structure in vivo with a 2mm diameter miniprobe 

placed in contact with the tissue for detection of lesions and assessment of disease 

progression. After detection, instruments are guided to the lesion location for a new optical 

interrogation, or for treatment, or for tissue excision during the same or a future examination. 

As the optical measurement can be considered as a point source of information at the surface 

of the tissue of interest, accurate guidance can be difficult. A method for re-localisation of the 

sampling point is, therefore, needed. 

 The method presented in this thesis has been developed for biopsy site re-localisation 

during a surveillance examination of Barrett’s Oesophagus. The biopsy site, invisible 

macroscopically during conventional endoscopy, is re-localised in the target endoscopic 

image using epipolar lines derived from its locations given by the tip of the miniprobe visible 

in a series of reference endoscopic images. A confidence region can be drawn around the re-

localised biopsy site from its uncertainty that is derived analytically. This thesis also presents 

a method to improve the accuracy of the epipolar lines derived for the biopsy site re-

localisation using an electromagnetic tracking system. 

 Simulations and tests on patient data identified the cases when the analytical 

uncertainty is a good approximation of the confidence region and showed that biopsy sites 

can be re-localised with accuracies better than 1mm. Studies on phantom and on porcine 

excised tissue demonstrated that an electromagnetic tracking system contributes to more 

accurate epipolar lines and re-localised biopsy sites for an endoscope displacement greater 

than 5mm. The re-localisation method can be applied to images acquired during different 

endoscopic examinations. It may also be useful for pulmonary applications. Finally, it can be 

combined with a Magnetic Resonance scanner which can steer cells to the biopsy site for 

tissue treatment. 
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The patient data collection was undertaken with the ethical approval 08/H0808/08 in the 
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Biopsy site coordinates in the 3D endoscope camera coordinate system: P = [Px, Py, Pz]tr 

 

Biopsy site coordinates in the 2D coordinate system of Ii: ( ) ( ) ( )[ ]tr
, iii

yx pp IIIp =   

 

Biopsy site coordinates in the 2D coordinate system of T: p = [px, py] tr 

 

Epipolar line derived in T from the biopsy site ( )iIp  in Ii: ( ) ( ) ( ) ( )[ ]tr
,, iiii

myx elelel IIIIel =  

 

Epipole corresponding to the projection of the centre of the endoscopic camera at position i 

onto the camera image plane acquired for the endoscopic camera at position T: ( )iIe  

 

Fundamental matrix from image Ii to image T: ( )TIF ,i
 

 

9-vector of the fundamental matrix from image Ii to image T: ( )TIf ,i
 

 

Translation of the endoscopic camera from the position camera centre i to the position camera 

centre T: ( )TIt ,i
 

 

Rotation of the endoscopic camera from the position camera centre i to the position camera 

centre T: ( )TIR ,i
 

 

jth feature in Ii: ( ) ( ) ( )[ ]tr
, iii

jyjxj pp IIIp =  

 

Feature in T matching ( )i
j
Ip : pj = [pjx, pjy] tr 
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Epipolar line derived in T from the jth feature ( )i
j
Ip  in Ii: ( ) ( ) ( ) ( )[ ]tr

,, iiii
jmjyjxj elelel IIIIel =  
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j
Ip  in Ii: elj = [eljx, 

eljy, eljm] tr 

 

Number of matched features between Ii and T: L 

 

Algebraic residual for the match ( ( )i
j
Ip , pj) to fit the fundamental matrix ( )TIF ,i

: ( )i
je I  

 

Algebraic residual for the match ( ( )iIp , p) to fit the fundamental matrix ( )TIF ,i
: ( )ie I  

 

Cost or criterion function to minimise for the determination of ( )TIF ,i
: ( )TI ,i

S  
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Cost or criterion function to minimise for the re-localised biopsy site determination in T: C 

 

Number of reference images used for the biopsy site re-localisation: N 
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Partial derivative of the function Φ relative to x at the point (x, y) = (x0, y0): 
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0
0

yy
xxx

yxΦ

=
=∂

∂ ,  

 

Rotation component of the rigid-body transformation matrix from the electromagnetic sensor 

coordinate system at position S to the endoscope camera coordinate system at position C: 
C
SM  

 

Rotation component of the rigid-body transformation matrix from the electromagnetic emitter 

coordinate system at position O to the electromagnetic sensor coordinate system at position 

S_Ii: iIS
OM _  

 



 
 
 
 

28 
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S_T: TS
OM _  
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Lucas Kanade tracker: LK 

 

Scale Invariant Feature Transform: SIFT 

 

Least Median of Squares: LMedS 

 

Random SAmple Consensus: RANSAC 

 

Maximum A Posteriori Sample Consensus: MAPSAC 
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Chapter 1 Introduction: The Need for Accurate Re-

localisation of Microscopic Lesions in their Macroscopic 

Context after Detection by Optical Biopsy 
 

1.1 Introduction 

‘Many important diseases arise from and exist within superficial tissue layers. For example, 

epithelial metaplasia, dysplasia, and early cancers may be found in luminal organ mucosa, 

and high-risk coronary atherosclerotic plaques occupy the intima. Finding these lesions can 

be difficult, however, as they are characterized by microscopic features not visible to the eye 

and may be focally and heterogeneously distributed over a large luminal surface area. A 

catheter or endoscope capable of comprehensively conducting microscopy in patients over 

large surface areas and throughout the entire mucosa or intima could provide new 

possibilities for early diagnosis and characterization of these prevalent diseases’ (Yun et al., 

2006). 

Techniques for tissue interrogation in vivo and in situ, termed optical biopsy 

techniques, have been developed over the last few years. They make use of the properties of 

light to detect lesions at the superficial layers of tissue (Wang et al., 2004). These techniques 

have the potential to improve the detection and the localisation of lesions in vivo. However, 

these techniques are considered as a point source of information in the macroscopic context 

of the surface of the tissue of interest. Therefore, there is a need for accurate re-localisation of 

the lesions detected by optical biopsy in the space of the body for guidance of biopsy forceps, 

or surgical instruments, or optical miniprobe to the lesions during the same or a future 

examination or during a surgery. 

This chapter presents a few optical biopsy techniques and reviews the type of 

information that they return. The motivation of this thesis is stated and the contributions are 

listed. Finally, the structure of the thesis is introduced and each chapter is summarised. 

1.2 Background: Detection of lesions starting at the superficial layers 

of tissue by optical biopsy 

Early detection of cancers is the leading application of optical biopsy techniques. A class of 

cancers is characterised by malignant surface (skin and epithelium) derived lesions that 
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intrude upon and destroy adjacent tissues. Optical biopsy techniques have the potential to 

follow the progression of cancers at an early stage. 

1.2.1 Development of cancers 

Surface-derived cancers typically follow a development process that starts at the surface of 

tissues and progresses until they reach the deeper layers containing the blood vessels. 

Malignant surface-derived lesions or cancers are characterised by an uncontrolled 

growth and spread of abnormal cells and are the second leading cause of death worldwide. 

Colorectal cancer, for example, is the third most common cancer in men and women in the 

United States (Hsiung et al., 2008). The detection and removal of premalignant polypoid 

lesions during endoscopy can prevent its development. Nevertheless, there is a risk of 

missing these polypoid lesions when they are flat or depressed (Hsiung et al., 2008). There is 

also a high risk that patients with chronic inflammatory bowel disease develop malignancies 

due to undetected lesions (Hsiung et al., 2008). 

These epithelial lesions are typically preceded by a curable, non-invasive stage that 

progresses without symptoms for several years before reaching an invasive stage (Spence and 

Johnston, 2001; Abrat et al., 2006; Ruddon, 2007). The lowest cell layer in the epithelium, 

called basal membrane, is the layer of cells that are dividing to make the skin or mucosa grow 

and renew (Fig. 1-1). Errors in cell division at this layer can lead, for example, to dysplasias. 

A dysplasia is an alteration of the epithelium that may progress to invasive malignancy, but 

that remains confined within the basement membrane of the epithelium. As there are no 

blood vessels in the epithelium, the anomalous cells cannot spread to other parts of the body. 

Thus, it is important to detect the lesions at a very early stage before the cancer breaks 

through the basal membrane to become invasive. 

 Optical biopsy techniques have been developed for early detection of lesions and 

several of them are packaged as miniprobes that interrogate the tissue surfaces in vivo and in 

situ (Fig. 1-1). 

Normal 
surface

Abnormal 
surface

Miniprobe

Epithelium

Basal 
membrane

Blood 
vessels

Invasive 
cancerous cellsDysplasia

 
Fig. 1-1: Development of cancer in the epithelium: dysplasias correspond to abnormal cells that grow 

within the epithelium and that can progress to a cancer. 

Image not displayed for Copyright reasons 



 
 
 
 

31 

1.2.2 In vivo and in situ detection of lesions by optical biopsy 

A large range of optical endoscopic techniques are being investigated for tissue interrogation 

in vivo and in situ. These new techniques employ light to study the morphology or physiology 

of tissues, aiming to define pre-malignancies for treatment before invasion has begun and to 

develop non invasive replacements for traditional histological or cytological analyses for 

pathologies, in particular malignancies (Wang et al., 2004; Lovat et al., 2004). Tissue may be 

interrogated by optical biopsy with a miniprobe of approximately 1mm in diameter. Some of 

these new optical techniques analyse the spectrum of light in the interrogated tissue while 

others return images of the tissue at the cellular level. For most techniques, the miniprobe has 

to be in contact with the tissue for interrogation. 

In vivo fluorescence spectroscopy relies on detecting longer wavelength emissions by 

molecules excited by shorter wavelengths in order to evaluate the presence of structural 

proteins in the tissues (Wagnieres et al., 1998). RAMAN spectroscopy studies local 

vibrational modes associated with chemical functional groups specific to mucosal proteins, 

lipids, and nucleic acids in order to provide information on the chemical content of tissue and 

to differentiate the precancers from other tissues (Mahadevan-Jansen, A., et al., 1998). Elastic 

Scattering Spectroscopy (ESS) studies the backscattering of light in the tissue and is a 

measurement sensitive to the size and packing of dense sub-cellular components (Lovat et al., 

2006). These techniques usually measure the spectrum of a piece of tissue that has an extent 

of 0.5mm x 0.5mm and are called, therefore, point measurements. 

Among the techniques for image acquisitions, Optical Coherence Tomography 

(OCT) derives X-Z section images by scanning an optical beam across the tissue and 

measuring the phase delay and intensity of backscattered light (Fujimoto, 2003). OCT returns 

images with resolutions of the order of 10μm (Wang et al., 2004). Optical Frequency Domain 

Imaging (OFDI) delivers infrared light and collects photons that are backscattered from the 

refractive index inhomogeneities of microscopic structures (Yun et al., 2006). OFDI returns 

images with a three-dimensional resolution of approximately 15μm x 15μm x 10μm and is 

able to image over large tissue areas greater than 25cm2 and depths up to 2mm. Finally, tissue 

imaging at the micrometer resolution is also possible via Fibered Confocal Microscopy 

(FCM), often employing fluorescence (Wang et al., 2007). This technique is based on the 

principles of laser confocal microscopy (Denk et al., 1995) and the system contains a 

miniprobe made up of thousands of optical fibres to guide the laser beam for observations of 

the tissues in vivo. Even if these techniques scan a tissue extent that is usually of the 

micrometer order, recent developed algorithms have made it possible to build a microscopic 
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panorama of a region up to 10cm2 by stitching the microscopic images together (Vercauteren 

et al., 2005, 2006; Yun et al., 2006). 

Currently, the diagnosis of a disease arising from superficial layers of tissue, like 

cancer, typically requires multiple tissue excisions or biopsies from a suspicious area for 

histological analysis. As these optical biopsy techniques return information about the 

structure of tissue at the cellular level or about the presence of chemical constituents, they 

have the potential to improve the detection of malignancy invisible macroscopically, to guide 

the biopsy sampling, and to increase, therefore, the accuracy of the diagnosis of the disease 

(Wang et al., 2004; Meining et al., 2007a; Meining et al., 2007b; Morgner et al., 2007; Pohl 

et al., 2008; Wallace et al., 2009). 

1.3 Examples of information extracted by optical biopsy 

Each optical biopsy technique processes in a specific way information from the light which is 

scattered by the tissue to help make a diagnosis of a disease. Many authors have presented the 

results of the interpretation of information acquired by optical biopsy for specific clinical 

applications. 

1.3.1 Optical biopsy for the study of the spectrum of light after interaction with 

the tissue 

Spectral analyses of the light within the tissue have found applications mainly for the 

diagnosis of cancers in gastroenterology. 

 Wallace et al. (2000) led a study of the classification of tissues in the oesophagus. 

The tissues were classified based on the corresponding spectra measured by ESS. The results 

were compared to those obtained during histopathologic examination by logistic regression 

and cross-validation. The authors demonstrated that dysplasia can be distinguished from 

healthy tissues. Dysplasia could be detected with a sensitivity and specificity of 90% and 

90%. Molckovsky et al. (2003) gave clinical evidence of the potential of Raman spectroscopy 

with an in vivo study for the distinction of polyp types in colon. This technique was shown to 

have 100% sensitivity, 89% specificity, and 95% accuracy. 

 These methods have, therefore, the potential to detect very early changes associated 

with cancer transformation in gastroenterology (Wang et al., 2004). 

1.3.2 Optical biopsy for the study of the morphology of the cells 

The acquisition of microscopic images in vivo and in situ has the potential to bridge the gap 

between non-invasive radiologic techniques that provide wide-field imaging but lack 
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sufficient resolution for cellular diagnosis and point-sampling approaches such as excisional 

biopsy (Yun et al., 2006). Many studies have shown that a simple observation of the cellular 

structure in vivo and in situ may help detect lesions (Yun et al., 2006; Evans et al., 2006; 

Thiberville et al., 2007; Morgner et al., 2007; Meining et al., 2007c; Mielhke et al., 2007; 

Becker et al., 2007; Meining et al., 2008). 

Yun et al. (2006) have developed an imaging technology termed OFDI that returns 

cross-sectional images at the cellular level over large surface areas. They tested their 

technology on 2 pig oesophagi and acquired large volumes of microscopic images in a 

4.5cm-long oesophagus in 5 to 8 minutes. The volumetric renderings depicted the anatomy of 

the oesophagus and allowed the visualisation of the vascular network supplying the 

oesophagus. The authors suggested that this technology could be used to identify cancers in 

the oesophagus. Moreover, Yun et al. (2006) tested their technology on long segments of 

coronary arteries and showed that lipid-rich plaques responsible of disease in the arteries 

could be detected before rupture. Evans et al. (2006) focused on OCT and showed with 

comparisons of histologic observations and OCT images that OCT has the potential to help 

follow the progression stages of oesophageal cancers (Fig. 1-2). 

Thiberville et al. (2007) have analysed the microscopic autofluorescence structure of 

normal and pathological mucosae using FCM in combination with bronchoscopy. Ex vivo and 

in vivo experiments have shown that autofluorescence mainly originates from the elastin 

component of the basal membrane. Thiberville et al. (2007) have also shown that pre-invasive 

lesions modify the fibered network in the basement membrane and have concluded that 

cancer can be diagnosed when there is a disorganised fibered network. 

a) c)

b) d)

500µm 500µm

500µm 500µm

 
Fig. 1-2: Example of an observation of the oesophageal tissue by OCT and comparison with histologic 

images: a) corresponds to healthy tissue and shows a regular glandular pattern; b) is the observation of 

the same piece of tissue by histopathology; c) shows large and irregular glands corresponding to 

lesions (indicated with the arrows); d) is the observation of the same piece of tissue by histopathology. 
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b)a)  
Fig. 1-3: Example of a) an observation by FCM of the oesophageal tissue stained with cresyl violet and 

b) comparison of the images with microscopic images acquired by histopathology: FCM shows 

enlarged pits that characterise lesions in the oesophagus. These pits are similar to those observed by 

histopathology. 

 

More generally, several authors have demonstrated that an observation with FCM 

returns cell structures and patterns similar to those observed by conventional histology and 

that FCM has the potential to improve the diagnosis of a disease during endoscopic 

procedures (Morgner et al., 2007; Meining et al., 2007c; Mielhke et al., 2007; Becker et al., 

2007; Meining et al., 2008). Morgner et al. (2007) have shown that FCM improves the 

accuracy of the detection of lesions in patients suspected for gastric lymphoma. Meining et al. 

(2007c) could find similarities in the cell patterns between an observation of the oesophagus 

tissue by FCM and the excised tissue by histopathology (Fig. 1-3). Mielhke et al. (2007) have 

shown that a combination of FCM with advanced endoscopes which highlight the vessels in 

the acquired video images can improve the endoscopic detection of abnormal proliferation of 

cells or neoplasia in Barrett’s Oesophagus. Meining et al. (2008) have shown that FCM 

contributes to a better detection of neoplasia in vivo in the biliary tract. Finally, Becker et al. 

(2007) have shown that the mosaicing of the microscopic images acquired with FCM can be 

used to improve the resolution of the images and the accuracy of the diagnoses during 

colonoscopies. 

1.3.3 Detection of lesions based on functional imaging 

Some of the techniques for acquisition of images in vivo like FCM acquire images in real 

time. Thus, cell migrations and other dynamic processes can be followed by leaving the 

miniprobe at a point position of the tissue. 

Al-Gubory et al. (2006) have observed the expression of the Green Fluorescent 

Protein (GFP) and its transfers with FCM. They used rabbits expressing the enhanced GFP 

for an in vivo observation of the gene and non-transgenic female rabbits mated with 

transgenic males to visualise the protein expression in extra-foetal membranes and the 

placenta. As FCM allowed observations of the GFP expression in the tissues, Al-Gubory et 

al. (2006) concluded that this technology has the potential to study biological processes in the 

natural physiological environment of living animals. 
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Fig. 1-4: Uptake of the fluorescein over time in colon during an optical biopsy with in vivo FCM: 

fluorescein moves from the lumen of the crypt to the lamina propria mucosae which is the thin layer of 

loose connective tissue which lies beneath the epithelium. The fluorescein accumulates into focused 

points of fluorescence termed vesicles. The time of the uptake of fluorescein in the lamina propria may 

be an indicator of abnormal tissues. 

 

Wang et al. (2007) have studied the movement of fluorescein from the tissue crypts 

to the lamina propria surrounding the crypts in colon (Fig. 1-4). The crypt is a pit that extends 

below the surface of the tissue and that renews the lining of the intestine. Fluorescein is a 

fluorophore which enables structures to be observed by FCM. Wang et al. (2007) have shown 

that for a time less than 5 seconds, fluorescein passed through normal epithelium and 

accumulated into lamina propria, while the passage time was much longer for abnormal 

tissue. Therefore, the contrast ratio between the mean intensity from the lamina propria to 

that of a crypt at a time less than 5 seconds was a good discriminator for the detection of 

abnormal tissues. The contrast value decreased when the tissue presented abnormalities. 

Thus, a combination of this time with the contrast can be used to distinguish normal from 

lesional mucosae with FCM. 

Hsiung et al. (2008) have synthesized a peptide conjugated fluorescein stain that 

bound strongly to colonic dysplasia. The migration of this peptide to the dysplasia could be 

observed by FCM. The benefit of this method is that the specificity of the conjugated peptide 

highlights only abnormal tissue. Thus, Hsiung et al. (2008) have shown that there was a 

difference in contrast between normal and abnormal crypts in colon. 

 Finally, Burstin et al. (2008) have observed the shapes of cells and molecular 

processes in pancreatic cancer by FCM and have concluded that this technique can improve 

the diagnosis of malignancies. 

Image not displayed for Copyright 
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1.4 Motivation 

Microscopic lesions located in the superficial layers of tissue may be detected in vivo and in 

situ by optical biopsy techniques. These lesions may, for example, be in the gastrointestinal, 

respiratory, or genitourinary tracts. Optical biopsy techniques are typically point 

measurements of a 0.5mm x 0.5mm tissue extent. They provide all sorts of information at the 

cellular level, like the density of the cells, their chemical constituents, their shape, or their 

functionality. It may be necessary to re-localise these microscopic lesions in their 

macroscopic context for example within the organ of interest in order to guide forceps for 

tissue excision or other surgical tools for tissue treatment. A method for such a re-localisation 

needs developing. 

1.4.1 Extensions of the field of view of microscopic images 

Optical biopsy techniques have the potential to return images of cells which have a diameter 

of approximately 10μm. The image dimensions are typically 500μm x 500μm. Vercauteren et 

al. (2006 and 2008) and Yun et al. (2006) addressed the issue of finding these cells again 

after a first observation. To solve this problem, they developed methods to build up an entire 

panorama of microscopic images. Yun et al. (2006) developed an optical biopsy technique, 

OFDI, for the reconstruction of the volume of microscopic structures of organs (Fig. 1-5 a)). 

Their method allowed, for example, for the reconstruction of a segment of 4.5cm of a pig 

oesophagus and a segment of 60mm of a pig artery. Vercauteren et al. (2006) suggested a 

method for the construction of a 2D mosaic from a set of successive microscopic images 

acquired by FCM (Fig. 1-5 b)). 

Such panoramas give a wider Field Of View (FOV) of the scanned tissue and have 

the advantage of indicating the location of a cell with regard to the other cells. During clinical 

practice, the operator can use the panorama which is updated in real-time to provide 

assistance when the operator moves the miniprobe and to observe again the cells of interest. 

Optical biopsy techniques have the potential to improve the detection and localisation 

of lesions and guide surgical instruments towards these lesions for tissue sampling or 

treatment during the same or a future examination. Methods for reconstruction of mosaics or 

volumes of microscopic images as developed by Vercauteren et al. (2006 and 2008) and Yun 

et al. (2006) are limited to the real-time guidance of the miniprobe and do not allow for the 

guidance of other instruments to the lesions. These two authors mentioned, therefore, that 

these microscopic images or these extensions of FOV have to be placed in their macroscopic 

context, for example, in the volume of the organ. 
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a) b)
 

Fig. 1-5: Reconstructions of a larger field of view of microscopic images: a) images acquired by OFDI 

are stitched together in 3D in order to derive an entire volume of the scanned organ; b) images 

acquired by FCM are stitched together in order to derive a 2D mosaic. 

 

1.4.2 Need for accurate re-localisation of microscopic lesions detected by optical 

biopsy in the macroscopic space of the organ of interest 

Optical biopsy techniques can be considered as a point source of information within the 

conventional 3D medical image and can return a spectrum of light or an image of the cells at 

the microscopic resolution. For image-based techniques, the FOV can be extended in order to 

localise microscopic lesions within the whole scanned tissue. However, once the lesions have 

been detected at the tissue surface, they need to be treated directly or during a future 

examination. 

 Section 1.3 Examples of information extracted by optical biopsy’ concluded that 

optical biopsies are mainly used for in vivo tissue classification in order to detect and localise 

lesions at an early stage, for example, in the oesophagus (Lovat et al., 2004; Meining et al., 

2007c; Pohl et al., 2008), in the colon (Molckovsky et al., 2003; Dahr et al., 2006), or in the 

lung (Colt et al., 2010; Thiberville and Salaun, 2010). Optical biopsies have the potential to 

decide when a physical biopsy is needed, but their locations need to be identified in the space 

of the organ of interest for forceps guidance or for surgical instrument guidance for tissue 

excision, for example polyp removal, during the same examination (Wang et al., 2004; 

Meining et al., 2007c; Morgner et al., 2007; Pohl et al., 2008; Wallace et al., 2009). 

 After a first examination during which biopsy sites were detected by optical biopsy, 

physical biopsies are analysed by histopathology in order to make the diagnosis. In case the 

diagnosis of a disease is positive, the tissue extent from which the physical biopsy was taken 

can be treated or entirely removed by surgery weeks after the first examination (Botoman et 

al., 1994; British Society of Gastroenterology, 2005). There is, therefore, a need for re-

localisation of the lesions detected by optical biopsy for the guidance of either surgical 

instruments or of treating drugs towards to the lesions during a future examination or surgery. 

 Finally, patients who have been diagnosed with a disease after a first examination 

and afer histopathology may enter a surveillance examination process in order to follow the 

progress of the lesions (British Society of Gastroenterology, 2005). In the oesophagus, for 
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example, such a process follows up the persistence, regression, or progression of dysplasia. 

This process requires repetition of endoscopy examinations at regular time intervals over 

years. During future examinations, it may be useful to perform optical biopsies and to take 

physical biopsies at the same location as those which were done during a previous 

examination and which confirmed the diagnosis of a disease. Thus, there is a need for re-

localisation of the lesions in the space of the organ during future examinations for guidance 

of an optical miniprobe. 

 After an optical biopsy performed during a first examination, the detected lesions 

have to be re-localised in their macroscopic context in order to perform: 

− physical biopsies 

− or tissue removal 

− or tissue treatment 

during the same examination, during a future examination, or during surgery. 

1.5 Statement of contribution 

This thesis presents a method to re-localise lesions in their macroscopic context. It focuses on 

the re-localisation of biopsy sites in endoscopic images during the same examination for 

instrument guidance towards the sites detected by optical biopsy. Instruments can be forceps, 

or surgical instruments for tissue removal, or the optical miniprobe for a new observation of 

the tissue, or any other instrument for tissue treatment. In this thesis, images acquired during 

a surveillance examination of Barrett’s Oesophagus (BO) are used to test the re-localisation 

method. Nevertheless, this method intends to be applied to any other endoscopy, especially 

for colonoscopic or pulmonary examinations. This thesis made three main contributions: 

− The first contribution is presented in Chapter 5 ‘Re-localisation of Biopsy Sites 

during Endoscopy Examinations’. Given the location of the biopsy site in reference 

endoscopic images, the re-localised biopsy site is computed in a future target 

endoscopic image using the epipolar geometries formed between the target image and 

each reference image. The locus of the possible re-localised biopsy sites can be found 

using the known location of the biopsy site in each reference image and the 

corresponding epipolar geometry. The re-localised biopsy site is computed at the 

intersection of the loci. The method for the re-localisation using two reference images 

and a target image was found with the help of Dr. Mingxing Hu. This method has the 

advantage of using endoscopic images only while many systems for guidance of 

instruments to a lesion made use of a 3D reconstruction of the organ derived from 

pre-operative Computed Tomography or Magnetic Resonance images (Helferty et al., 
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2007; Mori et al., 2005-2008). Furthermore, this method represents a contribution to 

the computer vision field since it solves the point tracking problem in video images 

of anatomical regions where traditional camera and point tracking methods fail. 

− The re-localisation method returns a point corresponding to the re-localised biopsy 

site in the target image determined with uncertainty. In practice, the endoscopist may 

need the display of a confidence region around the re-localised biopsy site for 

instrument guidance. The second contribution of this thesis presented in Chapter 6 

‘Uncertainty of the Re-localised Biopsy Site’ is the analytical computation of this 

confidence region. This computation propagates the error of the estimations of the 

epipolar geometries to the re-localised biopsy site. The implicit function theorem is 

applied for the analytical propagation of the error. This analytical derivation was 

inspired from the computation of the uncertainty of an epipolar geometry presented 

by Csurka et al. (1997) and Zhang (1998), but the authors did not aim to develop the 

derivation for the case of a point computed from a set several epipolar geometries. 

Thus, the analytical computation of the uncertainty of a point computed from a set of 

epipolar lines represents a contribution of this thesis. 

− During endoscopy, especially gastroscopies, the camera may move quickly and 

return blurred images or air/water bubbles may obstruct the camera Field Of View 

(FOV). For these critical cases, the re-localisation method is combined with an 

ElectroMagnetic (EM) tracking system in order to recover accurate epipolar 

geometries and, therefore, accurate re-localised biopsy sites. This last contribution is 

presented in Chapter 8 ‘Combination of an Electromagnetic Tracking System with 

the Re-Localisation Method’. Previous work, such as the study of Mori et al. (2005), 

has been limited to a demonstration of the contribution of an EM tracking system to 

the accuracy of registration algorithms for pulmonary applications, and the authors 

did not aim to demonstrate that the EM tracking system can also help improve the 

accuracy of the computed epipolar geometry. 

1.6 Structure of the thesis 

Cancers as well as other important diseases start at the superficial layers of tissue. Malignant 

cells grow in the epithelium before breaking the basal membrane to reach the blood vessels 

and spreading to other regions of the body. The process of development of cancers and other 

surface-derived diseases is typically characterised by microscopic features invisible 

macroscopically. This first chapter reviewed the potential contribution of optical biopsy 

techniques to the detection of these microscopic processes in vivo and to early diagnosis of 



 
 
 
 

40 

the corresponding diseases. These techniques are especially useful for the detection and 

localisation of early cancers in gastroenterology and for the guidance of tissue sampling or 

biopsies for analysis by histopathology. 

 Optical biopsy techniques are typically point-sampling measurements. They 

interrogate a 0.5mm x 0.5mm tissue extent and make use of the properties of light to return 

information which can be an image of the microscopic structures or the spectrum of the 

returned light for point analysis (Wang et al., 2004). The clinician, for example, may want to 

go back to the location of the lesion detected by optical biopsy for re-interrogation of the 

tissue or for taking a biopsy or for treatment during the same or a future examination. 

Therefore, a method for the re-localisation of the detected lesions in the macroscopic space of 

the organ needs developing. 

 As optical biopsy techniques are novel technologies, especially Fibered Confocal 

Microscopy which has been the technique of interest for this thesis, a study of this technique 

was done in Chapter 2 ‘Initial Pilot Work to Assess the In Vivo Use of the Fibered Confocal 

Microscope and its Use in Combination with MRI’. It aims to emphasize the importance for 

accurate re-localisation of biopsy sites. It also investigates through the results of initial 

experiments the potential application of optical biopsy techniques for tissue treatment in 

combination with a Magnetic Resonance (MR) scanner. 

 Chapter 3 ‘Literature Review: Possible Approaches for Biopsy Site Re-localisation 

and Application for the Surveillance Examination of Barrett’s Oesophagus’ presents and 

discusses possible routes for re-localising a lesion in a macroscopic image. Three main routes 

were identified. The first route is a combination of endoscopic images with a pre-operative 

Computed Tomography (CT) or Magnetic Resonance (MR) image and with positional 

sensors such as an EM tracking system. The second and third routes make use of respectively 

endoscopic images only and interventional MR images only. The choice of the route, 

however, depends on the clinical application since it constrains the use of imaging systems 

and other sources of information. As discussed in this current chapter, the optical biopsy 

techniques are mainly used clinically in the oesophagus for the detection of dysplasias 

invisible in the macroscopic endoscopic images. Thus, the clinical application discussed in 

this thesis is in gastroenterology and the method was developed for the re-localisation of 

biopsy sites in endoscopic images only acquired during the same examination. The method 

makes use of epipolar geometry which returns information about the rotations and 

translations of a camera from one pose to another (Hartley and Zisserman, 2004). 

 The epipolar geometry formed by a pair of reference images where the biopsy site 

location is known and a target image where the re-localised biopsy site needs to be computed 



 
 
 
 

41 

is described algebraically by a mapping which transforms the biopsy site in the reference 

image as a line termed the epipolar line in the target image. This line indicates the locus of 

the possible re-localised biopsy sites. Chapter 4 ‘Feature Analysis in Endoscopic Images and 

Endoscope Camera Movement’ discusses the algorithms for accurate computation of an 

epipolar line. 

 At least two reference images are necessary for the biopsy site re-localisation with 

epipolar lines. Methods for re-localisations with N ≥ 2 epipolar lines are presented in Chapter 

5 ‘Re-localisation of Biopsy Sites during Endoscopy Examinations’. Results of experiments 

by simulations and with real data discuss the influence of the noise in the endoscopic images, 

of the accuracy of the epipolar lines, and of the angle the lines subtend on the re-localised 

biopsy site. 

 A confidence region can be drawn in the endoscopic images around the re-localised 

biopsy site using its uncertainty or covariance matrix. Chapter 6 ‘Uncertainty of the Re-

localised Biopsy Site’ demonstrates that this matrix can be computed experimentally which 

requires a lot of estimations of the re-localised biopsy site in one target image or analytically 

which requires one estimation only but which returns an approximation of the covariance 

matrix. The two computations were compared by simulations and with real patient data. 

 Chapter 7 ‘Test of the Re-localisation Methods on Phantom and Patient Data’ 

presents the results of the biopsy site re-localisations on data acquired on a phantom and 

patients undergoing an endoscopic examination for the surveillance of Barrett’s Oesophagus. 

 The computation of the epipolar geometry is based on the detection of features in the 

reference image and in the target image and on their matching. Features can be detected in the 

reference image and tracked through the consecutive images until the target image using the 

Lucas Kanade (LK) tracker. This returns matched features. Another method is the Scale 

Invariant Feature Transform (SIFT). Features are detected independently in the images and 

matched using the similarity of their gradient neighbourhoods. As features correspond to 

vessel intersections, their neighbourhoods look similar and the matching of the SIFT features 

may return a lot of wrong matches. These wrong matches affect the accuracy of the epipolar 

geometry, of the epipolar lines, and of the re-localised biopsy site. Thus, the LK tracker is 

preferred since it preserves the spatial arrangement of features by tracking them through 

consecutive endoscopic images. For some endoscopic sequences in the oesophagus, images 

can be blurred due to a quick camera movement or air/water bubbles may obstruct the FOV 

of the endoscope camera. In these critical cases, SIFT features are detected and matched 

instead of LK features. Chapter 8 ‘Combination of an Electromagnetic Tracking System with 

the Re-Localisation Method’ studies the contribution of an EM tracking system to improve 
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the matching process of SIFT features and to increase the proportion of good matches. The 

EM tracking system constrains spatially the feature matching. This chapter presents also the 

results of the method on excised tracheas and bronchus from pigs. 

 Chapter 9 ‘Conclusion and Future Work’ presents extensions and new applications of 

the re-localisation method developed earlier in the thesis. The implementation of the re-

localisation method in real-time is discussed. Approaches for optical biopsy miniprobe 

segmentation in video images and the implementation of feature detection and matching 

techniques using a graphical processing unit (GPUs) are presented. Preliminary results 

present also the biopsy site re-localisation given reference endoscopic images acquired during 

a first examination and target images acquired during a second examination a few months 

later. A workflow for the use of the re-localisation method in the lungs is introduced. Finally, 

a system that would combine cell delivery using the magnetic forces from an MR scanner 

with biopsy site re-localisation in endoscopic images is described. 
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Chapter 2 Initial Pilot Work to Assess the In Vivo Use of the 

Fibered Confocal Microscope and its Use in Combination 

with MRI 
 

2.1 Introduction 

Optical biopsy techniques can be used for the detection of lesions at an early stage. Once 

detected, these lesions need to be re-localised in their macroscopic context. This chapter 

introduces a series of preliminary experiments that motivate the importance of the re-

localisation. A first part focuses on the use of the fibered confocal microscope that was the 

optical biopsy technique of interest for this thesis and on its ability to identify cells of 

dimensions of the order of 10μm. The second part demonstrates that the fibered confocal 

microscope can be used to monitor the delivery of cells of dimensions of 10μm towards a site 

of interest in an organ, for example. If labelled magnetically, these cells can be delivered 

using the gradient forces derived from a Magnetic Resonance (MR) scanner coil. Such an 

application motivates the need for the development of a method to localise the tip of the 

miniprobe of the fibered confocal microscope in an MR scanner. 

2.2 Fibered Confocal Microscopy 

2.2.1 Confocal microscopy 

Confocal microscopy is an imaging technique for the acquisition of thin optical sections out 

of thick fluorescent specimens (Denk et al., 1995). It allows reconstructions of 3D views of 

thick tissue at very high resolutions by scanning a specimen point by point along its surface at 

different depths. Laser is usually chosen as the light source as it produces an intense 

monochromatic light. It is common to use the fluorescence imaging mode in confocal 

microscopy. A photon emitted by the laser beam excites the tissue molecules stained with 

fluorophores which triggers the emission of another photon at a different wavelength. 

 The process of imaging the tissue consists of scanning it point by point. The laser is 

focused by an objective lens into a small focal volume on the tissue in the focal plane (Fig. 

2-1 a)). Fluorescence light is emitted by the illuminated point and is mixed with the reflected 

light of the laser beam. Both lights are uncorrelated and have different spectra. Therefore, a 

beam splitter is placed in the system in order to reflect the fluorescent light only towards the 
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detector. An aperture in front of the detector lets the fluorescence light pass through only if it 

comes from a focused point of the specimen (Fig. 2-1 b)). Light that comes from an out-of-

focus point is obstructed (Fig. 2-1 c) and d)). The signal measured at the detector is 

proportional to the fluorophore concentration and corresponds to only one pixel in the 

reconstructed image. Thus, a complete image is obtained by scanning the tissue in the lateral 

plane for 2D imaging and in the axial plane for 3D imaging. 

 

Objective lens

Objective lens

Objective lens

Objective lens

 
Fig. 2-1: A confocal microscope: a) the laser is focused by an objective lens into a small focal volume 

on the tissue in the focal plane. The fluorescence light from a focused point in the focal plane b) is 

reflected with the beam splitter and passes through the aperture of the detector. Fluorescence light from 

a point which is not focused, c) and d), is blocked by the aperture: out-of-focus light is, therefore, 

obstructed. 
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2.2.2 Fibered confocal microscopy 

Optical fibres can replace the objective lens of a conventional confocal microscope for 

remote laser delivery in order to perform optical biopsies. Mauna Kea Technologies, Paris, 

developed such a system called Cellvizio®, a fibered confocal microscope that is usually 

used in combination with a widefield endoscope. This system has been designed such that 

individual cells can be distinguished; therefore, the resolution of the system must not exceed 

a few microns (Vercauteren, 2008). 

 The fibered confocal microscope is made up of a Laser Scanning Unit (LSU) which 

generates a laser beam at a wavelength of 488nm (Fig. 2-2 a)). The laser passes through each 

individual fibre of a miniprobe which is made up of tens of thousands of optical fibres (Fig. 

2-2 a) and b)). The laser beam from an optical fibre hits the biological tissue and fluorescent 

light is emitted as well as a reflected laser beam. Only the mixture of lights coming from the 

focal point passes through the optical fibre which has, therefore, the role of an aperture as 

well. A dichroic filter filters wavelengths between 505nm and 700nm to keep only the 

fluorescence light and send it to the detector. In order to build a whole image of the tissue 

with typical dimensions of 500µm x 500µm, the laser beam is oriented to each individual 

optical fibre with a set of two mirrors which rotate in two directions. 

 The raw image at the detector shows a strong honeycomb pattern, which makes it 

hard to read by the user. A calibration step segments first the fibres to return a mapping 

between the fibres and the sampling points of the raw image. Each sampling point 

corresponds to a centre of a fibre. Secondly, the calibration step helps recover the background 

signal Ib, and the signal for each fibre Is, and estimate the true signal Irestored for each fibre (Le 

Goualher et al., 2004, and Perchant et al., 2005). The final image is reconstructed on a regular 

grid by Gaussian weighting (Vercauteren et al., 2006). 

a) b)
 

Fig. 2-2: The fibered confocal microscope by Mauna Kea Technologies, Paris: a) the system is made 

up of a laser scanning unit and a miniprobe formed by tens of thousands of optical fibres; b) a laser 

beam is sent to each individual optical fibre of the miniprobe for imaging one point of the fluorescent 

tissue. A raw image of 500µm x 500µm is reconstructed at the detector. 

Image not displayed for Copyright reasons 
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Fig. 2-3: a) Structure of the carotid artery: the thickness from the collagen layer to the endothelium 

layer is approximately 70µm, b) whole tissue reconstruction after the scanning with the conventional 

confocal microscope. The artery was scanned by moving the microscope objective lens. The mosaic 

shows a series of connected patches. Each patch has been acquired for one position of the microscope 

objective lens. The reconstructed mosaic is a maximum intensity projection of the slices acquired at 

each depth of the tissue for each position of the objective lens. The bright green points correspond to 

macrophages labelled with Invitrogen stain. A repetitive pattern is visible at the junction of the 

patches: this is due to distortions from the objective lens (Courtesy Manfred Junemann Ramirez). 

 

2.2.3 Experiment: Level of details reached by the fibered confocal microscope 

Fibered Confocal Microscopy (FCM) returns images with typical dimensions of 500µm x 

500µm. The purpose of this experiment was to determine the detail level that can be observed 

in the images. To this aim, observations of a tissue by FCM and by conventional confocal 

microscopy were compared. This experiment was done as part of a collaborative work with 

Manfred Junemann Ramirez at University College London who prepared the experiment and 

who ran the observation with the conventional confocal microscope. 

2.2.3.1 Materials and method 

For this experiment, a carotid artery of a rat was damaged in vivo using a balloon catheter. 

The damage provoked an agglomeration of the macrophages around it. A fluorescent stain 

(Invitrogen) was injected into the artery of the rat to bind to the macrophages. This stain 

emits fluorescence for a 488nm excitation. Once the injection was done, the artery was taken 

away for microscopic scanning with both a conventional confocal microscope and a fibered 

confocal microscope. 

 The scanning with the conventional confocal microscope returned images of the 

tissue at a depth of 45μm from the endothelial surface to the inner tissue (the tissue was 

approximately 70μm thick). The artery structure is presented in Fig. 2-3 a). The carotid artery 
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images had a resolution of 1.46μm/pixel and can be presented by the maximum intensity 

projection of a series of slices acquired at various depths into the tissue for each position of 

the microscope objective lens, stitched together to create a whole mosaic image of the tissue 

as shown in Fig. 2-3 b). This mosaic could be used as a map for the scanning during FCM. 

The macrophages appear as points with the brightest intensities in the mosaic (Fig. 2-3 b)). A 

650μm diameter miniprobe was used for the scanning with a fibered confocal microscope and 

images with a pixel resolution of 0.83μm/pixel were obtained. 

 Once the corresponding images were acquired, they were visually matched to the 

same region in the mosaic. The matching process was based on the recognition of the 

macrophages arrangement in the microscopic image acquired during FCM and the 

corresponding mosaic patch coming from conventional confocal microscopy. 

2.2.3.2 Results and discussion 

 
Fig. 2-4: Ex vivo interrogation of the cellular processes involved in the healing in a rat carotid artery 

wound healing model by conventional confocal fluorescence microscopy (left) and by FCM (right) 

(Courtesy for images acquired by conventional confocal microscopy Manfred Junemann Ramirez). 

The inside walls of the carotid artery were damaged in vivo. A fluorochrome was administered after 

injury to provide macrophage specific fluorescence staining. The macrophages moved to the damaged 

regions. The artery was excised and scanned under a conventional confocal microscope and a year later 

by FCM. Both imaging techniques showed similar groups of macrophages (bright green or white dots 

in the images). The image acquired by conventional confocal microscopy was a z-projection of a xyz 

tile scan stack. The image resolution was 1.46µm/pixel and the dimensions of one acquired image were 

512 pixels x 512 pixels. The resolution of the FCM image was 0.83µm/pixel and its dimensions were 

336 pixels x 480 pixels. 
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The carotid artery was scanned by FCM one year after the scanning with the conventional 

confocal microscope. The artery was unfolded, hydrated and scanned from one extremity to 

the other. The dimensions of the FCM images were 336pixels x 480pixels with a pixel 

resolution of 0.83μm/pixel. Some microscopic images showed bright points, whose 

dimensions were about 10μm and whose arrangement was similar to that of the bright points 

(macrophages) in the mosaic (Fig. 2-4). The shape of the bright points helped also recognise 

the corresponding mosaic patch. 

 This study showed that the scanning with a fibered confocal microscope allows 

observations of cells with a diameter of approximately 10μm. Many macrophages could not, 

however, be seen in the images acquired by FCM. The macrophages had been scanned a first 

time with a conventional confocal microscope. The interaction of the laser beam with the 

fluorescent region had already induced a loss of fluorescence. Moreover, the scanning of the 

tissue with the fibered confocal microscope was performed a year later. Thus, macrophages 

could have lost their fluorescence in the mean time. Finally, they were scanned several times 

with the miniprobe, which induced the same interaction effect as that with the conventional 

confocal microscope. A case was observed during the scanning with the fibered confocal 

microscope and showed that a few macrophages lost their fluorescence while the miniprobe 

was sweeping the corresponding region (Fig. 2-5). Thus, the lack of fluorescence seemed to 

be the likeliest reason for not observing macrophages. 

 In conclusion, an observation of fluorescent structures by FCM returns similar results 

as an observation by conventional confocal microscopy. Cells with a diameter of the order of 

10μm are identifiable by FCM. Thus, the accuracy of the re-localisation technique has to be 

of the order of 10μm. The next part presents a potential application of FCM and of the re-

localisation of a biopsy site. 

 

a) b)

c) d)

165μm 165μm

165μm
165μm

 
Fig. 2-5: Fluorescence loss of macrophages during the scanning with the fibered confocal microscope 

(macrophages are surrounded by a red ring from a) to b)). 
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2.3 Potential combination with Magnetic Resonance Imaging for the 

monitoring of the delivery of magnetic cells towards a site of interest 

2.3.1 Delivery of cells using a magnetic resonance imaging system 

A collaborative work with Riegler et al. (2010) demonstrated that cell delivery to specific 

sites for tissue treatment could be done using Magnetic Resonance Targeting (MRT). This 

delivery could be monitored using FCM. Johannes Riegler performed the MRT part of the 

study. My contribution was to help set up the experiment with the fibered confocal 

microscope and run the image acquisition. This section summarises the experiment. 

2.3.1.1 Materials and method 

Johannes Riegler’s idea consisted of using the force generated from the MR imaging coils to 

form aggregates of magnetically labelled cells and to steer them. His aim was to demonstrate 

with an experiment combining Magnetic Resonance Imaging (MRI) and FCM that when 

injected through a tube placed in the permanent magnetic field of the MR scanner: 

− The cells tend to form aggregates due to the dipole-dipole interactions. 

− The cells tend to move along one direction which changes when a gradient is applied. 

This experiment and the results were published in Riegler et al. (2011). 

 This principle was demonstrated using a phantom made up of pipes whose internal 

diameter was 0.8mm designed by Johannes Riegler (Fig. 2-6 a)). Cells had a diameter of 

10μm and were magnetically labelled. Given that their diameter is similar to that of the 

macrophages studied in the previous section ‘2.2.3 Experiment: Level of details reached by 

the fibered confocal microscope’, these cells could be observed by FCM after staining with a 

fluorophore. The miniprobe of the fibered confocal microscope was, therefore, placed in the 

phantom pipe and held tightly in order to acquire microscopic images at this position only 

(Fig. 2-6 a)). The miniprobe was an MR-compatible probe of 7m long and 650μm diameter. 

A 7m miniprobe was used in order to leave the fibered confocal microscope outside the MR 

scanner room. The whole setup was introduced into the isocentre of a 9.4T MR scanner 

(VNMRS, Varian, Inc. Palo Alto, CA) equipped with a bore of 60mm diameter (Fig. 2-6 b)). 

Microscopic images were acquired with the fibered confocal microscope. Cells were in a 

serum solution and were flushed into the phantom pipe using an infusion pump in order to 

give them an initial speed. Control microscopic images were acquired when the setup was 

outside the MR scanner. When the setup was inside the scanner, the cells were flushed at 

different speeds to assess the impact of the flow velocity on the size of the aggregates. 

Finally, the gradient was applied for short periods in order to change the direction of the cells. 
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Fig. 2-6: Experimental setup: a) the phantom was made up of a pipe of internal diameter 0.8mm. The 

FCM miniprobe was placed in the pipe for the acquisition of microscopic images; b) the whole setup 

was placed into the bore of a 9.4T MR scanner of diameter 60mm. 

2.3.1.2 Results and discussion 

The control experiment showed that in absence of magnetic field, the cells did not aggregate: 

Fig. 2-7 a) shows this effect. When the setup was placed into the MR scanner, cells tended to 

aggregate. For an injection speed of 1cm per second, aggregates contained 20 to 80 cells (Fig. 

2-7 b)). For an injection speed of 3cm per second, aggregates contained 2 to 10 cells (Fig. 2-7 

c)). Besides, the results of the experiment tended to show that cells followed a main direction 

when they were flushed in the permanent magnetic field of the MR scanner (Fig. 2-8). The 

additional magnetic force had the expected effect of changing the direction of the cells (Fig. 

2-9). 

 This experiment proved that FCM can be used to control the delivery of cells at a 

specific location when they are labelled magnetically and stained with a fluorophore. The 

results of this experiment and the application of cell delivery control motivated the need for 

the development of a method to localise the tip of the FCM miniprobe in an MR scanner. 

 

a) b) c)
 

Fig. 2-7: Cell aggregation: a) control image: the cells (bright points) did not aggregate since the setup 

was not inserted into the MR scanner; b) image acquired for an injection speed of 1cm per second: the 

cells aggregated by groups of 20 to 80 cells since the setup was inserted into the MR scanner and the 

flow velocity was low; c) image acquired for an injection speed of 3cm per second: the cells 

aggregated by groups of 2 to 10 cells (identified with the red circles) since the setup was inserted into 

the MR scanner and the flow velocity was high.  
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Fig. 2-8: Results for the microscopic images acquired when the setup was placed into the MR scanner 

without application of a gradient: the magnetic cells (bright points of approximately 10μm diameter) 

were moving along one direction. Images 1, 2, 3, and 4 show the same cell (identified with the red 

circle) in 4 consecutive microscopic images acquired with the fibered confocal microscope. 

 

1 2

3 4

 
Fig. 2-9: Results for the microscopic images acquired when the setup was placed into the MR scanner 

with application of a gradient: the cells moved along a different direction from that obtained when no 

gradient was applied. Images 1, 2, 3, and 4 show the same cell (identified with the red circle) in 4 

consecutive microscopic images acquired with the fibered confocal microscope. 
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2.3.2 Localisation of the fibered confocal microscope miniprobe in high-field 

Magnetic Resonance images 

FCM may be used to observe cells of 10μm diameter and to control the delivery of these cells 

towards a site of interest. These cells can be delivered using the force derived from the MR 

coils. This part aims to introduce a method to localise the tip of the FCM miniprobe within 

the MR scanner. 

2.3.2.1 Materials and method 

An FCM miniprobe of 650μm diameter was used for the experiment. This miniprobe was 

introduced into Agarose–based gel, which behaves like water-based tissue during an MR 

scan. The 9.4T MR scanner (VNMRS, Varian, Inc. Palo Alto, CA) introduced in the previous 

part ‘2.3.1 Delivery of cells using a magnetic resonance imaging system’ was used for this 

experiment. MR images of the setup (miniprobe in the Agarose-based gel) were acquired 

with a Gradient Echo (GE) protocol in axial and coronal views: Time Echo (TE) = 4.6ms and 

Time Relaxation (TR) = 184ms. The voxel resolution was set at 0.156mm/pixel and 1mm 

between two slices for the axial acquisitions. 

 Wang et al. (1996) introduced the classical method to point location in MR and CT 

images. This method was tested partially in this thesis and the precision was assessed (Allain 

et al., 2009b). For the miniprobe tip localisation in the axial images, the centroid of the 

miniprobe in each slice was computed to determine a region where the tip could be located. A 

common Region Of Interest (ROI) was defined for all the slices containing the miniprobe. 

For each slice, the centroid of the ROI was computed based on the equation: 
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where O corresponds to the pixel in the ROI with the maximum pixel intensity, max, G is the 

centroid of the ROI, Aj corresponds to each pixel in the ROI with the pixel intensity Ij, and N 

is the number of pixels in the ROI. This equation means that the pixels with the lowest 

intensities have a greater weight than the pixels corresponding to the background (gel). The 

coordinates of the centroid for each slice were determined in the image coordinate system (in 

mm). The intensity profile over the centroids was computed and the resulting curve should 

help localise the miniprobe tip along the z-axis of the axial image. A linear regression was 

computed afterwards over the centroids of each MR slice containing the tip in order to fit a 

straight line corresponding to the miniprobe. The residuals between the measured centroids 
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and the straight line were estimated and the precision for the miniprobe tip localisation could 

be determined as the standard deviation of the residuals along the x and y axes: 
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where xgi are the x-coordinates (in mm) of the centroid in slice i and xgi0 are the x-coordinates 

of the corresponding position on the straight line. The same computation was done in the y 

direction. 

2.3.2.2 Results 

Nine slices were selected from the axial image and they were separated with an interval of 

1mm. A region of interest (ROI) was defined such that it was the same for all the slices and 

the centroid of the ROI was computed (Fig.  2-10 a)). Its corresponding intensity in the MR 

image was determined as well. Fig.  2-10 b) gives the intensity profile of the centroids along 

the 9 MR slices and shows that the tip of the miniprobe was located between the centroids of 

slices 5 and slices 7, separated with a distance of 2mm. 

 The computed centroids over the 5 slices containing the miniprobe did not produce a 

straight line after connection. Therefore, a linear regression was applied to these centroids in 

order to find an estimation of the miniprobe trajectory (Fig.  2-11 a) and b)). The precision of 

the miniprobe positioning was computed from this trajectory estimation, and the result was an 

error of 31μm and of 14μm in respectively the x and y directions of the MR image and an 

error of approximately 87μm between 2 slices. 

 

a) b)
 

Fig.  2-10: Miniprobe in an axial view of the MR images: a) Centroid for one slice; b) Intensity of each 

centroid along the MR image slices. 
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Fig.  2-11: Precision errors for the computation of the centroids over the 5 MR image slices containing 

the miniprobe: graphs a) and b) show respectively the x and y coordinates of the measured centroids 

and of the fitted straight line. 

 

2.3.3 Tracking of the FCM miniprobe in an MR scanner 

The FCM miniprobe can be used to control the delivery of cells at a site of interest in the 

organ when they are steered with the forces derived from the MR imaging coil. The tip of the 

miniprobe can be localised within an MR image with high precision in order to record the 

location of the site of interest where the delivery takes place. In order to facilitate the 

localisation and tracking of the FCM miniprobe, a marker can be mounted at the tip of the 

miniprobe. Such a marker can be a Gadolinium-based liquid injected into a heat-shrink pipe 

surrounding the miniprobe. Gadolinium is a common marker in MRI to highlight the 

structures of interest (McRobbie et al., 2003). This marker was tested in this thesis. An MR-

compatible FCM miniprobe of 650μm diameter was mounted with this marker and placed 

into the 9.4T MR scanner. Thus, the miniprobe and its marker were placed directly in air. MR 

images were acquired and this marker appeared in white or grey while air appeared in black 
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(Fig. 2-12 a) and b)). In case the miniprobe needs to be used in air and imaged with an MR 

scanner, Gadolinium-based gel can help highlight the miniprobe and the method to localise 

the tip in an MR image could be used. 

 

2.4 Conclusion 

This chapter introduced initial experiments that demonstrated the potential of FCM to return 

images showing structures of 10μm diameter. FCM can, therefore, be used to monitor the 

delivery of cells for tissue treatment, for example. This chapter showed that cell delivery is 

possible using an MR scanner. Thus, there is a potential need for recording the location of the 

FCM miniprobe where the delivery was done in the MR image. A localisation method was 

tested in this chapter and showed that the miniprobe tip could be localised with a precision of 

the order of 10μm in MR images acquired with a 9.4T MR scanner. Although these 

experiments demonstrated a potential interest for a combination of FCM and MRI, the 

remainder of this thesis focuses on the development of a re-localisation method adapted to a 

clinical application, the re-localisation of biopsy sites detected by optical biopsy during the 

surveillance examination of Barrett’s Oesophagus. 

 

a)
air

Gadolinium-
based marker

FCM miniprobe

b)

air

Gadolinium-
based marker

FCM miniprobe

1mm 650μm

 
Fig. 2-12: Visualisation of an FCM miniprobe in an MR image acquired with a 9.4T MR scanner 

(Varian): a) coronal view of the miniprobe mounted with a Gadolinium-based marker and placed in 

air; b) axial view of the miniprobe mounted with a Gadolinium-based marker and placed in air. 
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Chapter 3 Literature Review: Possible Approaches for 

Biopsy Site Re-localisation and Application for the 

Surveillance Examination of Barrett’s Oesophagus 
 

3.1 Introduction 

Lesions detected in vivo and in situ by optical biopsy techniques need to be re-localised on 

the macroscopic surface of the organ in order to go back to their position at a later time with 

surgical instruments for tissue excision or for treatment, for example. As the lesions are 

characterised by microscopic features that may have a size of the order of 10µm, the position 

of the miniprobe has to be recorded ideally with an accuracy of the order of 10µm. The 2mm 

diameter miniprobe is the physical instrument whose position can be tracked in the 

macroscopic surface of the organ and indicates the presence of the lesions. Thus, the re-

localisation problem consists of tracking and recording the position of the miniprobe at the 

macroscopic surface of the organ. 

The choice of a re-localisation strategy may be mainly influenced by the clinical 

application. As the main application of optical biopsy techniques is the early detection of 

cancers in the oesophagus, colon, or lungs, the various methods and systems developed for 

the tracking and guidance of surgical instruments in the macroscopic surface of the organ are 

reviewed in this chapter. Their contribution to the re-localisation problem is also discussed. 

The interventional examinations for the detection of cancers in the oesophagus, colon, and 

lungs typically make use of an endoscope. The optical biopsy miniprobe is passed via the 

working channel of this endoscope. Many systems developed for instrument tracking and 

guidance made use of a 3D pre-operative image in order to extract the geometry of the organ. 

During the interventions, the movement of the surgical instruments or of endoscopes was 

tracked with positional sensors and registered in the pre-operative image. Other methods 

made use of endoscopic images, only, to track the movement and record the positions of the 

instruments. Finally, biopsy site re-localisation at the macroscopic surface of the organ may 

also be useful for tissue treatment by cell delivery. Some results in Chapter 2 demonstrated 

that Magnetic Resonance scanners have the potential to guide cell delivery. As these scanners 

may also be used to acquire images of the oesophagus and colon, a potential strategy for 

optical miniprobe tracking and guidance with Magnetic Resonance scanners are reviewed and 

discussed. 
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 The choice of a re-localisation strategy is a compromise between the clinical 

application which may restrict the range of imaging systems and positional sensors, and the 

accuracy of the methods developed for instrument tracking and guidance to a point of interest 

at the macroscopic surface of the organ for tissue excision or treatment. As presented in 

Chapter 1 ‘Introduction: The Need for Accurate Re-localisation of Microscopic Lesions in 

their Macroscopic Context after Detection by Optical Biopsy’, the re-localisation of lesions is 

particularly useful for biopsy sampling in the colon or in the oesophagus where the biopsy 

sites may be invisible macroscopically. Thus, a re-localisation strategy is presented for such 

applications. It is based on the epipolar geometry formed by the set of endoscopic images. 

This chapter presents a method to recover the epipolar geometry. 

3.2 Re-localising microscopic lesions in their macroscopic context 

Various systems and methods have been developed for the tracking of the position of the tips 

of surgical instruments, catheters, needles, probes, or forceps, and for their guidance at the 

macroscopic surface of the organ during interventions. 

3.2.1 Re-localising lesions within a pre-operative image 

A variety of systems were developed for lesion localisation and instrument guidance during 

interventions with the support of a pre-operative Computed Tomography (CT) or Magnetic 

Resonance (MR) image (Deguchi et al., 2003, 2007; Helferty et al., 2002, 2007; Mori et al., 

2007, 2008). These were mainly developed for pulmonary applications, and make use of 

endoscopes to provide interventional images. During the intervention with these systems, 

lesions could be detected in the endoscopic images and their locations recorded in the 3D pre-

operative image thanks to a registration of the endoscope movement in the pre-operative 

image (Fig. 3-1 a) and b)). The registration could be facilitated using positional sensors 

mounted at the tip of the endoscope. 

 
Fig. 3-1: Use of a virtual scene for the re-localisation of lesions detected during an endoscopic 

examination: a) a real-time bronchoscopic image shows the biopsy needle in contact with the lesion; b) 

the location of the lesion is computed in the virtual scene generated from a 3D pre-operative CT image. 

As the bronchoscopic camera movement is tracked in the virtual scene, this scene can be used to guide 

the bronchoscope and the surgical instruments to the lesion for tissue excision or treatment. 

Image not displayed for 
Copyright reasons 
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 Schwarz et al. (2006) presented a CT-guided electromagnetic navigation system to 

obtain excised tissues in peripheral lung lesions with a catheter mounted with an 

electromagnetic (EM) sensor probe at its tip. This catheter could be passed through the 

working channel of the bronchoscope. The sensor reported the positions of the catheter in the 

3D space and its orientations. A virtual bronchoscopy scene was reconstructed from the pre-

operative CT image. The positions of the catheter given by the EM sensor probe could be 

tracked in the virtual bronchoscopy. However, this system did not take into account the 

respiratory motion that can lead to misregistrations of the movement of the catheter in the 

virtual bronchoscopy. This system guaranteed an accuracy of 5.7mm to reach again a lesion 

that was detected previously. 

 Dey et al. (2002) developed a method to put endoscopic images back to the same 

relative context in the 3D space. A rigid endoscope was tracked in the 3D space with optical 

sensors and registered to a pre-operative MR image of a brain phantom. In practice, a virtual 

scene was reconstructed for visual assistance from the pre-operative image. The optical 

sensors mounted on the phantom and on the endoscope allowed the computation of the 

movement of the endoscope relatively to the phantom. Each acquired endoscopic image was, 

therefore, mapped onto a surface of the brain phantom extracted from the pre-operative 

image. The position of each acquired endoscopic image could be localised in the 3D space 

and in relation to the other endoscopic images. This method had, therefore, the potential to 

help the endoscopist assess the motion that is required to place the endoscope back to a 

previous position. However, this method guaranteed only a 2.4mm accuracy of the mapping 

of the endoscopic images onto the 3D reconstruction of a rigid phantom. 

Miniprobe

Pre-operative CT / MR image
Microscopic 
site position 
in 3D space

Localiser (EM 
tracking system)

 
Fig. 3-2: First approach for lesion re-localisation: the movement of the miniprobe within the organ can 

be tracked and registered in a pre-operative 3D image using a localiser such as an Electromagnetic 

(EM) tracking system: the green circles with the addition sign indicate that data from multiple sources 

are combined. In this case, a localiser is mounted at the tip of the miniprobe to track its movement. The 

combination of the miniprobe with the localiser is used with a pre-operative image to track the 

miniprobe movement. 
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 Szpala et al. (2005) presented a concept similar to Dey et al. (2002) applied to a 

beating heart phantom. A rigid endoscope moved in space and acquired images of the heart. 

The real phantom and the endoscope were tracked optically. A virtual scene was 

reconstructed with the 3D model of the heart derived from the CT images. The virtual model 

of the phantom was animated in synchronisation with the ECG signal of the ‘heartbeat’. The 

presented method displayed the endoscopic images in front of the 3D model of the heart 

moving dynamically in the virtual scene. This method took into account the organ motion. 

The accuracy of the localisation of the endoscopic images at the surface of the organ was 

1.4mm±1mm. Nevertheless, this method required optical sensors mounted on the heart 

phantom and on the surgical instruments. 

 For the problem of re-localisation of lesions detected by optical biopsy, a 3D pre-

operative image can be used to provide the geometry of the organ of interest and a map of 

lesions. A first strategy can be the use of the catheter mounted with the EM sensor to carry 

the optical biopsy miniprobe (Fig. 3-2). When a lesion has been detected, the position of the 

tip of the catheter reported by the EM sensor can be recorded in the space of the 3D pre-

operative image. The catheter is used after detection to guide instruments such as forceps to 

the lesion using information from the EM sensor and visual feedback from the 3D pre-

operative image. However, the accuracy of the re-localisation of the lesions may be worse 

than 2mm according to the results reported for these systems. 

 

3.2.2 Re-localising lesions in endoscopic images 

Using a 3D pre-operative image as a map for guidance of surgical instruments towards the 

lesion may result in large inaccuracies for the instrument repositioning. Moreover, some 

examinations for the detection of lesions may be based on interventional endoscopic images 

only. For such examinations, the re-localisation problem consists, therefore, of guiding the 

instruments to the lesion after detection with an optical miniprobe using real-time endoscopic 

images only. As the lesion is located at the tip of the miniprobe, its tip has to be tracked in the 

images. In addition to this, once the lesion has been detected, its location has to be updated in 

the subsequent images acquired with a moving flexible endoscope. 

 Speidel et al. (2006) and Wengert et al. (2007) developed methods to segment 

instruments, detect their tip, and compute their trajectories in space, in order to automate the 

surgery and to control the movement of the instruments very accurately. However, these 

proposed methods did not focus on the guidance of the instruments to a target point, while 

Krupa et al. (2003) suggested a system that automatically positions the instruments in a 
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region of interest during laparoscopic examinations. The system was composed of a surgical 

robot, an endoscopic optical camera, and an endoscopic laser pointing instrument holder. The 

camera was inserted into a first incision point on the surface of the abdominal cavity and 

placed in front of the region of interest. The instrument holder was moved by the robotic arm 

and was inserted through a second incision point. It was mounted with a laser emitter to 

project on the organ surface laser patterns that were visible in the camera image. The robot 

moved the instrument inside the holder by an accurate depth based on the laser spot patterns. 

Thus, the instrument was placed automatically in contact with the region of interest. Using a 

laser pattern to indicate the location of the biopsy site is of interest for endoscopy since it is a 

marker that does not destroy the tissue and that gives precise locations. However, this method 

can work only if the camera and the laser probe remain still which is not the case for all 

endoscopy examinations. 

 Voros et al. (2006) developed a method for instrument tracking in laparoscopic 

images and guidance of the endoscope camera to a point of interest at the tissue surface. The 

method used information on the 3D position of the insertion point in the abdominal cavity to 

detect automatically and accurately the instruments in the laparoscopic images. The previous 

positions of the tip of the instrument were localised in the current endoscopic image. 

Unfortunately, these methods made the assumption that the camera of the rigid endoscope 

remained still. 

 Methods and systems previously presented made use of additional hardware and rigid 

endoscopes for the tracking and guidance of instruments in video images. However, space is 

limited during endoscopic procedures and does not always allow an insertion of multiple 

probes such as a laser holder. Also, optical biopsy techniques have been used mainly for 

colonoscopic, gastroscopic, or pulmonary applications for which endoscopes are flexible and 

keep moving within the organ. Thus, the guidance of instruments to the lesion must be 

performed without additional hardware or any use of geometrical information that make the 

assumption of rigidity of the endoscope. 

 Mori et al. (2002), Burschka et al. (2005), Hu et al. (2007), and Wang et al. (2008) 

developed methods based only on image processing in order to track the motion of a flexible 

endoscopic camera. The spatial transformations of the endoscopic camera that are rotations 

and translations relative to the tissue surface were computed in order to determine the spatial 

relation between endoscopic images. Such tracking may help reposition the endoscope near a 

region of interest at the tissue surface. Hu et al. (2007) have applied the epipolar geometry 

(Hartley and Zisserman, 2004) and the computer vision algorithms to endoscopic images 

acquired during minimally invasive surgery of the heart. The goal of the work of Hu et al. 
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(2007) was to stitch the endoscopic images together to build a broader field of view and to 

put these images together back to the same relative context. Two dimensional mosaics of 

endoscopic images could be reconstructed. The mosaic was mapped onto a 3D model of the 

organ of interest derived from a pre-operative image. This work may be used for the re-

localisation of lesions since the 2D mosaics can provide the endoscopist with a visual support 

to know how he has to move the endoscope in order to observe a same region again. The 3D 

pre-operative image can be used to derive a 3D reconstruction of the organ on which the 

lesions detected in the endoscopic images can be mapped. 

 A strategy for lesion re-localisation may consist of determining the motion of the 

endoscopic camera in relation to the imaged tissue in order to re-localise in the currently 

acquired endoscopic image a lesion whose location is known in previously acquired 

endoscopic images (Fig. 3-3). As shown in Hu et al. (2007), the recovery of this motion can 

help compute the mapping from one endoscopic image where the lesion location is known to 

another endoscopic image where it needs re-localising (Fig. 3-4). A registration of the camera 

motion in a 3D pre-operative image has the potential to localise the endoscopic images and, 

therefore, lesions in the 3D space of the organ. 

 

Miniprobe

Endoscope

Pre-operative CT / 
MR image

Microscopic 
site position in 

3D space

Microscopic site 
position in 

endoscopic image

 
Fig. 3-3: Second approach for lesion re-localisation: the positions of the miniprobe tip are tracked in 

the endoscopic images while the endoscope keeps moving. By tracking of the endoscope camera 

movement in a pre-operative image, the positions of the miniprobe can be recorded in this image. Here 

the miniprobe is used in combination with the endoscope in order to localise its position within the 

endoscopic images. If the endoscope movement is tracked in the pre-operative image, the positions of 

the miniprobe are known in the space of the image. 
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a) b)

Mapping

 
Fig. 3-4: Illustration of the re-localisation of a lesion detected by optical biopsy in endoscopic images: 

a) the lesion (indicated by a red point) located at the tip of the optical biopsy miniprobe (blue 

instrument) in an endoscopic image is b) re-localised in the current endoscopic image (indicated by a 

red point) after the computation of the mapping which relates the two images. 

Miniprobe
Microscopic 

site position in 
3D space

MR scanner  
Fig. 3-5: Third approach for lesion re-localisation: the miniprobe tip is tracked in an MR scanner and 

its positions are known, therefore, in the 3D space of the organ of interest. In this approach the 

miniprobe movement is tracked in the images acquired with an MR scanner. 

 

3.2.3 Re-localising lesions in interventional Magnetic Resonance Images 

Lesion re-localisation in a macroscopic context for gastroscopic, colonoscopic, and 

pulmonary applications can be done using either a pre-operative image or interventional 

endoscopic images only. Accurate re-localisation aims to facilitate instrument guidance to the 

lesions for tissue excision or treatment after detection by optical biopsy. A collaborative 

project with Riegler et al. (2010) demonstrated that cell delivery to specific sites for tissue 

treatment could be done using Magnetic Resonance Targeting (MRT). Moreover, MR 

imaging has been shown to be an appropriate tool for the detection of cancers in the colon 

and the oesophagus (Ajaj et al., 2004; Iwadate et al., 2007). Thus, as MR imaging has the 

potential to guide interventions (Kos et al., 2007), MR images could be acquired during 

endoscopic examinations in the colon or the oesophagus in order to track visually the position 

of the optical biopsy miniprobe within the organ. These interventional images could facilitate 

the tracking of the tip of the miniprobe and the guidance of instruments to the lesions 

detected by optical biopsy (Fig. 3-5). As the colon and the oesophagus are filled with air and 

the miniprobe does not emit a signal when imaged by an MR scanner, the problem of 

tracking the miniprobe consists of a selection of a marker to highlight the tip of the miniprobe 

(Bartels et al., 2003; Kos et al., 2007). The marker can be active or passive. 
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 Adding a micro-coil at the tip of the device is an active technique since the coil 

resonates within the MR scanner at a different frequency from that of the surrounding tissues 

(Fig. 3-6 a)). Therefore, the coil has high signal intensities in the MR image (bright regions) 

while the tissues have lower signal intensities (darker regions). Among the active techniques, 

there is also the use of electrified wire loops. A small direct current of about 10 to 150mA 

induces distortions of the magnetic field within the MR scanner. Finally, self-resonant 

radiofrequency circuits may be used as active techniques. Such circuits are coils or antennas 

set on the device and tuned to the Larmor frequency of the MR scanner. In general, the active 

techniques emit an accurate and robust signal, which is useful for the localisation of the 

device in any situation. However, rapid radiofrequency heating occurs, making these 

techniques not necessarily safe for in vivo applications (Bartels et al., 2003), and a strong 

hardware development has to be done to make these techniques work correctly within an MR 

environment. 

 Passive techniques allow avoiding the limitations of the active techniques and exploit 

either the susceptibility effects of the markers (negative markers) or the signal enhancing 

(positive markers). Negative markers are usually paramagnetic rings or ferrite-mixtures 

(Mekle et al., 2006), which are set on the device, and which create susceptibility artefacts 

when in contact with water molecules-based regions (Schenk, 1996; Nitatori, 1999). The 

choice of the marker mainly depends on the application and on the analysed region. For 

example, Dysprosium oxide markers may be used for catheter tracking in arteries 

(Seppenwoolde et al., 2006), but an image acquisition protocol needs setting up to clearly 

observe the artefacts. Although the use of negative markers is an easy method, the 

visualisation of the markers mainly depends on their orientation about the magnetic field, on 

the respiratory motion artefacts and on the presence of water molecules in contact with them. 

Positive markers are also paramagnetic agents and they induce changes in the relaxation 

times of water molecules in the surrounding regions. For example, a solution containing the 

Gadolinium-DTPA complex shortens the T1 relaxation of the surrounding water molecules, 

which results in a bright intensity for the Gadolinium-filled region and in a darker intensity 

for the tissues (Fig. 3-6 b)). Gadolinium-Diethylenetriamine Pentaacetic Acid (DTPA) 

complex in a water molecules-based solution is typically used as a contrast agent, but 

coatings have to be designed in order to make surgical devices MR visible (Unal et al., 2006). 

Although such coatings allow a good visualisation of the surgical tools and do not deteriorate 

over time, they need to swell inside the body to make the device visible and they require a 

careful chemical preparation. 
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a) b)
 

Fig. 3-6: Markers for instrument tracking in an MR image: a) a coil (indicated by the arrow) can be 

mounted at the tip of the instrument, b) a Gadolinium-based coating can cover the instrument 

(indicated by the arrows). 

 

 In conclusion, lesions may be localised at the tip of the optical biopsy miniprobe 

within an MR image acquired during interventions. The re-localisation problem consists, 

therefore, of selecting a marker to be mounted at the tip of the miniprobe to make it visible in 

the image and of developing the method for computing the tip position within the MR image. 

3.3 A clinical application: detection of cancers in Barrett’s 

Oesophagus 

The problem of lesion re-localisation in a macroscopic context may be solved with 

interventional imaging systems or with a combination of positional sensors and pre-operative 

images. Three main strategies were suggested, but they can be combined to give more 

potential strategies. Nevertheless, the choice of a strategy may be mainly influenced by the 

clinical application, by the imaging systems, and by other tools used for this application. As 

the optical biopsy techniques were mainly used for the early detection of cancers in the 

oesophagus, the lesion re-localisation method has been developed for the application of 

endoscopic surveillance of Barrett’s Oesophagus (BO). 

3.3.1 Cancers in Barrett’s Oesophagus and conventional diagnosis 

Many of the published studies related to the clinical use of optical biopsies mentioned their 

important role for the detection of lesions in the oesophagus in vivo and in situ. The optical 

biopsy miniprobe can help target the biopsy sites in BO that need to be extracted for an 

analysis by a histopathologist. 

 BO or Columnar Lined Oesophagus (CLO) is defined as a transformation of the 

lower oesophageal mucosa from its usual stratified squamous non-keratinising phenotype to a 
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metaplastic columnar epithelium (British British Society of Gastroenterology, 2005). This 

may be visible macroscopically as a change of the oesophagus wall texture along a segment 

typically developing as a region of altered mucosa above the normal gastro-oesophageal 

junction (Fig. 3-7 a)). BO is a precursor lesion of oesophageal adenocarcinoma. During the 

development of adenocarcinoma, the features of the epithelium change from ‘indefinite for 

dysplasia’, to Low Grade Dysplasia (LGD), and to High Grade Dysplasia (HGD). A 

dysplasia may manifest with macroscopic abnormalities such as a subtle granular appearance 

to the mucosa of BO, isolated plaques of altered epithelium leading to a red-white mixed 

lesion which is very unstable, or even a large mass region. However, in some cases, no 

macroscopic manifestation occurs. LGD is the most frequently seen dysplasia. It may persist, 

regress, or progress to HGD or adenocarcinoma. HGD carries a cancer risk of 16-59% within 

5 years (Lovat et al., 2006). The risk is much lower for LGD. In the UK, the 5-year survival 

rate in case of presence of adenocarcinoma is less than 10% (Lovat et al., 2006). 

 In order to make a positive diagnosis of BO, a segment of the suspected oesophageal 

mucosa must be visible above the gastro-oesophageal junction and the clinical observational 

suspicion must be confirmed histologically, mandating biopsies if a zone of change is 

suspected. When pathology has been detected, the patient may enter a surveillance process. 

Surveillance endoscopy examinations are undertaken at regular time intervals depending on 

the diagnosed pathology. In surveillance endoscopy, quadrant biopsies are taken every 2cm in 

the columnar segment together with biopsies of any visible lesion (Fig. 3-7 b)). If the 

pathology is only chronic heartburn, the endoscopic surveillance is performed every 2 years. 

For ‘Indefinite for dysplasia’, LGD, or HGD, the surveillance is performed more frequently 

and the patient may even be sent to surgery. Both LGD and HGD may be managed by 

ablation techniques removing all suspicious tissue, notably laser, photodynamic therapy 

(PDT), and Argon Plasma Coagulation (APC) (British British Society of Gastroenterology, 

2005). 

 Routine endoscopy is limited in its ability to identify dysplasia and sampling errors 

are likely to occur if insufficient biopsies are taken (British Society of Gastroenterology, 

2005). Unsuspected carcinoma in a BO segment may still be missed. Even if the quadrant 

protocol is followed throughout the length of CLO and well into the normal squamous, errors 

are still common. The main reason for missing these pathologies is maybe that epithelial 

cancers and their precursors are frequently focal and can be distributed heterogeneously 

across a wide field (Yun et al., 2006). Herein lies the next challenge which is establishing 

where in the zone of change of the BO segment each biopsy should be taken from or has 

come from. 
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Fig. 3-7: Pathology and conventional diagnosis of BO: a) the BO segment is characterised by the 

replacement of normal squamous epithelium by a metaplastic columnar epithelium; b) during a 

surveillance examination, biopsies (black crosses) are taken at regular spaces along the BO segment. 

 

3.3.2 Detection of the biopsy sites in BO by optical biopsy 

Endoscopy is performed for diagnosis of BO and for guidance of forceps in order to take 

biopsies in the BO segment. Optical biopsy techniques have the potential to improve 

targeting of biopsy sites and to guide biopsy procedures during an endoscopic surveillance 

examination of BO (Meining et al., 2007b.; Wallace et al., 2009). 

 An endoscope is introduced into the patient’s oesophagus (Fig. 3-8 a)). It returns real-

time videos of the tissue surface at a macroscopic level. This macroscopic view allows the 

endoscopist to identify the zones of change at the tissue surface above the gastro-oesophageal 

junction. Moreover, this view allows the endoscopist to guide the instruments passed via the 

working channel of the endoscope such as optical biopsy miniprobes or biopsy forceps (Fig. 

3-8 b) and c)). 

The optical biopsy miniprobe is first passed via the single working channel of the 

endoscope. The miniprobe is placed in contact with the tissue in order to scan it and two 

views are available if microscopic imaging is performed: a macroscopic view from the 

endoscope showing the miniprobe and a microscopic view from the miniprobe (Fig. 3-8 c) 

and d)). If spectroscopy is performed, the miniprobe is still seen in the endoscopic view, but 

it returns a spectrum instead of an image. Commonly, a tissue surface of approximately 

0.5mm diameter is scanned. The optical biopsy has the benefit to allow the endoscopist to 

make in real-time a diagnosis which is confirmed by histopathology a few weeks after the 

examination. After tissue interrogation by optical biopsy, the miniprobe is taken out from the 

endoscope working channel and replaced with forceps to take ‘colocalised’ biopsies at the 

detected sites. 
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Fig. 3-8: The combination of macroscopic and microscopic views during endoscopy: a) An endoscope 

is inserted into the patient’s oesophagus; b) the miniprobe is passed via the working channel of the 

endoscope; c) the endoscope returns a macroscopic view of the analysed structure and the miniprobe 

used for imaging the tissue at the cellular level is visible in the macroscopic view; d) a microscopic 

image showing the cell structures is available at the same time. 

 

 For endoscopes with a single working channel, the biopsy excision consists of 

guiding forceps to the biopsy site identified by optical biopsy. Typically during endoscopy 

and especially during a surveillance examination of BO, the endoscope moves around the 

detected biopsy site and air/water bubbles obstruct the endoscope camera field of view. Thus, 

the task of taking ‘colocalised’ biopsies may be difficult. 

 

3.3.3 Need for accurate re-localisation of biopsy sites during a surveillance 

examination of BO 

Optical biopsy techniques have the potential to improve detection and targeting of biopsy 

sites during a surveillance examination of BO. The optical biopsy miniprobe is passed via the 

working channel of the endoscope to take ‘colocalised’ biopsies. The excised tissue sample 

has to match accurately the optical biopsy as the final diagnosis is done by the 

histopathologist after the intervention. 

 The problem of an accurate matching between the excised tissue and the optical 

measurement for many endoscopic applications combined with many optical biopsy 

techniques has been raised in a series of published works like Wang et al. (2004), Dahr et al. 

(2005), Evans et al. (2006), Lovat et al. (2006), and Pohl et al. (2008). Meining et al. (2007c.) 

suggested that a potential sampling error may happen in case of focal lesions. Indeed, small 
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focal lesions may be invisible macroscopically which makes the excision task more difficult 

when the piece of tissue needs to be taken at the same location as the optical measurement. 

Furthermore, the accurate matching is difficult to achieve since the endoscopist has to keep 

the endoscope stable and still (Dahr et al., 2006). 

A few methods were suggested for accurate matching. Lovat et al. (2006) explained 

that a good match could be obtained thanks to the small indent that the miniprobe used for the 

optical measurement left at the surface of the tissue. Nevertheless, 20% of the excised tissues 

were not used for a comparison with the optical measurement since patient’s movement and 

camera movement did not guarantee a perfect match. Pohl et al. (2008) created marks with 

APC at the biopsy site locations during the quadrant process in BO for accurate re-

localisation of the lesions. The optical measurement was obtained next to each mark and 

biopsies were taken from the same area and in the same endoscopic sequence. Nevertheless, 

this technique burns the tissue. This may create a scar at the tissue surface which can lead to 

erroneous diagnoses during future surveillance examinations of BO. Another method was 

based on the tattooing of the tissue with ink. This was used for the re-localisation of small flat 

polyps in colon in order to secure adequate margins during the surgery that occurs after the 

colonoscopy (Botoman et al., 1994). The authors suggested tattooing the tissue with ink 

before colon surgery. This ink is permanent which allows for preoperative radiation and other 

delays without loss of the marked site. This also shortens operative times. However, these 

methods do not prevent the endoscopist from taking useless biopsies. Indeed, a realistic 

workflow would consist of interrogating first the tissue to target the biopsy site, of localising 

this biopsy site secondly, and of extracting the tissue finally. 

Physical makers at the tissue surface are not favourite methods to help for accurate 

re-localisation of biopsy sites during a surveillance examination of BO. One of the three re-

localisation strategies presented earlier in this chapter or a combination of these strategies can 

be useful for biopsy site re-localisation in the oesophagus. As the examination is based 

principally on endoscopic images, an approach could be the development of an augmented 

reality method for guidance of forceps to the biopsy site in the endoscopic images. The 

workflow could be as follows: once the miniprobe has been removed from the endoscope 

working channel, a virtual point or confidence region could be drawn in the digital 

endoscopic images and tracked through them in order to indicate the location of the biopsy 

site (Fig. 3-9). As mentioned earlier in this chapter, a mapping between endoscopic images is 

required. 

The re-localisation method has the potential to reduce the necessity of taking biopsies 

and to target them better (Meining et al., 2007c.). An accurate re-localisation method is also 
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required for the validation of the accuracy of the diagnosis done by optical biopsy. For 

example, so far, Meining et al. (2007c.) have done such a validation for tissues extracted from 

BO, from the distal oesophagus, from the duodenum, or from rectal polyps. The validation 

was done from lesions that were all clearly visible by endoscopy before the optical biopsy 

was done. Therefore, the excised tissue matched accurately the optical measurement. 

However, a more complete validation of the accuracy of the diagnosis done by optical biopsy 

requires a comparison of the excised tissue with the optical measurement when the lesions are 

invisible macroscopically. Finally, a re-localisation method may be useful not only for biopsy 

sites during surveillance examination of BO, but also for flat polyp to determine the margins 

for resection, or for microscopic colitis in vivo in colon (Meining et al., 2007a.). This method 

could also be applied to any optical biopsy technique for which the miniprobe has to be in 

contact with the tissue such as fibered confocal microscopy, elastic scattering spectroscopy, 

or optical coherence tomography. 

3.4 Computation of a mapping between endoscopic images 

The previous discussions considered various methods to localise microscopic lesions within 

their macroscopic context. An application may be the re-localisation of biopsy sites during a 

surveillance examination of BO. As the examination is based only on video images, the re-

localisation problem consists of computing the mapping from one reference endoscopic 

image where the biopsy site location is known to a target endoscopic image where the biopsy 

site needs to be re-localised. 

? ?

a) b)

c) d)  
Fig. 3-9: Illustration of the problem of re-localisation of the biopsy sites detected by optical biopsy 

during an endoscopic surveillance of BO: a) endoscopic view of the gastro-oesophageal junction, b) 

insertion of a 2mm diameter miniprobe, c) once the miniprobe has been removed, the biopsy site needs 

to be re-localised (the ellipse and the interrogation mark illustrate the difficulty to decide where the re-

localised biopsy site is), d) the re-localisation is useful for the guidance of forceps since the endoscope 

camera may have moved and the endoscopist may have lost the biopsy site from visual control. 



 
 
 
 

70 

a) b)  
Fig. 3-10: Endoscopic system: a) subsystems of the endoscope; b) description of the endoscope tip. 

3.4.1 Endoscopic images acquired during a surveillance examination of BO 

The surveillance examination of BO is based on the acquisition of real-time video images 

with an endoscope inserted into the patient’s oesophagus. 

An endoscope consists of several subsystems (Katzir, 1993). There are the endoscope 

subsystems that provide illumination, irrigation, and suction (Fig. 3-10). Two light guides 

provide illumination. An objective lens is placed in front of the imaging device and its 

characteristics vary from endoscopes to endoscopes. Different lenses give different fields of 

view and the focal distance may be different. 

 Clinical endoscopes used for this thesis were High Definition (HD) endoscopes 

provided by Pentax Ltd. A miniature camera based on Charge-Coupled Device (CCD) 

technology is attached to the distal end of the endoscope behind the objective lens. Colour 

CCD cameras consist of a depositing of Red (R), Green (G), and Blue (B) long pass optical 

filters on the individual light-sensitive elements of the camera. Each square of 4 pixels of the 

colour CCD camera has one filtered red, one blue, and two green pixels since the human eye 

is more sensitive to green (Cotton and Williams, 1996). The blue component of light whose 

wavelength band is 400nm to 430nm and the green component whose wavelength band is 

530nm to 550nm have a depth of penetration into the tissue that is superficial (Fig. 3-11). 

Blue and Green illuminations correspond to the first and secondary peaks on the absorption 

spectrum of haemoglobin. Red blood cells inside the vessels appear dark in the blue and 

green channels of the acquired image. The Red component of light has longer bandwidth than 

Blue and Green and its depth of penetration into the tissue is deeper. In order to illustrate this 

property, an endoscopic image acquired during a surveillance examination of BO was split 

into its RGB channels. The green and the blue channels showed clearly the vasculature (Fig. 

3-12). The vessels had better contrast in the G component than in the B component since the 
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B component has a superficial absorption into the tissue (Papagatsia et al., 2008). The biopsy 

site re-localisation problem consists of determining the mapping between endoscopic images. 

This mapping may be computed by recognition of similar structures in the images. As vessel 

structures tend to be well contrasted in the G channel of endoscopic images, this channel was 

used in this thesis to compute the mapping. 

 
Fig. 3-11: Absorption of lights in the tissue: the blue and green lights highlight the vessels in the 

superficial layers of the tissue. The red light and near-infrared (NIR) lights are less absorbed by the 

tissue so penetrate deeper and can be reflected from deeper tissues. 

 

 
Fig. 3-12: Red, Green, and Blue (RGB) channels of an endoscopic image: a) acquired endoscopic 

image, b) R-channel of image a), c) G-channel of image a), and d) B-channel of image a). 

Image not displayed for Copyright reasons 
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The oesophagus is a tubular organ and endoscopic images commonly show the entire 

lumen since the endoscope is centred on the medial axis of the oesophagus (Fig. 3-9). The 

acquired images are representations of the 3D surface of the oesophagus projected onto the 

endoscope camera image plane which produces a 2D image. Information concerning the 

distance of the oesophagus wall from the endoscope camera is lost. These 2D images show a 

miniprobe in contact with the oesophagus walls, first. After removal of the miniprobe from 

the endoscope working channel, the endoscope keeps moving backward and forward along 

the medial axis of the oesophagus which returns images showing the oesophagus under 

various viewpoints. 

 Various methods exist for the computation of the mapping between endoscopic 

images based on the vasculature of the oesophagus walls and on the assumption that the 

oesophagus may undergo affine deformations. 

3.4.2 Possible mappings 

A mapping is computed from one endoscopic image termed reference image I1 where the 

biopsy site location is known to another endoscopic image termed target image T where the 

biopsy site needs to be re-localised. The biopsy site location may be indicated by the tip of 

the optical biopsy miniprobe. Similarities between the images may be used to determine the 

mapping. As presented in section ‘3.4.1 Endoscopic images acquired during a surveillance 

examination of BO’, vessels are visible in the endoscopic images. Therefore, they can be used 

to determine similarities between the images and to compute the location of the biopsy site in 

T. The endoscopic images represent the projection of the 3D surface of the oesophagus onto 

the 2D plane of the endoscope camera and show the surface under various viewpoints. The 

approaches to solve the re-localisation problem are, therefore, derived from computer vision 

(Hartley and Zisserman, 2004). There are two possible approaches. 

 A first method would consist of estimating the endoscope camera movement which is 

composed of translations and rotations in relation to the 3D physical surface that is imaged. 

When the camera moves from Camera centre 1 to Camera centre T (Fig. 3-13), the 3D 

physical surface is seen under distinct viewpoints. The biopsy site P, Camera Centre 1, and 

Camera Centre T form a plane in 3D space. This setup forms the epipolar geometry (Hartley 

and Zisserman, 2004). The plane intersects the image planes I1 and T. This intersection is a 

line termed epipolar line, for example ( )1Iel . It passes through the projection of the biopsy site 

on the image plane. This line indicates the locus of the possible positions of the biopsy site in 

image T. Thus, the biopsy site ( )1Ip  whose location is known in I1 is transformed as an 

epipolar line in T. The estimation of this transformation makes the assumption that the 3D 
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physical surface that is imaged with an endoscope is stationary or may undergo affine 

deformations (Hu et al., 2008a). As this transformation is a point to epipolar line mapping, 

information from other reference endoscopic images have to be used to constrain the locus of 

all of the possible locations of the biopsy site in T. 

A second method is the Simultaneous Localisation And Mapping (SLAM) that has 

been described and reported as employed during a gastroscopic examination for biopsy site 

tracking in endoscopic images (Mountney et al., 2009). This method simultaneously builds 

up a 3D map of the imaged physical surface knowing approximately the endoscope 

movement in the 3D space and refines the endoscope camera position and orientation within 

the map (Fig. 3-14). This method is based on an extension of the Kalman filter principle to 

estimate the endoscope camera movement (Davison et al., 2007). When the endoscope 

camera moves within the 3D physical surface, it is assumed that its velocity, its orientation, 

and its position are known approximately. A positional sensor at the tip of the endoscope, for 

example, can provide this information. This information assists the search for feature matches 

from one endoscopic image acquired for the first camera position to a second endoscopic 

image acquired for the current camera position. The map of features can be updated with new 

features that were not visible in the previous image. The camera orientations and positions are 

updated from the new map of features. Furthermore, the position of the biopsy site can be 

tracked in the map. 
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Fig. 3-13: Epipolar geometry formed by the pair of reference endoscopic image I1 and of target 

endoscopic image T. 
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Fig. 3-14: Illustration of the process of SLAM. 
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Two methods for the computation of the mapping between endoscopic images are 

possible: recovery of the epipolar geometry and SLAM. SLAM has the advantage of building 

a 3D map of the features of the imaged physical surface and of localising the endoscope 

camera within this map. However, SLAM requires a smooth camera movement and a clear 

FOV of the endoscopic camera. Air/water bubbles often obstruct the camera FOV or the 

acquired images may be blurred because of a quick uncontrolled camera movement. In these 

situations, features cannot be tracked anymore and the SLAM cannot update the camera 

position and the feature map. As epipolar geometry is recovered between two images without 

tracking movement of the endoscope camera, this approach is explored in this thesis. Finally, 

the re-localisation method may be useful to re-localise a biopsy site in a future endoscopic 

examination using reference images acquired during a previous examination. The SLAM can 

be used only for the same examination. Epipolar geometry has the potential to solve the re-

localisation problem in this situation. 

3.4.3 Computation of a mapping by recovery of the epipolar geometry 

The approach for biopsy site re-localisation during a surveillance examination of BO makes 

use of the epipolar geometry formed by endoscopic images. 

The model of the endoscopic camera used in this thesis is the pinhole camera model 

adapted to CCD cameras (Fig. 3-15) (Hartley and Zisserman, 2004). The camera is 

characterised by a focal length f, scaling factors kx and ky in the x and y directions of the 

image plane which correspond to the number of pixels per unit distance in the image 

coordinate system, a skew parameter s which characterises the non-orthogonality of the 

camera axes x and y and which is commonly assumed null, and a principal point which is the 

projection of the camera centre C onto the image plane. When the image plane is attributed a 

coordinate system (xI, yI) whose origin is located at the top left-hand corner of the image, the 

principal point has coordinates (x0, y0) in this coordinate system. The biopsy site P at the 3D 

physical surface whose coordinates in the camera coordinate system (xC, yC, zC) are (Px, Py, 

Pz) projects onto the camera image plane as the point p(I) whose coordinates in the camera 

coordinate system are (pxcam
(I), pycam

(I), f) defined as: 
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In the image coordinate system, the biopsy site coordinates are: 
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Commonly homogeneous coordinates (u, v, w) in the image plane are used instead of the 

image coordinates directly. These coordinates are related to the image coordinates such that: 

( )
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(3-3) 

Thus, these coordinates are related to the coordinates in the endoscope camera coordinate 

system with the camera calibration matrix or camera intrinsic parameter matrix K: 
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(3-4) 

The matrix K expresses, therefore, the projection of the points on the 3D physical surface 

onto the endoscope camera image plane. 

During endoscopy, the camera moves with rotations ( )TIR ,1
 and translations ( )TIt ,1

 

from the camera position Camera centre 1 to the camera position Camera centre T (Fig. 

3-13). The resulting epipolar geometry can be described algebraically using the fundamental 

matrix ( )TIF ,1
 defined in Hartley and Zisserman (2004) as the composition of the camera 

calibration matrix and the camera movement: 
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Fig. 3-15: Pinhole camera model and projection of the biopsy site onto the camera image plane. 
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Feature detection and matching

Fundamental matrix computation

( )TIF ,1  
Fig. 3-16: Main steps for the recovery of the epipolar geometry. 
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(3-5) 

1IK  and KT are the camera calibration matrices at first and second positions. The camera 

motion matrices ( )TIR ,1
 and ( )TIt ,1

 are expressed in a reference coordinate system that can be 

the coordinate system of camera centre T, for example. The recovery of the epipolar 

geometry consists of computing the fundamental matrix ( )TIF ,1
. 

In practice, ( )TIF ,1
 is computed by detection of features in the images I1 and T (Fig. 

3-16). These features are matched by studying their neighbourhood and by optimising a 

similarity criterion between the neighbourhoods. The fundamental matrix is computed from 

the set of matches. 

3.5 Review of the methods for the recovery of the epipolar geometry 

Epipolar geometry can be an approach to solve the biopsy site re-localisation. This part aims 

to review the methods for the recovery of the epipolar geometry. 

3.5.1 Endoscope camera calibration and correction of image distortions 

Section ‘3.4.1 Endoscopic images acquired during a surveillance examination of BO’ 

introduced the system and components of an endoscope and the geometry of the endoscopic 

images. The CCD camera that is mounted at the tip of the endoscope can be modelled as a 
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pinhole camera (Hartley and Zisserman, 2004). However, a fisheye lens is commonly 

mounted in front of the endoscope camera in order to capture a large scene in a single 

acquired image. This lens introduces distortions in the images that need to be corrected in 

order to estimate accurate epipolar geometry and fundamental matrix (Zhang, 1999; Stoyanov 

et al., 2005; Barreto and Daniilidis, 2005). 

 The geometry of a fisheye lens introduces principally radial distortions. These radial 

distortions affect significantly the regions observed at the edges of the lens while the regions 

observed in the centre of the lens are imaged with minor distortions. In the case of 

endoscopic images, barrel distortions affect the acquired images (Fig. 3-17 a)). For example, 

if a checkerboard pattern with straight lines is imaged with an endoscope, the lines are not 

straight anymore (Fig. 3-17 b)). The principal point (x0, y0) that is the projection of the 

camera centre onto the image plane remains unchanged in the undistorted images (Zhang, 

1999). Nevertheless, any other point in the distorted image is closer to the principal point 

than it is actually in the undistorted image. The radial distortions are modelled for a point (xd, 

yd) in the distorted image and for the same point (xu, yu) in the undistorted image such that 

(Zhang, 1999): 

( )K+⋅+⋅+⋅+⋅= 6
3

4
2

2
11 uuuud rkrkrkrr . (3-6)

where ru and rd are the radial distances of the undistorted image point and of the distorted 

image point: 

( ) ( ) ( ) ( ) 2
0

2
0

2
0

2
0 and yyxxryyxxr ddduuu −+−=−+−= . (3-7)

The coefficients ki are the distortion coefficients that need to be estimated. 

 Many methods were presented for the estimation of the distortion coefficients and for 

the correction of the images (Haneishi et al., 1995; Vijayan Asari et al., 1999; Helferty et al., 

2001). A practical method that was used for endoscopic images is that presented by Zhang 

(1999). This method consists of estimating the camera parameters that are the principal point 

location (x0, y0) in the images, the focal length, and the scaling factors at the same time as the 

distortion coefficients during a camera calibration procedure. The calibration is run on images 

of a flat checkerboard pattern acquired under various viewpoints. In practice in this thesis, the 

endoscopic camera was calibrated and the images were undistorted using the Matlab 

implementation by Bouguet (2004) referring to Zhang’s method (Zhang, 1999). 

 Once the distortion coefficients and the camera parameters have been estimated by 

calibration, the endoscopic images acquired during endoscopy can be corrected in real-time 

and the epipolar geometry is recovered on these corrected images. 
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b) c)a)
Principal point 
(x0, y0)

Distorted image 
coordinates (xd, yd)

Undistorted image 
coordinates (xu, yu)

 
Fig. 3-17: Barrel distortions in endoscopic images: a) barrel distortions are such that a point appears 

closer to the principal point than it is in reality and the distortions are greater on the sides of the image; 

b) illustration of barrel distortions on a flat checkerboard pattern imaged with an endoscope mounted 

with a fisheye lens at the tip; c) endoscopic image of the flat checkerboard after correction for 

distortions. 

 

3.5.2 Feature detection and matching 

A first step of the recovery of the epipolar geometry consists of detecting features in each 

image and of finding their matches in another image. Automatic methods for feature 

detection and matching are necessary for a clinical application such as the re-localisation of 

biopsy sites during a surveillance examination of Barrett’s Oesophagus (BO). Features can be 

detected and matched with feature trackers or with techniques based on descriptors. 

3.5.2.1 Feature trackers: the example of the Lucas-Kanade tracker 

During an endoscopy examination in the oesophagus, the camera usually moves smoothly. 

The acquired images of the video stream show the tissue surface under various viewpoints. It 

is, therefore, possible to use feature trackers that detect features in a first reference image Ii 

and track them through the images of the video stream up to the target image T. These 

features sit at the centre of a pixel-based searching window and the tracking consists of 

finding in the next images where this window is located. Two feature trackers have been 

mainly used for endoscopic images: block matching for bronchoscopic images (Mori et al., 

2002) and the Lucas-Kanade (LK) tracker for minimally invasive surgery of the heart (Lucas 

and Kanade, 1981; Mountney et al. 2006; Hu et al., 2007, 2009). Block matching considers 

that the pixel window undergoes only translations from video images to video images whilst 

the LK tracker takes into account affine deformations of the window (i.e. rotations and 

shearing). As the re-localisation has to be performed between a reference image Ii and a 

target image T showing the tissue region under a different viewpoint (Fig. 3-18), the changes 

of the shape of the pixel window can be described by an affine transformation and the LK 

tracker is more appropriate. 
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Fig. 3-18: Illustration of the tracking of an LK feature through endoscopic images: the feature is 

detected at the centre of a pixel window (dashed green lines) in a first reference image Ii. The LK 

tracker tracks this window through the images assuming a translation only between consecutive 

images. The tracker refines the tracking by assuming an affine mapping between the first reference 

image Ii and the current target image, for example, T. 

 

 Given the two images Ii and T, the LK tracker computes the motion as the affine 

transformation which minimises the scalar dissimilarity measure: 

( ) ( )[ ] ( )∫∫ ∂∂−+=
W

i yxwε xxIdAxT 2 . (3-8)

where W is the tracking window whose central pixel is the jth feature ( )i
j
Ip  detected in image 

Ii, x = (x , y) tr is a pixel in W, w(x) is a Gaussian weight, d = [dx dy] tr is the translation of W 
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 is an 

affine transformation with 12 the 2x2 identity matrix and D the matrix comprising the shear 

and rotation transformations, and Ax+d is the affine motion field applied to the pixel x. By 

Taylor expansion for a small displacement of x: 

( ) ( ) ( ) ( )
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The Taylor expansion and the minimisation of the dissimilarity ε (equation (3-8)) yield a 6x6 

system (Shi and Tomasi, 1993): 

aOz = . (3-9)

where the motion parameters are concatenated in a vector ztr = [dxx dyx dxy dyy dx dy]tr, the error 

vector a depends on the difference between the two images: 
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and the 6x6 matrix O is defined as: 
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Feature tracking consists, therefore, of minimising a. 

In practice, in order to estimate z for the pair of images Ii and T, the motion between 

two consecutive images, for example Ii and Ii+1, is considered as a pure translation. Thus, the 

subsystem: 

eZd = . (3-10)

is solved between Ii and Ii+1. The vector e collects the last two entries of the vector a. This 

returns an initial position of the window W in Ii+1. A refinement is performed between Ii and 

Ii+1 using this initialisation to solve (3-9). This process goes on for the next consecutive 

images. Every time equation (3-10) is solved for a pair of consecutive images between Ii and 

T, the full system in equation (3-9) is solved between the current image and image Ii (Fig. 

3-18). This process is performed for each window W centred on a detected feature in image Ii. 

The features are detected by studying the matrix Z computed for each pixel of image Ii. 
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Indeed, the matrix Z gives information about the local texture around the pixel (Shi and 

Tomasi, 1994). If the two eigenvalues of Z are small, the intensity in the window W is 

roughly constant. A large and a small eigenvalue correspond to an edge. Two large 

eigenvalues correspond to corners or salt and pepper textures that can be tracked reliably. 

Therefore, the N features whose windows have the largest eigenvalues are selected. 

3.5.2.2 Feature detection in the image scale-space and matching of descriptors: the 

example of the Scale Invariant Feature Transform 

During endoscopy examinations, the endoscope camera field of view may be obstructed with 

air/water bubbles (Mori et al., 2005). The camera may also move too quickly sometimes 

which returns a series of blurred images (Mori et al., 2005). Finally, specularities due to a 

certain angle of the endoscope illumination channel relative to the wet tissue surface may 

appear in the images (Mori et al., 2005). Therefore, features cannot be tracked with the LK 

tracker, for example. An alternative to the trackers can be the feature detectors in the image 

scale-space and the matching of the features based on their descriptors (Lindeberg, 1998; 

Mikolajczyk and Schmid, 2005a; Mikolajczyk et al., 2005b). These detectors aim to identify 

features in images of an object at locations and scales that can be repeatedly assigned under 

differing views of the object (Lowe, 2004). Such stable features can be searched across all of 

the possible scales of the image using a function of scale known as scale-space (Witkin, 

1983). Koenderick (1984) and Lindeberg (1994) demonstrated that the Gaussian function can 

be used as the scale-space kernel. Therefore, the scale-space L of an image Ii for the scale s is 

defined as the convolution of Ii with the Gaussian kernel G such that: 

( ) ( ) ( ) ( )yx,e
s

yx,sy,x,syx i
s

yx

i IIL ∗=∗=
+

− 2

22

2
22

1G,,
π

. 
(3-11)

Stable features can be found as extrema in the Laplacian of Gaussian or difference of 

Gaussians of the image Ii, for example (Mikolajczyk et al., 2001). 

 Once a feature location has been detected, a local description or descriptor can be 

computed for matching the features from two images. A descriptor can be a vector containing 

information about the gradients in a local neighbourhood of the detected feature (Lindeberg, 

1997; Mikolajczyk et al., 2002; Mikolajczyk et al., 2004; Lowe, 2004; Mikolajczyk et al., 

2005b). Classical techniques for feature detection and matching based on the feature detectors 

are the Scale Invariant Feature Transform (SIFT) (Lowe, 2004) and the scale and affine 

invariant interest point detectors (Lindeberg, 1997; Mikolajczyk et al., 2002; Mikolajczyk et 

al., 2004; Mikolajczyk et al., 2005b). The SIFT and the scale invariant interest point detectors 

have been used for detection and matching of features in endoscopic images especially for 
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images of the sinuses (Wang et al., 2008), for laparoscopic images (Mountney et al., 2007 

and 2008), and for gastroscopic images (Atasoy et al., 2009). The scale and affine invariant 

interest point detectors have been developed to cope with large changes of viewpoints of the 

camera. However, SIFT has the potential to match successfully the features based on their 

descriptors for changes of camera viewpoints up to 50 degrees. As a larger motion of an 

endoscopic camera is not expected during endoscopy, the SIFT was studied for extraction and 

matching of features in endoscopic images. 

The SIFT consists of building, first, a scale-space representation of the image Ii with 

a difference of Gaussians function (Fig. 3-19 a)). Therefore, at each scale s, an image D is 

computed and the value of the pixel (x, y) is defined as: 

( ) ( ) ( )( ) ( ) ( ) ( )sy,x,ksy,x,yx,sy,x,ksy,x,syx i LLID −=∗−= GG,, . (3-12)

where k is a constant multiplicative factor (Lowe, 2004; Brown, 2006). The scale-space is 

also computed for various downsampling levels of the image or octaves. D(x, y, s) is 

compared to the value of D for the 8 neighbouring pixels at the same scale as pixel (x, y) and 

for the 9 neighbouring pixels in the scale above and below (Fig. 3-19 b)). If D(x, y, s) is an 

extremum, the corresponding pixel with its scale s is recorded as a feature. 

 Each feature may be characterised by a dominant orientation in order to achieve 

invariance to image rotation. The local orientation of the feature is estimated from the local 

image gradients. The magnitudes g and the orientations θ of the gradients in the 

neighbourhood of the feature are computed using pixel differences: 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )yxyxyxyxyx

yxyxyxyxyxg

,1,1/1,1,tan,

1,1,,1,1,
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22

−−+−−+=

−−++−−+=
− LLLL

LLLL

θ
. 

(3-13)

An orientation histogram is built with each gradient orientation weighted by the gradient 

magnitude. The peak in the histogram corresponds to the dominant orientation. Thus, a 

feature is characterised by its scale and its main orientation. The SIFT has been tested on 

endoscopic images acquired during a surveillance examination of BO and it is illustrated in 

Fig. 3-20. 

When features have been detected in two images Ii and T, they need to be matched 

with their SIFT descriptors. The SIFT descriptor is defined as a square window centred on a 

detected feature and whose size is proportional to the feature scale s (Fig. 3-19 c)). The 

window is oriented in the same direction as the feature orientation. The image patch within 

the window is sampled into a 16 regions x 16 regions. For each region, the image gradient 

magnitude and orientation are computed. For each group of 4 regions x 4 regions, a gradient 

orientation histogram is built: the orientations are split into 8 bins. The resulting descriptor is 
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a vector of 4x4x8 entries where each entry is a function of the magnitudes. This vector is 

normalised to unit length. Matching a feature in Ii to another feature in T consists of looking 

for a descriptor in T which is at a minimal Euclidean distance from a descriptor in Ii. The 

match is accepted if and only if the ratio of the Euclidean distances between the first and the 

second best match is greater than a threshold, set manually. 

a)

b)

Feature at given 
scale and 
orientation

1 region

16 
regions

1 orientation 
histogram

c)  
Fig. 3-19: Detection of SIFT features and computation of their descriptors: a) the scale-space of the 

image is built: for each octave or downsampling level of the image, the image is repeatedly convolved 

with a Gaussian kernel. Adjacent Gaussian images are subtracted to generate the Difference of 

Gaussian images; b) Extrema of the Difference of Gaussian images are detected by comparison of the 

pixel (marked with X) to its 8 neighbours at the same scale and to its 18 neighbours in the lower and 

higher scales; c) the descriptor is a window centred on the detected feature. The size of the window is 

proportional to the scale of the feature and is oriented in the same direction as the feature orientation. 

The window is divided in 16 regions x 16 regions and for each region, the gradient magnitude and 

orientation are computed. Regions are stacked into 4 regions x 4 regions in order to build an 

orientation histogram. The descriptor is a vector whose entries are the orientation histograms. 

a) b)

c) d)  
Fig. 3-20: Example of a SIFT feature in two different views of the same physical surface of the 

oesophagus acquired during an endoscopy: a) a feature is detected in a reference image Ii at the 

intersection of vessels. Its location is at the centre of the circle whose radius is proportional to the scale 

at which the feature was detected. The drawn radius indicates the feature orientation; b) zoomed image 

on the feature detected in a); c) the matching feature corresponding to the same anatomical point is 

detected in the target image T; d) zoomed image on the feature.  

Image not displayed for Copyright reasons 



 
 
 
 

84 

3.5.3 Computation of the fundamental matrix 

The fundamental matrix ( )TIF ,i
 can be computed using the features in images Ii and T that are 

matched. Some of these matches are correct since they obey the epipolar geometry and are 

termed inliers (Torr, 1995; Torr and Davidson, 2003). Others are incorrect matches which 

refer to a pair of features that do not correspond to the same anatomical point, which are 

inconsistent with the epipolar geometry, and which are termed outliers (Torr, 1995; Torr and 

Davidson, 2003). The feature detection and matching techniques return a set of L matches D = 

{ ( )i
j
Ip  , pj}j=1..L with ( ) ( ) ( )[ ] tr

1,, iii
jyjxj pp IIIp = , a feature in Ii which matches pj = [pjx, pjy, 1] tr, a 

feature in T. The fundamental matrix is estimated from this set of matches. 

3.5.3.1 Properties of the fundamental matrix 

The fundamental matrix ( )TIF ,i
 can be defined as the mapping between two endoscopic 

images. A feature ( )i
j
Ip   in image Ii is mapped onto T as an epipolar line ( )i

j
Iel  = ( )TIF ,i

. ( )i
j
Ip   = 

( ) ( ) ( )[ ] tr
,, iii

jmjyjx elelel III  (Hartley and Zisserman, 2004). This line passes through the matching 

feature pj. Thus, pj
tr. ( )i

j
Iel  = pj

tr. ( )TIF ,i
. ( )i

j
Ip  = 0. 

 In practice, features are detected with errors due to the noise in the camera which are 

classically assumed independently and identically distributed Gaussian errors with standard 

deviation σ (Luong and Faugeras, 1996). Therefore, the feature pj does not lie exactly on the 

epipolar line ( )i
j
Iel  = ( )TIF ,i

. ( )i
j
Ip  and pj

tr. ( )TIF ,i
. ( )i

j
Ip  is equal to a residual error ( )i

je I  termed 

algebraic residual (Hartley and Zisserman, 2004): 
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( )

( )( ) 2
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tr2
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i

i
jjje I

TI
I pFp ⋅⋅= . (3-14)

The fundamental matrix ( )TIF ,i
 can be determined by least squares as the vector that 

minimises the squared algebraic residuals ( )i
je I  over the entire set of matches D = { ( )i

j
Ip  , 

pj}j=1..L. 

 The fundamental matrix encapsulates the translation ( )TIt ,i
 and rotation ( )TIR ,i

 of the 

camera as shown in equation (3-5). A cross-product between ( )TIt ,i
 and ( )TIR ,i

 is applied 

which is equivalent to a multiplication such that: 
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The determinant of [ ( )TIt ,i
] is null. Thus, the determinant of ( )TIF ,i

 is also zero. That is to say, 

the rank of ( )TIF ,i
 should be 2. Finally, ( )TIF ,i

 is determined up to a scale factor. The additional 

constraint || ( )TIF ,i
|| = 1 can be applied (Torr and Fitzgibbon, 2004). 

 Many methods were presented for the computation of the fundamental matrix by 

taking into account its properties (Longuet-Higgins, 1981; Hartley, 1995; Luong and 

Faugeras, 1996; Csurka, 1997; Zhang, 1998). 

3.5.3.2 Computation of the fundamental matrix from a minimal set of matches 

Longuet-Higgins (1981) introduced the first landmark method for the computation of the 

fundamental matrix, the eight-point algorithm. It was improved later by Hartley (1995) to 

make it more robust to the noise on the features, which serve as inputs for the computation of 

the fundamental matrix. The fundamental matrix can also be estimated from the seven-point 

algorithm (Deriche et al., 1994). 

The eight-point algorithm builds up a set of 8 equations of the form 

( )
( ) 0,

tr =⋅⋅ i

i jj
I

TI pFp  between the matches ( )i
j
Ip  of image Ii and pj of image T. This leads to a 

system of the form: A ( )TIf ,i
 = 0 where A and ( )TIf ,i

 are defined as follows: 

( ) 0

1

1

1

9

8

7

6

5

4

3

2

1

)(
8

)(
888

)(
88

)(
888

)(
88

)(
8

)()()()()()(

)(
1

)(
111

)(
11

)(
111

)(
11

)(
1

, =

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

f
f
f
f
f
f
f
f
f

pppppppppppp

pppppppppppp

pppppppppppp

iiiiii

iiiiii

iiiiii

i

yxyyyyxxxyxx

jyjxjyjyjyjyjxjxjxjyjxjx

yxyyyyxxxyxx

IIIIII

IIIIII

IIIIII

TIAf
M

M  

 

 

 

(3-16) 

The 9-vector ( )TIf ,i
 is the right-null space of A, found by singular value decomposition of A. 

However, the corresponding fundamental matrix ( )TIF ,i
 does not satisfy the property of 

singularity. Therefore, a singular value decomposition of ( )TIF ,i
 is done and returns ( )TIF ,i

 = 

UDVT, where U and V are orthogonal and D = diag(r, s, t) is a diagonal matrix of eigenvalues 

r, s, t satisfying r > s > t. The fundamental matrix ( )TIF ,i
 is modified such that it is equal to 

Udiag(r, s, 0)VT in order to satisfy the property of singularity. 

 The fundamental matrix ( )TIF ,i
 has 9 entries but is defined only up to a scale and it is 

singular. Therefore, it is possible to solve for ( )TIF ,i
 from just 7 matches and this method is 

called the seven-point algorithm (Deriche et al., 1994). It builds up a 7x9 system similar to 

that obtained with the eight-point algorithm (equation (3-16)). The solution ( )TIF ,i
 of this 
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system is a 2-dimensional space of the form α ( )1,TIF
i

 + (1-α) ( )2,TIF
i

, where α is a scalar 

variable. ( )1,TIF
i

 and ( ) 2,TIF
i

 are the 3x3 matrices formed from the 9-vectors ( )1,TIf
i

 and ( ) 2,TIf
i

 

of the right-null space of A. As the fundamental matrix is of rank 2, det(α ( )1,TIF
i

 + (1-

α) ( ) 2,TIF
i

) = 0. There is either 1 or 3 real solutions for α which returns 1 or 3 solutions for 

( )TIF ,i
. This method returns, therefore, solutions that satisfy the property of singularity. 

  In this thesis, the seven-point algorithm was used since it accounts for the singularity 

of the fundamental matrix. Other methods have been presented in order to compute more 

accurate fundamental matrices especially when the matches are corrupted by outliers which 

are pairs of features that are inconsistent with the epipolar geometry (Torr and Davidson, 

2003). 

3.5.3.3 Robust estimations of the fundamental matrix 

The robust estimations of the fundamental matrix ( )TIF ,i
 are iterative methods that minimise a 

function of the algebraic residuals and that take into account the properties of the 

fundamental matrix. 

3.5.3.3.1 Fitting errors or residuals 

The eight-point and the seven-point algorithms search for the solution ( )TIF ,i
 such that it 

minimises the sum of squared algebraic residual errors defined in equation (3-14). The matrix 

( )TIF ,i
 is determined by least squares. However, the solution risks being sub-optimal since the 

errors ( )i
je I  are not identically distributed (Luong and Faugeras, 1996; Torr and Murray, 1997; 

Zhang, 1998). 

 The fundamental matrix ( )TIF ,i
 can be interpreted as the ellipse that fits the set of 

matches { ( )i
j
Ip  , pj}j=1..L (Torr and Murray, 1997). Sampson (1982) demonstrated that fitting 

algebraic errors to ellipses with the least squares returns sub-optimal solutions. Optimal 

solutions are obtained by least squares when the errors are weighted by the inverse of the 

norm of their gradient or standard deviation. This means that the sum of squares of the 

perpendicular geometric distances of the matches to the ellipse is minimised (Kendall and 

Stuart, 1983). 

 Weng et al. (1989) adapted these observations to the computation of the fundamental 

matrix. A first order approximation of the standard deviation of the algebraic errors ( )i
je I  is: 
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(3-17) 

where ( )
2

i
jxp Iσ , ( )

2
i

jyp Iσ , 2
ypσ , and 2

jypσ  are the variance and covariance terms of the residuals of 

the localisation of the features in the endoscopic images (Luong and Faugeras, 1996; Torr 

and Murray, 1997; Zhang, 1998). Weng et al. (1989), Luong and Faugeras (1996), Torr and 

Murray (1997), and Zhang (1998) made the assumption that these terms are almost equal, 

therefore, the covariance matrix of the localisation errors ( )i
j
Ip

Λ = σ2.12 where 12 is the 2 x 2 

identity matrix. Thus, the standard deviation of the errors ( )i
je I  is: 
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In order to optimise the solution for ( )TIF ,i
, the residuals ( )i

je I  that have to be minimised 

should be the Sampson’s residuals: 
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 Luong and Faugeras (1996) suggested that results similar to those resulting from a 

minimisation of the Sampson’s residuals could be obtained by minimising the distance of the 

features to the epipolar lines in each image Ii and T and introduced the epipolar residuals: 
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(3-20)

Although epipolar residuals are well-used measures, the Sampson’s residual is preferred since 

it corresponds to the algebraic residuals divided by their standard deviation in order to ensure 

optimality of the solution of the least squares (Torr and Murray, 1997). Recently, Sugaya and 

Kanatani (2007, 2008) introduced other residuals to minimise for the determination of the 

fundamental matrix. They were based on the covariance matrix of the noise with which the 

features are detected. Although their method returned accurate fundamental matrices, the 

classical residuals were explored in this thesis since Sugaya and Kanatani’s method requires 

an estimate of the standard deviation of the noise on the features and was not developed and 

tested for the case of feature matches contaminated with outliers. 
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 Minimising the sum of squared Sampson’s or epipolar residuals with the eight-point 

or seven-point algorithm does not lead to solve a linear system as it is the case when the 

algebraic residual is minimised (equation (3-14)). Iteratively re-weighted least squares are, 

therefore, required (Bookstein, 1979; Sampson, 1982). The feature detection and matching 

techniques risk returning outliers or pairs of features in Ii and T that do not correspond to the 

same anatomical point in endoscopic images, for example. These iterative methods are still 

not robust to outliers or mismatches. 

3.5.3.3.2 Integration of the seven-point algorithm into a random sampling consensus 

The goal of robust estimations of the fundamental matrix ( )TIF ,i
 is to determine the set of 

inliers and the matrix ( )TIF ,i
 that best fits the inliers. These methods are Monte-Carlo like 

methods: many combinations of a set of inliers and estimations of ( )TIF ,i
 are tested. 

 The robust methods consist of minimising a criterion function ( )TI ,i
S  of the fitting 

errors over the whole set of matches { ( )i
j
Ip  , pj}j=1..L. The minimisation is solved by 

combining either the eight-point or the seven-point algorithm with a Monte-Carlo process 

followed by a non-linear optimisation over the whole set of detected inliers. Besides, Hartley 

(1995) demonstrated that an estimation of the fundamental matrix with a minimal set of 

points such as the eight-point or seven-point algorithms is more robust when the points or 

features are translated such that their centroid is at the origin and then scaled isotropically 

such that the average distance from the origin is equal to 2 . This returns a normalised 

fundamental matrix which is denormalised using the transformations applied to the features. 

The main framework of the robust methods is described in Hartley and Zisserman (2004) and 

is: 

Given L matches { ( )i
j
Ip  , pj}j=1..L between image Ii and image T: 

1. Translate the coordinates of the features such that their centroid is at the origin of the 

coordinates and scale these coordinates such that the average distance from the origin 

is equal to 2 . 

2. Draw m random subsamples of 7 different matches. For each subsample of index k: 

a. The seven-point algorithm is used to compute the fundamental matrix ( )ki TIF , . 

This can return either 1 or 3 real solutions. 

b. The squared fitting errors ( )i
je I  of the L matches are computed. In this thesis, 

the fitting errors are the Sampson’s residuals. 
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c. The criterion function ( )ki
S TI ,  is estimated with respect to the whole set of 

matches. 

3. The solution ( )TIF ,i
 is the ( )ki TIF ,  for which ( )ki

S TI ,  is minimal over all the m tested 

( )ki
S TI , ’s. 

4. Denormalise ( )TIF ,i
. 

5. The solution ( )TIF ,i
 is refined over the set of inliers by nonlinear optimisation. The 

optimisation problem consists of looking for ( )TIF ,i
 such that it minimises the criterion 

function ( )TI ,i
S  with the constraints that the determinant of ( )TIF ,i

, det( ( )TIF ,i
), is null 

and the norm of ( )TIF ,i
, || ( )TIF ,i

||, is equal to 1: 

( )
( ) ( )( )
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(3-21) 

where ρ is a function of the residuals ( )i
je I . The classical robust techniques may be the Least 

Median of Squares (LMedS) (Rousseeuw and Leroy, 1987), the Random SAmple Consensus 

(RANSAC) (Fischler and Bolles, 1981), or the Maximum A Posteriori SAmple Consensus 

(MAPSAC) (Torr, 2002). The nonlinear optimisation problem in equation (3-21) is solved by 

Sequential Quadratic Programming (Boggs and Wolle, 1996) after simplifying the 

constrained problem into a non-constrained one with the Kuhn Tucker equations (Kuhn, 

1976). An implementation from the Matlab optimisation toolbox was used (Matlab, R14, The 

Mathworks Ltd, Cambridge, UK). 

3.5.3.3.3 Least Median of Squares, RANdom SAmple Consensus, Maximum A 

Posteriori SAmple Consensus 

The robust methods LMedS, RANSAC, and MAPSAC differ in the criterion function ( )TI ,i
S  

that they aim to minimise. 

The Least Median of Squares (LMedS):  

The LMedS consist of finding the fundamental matrix ( )TIF ,i
 that fits a set of inliers such that 

it minimises the median of the residual errors ( )2i
je I  of the matches over all of the possible 

solutions of ( )TIF ,i
: 

( )
( )

( )2
,

,

min i

i
i jj

emedianS I

FTI
TI

= . (3-22)
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Thus, ( )TIF ,i
 is the matrix for which ( )TI ,i

S  is minimal. The set of inliers is found as the 

matches whose residual errors ( )i
je I  satisfy | ( )i

je I  | < 1.96σ, where σ is defined as (Rousseeuw 

and Leroy, 1987): 
( )i
j

j
emed I4826.1=σ . (3-23)

 

The RANdom SAmple Consensus (RANSAC): 

The RANSAC finds the fundamental matrix that maximises the number of inliers and 

minimises ( )TI ,i
S  defined as (Torr and Murray, 1997; Torr and Zisserman, 2000): 
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The threshold is set such that T = 1.96σ where σ is the standard deviation of the residuals 
( )i
je I . The standard deviation is estimated with the LMedS with a training image before 

applying the RANSAC (Zhang, 1998). 

 

The Maximum A Posteriori SAmple Consensus (MAPSAC): 

The MAPSAC was introduced by Torr (2002). The matches { ( )i
j
Ip , pj}j=1..L in the endoscopic 

image Ii and in the target image T are linked with a 2 view relation R with parameters θ = 

{ ( )TIF ,i
, β , γ}, β are the corrected locations of the features { ( )i

j
Ip  , pj}j=1..L corrupted by the 

noise in the images, and γ indicates whether the matches are inliers or outliers. The noise 

model and R define a hypothesized model M for the set of matches noted D = { ( )i
j
Ip  , pj}j=1..L. 

The parameter θ is optimally estimated such that: 
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(3-25)

where I is the information upon which all the probabilities are conditioned. The first term Pr(D 

| θ, M, I) is the likelihood term, the second term Pr(θ | M, I) is the prior term, and the 

denominator Pr(D | M, I) is called the evidence which is constant for a fixed M (Torr, 2002). 

The prior is supposed sufficiently diffuse to be constant (Torr, 2002). 

 For an estimated set of parameters θ = { ( )TIF ,i
 , β , γ}, the residuals ( )i

je I  that the 

matches form with ( )TIF ,i
 to fit the model M follow a normal distribution of zero mean and 
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variance σ2 (Torr, 2002). The outliers follow a uniform distribution of parameter 
v
1  where v is 

the volume of the space where outliers are located. Indeed, outliers can lie anywhere within 

the endoscopic image. Therefore, the likelihood of a model is given as follows: 

( )
( )

( )∏
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

Lj
j

j
j v

e i

..1
2

24

2

11
2

exp
2

1,,,,|Pr γ
σπσ

γγβα
I

IMD . 
 

(3-26)

The set of parameters θ = { ( )TIF ,i
 , β , γ} needs to be optimally estimated which is equivalent 

to maximising equations (3-25) or (3-26) or to minimising a cost function ( )TI ,i
S  defined as: 
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where W is the dimension of the search window within which the matched feature may be in 

the target image T and σ is the standard deviation of the residuals ( )i
je I  (Torr, 2002; Torr and 

Davidson, 2003). 

 

3.5.3.4 Optimisation of the computation of the fundamental matrix 

The robust methods require setting a number of parameters in order to optimise the 

estimation of ( )TIF ,i
, like: 

- The number of samples m of seven matches or eight matches with the seven-point or 

eight-point algorithm. 

- The selection of the seven or eight matches in such a way that the Monte Carlo 

technique is efficient. 

Ideally, all of the samples of matches from D = { ( )i
j
Ip  , pj}j=1..L have to be tested, but this is 

usually computationally infeasible. Thus, the number of samples needs to be set such that 

there is a statistical significance. Fischler and Bolles (1981) and Rousseeuw and Leroy (1987) 

presented slightly different means of calculations, but both return similar numbers (Zhang, 

1998). Rousseeuw’s approach consists of choosing the number of samples m sufficiently high 

to give the probability Γ in excess of 99% that a good sample is selected. The probability that 

at least one of the m samples is good is given by: 
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( )[ ]mpε−−−=Γ 111 . (3-28)

The parameter p is the number of feature matches, and ε is the assumed fraction of outliers. 

Thus, the number of samples is given by: 

( )
( )( )pm

ε−−
Γ−

=
11log

1log
. 

(3-29)

The values of m as functions of ε are given in Table 3-1. 

 The number of samples m is set such that there is at least one good sample of 

matches. However, Zhang (1998) noticed that the location of the features of the seven or 

eight matches of the samples may be very close to each other in both images. As stated in 

Luong and Faugeras (1996), such a situation leads to unstable and imprecise fundamental 

matrices. Therefore, Zhang (1998) suggested a method to achieve higher stability and 

efficiency for the recovery of the epipolar geometry. Each image is divided in bxb buckets 

which group together features that are spatially close (Fig. 3-21 a). During the Monte Carlo 

process, the principle consists of selecting randomly 7 or 8 mutually different buckets and 

then randomly choosing one match in each selected bucket. However, the number of features 

in one bucket may be very different from that in another bucket. It is preferable to select a 

bucket having many matches and the selection of the buckets cannot be entirely random. If 

there are in total l buckets, the range [0,1] is divided into l intervals such that the width of the 

ith interval is equal to ni/Σini, where ni is the number of matches in the ith bucket (Fig. 3-21 b)). 

A random number is generated in the interval [0,1] and falls in the ith interval which means 

that the ith bucket is selected. 

 

3.5.3.5 Summary of the computation of the fundamental matrix for a pair of images 

The main steps of the computation of the fundamental matrix were presented in Fig. 3-16. 

Fig. 3-22 presents the steps in more details by integrating the algorithms and methods 

presented in the previous sections. The remaining questions are: 

- The choice of a technique for feature detection and matching 

- The number of features that need to be detected for the computation of the 

fundamental matrix 

- The choice of the Random Sampling Consensus to determine the fundamental matrix 

These choices are discussed in the next chapter Chapter 4 ‘Feature Analysis in Endoscopic 

Images and Endoscope Camera Movement’. 
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a) b)  
Fig. 3-21: The process of matches’ selection: a) the image is divided in buckets to group together the 

features that are spatially close; b) the buckets are selected based on the number of features. 

 
Table 3-1: Minimum number m of matches to draw for the estimation of the fundamental matrix: 

Percentage of outliers  

10% 20% 30% 40% 50% 60% 70% 80% 90% 

m 

for p = 7 
8 20 54 163 588 2809 21 055 359 780 5x107 

m 

for p = 8 
9 26 78 272 1 177 7 025 70 188 1.8x106 4.6x108 

 

inputs Image Ii
Image T

Feature detection and matching 
with the LK tracker or the SIFT

Fundamental matrix computation:
1. Translate and scale the coordinates of the features
2. Apply the 7-point algorithm in a random sampling 

consensus (LMedS, RANSAC, or MAPSAC):
a. The features are drawn from 7 different buckets
b. The cost to minimise is a function of the Sampson’s 

residuals
3. Denormalise the first estimation of the fundamental matrix
4. Refine this first estimation over the set of inliers by 

constrained nonlinear optimisation

Correction of the endoscopic image distortionspreliminary step

F( , T)
output

Ii  
Fig. 3-22: Summary of the framework and possible algorithms for the computation of the fundamental 

matrix. 

Image not displayed for Copyright reasons 
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3.6 Conclusion 

Lesions detected by optical biopsy during gastroscopic, colonoscopic, or pulmonary 

examinations can be re-localised using either pre-operative images and EM tracking systems, 

or endoscopic images, or interventional MR images, or a combination of these modalities. A 

clinical application of optical biopsies is the detection of biopsy sites invisible 

macroscopically in the oesophagus during a surveillance examination of BO. Other 

applications of optical biopsies can be the detection of flat polyps and microscopic colitis in 

colon. These examinations make use of interventional endoscopic images. Thus, the re-

localisation of the lesions developed in this thesis for these clinical applications makes use of 

endoscopic images only. The epipolar geometry formed by a reference image where the 

biopsy site location is known and a target image where the biopsy site needs to be re-

localised has to be recovered for the specific case of the endoscopic images. The choice of the 

algorithms is discussed in the next chapter. 
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Chapter 4 Feature Analysis in Endoscopic Images and 

Endoscope Camera Movement 
 

4.1 Introduction 

The biopsy site is re-localised in a target endoscopic image T using the epipolar geometries 

formed by this image with each reference image Ii. For each pair of images Ii ↔ T, the 

epipolar geometry can be described algebraically by the fundamental matrix ( )TIF ,i
. The 

recovery of the epipolar geometry requires (Fig. 4-1): 

- The correction of the distortions in the endoscopic images. 

- The detection of features in the endoscopic images Ii and T and matching the features 

together. 

- The estimation of the fundamental matrix ( )TIF ,i
 from the set of matched features. 

As the epipolar lines derived from the biopsy site locations in the reference images Ii 

are used to re-localise the biopsy site in the target image T, they have to be computed with 

high accuracy. This accuracy depends on: 

- The number and proportion of good matched features termed inliers (Hartley and 

Zisserman, 2004). 

 

inputs Image I1
Image T

Image Ii
Image T

Image IN
Image T

Feature detection and matching

Fundamental matrix computation

… …

Correction of the endoscopic image distortionspreliminary step

F( ,T)outputs F( ,T) F( ,T)I1 Ii IN  
Fig. 4-1: Framework for the estimation of the fundamental matrices that each reference image Ii forms 

with the target image T. 
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- The wide spread of the features on the whole physical surface observed in the 

endoscopic image (Luong and Faugeras, 1996). 

- The method used to compute the fundamental matrix (Torr and Murray, 1997; Zhang, 

1998; Torr and Zisserman, 2000; Hartley and Zisserman, 2004). 

This chapter aims to present a method to compute an accurate fundamental matrix in 

the specific context of endoscopic images. Methods for feature detection and matching are 

discussed in this context. Algorithms for the recovery of the epipolar geometry as well as 

their hypotheses are also discussed since their practical use can help determine which feature 

detection and matching technique is well-adapted and how many features have to be detected 

for the derivation of accurate epipolar lines. 

4.2 Analysis of features in endoscopic images 

Two main methods for feature detection and matching were presented in Chapter 3 

‘Literature Review: Possible Approaches for Biopsy Site Re-localisation and Application for 

the Surveillance Examination of Barrett’s Oesophagus’. These were the Lucas-Kanade (LK) 

tracker which tracks features through endoscopic images and the Scale Invariant Feature 

Transform which detects features independently in the images and which matches them using 

their descriptors. The pros and cons of using these methods are discussed. Besides, the 

algorithms used for the estimation of the fundamental matrix make the assumption that the 

features are localised with an error that follows a Gaussian distribution. This assumption is 

studied for the case of endoscopic images. 

4.2.1 Feature detection in the image scale-space and matching of descriptors 

 The SIFT and the LK tracker have been used for feature detection and matching in 

endoscopic images, for example by Mountney et al. (2006), Hu et al. (2007, 2009), and Luo 

et al. (2010). The use of one method mainly depends on the type of sequences that need 

processing. 

 SIFT feature matching has the advantage of detecting features independently in the 

reference images and in the target image. Therefore, there is no tracking through consecutive 

images to find the matches. The SIFT may be appropriate to sequences where intermediate 

endoscopic images are blurred, or corrupted by the presence of air/water bubbles or by 

specularities (Mori et al., 2005). Indeed, for this type of sequences, the LK tracker loses track 

of the features and a method to start tracking again needs to be developed. 

 The neighbourhoods of the features that commonly correspond to vessel curvatures 

and intersections look similar within an image and their visual content can change 
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significantly when the viewpoint of the endoscope camera changes (Atasoy et al., 2009). This 

is illustrated with two examples: for this thesis, features were detected and matched for 2 

pairs of reference and target images acquired during a surveillance examination of BO. The 

pairs were processed first with the LK tracker, and secondly with the SIFT. Anatomical 

points corresponding to vessel intersections or curvatures were detected as feature points with 

both the LK tracker and the SIFT. One feature for each pair was considered as an example of 

the limits of the SIFT. Both examples show that the LK tracker returned the right match 

while SIFT returned the wrong match (Fig. 4-2 and Fig. 4-3 present the results for the first 

pair, and Fig. 4-4 and Fig. 4-5 present the results for the second pair). This is mainly due to 

the spatial constraint that the LK tracker imposes when it tracks a feature while the SIFT does 

not take into account this constraint. The effect of the matching method on the re-localisation 

will be discussed in more details in Chapter 7 ‘Test of the Re-localisation Methods on 

Phantom and Patient Data’. 

 In the remainder of this thesis, the LK tracker will be used for non critical endoscopic 

sequences for which the endoscope camera movement is controlled and for which the 

acquired images are neat. The SIFT will be used for the critical endoscopic sequences for 

which the camera moves too quickly or for which air/water bubbles appear. 

 

a) b)

c) d)  
Fig. 4-2: Results of the matching of features using the LK tracker for the first pair of endoscopic 

images acquired during an endoscopy examination for the surveillance of BO: a) a feature (green 

point) was detected in the reference image and was located at the intersection of blood vessels; b) 

zoomed image on the feature; c) the LK tracker tracked the feature successfully and the resulting 

matched feature in the target image was located at the intersection of the same blood vessels; d) 

zoomed image on the matched feature. 
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a) b)

c) d)

e) f)
 

Fig. 4-3: Illustration of a mismatch with the SIFT for the first pair of endoscopic images acquired 

during a surveillance examination of Barrett’s Oesophagus: a) a feature has been detected in the 

reference image of the oesophagus at a given scale and with a given orientation: the feature is at the 

centre of the circle whose radius is proportional to the scale of the feature and the drawn radius 

indicates the orientation of the feature; b) zoomed image on the detected feature in a); c) the drawn 

feature in the target image is the actual match of the feature drawn in a) but the matching process does 

not match these two features; d) the zoomed image on the detected feature in c) shows that the 

orientation of the feature is not the same as that of the feature in a); e) the matching process matches 

the feature in a) with the feature in e) which does not correspond to the same anatomical point; f) 

zoomed image on the feature detected in e). 
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a) b)

c) d)

e) f)  
Fig. 4-4: Illustration of a mismatch with the SIFT for the second pair of endoscopic images: a) a 

feature has been detected in the reference image of the oesophagus at a given scale and with a given 

orientation; b) zoomed image on the detected feature in a); c) the drawn feature in the target image is 

the actual match of the feature drawn in a) but the matching process does not match these two features; 

d) the zoomed image on the detected feature in c) shows that the orientation of the feature is not the 

same as that of the feature in a); e) the matching process matches the feature in a) with the feature in e) 

which does not correspond to the same anatomical point; f) zoomed image on the feature detected in 

e). 

 



 
 
 
 

100 

a) b)

c) d)  
Fig. 4-5: Results of the matching of features using the LK tracker for the second pair of endoscopic 

images acquired during an endoscopy examination for the surveillance of BO: a) a feature (green 

point) was detected in the reference image and was located at the intersection of blood vessels; b) 

zoomed image on the feature; c) the LK tracker tracked the feature successfully and the resulting 

matched feature in the target image was located at the intersection of the same blood vessels; d) 

zoomed image on the matched feature. 

 

Feature 1Feature 4

Feature 2

Feature 3

Feature 1Feature 4

Feature 2

Feature 3

a) b) c)  
Fig. 4-6: Illustration of the error of the localisation of 4 detected features in an endoscopic image: a) a 

255 pixels x 165 pixels endoscopic image of the pattern corresponding to an endoscopic image 

acquired on a patient during a surveillance examination of Barrett’s Oesophagus; b) the green points 

correspond to the 100 estimations of the features detected with the LK tracker in 100 endoscopic 

images of the pattern; c) the green points correspond to the 100 estimations of the features detected 

with SIFT in 100 endoscopic images of the pattern. 

 

4.2.2 Experiment: study of the error for the localisation of the features 

Features are detected with an error due to the noise in endoscopic images. Many authors 

made the classical assumption that the errors of the localisation of features are identically and 

independently distributed with a Gaussian distribution in order to use computer vision 
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algorithms, especially those for the computation of the fundamental matrix (Luong and 

Faugeras, 1996; Csurka et al., 1997; Torr and Murray, 1997; Zhang, 1998; Hartley and 

Zisserman, 2004). This experiment aimed to study the distribution of the error of the 

localisation of features detected with the LK tracker and with SIFT in endoscopic images 

whose distortions were corrected. 

 

4.2.2.1 Materials and method 

 An image from an endoscopy sequence acquired during a surveillance examination of 

Barrett’s Oesophagus was printed out. This image was glued to a flat rigid box, and placed in 

front of a digital high resolution endoscope mounted with a video colour CCD camera 

(Pentax Ltd.). The box and the endoscope were maintained still in order to acquire the same 

endoscopic images and to evaluate the uncertainty of the feature localisation. Fig. 4-6 a) 

presents an example of the acquired endoscopic images. Features were detected first with the 

LK tracker and secondly with SIFT in 100 acquired images of the pattern stuck on the box. A 

separate acquired image was used to set the parameters of the LK tracker and of SIFT for the 

detection of features. These parameter values were used for the 100 other images. Gaussian 

distribution of the error for 4 different feature locations was evaluated as presented by 

Johnson and Wichern (1998). Features were selected such that they differed in contrast and 

such that they corresponded to very different patterns. The feature of interest can be 

considered as a random vector pj whose location ( )i
j
Ip  is estimated in each image Ii. If the 

error on pj were from a bivariate Gaussian distribution, the probability for pj to satisfy (pj - 

μj)trΛpj
-1(pj - μj) ≤ χ2

2(0.5) should be 0.5 where μj and Λpj are the mean and the covariance 

matrix of the Gaussian distribution, and χ2 is the chi-square distribution with 2 degrees of 

freedom (Johnson and Wichern, 1998). The test of normality of pj consists, therefore, of 

computing the mean pjmean and the covariance matrix Sj of the observations ( )i
j
Ip , and of 

counting the percentage of sample observations ( )i
j
Ip  that satisfy (pj - pjmean)trSj

-1(pj - pjmean) ≤ 

χ2
2(α) for α = [0.25 , 0.5 , 0.75 , 0.99]. Statistical tests, such as the Kolmogorov-Smirnov test, 

provide an alternative way to test the normality of the localisation of the features. However, 

such tests are designed to demonstrate the non-normality of a distribution. 

 

4.2.2.2 Results 

 The locations of the features of interest were displayed as green points in one of the 

100 acquired endoscopic images (Fig. 4-6). These locations varied for both detections with 
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the LK tracker and SIFT. The percentage of sample observations was approximately the same 

as the value of α except for a few cases especially for the features detected with the LK 

tracker (Table 4-1 and Table 4-2). The reason is that the implementation of the LK tracker 

used in this thesis detects feature locations at the pixel resolution. It results from this 

implementation that no feature is in the 25% confidence contour or that almost all the features 

are in the 75% confidence contour. Although this test was run for only four features in an 

endoscopic image, the classical assumption of Gaussian distribution of the error on the 

feature location was accepted for the rest of the thesis. 

4.3 Analysis of the methods for the estimation of the camera 

movement 

Three main methods were presented in Chapter 3 ‘Literature Review: Possible Approaches 

for Biopsy Site Re-localisation and Application for the Surveillance Examination of Barrett’s 

Oesophagus’. These are the Least Median of Squares (LMedS), the RANdom SAmple 

Consensus (RANSAC), and the Maximum A Posteriori SAmple Consensus (MAPSAC). 

These methods are compared in this chapter for the specific case of endoscopic images and 

the choice for MAPSAC is explained. Moreover, the results of an experiment are presented 

and help decide how many feature matches are used to compute the fundamental matrix. 

 

Table 4-1: Percentage of sample observations after feature detection with the LK tracker for various α: 

α 25% 50% 75% 99% 

Feature 1 0 41 96 100 

Feature 2 34 34 78 100 

Feature 3 22 43 61 100 

% of sample 

observations 

Feature 4 0 35 95 100 

 

Table 4-2: Percentage of sample observations after feature detection with the SIFT for various α: 

α 25% 50% 75% 99% 

Feature 1 0 44 93 100 

Feature 2 20 40 67 100 

Feature 3 4 51 86 100 

% of sample 

observations 

Feature 4 4 57 86 100 
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4.3.1 Experiment: comparison of the estimations of the fundamental matrix with 

LMedS, RANSAC, and MAPSAC 

Torr and Murray (1997) and Torr (2002) investigated the performances of the LMedS, 

RANSAC, and MAPSAC methods. They found that the MAPSAC outperformed the other 

two methods as it searches for the fundamental matrix ( )TIF ,i
 which best fits the set of 

detected inliers while the other two methods tend to return the solution which maximises the 

number of inliers. The following experiment also illustrates why the MAPSAC is chosen for 

the recovery of the epipolar geometry between endoscopic images. 

4.3.1.1 Materials and method 

The overall goal of the biopsy site re-localisation is the determination of accurate 

epipolar lines. Therefore, this experiment compared the accuracy of the epipolar lines in the 

target image T derived from the biopsy site location in the reference images Ii with the 3 

methods LMedS, RANSAC, and MAPSAC. The epipolar geometry was recovered by 

following the process presented in Fig. 3-22. One sequence from the same surveillance 

examination of Barrett’s Oesophagus (BO) of a patient was processed. Image dimensions 

were 339 pixels x 216 pixels and the sequence included 101 images. Images were 

undistorted. 

The first image was used to tune the parameters for feature detection and tracking 

with the LK tracker. The number of inliers was counted which helped set the number m of 

repeats of the random sampling consensus for the computation of the fundamental matrix. 

The fundamental matrix was recovered between this first image and the last image of the 

sequence with the LMedS in order to find an estimate of the residuals ( )i
je I  and of their 

standard deviation σ. This standard deviation was used to set the threshold T for the 

distinction of inliers and outliers with RANSAC and MAPSAC. Given the image dimensions, 

the size of the buckets to group the features that are spatially close was set at 20 pixels. 

For the 100 other pairs of images Ii ↔ T: 

- The feature matches were found with the LK tracker 

- The fundamental matrices were recovered, afterwards, with either the LMedS, or the 

RANSAC, or the MAPSAC. 

Table 4-3: RMS errors in pixels of the distances from the epipolar lines to the ground-truth of the 

biopsy site in the target image T when the lines are computed with LMedS, RANSAC, or MAPSAC: 

RMSLMedS (pixels) RMSRANSAC (pixels) RMSMAPSAC (pixels) 

1.86 1.80 1.70 
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- The biopsy site was a distinctive mark at the tissue surface and was tracked manually 

to return a ground truth position in T referred as p0 = [p0x, p0y, 1] tr. For each pair of 

images Ii ↔ T, the epipolar line corresponding to the biopsy site in Ii was derived in 

T. The distances of the epipolar lines ( ) ( ) ( ) ( )[ ] tr
,, iiii

jmjyjxj elelel IIIIel =  from the ground-

truth p0 in T were measured and the Root Mean Squared (RMS) error of the distances 

was computed: 

( ) ( ) ( )
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(4-1) 

Three RMS errors were compared: the first one was obtained for the epipolar geometry 

estimated with the LMedS, the second one for the RANSAC, and third one for the MAPSAC. 

4.3.1.2 Results and discussion 

 The epipolar lines recovered with the MAPSAC were slightly more accurate than 

those recovered with the LMedS or the RANSAC (Table 4-3). The epipolar lines all passed a 

few pixels away from the ground-truth. Although the results did not show a great difference 

in accuracy, the MAPSAC was preferred for the computation of the epipolar geometry in this 

thesis. The MAPSAC has the advantage of taking into account the residuals that the matches 

form with the fundamental matrix in the cost function (equation (3-27)) while the RANSAC 

scores only outliers in the cost function (equation (3-24)). If the threshold T for the distinction 

of inliers from outliers is set too high, the robust estimate with RANSAC can be very poor 

and there are more solutions with the same score tending to poor estimations. Besides, 

MAPSAC is looking for a solution which fits the matches with a minimal sum of squared 

residuals while RANSAC looks for the solution which has the maximum number of inliers 

whatever their residuals are to fit the solution. MAPSAC is preferred to LMedS since LMedS 

is not robust for more than 50% outliers (Rousseeuw and Leroy, 1987). 

4.3.2 Experiment: number of matches for the computation of the fundamental 

matrix 

In this thesis, the fundamental matrix is computed from a minimal set of matches which is 7. 

The LK tracker or SIFT tend to return outliers among the matches. Thus, more than 7 

matches have to be detected. Given 2 endoscopic images, the goal of this experiment was to 

give an order of the number of matches that have to be detected in order to recover accurate 

epipolar lines for the biopsy site re-localisation. Hartley and Zisserman (2004) demonstrated 

experimentally that epipolar lines recovered from 50 matches were more precise than those 
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recovered from 20 matches. They ran these experiments with real world images where 

objects providing features were at various distances from the camera. Luong and Faugeras 

(1996) discussed as well the number of matches and concluded that accurate epipolar 

geometry is commonly recovered from sets of a lot of matched features that spread well over 

the image. However, the matches used for the experiments presented by Hartley and 

Zisserman (2004) and by Luong and Faugeras (1996) did not contain outliers. Moreover, the 

authors did not apply their computations to endoscopic images. Therefore, this section 

focuses on the number of matches necessary for the computation of accurate epipolar lines in 

endoscopic images acquired during a surveillance examination of BO. 

4.3.2.1 Materials and method 

 The experiment consisted of studying the accuracy of an epipolar line used for the 

biopsy site re-localisation as a function of the number of inliers used for the computation of 

the fundamental matrix. This experiment was run for a pair of one reference image where an 

optical miniprobe appeared and one target image where there was no miniprobe (Fig. 4-7). 

The image dimensions were 339 pixels x 216 pixels. 

 The process was as follows: 

1. 100 Features were tracked with the LK tracker from the reference image to the target 

image. The number of inliers was counted in order to determine a value for the 

number m of repeats of the Random Sample Consensus for the computation of the 

fundamental matrix. 

2. An inaccurate fundamental matrix was recovered between the reference image and 

the target image with the LMedS as presented in Fig. 3-22 in order to find an estimate 

of the Sampson’s residuals ( )i
je I  and of their standard deviation σ. This standard 

deviation was used to set the threshold T for the distinction of inliers and outliers 

with MAPSAC. 

 

a) b)

Biopsy 
site

Biopsy 
site

 
Fig. 4-7: Pair of reference and target images for the study of the accuracy of an epipolar line as a 

function of the number of feature matches: a) the biopsy site was selected in the reference image on a 

blob at the tissue surface, b) this biopsy site was identified in the target image and is the ground truth. 
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Table 4-4: Accuracy of the epipolar line as a function of the number of matches in the pair of reference 

image and target image. 

 Bucket size (pixels) 
 8 10 12 15 20 25 30 35 

Number of 
matches 98 86 63 43 32 27 16 15 

Number of 
inliers detected 
by MAPSAC 

66 55 40 27 20 17 10 8 

Accuracy 
(pixels) -1.39 -1.22 -4.71 6.21 7.31 6.61 22.01 -23.94 

 
3. The features were grouped into buckets as described in section ‘3.5.3.4 Optimisation 

of the computation of the fundamental matrix’. The bucket size took the values as 

follows: 8, 10, 12, 15, 20, 25, 30, and 35 pixels. For each bucket size, the 

fundamental matrix was computed as presented in Fig. 3-22 using MAPSAC and the 

values of m and T found in steps 1 and 2. The size of the bucket was, therefore, used 

to control the number of matches and to guarantee a good spread of the features over 

the whole 3D surface observed with the endoscope camera. 

4. A point was selected manually in the reference image and tracked manually in the 

target image to be the biopsy site. This biopsy site corresponded to a salient blob well 

identified in these images. The location of the biopsy site in the target image was the 

ground truth and noted p0 = [p0x, p0y, 1] tr. After the computation of the fundamental 

matrix for each bucket size, the epipolar line el = [elx, ely, elm] tr was derived in the 

target image from the biopsy site location in the reference image. The accuracy of the 

epipolar line was measured in pixels as the distance from the epipolar line to the 

ground truth in the target image: 

22

00accuracy
yx

myyxx
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(4-2) 

 

4.3.2.2 Results and discussion 

 Approximately 30% outliers were detected manually during the counting process. 

According to Table 3-1, only 54 tests of the MAPSAC could be applied to compute a correct 

fundamental matrix. However, in order to improve the chance to compute an accurate 

fundamental matrix, 3000 tests were run. When the number of matches was high which 

corresponded to small bucket sizes, for example 63, 86, or 98, the epipolar line was accurate 

(Table 4-4). The corresponding fundamental matrices were recovered from a high number of 

inliers, respectively 40, 55, and 66. For fewer matches, the accuracy was getting worse. For 
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these cases, outliers corrupted the sets of matches and the fundamental matrix could have 

been wrongly computed by detecting an outlier as an inlier. Thus, in practice for the rest of 

this thesis, the LK tracker and the SIFT were tuned such that approximately 100 matches 

could be detected. 

4.4 Conclusion 

This chapter discussed the method to recover accurate epipolar geometry for the pairs of 

reference images Ii and target image T where the re-localised biopsy site needs to be 

computed. In practice, sequences were processed offline after the endoscopy examination. 

Before the examination and image acquisition, the endoscope camera was calibrated in order 

to estimate the barrel distortions. Each acquired sequence was corrected for distortions after 

the examination. A sequence refers to a series of images acquired around the detected biopsy 

site. The last image of the sequence was used as the target image where the biopsy site 

needed to be re-localised. The first image of the sequence was used to tune the parameters of 

the algorithms for feature detection and matching and for epipolar geometry recovery. 

For the tuning, features were preferably detected and matched with the LK tracker 

applied to the first image of the sequence and to the target image. The LK tracker failed when 

the endoscope camera moved too quickly and generated blurred images, or when air/water 

bubbles obstructed the camera field of view. In these cases, SIFT features were detected and 

matched, but the matching could generate a great number of outliers since it does not impose 

a spatial constraint. Approximately 100 matches could be detected. The number of outliers 

was counted visually in order to set the number of estimations necessary for the estimation of 

the epipolar geometry. The epipolar geometry was recovered using a combination of the 7-

point algorithm with the LMedS. The 7-point algorithm was used since it imposes the 

constraint that the determinant of ( )TIF ,i
 is null. The LMedS was used in order to estimate the 

standard deviation of the Sampson’s residuals that the matches formed with the estimated 

fundamental matrix. Features in the training image and in the target image were grouped in 

buckets. For images whose dimensions were of the order of 200 pixels x 200 pixels, the 

dimensions of the buckets were 20 pixels x 20 pixels. 

The other endoscopic images were processed after parameter tuning. Features were 

detected and matched using the LK tracker or SIFT. The 7-point algorithm was run in 

combination with MAPSAC in order to estimate the epipolar geometries. The number of tests 

for MAPSAC was set at 3000 in order to guarantee a great chance of computing accurate 

fundamental matrix. Features in the images were grouped within buckets as for the tuning 

step. 
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 The next chapters demonstrate how accurate epipolar lines can be used to re-localise 

the biopsy site accurately and precisely, and to determine the confidence of the re-

localisation. Moreover, another chapter presents a method to improve the accuracy of the 

epipolar lines when they are recovered from SIFT matches. 
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Chapter 5 Re-localisation of Biopsy Sites during Endoscopy 

Examinations 
 

5.1 Introduction 

Biopsy sites detected by optical biopsy during a surveillance examination of Barrett’s 

Oesophagus (BO) need to be re-localised in the endoscopic images acquired during the same 

examination in order to guide instruments to the biopsy sites for tissue excision, or for 

treatment, or for a new tissue interrogation by optical biopsy. 

The approach for the biopsy site re-localisation is based on the computation of the 

mapping from one reference image Ii where the biopsy site location is known to the target 

image T. In the previous chapters, it was shown that this mapping can be the fundamental 

matrix ( )TIF ,i
 which is estimated during the recovery of the epipolar geometry formed by the 

pair of images Ii ↔ T. In order to recover the epipolar geometry, features in both images 

need to be detected and matched, which can be done with the Lucas Kanade (LK) tracker or 

with the Scale Invariant Feature Transform (SIFT). Bad matches due to failures of the LK 

tracker or the SIFT corrupt the accuracy of the epipolar geometry. They are, therefore, 

detected when ( )TIF ,i
 is estimated. The Maximum A Posteriori Sample Consensus (MAPSAC) 

finds a first estimate of ( )TIF ,i
 that fits best the set of inliers or good feature matches. The 

estimated ( )TIF ,i
 is refined by non-linear optimisation over the whole set of detected inliers. 

The fundamental matrix ( )TIF ,i
 transforms a point of the reference image Ii in a line 

termed epipolar line in the target image T. This line indicates the locus of the image point in 

T. In this chapter, a method is presented to re-localise the biopsy site in T using epipolar 

lines. Either 2 epipolar lines or N > 2 epipolar lines are used for the re-localisation. This was 

first published in Allain et al. (2009a.) and in Allain et al. (2010). The results of studies of the 

influence on the re-localised biopsy site of the accuracy of the epipolar lines and of the angles 

they subtend are discussed in this chapter. 

5.2 Re-localisation principle 

Epipolar lines derived from the biopsy site in the reference images Ii indicate a direction in 

the target image T along which the biopsy site is. Geometric information from the epipolar 

lines can be combined in order to determine the location of the biopsy site in T.  
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Fig. 5-1: Method for biopsy site re-localisation with 2 reference images I1 and I2, a target image T and 

two epipolar lines ( )1Iel  and ( )2Iel : the biopsy site is seen under 2 different viewpoints of the 

endoscope camera. This results in two distinct epipolar lines ( )1Iel  and ( )2Iel  that form an intersection 

at the location of the biopsy site in T. 

5.2.1 Re-localisation with 2 epipolar lines 

During an endoscopy examination for the surveillance of BO, a biopsy site can be seen from 

various viewpoints with an endoscope (Fig. 5-1). If a selected point of interest, for example a 

biopsy site, is visible in two images I1 and I2, termed reference images, it can be re-localised 

in a third subsequent image T, termed target image, when acquired for example after a small 

movement of the endoscope camera. 

Let P be the biopsy site location in the 3D space, and ( )1Ip  and ( )2Ip  be the locations 

of the biopsy site in images I1 and I2. A possible approach would consist of computing P 

from ( )1Ip  and ( )2Ip  and of projecting P back onto T. The two images I1 and I2 have to show 

the physical surface under two very different viewpoints in order to estimate accurately the 

3D position P (Hartley and Zisserman, 2004). As the endoscope camera has a limited motion 

in the oesophagus, I1, I2, and T do not show significantly different viewpoints and therefore 

this approach was not chosen for the re-localisation. The fundamental matrices ( )TIF ,1
 and 

( )TIF ,2
 can be computed between images I1 and T and images I2 and T respectively. The axes 

formed with camera centre 1 and camera centre T, and camera centre 2 and camera centre T, 

have an intersection with the image plane T, which are termed the epipoles. Let ( )1Ie  and 
( )2Ie  be the two epipoles of this configuration (Fig. 5-1). As presented in Chapter 3, 

( )TIF ,1
. ( )1Ip  is a vector and defines the epipolar line ( )1Iel , which passes through the projection 

of ( )1Ip  onto T. By geometric construction, the intersection of the plane formed by camera 

centre 1, camera centre T, and P with the image plane T is the epipolar line ( )1Iel  (Fig. 5-1). 

This plane passes through ( )1Ie . Thus, the epipolar line ( )1Iel  passes through the projection of 
( )1Ip  onto T and ( )1Ie  (Fig. 5-1). The epipolar line ( )2Iel  can be defined similarly for 
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( )TIF ,2
. ( )2Ip . The two epipolar lines indicate the locus of the possible images of ( )1Ip  and 

( )2Ip . As ( )1Ip  and ( )2Ip  correspond to the same biopsy site location in the 3D-space, the 

intersection of ( )1Iel  and ( )2Iel  returns the location of the biopsy site in the target image T 

(Allain et al., 2009a). A similar method was first proposed by Faugeras and Robert (1994). 

However, they applied it to real world images representing the same object seen under 

various viewpoints without the presence of instruments obstructing the camera field of view 

and positioned at various locations in several images. 

 During endoscopy, the biopsy site location is defined and issued at that point imaged 

with an optical biopsy miniprobe passed via the working channel of the endoscope. The 

imaging axis is commonly arranged around the central axis of the endoscope. Thus, twisting 

the head of the endoscope creates rotations and translations of the camera, while the probe 

remains at its location at the tissue surface. This motion helps generate different views of the 

biopsy site and different epipolar lines can be derived. 

5.2.2 Limits of the re-localisation with 2 epipolar lines due to their uncertainty 

The epipolar geometry formed by the pair of reference image Ii and target image T is 

recovered from a set of matched features D = { ( )i
j
Ip  , pj}j=1..L with ( ) ( ) ( )[ ] tr

1,, iii
jyjxj pp IIIp = , a 

feature in Ii which matches pj = [pjx, pjy, 1] tr, a feature in T. The endoscopes that were used 

for this thesis were mounted with a CCD camera. Noise appears in the images acquired with 

a CCD camera and has an influence on the detection of features, on the determination of their 

locations, and propagates to the fundamental matrix ( )TIF ,i
 and to the epipolar lines ( )iIel . 

 As stated in Chapter 4, Section 4.2.2 Experiment: study of the error for the 

localisation of the features’), the features ( )i
j
Ip  and pj detected with the LK tracker or with the 

SIFT are localised with an error. Many authors assumed that the errors of the localisations of 

features ( )i
j
Ip  are identically and independently distributed with a Gaussian distribution and 

they approximated the covariance matrix of these errors as ( )i
j
Ip

Λ  = σ12 where 12 is the 2x2 

identity matrix (Luong and Faugeras, 1996; Csurka et al., 1997; Torr and Murray, 1997; 

Zhang, 1998; Hartley and Zisserman, 2004). The experiments in Chapter 4 section ‘4.2.2 

Experiment: study of the error for the localisation of the features’ confirmed that this is a 

reasonable model for the images acquired with an endoscope and for the features extracted 

with the LK tracker or with the SIFT. 
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Fig. 5-2: Uncertainty of the epipolar line: it corresponds to a confidence region which is a hyperbola. 

The matched point is located on the epipolar line where the two arms narrow to a minimum. 

 

 A feature ( )i
j
Ip  in the reference image Ii is transformed by ( )TIF ,i

 as an epipolar line 

( )i
j
Iel  = ( )TIF ,i

. ( )i
j
Ip  = ( ) ( ) ( )[ ] tr

,, iii
jmjyjx elelel III  in T. Csurka et al. (1997), Zhang (1998), and 

Hartley and Zisserman (2004) demonstrated that the errors on the localisation of the features 
( )i
j
Ip  propagate to the fundamental matrix ( )TIF ,i

 and to the epipolar line ( )i
j
Iel . The uncertainty 

or error of the localisation of an epipolar line can be represented visually as a confidence 

region in which the line is likely to lie (Csurka et al., 1997; Zhang, 1998; Hartley and 

Zisserman, 2004). This region represents the range of directions and positions that the line 

may have with a given probability. Csurka et al. (1997), Zhang (1998), and Hartley and 

Zisserman (2004) showed that this region is a hyperbola (Fig. 5-2). The two arms narrow to a 

minimum at the point in T that is the image of the point in Ii from which the epipolar line was 

derived (Fig. 5-2). 

 As the epipolar lines are determined with uncertainty, they may pass a few pixels 

away from the true location of the biopsy site, and the intersection of 2 epipolar lines which 

corresponds to the re-localised biopsy site may not be in coincidence with the true location of 

the biopsy site. Furthermore, if the two epipolar lines subtend a small angle, their intersection 

may lie far away from the true location of the biopsy site. 

In order to improve accuracy and precision of the re-localisation, N epipolar lines 

from N different views of the biopsy site may be used (Allain et al., 2010). 

5.2.3 Extension of the re-localisation with N epipolar lines 

The epipolar lines are derived with uncertainty and do not pass exactly through the biopsy 

site in the target image T. Therefore, the re-localised biopsy site is computed by minimisation 

of a criterion function taking into account information about the location of the epipolar lines. 
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 The re-localised biopsy site p in the target image T must satisfy the condition of 

triangulation with its match ( )iIp  in the reference image Ii (Hartley, 1997). This condition 

means that the two axes passing respectively through Camera centre i and ( )iIp , and through 

Camera centre T and p, must meet at the position of the biopsy site P in the 3D space (Fig. 

5-3). Longuet-Higgins (1981) demonstrated that the two axes corresponding to the matching 

pair of points ( )iIp  ↔ p will meet in space if and only if the algebraic residual that the points 

form with the fundamental matrix is null: 

( )
( ) 0,

tr =⋅⋅ i

i

I
TI pFp . (5-1) 

As discussed in section ‘5.2.2 Limits of the re-localisation with 2 epipolar lines due to their 

uncertainty’, the fundamental matrix ( )TIF ,i
 is determined with uncertainty. Given the biopsy 

site location ( )iIp  in the reference image Ii and its image p in the target image T, the 

algebraic residual for the pair of points ( )iIp  ↔ p is not null. Therefore, the re-localised 

biopsy site p can be computed by minimisation of the algebraic residuals with the least 

squares method (Bjorck, 1996): 

( )
( )( )∑

=

⋅⋅
N

i

i
1

2
,

trmin
i

I
TIp

pFp . 
(5-2) 

Minimising the sum of squared algebraic residuals may not return a good estimation 

of the re-localised biopsy site p: 

− Torr (1995), Hartley and Zisserman (2004), and Hu et al. (2008b) stated that the 

algebraic residual does not have a geometric meaning. A better measure to minimise is the 

perpendicular distance from the feature matches to the fitting ellipse that corresponds to the 

fundamental matrix. 

Biopsy site P at 
the tissue surface

Camera 
centre i

Camera 
centre T

Ii
T

Re-localised 
biopsy site pF( ,T)

el

e
p(Ii)

Ii

(I i)

(Ii)

 
Fig. 5-3: Condition of triangulation: the two axes passing respectively through Camera centre i and 

( )iIp , and through Camera centre T and p, must meet at the position of the biopsy site P in the 3D 

space. 
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− Luong and Faugeras (1996), Torr and Murray (1997), and Zhang (1998) 

demonstrated that an optimal fundamental matrix ( )TIF ,i
 is obtained by dividing the algebraic 

residuals with their standard deviation (equation (3-19)). This operation corresponds to a 

minimisation of the perpendicular distance of the feature matches to the ellipse corresponding 

to ( )TIF ,i
. Thus, given the biopsy site ( )iIp  in Ii, the re-localised biopsy site p may be searched 

such that the perpendicular distance from the pair of matches ( )iIp  ↔ p to the ellipse is 

minimal. As it is assumed that the biopsy site location ( )iIp  in image Ii is known, the standard 

deviation of the algebraic residuals ( )
( ) ( ) ( ) ( ) ( )iiiii

i
eelelpelp myyxx

IIIII
TI pFp =+⋅+⋅=⋅⋅ ,

tr  

depends only on the uncertainty of the re-localised biopsy site p. By application of the 

formula of error propagation, the standard deviation of the algebraic residuals is: 

( )

( ) ( )

pp

II

I
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

=
ii

i

ee
pypxpy

pxpypx

e varcov
covvartr

2σ . 
(5-3)

where varpx and varpy are the variances of p for the components px and py, and cov is the 

covariance of the components px and py. Equation (5-3) gives: 

 ( )
( ) ( ) ( ) ( )

pxpyyxpyypxxe
iiii

i elelelel cov2varvar 222 ⋅⋅⋅+⋅+⋅= IIII
Iσ . (5-4)

For features in the images, Luong and Faugeras (1996), Torr and Murray (1997), and Zhang 

(1998) made the approximation that the variances of the feature point components along the x 

and y directions of the image are equal and that the covariance terms are too small compared 

to the variances. A similar approximation is done for the re-localised biopsy site p and the 

standard deviation of the algebraic residual is proportional to the sum of the squares of the 

first and second components of the epipolar line vector: 

( )
( ) ( )222 ii

i yxe
elel II

I +∝σ . (5-5)

Thus, the algebraic residuals are divided by their standard deviation and the biopsy site is re-

localised as the point that minimises its perpendicular distances to the epipolar lines. 

− Another approach to justify the minimisation of the algebraic residuals divided by 

their standard deviation may be inspired from Luong and Faugeras (1996), Torr and Murray 

(1997), and Zhang (1998) who introduced the concept of minimisation of the perpendicular 

distance from an image feature to its epipolar line. Indeed, a feature has to be as close as 

possible to its epipolar line. The perpendicular distance from the searched re-localised biopsy 

site p = [px, py, 1]tr to its epipolar line ( ) ( ) ( ) ( )[ ] tr
,, iiii

myx elelel IIIIel =  is defined as (Fig. 5-4): 
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(5-6) 

where ( ( )TIF ,i
. ( )iIp )1 = ( )i

xel I  is the first component of the vector ( )TIF ,i
. ( )iIp . This distance is a 

signed measure. 

For these three reasons, the re-localised biopsy site p in the target image T is 

computed such that it minimises by the linear least squares method the sum of all of its 

distances from the epipolar lines { ( )iIel }i=1..N: 

( ) ( )( ) ( )( )∑∑
==

===
N

i

N

i
i

ii dCCC
1

2

1

2
min ,min,minmin I

p

I

pp
elpelpp . 

(5-7) 
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Fig. 5-4: The definition of the re-localised biopsy site p: it is defined such that it minimises the sum of 

the perpendicular distances to the epipolar lines. 
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Fig. 5-5: Framework for the biopsy site re-localisation in the target image T. 
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C is the cost function to minimise. This solution makes the assumption that no epipolar line 

in { ( )iIel }i=1..N  is an outlier. This assumption is valid since the epipolar geometries formed for 

each pair of reference and target images Ii ↔ T are computed initially from sets of inliers 

among the matches. Any epipolar line derived from these geometries is, therefore, accurate. 

For future developments, in case an epipolar line is an outlier, equation (5-7) can be solved 

using a random sampling consensus which consists of selecting the epipolar lines that 

minimise Cmin. 

The re-localisation of the biopsy site is integrated into a whole algorithm which 

firstly recovers the epipolar geometries for each pair of endoscopic images Ii ↔ T (Fig. 5-5). 

It is assumed that these images are corrected for distortions. As discussed in Chapter 4 

section ‘4.2 Analysis of features ’, features can be detected and matched either with the Lucas 

Kanade tracker when the camera movement is smooth or SIFT when the movement is quick 

or when air/water bubbles obstruct the camera field of view. The fundamental matrix ( )TIF ,i
 is 

estimated with the Maximum A Posteriori Sample Consensus. Once all the fundamental 

matrices are estimated, the biopsy site is re-localised either with 2 epipolar lines or N epipolar 

lines. 

5.3 Experiment 1: study by simulations of the re-localisation 

precision and bias with the locations of the matches perturbed by a 

Gaussian noise and with the presence of outliers 

The epipolar lines are computed with uncertainty due to the error of the localisation of the 

features in the endoscopic images (Csurka et al., 1997; Zhang, 1998; Hartley and Zisserman, 

2004). This error or noise is assumed to be independently and identically Gaussianly 

distributed. The lines are also determined with uncertainty since outliers corrupt the matches 

(Hartley and Zisserman, 2004). The uncertainty of the epipolar lines propagates to the re-

localised biopsy site. 

5.3.1 Method 

An experiment was performed in order to study the impact of Gaussian noise that affects the 

features on the re-localised biopsy site. It was based on simulations in order to have control 

of the standard deviation of the Gaussian noise and the percentage of outliers. Simulations 

were run on a virtual endoscopic scene. 
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Fig. 5-6: Creation of a virtual endoscopy scene and generation of the images: a) a virtual 3D surface 

mimics a tubular organ; b) and c) 3D points are extracted from the surface and a camera is simulated; 

d) the 3D points are projected onto the image plane of the simulated camera moving along the surface. 
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The virtual scene reproduced a section of a hollow organ, such as an oesophagus, 

which can be described by a cylinder of diameter 2.5cm (Fig. 5-6 a)). A virtual camera 

representing an endoscope camera was placed within this virtual scene at a distance of 

approximately 0.75cm from the tissue surface and had an inclination of 30° in order to 

observe only an extent of the cylinder. The inclination was set at 30° since this was the angle 

that could be assumed from the endoscopic images acquired on real patients. Moreover, the 

camera was placed at a distance of 0.75cm from the surface since sequences extracted from 

real endoscopy examinations showed that the camera is commonly at this distance using the 

miniprobe as a scale within the image. 

Three-D points were extracted at regular distances from this cylinder in order to 

represent the features of the oesophagus and perturbed with an isotropic Gaussian noise in the 

x, y, and z directions in order to obtain an irregular distribution of points in the 3D space 

(Fig. 5-6 b) and c)). During an optical biopsy and a biopsy excision with forceps in real 

endoscopic sequences in Barrett’s Oesophagus (BO), the camera usually observes a small 

region of the oesophagus which can be its bottom half, for example. Features detected in this 

region correspond to tissue points on an extent of 2cm x 2cm according to real endoscopic 

images. Thus, only half of the 3D points were used for the simulations, and the 3D-points 

were extracted only along a 2.5cm height of the cylinder. In Chapter 4 section ‘4.3.2 

Experiment: number of matches for the computation of the fundamental matrix’, it was 

mentioned that approximately 100 feature matches would be used for the recovery of the 

epipolar geometries in real endoscopic images of 300 pixels x 300 pixels. In these 

simulations, 200 3D points were created such that various samples of 100 features could be 

used for the recovery of the epipolar geometries. 

The camera was translated and rotated within this scene in a neighbourhood of a 

1.5cm diameter centred on the initial camera position. During real endoscopy examinations of 

the oesophagus, it was possible to twist the endoscope up to 45° which is why the camera was 

rotated up to this angle. For each camera pose, the 3D points were projected onto the image 

plane Ii of the camera (Fig. 5-6 d)). 

A 3D point was selected randomly among the 200 3D points to be the biopsy site 

(Fig. 5-6 b) and c)). This point had, therefore, a known location ( )iIp  in the reference images 

Ii. The last image was considered as the target image T where the biopsy site needed to be re-

localised. The ground-truth position of this site was defined as p0. 

For each pair of images Ii ↔ T, α% of the features in the target image T were 

displaced anywhere within its field of view to create outliers. A Gaussian noise of standard 

deviation varying from 0.1 pixel to 4 pixels was added to the inliers. These figures were used 
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by Hartley (1997) and Csurka et al. (1997) for images or simulated images that had a field of 

view of hundreds of pixels. The re-localised biopsy site was computed for each Gaussian 

noise. The impact of the noise and of the outliers on the re-localised biopsy site was studied 

by estimating the root mean squared error (RMS) of the re-localisation for each standard 

deviation of the Gaussian noise. The definition of the error was inspired from West et al. 

(1999) who measured the Euclidean distance between the ground-truth of a point and its 

estimate. In these simulations, the error was defined as the Euclidean distance of the re-

localised biopsy site to the ground-truth p0. For each standard deviation of the Gaussian 

noise, the re-localised biopsy site was computed 1000 times and the RMS error was defined 

as (West et al., 1999): 

( )∑
=

−⋅=
1000

1

2

21-1000
1RMS

k

k
0pp . 

(5-8) 

where p(k) is the kth estimate of the biopsy site. By development: 
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The first term of the sum is the experimental precision: 

( )∑
=

−⋅=
1000

1

2

2mean1-1000
1precision

k

k pp . 
(5-10)

where pmean  = [xmean, ymean] tr is the mean of the biopsy sites p(k). The second term is the bias: 

2

2mean
2

1-1000
1000 bias 0pp −⋅= . 

(5-11)

The generation of a virtual 3D scene and the corresponding analysis were repeated 

twice: 

- the first study was performed with 30% outliers among the matches which corresponds to 

the proportion counted manually in the last experiment in Chapter 4 section ‘4.3.2 

Experiment: number of matches for the computation of the fundamental matrix’. The re-

localised biopsy site was computed with 2 epipolar lines, first, and with 50 epipolar lines, 

secondly. The number 50 was chosen since for some real endoscopic sequences a similar 

order of images was used for biopsy site re-localisation. 

- the second study was performed with 20% outliers among the matches. The re-localised 

biopsy site was computed with 2 epipolar lines, first, and with 10 epipolar lines, secondly, 

since for other real endoscopic sequences approximately 5 to 15 images were used for the 

biopsy site re-localisation. 
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The images generated from the projections of the 3D surface onto the camera image 

plane for each viewpoint were free of noise and outliers. For this experiment, each pair of 

images Ii ↔ T was modified as follows: 

1. 100 matches were selected randomly among the 200 matches since this number 

corresponds approximately to that used for the estimation of the epipolar geometry 

on patient data. 

2. For 1000 repeats: 

a. In image T select randomly α% of the matches and move them by a random 

displacement within the image in order to create outliers. Indeed, a feature in 

T forms an outlier with a feature in Ii if the two features do not correspond to 

the same point at the surface of the object. 

b. Apply a Gaussian noise sample of standard deviation σ to the features in T. 

The experiments in section ‘4.2.2 Experiment: study of the error for the 

localisation of the features’ demonstrated that these are strong assumptions. 

Nevertheless, these simulations just aimed to generate uncertainty of the 

epipolar lines in order to study the variations of the location of the re-

localised biopsy site p. Thus, the noise could be modelled freely. 

c. Apply a noise sample of standard deviation σ to the features in the images Ii. 

The biopsy site ( )iIp  was perturbed by the noise as well. 

d. Recover the epipolar geometry formed by the pair of images Ii ↔ T. Derive 

the epipolar lines in T from the biopsy site ( )iIp  in Ii. 

Thus, for each pair of images Ii ↔ T, there were 1000 estimations of the epipolar 

line. Steps 1. and 2. were repeated for a standard deviation of the Gaussian noise σ varying 

from 0.1 pixels to 4 pixels. 

3. For each value σ of the standard deviation of the noise: 

a. For each repeat, re-localise the biopsy site either with 2 epipolar lines or with 

N epipolar lines. Two sets of 1000 re-localised biopsy sites p(k) = [px
(k), py

(k)] tr 

in the target image T were computed: there was one set for the re-localisation 

with 2 epipolar lines and one set for the re-localisation with N epipolar lines. 

b. For each set of re-localised biopsy sites, the experimental precision and bias 

of the re-localisation method were computed (equations (5-10) and (5-11)). 

The re-localised biopsy site p was estimated 1000 times. It was assumed that the re-

localised biopsy sites computed with N epipolar lines were close to the true location of p and 

there was no need to detect outliers for the computation of the precision and of the bias. 

However, the re-localisation with 2 epipolar lines could return biopsy sites that were very far 
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from p. Indeed, p can be anywhere within the overlap of the two envelopes of the epipolar 

lines (Fig. 5-7). The true location of the biopsy site or ground truth was located where the 

arms of the hyperbolas narrow to a minimum. The simulations aimed to study the variations 

of the precision and bias of the re-localised biopsy site with the noise on the matches. 

Therefore, only the re-localised biopsy sites located around the ground truth were used for 

this study. Fifty percent of these sites were used as inliers and it was assumed that their 

distribution around the ground truth was Gaussian. These inliers were detected by the 

minimum volume ellipsoid algorithm (Rousseeuw and Leroy, 1987). This algorithm is as 

follows: 

Draw a subsample of 3 different re-localised biopsy sites p(k): 

1. Compute the mean ps_mean of these 3 sites and their covariance matrix Cs_mean. 

2. Compute the median m2 of the Mahalanobis distances of each re-localised biopsy site 

with Cs_mean: ( ) ( ) tr)(1
_

)(2
meanmeansmean ppCpp −⋅⋅−= − kkmedm . 

3. The volume of the resulting ellipsoid is proportional to (det(m2C))1/2. 

The subsample drawing is repeated. The mean and the covariance of the distribution of the 

re-localised biopsy sites correspond to those that return the minimum volume over the 

drawings. 
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a) b)  
Fig. 5-7: Intersection of two epipolar lines and locus of the possible re-localised biopsy sites: the 

epipolar lines are characterised by their envelope whose thickness represents the confidence level 

(50% confidence, for example). The lines can be anywhere within this envelope with the 

corresponding probability. The re-localised biopsy site is in the region corresponding to the overlap of 

the two envelopes. The overlap depends on the angle that the two epipolar lines subtend: a) the two 

epipolar lines subtend a large angle; b) the two epipolar lines subtend a small angle. 
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5.3.2 Results 

The matches between the images Ii and the target image T were contaminated with a 

Gaussian noise and a certain percentage of matches was displaced in order to create outliers. 

When the standard deviation of the noise increases, the features may lie far from their true 

location. The resulting feature matches can be outliers for the epipolar geometry. Thus, the 

epipolar geometry is recovered from less inliers. Luong and Faugeras (1996), Hartley and 

Zisserman (2004), and Hu et al. (2008b) showed that the epipolar geometry and, therefore, 

the epipolar lines are recovered with less precision when less inliers are used. Therefore, the 

epipolar lines may be further away from the location of the ground-truth and their orientation 

angle determined by the envelope is larger (Csurka, 1997; Hartley and Zisserman, 2004). In 

order to illustrate this property of inaccuracy, an example of the behaviour of an epipolar line 

( ) ( ) ( ) ( )[ ] tr
,, iiii

myx elelel IIIIel =  derived from the biopsy site ( )iIp  for a pair of images Ii and T with 

the increasing standard deviation of the Gaussian noise is shown in Fig. 5-8. As the epipolar 

geometry from which this epipolar line was derived was estimated 1000 times for each 

standard deviation of the noise, the distance of this epipolar line from the ground-truth was 

computed 1000 times. The accuracy of the line was defined as the root mean squared error of 

the perpendicular distance of each estimation of this line to the ground-truth p0 = [x0, y0, 1] tr 

(West et al., 1999): 
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(5-12)

In practice, it could happen that some estimates of the epipolar line out of the 1000 estimates 

were wrong. These were detected using the LMedS where the error was the distance of the 

estimate of the epipolar line to the ground truth of the biopsy site. When the standard 

deviation of the Gaussian noise increased, the values of the accuracy of the epipolar line 

increased (Fig. 5-8). 

 The biopsy site p is re-localised in the target image T either as the intersection of two 

epipolar lines or by minimisation of a cost function C which is the sum of the perpendicular 

distances from p to the epipolar lines (equation (5-7)). 

 For a re-localisation of the biopsy site with 2 epipolar lines, as the lines could be 

further away from the ground-truth when the noise increased, their intersection could lie 

further away from the ground-truth (Fig. 5-9 a)). Fifty percent of these re-localised biopsy 

sites were used for the estimation of the precision (Fig. 5-9 b)). The disparity of the re-

localised biopsy sites was greater when the noise increased. Thus, for the simulations, when 

the standard deviation of the Gaussian noise on the features increased, the re-localised biopsy 
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sites formed a larger point cloud around the ground truth and the value of the re-localisation 

precision was higher. As the point cloud was larger, the mean of the re-localised biopsy sites 

might be further away from the ground-truth p0 and the re-localisation bias might be higher 

(Fig. 5-10 and Fig. 5-11). 

 For a re-localisation with N > 2 epipolar lines, the biopsy sites were close to the 

ground-truth p0 (Fig. 5-9 c)). The value of the minimum Cmin of the cost function defined in 

equation (5-7) increased as the epipolar lines were further away from the ground-truth (Fig. 

5-12). As the biopsy site was estimated 1000 times, 1000 costs Cmin were determined and an 

average of the costs could be computed. This cost tended to increase with an increasing noise. 

Therefore, the re-localised biopsy sites were computed with less precision (Fig. 5-13 and Fig. 

5-14). Their bias increased as well. For comparison, the re-localised biopsy site was also 

computed by minimisation of the algebraic distance (equation (5-2)). The resulting biopsy 

site was less precise than that obtained by minimisation of the perpendicular distances. The 

biases were similar. Finally, precisions and biases had smaller values for re-localisation with 

N > 2 epipolar lines. 

 This experiment consisted of adding noise and outliers among the feature matches in 

order to create uncertainty of the epipolar lines. The location of the re-localised biopsy site 

was less precise and more biased when the noise increased and when the epipolar lines were 

less accurate. The resulting re-localised biopsy sites were less biased and more precise when 

they were estimated from N > 2 epipolar lines than when they were estimated from 2 epipolar 

lines. 
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Fig. 5-8: Accuracy of an epipolar line in the target image T derived from the biopsy site in the 

reference image Ii with a varying standard deviation of the Gaussian noise (a) for 30% outliers among 

the feature matches and (b) for 20% outliers among the feature matches. The image dimensions were 

700 pixels x 700 pixels. 
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a) b) c)  
Fig. 5-9: Distribution of the re-localised biopsy sites in the target image T: a) the re-localised biopsy 

site was computed 1000 times with 2 epipolar lines: because of the uncertainty of the epipolar lines, 

the re-localised biopsy sites (green points) could lie very far from the ground truth; b) zoom on the 

region where most of the re-localised biopsy sites were determined: 50% of these sites were selected 

with the MVE algorithm. The blue ellipse is the 99% confidence ellipse centred on the mean of the 

biopsy sites; c) the green points are the 1000 re-localised biopsy sites computed with N  > 2 epipolar 

lines: these sites were close to the ground-truth, the blue ellipse is the 99% confidence ellipse centred 

on the mean of the biopsy site. 
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Fig. 5-10: Bias and precision of the biopsy site re-localised with 2 epipolar lines for a varying standard 

deviation of the noise on the features and for 30% outliers. 
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Fig. 5-11: Bias and precision of the biopsy site re-localised with 2 epipolar lines for a varying standard 

deviation of the noise on the features and for 20% outliers. 
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Fig. 5-12: Average of the minimum Cmin of the cost function C used for the computation of the re-

localised biopsy site with N epipolar lines for a varying standard deviation of the noise on the features. 
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Fig. 5-13: Bias and precision of the biopsy site re-localised with 50 epipolar lines for a varying 

standard deviation of the noise on the features and for 30% outliers. 
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Fig. 5-14: Bias and precision of the biopsy site re-localised with 10 epipolar lines for a varying 

standard deviation of the noise on the features and for 20% outliers. 
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5.4 Experiment 2: Study of the influence of the angle of the epipolar 

lines on the accuracy of the re-localised biopsy site using patient data 

The biopsy site may be re-localised from a set of N ≥ 2 epipolar lines. As the lines are 

computed with uncertainty, they vary in direction and accuracy within an envelope which is a 

hyperbola. Therefore, the epipolar lines are likely to pass a few pixels away from the biopsy 

site in the target image T. Furthermore, the camera movement is limited in the oesophagus 

and many epipolar lines may subtend a very small angle, especially the lines derived from 

consecutive video images. These experiments aimed to study the influence of the angle 

subtended by the epipolar lines on the re-localised biopsy site. 

5.4.1 Materials and method 

Two sequences acquired during gastroscopy were processed for a re-localisation with 

respectively 2 epipolar lines and N > 2 epipolar lines. 

For 2 epipolar lines, the processed sequence showed a miniprobe inserted into the 

working channel of the endoscope. The miniprobe was touching the tissue for interrogation 

and was removed for tissue excision. When the tissue was scanned with the miniprobe, the 

endoscope camera could move up and down to generate multiple viewpoints. The biopsy site 

was located at the tip of the miniprobe. A mark was located next to the biopsy site which 

helped track the biopsy site location in the images where the miniprobe did not appear. The 

biopsy site location was tracked manually through the images until the target image, for 

convenience determined as the last image of the sequence. The epipolar geometry was 

computed for each pair of reference image Ii and target image T. The epipolar lines were 

derived and the biopsy site was re-localised with 2 epipolar lines derived from 2 consecutive 

reference images first and subsequently from 2 different viewpoints. 

For N epipolar lines, the processed sequence was acquired without the miniprobe in 

the field of view. The biopsy site was identified as the mark on the tissue and a gold standard 

position p0 was retrieved. As there was no miniprobe inserted, the camera movement is larger 

and the viewpoints were very different. Thus, the derived epipolar lines subtended angles 

larger than 90°. Twenty epipolar lines were selected to subtend an angle whose value varied 

from 10° to 90°. For each angle value, the biopsy site was re-localised with the 20 selected 

epipolar lines. Twenty lines were selected as this is a high number of lines for biopsy site re-

localisation in practice. This computation was repeated 100 times for each angle value and 

there were 100 estimations p(k) of the re-localised biopsy site. The accuracy of the re-

localisation was estimated as the RMS error of the distances between p(k) and p0 (equation 

(5-8)). 



 
 
 
 

127 

5.4.2 Results 

For the case of the re-localisation with 2 epipolar lines derived from 2 consecutive 

images, the epipoles of the pairs I1 ↔ T and I2 ↔ T were next to each other and the resulting 

epipolar lines subtended a small angle (Fig. 5-15). Because of their uncertainty, the epipolar 

lines did not pass through the biopsy site and their intersection was far from it. For 2 different 

viewpoints, the epipoles were at different locations and the resulting epipolar lines subtended 

a larger angle (Fig. 5-16). The re-localised biopsy site was closer to the true location of the 

biopsy site. For the re-localisation with N epipolar lines, the camera movement had the 

potential to generate lines with large differences in directions (Fig. 5-17 a)). The larger the 

angle of the bundle of the epipolar lines, the smaller the RMS error of the re-localisation (Fig. 

5-17 b)). Thus, the endoscope camera has to move in such a way that the epipoles 

corresponding to each pair of reference and target images do not coincide. If the camera 

moves along the viewing direction, the epipoles will coincide and the epipolar lines will also 

coincide, as will be shown in Chapter 7. Twisting the endoscope can help to generate distinct 

epipoles. This will also be discussed in Chapter 7. 

 

 

a) b) c)

mark mark

mark

mark

d) e) f)  
Fig. 5-15: Re-localisation with 2 epipolar lines derived from consecutive images: a) and b) the 2 

reference images I1 and I2 show the miniprobe in the field of view in contact with the tissue. A mark 

was visible to the right of the miniprobe which helped track the location of the biopsy site until the 

target image T c). The epipolar geometries derived from the pairs of images I1 ↔ T and I2 ↔ T were 

very similar; d) and e) show the epipolar lines in T (red lines) derived from the features detected in I1 

and I2. The lines have a unique intersection which is the epipole; f) the epipolar lines derived in T from 

the biopsy site locations in I1 and I2 formed an intersection which was far from the biopsy site. 
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a) b) c)

mark
mark

mark

mark

d) e) f)  
Fig. 5-16: Re-localisation with 2 epipolar lines derived from images acquired under different 

viewpoints: a) and b) the 2 reference images I1 and I2 show the miniprobe in the field of view in 

contact with the tissue. A mark was visible to the right of the miniprobe which helped track the 

location of the biopsy site until the target image T c). The epipolar geometries derived from the pairs 

of images I1 ↔ T and I2 ↔ T were different as the endoscope camera moved down; d) and e) show the 

epipolar lines in T (red lines) derived from the features detected in I1 and I2. The lines have a unique 

intersection which is the epipole; f) the epipolar lines derived in T from the biopsy site locations in I1 

and I2 formed an intersection which was near the biopsy site. 
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Fig. 5-17: Re-localisation with N epipolar lines and variations of the re-localisation accuracy with the 

angle subtended by the epipolar lines: a) bundle of epipolar lines generated by the large camera 

movement; b) when the angle subtended by the epipolar lines grew, the RMS error of the re-localised 

biopsy site decreased. 

 

5.5 Conclusion 

In this chapter, a method for re-localisation of a biopsy site in a target image with a set of 

epipolar lines was presented. The re-localised biopsy site may be computed with either 2 

epipolar lines or N > 2 epipolar lines. Simulations were performed in order to study the 

variations of the precision and of the bias of the re-localised biopsy site with the standard 
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deviation of the Gaussian noise on the features and, therefore, with a greater uncertainty of 

the epipolar lines. The simulations showed that the re-localisations were more precise and 

less biased when the noise on the feature matches increases. Moreover, the experiments on 

patients showed that the angle formed by the epipolar lines is also important for an accurate 

re-localisation and that a re-localised biopsy site computed from only 2 epipolar lines risks 

being far away from the true location of the biopsy site. Thus, the re-localisation with N > 2 

epipolar lines is preferred. 

 The re-localisation methods return the location of a point. During endoscopy 

procedures, these methods could be applied for guidance of forceps to the biopsy site for 

tissue excision or of optical biopsy miniprobes for a tissue interrogation. Forceps usually 

extract a tissue extent of 5mm. In practice, the re-localisation methods could be extended 

with the display of a confidence region around the re-localised biopsy site. The next chapter 

presents a way to estimate this region for a re-localised biopsy site computed from N > 2 

epipolar lines. 
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Chapter 6 Uncertainty of the Re-localised Biopsy Site 
 

6.1 Introduction 

In the previous chapter, a method was presented to re-localise a biopsy site in a target 

endoscopic image. The re-localisation is based on the use of epipolar lines derived from the 

biopsy site location in N reference endoscopic images. The number of lines N can be 2 or 

greater. However, this re-localisation method returns a point only. An endoscopist may be 

interested, instead, in a measure of the confidence with which the biopsy site was re-

localised. Such a measure can be either the precision with which the biopsy site was re-

localised or the uncertainty. 

The precision measures how close independent re-localisations of the biopsy site are 

(ISO 5725-1: 1994; Menditto et al., 2007). If the method is biased, the average value of a 

series of independent re-localisations is deviated from the true location of the biopsy site 

(Menditto, 2007). If the method is not biased or if the bias is small, the precision is an 

indicator of the accuracy which measures the closeness of agreement between the re-localised 

biopsy site and its true location. 

The uncertainty returns a range of locations within which the true biopsy site is 

asserted to lie (ISO 5725-1: 1994). Csurka et al. (1997), Zhang (1998), and Hartley and 

Zisserman (2004) showed that the uncertainty of a fundamental matrix or of an epipolar line 

may be characterised by its covariance matrix. This definition can be applied to the re-

localised biopsy site. Thus, when a biopsy site is re-localised, its covariance matrix is 

computed as well. From this matrix, a confidence region centred on the re-localised biopsy 

site can be displayed in the target image T. This region can help the endoscopist guide the 

forceps to excise the tissue extent corresponding to the optical measurement done by optical 

biopsy. 

Csurka et al. (1997), Zhang (1998), and Hartley and Zisserman (2004) presented 

experimental and analytical methods to estimate the uncertainty of the fundamental matrix 

and of the epipolar lines. This chapter presents a method to compute analytically the 

uncertainty and the precision of the re-localised biopsy site. The analytical derivation was 

published first in Allain et al. (2010). Results of the comparison of the experimental and 

analytical uncertainties using the simulations of Chapter 5 and using patient data are 

discussed. 
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6.2 Experimental and analytical computations of the uncertainty of a 

vector 

The uncertainty or covariance matrix can be computed experimentally with a series of 

estimations of the re-localised biopsy site or analytically using the implicit function theorem. 

6.2.1 Confidence ellipse and precision 

The derivation of the experimental and analytical uncertainty is presented using a general 

random vector x = [ xx , xy ] tr∈IRm. 

 For the description of the uncertainty of x with the display of a confidence ellipse, it 

is assumed that the random vector x follows a Gaussian distribution of mean E[x] and of 

covariance matrix Λx: 

( ) ( )[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=−⋅−=

yyyx

yxxxEEE
xxxx

xxxx
x xxxxΛ

varcov
covvar

][][ tr . 
(6-1) 

Under this assumption, the quantity δx = (x – E[x])tr . Λx
-1 . (x – E[x]) follows a χ2 distribution 

of 2 degrees of freedom and, given a scalar k, the probability Pχ2(k , 2) that δx appears 

between 0 and k is known (Csurka et al., 1997). The probability that x lies inside the ellipse 

defined by the equation (x – E[x])tr . Λx
-1 . (x – E[x]) = k2 where k is any scalar is equal to 

Pχ2(k , 2). In order to draw the 99% confidence ellipse, for example, k has to be found such 

that Pχ2(k , 2) = 0.99. 

 The covariance matrix can be computed experimentally or analytically. 

6.2.2 Experimental estimation of the uncertainty and of the precision 

Csurka et al. (1997), and Zhang (1998) showed that the covariance matrix of a vector, for 

example the fundamental matrix or the epipolar line, can be estimated experimentally. 

 The experimental method returns M estimations xk of the vector x and approximates 

the mean of the vector with the discrete mean defined as: 

[ ] ∑
=

=
M

k
kkM M

E
1

1 xx . 
(6-2) 

The covariance matrix Λx_experimental is approximated by: 
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(6-3) 

A confidence region can be drawn under the assumption that x follows a Gaussian 

distribution. The measure of the precision may be also useful as an indicator of the accuracy 

of the estimation of the vector x. In the previous chapter, the precision was derived from the 
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root mean squared error (equation (5-10)). When applied to the vector x with the notations of 

this Chapter, the precision can be defined as: 

[ ]

yyxx

M

k
kk E

M

xxxx

xx

varvar              

1
1precision

1

2

2

+=

−⋅
−

= ∑
= . 

 
(6-4) 

There is a normalisation by M-1 in order to compute an unbiased estimator of the precision 

(Johnson and Wichern, 1998). 

 In practice, when x refers to the re-localised biopsy site, it is estimated M times by 

adding a Gaussian noise to the matches of the pair of images Ii and T for each estimation. 

This noise creates variance of the epipolar lines which results in a variance of the re-localised 

biopsy site. However, such a method adds noise to matches that are already noisy in real 

images. Therefore, this method may overestimate the uncertainty of the re-localised biopsy 

site. Furthermore, this method requires several computations of the epipolar geometries 

formed between images Ii and T which is time-consuming. 

 An analytical derivation can help avoid the issues that the experimental estimation of 

the uncertainty and of the precision cause. 

6.2.3 Error propagation for the analytical estimation of the uncertainty 

Csurka et al. (1997) and Zhang (1998) presented an analytical method to estimate the 

uncertainty of the fundamental matrix and of the epipolar lines. This method is based on a 

proposition of error propagation and on the implicit function theorem. They were presented 

already in Csurka et al. (1997) and Zhang (1998) and are stated again here as they make some 

important assumptions for the case of the re-localised biopsy site 

 Let the general random vector y = [ yx , yy ] tr ∈IRp be derived from the random vector 

x = [ xx , xy ]tr ∈ IRm such that ( )xy ϕ=  where φ is a C1 function. The Taylor expansion of φ 

at the first order in the neighbourhood of E[ x ] returns: 

( ) [ ]( ) [ ]( ) [ ]( ) ( )xxxxDxx Ο+−⋅+= EEE ϕϕϕ . (6-5) 

Dφ is the Jacobian of the function φ. 

 Under the assumption that any sample of x is close to E[ x ], the function φ can be 

approximated by its first-order term: 

[ ] [ ]( )xy EE ϕ≈ . (6-6) 

( ) [ ]( ) [ ]( ) [ ]( )xxxDxx EEE −⋅≈− ϕϕϕ . (6-7) 

Proposition 1: The covariance matrix Λy of the vector y is therefore: 
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(6-8) 

 In some situations like the computation of the fundamental matrix or of the biopsy 

site re-localised with N epipolar lines, y is determined by minimisation of a criterion function 

Q over the samples of x: 

( ) min,min QQ =yx
y

. (6-9) 

The function φ and its Jacobian Dφ are, therefore, unknown and the uncertainty of y cannot be 

estimated from Proposition 1 directly. The implicit function theorem may be applied in order 

to determine an estimation of Dφ (Spivak, 1979; Faugeras, 1993). The theorem states: 

 

Implicit function theorem: 

Let a criterion function Q: IRm × IRp → IR be a function of class C∞, x0 ∈  IRm be the 

measurement vector and y0 ∈  IRp be a local minimum of Q(x0, y). If the Hessian H of Q with 

respect to y is invertible at (x, y) = (x0, y0) then there exists an open set U’ of IRm containing 

x0, an open set U” of IRp containing y0, and a C∞ mapping φ: IRm → IRp such that for (x, y) in 

U’× U” there is an equivalence between the two relations ‘y0 is a local minimum of Q(x, y) 

with respect to y’ and ‘y = φ(x)’, and: 
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(6-10)

where Φ is the curve defined by the equation: 

( ) ( ) tr
,,

y
yxyxΦ

∂
∂

=
Q  

and H is the Hessian matrix of the criterion Q with respect to y: 
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y
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∂
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,
,  

In case x0 and y0 are sufficiently close to E[x] and to E[y], Equation (6-8) becomes: 
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Csurka et al. (1997) and Zhang (1998) demonstrated that in case the criterion function Q is a 

sum of l squared criteria Qj such that ( ) ( )∑
=

=
l

j
jjQQ

1

2 ,, yxyx  with x = [x1
tr , …, xj

tr , 

…, xl
tr] tr, Φ and H become (Press et al., 1988): 
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The covariance matrix Λy of the vector y is therefore: 
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(6-12) 

Under the assumption that the xj’s are not correlated, cov(xj, xk) = 0 and Λx = diag(Λx1, Λx2, 

…, Λxl). Equation (6-12) becomes: 
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According to equation (6-8), the first order approximation of ΛQj in the neighbourhood of the 

point (xj0 , y0) is: 
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Equation (6-13) becomes: 
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Finally, under the assumption that Qj has a zero mean and that the Qj’s are independent and 

have identical distributed errors (Anderson, 1958): 
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(6-16)

where p is the number of parameters or the dimension of y. Thus, the covariance matrix Λy of 

y can be approximated by: 
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(6-17)

 The proposition for error propagation and the implicit function theorem have been 

applied by Csurka et al. (1997) and Zhang (1998) for the analytical computation of the 

uncertainty of the fundamental matrix and of the epipolar lines. In this thesis, these 

proposition and theorem are applied for the computation of the uncertainty of the re-localised 

biopsy site. 

6.3 Derivation of the uncertainty of the re-localised biopsy site 

The experimental and analytical derivations can be adapted to the biopsy site re-localised 

with N epipolar lines. 

6.3.1 Discussion of the hypotheses of the experimental and analytical derivation 

of the uncertainty in the case of the re-localised biopsy site computed with N 

epipolar lines 

Three assumptions have to be discussed before applying the derivations of the uncertainty to 

the re-localised biopsy site. These derivations make the assumptions that the re-localised 

biopsy site is determined with an error that follows a Gaussian distribution, that the epipolar 

lines used for the re-localisation are uncorrelated, and that the residuals of the criterion 

function to minimise in order to determine the re-localised biopsy site have zero mean and are 

independent and identically distributed. 

 The fundamental matrix ( )TIF ,i
 for the pair of images (Ii, T) is determined by 

minimisation of a criterion (equation (3-27)) over the Sampson’s residuals (equation (3-19)) 

for each pair of the L feature matches ( ( )i
j
Ip , pj). Let Pi be defined as the vector: 

( ) ( ) ( )[ ] trtrtrtrtrtr
1

tr
1 LLjj

iii ppppppP III
i LL= . (6-18)

Under the assumption that the feature locations are determined sufficiently close to their 

mean which are considered as the true locations of the features, the implicit function theorem 
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states that there exists a function φ which links ( )TIF ,i
 to the set of matches and (Csurka et al., 

1997; Zhang, 1998): 

( ) ( )iTI PF ϕ=,i
. (6-19)

The function φ can be approximated by its first order Taylor development in the 

neighbourhood of the mean of Pi and: 

( ) ( ) [ ]( ) [ ]( ) [ ]( ) ( )iiiiiiTI PPPPDPPF Ο+−⋅+== EEE
i ϕϕϕ, . (6-20)

If Pi is sufficiently close to E[Pi], ( )TIF ,i
 is close to E[ ( )TIF ,i

]. An experiment in chapter 4 

section ‘4.2.2 Experiment: study of the error for the localisation of the features’ illustrated 

that the features are localised with an error that can be approximated as Gaussian. As the 

feature locations and ( )TIF ,i
 may be related with a linear function according to equation (6-20), 

the error with which ( )TIF ,i
 is determined is Gaussian. Csurka et al. (1997) and Zhang (1998) 

made this assumption for the determination of the uncertainty of the fundamental matrix. 

 The epipolar lines ( )iIel  = ( )TIF ,i
. ( )iIp  used for the biopsy site re-localisation are 

derived from the fundamental matrix ( )TIF ,i
 and from a biopsy site location ( )iIp  in image Ii. 

In this derivation, the uncertainty of ( )iIp  is not taken into account since the re-localised 

biopsy site is computed from the epipolar line ( )iIel  assuming that it is derived from the true 

location of the biopsy site in Ii. Thus, there is a linear relation between ( )iIel  and ( )TIF ,i
 and 

the error of the re-localisation of the epipolar line is Gaussian. 

 The re-localised biopsy site p in image T is computed by minimisation of a criterion 

(equation (5-7)) which is based on the perpendicular distances from p to the epipolar lines: 

( ) ( ) ( )[ ] trtrtrtr1 Ni III elelelel LL= . (6-21)

The implicit function theorem is applied again to find a function which links the re-localised 

biopsy site to the epipolar lines. Under the first order Taylor expansion of this function, the 

re-localised biopsy site is linked to the epipolar lines linearly and the error associated to its 

localisation is Gaussian. 

 The analytical derivation of the uncertainty of the re-localised biopsy site makes the 

assumption that the errors of the localisations of the epipolar lines are uncorrelated. The 

epipolar lines are derived from fundamental matrices ( )TIF ,i
 which are themselves derived 

from sets of matches ( ( )i
j
Ip , pj) for each pair of images Ii ↔ T. When the features are detected 

and tracked with the Lucas-Kanade (LK) tracker, the LK tracker is launched for each image 

Ii. Therefore, the epipolar geometries for the pairs of images Ii ↔ T and Ii+1 ↔ T are derived 
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from different feature matches and the epipolar lines derived from each epipolar geometry for 

the biopsy site re-localisation are independent. Thus, they are uncorrelated for the case of the 

LK tracker. When Scale Invariant Feature Transform (SIFT) features are detected and 

matched, features are detected once in image T and matched to the features in each image Ii. 

Therefore, the fundamental matrices are derived from common features in T and the 

assumption of uncorrelated epipolar lines is not satisfied. The analytical derivation cannot be 

applied to the case of SIFT features. 

 Finally, the residuals Ci used for the computation of the re-localised biopsy site p are 

defined as the perpendicular distances from p to the epipolar lines. The fundamental matrices 

( )TIF ,i
 are computed such that the residuals follow a Gaussian distribution (Chapter 3 section 

‘3.5.3.3.1 Fitting errors or residuals’). As the pair of biopsy sites ( )iIp  ↔ p is an inlier, the 

corresponding residual follows a Gaussian distribution as well. Also, these residuals are 

divided by their standard deviation (Chapter 5 ‘5.2.3 Extension of the re-localisation with N 

epipolar lines’). Therefore, these residuals are identically distributed. As the epipolar lines 

derived from pairs of features detected with the LK tracker are independent, the residuals are 

independent. The condition of independence will be accepted for the analytical derivation of 

the uncertainty for the case of features detected and matched using the LK tracker. 

 The analytical derivation of the uncertainty of the re-localised biopsy site has the 

advantage of avoiding a high number of repeats that the experimental derivation requires. 

However, it makes many approximations. 

6.3.2 Analytical estimation of the uncertainty of the biopsy site re-localised with 

N > 2 epipolar lines 

The analytical derivation of the uncertainty of the re-localised biopsy site presented in the 

previous sections is possible only for the re-localisations with more than 2 epipolar lines. 

 The re-localised biopsy site is found by minimising a criterion C over the set of 

epipolar lines el = [ ( )1Iel tr, …, ( )iIel tr, …, ( )NIel tr] tr since the epipolar lines do not have a 

common intersection: 
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( ) min
1

2min  ,min CCC
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i == ∑
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In order to determine the covariance matrix Λp as a function of the epipolar lines, the implicit 

function theorem is applied to the set of lines el and to the curve Φ(el , y) defined by the 

equation: 

( ) ( ) 0,,
tr

=
∂

∂
=

y
yelyelΦ C

. 
(6-23)

Under the assumptions that the epipolar lines are not correlated, and that the Ci’s are 

independent, have identical distributed errors, and have a zero mean, it results from equation 

(6-17) that: 
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The uncertainty Λp can be represented as a 99% ellipse. It is drawn from the 2 

eigenvalues of Λp. If their values are small, the ellipse is small. The uncertainty Λp depends 

on the term Cmin which is the sum of the perpendicular distances from the re-localised biopsy 

site p to the epipolar lines ( )iIel . If the epipolar lines have been derived accurately, the term 

Cmin is small and contributes to make the ellipse small. Furthermore, the uncertainty Λp 

depends on the inverse of the Hessian matrix H. This matrix gives the amplitude of the 

curvatures of the criterion function C around the re-localised biopsy site p. If the epipolar 

lines used for the re-localisation subtend a large angle, the curvatures of C are large, the 2 

eigenvalues of H are large, the 2 eigenvalues of Λp are small, and the uncertainty of the re-

localised biopsy site is small. The ellipse is, therefore, small. 

The uncertainty of p depends on the accuracy of the epipolar lines and on the angles 

they subtend. 

6.4 Experiment: comparison of the uncertainties derived analytically 

and statistically by simulations 

The uncertainty of the re-localised biopsy site can be estimated either analytically or 

experimentally. These 2 estimations are compared in this part. 
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6.4.1 Method 

The derivation of the uncertainty Λp of the re-localised biopsy site p is based on the 

assumption that p follows a Gaussian distribution N(E[p], Λp). Therefore, this validation 

consisted of comparing two Gaussian distributions: one whose covariance matrix has been 

derived analytically and another whose covariance matrix has been derived experimentally. 

As the derivation of the analytical uncertainty is based on a lot of approximations, the 

experimental uncertainty was considered as the gold standard. 

 The uncertainties were compared by simulations and by tests on patient data. The 

simulations were similar to those conducted in Chapter 5 section ‘5.3 Experiment 1: study by 

simulations of the re-localisation precision and bias with the locations of the matches 

perturbed by a Gaussian noise and with the presence of outliers’. A virtual endoscopy scene 

was generated and images showing the features were obtained by moving a virtual camera 

within the scene. The images in these experiments were only made up of features that were 

not corrupted by noise. A Gaussian noise was added to the features with a standard deviation 

varying from 0.1 pixels to 4 pixels. For each standard deviation of the noise, the biopsy site 

was re-localised. This procedure was repeated 1000 times. Thus, 1000 re-localised biopsy 

sites p(k) were computed for each standard deviation of the noise. For the comparison of the 

uncertainties, the re-localised biopsy site and its analytical uncertainty Λp_analytical were 

computed a first time for each standard deviation of the Gaussian noise. It was supposed that 

p was sufficiently close to E[p] considered as the true biopsy site. Afterwards, as the biopsy 

site was re-localised 1000 times, the uncertainty Λp_experimental was estimated experimentally. 

The mean of the re-localised biopsy site E[p] was estimated as the arithmetic mean pmean of 

all of the re-localised biopsy sites pj. For each standard deviation of the Gaussian noise, the 

analytical distribution Nanalytical(p, Λp_analytical) was, therefore, compared to the experimental 

distribution Nexperimental(pmean, Λp_experimental). The experiment consisted of comparing first the 

analytical precision precisionanalytical to the experimental precision precisionexperimental computed 

as in equation (6-4). As the precision takes only into account the diagonal terms of the 

uncertainty, the distributions Nanalytical and Nexperimental were also compared by measuring the 

Kullback-Leibler divergence between the two distributions (Kullback, 1959). 

 The Kullback-Leibler (KL) divergence is a measure of the difference between the 2 

probability distributions pexperimental = Nexperimental(pmean, Λp_experimental) and panalytical = Nanalytical(p, 

Λp_analytical). The measure DKL1 is defined as: 

( ) ( ) ( )
( )∑

∈

=
Xx analytical

alexperiment
alexperimentanalyticalalexperimentKL xp

xp
xpppD ln||1 . 

(6-25)
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The variable x is a sample of the distribution Nexperimental(pmean, Λp_experimental).  DKL1 is always 

positive. It is equal to zero if and only if pexperimental and panalytical agree everywhere (Cardoso, 

1997; Eguchi and Copas, 2006). The divergence DKL2 to compare panalytical to pexperimental was 

also measured: 

( ) ( ) ( )
( )∑

∈

=
Xx alexperiment

analytical
analyticalalexperimentanalyticalKL xp

xp
xpppD ln||2 . 

(6-26)

According to the definition of the Kullback-Leibler divergences, the two distributions 

Nexperimental(pmean, Λp_experimental) and Nanalytical(p, Λp_analytical) are similar if DKL1 and DKL2 are 

small and are of the same order. 

For the patient data, the re-localised biopsy site and its analytical uncertainty were 

estimated, first, for 3 endoscopic sequences acquired on two patients during a surveillance 

examination of Barrett’s Oesophagus (BO). The image dimensions for the first patient were 

339 pixels x 216 pixels. For the second patient, they were 376 pixels x 280 pixels. The last 

image of the sequences was selected as the target image T. The previous images were the 

reference images Ii. For the first sequence of the first patient, the biopsy site was detected at 

the tip of the optical miniprobe used for an optical biopsy. The location was tracked manually 

until the target image T. This returned the ground truth of the biopsy site in T. For the second 

sequence of the first patient, the biopsy site was selected as a natural bulb at the surface of the 

oesophagus visible in all of the images. For the sequence of the second patient, an Argon 

Plasma Coagulation (APC) mark was done at the surface of the oesophagus in order to create 

a ground truth of the biopsy site. Secondly, the experimental uncertainty was estimated for 

comparison with the analytical uncertainty. For the estimation of the experimental 

uncertainty, a Gaussian noise was added to the features of the endoscopic images. The feature 

locations were already detected with a Gaussian error with the LK tracker according to 

Chapter 4 section ‘4.2.2 Experiment: study of the error for the localisation of the features’. 

Thus, the standard deviation of the Gaussian noise was set at 0.1 pixels in order to add a 

small variation of the location of features that were already noisy. The uncertainties were 

compared with the Kullback-Leibler divergences. 

6.4.2 Results and discussion 

6.4.2.1 Results of the simulations 

The results of the comparison of the precisions and of the distributions are presented in Fig. 

6-1, and Fig. 6-2, and in Table 6-1 and Table 6-2. 
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Fig. 6-1: Comparison of the experimental and analytical precisions for various standard deviations of 

the noise in the images of the simulations: the re-localised biopsy site was computed with a) 50 

epipolar lines and the percentage of outliers among the matches was 30%, and with b) 10 epipolar lines 

and the percentage of outliers among the matches was 20%. 

 

The analytical and experimental precisions were of the same order and did not differ 

significantly (Fig. 6-1). The variations of the experimental precision were already explained 

in Chapter 5 ‘Re-localisation of Biopsy Sites during Endoscopy Examinations’. The 

analytical precision depends on the value of the cost Cmin (equation (6-22)). When the noise 

on the features increases, the epipolar lines are less accurate and Cmin takes greater values as 

discussed in Chapter 5 ‘Re-localisation of Biopsy Sites during Endoscopy Examinations’. 

Therefore, the values of the analytical precision increase. The precisions are just an indicator 

of the accuracy of the re-localised biopsy site and a more advanced comparison of the 

uncertainties is one that evaluates all the terms of the covariance matrices as the Kullback-

Leibler divergence does. 

 Divergences DKL1 and DKL2 were most of the time small of the order of 0.1 or 0.01 

(Table 6-1 and Table 6-2). For cases like Table 6-1 σ = 0.6, σ = 1, σ = 1.5, σ = 2, and σ = 2.5, 

and Table 6-2 σ = 1, σ = 3, and σ = 4, DKL1 and DKL2 had close and small values. For these 

cases, p and pmean were close as shown in Fig. 6-2 a). The ellipses had a good overlap and 

were small. This means that, in practice, the endoscopist can see that the re-localised biopsy 

site p is computed accurately and that the uncertainty is small. For cases like Table 6-1 σ = 

0.1, σ = 0.4, σ = 0.8, σ = 3, σ = 3.5, and σ = 4, and Table 6-2 σ = 0.1, σ = 0.6, σ = 0.8, σ = 1.5, 

σ = 2.5, and σ = 3.5, DKL1 and DKL2 had small values but they differed. For these cases, p was 

further from pmean as shown in Fig. 6-2 b). The ellipses did not overlap well. For cases like 

Table 6-1 σ = 0.2, and Table 6-2 σ = 0.2, σ = 0.4, and σ = 2, p was at the border of the 99% 

confidence ellipse drawn from the experimental uncertainty. The ellipse drawn from the 

analytical uncertainty was either significantly larger or smaller than the ellipse drawn from 

the experimental uncertainty as shown in Fig. 6-2 c). These results were expected since the 



 
 
 
 

142 

analytical derivation makes the assumption that p is close to pmean in order to approximate the 

experimental uncertainty by the analytical uncertainty. An inaccurate re-localised biopsy site 

p is computed from epipolar lines that are inaccurate. The term Cmin defined in equation 

(6-22) becomes, therefore, larger. As the size of the ellipse drawn from the uncertainty 

depends on the value of Cmin, the dimensions of the ellipse then also become larger. This 

means that, in practice, the endoscopist can be provided with a quanititative visual indication 

of uncertainty in the re-localisation of a target site by displaying the re-localised biopsy site p 

surrounded by a large ellipse as a graphical overlay on the endoscopy image. 
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Fig. 6-2: Examples of analytical and experimental 99% confidence ellipses: a) the two Kullback-

Leibler divergences were small and similar (30% outliers, σ = 0.6), b) the two divergences were small 

but one was higher than the other (30% outliers, σ = 0.4), c) one of the two divergences was very high 

(20% outliers, σ = 2). 
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Table 6-1: Values of DKL1, and DKL2 for re-localisations with 50 epipolar lines for varying standard 

deviations of noise on the features (percentage of outliers 30%). 

Standard deviation σ of the noise  

0.1 0.2 0.4 0.6 0.8 1 1.5 2 2.5 3 3.5 4 

DKL1 0.36 0.91 0.20 0.02 0.15 0.10 0.02 0.01 0.14 0.25 0.10 0.25 

DKL2 0.01 0.28 0.02 0.01 0.04 0.03 3x10-3 0.01 0.10 0.02 4x10-3 0.31 

 

Table 6-2: Values of DKL1, and DKL2 for re-localisations with 10 epipolar lines for varying standard 

deviations of noise on the features (percentage of outliers 20%). 

Standard deviation σ of the noise  

0.1 0.2 0.4 0.6 0.8 1 1.5 2 2.5 3 3.5 4 

DKL1 0.09 1.12 3.49 0.13 0.20 0.09 0.09 0.45 0.19 0.05 0.44 0.08 

DKL2 0.10 0.02 0.09 0.21 0.02 0.01 0.15 1.96 0.06 0.02 0.14 0.02 

 

6.4.2.2 Results on patients 

The comparison of the experimental and analytical uncertainties was performed on patient 

data. The results are presented in Fig. 6-3. 

 For N > 2 epipolar lines, the ellipses had similar orientations and they did not differ 

much in size. The corresponding KL divergences were small and of similar orders. The 

greater axis of the ellipses was smaller than 2mm (Fig. 6-3). The ellipses indicate the region 

where the biopsy site is likely to lie. Because of approximations during the derivation of the 

analytical uncertainties, the analytical and experimental ellipses did not overlap exactly. 

Nevertheless, both ellipses define a region where the biopsy site needs to be taken. Large 

ellipses in one direction indicate that the epipolar lines are too much in coincidence. If the 

epipolar lines subtend sufficiently large angles, the confidence ellipses will have areas less 

than 2mm which is less than half the size of the typical endoscopic biopsy forceps. In this 

case, if the confidence ellipses are displayed to the operator during tissue sampling, there is a 

reassurance offered that the desired tissue has indeed been sampled. 

6.5 Conclusion 

The display of a confidence interval around a previously marked biopsy site of interest is 

extremely useful for the practicing clinician as the display of both point and regional data can 

reassure that the desired sample has actually been taken in traditional forceps terms or 

optically interrogated in optical biopsy terms. This confidence region is drawn from the 

covariance matrix of the re-localised biopsy site that can be computed experimentally or 

analytically. The analytical computation requires a single estimation of the re-localised 

biopsy site and of its uncertainty. However, it makes a series of assumptions about the noise 
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on the matches and the independence of the epipolar lines. The experimental computation 

does not make any assumption. However, its main disadvantage is the number of iterations 

this method requires for the computation of the re-localised biopsy site and of the uncertainty. 

A whole framework for biopsy site re-localisation has been proposed in Chapters 3, 4, 5, and 

6. The next chapter presents the results of this method on patient data. Chapter 8 focuses on 

the extension of this framework for cases where the endoscopist moves the camera too 

quickly or where air/water bubbles obstruct the camera field of view. 
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Fig. 6-3: Analytical and experimental 99% confidence ellipses for N > 2 epipolar lines in the target 

image: each row corresponds to a sequence acquired on a patient and presents first the target image 

with the location of the biopsy site, secondly the analytical ellipse (green) and the experimental ellipse 

(blue), and finally the KL divergences. 
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Chapter 7 Test of the Re-localisation Methods on Phantom 

and Patient Data 
 

7.1 Introduction 

The previous chapters presented a method to re-localise a biopsy site in a target endoscopic 

image using epipolar geometry. The re-localised biopsy site can be determined either as the 

point at the intersection of two epipolar lines or as the point that minimises the sum of 

squared perpendicular distances to N > 2 epipolar lines. The re-localisation uncertainty can be 

computed in order to draw a confidence ellipse around the re-localised biopsy site. This 

uncertainty can be computed experimentally or analytically. If the re-localised biopsy site is 

accurate, the experimental and analytical uncertainties are similar and the drawn ellipses 

overlap well. If the re-localised biopsy site is inaccurate, the ellipse drawn from the analytical 

uncertainty is large due to the inaccuracy of the epipolar lines used for the re-localisation. 

This warns the endoscopist that the re-localisation may be inaccurate. 

 This chapter aims to test the re-localisation techniques and the analytical estimation 

of the uncertainty. Tests were done on patient data acquired during a surveillance 

examination of Barrett’s Oesophagus in the department of Gastroenterology in University 

College London Hospitals. Data were collected with the ethical approval reference 

08/H0808/08. Tests were also done on a rigid tube phantom. A frame of an endoscopic 

sequence acquired on a patient was used to generate a texture that was stuck inside the tube in 

order to reproduce an oesophagus. These tests aimed to assess the accuracy and the precision 

of the re-localisation. The influence of the endoscope camera motion on the re-localisation 

was studied. The data were processed with SIFT features and with LK features in order to 

study the difference of accuracies. Finally, these test results demonstrate the importance of 

the spatial distribution of the features over the physical surface in order to compute an 

accurately re-localised biopsy site. 

7.2 Method 

A physical phantom was built from a rigid tube whose diameter was 2.5cm, which 

corresponds approximately to the diameter of an oesophagus. A synthetic texture was rolled 

into the tube. As it had to be realistic, it was generated from an endoscopic image acquired 

during an endoscopic monitoring of Barrett’s Oesophagus. The image was repeated several 
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times to form a whole texture with the dimensions 8cm x 13cm (Fig. 7-1 a)). Some points and 

lines were added to the texture to give gold standard positions for the biopsy sites and scales 

for the determination of the field of view of the endoscopic images. 

For the patient data, eight sequences were acquired on 4 patients during routine 

procedures for endoscopic surveillance of Barrett’s Oesophagus. Images were acquired with 

white-light endoscopes or with Narrow Band Imaging (NBI) endoscopes. The NBI 

endoscopes differ from the white-light ones since they narrow the spectrum of wavelengths in 

the red-channel image such that the resulting red-green-blue image highlights the superficial 

vessels of the oesophagus visible in the green and blue channel images. Argon Plasma 

Coagulation (APC) was used to create marks of a diameter of approximately 3mm or gold 

standards of the biopsy site at the tissue surface (Fig. 7-1 b)) 

. 

 
Fig. 7-1: Endoscopic image of a) the phantom with a white-light endoscope: the blue point corresponds 

to the ground truth of the biopsy site and b) a patient’s oesophagus with an NBI endoscope: an APC 

burn indicates the ground truth of the biopsy site. 

 

 
Fig. 7-2: Two gastroscopic sequences acquired with an NBI endoscope: a) to d) are images extracted 

from a sequence where the biopsy site (APC mark) was observed under various viewpoints; e) to h) are 

from a sequence with a miniprobe in the camera FOV. 
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 The re-localisation was tested on sequences showing a biopsy site (the mark 

corresponding to the gold standard position) from various viewpoints. The last image of the 

sequences was selected as the target image for re-localisation. The endoscope camera was 

moved freely backward, forward, and sideways. It was rotated as well. This first type of 

acquisition returned a whole sequence of images with the mark only (Fig. 7-2 a) to d)). For a 

second type of acquisition, an optical biopsy miniprobe was passed via the working channel 

of the endoscope. The miniprobe was placed in contact with the tissue and was maintained at 

this location while the endoscope camera rotated and translated backwards (Fig. 7-2 e) to h)). 

The miniprobe was removed and the endoscopic camera could move freely while keeping the 

biopsy site in the FOV. 

For each sequence, the biopsy site position was tracked manually from I1 to T for the 

re-localisation in T which returned the gold standard in T. Matches for each pair of images Ii 

and T were found with the LK tracker and also with SIFT. This allowed the performances of 

the re-localisation with epipolar lines derived from various feature detectors and matching 

techniques to be compared. Features in the blue points for the phantom and in the APC mark 

for the patients could be detected with the LK tracker and with SIFT. These features were 

removed to avoid influencing the accuracy of the fundamental matrix computation. A region 

of interest around the mark in T was used as a mask. Given the matches, the epipolar 

geometries were recovered with MAPSAC for each pair of images Ii and T. The epipolar 

lines were derived from each biopsy site position ( )iIp , and the re-localisation method was 

applied with N > 2 epipolar lines. For comparison, the re-localised biopsy site was also 

computed as the intersection of 2 epipolar lines subtending a large angle. The precision of the 

re-localised biopsy sites was computed analytically for the sequences where features were 

detected and matched using the LK tracker. The accuracy was computed in the 2D target 

image as the Euclidean distance between the re-localised biopsy site and the gold standard 

position. This distance and the values of the precision were small enough to approximate the 

corresponding tissue extent as a plane. Under this assumption, the precision and the accuracy 

computed in the 2D image are representative of the true measures in 3D. The marks or the 

size of the miniprobe provided a scale in the target image T for the conversion from pixels to 

millimetres. 

The influence of the camera movement on the re-localised biopsy site was studied. 

This last test aimed to show that a movement of the endoscope camera along its optical axis 

returns inaccurate re-localisations. A sequence was acquired on the phantom with the white-

light endoscope camera. An optical miniprobe was placed in contact with the texture surface 

and was maintained at the same location while the endoscope was moving. The camera 
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moved along its optical axis and was such that the resulting epipolar lines should be almost 

coincident. Four reference images were used to re-localise the biopsy site in the target image. 

The resulting re-localised biopsy site was computed. 

 

7.3 Results 

The re-localisation results are presented in Table 7-1, Table 7-2, and Table 7-3. Biopsy sites 

were re-localised in endoscopic images with an FOV of approximately 3cm x 3cm with 

analytical precisions and accuracies of: 

− 2.5mm or better with 2 epipolar lines after matching features with the LK tracker. 

− 0.45mm or better with N > 2 epipolar lines after matching features with the LK tracker. 

− 0.92mm or better with N > 2 epipolar lines after matching features with the SIFT. 

The best precisions and accuracies were obtained for the sequences without a miniprobe in 

the FOV. 

 The results presented in Table 7-1 demonstrate that a re-localisation with 2 epipolar 

lines is less accurate than with N > 2 epipolar lines. The main reason is the uncertainty of the 

epipolar lines. Their intersection may be, therefore, far from the true biopsy site. The use of N 

> 2 epipolar lines allows the space in T, within which the re-localised biopsy site may be, to 

be constrained. 

 

 
Table 7-1: Results of the biopsy site re-localisation with 2 epipolar lines: for each sequence, features 

were detected and matched using the LK tracker. 

Sequence Miniprobe? FOV 

(pixels ; cm) 

Accuracy: measured distance from 

the re-localised biopsy site to the gold 

standard 

(pixels ; mm) 

Phantom Sequence 1 Yes (283 x 180 ; 3 x 4) (3.1 ; 0.20) 

Phantom Sequence 2 Yes (384 x 288 ; 4 x 6) (11.9 ; 0.44) 

Patient 1 Sequence 1 Yes (339 x 216 ; 2 x 2) (9.6 ; 0.96) 

Patient 1 Sequence 2 No (339 x 216 ; 5 x 2) (3.3 ; 0.67) 

Patient 2 Sequence 1 No (283 x 180 ; 3 x 2) (18.6 ; 1.01) 

Patient 3 Sequence 1 No (283 x 180 ; 6 x 2) (19.2 ; 1.92) 

Patient 3 Sequence 2 Yes (283 x 180 ; 5 x 1) (6.9 ; 0.46) 

Patient 4 Sequence 1 Yes (376 x 280 ; 1 x 1) (15.5 ; 0.61) 

Patient 4 Sequence 2 Yes (376 x 280 ; 7 x 2) (21.5 ; 2.15) 
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 The use of N > 2 epipolar lines can make a significant difference if the lines subtend 

a sufficiently large angle which depends on the endoscope camera movement. For example, 

when the camera moved only along the central axis of the endoscope in the phantom study, 

the locations of the epipoles computed in the target image T from each reference image 

varied only by a few pixels (Fig. 7-3 a), b), and c)). The resulting epipolar lines used for the 

biopsy site re-localisation were almost all coincident and the re-localised biopsy site was far 

from the true biopsy site (Fig. 7-3 d)).  

 During a gastroscopy examination including an optical biopsy, a practical way to 

generate multiple viewpoints of the biopsy site while the optical miniprobe is still in contact 

with the tissue consists of twisting the camera around the central axis of the endoscope. The 

locations of the epipoles computed in T vary around the centre of T as seen in the example of 

Fig. 7-4. As in practice the true biopsy site is also located near the centre of the image, the 

distance between the epipoles and the biopsy site is short. The resulting epipolar lines 

subtend large angles and differ well from each other. This camera movement guarantees, 

therefore, a variety of directions of the epipolar lines necessary for accurate and precise re-

localisations. 

Table 7-2: Results of the biopsy site re-localisation with several epipolar lines: for each sequence, 

features were detected and matched using the LK tracker. 

Sequence Miniprobe? FOV 

(pixels ; 

cm) 

Number 

of 

epipolar 

lines 

Analytical 

precision 

(pixels ; 

mm) 

Accuracy: measured distance from the 

re-localised biopsy site to the gold 

standard 

(pixels ; mm) 

Phantom 

Sequence 1 
Yes 

(283 x 180 

; 3 x 4) 
41 (1.0 ; 0.07) (2 ; 0.14) 

Phantom 

Sequence 2 
Yes 

(384 x 288 

; 4 x 6) 
47 (1.0 ; 0.04) (3.5 ; 0.13) 

Patient 1 

Sequence 1 
Yes 

(339 x 216 

; 2 x 2) 
26 (1.5 ; 0.15) (5.2 ; 0.52) 

Patient 1 

Sequence 2 
No 

(339 x 216 

; 5 x 2) 
178 (0.3 ; 0.05) (0.4 ; 0.08) 

Patient 2 

Sequence 1 
No 

(283 x 180 

; 3 x 2) 
7 (1.0 ; 0.05) (1.3 ; 0.07) 

Patient 3 

Sequence 1 
No 

(283 x 180 

; 6 x 2) 
14 (0.6 ; 0.06) (0.9 ; 0.09) 

Patient 3 

Sequence 2 
Yes 

(283 x 180 

; 5 x 1) 
19 (3.0 ; 0.20) (6.3 ; 0.42) 

Patient 4 

Sequence 1 
Yes 

(376 x 280 

; 1 x 1) 
11 (2.6 ; 0.10) (4.1 ; 0.16) 

Patient 4 

Sequence 2 
Yes 

(376 x 280 

; 7 x 2) 
8 (4.4 ; 0.44) (4.5 ; 0.45) 
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Table 7-3: Results of the biopsy site re-localisation with several epipolar lines: for each sequence, 

features were detected and matched using SIFT. 

Sequence Miniprobe? FOV 

(pixels ; 

cm) 

Number 

of 

epipolar 

lines 

Accuracy: measured distance from the 

re-localised biopsy site to the gold 

standard 

(pixels ; mm) 

Phantom 

Sequence 1 
Yes 

(283 x 180 ; 

3 x 4) 
41 (8.2 ; 0.58) 

Phantom 

Sequence 2 
Yes 

(384 x 288 ; 

4 x 6) 
47 (16.2 ; 0.65) 

Patient 1 

Sequence 1 
Yes 

(339 x 216 ; 

2 x 2) 
26 (3.1 ; 0.31) 

Patient 1 

Sequence 2 
No 

(339 x 216 ; 

5 x 2) 
178 (1.8 ; 0.36) 

Patient 2 

Sequence 1 
No 

(283 x 180 ; 

3 x 2) 
7 (7.2 ; 0.39) 

Patient 3 

Sequence 1 
No 

(283 x 180 ; 

6 x 2) 
14 (1.9 ; 0.24) 

Patient 3 

Sequence 2 
Yes 

(283 x 180 ; 

5 x 1) 
19 (6.0 ; 0.40) 

Patient 4 

Sequence 1 
Yes 

(376 x 280 ; 

1 x 1) 
11 (10.7 ; 0.42) 

Patient 4 

Sequence 2 
Yes 

(376 x 280 ; 

7 x 2) 
8 (9.2 ; 0.92) 

 

a) b)

c) d)  
Fig. 7-3: Failure case of the re-localisation method: the camera moved along the endoscope central 

axis. In a), b), and c), the epipole derived from 3 reference images is displayed in the target image. It is 

the intersection of the epipolar lines (red) derived from each feature of the reference image. The 

epipole does not move much. This results in d): the bundle of epipolar lines (blue lines) used for the re-

localisation of the biopsy site subtend very small angles. The yellow point indicates the ground-truth 

position of the biopsy site. The red point indicates the re-localised biopsy site. 
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a) b)

c) d)  
Fig. 7-4: Movement of the epipole in the target image T: figures a), b), c), and d) show the position of 

the epipole in T derived from a series of consecutive reference images Ii. The epipole moves towards 

the centre of the image T which is the result of the rotation of the endoscope tip. 

 
Fig. 7-5: Examples of re-localised biopsy sites: for each sequence, the four images are the target image 

of each sequence with the features displayed (green dots) or the epipolar lines (blue lines) derived from 

the previous images or the confidence region (green ellipse). These are the results obtained for feature 

detection and matching with the LK tracker. For the two first sequences, the fourth image is an 

enlargement around the confidence region. 
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The epipolar geometries of each pair of reference and target images were estimated 

from sets of features detected with the LK tracker or with SIFT. In practice, the LK tracker 

could track on average 100 features in the endoscopic images processed for this experiment 

and it returned approximately 30% outliers. The SIFT usually returned 70 matches with 50% 

outliers. The LK tracker has the advantage of tracking features through successive images 

which constrains spatially the search for the matching features and guarantees, therefore, high 

proportion and number of inliers. The SIFT does not constrain spatially the feature matching 

and may return, therefore, more outliers than the LK tracker. Epipolar geometry is more 

accurate when recovered from high proportion and number of inliers and the epipolar lines 

derived from this geometry are, therefore, more accurate (Luong and Faugeras, 1996; Hartley 

and Zisserman, 2004). As the epipolar lines used for the re-localisation could be more 

accurate for the case of LK features, the re-localised biopsy sites were more accurate. 

 The more precise and accurate results were obtained for Patient 1 Sequence 2, Patient 

2 Sequence 1, and Patient 3 Sequence 1 (Table 7-2 and Table 7-3). These sequences were 

acquired without a miniprobe in the FOV. Therefore, the detected features were well 

distributed over the oesophagus surface observed with the endoscope (Fig. 7-5 a)). They were 

detected at various depths and along the curvature of the oesophagus. Such a good 

distribution guarantees accurate epipolar lines as stated by Luong and Faugeras (1996). 

Finally, the endoscope could move freely with wide translations and rotations. The resulting 

epipolar lines subtended large angles (Fig. 7-5 a)) unlike those for the sequences acquired 

with a miniprobe in the FOV (Fig. 7-5 b) and c)). The variety of directions is taken into 

account in the uncertainty matrix Λp of the re-localised biopsy site for the cases where the 

features have been detected and matched with the LK tracker. Large differences between the 

line directions contribute to small ellipses (Fig. 7-5 a)) and, therefore, to small values of the 

analytical precision. Also, accurate epipolar lines contributed to the high precision of the re-

localisation. Thus, the combination of a good distribution of the features over the observed 

surface with a variety of directions of the epipolar lines helped reach high re-localisation 

precisions for these 3 sequences. 

 For some of the sequences where a miniprobe was introduced in the endoscope FOV, 

the values of analytical precision and accuracy were larger than for the other sequences. For 

Patient 3 Sequence 2 and Patient 4 Sequence 2, for example, the FOV of the target image T 

was bigger. The size of a pixel in the neighbourhood of the re-localised biopsy site and of the 

ground truth was, therefore, larger for these sequences. The resulting accuracy was large. 

Also, the re-localised biopsy site was computed from a set of epipolar lines that did not 
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subtend large angles (Fig. 7-5 c) and d)) and the resulting precision was, therefore, large for 

the cases where the features were detected and matched with the LK tracker. 

7.4 Conclusion 

This chapter presented the results of the re-localisation method for endoscopic images 

acquired on phantom and on patients. A re-localisation with N > 2 epipolar lines returns more 

accurate results than with only 2 epipolar lines. Moreover, as the LK tracker tended to return 

a greater proportion of inliers among the matched features than the SIFT, the epipolar lines 

derived for the re-localisations tended to be more accurate, and the resulting re-localised 

biopsy site was also more accurate. Nevertheless, matching SIFT features may be useful 

when the camera field of view is obstructed by air/water bubbles or when the biopsy site 

needs to be re-localised during a future examination using reference images acquired during a 

previous examination. The next chapter presents a method to increase the proportion of 

inliers among the SIFT features. 
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Chapter 8 Combination of an Electromagnetic Tracking 

System with the Re-Localisation Method 
 

8.1 Introduction 

 
Fig. 8-1: Critical cases for a good performance of the LK tracker: two sequences of endoscopic images 

aquired during a surveillance examination of Barrett’s Oesophagus (BO) are presented as examples. 

For each sequence, 3 endoscopic images are extracted to illustrate the problems that may be 

encountered during endoscopy. For sequence 1 and sequence 2, the oesophagus surface is interrogated 

by optical biopsy (top row), air/water bubbles may obstruct the endoscope Field Of View (FOV) or the 

endoscope may move too fast when the miniprobe is removed (middle row), and the endoscopic 

images are clear again (bottom row). 
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The previous chapters introduced a method to re-localise a biopsy site in a target endoscopic 

image T. This method makes use of epipolar lines derived from at least two previously 

acquired endoscopic images Ii where the biopsy site location is known. Therefore, the 

epipolar geometry formed between each pair of images Ii ↔ T needs to be recovered. Once 

the biopsy site is re-localised, its uncertainty can be computed in order to provide the 

endoscopist with a measure of the re-localisation precision and with the display of a 

confidence region around the re-localised biopsy site in the target image T. 

As presented in Chapter 3, the recovery of the epipolar geometry requires the 

detection of features in the endoscopic images Ii and T and their matching for each pair Ii ↔ 

T. During a surveillance examination of Barrett’s Oesophagus (BO), the endoscopist may 

manage to move the endoscope slowly, while keeping the biopsy site in the camera Field Of 

View (FOV). In that case, the Lucas-Kanade (LK) tracker can be applied in order to detect 

features in a first reference image Ii and in order to track them through the next images until 

the target image T. However, in some situations, the camera FOV may be obstructed by 

air/water bubbles or the endoscope tip may move too fast (Fig. 8-1). In these two cases, the 

features are lost by the LK tracker and an alternative way of matching features is necessary. 

This chapter aims to present and discuss a method to re-localise biopsy sites when the 

features have been lost by the LK tracker. An ElectroMagnetic (EM) tracking system is used 

to guide the process of feature matching. This method contributes to more accurate epipolar 

lines and re-localised biopsy sites. A first experiment was done in order to assess the 

accuracy of an EM tracking system in the conditions of an endoscopy. The results of this 

experiment are presented. The results of a second experiment on a phantom demonstrate that 

the EM tracking system helps increase the number and the proportion of good feature 

matches and compute more accurate epipolar lines. Finally, the results of a third experiment 

on excised porcine tissues show that more accurate re-localised biopsy sites can be computed 

using the EM tracking system. 

8.2 Re-localisation with an EM tracking system 

8.2.1 Context, hypotheses, and description of an EM tracking system 

The LK tracker may lose track of the features when air/water bubbles obstruct the FOV of the 

endoscope camera, or when the camera moves too quickly. As discussed in Chapter 4, the 

Scale Invariant Feature Transform (SIFT) features may be an alternative to the LK tracker in 

these critical cases. Indeed, the features are detected independently in images Ii and T using 

the scale-space representations of the images. For each detected feature, a descriptor is 

computed. It is a vector which gives information about the distribution of the magnitude and 
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orientation of the gradients in the neighbourhood of the corresponding feature. Features are 

matched by searching for the pair of descriptors in images Ii and T whose Euclidean distance 

is minimal. Features, especially SIFT features, in endoscopic images correspond to blood 

vessel junctions. As discussed in Chapter 4, junctions all look similar as do the descriptors 

(Atasoy et al., 2009). This may create ambiguity when the SIFT features are matched and 

result in a lot of mismatches or outliers. It is, therefore, necessary to guide spatially the 

matching of SIFT features. For example, a rough knowledge of the relative positions between 

the endoscope cameras can help determine a region in the target image where the correct 

match of a feature in the reference image is likely to be. 

 An estimation of the endoscope camera movement can be given by positional sensors 

such as an EM sensor mounted at the tip of the endoscope (Mori et al., 2005, 2007, and 

2008). Mori et al. (2005, 2006, 2007, and 2008) built up hybrid systems combining 

endoscopes, CT scanners, and EM tracking systems to track the positions and movement of 

an endoscopic camera during a bronchoscopy procedure in a 3D reconstruction of the lumen 

of the lung from a CT pre-operative image using registration of real endoscopic images with 

virtual endoscopic images extracted from the 3D reconstruction. Given information about the 

relative movement of the real camera from the EM sensor and a transformation from the real 

camera coordinate system to the virtual camera coordinate system, the position of the virtual 

camera could be updated in the virtual view and this position was used to initialise the image 

registration algorithms for a refinement of the virtual camera position. In the case of biopsy 

site re-localisation, the relative movement between endoscope cameras given by the EM 

sensor can help identify a region in the target image where the match of a feature is. 

An EM tracking system is made up of an emitter which generates electromagnetic 

waves and of a sensor whose position and orientation are computed in the emitter coordinate 

system (Fig. 8-2). The emitter is a box fixed next to the patient, for example. A coordinate 

system (O, xem, yem, zem) is assigned to it and is used as a reference coordinate system for the 

sensor. The sensor is made up of 3 coils that are arranged such that they form a coordinate 

system (S, xS, yS, zS). The electromagnetic field is measured at the origin S of the sensor 

coordinate system and the distance of S from the origin O of the emitter coordinate system 

can be computed. Thus, the position S of the EM sensor is known in real-time in the emitter 

coordinate system (O, xem, yem, zem). At position S, the orientations of the unit vectors of the 

sensor coordinate system xS, yS, and zS in the emitter coordinate system are given by the 

azimuth ψ, elevation θ, and roll Φ angles (Fig. 8-3). Thus, the rotational component of the 

transformation matrix from the emitter coordinate system to the sensor coordinate system is 

given by:  
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(8-1) 

When the sensor is mounted at the tip of an endoscope, its position and orientation 

help track the tip translations and rotations in the emitter coordinate system. In this chapter, 

the EM tracking system is used under the hypothesis that the endoscopist manages to keep 

the biopsy site in the FOV of the endoscopic camera. As the oesophagus is attached to the 

spine, it is assumed that the oesophagus is well trapped and does not move up and down in 

the chest. Finally, it is assumed that the oesophagus does not stretch along its longitudinal 

axis. 
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Fig. 8-2: Main components of an EM tracking system (medSAFE system by Ascension Technology 

Corporation): a) the emitter which generates electromagnetic waves in order to help measure the 

position of b) the EM sensor which may be attached to the tip of the endoscope. The position and the 

orientation of the EM sensor in the emitter coordinate system are measured. 
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Fig. 8-3: Description of the EM sensor coordinate system (S, xS, yS, zS) in the EM emitter coordinate 

system (O, xem, yem, zem) with spherical coordinates: the azimuth ψ, elevation θ, and roll Φ angles. 

 

8.2.2 Combination of the EM tracking system with the re-localisation algorithm 

A re-localised biopsy site p can be computed in a target image T by recovery of the epipolar 

geometry formed by T with each of at least two reference images Ii that each show the site 

under different viewpoints. The epipolar geometry formed by the pair of images Ii ↔ T is 

represented algebraically using the fundamental matrix ( )TIF ,i
: 
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(8-2) 

K is the intrinsic matrix linking the endoscope camera coordinate system with the 2D image 

plane coordinate system. K can be assumed constant during endoscopy investigations and 

recovered from a calibration procedure (Bouguet, 2004). The fundamental matrix ( )TIF ,i
 can 

be computed either with computer vision algorithms as presented in Chapter 3 or with the 

EM tracking system when the sensor is mounted at the tip of the endoscope camera or with a 

combination of the two previous methods. 

The hybrid method for biopsy site re-localisation detects SIFT features and estimates 

the fundamental matrix from the EM tracking system referred to ( ( )TIF ,i
)EM for each pair of 

images Ii ↔ T. The fundamental matrix ( ( )TIF ,i
)EM is used to increase the percentage and 
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number of inliers among the matched SIFT features (Fig. 8-4). This step has the advantage of 

preventing the matching process from comparing useless potential matches and of adding a 

constraint about the spatial arrangement of the features.  Given the jth SIFT feature ( )i
j
Ip  in Ii, 

the epipolar line ( ( )i
j
Iel )EM = ( ( )TIF ,i

)EM. ( )i
j
Ip  is derived in T (Fig. 8-5). This line indicates the 

location of the feature matching ( )i
j
Ip  in T. As ( )TIR ,i

 and ( )TIt ,i
 are measured from the EM 

tracking system with experimental error, the feature matching ( )i
j
Ip  in T lies in a region 

around ( ( )i
j
Iel )EM (Fig. 8-5). Zhang et al. (1995) suggested a search for matching features 

within the envelope of epipolar lines. Therefore, the search for the matching feature in the 

hybrid method is spatially constrained within a bounded region around ( ( )i
j
Iel )EM. In practice, 

the width of this region is set manually using a training reference image Ii and the target 

image T. This width could also be computed analytically by propagating the errors resulting 

from the determination of the calibration matrix K and of the localisation of the EM sensor to 

the computed epipolar line. However, the analytical determination of the width requires a far 

more complex derivation which is not used in this thesis. This first step returns a set of 

matched SIFT features (Fig. 8-4). 

 

 

Re-localised biopsy site p and confidence region

…I1↔T

- Computation of (      )EM, … ( )EM, … ( )EM from the EM tracking system to 
define the spatial constraints
- Feature extraction with SIFT
- Feature matching under the spatial constraints to increase the percentage of inliers

…Inputs

Feature 
extraction and 

matching

Refinement of 
the fundamental 

matrices

Outputs

Ii↔T IN↔T

Computation of (        )fused, … (         )fused, … (          )fused

( )TIF ,i( )TIF ,1 ( )TIF ,N

( )TIF ,1 ( )TIF ,i ( )TIF ,N

 
Fig. 8-4: Hybrid method for biopsy site re-localisation: information from the EM tracking system helps 

recover approximately the epipolar geometry formed by each pair of endoscopic images Ii ↔ T. This 

returns a set of fundamental matrices ( ( )TIF ,i
)EM which help constrain the matching process of the SIFT 

features. Once the features have been matched, the estimation of the epipolar geometries is refined 

which returns a set of more accurate fundamental matrices ( ( )TIF ,i
)fused and the re-localisation method 

can be applied. 
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Fig. 8-5: Spatial constraint during SIFT feature matching: the search in the target image T for the 

feature matching the feature ( )i
j
Ip  in Ii is constrained in a bounded region (blue dotted lines) centred on 

the epipolar line ( ( )i
j
Iel )EM derived from ( )i

j
Ip . The green dots are the features. 

 

Secondly, the hybrid method for biopsy site re-localisation refines the estimation of 

the fundamental matrices. The computer vision algorithms presented in Chapter 3 are applied 

with the SIFT features matched using the spatial constraint from the EM tracking system for 

the pairs of images Ii ↔ T (Fig. 8-4). This step returns a set of fundamental matrices 

( ( )TIF ,i
)fused. Given the biopsy site location ( ) ( ) ( )[ ] tr

1,, iii
yx pp IIIp =  in the reference image Ii, the 

re-localised biopsy site p is computed in T by minimising the sum of its squared 

perpendicular distances to the N epipolar lines ( ( )iIel )fused = ( ( )TIF ,i
)fused. ( )iIp  = [( ( )i

xel I )fused, 

( ( )i
yel I )fused, ( ( )i

mel I )fused]tr as presented in Chapter 4: 
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(8-3) 

8.2.3 Computation of ( ( )TIF ,i
)EM during the first step of the hybrid method 

An EM tracking system consists of a sensor and an emitter. The endoscope camera positions 

C and orientations are computed from the EM sensor positions S and orientations measured 

in the emitter coordinate system whose reference position is termed O (Fig. 8-6). The 

orientation of the sensor is given by the rotation matrix from the emitter coordinate system to 

the sensor coordinate system referred as S
OM . When the endoscope camera moves from 

position C_Ii to position C_T, the sensor positions are S_Ii and S_T and the orientations are 

reported by the matrices iIS
OM _  and TS

OM _  (Fig. 8-6). The computation of the fundamental 

matrix ( ( )TIF ,i
)EM requires the computation of the endoscope camera rotation ( )TIR ,i

 and 

translation ( )TIt ,i
 which are expressed in the coordinate system of the endoscope camera at 

position C_T. Thus, the rotation matrix C
SM  from the sensor coordinate system to the 
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endoscope camera coordinate system has to be determined. By mechanical design, these two 

coordinate systems are fixed relative to each other, and C
SM  is determined during a 

calibration procedure by recording the EM sensor data and the endoscope camera images of a 

calibration grid while the endoscope positions and orientations vary. 

The translation ( )TIt ,i
 is computed from the EM sensor position S_Ii and S_T 

measured in the emitter coordinate system. The translation has to be computed in the EM 

sensor coordinate system at position S_T, first, using the rotation matrix TS
OM _ . The resulting 

vector is expressed in the camera coordinate system at position C_T, secondly, using the 

rotation matrix C
SM . Therefore, ( )TIt ,i

 is computed as follows: 

( ) ( ) ( ) ( )ii
ISTSMMt TS

O
C
STI __.. 1_1

, −=
−−

. (8-4) 

 The matrix ( )TIR ,i
 is the relative rotation from one endoscope camera position to 

another position. It is given directly by the EM sensor and it can be decomposed as a product 

of rotations from the EM sensor coordinate system to the EM emitter coordinate system S
OM  

at positions S_Ii and S_T: 

( ) ( ) ( ) C
S

IS
O

TS
O

C
STI MMMMR ... _1_1

,
i

i

−−
= . (8-5) 

8.3 Experiments and results 

This section describes a set of experiments to test how well the hybrid method performs to 

derive the epipolar lines necessary for the re-localisation. The performance depends on: 

• The accuracy of the EM tracking system to determine the position of the endoscope. 

 

O

Emitter coordinate 
system

Sensor coordinate 
system

Camera coordinate 
system

C
S

Endoscope

S
OM

C
SM

 
Fig. 8-6: Relations between the coordinate systems of the camera, of the EM sensor, and of the EM 

emitter. 
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• The matched features between the reference image Ii and the target image T. As 

discussed in Chapter 4 in section ‘4.3.2 Experiment: number of matches for the 

computation of the fundamental matrix’ and as stated by Luong and Faugeras (1996) 

and Hartley and Zisserman (2004), accurate epipolar geometry is recovered when 

there are a lot of well matched features or inliers (Luong and Faugeras, 1996; Hartley 

and Zisserman, 2004). 

• The endoscope camera. If the resolution is high, the blood vessels are pictured with 

more details in the acquired endoscopic images. The vessels may also appear with a 

better contrast. Features may be better detected in these conditions. 

• The illumination of the tissue. If the oesophagus structure is well illuminated, the 

vessels are visible in the whole image and the detected features are spread well over 

the endoscopic image. 

The experiments consisted of first assessing the error with which the EM tracking 

system measures the displacement of the EM sensor. Secondly, the experiments consisted of 

studying the error of the positioning of the epipolar lines derived with the re-localisation 

system. The last experiment consisted of testing the method on excised organs from pigs. 

8.3.1 Experiment 1: error of an EM tracking system for the determination of the 

displacement and of the orientation of the EM sensor 

 
Fig. 8-7: Experimental setup: a) the EM sensor was mounted at the tip of the endoscope; b) the 

endoscope and the EM sensor were clamped by a probe holder that could be moved in various 

directions; c) the phantom was a carton box in which holes were drilled every centimetre. 
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An EM tracking system can be used to measure the endoscope camera movement. 

Therefore, the error of the measurement of the orientation and of the relative distance 

between two positions of the EM sensor had to be estimated. 

8.3.1.1 Materials and method 

Hummel et al. (2005) did an intensive study of the accuracy of various EM tracking systems. 

They designed a phantom which was a plexiglass board with holes drilled at regular 

distances. The EM sensor was inserted in each hole. The positions and orientations of the 

sensor were measured. Hummel et al. (2005) compared the measured distances between two 

neighbouring holes and the measured angles to the actual distance on the phantom and to the 

actual change of angle. They also assessed the accuracy of the EM sensor in presence of 

various metals which can distort the electromagnetic signal. 

 In this chapter, the experiment aimed to assess the accuracy of the EM tracking 

system in the context of an endoscopy. The EM tracking system was the medSAFE system by 

Ascension Technology Corporation and the EM sensor had 6 degrees of freedom. The 

experiment was inspired from those presented in Hummel et al. (2005). An EM sensor was 

mounted at the tip of an endoscope since this is the way the EM tracking system is used in the 

hybrid method (Fig. 8-7 a)). The endoscope contains metallic parts that can distort the signal 

measured by the EM sensor. The endoscope and the EM sensor were held by a probe holder 

which helped move them manually with a controlled movement (Fig. 8-7 b)). The phantom 

was similar to Hummel et al. (2005) phantom. Hundred holes were drilled every centimetre 

(d0 = 1cm) in a carton board (Fig. 8-7 c)). 

 The experiment consisted of moving the endoscope and the EM sensor with the probe 

holder from holes to holes without changing the orientation. The EM sensor position and 

orientation were measured in the EM emitter coordinate system. For each hole, its distance di 

from each of its 4 neighbours was computed and compared to d0. As suggested by Hummel et 

al. (2005), the Root Mean Squared (RMS) error of the difference between the measured 

distances di and the exact distance d0 was computed in order to assess the error resulting from 

an estimation of the displacement of an endoscope camera with an EM tracking system: 

( )∑
=

−⋅
−

=
n

i
i dd

1n 1

2
0error

1RMS . 
(8-6) 

where n is the total number of distances compared. The maximum, minimum, and mean error 

was computed. Furthermore, due to the nature of the movement of the probe holder, the 

changes of orientations of the EM sensor should be null. The values of the azimuth ψ0, 

elevation θ0, and roll Φ0 angles at the position of the hole scanned first with the EM sensor 
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were measured and used as the ground truth angles. The values of ψi, θi, and Φi angles for the 

99 other positions were measured and compared to the ground truth. Therefore, the RMS 

errors of (ψi - ψ0), of (θi - θ0), and of (Φi - Φ0) were computed as well as their maximum, 

minimum, and mean errors. For this experiment, the board was positioned at a distance of 

approximately 50cm from the EM emitter which is a reasonable distance during clinical 

practice on the patient. Hundred holes were drilled because that is a significant number for 

the estimation of the RMS error. Finally, the distance between two holes was 1cm such that 

the distance along one line corresponded to the movement amplitude of the probe holder. 

8.3.1.2 Results and discussion 

The results are presented in Table 8-1. On average, the displacement and the orientation of 

the EM sensor were measured with an error of approximately 1mm and less than 3 degrees. 

As the EM sensor was placed in contact with the table supporting the phantom when it was 

inserted into the hole, the difference of elevation from one hole to another was smaller than 

for the other angles. Thus, the RMS error, maximum error, and mean error were smaller. The 

insertion of the sensor into the hole could create small rotations of the sensor and the 

resulting errors for the azimuth and roll angles were larger than for the elevation angle. 

Finally, the variations of the measurements could be due to the noise generated by devices or 

metal objects in the neighbourhood which use or carry large amounts of electrical current that 

vary over time or to the internal noise of the EM tracking system (Hummel et al., 2005). 

These sources of noise came from the endoscope and the metallic tables in the room where 

the experiment was run. 

 The accuracy of the measurements from the EM sensor has an influence on the 

accuracy of the fundamental matrix estimated from the EM tracking system. The next 

experiments study the accuracy of the epipolar lines computed with the hybrid method and 

used for the re-localisation. 

 

Table 8-1: Results of the errors between the measured distances and the exact distance (in millimetres) 

and between the angles (in degrees): 

 di – d0 (mm) ψi – ψ0 (degrees) θi – θ0 (degrees) Φi – Φ0 (degrees) 

Maximum 2.034 9.582 4.183 10.443 

Minimum 0.012 0.042 0 0.016 

Mean 0.778 2.276 0.959 3.250 

RMSerror 0.935 3.766 1.294 4.083 



 
 
 
 

165 

8.3.2 Experiment 2: error of the positioning of the epipolar lines derived with the 

re-localisation system 

This experiment aimed to study the contribution of the EM tracking system to the feature 

matching and to the computation of the epipolar lines derived for the re-localisation of a 

biopsy site. This experiment was run on a phantom with an EM sensor attached to the tip of a 

fibered endoscope. As the transformation matrix C
SM  which relates the EM sensor coordinate 

system to the endoscope camera coordinate system was unknown, a preliminary step was the 

determination of C
SM  during a registration procedure. Thus, this part is organised as follows: 

• First, the experimental setup is presented. 

• Secondly, the procedure for the study of the error of the positioning of an epipolar 

line is presented. 

• Finally, the results of the study are discussed. 

8.3.2.1 Methods and materials 

2.5 cm2.5 cm

CCD camera

Endoscope

Gastroscope tip

EM sensor

x-axis

y-axis

z-axis

a)

b)

c)

d)

e)

Rigid tube

 
Fig. 8-8: Experimental setup: a) the phantom was a rigid tube of diameter 2.5cm; b) a texture 

mimicking a vascular network was printed onto a piece of paper and stuck to the inner surface of the 

tube and rolled into the phantom; c) a fibered endoscope was used in combination with a CCD camera 

placed at the end of the fibered endoscope; d) the EM sensor was attached to the tip of the endoscope; 

e) the tip of the endoscope and the EM sensor were held with a probe holder that could move along 3 

orthogonal directions. 
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8.3.2.1.1 Experimental setup 

The experimental setup was designed such that it reproduced the conditions of a gastroscopic 

examination. As the oesophagus is positioned next to the spine and physically constrained 

between the trachea and the lungs, it was assumed that the oesophagus is well fixed in the 

patient’s chest and does not stretch. According to the sequences acquired on patients, the 

endoscopist manages to maintain the endoscope on the central axis of the oesophagus which 

is why the movement of the endoscope camera in these experiments was along this axis. Such 

an observation was made also in Mori et al. (2007) during bronchoscopy examinations. 

A physical phantom was built from a 2.5cm diameter rigid tube, which corresponds 

approximately to the diameter of an oesophagus (Fig. 8-8 a)). A synthetic texture was rolled 

into the tube. It had to realistically represent the pattern of the oesophagus walls. Real vessels 

could be described as lines that intersect. Their thickness was approximately 0.3mm 

according to inspection of real endoscopic images. Therefore, 0.3mm thick lines were 

generated digitally and printed out on a piece of white paper. The lines were positioned and 

orientated by random selections of a position and orientation within the image (Fig. 8-8 b)). 

 A fibered endoscope was used for the acquisition of endoscopic images. The inside 

of the phantom was illuminated with a Xenon lamp, and a CCD camera was placed at the end 

of the bundle of fibres for image recording (Fig. 8-8 c)). There were thousands of fibres 

which were arranged in a honeycomb pattern. A relay lens to allow eyepiece images to be 

focused onto the chosen CCD camera was placed between the camera and the end of the 

bundle of fibres. Acquired images had a resolution of approximately 1600pixels x 

1200pixels. Images of such a resolution can be obtained during real endoscopy by using 

adequate video image grabbers. An EM sensor was attached to the tip of the endoscope in 

order to record the rotations and translations of the tip (Fig. 8-8 d)). The endoscope tip will be 

called the endoscope camera from now on. The endoscope camera was inserted into the 

phantom. It was attached to a probe holder in order to control its movement and in order to 

measure precisely the actual translation of the endoscope camera (Fig. 8-8 e)). 

 Before endoscopic images and EM tracking data were acquired, a procedure was run 

in order to register the endoscope camera coordinate system to the sensor coordinate system 

and in order to determine C
SM  which is necessary for the estimation of the epipolar geometry 

from the EM tracking system. This was achieved by acquiring a series of endoscopic images 

of a calibration pattern seen from different viewpoints of the endoscope camera. For each 

camera pose, the positional data of the EM sensor were recorded. The method was described 

by Tsai and Lenz (1989) and a Matlab implementation (Matlab, R14, The Mathworks Ltd, 

Cambridge, UK) by Wengert et al. (2006) was used to determine the transformation C
SM . 
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8.3.2.1.2 Study of the error of the positioning of an epipolar line 

This section presents the procedure for the study of the error of the positioning of an epipolar 

line derived with the hybrid re-localisation method. 

It was assumed that the endoscope camera moves along the oesophagus central axis 

after tissue interrogation by optical biopsy. Therefore, the experiment consisted of moving 

the endoscope camera along the central axis of the phantom. A reference image I was 

acquired for a first position of the endoscope camera. It was moved along the camera z-

direction with the probe holder every 2mm. For each position of the endoscope camera, a 

target image Ti was acquired. As this study measured the error of the computed epipolar line 

in a series of target images acquired for various positions of the endoscope camera, the target 

images are indexed with i and noted Ti. The images were acquired with a fibroscopic 

endoscope. Thus, a comb structure was overlaid in the images and had to be removed in order 

to avoid detecting features on the comb structure. In the context of this experiment, a 

Gaussian smoothing of the images was performed before recovery of the epipolar geometry 

and the parameterisation of the smoothing was done manually and interactively using a 

training acquired image as Winter et al. (2006) suggested. Winter et al. (2006) compared the 

performances of various kernels for smoothing fibroscopic images and demonstrated that the 

Gaussian kernel returns the best results. For automatic procedures, Winter et al. (2006) also 

proposed a method to compute the optimal parameterisation of the smoothing. 

Once the images were smoothed, a biopsy site was selected in the reference image I. 

It corresponded to a point selected manually at the junction of two lines in the synthetic 

texture (Fig. 8-8 b)). This point was also visible in the target images Ti. SIFT features were 

detected in the reference and target images. Features in the neighbourhood of the biopsy site 

were removed in order to avoid influencing the performance of the re-localisation methods. 

The epipolar line was derived in Ti from the biopsy site location in I. There were three 

methods to derive this epipolar line: 

Method 1: Estimation of the fundamental matrix using the EM tracking system only: 

For each pair of images I ↔ Ti, the fundamental matrix ( ( )iTIF , )EM was estimated from the EM 

tracking system. Epipolar lines could be derived in Ti from the biopsy site in the reference 

image I using ( ( )iTIF , )EM. 

Method 2: Estimation of the fundamental matrix without using the contribution of the 

EM tracking system: For each pair of images I and Ti, SIFT features were matched without 

the constraint from the EM tracking system that the matching feature in Ti should be in a 

bounded region around the epipolar line. Once the features were matched, the epipolar 

geometry formed by each pair of images I and Ti was computed with the MAPSAC and the 
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nonlinear optimisation. The epipolar lines were derived in T from the biopsy site locations in 

the image I. 

Method 3: Estimation of the fundamental matrix using the contribution of the EM 

tracking system: This was the method of the whole re-localisation presented in Chapter 8. 

For each pair of images I ↔ Ti, the fundamental matrix ( ( )iTIF , )EM was estimated from the EM 

tracking system. For each image I and Ti, SIFT features were matched with the spatial 

constraint. A training image was used to set the value of the width of the bounded region. The 

epipolar lines were derived after refinement of the epipolar geometry with MAPSAC and a 

nonlinear optimisation over the matched features. Epipolar lines were derived in Ti from the 

biopsy site locations in the image I. 

The distance from the true location of the biopsy site in Ti to the epipolar line was 

computed in order to assess the error of the positioning of the epipolar line. This distance was 

measured in pixels and in millimetres. It was assumed that the epipolar line was sufficiently 

close to the biopsy site to approximate the 2D distance as representative of the real 3D 

distance. The measures in pixels were converted in millimetres using information about the 

actual thickness of the lines as a scale. Besides, according to real patient data, the contrast 

between the vessels and the homogeneous tissue was defined as (Imax - Imin)/(Imax + Imin) where 

Imax is the intensity of the paper and Imin the intensity of the line and could vary from 0 to 1. 

The contrast of the vessels in the endoscopic images decreased with their distances from the 

camera as the illumination got poorer. The contrast of the vessels also changed from one 

patient to another. For some acquired sequences, the vessels had a low contrast with the 

tissue. Thus, this experiment was repeated for several synthetic textures whose straight lines 

had a contrast of first 0.5, secondly 0.3, and thirdly 0.2. In the acquired endoscopic images, 

the lines appeared with weaker contrasts, still varying between 0 and 1. 

8.3.2.2 Results and discussion 

The results of the distances between the epipolar lines and a biopsy site location are presented 

in Table 8-2, Table 8-3, and Table 8-4. 
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Table 8-2: Errors of the epipolar lines for various camera positions: contrast = 0.5 
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Table 8-3: Errors of the epipolar lines for various camera positions: contrast = 0.3 
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Table 8-4: Errors of the epipolar lines for various camera positions: contrast = 0.2 
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 For Method 1, the error of the positioning of the epipolar line increased when the 

displacement of the endoscope camera was larger. First, the camera displacement was 

measured by the EM sensor in the EM emitter coordinate system. The first experiment 

showed that the displacement might be estimated with an error varying from 0.0012mm to 

2.034mm. During the second experiment, the EM sensor measured, for example, a 

displacement of 1.6mm instead of 2mm. This error affects the matrix [ ( )iTIt , ] used for the 

estimation of the fundamental matrix ( ( )iTIF , )EM from the EM tracking system. It propagates to 

the epipolar line. Secondly, ( )iTIR ,  and [ ( )iTIt , ] were computed with the measures from the EM 

sensor and with the transformation matrix C
SM  from the EM sensor coordinate system to the 

camera coordinate system. C
SM  was found by registration of the coordinate systems, but this 

measurement includes error from the EM tracking system. Indeed, the registration consisted 

of moving the endoscope with the EM sensor at the tip to various positions and acquiring 

endoscopic images and EM sensor data for each position. The camera rotation and translation 

were both computed from the images and measured from the EM sensor with experimental 

error in order to register the camera coordinate system with the EM sensor coordinate system. 

Thus, the error of the measurements with the EM sensor in combination with the error of the 

computation of C
SM  could be responsible for the error of the position of the epipolar line in 

Ti (Fig. 8-9, Fig. 8-10, and Fig. 8-11). The error of the measurement of the EM sensor 

increased when the displacement was larger which is why the lines were further away from 

the biopsy site for displacements of 8mm than for displacements of 2mm. 

 
Fig. 8-9: Epipolar geometries recovered from the EM sensor for a contrast of 0.5 for a displacement of 

2mm (a), 4mm (b), and 8mm (c): the set of images at the bottom row shows in image Ti the epipolar 

line derived from the biopsy site in image I (red line) and from the epipolar geometry computed with 

the EM tracking system only (top row). It also shows the ground-truth position of the biopsy site 

(green point). 
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Fig. 8-10: Epipolar geometries recovered from the EM sensor for a contrast of 0.3 for a displacement 

of 2mm (a), 4mm (b), and 8mm (c): the set of images at the bottom row shows in image Ti the epipolar 

line derived from the biopsy site in image I (red line) and from the epipolar geometry computed with 

the EM tracking system only (top row). It also shows the ground-truth position of the biopsy site 

(green point). 

 

 
Fig. 8-11: Epipolar geometries recovered from the EM sensor for a contrast of 0.2 for a displacement 

of 2mm (a), 4mm (b), and 8mm (c): the set of images at the bottom row shows in image Ti the epipolar 

line derived from the biopsy site in image I (red line) and from the epipolar geometry computed with 

the EM tracking system only (top row). It also shows the ground-truth position of the biopsy site 

(green point). 

 
 Method 2 consisted of detecting SIFT features in the two images I and Ti, and of 

matching their descriptors with the nearest neighbour similarity measure. The number of 

matches decreased with the displacement of the endoscope camera. With the backward 

displacement, the illumination of the line intersections that were at the foreground for 

previous positions decreased. Therefore, their contrast with the background was getting 
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weaker (Fig. 8-12). As SIFT requires setting a threshold for the contrast, the line intersections 

were not necessarily detected as features. Decreasing the threshold, while the endoscope 

camera moved backwards, could be a solution to increase the number of detected features and 

of matches in I and Ti. During the experiment, this threshold was set at a low value in order 

to detect features at the line intersections with a weak contrast. However, when the threshold 

was set at a low value, the neighbourhood of the features was more blurred and the 

descriptors of the detected features could become different as the endoscope camera moved 

backwards (Fig. 8-13). For these two reasons, there was a risk of finding two descriptors in I 

and Ti that were very similar while they corresponded to two different anatomical points. 

This could result in a greater number of outliers among the feature matches when the 

endoscope camera moved backwards. As the number of outliers increased, a lot of tests for 

the estimation of the fundamental matrix with the MAPSAC were required with Method 2 in 

order to determine accurate epipolar geometry. 

 Method 3 showed the same variations as Method 2 for the feature matching. 

However, the number of matches and of inliers was higher than that for Method 2 (Table 8-2, 

Table 8-3, and Table 8-4). As a spatial constraint was imposed by the epipolar lines, each 

descriptor was compared only with the descriptors that were within the epipolar band (Fig. 

8-14). This helped avoid matching two descriptors that were very similar although they 

corresponded to two features that did not represent the same anatomical point. Not only did 

the spatial constraint help find the correct matching feature, but it increased also the number 

of detected inliers (Fig. 8-15). A match is not simply defined by a threshold on the Euclidean 

distance between SIFT descriptors. A feature matches its nearest Euclidean neighbour if and 

only if the ratio of the Euclidean distances with respectively the first and second nearest 

neighbours is greater than a fixed threshold. The spatial constraint from the EM tracker 

excludes gross matching errors. The first neighbour will more likely produce the correct 

match. As the criterion is then the distance ratio, the matching leads to an increase in the 

number of inliers. For example, as line intersections repeat within an endoscopic image, 

multiple descriptors could match equally a descriptor in the reference image. The matching 

without spatial constraint could return a wrong matching or no matching while the spatial 

constraint returned the correct match (Fig. 8-15). The percentage of inliers was also higher 

especially for large displacements, for example for a contrast of 0.3 for the pairs of images I 

and T2, I and T4, and I and T5, or for a contrast of 0.2 for the pairs of images I and T4 (Table 

8-3, and Table 8-4). A high percentage of inliers is important as it reduces the number of 

estimations of MAPSAC necessary to find an accurate fundamental matrix. 
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Displacement = 0mm Displacement = 2mm Displacement = 4mm

Displacement = 6mm Displacement = 8mm Displacement = 10mm  
Fig. 8-12: Decrease of the contrast of a vessel intersection in the endoscopic images with the 

displacement of the endoscope camera: as long as the illumination was high, the intersection was 

detected as a SIFT feature located at the centre of the green circle, representing the descriptor 

(displacements from 0mm to 2mm). When the illumination decreased, the vessel intersections were not 

detected anymore as features since their contrast with the background was getting too weak. 

 

Displacement = 0mm Displacement = 4mm 

Displacement = 8mm Displacement = 10mm 

 
Fig. 8-13: Variations of the descriptor (green circle) and of its main orientation (green ray) with the 

displacement of the endoscope camera: as the feature located in the centre of the green circle was 

characterised by a smaller contrast and by a more blurred neighbourhood when the camera moved 

backwards, the descriptor could be different in Ti from the descriptor of the corresponding feature in I. 

This might make the feature matching more difficult. 
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 The accuracy of the epipolar lines computed using data from the EM tracking system 

depends not only on the accuracy of the EM tracking system but also on the accuracy of the 

registration of the endoscope camera coordinate system with the EM sensor coordinate 

system. Therefore, the impact of the accuracy of the EM tracking system on the epipolar lines 

used for the re-localisation with the hybrid method involves complex propagations of errors. 

It is, however, expected that the epipolar lines derived from the EM tracking system will be 

less accurate when the EM tracking system accuracy gets worse. Because the epipolar lines 

are less accurate, the width of the bounded region to match features becomes larger. The risk 

of matching features incorrectly will then become higher and the epipolar lines computed for 

the re-localisations will be less accurate. As demonstrated by the simulations described in 

Chapter 5, the re-localised biopsy site is likely to be less accurate. 

I Ti  
Fig. 8-14: Illustration of the SIFT feature matching with spatial constraint: a feature, green point, in the 

reference image I of the phantom was matched to a feature in the bounded region in Ti (blue lines 

surrounding the epipolar line). 

a) b)

c) d)
 

Fig. 8-15: Illustration of the contribution of the spatial constraint from the EM tracking system: a) a 

SIFT feature was detected in reference image I; b) the correct matching feature in the target image Ti 

looks similar to c) another feature in Ti which is why the matching without the spatial constraint did 

not return a match while d) a matching with spatial constraint within a bounded region (2 blue lines) 

centred on the epipolar line (red line) returned the correct match (green point). 
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Fig. 8-16: Experimental setup: endoscopic images of 2 pigs’ trachea and bronchus were acquired with 

an endoscope mounted with an EM sensor and controlled with a probe holder. 

 

Biopsy siteBiopsy siteBiopsy site

Biopsy siteBiopsy siteBiopsy site

(a) Pig bronchus

(b) Pig trachea  
Fig. 8-17: Examples of endoscopic images acquired in the pig bronchus and trachea. The biopsy site 

was a natural pigment spot of approximately 2mm diameter. 

8.3.3 Experiment 3: test of the method on excised organs from pigs 

The combination of the EM tracking system with the re-localisation method could not be 

tested on real patients since EM tracking data could not be acquired. Therefore, this was 

tested on excised pig organs. 

8.3.3.1 Materials and method 

The oesophagus was entirely collapsed; therefore, endoscopic data were acquired in the 

trachea and the bronchus of 2 pigs. The experimental setup was the same as that presented in 

section ‘8.3.2.1.1 Experimental setup’ for the experiments on the phantom representing an 

oesophagus (Fig. 8-16). 
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The endoscope tip was moved randomly with the endoscope holder around a region 

of interest to acquire a set of images in the first pig bronchus and in the second pig trachea 

(Fig. 8-17). The image dimensions were 1600 pixels x 1200 pixels. For the 2 sets of images, a 

target image T was selected. A pigment spot of 2mm diameter at the tissue surface was 

selected as the biopsy site and its positions in the reference images Ii and in the target image 

T were recorded. SIFT features were detected for each image Ii or T. As for the patient data, 

a mask in the endoscopic images was used to remove the SIFT features that were detected 

around the biopsy site. 

The biopsy site was re-localised with 3 methods already presented in this chapter: 

Method 1: Re-localisation using the EM tracking system only: For each pair of 

images Ii ↔ T, the fundamental matrix ( ( )TIF ,i
)EM was estimated from the EM tracking 

system. Epipolar lines could be derived in T from the biopsy sites in the reference images Ii 

using ( ( )TIF ,i
)EM. The re-localised biopsy site could be computed in T from these epipolar 

lines. 

Method 2: Re-localisation without using the contribution of the EM tracking 

system: For each image Ii and T, SIFT features were matched without the spatial constraint 

from the EM tracking system that the matching features in T should be in a bounded region 

around the epipolar line. Once the features were matched, the epipolar geometry formed by 

each pair of images Ii and T was computed with the MAPSAC and the nonlinear 

optimisation. Epipolar lines were derived in T from the biopsy site locations in the images Ii 

to estimate the re-localised biopsy site. 

Method 3: Re-localisation using the contribution of the EM tracking system: 

This was the method of the whole re-localisation system presented in Chapter 8. For each pair 

of images Ii ↔ T, the fundamental matrix ( ( )TIF ,i
)EM was estimated from the EM tracking 

system. For each image Ii and T, SIFT features were matched with the spatial constraint. A 

training image was used to set the value of the width of the bounded region. The epipolar 

lines were derived after refinement of the epipolar geometry with MAPSAC and a nonlinear 

optimisation over the matched features. Epipolar lines were derived in T from the biopsy site 

locations in the images Ii to estimate the re-localised biopsy site. 

After the computation of the re-localised biopsy site, the analysis of the accuracy and 

the conversion from pixels to millimetres were the same as those done for real patients in 

Chapter 7. The biopsy site was re-localised with 6 epipolar lines in the pig bronchus and with 

8 epipolar lines in the pig trachea. Also, for each pair of images Ii ↔ T, the number and the 

percentage of inliers were counted manually. 
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a) b) c)

Without constraint:
Accuracy = 30 pixels
0.76mm

With constraint:
Accuracy = 17 pixels
0.43mm

Without constraint:
Accuracy = 41 pixels
1mm

With constraint:
Accuracy = 12 pixels
0.31mm

 
Fig. 8-18: Results of the experiment on excised pig bronchus and trachea: columns a) and b) re-

localisation results in bronchus and trachea: the blue epipolar lines were derived in T from the biopsy 

site locations in the reference images Ii, and the green point is the re-localised biopsy site; column c) 

illustration of erroneous matching (bottom) of SIFT features (top) that would be excluded by the 

constraint provided by the EM tracker: a SIFT feature is represented in Ii (top row) at the centre of a 

circle whose radius is proportional to the feature scale and whose drawn radius indicates the feature 

orientation. The bottom row shows the matched feature in T. 

 

8.3.3.2 Results 
For the ex vivo study, the spatial constraint from the EM tracking system could contribute to 

more accurate re-localised biopsy sites (Fig. 8-18 a) and b)). For the sequence acquired in the 

pig bronchus, one epipolar line derived from a set of matches counting 38% inliers without 

spatial constraint i.e. without the contribution of the EM tracking system was less accurate 

than the epipolar line derived from a set of matches counting 55% inliers with spatial 

constraint (Fig. 8-18 a)). The biopsy site was re-localised with an accuracy of 1.6mm with the 

EM tracking system only, 0.76mm without spatial constraint, and 0.43mm with spatial 

constraint. For the sequence acquired in the trachea, one epipolar line was derived from 42 

inliers without constraint while it was derived from 108 inliers with constraint (Fig. 8-18 b)). 

The biopsy site was re-localised with an accuracy of 3mm with the EM tracking system only, 

1mm without spatial constraint, and 0.31mm with spatial constraint. For these cases, the EM 

tracking system helped avoid matching SIFT features whose neighbourhoods were similar 

although they did not correspond to the same anatomical point (Fig. 8-18 c)). 



 
 
 
 

180 

8.4 Conclusion 

This chapter aimed to demonstrate that accurate epipolar geometry can be estimated using the 

contribution of an EM tracking system. The EM tracking system returns a crude 

approximation of the epipolar geometry. It can help constrain spatially the matching of SIFT 

features using information that the features must be next to their epipolar line estimated with 

the EM tracking system. 

 A study on phantom showed that the EM tracking system has the potential to increase 

the percentage and the number of inliers during the matching process of SIFT features. It is 

particularly the case for 2 images acquired for camera positions which differ by more than 

6mm and for images where the features have a poor contrast with the background. For 

example, the epipolar geometry could be recovered from a set of matches containing 62% 

inliers when information from the EM tracking system was used while it was recovered from 

matches containing 48% inliers without the contribution of the EM tracking system. For this 

example, information from the EM tracking system helped detect 86 matches containing 53 

inliers while no information resulted in 69 matches containing 33 inliers. These results were 

obtained on a static phantom with a texture whose patterns repeated a lot. The contribution of 

the EM tracking system to the re-localisation was shown with experiments on excised organs 

from pigs. The re-localised biopsy site was computed in a trachea and in a bronchus with an 

accuracy better than 0.5mm thanks to the contribution of the EM tracking system while it was 

computed with an accuracy between 0.5mm and 1mm without the contribution of the EM 

tracking system. 

 As the endoscopes used during the endoscopy examinations in the experiments 

described in this chapter did not have an integrated EM tracking system, these experiments 

were limited to studies using a rigid static phantom and static excised tissues. The conditions 

of these experiments were intended to reproduce those of an endoscopy examination of 

Barrett’s Oesophagus. The assumptions of rigidity and of the absence of movement of the 

oesophagus are justified since the oesophagus does not deform while the endoscope stays 

near the biopsy site and the patient is usually calm and does not normally move during 

endoscopy examinations. Furthermore, the oesophagus is located near the spine and is 

physically constrained by the trachea and lungs. Therefore, it is not expected to move 

significantly with the breathing motion. Nevertheless, further developments could take into 

consideration small displacements of the organ with the patient breathing and movement to 

further increase accuracy. Additional developments include the determination of the limits of 

the accuracy of the EM tracking system in order to achieve a re-localisation accuracy that is 

sufficiently high for a particular clinical application. This could be done by computer 
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simulations using a Monte Carlo approach. An initial scene could be created virtually in such 

a way that epipolar lines all pass through the biopsy site and subtend an angle of 40°. Specific 

standard deviations could be applied to the positions and orientations of a simulated EM 

sensor. These standard deviations could be propagated as errors through the transformation to 

the camera coordinate system. The epipolar lines would be recomputed with uncertainty and 

the re-localised biopsy site would be computed. This computation would be repeated a great 

number of times for the same standard deviations applied to the positions and orientations of 

the simulated EM sensor in order to estimate the required accuracy of the re-localisation. The 

standard deviations would be changed, afterwards, in order to determine a range of 

inaccuracies of the EM tracking system that can return accurate re-localisations. 

 Chapters 5, 6, 7, and 8 presented methods to re-localise a biopsy site using epipolar 

lines and to compute a confidence region around the re-localised biopsy site. The next chapter 

consists of defining possible routes to develop a re-localisation system that can be used 

clinically and potential applications of these methods. 
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Chapter 9 Conclusion and Future Work 
 

9.1 Conclusion 

Many diseases start at the superficial layers of tissue and are characterised by microscopic 

lesions that evolve before the diseases reach a malignant stage. Optical biopsy techniques 

have the potential to detect these lesions in vivo and in situ. They commonly consist of 

miniprobes that are placed in contact with the tissue for interrogation of a 0.5mm x 0.5mm 

extent and return information at the cellular level, the microscopic scale. Once these lesions 

have been detected, it is necessary to re-localise these lesions in their macroscopic context in 

order to go back to the same position at a later time. This thesis is based on the development 

of a re-localisation method of lesions with an application in gastroenterology. This thesis 

aimed to study the potential contribution of epipolar geometry to solve the problem of biopsy 

site re-localisation in endoscopic images during a surveillance examination of Barrett’s 

Oesophagus (BO). 

 The epipolar geometry formed by a pair of a reference endoscopic image and of a 

target endoscopic image can be represented algebraically by the fundamental matrix. It is a 

mapping between the two images. It transforms a point in the reference image as an epipolar 

line in the target image which indicates the locus of the possible positions of the matched 

point in the target image. As the fundamental matrix is a point-to-epipolar line mapping, 

more pairs of endoscopic images are necessary to constrain the locus of possible positions of 

the searched point. The pairs of images have to show the point under different viewpoints in 

order to compute the re-localised biopsy site. Either 2 or N > 2 epipolar lines were used. 

Chapter 5 discussed this method which was the first contribution of this thesis. Simulations 

aimed to study the variations of the re-localised biopsy site accuracy and precision with the 

noise in the images and, therefore, with the accuracy of the epipolar lines. When the epipolar 

lines were determined less accurately, the resulting re-localised biopsy site tended to be less 

accurate when it was computed either with 2 epipolar lines only or with N epipolar lines. This 

chapter studied also the influence of the angle subtended by the epipolar lines on the accuracy 

of the re-localised biopsy site. The larger the angle, the more accurate and precise the biopsy 

site. 

 The angle subtended by the epipolar lines depends on the movement of the 

endoscope camera (or, equivalently, endoscope tip). This movement helps generate multiple 

different viewpoints. As the camera is commonly located around the rotation axis of the 
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endoscope, twisting the tip of the endoscope is sufficient to translate and rotate the camera. 

With such motion, the epipoles follow a circular trajectory around the centre of the image as 

discussed in Chapter 7. As the biopsy site is usually not far either from the centre of the target 

image, the resulting epipolar lines can subtend a large angle up to 50°. Further experiments 

should be done in order to determine the minimal angle with which the endoscope tip should 

be rotated for the generation of sufficiently different epipolar lines. In clinical practice, the 

epipolar lines could also be overlaid on the images in order to help the endoscopist decide 

how to rotate the endoscope. 

 During an endoscopic examination, the display of a confidence region around the re-

localised biopsy site may be useful for instrument guidance. The confidence region of a point 

is commonly drawn from the covariance matrix of this point. The covariance matrix can be 

determined experimentally which consists of estimating the point several times adding 

different noise samples in the images for each experiment. This method requires, however, a 

lot of iterations. Chapter 6 presented an analytical derivation for the determination of this 

covariance matrix without iterations which was the second contribution of this thesis. The 

derivation was developed for the re-localisation method with N > 2 epipolar lines. The 

resulting analytical covariance matrices were not in perfect correspondence with the 

experimental covariance matrices. However, these derivations have the potential to display an 

approximation of the confidence region around the re-localised biopsy site. 

 Chapter 5 and Chapter 6 focused on the use of epipolar lines to re-localise a biopsy 

site and on analytical derivations to estimate the confidence region around the site in the 

target image. Chapter 7 presented the results of the validation of the re-localisation method 

and of the analytical uncertainty. The validation was done using data acquired on a phantom 

and on real patients with various endoscopes and various endoscope camera motions. During 

some examinations, air/water bubbles obstruct the field of view of the endoscope camera or 

the camera may move too quickly which returns blurred images. These events may happen 

between the time before which the endoscopist was interrogating the tissue with the 

miniprobe and the time after which the biopsy site needed to be re-localised. The recovery of 

the epipolar geometry between the reference image and the target image requires the 

detection of common features which are commonly located on the vasculature. When events 

like air/water bubbles appearance or quick camera movement does not occur, the Lucas 

Kanade (LK) tracker may be used to detect features in the reference image and to track them 

until the target image. This tracker has the advantage of constraining spatially the search for 

the feature matches. However, in the case of such events, the LK tracker fails since features 

cannot be tracked reliably. The Scale and Invariant Feature Transform (SIFT) may be used as 
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an alternative since SIFT does not track features. However, SIFT does not impose a spatial 

constraint when matching the detected features. This may produce a high number of 

mismatches or outliers which corrupt the computation of the epipolar geometry. Chapter 8 

focused, therefore, on a method to reduce this number of outliers which was the third 

contribution of this thesis. ElectroMagnetic (EM) tracking systems may be integrated into 

endoscopes in order to track the movement of the endoscope camera in the 3D space. Thus, 

the epipolar geometry formed by the pair of reference and target images can be recovered 

from the EM tracking system. The search for feature matches can be constrained by this 

estimate of the epipolar geometry. The resulting matches can be used again to refine the 

computation of the epipolar geometry and to derive the epipolar lines used for the re-

localisation of the biopsy site. 

 Chapters 5, 6, 7, and 8 described and validated methods to re-localise biopsy sites 

and determine their confidence region in critical or not critical cases. However, this thesis did 

not explain how a whole re-localisation system could work in real-time with patients. 

Moreover, the methods were developed only for re-localisation of a biopsy site in subsequent 

images acquired during the same endoscopy examination. Finally, the thesis did not study the 

potential fusion of information coming from various imaging modalities at different scales. 

These three routes define possible future works to make use of or extend the re-localisation 

method. 

9.2 Re-localisation in real time 

The results presented in this thesis were obtained from sequences processed after acquisition. 

A major missing step is the automatic detection of the tip of the miniprobe. Also, the 

algorithms for feature detection and matching and for recovery of the epipolar geometry were 

implemented using Matlab (Matlab, R14, The Mathworks Ltd, Cambridge, UK). The 

computations can be engineered to make them run faster. 

 Several authors suggested methods for the segmentation of the miniprobe in 

endoscopic images (Speidel et al., 2006; Voros et al., 2006; Mountney et al., 2009). 

Mountney et al. (2009) developed a method that segmented the miniprobe in the Hue-

Saturation-Value space of the endoscopic images; however, this method does not take into 

account the presence of the metallic ferrule mounted at the tip of the miniprobe. Voros et al. 

(2006) developed a method that detects the edges of the instruments using the Hough 

transform and a prior knowledge about the position of the instrument in the endoscopic 

image. This spatial information was derived from the hypothesis of rigidity of the endoscopes 

and of the instruments. Thus, a more adapted method for miniprobe segmentation would be 



 
 
 
 

185 

that developed by Speidel et al. (2006) which is probabilistic segmentation using information 

about the colour of the pixels to distinguish tissue from the instruments. 

 Implementations of the Lucas Kanade (LK) tracker and of the Scale Invariant Feature 

Transform (SIFT) used in this thesis were not fast implementations. Graphic Processing Unit 

(GPU) implementations of these algorithms have been developed and can be found at the 

following adresses: 

- GPU-based LK tracker: http://www.cs.unc.edu/~ssinha/Research/GPU_KLT/ 

- GPU-based SIFT: http://www.cs.unc.edu/~ccwu/siftgpu/ 

Furthermore, the estimation of the fundamental matrices requires a lot of MAPSAC tests . 

These tests can be run in parallel using the GPU technology. In this thesis, a 7-parameter non-

linear optimisation method based on MAPSAC was used for the estimation of the 

fundamental matrix. A recently desribed alternative method termed the Extended 

Fundamental Numerical Scheme (EFNS), developed by Sugaya and Kanatani (Sugaya and 

Kanatani, 2007; Kanatani, 2008), has been shown to return a more accurate fundamental 

matrix than that obtained with the 7-parameter non-linear optimisation. The EFNS method 

consists of minimising the uncertainty of the fundamental matrix represented by its 

covariance matrix. Future developments could explore this method in order to improve the re-

localisation accuracy. 

 Finally, the method presented in this thesis made the assumption that the oesophagus 

tissue does not deform significantly. Most of the patients undergoing the endoscopy 

examinations for the surveillance of Barrett’s Oesophagus whose data were acquired for the 

validation studies presented in this thesis were sedated and calm during the examination. 

Therefore, the oesophageal wall could be reasonably assumed to remain stationary during the 

examination once the endoscope had been inserted. Furthermore, the processed sequences 

were selected such that they showed a static structure of the oesophagus. For some patients, 

the oesophageal wall was observed to exhibit a periodical movement when the miniprobe was 

removed: the wall shrunk and distended again as the oesophagus recovered its initial shape. 

Future work could focus on the detection of endoscope images during a sequence which 

shows the same oesophagus shape. One possible approach would be to recover the epipolar 

geometry and to measure the Sampson’s error for the fundamental matrix to fit the set of 

inliers. If the Sampson’s error is too large, this indicates that the reference image might not be 

suitable for use in re-localisation. 

 These three improvements will be investigated in future developments. 
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First examination Second examination

a) b)

c) d)
 

Fig. 9-1: Similar vascular patterns between a first and a second surveillance examination of Barrett’s 

Oesophagus (BO) performed on the same patient within 3 months interval: the arrows indicate the 

location of vascular segments that are visible in both images. The colours help identify the similar 

segments. Images a) and b) correspond to the same region in the first (left column) and second (right 

column) examinations. Images c) and d) correspond to the same region in the first (left column) and 

second (right column) examinations. 

b) c)a)  
Fig. 9-2: Epipolar geometry formed by a pair of endoscopic images acquired during a first examination 

and during a second examination: a) reference image from the first examination; b) epipolar lines (red 

lines) in the target image acquired during the second examination derived from seven features of the 

reference image; c) epipolar line (green line) derived in the target image from a ‘biopsy site’ of the 

reference image and the true location of the ‘biopsy site’ (red point) in the target image. 
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9.3 Biopsy site re-localisation in a future examination 

A surveillance examination of Barrett’s Oesophagus (BO) consists of detecting dysplasias at 

the tissue surface that correspond to early changes of the cells. These cells can evolve over 

time as cancers or they can get back to normal. An important extension of the re-localisation 

method would be its use for excising or observing during a future examination the biopsy site 

detected in a first examination in order to assess the stage of the disease. 

The re-localisation method requires the detection of features in endoscopic images 

that correspond usually to vessel intersections or curvatures. As patients examined for the 

detection of BO do not have cancer, it is not expected that the geometry and/or size of 

superficial blood vessels will change significantly between endoscopic investigations due to 

the angiogenesis. Therefore, it is reasonable to assume that there will not be significant 

changes in the appearance of the wall of the oesophagus. An experiment consisted of 

comparing the oesophagus wall of the same patient observed with an endoscope during two 

surveillance examinations within 3 months interval. Given an image from the second 

examination, corresponding images from the first examination were searched by 

identification of similar vasculature. Once corresponding images were found, SIFT features 

were detected and matched. A point was selected as the biopsy site in the images. The 

epipolar geometry was recovered using seven pairs of good matches for a pair of images from 

respectively the first examination and the second examination. The epipolar line 

corresponding to the biopsy site was derived in the image of the second examination termed 

target image. 

This experiment showed that similarities in the oesophagus walls could be found 

between 2 examinations (Fig. 9-1). Because of the difference of the endoscope optics, of the 

camera orientations, and of the image resolutions, only a small section of the images showed 

similarities and most of the common features were concentrated in this small section. Thus, 

the epipolar geometries and the re-localised biopsy site risk being less accurate than those 

computed during the same examination. Nevertheless, the computation of the epipolar 

geometry formed by the pair of images shown in Fig. 9-2 returned an accurate epipolar line 

for the re-localisation of the biopsy site. This accuracy was maybe due to the selection of 

good feature matches for the recovery of the epipolar geometry. 

 A possible approach for biopsy site re-localisation during a future examination would 

be, first, the selection of the reference endoscopic images from the first examination that 

show the same part of the oesophagus as the current target image from the second 

examination. Mori et al. (2005) demonstrated that an ElectroMagnetic (EM) tracking system 

returns information about the location of the endoscope camera in the organ of interest and 
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has the potential to reduce the computations by selection of images that are spatially relevant 

during the same examination. Future work for biopsy site re-localisation will focus on the 

potential use of an EM tracking system to reposition roughly the endoscope around the 

biopsy site that was detected during a previous examination. Secondly, the detected SIFT 

features could be matched using a graph matching method presented by Atasoy et al. (2009) 

which took into account the visual similarity of the features and which preserved their spatial 

arrangement in order to increase the proportion of the inliers. The strong constraint from the 

EM tracking system can also be integrated into this method to reduce the complexity of the 

graph matching. Finally, high resolution images will be acquired in order to improve the 

feature detection and matching. 

9.4 Biopsy site re-localisation in lungs and fusion of imaging 

modalities 

 

a)

b)

c) d)

e) f)

 
Fig. 9-3: Characterisation of a tumour with various imaging modalities: a) normal cell arrangements at 

the surface of the lung walls observed with in vivo fibered confocal microscopy are differentiated from 

b) abnormal arrangements for which the cells look disorganised; c) tumours can also be detected in the 

pre-operative CT image and under a guidance of the bronchoscope, the endoscopist can perform d) 

endobronchoscopic ultra sound imaging in order to detect the tumour in vivo and e) to excise tissue for 

observation under a microscope; f) the tumour can also be observed with optical coherence 

tomography. 

 

 

Image not displayed for Copyright reasons 
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Cancers in organs different from the oesophagus are also preceded by cell changes that can be 

detected in vivo by optical biopsy at an early stage. For example, the early detection of 

recurrent respiratory papillomatosis helps avoid the development of cancers in lung (Colt et 

al., 2010). Information about the cell structures in lung can come from a variety of imaging 

modalities such as a pre-operative CT image, EndoBronchoscopic Ultra Sound (EBUS) 

images, Optical Coherence Tomography (OCT) images, or Fibered Confocal Microscopy 

(FCM) images (Fig. 9-3). An important issue is the coregistration of these different sources of 

information. 

The pre-operative CT image helps identify the tumours in the organ (Fig. 9-3 c)). 

During the endoscopic examination, a navigation system can be used to guide the 

bronchoscope towards the tumour locations (Mori et al., 2005, 2006, 2007, 2008, 2009; 

Valdivia, 2010). This navigation system registers the real bronchoscope camera movement in 

a 3D reconstruction of the lungs from the pre-operative CT image. Once the bronchoscope is 

placed around the tumour, imaging or surgical instruments such as EBUS, FCM, or OCT 

probes can be used to analyse the tissue surface under the visual control of the bronchoscope 

camera. They return information about the tissue structure (Fig. 9-3 a), b), d), f)). 

 Chapter 8 showed that the re-localisation method in combination with an EM 

tracking system can be used as well in the trachea or in the bronchus. Therefore, the sites 

analysed with EBUS, FCM, and OCT probes can be re-localised in the bronchoscopic image 

for guidance of biopsy needles for excision and for ex vivo analysis under a microscope (Fig. 

9-3 e)) in order to confirm the diagnosis made with the pre-operative image and in vivo. An 

EM sensor could be mounted at the tip of the endoscope and could be used to localise the 

endoscope pose both in physical space and, through registration, in the pre-operative CT 

image. The ultrasound probe is usually mounted onto to the endoscope tip for EBUS 

applications. Thus, there is a rigid transformation from the coordinate system of the 

ultrasound probe to the endoscope camera coordinate system. As the optical miniprobes for 

FCM or OCT are passed through the working channel of the endoscope and are visible in the 

endoscope images, the tip of the miniprobe can be localised in the endoscope images and, 

again by transforming between coordinates, in the pre-operative image. 

 Future development can focus on the integration of the re-localisation method in a 

clinical system for image-guided biopsy within the airways. 
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9.5 Integration of the re-localisation method in a Magnetic 

Resonance-guided system 

An application of the re-localisation method is the guidance of instruments or cells for 

treatment of the tissue extent affected by malignancies. Riegler et al. (2011) demonstrated 

that magnetic and fluorescent cells can be steered to a site of interest using the magnetic force 

derived from the coils of a Magnetic Resonance (MR) scanner. These cells were fluorescent 

in order to be visible in in vivo Fibered Confocal Microscopy (FCM) images. Therefore, the 

cell movement could be controlled using an FCM miniprobe. 

 This method could be integrated into an interventional system combining endoscopy, 

optical biopsy such as FCM, and MR imaging for biopsy site re-localisation and treatment. 

MR imaging has been shown to be an appropriate tool for the detection of cancers in the 

oesophagus (Ajaj et al., 2004; Iwadate et al., 2007). As MR imaging has the potential to 

guide interventions (Kos et al., 2007), MR images could be acquired during endoscopic 

examinations in the oesophagus in order to track visually the position of the optical biopsy 

miniprobe within the organ. If the endoscope were MR-compatible as one was presented in 

Gross et al. (2001), the endoscopy could be performed under the control of the MR scanner.  

Once the biopsy site has been detected in the endoscopic images, the re-localisation method 

in the endoscopic images could help maintain the optical biopsy miniprobe at the location of 

the biopsy site. The MR scanner would be used to guide the cells for tissue treatment towards 

the detected site as described in Riegler et al. (2011). 

 The tracking of the FCM miniprobe tip may be useful to record the location of the 

treated site as presented in Chapter 2 ‘Initial Pilot Work to Assess the In Vivo Use of the 

Fibered Confocal Microscope and its Use in Combination with MRI’. Because the 

oesophagus is full of air, it will appear in black in the MR images. In this case, a Gadolinium-

based marker can be mounted at the tip of the FCM miniprobe in order to make it visible as 

presented in Chapter 2. The positions of the FCM miniprobe can be, therefore, recorded in 

the MR images with the method described in Chapter 2. This position can be finally used to 

steer the cells to the site to be treated using the forces derived from the MR imaging coils. 
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